S^{∞} IS NOT SECOND-COUNTABLE

We will assume that $S^{\infty}=\bigcup S^{n}$, topologized with the weak topology, has a countable basis $\mathcal{B}=\left\{U_{n}\right\}_{n \in \mathbb{N}}$ of open sets, and produce a contradiction using a diagonal argument. Pass to the subset of \mathcal{B} consisting of the U_{n} which contain ($1,0,0, \ldots$), and re-number this set as $\left\{U_{n}\right\}$. Below we will produce an open set V containing $(1,0,0, \ldots)$ that contains no U_{n}. Thus \mathcal{B} is not a basis, a contradiction.

For each $n>0$ let $\epsilon_{n}>0$ be such that $U_{n} \cap S^{n}$ contains a ball of radius ϵ_{n} around $(1,0, \ldots, 0)$. (Here "ball of radius ϵ_{n} " refers to the intersection with S^{n} of such a ball in the standard metric on \mathbb{R}^{n+1}.) Then let

$$
V=S^{\infty} \cap\left((0,2) \times \coprod_{n=1}^{\infty}\left(-\epsilon_{n} / 2, \epsilon_{n} / 2\right)\right)
$$

V is open in S^{∞} since for any $n, V \cap S^{n}$ is the intersection with S^{n} of:

$$
(0,2) \times\left(-\epsilon_{1} / 2, \epsilon_{1} / 2\right) \times \cdots \times\left(-\epsilon_{n} / 2, \epsilon_{n} / 2\right)
$$

which is open in \mathbb{R}^{n+1}. We claim now that for any $n, U_{n} \cap S^{n}$ is not contained in $V \cap S^{n}$. Consider the curve γ_{n} in S^{n} defined by $\gamma_{n}(t)=(\cos t, 0, \ldots, 0, \sin t)$. It exits $V \cap S^{n}$ before $U_{n} \cap S^{n}$: in particular, for t_{0} such that $\sin t_{0}=\epsilon_{n} / 2$ we have

$$
\left\|\gamma_{n}\left(t_{0}\right)-(1,0, \ldots, 0)\right\|=\sqrt{2\left(1-\cos t_{0}\right)}=\frac{\epsilon_{n}}{2} \frac{\sqrt{2}}{\sqrt{1+\cos t_{0}}}<\frac{\epsilon_{n}}{\sqrt{2}}
$$

And Bob, as they say, is your uncle.

