August 2012, Problem 4.
Let Ω be an open set in \mathbb{R}^{n}. Let $F: \Omega \rightarrow \mathbb{R}^{n}$ and $G: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be two continuously differentiable functions such that $G \circ F=0$ on Ω. Suppose that

$$
\sum_{j=1}^{n}\left(\frac{\partial G(x)}{\partial x_{j}}\right)^{2}>0
$$

for every $x \in F(\Omega)$. Prove that $\operatorname{det}(D F)=0$ on Ω.

