TOPOLOGY 2 - HOMEWORK 6

(1) For a group $G = \langle a_1, \ldots, a_n | \mathcal{R} \rangle$ (where \mathcal{R} is some set of relations), show that:

$$G^{ab} = \langle a_1, \dots, a_n \, | \, \mathcal{R} \cup \{ [a_i, a_j] \, | \, 1 \le i, j \le n \} \rangle$$

Hint: For $\mathcal{S} \subset G$,

$$\langle \langle \mathcal{S} \rangle \rangle = \{ g_1 s_1^{n_1} g_1^{-1} \cdot \ldots \cdot g_k s_k^{n_k} g_k^{-1} \, | \, k \ge 0 \text{ and } g_i \in G, s_i \in \mathcal{S}, n_i \in \mathbb{Z} \, \forall \, i \le k \}$$

(2) Show that $BS(2,3) \doteq \langle a, b | ba^2b^{-1} = a^3 \rangle$ (BS stands for "Baumslag–Solitar", its co-discoverers) is not Hopfian: there is an onto homomorphism $\phi: BS(2,3) \rightarrow BS(2,3)$ that is not an isomorphism.

Hint: You may assume that $a^{-1}bab^{-1}a^{-1}bab^{-1}a^{-1}$ is nontrivial in BS(2,3) (extra credit for a nice proof of this fact).

- (3) Classify finite graphs up to homotopy equivalence; ie, produce a list of finite graphs $\{X_{\alpha}\}$ (for α in an appropriate index set) with the property that for any finite graph X there is a unique α such that X_{α} is homotopy equivalent to X. (In particular, X_{α} is not homotopy equivalent to X_{β} for $\alpha \neq \beta$.)
- (4) Hatcher, Section 1.3, Exercise 5.
- (5) Hatcher, Section 1.3, Exercise 6.

Hint: The following fact might be useful: for any cover $p: \widetilde{X} \to X$, all but finitely many of the circles comprising X lift homeomorphically to \widetilde{X} . (Prove it if you use it.)