TOPOLOGY 2, HOMEWORK 1

- (1) Show that \mathbb{S}^0 is not homeomorphic to \mathbb{S}^n for any n > 0, and \mathbb{S}^1 is not homeomorphic to \mathbb{S}^n for any n > 1.
- (2) Let $\mathbb{R}^{\omega} = \{(x_1, x_2, \dots) \mid x_i \in \mathbb{R} \ \forall \ i \in \mathbb{N}\}$, and for each $n \in \mathbb{N}$ define $f_n \colon \mathbb{S}^n \to \mathbb{R}^{\omega}$ by $f_n(x_1, \dots, x_{n+1}) = (x_1, \dots, x_{n+1}, 0, 0, \dots)$.

Define $\mathbb{S}^{\infty} = \bigcup_{i=1}^{\infty} f_n(\mathbb{S}^n)$. The weak topology on \mathbb{S}^{∞} (this is Hatcher's terminology) is defined as follows:

 $U \subset \mathbb{S}^{\infty}$ is open if and only if $f_n^{-1}(U)$ is open in \mathbb{S}^n for all n.

Show that the weak topology on \mathbb{S}^{∞} is at least as fine as the subspace topology from the box topology on \mathbb{R}^{ω} (i.e. that every open set in the latter topology is also open in the former), and strictly finer than the product topology.

- (3) Show that with the weak topology, \mathbb{S}^{∞} is not second-countable.
- (4) The *line with two origins* L is the quotient space of the disjoint union of two copies of \mathbb{R} by setting each non-zero real number in the first copy equivalent to the same number in the second. Show that L has two of the three properties of a one-manifold (Hausdorff, second-countable, at las of charts to \mathbb{R}), but not the third.
- (5) Find a topological space X with an equivalence relation \sim such that the quotient map $p\colon X\to X/\sim$ is not open. (Here a map $f\colon X\to Y$ is open if f(U) is open in Y for each open $U\subset X$.)
- (6) Prove that \mathbb{S}^n is homeomorphic to D^n/\mathbb{S}^{n-1} , where D^n is the closed unit disk in \mathbb{R}^n ; i.e. $D^n = \{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| \leq 1\}$.