April 2002, Problem 4

(a) Suppose the functions $\left\{f_{n}(x): n=1,2,3, \ldots\right\}$ are integrable and uniformly bounded on $[a, b] \subset \mathbb{R}$. For each n, let $F_{n}(x)=\int_{a}^{x} f_{n}(t) d t$, for $x \in[a, b]$. Show that there exists a subsequence $F_{n_{k}}$ of F_{n} which converges uniformly on $[a, b]$.
(b) Evaluate

$$
\sum_{n=0}^{\infty} \frac{n+1}{2^{n}} .
$$

