May 2016, Problem 4 Let $D = \{(x,y) | x^2 + y^2 < 1\}$ be the unit disk in \mathbb{R}^2 . Let $f, g \in C^2(D)$ be such that g is bounded on D, $f(x,y) \to +\infty$ as $x^2 + y^2 \to 1$, and moreover $\Delta f = e^f$ and $\Delta g \ge e^g$ at all points of D. Here $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ is the Laplacian. Show that $f(x,y) \ge g(x,y)$ for any $(x,y) \in D.$