Marsden & Hoffman problems

1. Compute the second-order Taylor formula for $f(x, y) = e^x \cos y$ around (0, 0). (That is, write $f(x, y) = f(0, 0) + (Df)_{(0,0)}(x, y) + (D^2f)_{(0,0)}((x, y), (x, y)) + R_2(x, y)$ in terms of only some explicit constants, x and y, and $R_2(x, y)$.)

2. Prove that $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ is negative definite if and only if a < 0 and $ad - b^2 > 0$.

PPotWs

August 2016, Problem 5. Suppose f(x, y) is a C^2 function on \mathbb{R}^2 such that for some M > 0 and all (x, y) in the closed unit disk $\mathbb{D} = \{(x, y) | x^2 + y^2 \leq 1\},\$

$$[f_{xx}(x,y)]^2 + 2[f_{xy}(x,y)]^2 + [f_{yy}(x,y)]^2 \le M.$$

If $f(0,0) = f_x(0,0) = f_y(0,0) = 0$, show that

$$\left| \iint_{\mathbb{D}} f(x,y) \, dx \, dy \right| \leq \frac{\pi \sqrt{M}}{4}$$

Remark: (At some point) use the formula for evaluating double integrals in polar coordinates:

$$\iint_{\mathbb{D}} g(x,y) \, dx \, dy = \int_0^{2\pi} \int_0^1 g(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$

April 2012, Problem 5. For $a = (a_0, a_1, \ldots, a_n) \in \mathbb{R}^{n+1}$, $a_n \neq 0$ let $P_a(x) = a_n x^n + \ldots + a_1 x + a_0$. Suppose that for $a^0 = (a_0^0, a_1^0, \ldots, a_n^0)$, $a_n^0 \neq 0$ the polynomial $P_{a^0}(x)$ has n distinct real roots. Prove that there exist $\epsilon > 0$ and C^{∞} smooth functions

$$\lambda_1, \ldots, \lambda_n \colon B^{n+1}(a^0, \epsilon) \to \mathbb{R}$$

such that for any $a \in B^{n+1}(a^0, \epsilon)$, $\lambda_1(a), \ldots, \lambda_n(a)$ are distinct roots of the polynomial $P_a(x)$. In other words, prove that in a small neighborhood of a^0 , roots of the polynomial P_a depend smoothly on the coefficients a_0, a_1, \ldots, a_n .