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¥ #0}. Thus, if w;, w,, ... = ;,here, in both cases, S; denotes a subspace of dimension j and the outer

—optimilaﬁon is over all subspaces of the indicated dimension.

Y*Ay =, If A€M, is Hermitian, show that the following three optimization
e y'y £ roblems all have the same solution:
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ok by considering A= ¢ }]. What is max{x7Ax/x"x: 0 x e R?}? What 15

max Re(x*Ax/x*x:0#xeC?}?

5. Let A€ M, have eigenvalues {\;}. Show that, even if 4 is not Her-
mitian, one has the bounds
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ut (4.2.9) shows that equality
namely w;=u,_;,,, where /=
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Hint: Consider x = an eigenvector of A, and A = [(1) }] to show that

neither bound need be sharp.

‘ E 4.3 Some applications of the variational characterizations
ith “min” and “max” since the

(4.2.13) is similar. [ Among the many important applications of the Courant-Fischer theorem,

- one of the simplest is to the problem of comparing the eigenvalues of
of (4.2.13). A+ B with those of 4. We denote the eigenvalues of a matrix 4 by \;(A4). iR
4.3.1 Theorem (Weyl). Let A, B € M,, be Hermitian and let the eigen- 1
values \;(A), \;(B), and \;(4+ B) be arranged in increasing order o

eigenvalues \j <\, < ... < M. (4.2.1). For each k=1, 2, ..., n we have

Me(A)+ N (B) = M\ (A+B) =N\ (A)+ N\, (B) (4.3.2)
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Proof: For any nonzero x € C" we have the bound |
' Xx*Bx ?
k=1,2,...,n h(B)= P |

and hence for any k=1, 2, ..., n we have




