Final Exam

Each problem is worth 10 points. Do four of five.

You may use facts proved in Chapters $1-5$ of the book or in class. Prove anything else that you use, unless it is explicitly indicated otherwise.
(1) (August 2016, Problem 2) Let V be a finite dimensional vector space and $A: V \rightarrow V$ a linear map. Suppose $\operatorname{Null}(A)=\operatorname{Null}\left(A^{2}\right)$. Show that for any integer $m>0$ we have $\operatorname{Null}(A)=\operatorname{Null}\left(A^{m}\right)$.
(Hint: How does the range of A intersect its null space?)
(2) For vectors $\alpha=\left(a_{1}, a_{2}, a_{3}\right)$ and $\beta=\left(b_{1}, b_{2}, b_{3}\right)$ in \mathbb{R}^{3}, the cross product of α with β is defined as

$$
\alpha \times \beta=\left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right)
$$

(a) For a fixed arbitrary vector $\alpha, T_{\alpha}(\beta)=\alpha \times \beta$ defines a linear transformation $T_{\alpha}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Find the matrix M_{α} of T_{α} relative to the standard basis.
(b) For $\alpha=(1,2,2)$, find an invertible matrix P with the property that

$$
P^{-1} M_{\alpha} P=\left(\begin{array}{ccc}
0 & -3 & 0 \\
3 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(You may take for granted that $\alpha \times \beta$ is orthogonal to α and β; that is, regarding vectors as row matrices in $\mathbb{R}^{1 \times n}$, that $(\alpha \times \beta) \alpha^{t}=\mathbf{0}=(\alpha \times \beta) \beta^{t}$.)
(3) (a) For a fixed non-zero column matrix $X \in \mathbb{R}^{n \times 1}$ let $M=X X^{t} \in \mathbb{R}^{n \times n}$. What is the rank of M ? What is $\operatorname{det}(M)$?
(b) Show that $M^{2}=\|X\|^{2} M$, where $\|X\|^{2}=X^{t} X$. Use this to identify (with proof) the monic generator for the ideal $\{f \mid f(M)=0\} \subset \mathbb{R}[x]$.
(4) Let $V_{n} \subset \mathbb{R}[x]$ be the space of polynomials of degree at most n.
(a) For any $a<b \in \mathbb{R}$ and distinct $t_{0}, \ldots, t_{n} \in \mathbb{R}$, show that there exist $m_{0}, \ldots, m_{n} \in$ \mathbb{R} such that for all $p \in V_{n}$,

$$
\int_{a}^{b} p(x) d x=m_{0} p\left(t_{0}\right)+\ldots+m_{n} p\left(t_{n}\right)
$$

(You may assume that the definite integral defines a linear function $V_{n} \rightarrow \mathbb{R}$.)
(b) For $[a, b]=[0,1]$ and $t_{0}=-1, t_{1}=1, t_{2}=2$, identify m_{0}, m_{1}, and m_{2} such that the above holds for all $p \in V_{2}$.
(5) (August 2016, Problem 3) Let $\left\{v_{1}, v_{2}, v_{3}\right\} \subset \mathbb{Z}^{3}$ be vectors with integer coordinates. Show that every vector in \mathbb{Z}^{3} can be expressed as a linear combination of the v_{i} with integer coefficients if and only if the (Euclidean 3-dimensional) volume of the parallelepiped they form is equal to 1 . The parallelepiped formed by the v_{i} is:

$$
P=\left\{c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3} \mid 0 \leq c_{i} \leq 1 \forall i=1,2,3\right\} .
$$

