Marsden \& Hoffman problems

1. Compute the second-order Taylor formula for $f(x, y)=e^{x} \cos y$ around $(0,0)$.
(That is, write $f(x, y)=f(0,0)+(D f)_{(0,0)}(x, y)+\left(D^{2} f\right)_{(0,0)}((x, y),(x, y))+R_{2}(x, y)$ in terms of only some explicit constants, x and y, and $R_{2}(x, y)$.)
2. Prove that $\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$ is negative definite if and only if $a<0$ and $a d-b^{2}>0$.

PPotWs

August 2016, Problem 5. Suppose $f(x, y)$ is a C^{2} function on \mathbb{R}^{2} such that for some $M>0$ and all (x, y) in the closed unit disk $\mathbb{D}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$,

$$
\left[f_{x x}(x, y)\right]^{2}+2\left[f_{x y}(x, y)\right]^{2}+\left[f_{y y}(x, y)\right]^{2} \leq M
$$

If $f(0,0)=f_{x}(0,0)=f_{y}(0,0)=0$, show that

$$
\left|\iint_{\mathbb{D}} f(x, y) d x d y\right| \leq \frac{\pi \sqrt{M}}{4}
$$

Remark: (At some point) use the formula for evaluating double integrals in polar coordinates:

$$
\iint_{\mathbb{D}} g(x, y) d x d y=\int_{0}^{2 \pi} \int_{0}^{1} g(r \cos \theta, r \sin \theta) r d r d \theta
$$

April 2012, Problem 5. For $a=\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1}, a_{n} \neq 0$ let $P_{a}(x)=a_{n} x^{n}+$ $\ldots+a_{1} x+a_{0}$. Suppose that for $a^{0}=\left(a_{0}^{0}, a_{1}^{0}, \ldots, a_{n}^{0}\right), a_{n}^{0} \neq 0$ the polynomial $P_{a^{0}}(x)$ has n distinct real roots. Prove that there exist $\epsilon>0$ and C^{∞} smooth functions

$$
\lambda_{1}, \ldots, \lambda_{n}: B^{n+1}\left(a^{0}, \epsilon\right) \rightarrow \mathbb{R}
$$

such that for any $a \in B^{n+1}\left(a^{0}, \epsilon\right), \lambda_{1}(a), \ldots, \lambda_{n}(a)$ are distinct roots of the polynomial $P_{a}(x)$. In other words, prove that in a small neighborhood of a^{0}, roots of the polynomial P_{a} depend smoothly on the coefficients $a_{0}, a_{1}, \ldots, a_{n}$.

