
TOPOLOGY 2, THE REAL HOMEWORK 2

(1) The exercises below were given in class.

(a) For an open set U ⊂ Sn−1 and 0 < ε < 1, show that the radial ε-
neighborhood of U , defined as{

x

∣∣∣∣ ‖x‖ > 1− ε, x

‖x‖
∈ U

}
is open in Dn. (Hint : Radial projection x 7→ x

‖x‖ is continuous.)

(b) Show that a finite-dimensional CW complex with countably many cells
is second-countable.

(2) Define:

•
∐

R = {(x1, x2, . . .) |xi ∈ R for each i ∈ N}

• `2 = {(x1, x2, . . .) |
∞∑
i=1

(xi)
2 <∞} ⊂

∐
R

• R∞ = {(x1, x2, . . .) |xi = 0 for all but finitely many i} ⊂ `2

There is a norm on `2 given by ‖(x1, x2, . . .)‖ =
√∑∞

i=1(xi)
2, and this norm

determines a metric on `2 via d(x,y) = ‖x− y‖.
(a) Define bigS∞ = {x ∈ `2 | ‖x‖ = 1} and lilS∞ = {x ∈ R∞ | ‖x‖ = 1}.

Which of these is the union S∞ =
⋃
Sn? (Here Sn ⊂ Rn+1 is included in∐

R by x 7→ (x, 0, . . .) for each n ≥ 0.)

(b) S∞ inherits the structure of a CW complex as
⋃
Sn, where for each n,

Sn is given a CW structure with two k-cells for each k ≤ n. It can also
take the product or box topology as a subspace of

∐
R, or the metric

topology as a subspace of `2. Which of these subspace topologies match
the weak topology from its CW structure? Which do not?

(c) Show that RP∞ = S∞/x ∼ −x has the structure of a CW-complex with
a single k-cell for each k, when given the quotient topology from S∞.

(3) For any g ≥ 1 fix a regular Euclidean 4g-gon P4g, and number its edges
e0, . . . , e4g−1 so that ei ∩ ei−1 is a vertex vi for each i > 0, and e0 ∩ e4g−1 is a
vertex v0. Let Σg be the quotient space by the equivalence relation generated
by the identifications below:
• For i = 0 or 1 (mod 4), identify points of ei with points of ei+2 by linearly

extending vi 7→ vi+3 and vi+1 7→ vi+2.
On the next page I will write two relevant definitions and draw pictures of the
identifications producing Σg, for g = 1 and 2. But first! Your assignment:

(a) Show that Σg has a CW complex structure with one vertex.

(b) Show that Σg is a 2-dimensional manifold.
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2 TOPOLOGY 2, THE REAL HOMEWORK 2

Definition. For x0, x1, y0 and y1 ∈ Rn, the map obtained by linearly extend-
ing x0 7→ y0 and x1 7→ y1 is given by (1− t)x0 + tx1 7→ (1− t)y0 + ty1. This
maps the line segment joining x0 to x1 to the line segment joining y0 to y1.

Definition. For an arbitrary relation ∼ on a set X we define the equivalence
relation ' generated by ∼ by prescribing that x ' y whenever x ∼ y, and:
• x ' x for all x ∈ X;
• y ' x whenever x ∼ y; and
• x ' y whenever there is a sequence x0, x1, . . . , xn such that x0 = x,
xn = y, and either xi ∼ xi−1 or xi−1 ∼ xi for each i > 0.

In other words ' is the “minimal” equivalence relation that includes ∼ as a
subrelation.
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Figure 1. The polygons whose quotients are Σ1 and Σ2, respectively.
Edges are identified respecting the orientations shown.


