TOPOLOGY 2, HOMEWORK 2

(1) Prove the following result:

Proposition. For a continuous map $f: X \to Y$ of topological spaces, and a quotient space $X^* = X/ \sim of X$, show that if f(x) = f(x') whenever $x \sim x'$ then there is a unique continuous map $f^*: X^* \to Y$ so that $f = f^* \circ p$, where $p: X \to X^*$ is the quotient map. That is, the diagram below commutes.

Moreover, show that if f^* is bijective, and f is either an open map or a closed map (ie, f(C) is closed in Y for each closed $C \subset X$), then f^* is a homeomorphism.

(2) (a) For $f: \mathbb{D}^n \times \{0,1\} \to \mathbb{S}^n$ defined by

 $f(\mathbf{x}, 0) = (\mathbf{x}, -\sqrt{1 - \|\mathbf{x}\|^2})$ and $f(\mathbf{x}, 1) = (\mathbf{x}, \sqrt{1 - \|\mathbf{x}\|^2}),$

show that the induced map f^* on $\mathbb{D} \times \{0,1\}/\sim$ is a bijection, where $(\mathbf{x},i) \sim (\mathbf{x}',j)$ if and only if either $\mathbf{x} = \mathbf{x}'$ and j = i or $\mathbf{x} = \mathbf{x}' \in \mathbb{S}^{n-1}$ and j = 1 - i.

- (b) For any two pairs of distinct points $\mathbf{x} \neq \mathbf{y} \in \mathbb{S}^n$ and $\mathbf{x}' \neq \mathbf{y}' \in \mathbb{S}^n$, show that there is a homeomorphism $h: \mathbb{S}^n \to \mathbb{S}^n$ with $h(\mathbf{x}) = \mathbf{x}'$ and $h(\mathbf{y}) = \mathbf{y}'$.
- (3) Show for $\mathbb{K} = \mathbb{R}$ or \mathbb{C} and each $i \in \{1, \ldots, n+1\}$ that the map $\mathbb{K}^n \to \mathbb{K}P^n$ defined below is a homeomorphism to an open subset of $\mathbb{K}P^n$:

 $(x_1,\ldots,x_n)\mapsto [x_1:\ldots:x_{i-1}:1:x_i:\ldots:x_n].$

Here $[y_1 : \ldots : y_{n+1}]$ refers to the equivalence class of $(y_1, \ldots, y_{n+1}) \in \mathbb{K}^{n+1} - \{\mathbf{0}\}$ in $\mathbb{K}P^n$.

- (4) Show that $\mathbb{C}P^n \approx \mathbb{S}^{2n+1} / \sim$ where $\mathbf{z} \sim \mathbf{w}$ if and only if $\mathbf{z} = \lambda \mathbf{w}$ for some $\lambda \in S^1 = \{z \in \mathbb{C} \mid |z| = 1\}.$
- (5) Show that $\mathbb{R}P^1 \approx \mathbb{S}^1$, and $\mathbb{C}P^1 \approx \mathbb{S}^2$. (*Hint*: the first two are each homeomorphic to the one-point compactification of \mathbb{R} , and the latter two to that of \mathbb{R}^2 .)
- (6) Show that $\mathbb{R}P^n$ is homeomorphic to the quotient space of $\mathbb{D}^n = \{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| \le 1\}$ by setting $\mathbf{x} \sim -\mathbf{x}$ for each $\mathbf{x} \in \mathbb{S}^{n-1}$.