TOPOLOGY 2 - HOMEWORK 4

- (1) Compute $\pi_1(\mathbb{R}P^2)$.
- (2) Hatcher, Section 1.2, Exercise 1.
- (3) Hatcher, Section 1.2, Exercise 7.
- (4) Hatcher, Section 1.2, Exercise 14. (In this problem you may assume the result of Exercise 6.)
- (5) Let H be a regular hexagon with sides e_0, \ldots, e_5 , ordered and oriented counterclockwise. Compute $\pi_1(X)$, where X is the quotient space of H in which each point of e_i is identified with the corresponding point on the opposite side \bar{e}_{i+3} (taking i+3 modulo 6) with opposite orientation.

More precisely: $t \cdot x_i + (1-t) \cdot x_{i+1} \sim (1-t) \cdot x_{i+3} + t \cdot x_{i+4}$ for each $t \in I$ and $i \in \{0, \ldots, 5\}$, where $x_i = e_i \cap e_{i-1}$ and all indices are taken modulo 6.

Overall hint: First construct a CW structure, then apply the final result from Friday's class.