Pugh Ch. 3, Problem 57. Construct a function $f:[-1,1] \rightarrow \mathbb{R}$ such that

$$
\lim _{r \rightarrow 0}\left(\int_{-1}^{-r} f(x) d x+\int_{r}^{1} f(x) d x\right)
$$

exists (and is a finite real number) but the improper integral $\int_{-1}^{1} f(x) d x$ does not exist. Do the same for a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} g(x) d x
$$

exists but the improper integral $\int_{-\infty}^{\infty} g(x) d x$ fails to exist. [Hint: The functions are not symmetric across 0.]

August 2011, Problem 1. Let $\beta>0$, and let $\left\{u_{n}\right\}$ be a sequence of positive real numbers such that $\frac{u_{n+1}}{u_{n}} \leq \beta$ for every $n \in \mathbb{N}$. Prove that

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{u_{n}} \leq \limsup _{n \rightarrow \infty}\left(\frac{u_{n+1}}{u_{n}}\right)
$$

