TOPOLOGY 2, HOMEWORK 6

(1) (a) (1 pt) Show that an isomorphism $\phi: G \rightarrow H$ is determined by $\phi(x)=b a b$ and $\phi(y)=a b$, where $G=\left\langle x, y \mid x^{2}=y^{3}\right\rangle$ and $H=\langle a, b \mid a b a=b a b\rangle$.
(b) (1 pt) Show that $\langle a, b, c, d \mid a b=c, b c=d, c d=a, d a=b\rangle$ is a finite cyclic group, and find its order.
(2) (2 pts) Hatcher, Section $1.2 \# 1$
(3) (2 pts) Hatcher, Section $1.2 \# 6$
(4) (2 pts) Hatcher, Section 1.2 \#8
(5) (2 pts) Hatcher, Section 1.2 \#9

