## Rudin, Ch. 7

2. If $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ converge uniformly on a set $E$, prove that $\left\{f_{n}+g_{n}\right\}$ converges uniformly on $E$. If, in addition, $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are sequences of bounded functions, prove that $\left\{f_{n} g_{n}\right\}$ converges uniformly on $E$.
3. Construct sequences $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ which converge uniformly on some set $E$, but such that $\left\{f_{n} g_{n}\right\}$ does not converge uniformly on $E$ (of course $\left\{f_{n} g_{n}\right\}$ must converge on $E$ ).
4. Prove that the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2}+n}{n^{2}}
$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of $x$.
7. For $n=1,2,3, \ldots$ and $x$ real, put

$$
f_{n}(x)=\frac{x}{1+n x^{2}} .
$$

Show that $\left\{f_{n}\right\}$ converges uniformly to a function $f$, and that the equation

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)
$$

is correct if $x \neq 0$, but false if $x=0$.
8. If

$$
I(x)= \begin{cases}0 & \text { for } x \leq 0 \\ 1 & \text { for } x>0\end{cases}
$$

if $\left\{x_{n}\right\}$ is a sequence of distinct points of $(a, b)$, and if $\sum\left|c_{n}\right|$ converges, prove that the series

$$
f(x)=\sum_{n=1}^{\infty} c_{n} I\left(x-x_{n}\right) \quad(a \leq x \leq b)
$$

converges uniformly, and that $f$ is continuous at every $x \neq x_{n}$.
...and the PPotW (August 2016, Problem 3.)
For $n \geq 2$ define $f_{n}:[0,1] \rightarrow[0,1]$ by

$$
f_{n}(x)= \begin{cases}n x & \text { if } 0 \leq x \leq 1 / n \\ \frac{n}{n-1}(1-x) & \text { if } \frac{1}{n} \leq x \leq 1\end{cases}
$$

Show that $\sum_{n=2}^{\infty}\left[f_{n}(x)\right]^{n}$ converges pointwise on $[0,1]$ to a function $f(x)$ that is continuous on ( 0,1 ], but that the improper integral $\int_{0}^{1} f(x) d x$ diverges (the integral is improper at 0 ).

