TOPOLOGY 2, HOMEWORK 12

- (1) Equip S^n with the inductively-defined CW complex structure X that has two *n*-cells with characteristic maps given by $\Phi_n^{\pm}(\mathbf{x}) = (\mathbf{x}, \pm \sqrt{1 - \|\mathbf{x}\|^2})$, and with $X^{n-1} = S^{n-1} \times \{0\}$. Compute the CW-homology groups of X.
- (2) Let T_g be the quotient of a 2g-gon P_{2g} with edges enumerated e_0, \ldots, e_{2g-1} counterclockwise, by pairing the edges as follows: for each even i < 2g 1, identify each point of e_i with its image in e_{i+1} under the orientation-preserving linear homeomorphism. That is, if $v_i = e_i \cap e_{i-1}$ for each i then for each even i we take v_i to v_{i+1}, v_{i+1} to v_{i+2} , and extend linearly over e_i . Compute the CW-homology groups of T_g , equipped with the "obvious" CW complex structure.
- (3) Compute the CW-homology groups of the quotient space X of the cube I^3 described in Hatcher Section 1.2, Exercise 14, equipped with the CW complex structure described there.
- (4) Hatcher, Section 2.2 #21
- (5) Hatcher, Section 2.2 #23