August 2016, Problem 2

Prove that there is an increasing sequence of integers $a_1 < a_2 < a_3 < \ldots$ such that for every $k \in \mathbb{N}$, the sequence $\{\sin(ka_n)\}_{n=1}^{\infty}$ converges.

April 2010, Problem 1

Let I be the interval $[0,\infty)$. For $n \in \mathbb{N}$ and $t \in I$, let

$$f_n(t) = \sin(\sqrt{t + 4n^2\pi^2}).$$

- (i) Show that the sequence $\{f_n\}$ is equicontinuous on I;
- (ii) Show that $\{f_n\}$ does not contain a subsequence which is uniformly convergent on I.