TOPOLOGY 2, HOMEWORK 2

(1) The exercises below were given in class.
(a) (1 pt) For an open set $U \subset S^{n-1}$ and $0<\epsilon<1$, show that the radial ϵ-neighborhood of U, defined as

$$
\left\{\mathbf{x} \mid\|\mathbf{x}\|>1-\epsilon, \frac{\mathbf{x}}{\|\mathbf{x}\|} \in U\right\}
$$

is open in \mathbb{D}^{n}. (Hint: Radial projection $\mathbf{x} \mapsto \frac{\mathbf{x}}{\|\mathbf{x}\|}$ is continuous.)
(b) Show that a CW complex with countably many cells is second-countable.
(2) (2 pts) For each $n \geq 0$, show that $\mathbb{R} P^{n}$ has a CW complex structure with a single k-cell for each $k \leq n$.
(3) Let $S^{\infty}=\left\{\mathbf{x} \in \mathbb{R}^{\infty} \mid\|\mathbf{x}\|=1\right\}$, where

$$
\mathbb{R}^{\infty}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{n}=0 \text { for all but finitely many } n\right\}
$$

is equipped with the norm $\|\mathbf{x}\|=\sqrt{\sum_{n=1}^{\infty}\left(x_{i}\right)^{2}}$. (Note that this sum is finite for each $\mathrm{x} \in \mathbb{R}^{\infty}$.) We equip \mathbb{R}^{∞} with the metric topology from this norm.
(a) (1 pt) Show that S^{∞} has a CW-complex structure with two k-cells for each $k \in \mathbb{N}$, when given the subspace topology from \mathbb{R}^{∞}.
(b) (1 pt) Show that $\mathbb{R} P^{\infty}=S^{\infty} / \mathbf{x} \sim-\mathbf{x}$ has the structure of a CW-complex with a single k-cell for each k, when given the quotient topology from S^{∞}.
(4) For any $g \geq 1$ fix a regular Euclidean $4 g$-gon $P_{4 g}$, and number its edges $e_{0}, \ldots, e_{4 g-1}$ so that $e_{i} \cap e_{i-1}$ is a vertex v_{i} for each $i>0$, and $e_{0} \cap e_{4 g-1}$ is a vertex v_{0}. Let Σ_{g} be the quotient space by the equivalence relation generated by the identifications below:

- For $i=0$ or $1(\bmod 4)$, identify points of e_{i} with points of e_{i+2} by linearly extending $v_{i} \mapsto v_{i+3}$ and $v_{i+1} \mapsto v_{i+2}$.
Below I will write two relevant definitions and draw pictures of the identifications producing Σ_{g}, for $g=1$ and 2 . But first! Your assignment:
(a) (2 pts) Show that Σ_{g} has a CW complex structure with one vertex.
(b) (2 pts) Show that Σ_{g} is a 2 -dimensional manifold.

Definition. For $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{y}_{0}$ and $\mathbf{y}_{1} \in \mathbb{R}^{n}$, the map obtained by linearly extend$i n g \mathbf{x}_{0} \mapsto \mathbf{y}_{0}$ and $\mathbf{x}_{1} \mapsto \mathbf{y}_{1}$ is given by $(1-t) \mathbf{x}_{0}+t \mathbf{x}_{1} \mapsto(1-t) \mathbf{y}_{0}+t \mathbf{y}_{1}$. This maps the line segment joining \mathbf{x}_{0} to \mathbf{x}_{1} to the line segment joining \mathbf{y}_{0} to \mathbf{y}_{1}.

Definition. For an arbitrary relation \sim on a set X we define the equivalence relation \simeq generated by \sim by prescribing that $x \simeq y$ whenever $x \sim y$, and:

- $x \simeq x$ for all $x \in X$;
- $y \simeq x$ whenever $x \sim y$; and
- $x \simeq y$ whenever there is a sequence $x_{0}, x_{1}, \ldots, x_{n}$ such that $x_{0}=x$, $x_{n}=y$, and either $x_{i} \sim x_{i-1}$ or $x_{i-1} \sim x_{i}$ for each $i>0$.

In other words \simeq is the "minimal" equivalence relation that includes \sim as a subrelation.

Figure 1. The polygons whose quotients are Σ_{1} and Σ_{2}, respectively. Edges are identified respecting the orientations shown.

