Pugh Ed. 2, Ch. 4 \#30.
Give an example of a continuous map of a compact, nonempty, path-connected metric space into itself that has no fixed point.

August 2014, Question 8.

Let $\mathcal{F} \subset C^{\infty}[0,1]$ be a uniformly bounded and equicontinuous family of smooth functions on $[0,1]$ such that $f^{\prime} \in \mathcal{F}$ whenever $f \in \mathcal{F}$. Suppose that

$$
\sup _{x \in[0,1]}\left|f^{\prime}(x)-g^{\prime}(x)\right| \leq \frac{1}{2} \sup _{x \in[0,1]}|f(x)-g(x)|
$$

for all $f, g \in \mathcal{F}$. Show that there exists a sequence f_{n} of functions in \mathcal{F} that tends uniformly to $C e^{x}$, for some real constant C.

