
TOPOLOGY 2, HOMEWORK 2

(1) The exercises below were given in class.

(a) (1 pt) For an open set U ⊂ Sn−1 and 0 < ε < 1, show that the radial
ε-neighborhood of U , defined as{

x

∣∣∣∣ ‖x‖ > 1− ε, x

‖x‖
∈ U

}
is open in Dn. (Hint : Radial projection x 7→ x

‖x‖ is continuous.)

(b) Show that a CW complex with countably many cells is second-countable.

(2) (2 pts) For each n ≥ 0, show that RP n has a CW complex structure with a
single k-cell for each k ≤ n.

(3) Let S∞ = {x ∈ R∞ | ‖x‖ = 1}, where

R∞ = {(x1, x2, . . .) |xn = 0 for all but finitely many n}
is equipped with the norm ‖x‖ =

√∑∞
n=1(xi)

2. (Note that this sum is finite
for each x ∈ R∞.) We equip R∞ with the metric topology from this norm.

(a) (1 pt) Show that S∞ has a CW-complex structure with two k-cells for
each k ∈ N, when given the subspace topology from R∞.

(b) (1 pt) Show that RP∞ = S∞/x ∼ −x has the structure of a CW-complex
with a single k-cell for each k, when given the quotient topology from S∞.

(4) For any g ≥ 1 fix a regular Euclidean 4g-gon P4g, and number its edges
e0, . . . , e4g−1 so that ei ∩ ei−1 is a vertex vi for each i > 0, and e0 ∩ e4g−1 is a
vertex v0. Let Σg be the quotient space by the equivalence relation generated
by the identifications below:
• For i = 0 or 1 (mod 4), identify points of ei with points of ei+2 by linearly

extending vi 7→ vi+3 and vi+1 7→ vi+2.
Below I will write two relevant definitions and draw pictures of the identifica-
tions producing Σg, for g = 1 and 2. But first! Your assignment:

(a) (2 pts) Show that Σg has a CW complex structure with one vertex.

(b) (2 pts) Show that Σg is a 2-dimensional manifold.

Definition. For x0, x1, y0 and y1 ∈ Rn, the map obtained by linearly extend-
ing x0 7→ y0 and x1 7→ y1 is given by (1− t)x0 + tx1 7→ (1− t)y0 + ty1. This
maps the line segment joining x0 to x1 to the line segment joining y0 to y1.

Definition. For an arbitrary relation ∼ on a set X we define the equivalence
relation ' generated by ∼ by prescribing that x ' y whenever x ∼ y, and:
• x ' x for all x ∈ X;
• y ' x whenever x ∼ y; and
• x ' y whenever there is a sequence x0, x1, . . . , xn such that x0 = x,
xn = y, and either xi ∼ xi−1 or xi−1 ∼ xi for each i > 0.
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In other words ' is the “minimal” equivalence relation that includes ∼ as a
subrelation.
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Figure 1. The polygons whose quotients are Σ1 and Σ2, respectively.
Edges are identified respecting the orientations shown.


