TOPOLOGY 2 - HOMEWORK 6

(1) For a group $G=\left\langle a_{1}, \ldots, a_{n} \mid \mathcal{R}\right\rangle$ (where \mathcal{R} is some set of relations), show that:

$$
G^{a b}=\left\langle a_{1}, \ldots, a_{n} \mid \mathcal{R} \cup\left\{\left[a_{i}, a_{j}\right] \mid 1 \leq i, j \leq n\right\}\right\rangle
$$

Hint: For $\mathcal{S} \subset G$,

$$
\langle\langle\mathcal{S}\rangle\rangle=\left\{g_{1} s_{1}^{n_{1}} g_{1}^{-1} \cdot \ldots \cdot g_{k} s_{k}^{n_{k}} g_{k}^{-1} \mid k \geq 0 \text { and } g_{i} \in G, s_{i} \in \mathcal{S}, n_{i} \in \mathbb{Z} \forall i \leq k\right\}
$$

(2) Show that $B S(2,3) \doteq\left\langle a, b \mid b a^{2} b^{-1}=a^{3}\right\rangle$ ($B S$ stands for "Baumslag-Solitar", its co-discoverers) is not Hopfian: there is an onto homomorphism $\phi: B S(2,3) \rightarrow B S(2,3)$ that is not an isomorphism.

Hint: You may assume that $a^{-1} b a b^{-1} a^{-1} b a b^{-1} a^{-1}$ is nontrivial in $B S(2,3)$ (extra credit for a nice proof of this fact).
(3) Classify finite graphs up to homotopy equivalence; ie, produce a list of finite graphs $\left\{X_{\alpha}\right\}$ (for α in an appropriate index set) with the property that for any finite graph X there is a unique α such that X_{α} is homotopy equivalent to X. (In particular, X_{α} is not homotopy equivalent to X_{β} for $\alpha \neq \beta$.)
(4) Hatcher, Section 1.3, Exercise 5.
(5) Hatcher, Section 1.3, Exercise 6.

Hint: The following fact might be useful: for any cover $p: \widetilde{X} \rightarrow X$, all but finitely many of the circles comprising X lift homeomorphically to \widetilde{X}. (Prove it if you use it.)

