TOPOLOGY 2 - HOMEWORK 4

(1) Compute $\pi_{1}\left(\mathbb{R} P^{2}\right)$.
(2) Hatcher, Section 1.2, Exercise 1.
(3) Hatcher, Section 1.2, Exercise 7.
(4) Hatcher, Section 1.2, Exercise 14. (In this problem you may assume the result of Exercise 6.)
(5) Let H be a regular hexagon with sides e_{0}, \ldots, e_{5}, ordered and oriented counterclockwise. Compute $\pi_{1}(X)$, where X is the quotient space of H in which each point of e_{i} is identified with the corresponding point on the opposite side \bar{e}_{i+3} (taking $i+3$ modulo 6) with opposite orientation.

More precisely: $t \cdot x_{i}+(1-t) \cdot x_{i+1} \sim(1-t) \cdot x_{i+3}+t \cdot x_{i+4}$ for each $t \in I$ and $i \in\{0, \ldots, 5\}$, where $x_{i}=e_{i} \cap e_{i-1}$ and all indices are taken modulo 6 .

Overall hint: First construct a CW structure, then apply the final result from Friday's class.

