TOPOLOGY 2 - HOMEWORK 3

(1) Prove that $\mathbb{R}^{n} / \mathbb{Z}^{n}$ is homeomorphic to $S^{1} \times S^{1} \times \ldots \times S^{1}$, where the Cartesian product is taken n times and " $\mathbb{R}^{n} / \mathbb{Z}^{n}$ " refers to the quotient by the following equivalence relation:

$$
\left(x_{1}, \ldots, x_{n}\right) \sim\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right) \quad \text { for all }\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \text { and }\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}
$$

(Hint: use the lemma from problem 1 of assignment 1. Note that the second part still holds for non-compact X such that X^{*} is compact.)
(2) For X and $a=[\gamma], b=[\lambda] \in \pi_{1}\left(X, x_{0}\right)$ as below, prove that $a^{m} b^{n} \neq 1$ for all $(m, n) \in \mathbb{Z}^{2}-\{0\}$.

(Hint: you might use some of the many maps $X \rightarrow S^{1}$.)
(3) Show that the restriction to $[0,1)$ of $p: t \mapsto(\cos (2 \pi t), \sin (2 \pi t))$ is not a covering map to S^{1}.
(4) Hatcher, Section 1.3, Exercise 1
(5) Hatcher, Section 1.3, Exercise 3
(6) Hatcher, Section 1.1, Exercise 18 (3 notes:

- Proposition 1.14 is the proof that $\pi_{1}\left(S^{n}\right)=0$.
- The wedge sum $X \vee Y$ of X with Y is constructed as follows: fix $x \in X$ and $y \in Y$, and take $X \vee Y=X \sqcup Y / x \sim y$. You can feel free to choose x and y as you see fit - assuming X and Y are path-connected, different choices yield homotopy-equivalent spaces.
- Don't worry about the case of infinitely many cells.)

