TOPOLOGY 2, HOMEWORK 1

- (1) The exercises below are related to ones given in class.
 - (a) (1 pt) In a category \mathcal{C} , a morphism $f \colon X \to Y$ is invertible if there is a morphism $g \colon Y \to X$ such that $g \circ f = 1_X$ and $f \circ g = 1_Y$. Show that a functor $F \colon \mathcal{C} \to \mathcal{D}$ takes invertible morphisms of \mathcal{C} to invertible morphisms of \mathcal{D} .
 - (b) (1 pt) Show that $\mathbb{R}P^n$ is Hausdorff. (Here $\mathbb{R}P^n = S^n/\sim$, where $\mathbf{x} \sim \mathbf{y}$ if and only if $\mathbf{y} = \pm \mathbf{x}$.)
 - (c) (1 pt) Give an example to show that a quotient projection $p: X \to X/\sim$, where \sim is an equivalence relation on X, is not necessarily an open map. (Here a map $f: X \to Y$ is open if f(U) is open in Y, for each open $U \subset X$.)
- (2) Prove the following result:

Lemma. Let X and Y be topological spaces, and suppose $X^* = X/\sim$ is a quotient space of X.

(a) (1 pt) A continuous map $f: X \to Y$ with the property that f(x) = f(x') whenever $x \sim x'$ determines a unique continuous map $f^*: X^* \to Y$ so that the diagram below commutes.

That is, $f = f^* \circ p$, where $p: X \to X^*$ is the quotient map.

- (b) (1 pt) If f^* is bijective, and f is either an open map or a closed map (ie, f(C) is closed in Y for each closed $C \subset X$), then f^* is a homeomorphism.
- (c) (1 pt) In particular, if X is compact, Y is Hausdorff, and f^* is bijective then f^* is a homeomorphism. (Hint: Show that this implies f is closed.)
- (3) (2 pts) Prove that S^n is homeomorphic to B^n/S^{n-1} , where $B^n = \{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| \le 1\}$.

Hint: Find a map $B^n \to S^n$ that allows you to use problem (2).

- (4) (4 pts) For any $n \ge 1$, show that the three quotient spaces below are homeomorphic.
 - (a) $(\mathbb{R}^{n+1} \{\mathbf{0}\}) / \sim$, where $\mathbf{x} \sim \mathbf{y}$ if and only if $\mathbf{y} = \lambda \mathbf{x}$ for some $\lambda \in \mathbb{R}$.

1

- (b) $\mathbb{R}P^n$; ie. \mathbb{S}^n/\sim , where $\mathbf{x}\sim\mathbf{y}$ if and only if $\mathbf{y}=\pm\mathbf{x}$.
- (c) B^n/\sim , where $\mathbf{x} \sim \mathbf{y}$ if and only if $\mathbf{y} = \pm \mathbf{x}$ for $\mathbf{x} \in S^{n-1}$, and otherwise $\mathbf{x} \sim \mathbf{y}$ if and only if $\mathbf{y} = \mathbf{x}$.