13. Prove that if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is an even function, then $a_{n}=0$ for n odd, and if f is an odd function then $a_{n}=0$ for n even.
14. The Fibonacci sequence $\left(a_{n}\right)$ is defined by $a_{1}=a_{2}=1$, and $a_{n+1}=a_{n}+a_{n-1}$ for $n \geq 2$.
(a) Show that $a_{n+1} / a_{n} \leq 2$ for all n.
(b) Let

$$
f(x)=\sum_{n=1}^{\infty} a_{n} x^{n-1}=1+x+2 x^{2}+3 x^{3}+\cdots
$$

Use the ratio test to prove that $f(x)$ converges if $|x|<1 / 2$.
(c) Prove that if $|x|<1 / 2$ then

$$
f(x)=\frac{-1}{x^{2}+x-1} .
$$

Hint: This equation can be written $f(x)-x f(x)-x^{2} f(x)=1$.
(d) Use the partial fraction decomposition for $1 /\left(x^{2}+x-1\right)$, and the power series for $1 /(x-a)$, to obtain another power series for f.
(e) It follows from problem 12 that the two power series obtained for f must be the same. Use this fact to show that

$$
a_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}
$$

18. Show that the series

$$
\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}-\frac{x^{n+1}}{2 n+2}
$$

converges uniformly to $\frac{1}{2} \log (x+1)$ on $[-a, a]$ for $0<a<1$, but that at 1 it converges to $\log 2$!
19. Suppose that $\sum_{n=0}^{\infty} c_{n}$ converges.
(a) Show that the power series $\sum c_{n} x^{n}$ converges uniformly on $[-a, a]$ for $0<a<1$.
(b) The power series may not converge at $x=-1$ (for example, the Taylor series of $f(x)=\log (1+x))$. However, a theorem of Abel shows that the series does converge uniformly on $[0,1]$. Consequently, $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is continuous on $[0,1]$ and, in particular, $\sum_{n=0}^{\infty} a_{n}=\lim _{x \rightarrow 1^{-}} \sum_{n=0}^{\infty} a_{n} x^{n}$. Prove Abel's theorem by showing that if $\left|a_{m}+\ldots+a_{n}\right|<\epsilon$ then $\left|a_{m} x^{m}+\ldots+a_{n} x^{n}\right|<\epsilon$ using
Abel's Lemma. For any a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n},

$$
a_{1} b_{1}+\cdots+a_{n} b_{n}=s_{1}\left(b_{1}-b_{2}\right)+s_{2}\left(b_{2}-b_{3}\right)+\cdots+s_{n-1}\left(b_{n-1}-b_{n}\right)+s_{n} b_{n},
$$

where $s_{k}=a_{1}+\ldots+a_{k}$ for each k.
....and the PPotW (January 2002, Problem 4.)
Define the function

$$
f(x)=\int_{0}^{x^{2}} e^{-t^{2} / 2} d t
$$

Show that $f(x)$ has a power series representation $\sum_{k=0}^{\infty} a_{k} x^{k}$ valid for all $x \in \mathbb{R}$, and compute the first two non-zero coefficients.

