$y \neq 0$ }. Thus, if $w_1, w_2, ..., w_{n-k} \in$

$$\frac{y^*\Lambda y}{y^*y}$$

$$\sum_{i=1}^{n} \lambda_i |y_i|^2$$

$$\int_{1+w_{n-k}}^{1+w_{n-k}} |y_i|^2$$

$$\sum_{\substack{i=1\\ \mathcal{I}^*w_{n-k}\\ y_{k-1}=0}}^n \lambda_i |y_i|^2$$

$$\lim_{\substack{+ \cdots + |y_n|^2 = 1 \\ \dots, U^* w_{n-k}}} \sum_{i=k}^n \lambda_i |y_i|^2 \ge \lambda_k$$

ut (4.2.9) shows that equality namely $w_i = u_{n-i+1}$, where U =

ith "min" and "max" since the (4.2.13) is similar. \square

of (4.2.13).

eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$.

 $^{2},...,n$

$$k = 1, 2, ..., n$$

where, in both cases, S_j denotes a subspace of dimension j and the outer optimization is over all subspaces of the indicated dimension.

1. If $A \in M_n$ is Hermitian, show that the following three optimization problems all have the same solution:

(a)
$$\max_{x^*x=1} x^*Ax$$

(b)
$$\max_{x \neq 0} \frac{x^*Ax}{x^*x}$$

(c) $\max_{x \neq Ax = 1} \frac{1}{x^*x}$ if at least one eigenvalue of A is positive $\lim_{x \neq Ax = 1} \frac{1}{x^*x}$ 3. If $A \in M_n$ is Hermitian and $x^*x = 1$, show that $\lim_{x \neq Ax = 1} \frac{1}{x^*x} = \lim_{x \neq Ax$

4. Show that the assumption that A is Hermitian is essential in (4.2.2)by considering $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$. What is $\max\{x^T A x / x^T x : 0 \neq x \in \mathbb{R}^2\}$? What is max Re{ $x*Ax/x*x: 0 \neq x \in \mathbb{C}^2$ }?

5. Let $A \in M_n$ have eigenvalues $\{\lambda_i\}$. Show that, even if A is not Hermitian, one has the bounds

$$\min_{x \neq 0} \left| \frac{x^* A x}{x^* x} \right| \leq |\lambda_i| \leq \max_{x \neq 0} \left| \frac{x^* A x}{x^* x} \right|, \quad i = 1, 2, ..., n$$

Hint: Consider x =an eigenvector of A, and $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ to show that neither bound need be sharp.

4.3 Some applications of the variational characterizations

Among the many important applications of the Courant-Fischer theorem, one of the simplest is to the problem of comparing the eigenvalues of A+B with those of A. We denote the eigenvalues of a matrix A by $\lambda_i(A)$.

Theorem (Weyl). Let $A, B \in M_n$ be Hermitian and let the eigenvalues $\lambda_i(A)$, $\lambda_i(B)$, and $\lambda_i(A+B)$ be arranged in increasing order (4.2.1). For each k = 1, 2, ..., n we have

$$\lambda_k(A) + \lambda_1(B) \le \lambda_k(A+B) \le \lambda_k(A) + \lambda_n(B)$$
(4.3.2)

Proof: For any nonzero $x \in \mathbb{C}^n$ we have the bound

$$\lambda_1(B) \le \frac{x^*Bx}{x^*x} \le \lambda_n(B)$$

and hence for any k = 1, 2, ..., n we have