May 2016, Problem 4
Let $D=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$ be the unit disk in \mathbb{R}^{2}. Let $f, g \in C^{2}(D)$ be such that g is bounded on $D, f(x, y) \rightarrow+\infty$ as $x^{2}+y^{2} \rightarrow 1$, and moreover $\Delta f=e^{f}$ and $\Delta g \geq e^{g}$ at all points of D. Here $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ is the Laplacian. Show that $f(x, y) \geq g(x, y)$ for any $(x, y) \in D$.

