August 2016, Problem 2
Prove that there is an increasing sequence of integers $a_{1}<a_{2}<a_{3}<\ldots$ such that for every $k \in \mathbb{N}$, the sequence $\left\{\sin \left(k a_{n}\right)\right\}_{n=1}^{\infty}$ converges.

April 2010, Problem 1

Let I be the interval $[0, \infty)$. For $n \in \mathbb{N}$ and $t \in I$, let

$$
f_{n}(t)=\sin \left(\sqrt{t+4 n^{2} \pi^{2}}\right)
$$

(i) Show that the sequence $\left\{f_{n}\right\}$ is equicontinuous on I;
(ii) Show that $\left\{f_{n}\right\}$ does not contain a subsequence which is uniformly convergent on I.

