August 2015, Problem 6. Let $f \in C^{1}(\mathbb{R})$ be a continuously differentiable function such that $\left|f^{\prime}(x)\right| \leq 1 / 2$ for all $x \in \mathbb{R}$. Define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
g(x, y)=(x+f(y), y+f(x))
$$

Prove that
(1) g is a diffeomorphism,
(2) $g\left(\mathbb{R}^{2}\right)=\mathbb{R}^{2}$,
(3) the area $\left|g\left([0,1]^{2}\right)\right|$ of the image of the unit square belongs to the interval $[3 / 4,5 / 4]$.

Hint: Among other tools use the contraction principle.
April 2016, Problem 6. Suppose that smooth functions $f_{k}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ are defined for $k=1,2, \ldots, 9$. Let $\Phi=\left(\phi_{1}, \ldots, \phi_{10}\right): \mathbb{R}^{10} \rightarrow \mathbb{R}^{10}$ be a mapping defined by

$$
\begin{aligned}
\phi_{1}\left(x_{1}, \ldots, x_{10}\right) & =x_{1} \\
\phi_{2}\left(x_{1}, \ldots, x_{10}\right) & =2 x_{2}+f_{1}\left(x_{1}\right) \\
\phi_{3}\left(x_{1}, \ldots, x_{10}\right) & =3 x_{3}+f_{2}\left(x_{1}, x_{2}\right) \\
& \cdots \\
\phi_{10}\left(x_{1}, \ldots, x_{10}\right) & =10 x_{10}+f_{9}\left(x_{1}, \ldots, x_{9}\right)
\end{aligned}
$$

(1) Prove that Φ is a diffeomorphism of \mathbb{R}^{10} onto an open subset of \mathbb{R}^{10}.
(2) Find the volume of $\Phi\left((-1,1)^{10}\right)$.

