SOME TRIGONOMETRIC FORMULAS FOR PARTIALLY TRUNCATED HYPERBOLIC TRIANGLES AND TETRAHEDRA

JASON DEBLOIS

As anyone knows who has glanced through Chapter VI of Fenchel’s *Elementary geometry in hyperbolic space* [3], there are multiple hyperbolic versions of the laws of sines and cosines. The extra ones are obtained by regarding various hyperbolic \(n \)-gons with some right angles as “triangles” that have some vertices outside the hyperbolic plane, for \(n = 4, 5 \) and \(6 \). The hyperboloid model, in which \(\mathbb{H}^2 \) sits as a subspace of \(\mathbb{R}^3 \) which has been equipped with a certain non positive-definite bilinear form—the Lorentzian inner product—supplies a useful perspective on this. Here, vectors of the ambient \(\mathbb{R}^3 \) carry information about different objects of \(\mathbb{H}^2 \), depending on the sign of their self-pairing, and we can leverage this to efficiently encode any such object using just three vectors.

Similarly, “truncated tetrahedra” in \(\mathbb{H}^3 \), which are homeomorphic to affine simplices with certain vertices or their open neighborhoods removed, are encoded by four-tuples of vectors in an ambient Lorentzian \(\mathbb{R}^4 \). This perspective is used to prove trigonometric formulas in Chapter 3 of Ratcliffe’s *Foundations of hyperbolic manifolds* [4]. We follow it in this note to prove a few more which are not found in [3] nor in [4].

1. Background: the meaning of vectors in the hyperboloid model

We will follow the notation of [4, Ch. 3], which we now review, in describing the hyperboloid model of hyperbolic space. The Lorentzian inner product of \(\mathbf{x} = (x_1, \ldots, x_n) \) and \(\mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n \) is defined as

\[
\mathbf{x} \circ \mathbf{y} = -x_1 y_1 + x_2 y_2 + \ldots + x_n y_n,
\]

and \(\mathbf{x} \) is said to be space-like, light-like, or time-like respectively as \(\mathbf{x} \circ \mathbf{x} \) is positive, zero, or negative. The Lorentzian norm of \(\mathbf{x} \) is \(\|\mathbf{x}\| = \sqrt{\mathbf{x} \circ \mathbf{x}} \), where the square root is taken to be positive, zero, or positive imaginary in the respective cases above. The light cone is the set of light-like vectors, and its interior is the set of time-like vectors. A time-like or light-like vector is positive if its first entry is. The hyperboloid model \(\mathbb{H}^{n-1} \) of hyperbolic space is the set of positive vectors with Lorentzian norm \(i \) in \(\mathbb{R}^n \), equipped with the distance \(d_H \) defined by

\[
cosh d_H(\mathbf{u}, \mathbf{v}) = -\mathbf{u} \circ \mathbf{v}.
\]

(We note that the following version of the Cauchy-Schwartz inequality follows from the usual one: for positive vectors \(\mathbf{x} \) and \(\mathbf{y} \) with \(\mathbf{x} \circ \mathbf{x} \leq 0 \) and \(\mathbf{y} \circ \mathbf{y} \leq 0 \), \(\mathbf{x} \circ \mathbf{y} \leq -\sqrt{(\mathbf{x} \circ \mathbf{x})(\mathbf{y} \circ \mathbf{y})} \), with equality if and only if they are linearly dependent, see eg. formula (1.0.2) of [1].)

The distance function \(d_H \) above is determined by the Riemannian metric on \(\mathbb{H}^{n-1} \) given by restricting the Lorentzian inner product to \(T_u \mathbb{H}^{n-1} = \{\mathbf{v} \mid \mathbf{v} \circ \mathbf{u} = 0\} \). (This restriction is positive-definite since \(\mathbf{u} \) is time-like, see [4, Theorem 3.1.4].) In particular, given \(\mathbf{x} \in \mathbb{H}^n \) and \(\mathbf{y} \in T_x \mathbb{H}^n \) with \(\mathbf{y} \circ \mathbf{y} = 1 \), it is easy to check that \(\gamma(t) = \cosh t \mathbf{x} + \sinh t \mathbf{y} \) is a geodesic in \(\mathbb{H}^n \) with \(\gamma(0) = \mathbf{x} \) and \(\gamma'(0) = \mathbf{y} \).

The most useful feature of the hyperboloid model for us is that vectors of \(\mathbb{R}^{n+1} \) which are not time-like encode certain codimension-one geometric objects in \(\mathbb{H}^n \). Here is the first:
Definition 1.1. Each positive light-like vector \(x \in \mathbb{R}^{n+1} \) determines a horosphere \(S = \{ v \in \mathbb{H}^n | v \circ x = -1 \} \). The horoball bounded by \(S \) is the set \(B = \{ v \in \mathbb{H}^n | v \circ x \geq -1 \} \).

A little multivariable calculus shows that the horoball \(S \) determined by a positive light-like vector \(x \in \mathbb{R}^{n+1} \) is the smooth submanifold \(f^{-1}(-1) \) of \(\mathbb{H}^n \), where \(f(u) = u \circ x \), and its tangent space at any \(u_0 \in S \) is \(T_{u_0}S = \{ v \in \mathbb{R}^{n+1} | v \circ u_0 = 0 = v \circ x \} \). For any such \(u_0 \) one may check directly that the formula \(F(v) = u_0 + v + \left(\frac{v \circ x}{2} \right) x \) defines a Riemannian isometry from \(T_{u_0}S \), equipped with the restriction of the Lorentzian inner product, to \(S \subset \mathbb{H}^n \). Since the inner product’s restriction is positive-definite on \(T_{u_0}S \), this explicitly confirms the well known fact that \(S \) is an isometrically embedded copy of the Euclidean space \(\mathbb{R}^{n-1} \). It also yields the following formula for the Euclidean distance \(d_S(u_0, u_1) \) in \(S \) between vectors \(u_0 \) and \(u_1 \):

\[
d_S(u_0, u_1) = \sqrt{-2(1 + u_0 \circ u_1)}
\]

To see this, set \(F(v) = u_1 \) and solve for \(v \circ v \) by taking the Lorentzian inner product of both sides with \(u_0 \). Using the formula for \(d_H(u_0, u_1) \) given above we obtain the comparison equation \(d_S(u_0, u_1)/2 = \sinh(d_H(u_0, u_1)/2) \). We note that this implies in particular that the isometric embedding \(F \) is proper; that is, \(S \) has compact intersection with any compact set of \(\mathbb{H}^n \).

Lemma 1.2. For \(v \in \mathbb{H}^n \) and a positive light-like vector \(x \), the signed hyperbolic distance \(d \) from \(v \) to the horosphere \(S \) determined by \(x \) satisfies \(e^d = -v \circ x \), where the sign of \(d \) is positive if \(v \) lies outside the horoball \(B \) bounded by \(S \). This distance is realized at \(t = d \) on

\[
\gamma(t) = e^{-t}v - \frac{\sinh t}{x \circ v} x,
\]

which is a parametrized geodesic through \(v \) in the direction of \(x \).

Proof. A vector \(u \in \mathbb{R}^{n+1} \) lies in \(S \) if and only if \(u \circ u = -1 \), so it lies in \(\mathbb{H}^n \), and \(u \circ x = -1 \). By the theory of Lagrange multipliers, the restriction of \(f(u) = u \circ v \) to \(S \) may attain a local extremum at \(u \in S \) only if the gradient of \(f \) at \(u \) is a linear combination of the gradients of the constraint functions \(g_1(u) = u \circ x \) and \(g_2(u) = u \circ u \). By a direct computation, \(\nabla f(u) = v \), \(\nabla g_1(u) = x \), and \(\nabla g_2(u) = u \), where \(v \) is obtained from \(v \) by switching the sign of first entry, and similarly for the others. It follows that at any local extremum of the restriction of \(f \) to \(S \), \(v \) is a linear combination of \(x \) and \(u \).

Since \(v \), which is time-like, is not a multiple of \(x \), which is light-like, this implies that we can express \(u \) in terms of \(v \) and \(x \). Upon plugging \(u = ax + bv \) into the constraints and solving for \(a, b \in \mathbb{R} \) we obtain the unique solution

\[
(1) \quad u = \frac{1}{2} \left(1 - \frac{1}{(v \circ x)^2} \right) x - \frac{1}{v \circ x} v.
\]

The value of \(f \) at \(u \) is thus \(u \circ v = \frac{1}{2} \left((v \circ x) + \frac{1}{v \circ x} \right) \), so by the definition of the hyperbolic distance \(d_H \) we have

\[
cosh d_H(u, v) = \frac{1}{2} \left(-v \circ x + \frac{1}{-v \circ x} \right).
\]

Therefore \(e^{d_H(u, v)} \) is either \(-v \circ x \) or its reciprocal, whichever is at least 1 since \(d_H(u, v) \) is non-negative. If we take \(d \) to be the signed distance, with non-negative sign if \(v \) is outside the horoball \(B \), then by the definition of \(B \) we have \(e^d = -v \circ x \) in all cases.

We finally note that \(d \) really is the (signed) distance from \(v \) to \(S \); that is, the unique critical point \(u \) of \(f \) described above is the global maximizer for the values of \(f \) on \(S \), so \(d_H(x, u) \) is the global minimizer of distances from \(v \) to points of \(S \). This follows from uniqueness and the
fact that as \(u \in \mathbb{H}^n \) escapes compact sets, \(f(u) \to -\infty \). Toward the latter point, note for an arbitrary \(u = (u_1, \ldots, u_{n+1}) \in \mathbb{H}^n \) that \(u_1 = \sqrt{1 + u_2^2 + \ldots + u_{n+1}^2} \), so we can rewrite \(f(u) \) as

\[
f(u) = -\sqrt{(1 + u_2^2 + \ldots + u_{n+1}^2)(1 + v_2^2 + \ldots + v_{n+1}^2) + u_2 v_2 + \ldots + u_{n+1} v_{n+1}}
\]

In passing from the first to the second line above we use the fact that \(\sqrt{a - \sqrt{b}} = (a - b)/(\sqrt{a} + \sqrt{b}) \). Expanding the numerator, canceling certain terms, and rearranging yields:

\[
-1 - (u_2^2 + \ldots + u_{n+1}^2) - (v_2^2 + \ldots + v_{n+1}^2) - \sum_{i \neq j} (u_i - v_j)^2.
\]

The denominator is at most some fixed multiple of \(\sqrt{1 + u_2^2 + \ldots + u_{n+1}^2} \), by the Cauchy-Schwarz inequality, whereas the numerator is at most the opposite of the square of this quantity. So as claimed, \(f(u) \to -\infty \) as \(u \) escapes compact sets.

For the parametrized curve \(\gamma \) defined in the statement, direct computation reveals that \(\gamma(t) \circ \gamma(t) = -1 \) for all \(t \), so \(\gamma \) maps into \(\mathbb{H}^n \), and that \(\gamma''(t) = \gamma(t) \). Therefore \(\gamma \) is a hyperbolic geodesic, by [4, Theorem 3.2.4]. More direct computation shows that \(\gamma(0) = v \) and \(\gamma(d) \) is the nearest point \(u \) to \(v \) on \(S \) described in (1). \(\square \)

Lemma 1.3. For linearly independent positive light-like vectors \(x_0 \) and \(x_1 \) of \(\mathbb{R}^{n+1} \), the minimum signed distance \(d \) from points on \(S_1 \) to \(S_0 \) satisfies \(e^d = -\frac{1}{2} x_0 \circ x_1 \), where \(S_i \) is the horosphere of \(\mathbb{H}^n \) determined by \(x_i \) for \(i = 0, 1 \). This distance is uniquely attained by points at \(t = \pm d/2 \) on the geodesic

\[
\gamma(t) = \frac{1}{\sqrt{-2(x_0 \circ x_1)}} (e^t x_0 + e^{-t} x_1)
\]

from \(x_1 \) to \(x_0 \).

Proof. A vector \(u \in \mathbb{R}^{n+1} \) lies in \(S_1 \) if and only if \(u \circ u = -1 \), \(u \) is positive, and \(u \circ x_1 = -1 \).

By the theory of Lagrange multipliers, the restriction of \(f(u) = u \circ x_0 \) to \(B_1 \) may attain a local extremum at \(u \in S_1 \) only if the gradient of \(f \) at \(u \) is a linear combination of the constraint gradients \(\nabla g_1(u) \) and \(\nabla g_2(u) \), where \(g_1(u) = u \circ x_1 \) and \(g_2(u) = u \circ u \).

Direct computation yields \(\nabla f(u) = x_0 \), \(\nabla g_1(u) = x_1 \), and \(\nabla g_2(u) = 2u \), where \(x_0 \) is obtained from \(x_0 \) by multiplying the first entry by \(-1\) and similarly for the others. It thus follows that at such a local extremum \(u \), \(x_0 \) is a linear combination of \(x_1 \) and \(u \) so, since \(x_0 \) is not a multiple of \(x_1 \), \(u \) is a linear combination of the \(x_i \).

Plugging \(u = ax_0 + bx_1 \) into the constraint equations and solving for \(a, b \in \mathbb{R} \) yields

\[
u = -\frac{1}{x_0 \circ x_1} x_0 + \frac{1}{2} x_1.
\]

This is a positive vector since it is a positive linear combination of the positive vectors \(x_0 \) and \(x_1 \). By Lemma 1.2 and a direct computation, the signed distance \(d \) from \(u \) to \(S_0 \) satisfies \(e^d = -\frac{1}{2} x_0 \circ x_1 \).

Substituting \(u \) for \(v \) in the formula for the geodesic \(\gamma(t) \) defined in Lemma 1.2 and simplifying yields

\[
\gamma(t) = \frac{e^t}{-x_0 \circ x_1} x_0 + \frac{e^{-t}}{2} x_1.
\]

Note that \(\gamma(0) = u \in S_1 \) and \(\gamma(d) \in S_0 \). The more-symmetric formula given in the statement is obtained by translating the parametrization, replacing \(t \) by \(t - d/2 \).
It remains to show for \mathbf{u} from the formula (2) that $f(\mathbf{u})$ is a global maximum of f on S_1, hence that d is a global minimum of the signed distance to S_0 on S_1. This follows from the fact that \mathbf{u} is the unique critical point of f on S_1, together with the fact that $f(\mathbf{v}) \rightarrow -\infty$ as $\mathbf{v} \in S_1$ escapes compact sets. Indeed, for any fixed $r < 0$, and any $\mathbf{v} \in S_1$ such that $f(\mathbf{v}) \geq r$, we have $\mathbf{v} \circ \mathbf{u} = -f(\mathbf{v})/\mathbf{x}_0 \circ \mathbf{x}_1 - 1/2 \geq -r/\mathbf{x}_0 \circ \mathbf{x}_1 - 1/2$, so \mathbf{v} is contained in the closed ball of radius $\cosh^{-1}(r/\mathbf{x}_0 \circ \mathbf{x}_1 + 1/2)$ around \mathbf{u}. This ball is compact. \hfill □

The set of totally geodesic subspaces of \mathbb{H}^n with dimension k corresponds one-to-one with the set of $(k + 1)$-dimensional vector subspaces of \mathbb{R}^{n+1} that intersect \mathbb{H}^n, via $V \mapsto V \cap \mathbb{H}^n$. In particular, for $x \in \mathbb{H}^n$ and $y \in T_x \mathbb{H}^n$, the geodesic described above parametrizes the intersection with \mathbb{H}^n of the two-dimensional subspace $\text{Span}\{x, y\} \subset \mathbb{R}^{n+1}$.

Conversely, a hyperplane P of \mathbb{H}^n — that is, a totally geodesic subspace of codimension 1 — is contained in a codimension-1 subspace V of \mathbb{R}^{n+1}. There is thus a 1-dimensional subspace of space-like vectors $\mathbf{y} \in \mathbb{H}^{n+1}$ with the property that $\mathbf{x} \circ \mathbf{y} = 0$ for all \mathbf{x} in V. This motivates:

Definition 1.4. For a space-like vector \mathbf{y}, the polar hyperplane to \mathbf{y} is $P = \{x \in \mathbb{H}^n | x \circ \mathbf{y} = 0\}$. The half-space bounded by P with outward normal \mathbf{y} is $H = \{x \in \mathbb{H}^n | x \circ \mathbf{y} \leq 0\}$.

This observation motivates a series of important geometric interpretations on the Lorentz pairing between vectors of various types.

Lemma 1.5. Suppose $\mathbf{x} \in \mathbb{R}^{n+1}$ is a positive light-like vector and $H \subset \mathbb{H}^n$ is a hyperplane with ideal boundary disjoint from \mathbf{x}, and let $\mathbf{y} \in \mathbb{R}^{n+1}$ be the unit space-like vector such that $\mathbf{u} \circ \mathbf{y} = 0$ for all $\mathbf{u} \in H$ and $\mathbf{y} \circ \mathbf{x} < 0$. Then \mathbf{y} and \mathbf{x} are on opposite sides of the codimension-one subspace of \mathbb{R}^{n+1} containing H, and the minimal signed distance h from H to B satisfies $e^h = -\mathbf{x} \circ \mathbf{y}$. It is realized along a unique geodesic arc perpendicular to H in the direction of B.

Proof. A vector $\mathbf{v} \in \mathbb{R}^{n+1}$ lies in H if and only if $\mathbf{v} \circ \mathbf{x} = -1$, \mathbf{v} is positive, and $\mathbf{v} \circ \mathbf{y} = 0$. By the theory of Lagrange multipliers, the restriction of $f(\mathbf{v}) = \mathbf{v} \circ \mathbf{x}$ to H may attain a local extremum at $\mathbf{v} \in H$ only if the gradient of f at \mathbf{v} is a linear combination of the constraint gradients $\nabla g_1(\mathbf{v})$ and $\nabla g_2(\mathbf{v})$, where $g_1(\mathbf{v}) = \mathbf{v} \circ \mathbf{y}$ and $g_2(\mathbf{v}) = \mathbf{v} \circ \mathbf{v}$. Direct computation yields $\nabla f(\mathbf{v}) = \mathbf{x}$, $\nabla g_1(\mathbf{v}) = \mathbf{y}$, and $\nabla g_2(\mathbf{v}) = 2\mathbf{v}$, where \mathbf{x} is obtained from \mathbf{v} by multiplying the first entry by -1 and similarly for the others. It thus follows that x is a linear combination of \mathbf{y} and \mathbf{v} for such a point \mathbf{v}, so since \mathbf{x} is not a multiple of \mathbf{y} we can express \mathbf{v} in terms of \mathbf{x} and \mathbf{y}.

Plugging $\mathbf{v} = a\mathbf{x} + b\mathbf{y}$ into the constraint equations and solving for $a, b \in \mathbb{R}$ yields two solutions:

$$v = \frac{-1}{\mathbf{x} \circ \mathbf{y}} \mathbf{x} + \mathbf{y}$$

and its opposite. Only one of these is positive, however. Noting that $\mathbf{v} \circ \mathbf{x} = \mathbf{x} \circ \mathbf{y}$ is negative by hypothesis, we conclude that \mathbf{v} is positive and hence is the unique critical point of the restriction of f to H. By Lemma 1.2 its signed distance h to B satisfies $e^h = -\mathbf{x} \circ \mathbf{y}$.

The geodesic $\gamma(t)$ through \mathbf{x} in the direction of \mathbf{x} defined in Lemma 1.2 has the form

$$\gamma(t) = e^{-t}v - \frac{\sinh t}{\mathbf{x} \circ \mathbf{v}} \mathbf{x} = \frac{\cosh t}{-\mathbf{x} \circ \mathbf{y}} \mathbf{x} + e^{-t}y.$$

For all $t \in \mathbb{R}$, it is clear from this description that $\gamma(t)$ is a positive linear combination of \mathbf{x} and \mathbf{y}. Moreover, $\gamma'(0) = -\mathbf{y}$ is not a scalar multiple of \mathbf{v}, so the geodesic parametrized by γ intersects the Euclidean line through \mathbf{v} and the origin transversely in the plane spanned by \mathbf{x} and \mathbf{y}. It therefore has points on either side of this line, so since these points are all positive linear combinations of \mathbf{x} and \mathbf{y}, the line separates \mathbf{x} from \mathbf{y} in the plane they span.

The codimension-one subspace of \mathbb{R}^{n+1} containing H intersects the plane spanned by \mathbf{x} and \mathbf{y} in a one-dimensional subspace containing \mathbf{v}; that is, in the line through \mathbf{v} and the origin. It
thus follows from the above that this subspace separates \(x \) from \(y \) in \(\mathbb{R}^{n+1} \). Note also that since \(y \) is by construction perpendicular to \(H \), so also is \(\gamma'(0) = -y \).

It remains to show that \(v \) is the global maximizer for the restriction of \(f \) to \(H \), hence that it is the minimizer for the signed distance to \(B \). This follows from the fact that \(v \) is the unique critical point of the restriction of \(f \) to \(H \), together with the fact that \(f(u) \to -\infty \) as \(u \in H \) escapes compact sets. Indeed, for any fixed \(r < 0 \) and \(u \in H \) such that \(u \circ x > r \), we have \(u \circ v = (-1/x \circ y)u \circ x > -r/x \circ y \); hence \(u \) lies in the closed ball of radius \(\cosh^{-1}(r/x \circ y) \) about \(v \).

\[\square \]

Lemma 1.6 (cf. [4], pp. 71–75). Let \(x, y \in \mathbb{R}^{n+1} \) be space-like vectors, with polar hyperplanes \(P \) and \(Q \) in \(\mathbb{H}^n \), contained in \(n \)-dimensional subspaces \(V \) and \(W \) of \(\mathbb{R}^{n+1} \), respectively. Exactly one of the following holds:

1. \(P \) and \(Q \) intersect in \(\mathbb{H}^n \), and there exists \(\eta(x, y) \in (0, \pi) \) such that

\[
|x \circ y| = |x||y|\cos \eta(x, y).
\]

Moreover, for any \(z \in P \cap Q \), \(T_zP = V \cap T_z\mathbb{H}^n \), \(T_zQ = W \cap T_z\mathbb{H}^n \), and \(\eta(x, y) \) is the angle in \(T_z\mathbb{H}^n \) between the orthogonal vectors \(x \) and \(y \) to \(T_zP \) and \(T_zQ \), respectively.

2. \(P \) and \(Q \) are disjoint in \(\mathbb{H}^n \), and there exists \(\eta(x, y) \in (0, \infty) \) such that

\[
|x \circ y| = |x||y|\cosh \eta(x, y).
\]

In this case \(\eta(x, y) \) is the distance in \(\mathbb{H}^n \) between \(P \) and \(Q \), and \(x \circ y < 0 \) if and only if \(x \) and \(y \) are opposite each other with respect to the subspace of \(\mathbb{R}^{n+1} \) containing \(P \).

If \(z \) is a positive time-like vector then \(|x \circ z| = |x||z|\sinh d_H(z, P) \), with \(x \circ z < 0 \) if and only if \(x \) and \(z \) are opposite each other with respect to the subspace of \(\mathbb{R}^{n+1} \) containing \(P \).

In the case (2) above, since \(P \) and \(Q \) are convex subsets of \(\mathbb{H}^n \) the distance between them is realized as \(d(z, w) \) for unique \(z \in P \) and \(w \in Q \). The geodesic \(\gamma \) joining \(z \) and \(w \) intersects each of \(P \) and \(Q \) perpendicularly, thus with tangent vector \(x \) at \(z \) and \(y \) at \(w \). It follows that \(\gamma = \text{Span}\{x, y\} \cap \mathbb{H}^n \). Taking \(z = ax + by \) and solving \(z \circ x = 0 \) for \(a \) and \(b \) yields:

\[z = \pm \frac{(x \circ y/|x|) x - |x||y}}{\sqrt{(x \circ y)^2 - |x|^2|y|^2}} \]

In obtaining the above, we also used that \(z \in \mathbb{H}^n \); hence that \(z \circ z = -1 \). The sign must be chosen, depending on \(x \) and \(y \), so that \(z \) is positive.

2. **Dimension two**

Here we prove trigonometric formulas for a hyperbolic quadrilateral with two ideal vertices and a hyperbolic pentagon with one ideal vertex, each with right angles at all finite vertices.

Proposition 2.1. Let \(Q \subset \mathbb{H}^2 \) be a convex quadrilateral with a single compact side of length \(\ell \) and right angles at its endpoints, and let \(B_0 \) and \(B_1 \) be horoballs centered at the two ideal vertices of \(Q \). If \(a_i \) is the signed distance to \(B_i \) from the other endpoint of the half-open edge of \(Q \) containing the ideal point of \(B_i \), \(i = 0, 1 \), and \(d \) is the signed distance from \(B_0 \) to \(B_1 \), then

\[
\sinh(\ell/2) = e^{(d-a_0-a_1)/2}.
\]

If \(\theta_i \) is the length of the horocyclic arc \(S_i \cap Q \), \(i = 0, 1 \), where \(S_i = \partial B_i \), then for each \(i \),

\[
\frac{\theta_0}{e^{a_1}} = \frac{\theta_1}{e^{a_0}} = \frac{\sinh \ell}{2e^d}.
\]
Proof. For a quadrilateral \(Q \subset \mathbb{H}^2 \) with a single compact edge \(\gamma \) and right angles at the endpoints of this edge, let \(x_0 \) and \(x_1 \) be positive light-like vectors determining the horoballs \(B_0 \) and \(B_1 \) centered at the ideal vertices of \(Q \). Using the fact that the geodesic containing \(\gamma \) is a codimension-one hyperplane of \(\mathbb{H}^2 \), let \(y \) be the space-like vector Lorentz-orthogonal to this geodesic with the property that \(x_i \circ y < 0 \) for \(i = 0, 1 \). (Since the ideal vertices of \(Q \) are on the same side of this geodesic, the inner products with \(y \) have the same sign by Lemma 1.5.)

Let \(v_0 \) and \(v_1 \) be the finite vertices of \(Q \), numbered so that \(v_i \) is an endpoint of the half-open edge of \(Q \) with its other endpoint at the center of \(B_i \), for \(i = 0, 1 \). Since \(Q \) is right-angled, \(v_i \) is described in terms of \(x_i \) and \(y \) by the formula (3) for each \(i \). (Note that there is a unique geodesic ray perpendicular to the geodesic containing \(\gamma \) with its ideal endpoint at the center of \(B_i \), since there is no hyperbolic triangle with two right angles.) That is:

\[
\begin{align*}
\text{for } i &= 0, 1, \\
v_0 &= \frac{-1}{x_0 \circ y} x_0 + y \\
v_1 &= \frac{-1}{x_1 \circ y} x_1 + y
\end{align*}
\]

By Lemma 1.5 their signed distances \(a_i \) to the \(B_i \) satisfy \(e^{a_i} = -x_i \circ y \) for \(i = 0, 1 \). If \(\ell \) is the length of \(\gamma \) then from the distance formula we obtain

\[
\cosh \ell = -v_1 \circ v_2 = \frac{-x_0 \circ x_1}{(x_0 \circ y)(x_1 \circ y)} + 1
\]

It follows from Lemma 1.3 that the minimal signed distance \(d \) from \(S_0 \) to \(S_1 \) satisfies \(e^d = -\frac{1}{2}x_0 \circ x_1 \), hence by a half-angle formula \(\sinh(\ell/2) = e^{(d-a_0-a_1)/2} \) as claimed.

Let \(u_0 \) and \(u_0' \) be the points of intersection between the horosphere \(S_0 = \partial B_0 \) and the edges of \(Q \) joining the class of \(x_0 \) to \(v_0 \) and the class of \(x_1 \), respectively. We obtain an explicit description for \(u_0 \) by plugging in \(t = a_0 \) to the parametrized geodesic \(\gamma(t) \) starting at \(v_0 \) given in Lemma 1.5, and for \(u_0' \) by plugging in \(t = d/2 \) to the parametrized geodesic \(\lambda(t) \) from \(x_1 \) given in Lemma 1.3. These yield:

\[
\begin{align*}
u_0 &= \frac{1}{2} \left(1 + \frac{1}{(x_0 \circ y)^2} \right) x_0 + \frac{-1}{x_0 \circ y} y \\
u_0' &= \frac{1}{2} x_0 + \frac{-1}{x_0 \circ x_1} x_1
\end{align*}
\]

From the horospherical distance formula we thus have

\[
\theta_0 = d_{S_0}(u_0, u_0') = \sqrt{-2(1 + u_0 \circ u_0')} = \sqrt{\frac{1}{(x_0 \circ y)^2} - \frac{2(x_1 \circ y)}{(x_0 \circ x_1)(x_0 \circ y)}}
\]

A similar computation yields an analogous formula for \(\theta_1 \), and we observe that

\[
\theta_0 e^{-a_1} = \theta_1 e^{-a_0} = \sinh \ell / (2e^d)
\]

\[
\frac{1}{(x_0 \circ y)(x_1 \circ y)} \sqrt{\frac{2(x_0 \circ y)(x_1 \circ y) - x_0 \circ x_1}{-x_0 \circ x_1}}
\]

The latter assertion in the statement follows. \(\square \)

Proposition 2.2. Let \(P \subset \mathbb{H}^2 \) be a convex pentagon with four right angles and one ideal vertex, and let \(B \) be a horoball centered at the ideal vertex of \(P \). Let \(d \) be the length of the side of \(P \) opposite its ideal vertex, let \(w_0 \) and \(w_1 \) be its endpoints, and for \(i = 0, 1 \) let \(\ell_i \) be the length of the other side containing \(w_i \). If \(v_i \) is the other endpoint of this side and \(a_i \) is its signed distance to \(B \), for \(i = 0, 1 \), then

\[
\cosh \ell_i = \frac{e^{a_i} \cosh d + e^{a_{1-i}}}{e^{a_i} \sinh d} \quad \text{for } i = 0, 1.
\]

Moreover, if \(\theta \) is the length of the horocyclic arc \(S \cap P \), where \(S = \partial B \), then

\[
\frac{\theta}{\sinh d} = \frac{\sinh \ell_0}{e^{a_1}} = \frac{\sinh \ell_1}{e^{a_0}}.
\]
Proof. Let P be a pentagon with four right angles and a single ideal vertex, and let x be a positive light-like vector that determines a horosphere S centered at the ideal vertex of P. Labeling the endpoints of the edge of P opposite its ideal vertex as w_0 and w_1, for $i = 0, 1$ let γ_i be the other edge of P containing w_i, and let y_i be a unit space-like vector in \mathbb{R}^3 orthogonal to the geodesic containing γ_i. Choose the y_i so that $y_i \cdot x < 0$ for each i. Equivalently, by Lemma 1.5, y_i is on the opposite side of x from the plane $u \cdot x = 0$ in \mathbb{R}^3. Since γ_i and the ideal point of P are on the same side of the geodesic containing γ_{1-i} for each i, $y_0 \cdot y_1 < 0$ by [4].

Let us call v_i the endpoint of γ_i not equal to w_i, for $i = 0, 1$. An explicit formula for v_i is given by (3), with y there replaced by y_i. As in the proofs of Theorem 3.2.7 and 3.2.8 of [4] we have the following explicit formula for w_i:

$$w_i = \frac{-(y_0 \cdot y_1)y_i + y_{1-i}}{\pm \sqrt{(y_0 \cdot y_1)^2 - 1}},$$

where “+” or “−” is chosen so that w_i is a positive vector. For, say, $i = 0$ we thus have

$$w_0 \cdot v_0 = \frac{y_0 \cdot y_1 - (x \cdot y_1)/(x \cdot y_0)}{\pm \sqrt{(y_0 \cdot y_1)^2 - 1}} = \frac{-(x \cdot y_0)(y_0 \cdot y_1) + x \cdot y_1}{-(x \cdot y_0)\sqrt{(y_0 \cdot y_1)^2 - 1}}$$

In passing from the first to the second equality we have fixed the sign choice “+” for the radical. This is the right choice since $y_0 \cdot y_1$ and the $x \cdot y_i$ are all negative, and $w_0 \cdot v_0$ is as well.

If ℓ_i is the length of γ_i and a_i is the distance from v_i to S, for $i = 0, 1$, and $d = d_H(w_0, w_1)$ is the length of the side opposite the ideal vertex, then the above equation becomes

$$\cosh \ell_0 = \frac{e^{a_0} \cosh d + e^{a_1}}{e^{a_0} \sinh \ell}$$

This is because $\cosh \ell = -w_0 \cdot v_0$ by definition, $d_H(v_i, S) = -x \cdot y_i$ by Lemma 1.2, and as can be explicitly checked, $\cosh d = -w_0 \cdot w_1 = -y_0 \cdot y_1$. The derivation of the formula for $\cosh \ell_1$ is analogous, and we have proved the hyperbolic law of cosines.

For the law of sines we first note that the point of intersection u_i between S and the geodesic from v_i in the direction of x is given by the formula (1), with v there replaced by v_i, for $i = 0, 1$. From direct calculation and/or Lemma 1.5 we have $v_i \cdot x = y_i \cdot x$, whence for each i we have

$$u_i = \frac{1}{2} \left(1 + \frac{1}{(x \cdot y_i)^2}\right)x + \frac{-1}{x \cdot y_i}y_0$$

From this we obtain the following formula for the length θ of the horocyclic arc $S \cap P$:

$$\theta = \sqrt{-2(1 + u_0 \cdot u_1)} = \sqrt{(x \cdot y_0)^2 + (x \cdot y_1)^2 - 2(y_0 \cdot y_1)(x \cdot y_0)(x \cdot y_1)}$$

Direct computation now establishes this case of the hyperbolic law of sines. \hfill \square

3. Dimension three: Transversals of truncated tetrahedra

Turning our attention to \mathbb{H}^3, we recall that three disjoint totally geodesic planes P_1, P_2, and P_3 in \mathbb{H}^3 determine a unique plane P with the property that for each i, P_i intersects P at right angles (see eg. [2, Lemma 2.3]). Suppose in addition that for each i, a single half-space bounded by $\mathbb{H}^3 - P_i$ contains the other two planes. Then there is a right-angled hexagon C in P with alternating sides consisting of the three mutual perpendiculars λ_{ij} joining P_i to P_j, $1 \leq i < j \leq 3$, such that each other side of C lies in one of the sides P_i, $1 \leq i \leq 3$.

Now consider four disjoint totally geodesic planes P_1, P_2, P_3, P_4 in \mathbb{H}^3, with the property that for each i, a single half-space H_i bounded by P_i contains the other three planes. For any i, let \tilde{P}_i be the mutual perpendicular plane, as above, to the other three planes. If for some $i \neq i'$, \tilde{P}_i does not coincide with $\tilde{P}_{i'}$, then the natural geometric object associated to the four planes is
a truncated tetrahedron. This is the intersection of the four half-spaces \(H_i \) with those bounded by the planes \(P_i \) and containing the fourth plane. It is homeomorphic to the complement in a tetrahedron of the union of small regular neighborhoods of the vertices; see Figure 1.

The truncated tetrahedron determined by four disjoint planes as above is also specified by the quadruple of vectors \((x_1, x_2, x_3, x_4)\) such that \(x_i\) spans the Lorentz orthogonal complement to \(P_i\) for each \(i, 1 \leq i \leq 4\). Conversely, any truncated tetrahedron determines such a quadruple, after making the following additional requirements: that \(x_i \circ x_i = 1\) for each \(i\), \(x_i \circ x_j < 0\) for each \(j \neq i\), and that

\[
z_1 = \frac{(x_1 \circ x_2)x_1 - x_2}{\sqrt{(x_1 \circ x_2)^2 - 1}}
\]

is positive. (Recall from (4) that \(z_1 = P_1 \cap \lambda_{12}\), where \(\lambda_{12}\) is the mutual perpendicular in \(\mathbb{H}^3\) to \(P_1\) and \(P_2\).) For \(1 \leq i < j \leq 4\), let \(L_{ij} = -(x_i \circ x_j)\). By Lemma 1.6 and the hypotheses on the \(x_i\), for each such \(i, j\), \(L_{ij} = \cosh d_{H}(P_i, P_j)\). Then \(z_1 = -[L_{12}x_1 + x_2]/\sqrt{L_{12}^2 - 1}\), and taking \(z_3 = -[L_{34}x_3 + x_4]/\sqrt{L_{34}^2 - 1}\), we find:

\[
z_1 \circ z_3 = -\frac{L_{12}L_{13}L_{34} + L_{12}L_{14} + L_{23}L_{34} + L_{24}}{\sqrt{(L_{12}^2 - 1)(L_{34}^2 - 1)}} < 0
\]

It follows that \(z_3\) is positive and thus is \(P_3 \cap \lambda_{34}\), where \(\lambda_{34}\) is the mutual perpendicular in \(\mathbb{H}^3\) to \(P_3\) and \(P_4\). We will be interested in how the distance between the “opposite” perpendiculars \(\lambda_{12}\) and \(\lambda_{34}\) varies with the \(L_{ij}\). Recall a parametrization for \(\lambda_{12}\):

\[
\lambda_{12}(s) = \cosh s \ z_1 + \sinh s \ x_1, \ s \in \mathbb{R}.
\]

This parametrization gives \(\lambda_{12}(0) = z_1\), and since it is by arclength, \(\lambda_{12}(d_{H}(P_1, P_2)) \in P_2\). (Indeed, it can be checked that \(x_2 \circ \lambda_{12}(d_{H}(P_1, P_2)) = 0\).) Similarly, we parametrize \(\lambda_{34}\) by \(\lambda_{34}(t) = \cosh t \ z_3 + \sinh t \ x_3\) for \(0 \leq t \leq d_{H}(P_3, P_4)\). The distance between \(\lambda_{12}(s)\) and \(\lambda_{34}(t)\) satisfies \(\cosh d_{H}(\lambda_{12}(s), \lambda_{34}(t)) = D(s, t)\), where

\[
D(s, t) = -(\cosh s \ z_1 + \sinh s \ x_1) \circ (\cosh t \ z_3 + \sinh t \ x_3)
\]

\[
= \cosh s \cosh t \ L_{12}L_{13}L_{34} + L_{12}L_{14} + L_{23}L_{34} + L_{24} \sqrt{(L_{12}^2 - 1)(L_{34}^2 - 1)}
\]

\[
- \cosh s \sinh t \frac{L_{12}L_{13} + L_{23}}{\sqrt{L_{12}^2 - 1}} - \sinh s \cosh t \frac{L_{13}L_{34} + L_{14}}{\sqrt{L_{34}^2 - 1}} + \sinh s \sinh t \ L_{13}.
\]

Given a truncated tetrahedron determined by disjoint planes \(P_i\), \(1 \leq i \leq 4\), and parametrizations as above for the geodesics \(\lambda_{12}\) and \(\lambda_{34}\), there exist unique \(s_0\) and \(t_0\) minimizing \(d_{H}(\lambda_{12}(s), \lambda_{34}(t))\). This is because \(\lambda_{12}\) and \(\lambda_{34}\) are convex subsets of \(\mathbb{H}^3\). The geodesic \(\gamma\) joining \(\lambda_{12}(s_0)\) to \(\lambda_{34}(t_0)\) meets each of \(\lambda_{12}\) and \(\lambda_{34}\) perpendicularly. It follows that \(0 < s_0 < d_{H}(P_1, P_2)\) and \(0 < t_0 <
$d_H(P_3, P_4)$, since for instance any geodesic meeting γ_{12} perpendicularly at $\gamma_{12}(s)$ for $s < 0$ is on the other side of P_1 from γ_{34}.

Lemma 3.1. Given a truncated tetrahedron T determined by planes P_i, $1 \leq i \leq 4$, let $L_{ij} = \cosh d_H(P_i, P_j)$ for $1 \leq i < j \leq 4$.

(1) If for some $L > 1$, $L_{ij} = L$ for all $i \neq j$, then:

$$\cosh d_H(\lambda_{12}, \lambda_{34}) = \frac{2L}{L - 1}$$

(2) If $L_{12} = L_{13} = L_{14} = L_{23} = L_1$ and $L_{34} = L_2$, then:

$$\cosh d_H(\lambda_{12}, \lambda_{34}) = \frac{2L_1}{\sqrt{(L_1 - 1)(L_2 - 1)}}$$

(3) If $L_{13} = L_{14} = L_{23} = L_{24} = L_1$ and $L_{12} = L_{34} = L_2$, then:

$$\cosh d_H(\lambda_{12}, \lambda_{34}) = \frac{2L_1}{L_2 - 1}$$

Proof. Let γ be the geodesic that intersects each of λ_{12} and λ_{34} perpendicularly. The key observation here is that in each case above, the rotation by π about γ restricts to a symmetry of T. This is because of the combinatorial symmetry in the lengths L_{ij}. In particular, the values s_0 and t_0 that minimize D are $\frac{1}{2} d_H(P_1, P_2)$ and $\frac{1}{2} d_H(P_3, P_4)$, respectively.

Given this observation, establishing the result is a matter of computation. We record cases (2) and (3). In case (2), since $\cosh 2s_0 = L_{12} = L_1$, the “half-angle formula” for the hyperbolic cosine yields $\cosh s_0 = \sqrt{\frac{L_1 + 1}{2}}$ and $\sinh s_0 = \sqrt{\frac{L_1 - 1}{2}}$. Since $\cosh 2t_0 = L_{34} = L_2$, we analogously have $\cosh t_0 = \sqrt{\frac{L_2 + 1}{2}}$ and $\sinh t_0 = \sqrt{\frac{L_2 - 1}{2}}$. Substituting into the formula for D, we obtain:

$$D(s_0, t_0) = \frac{L_1^2 L_2 + L_1^2 + L_1 L_2 + L_1}{2\sqrt{(L_1 - 1)(L_2 - 1)}} - \frac{\sqrt{L_2 - 1} L_1^2 + L_1}{L_1 - 1} - \frac{\sqrt{L_2 - 1} L_1 L_2 + L_1}{L_2 - 1} + \sqrt{(L_1 - 1)(L_2 - 1)} \frac{L_1}{2}$$

$$= \frac{L_1}{2\sqrt{(L_1 - 1)(L_2 - 1)}} \left(L_1 L_2 + L_1 + L_2 + 1 - (L_2 - 1)(L_1 + 1) \right)$$

$$= \frac{2L_1}{\sqrt{(L_1 - 1)(L_2 - 1)}}$$

In case (3), since $\cosh 2s_0 = \cosh 2t_0 = L_2$, we have $\cosh s_0 = \cosh t_0 = \sqrt{\frac{L_2 + 1}{2}}$ and $\sinh s_0 = \sinh t_0 = \sqrt{\frac{L_2 - 1}{2}}$. Substituting into the formula for D, we obtain:

$$D(s_0, t_0) = \frac{L_1 L_2^2 + 2L_1 L_2 + L_1}{2(L_2 - 1)} - \frac{L_1 L_2 + L_1}{2} - \frac{L_1 L_2 + L_1}{2} + \frac{L_1 (L_2 - 1)}{2}$$

$$= \frac{L_1}{2(L_2 - 1)} \left[L_2^2 + 2L_2 + 1 - 2(L_2^2 - 1) + L_2^2 - 2L_2 + 1 \right] = \frac{2L_1}{L_2 - 1}$$

Case (1) is similar. □

Fixing s_0, t_0, and all but one of the L_{ij} for the moment, we will regard D as a function of L_{24}, and note that

$$D'(L_{24}) = \frac{\cosh s_0 \cosh t_0}{\sqrt{(L_{12}^2 - 1)(L_{34}^2 - 1)}} > 0.$$
It follows that for for two tetrahedra with equal L_{ij} for $ij \neq 24$, the one with larger L_{24} will determine a larger minimum value for D, hence a larger value for $d_H(\lambda_{12}, \lambda_{34})$. We record this below.

Lemma 3.2. Let $T = T(\ell, \ell', a, b, c, d)$ and $T' = T(\ell, \ell', a', b, c, d)$ be truncated tetrahedra, where $a > a'$. Then T has a longer transversal length than T'.

We now change the set-up slightly by replacing the plane P_4 with a horoball B disjoint from $P_1, P_2,$ and P_3, and such that for each $i \in \{1, 2, 3\}$, P_i bounds a half-space H_i containing B and the other two hyperplanes.

If the ideal point of B does not lie in the mutual perpendicular \hat{P} to $P_1, P_2,$ and P_3, then we define the partially truncated tetrahedron determined by B and the P_i to be the intersection of the $H_i, i = 1, 2, 3,$ with the half-space H bounded by \hat{P} that contains the ideal point of B, and three half-spaces $\hat{H}_i, i = 1, 2, 3.$ For each such i, \hat{H}_i is bounded by the mutual perpendicular \hat{P}_i to the other two planes P_j, P_k that contains the ideal point of B and hence meets B perpendicularly. \hat{H}_i is the half-space bounded by P_i that contains the shortest geodesic arc from B to P_i.

Definition 3.3. Taking a, b and c to be the distances from P_1 to P_2, P_2 to P_3 and P_3 to P_1, respectively, and h_i to be the distance from P_i to B, for each $i \in \{1, 2, 3\},$ denote the partially truncated tetrahedron constructed as above by $T(h_1, h_2, h_3, a, b, c)$.

Proposition 3.4. For $T \doteq T(h_1, h_2, h_3, a, b, c)$ as in Definition 3.3, if $h_i = h$ for each i, and $a = b = c = \ell_1$, for fixed h and $\ell_1 > 0$, then the distance D between the edge of T joining P_1 to B and the edge joining P_2 to P_3 satisfies

$$
cosh D = 2 \sqrt{1 + \frac{\cosh \ell_1 \sqrt{2}}{\cosh \ell_1 - 1}}.
$$

Proof. Let $x \in \mathbb{R}^{1,3}$ be the positive light-like vector that determines the horoball B, and for $i = 1, 2, 3$ let y_i be a unit space-like vector in \mathbb{R}^3 normal to P_i and such that $x \circ y_i < 0$ for each i. Then also, $y_i \circ y_j < 0$ for $j \neq i$ by hypothesis.

By the proof of Lemma 1.5, the geodesic ray $\gamma(t)$ from the closest point v_1 on P_1 in the direction of x satisfies

$$
\gamma(t) = e^{-t} v_1 - \frac{\sinh t}{x \circ v_1} x = \frac{\cosh t}{-x \circ y_1} x + e^{-t} y_1.
$$

We wish to minimize the distance from $\gamma(t)$ to the geodesic from P_2 to P_3. Taking $L_1 = \cosh \ell_1$ we recall that this is parametrized as

$$
\lambda_{23}(s) = \cosh s z_2 + \sinh s y_2, \text{ for } z_2 = \frac{(y_2 \circ y_3)y_2 - y_3}{\sqrt{(y_2 \circ y_3)^2 - 1}} = \frac{L_1 y_2 - y_3}{\sqrt{L_1^2 - 1}}.
$$

Due to the symmetry of the situation, the closest point of λ_{23} to $\gamma(t)$ is its midpoint s_0, which satisfies $\cosh s_0 = \sqrt{L_1 + 1}$ and $\sinh s_0 = \sqrt{L_1 - 1}/2$. Plugging this in gives $\gamma(s_0) = (-y_2 - y_3)/\sqrt{2(L_1 - 1)}$. We thus are looking to minimize

$$
\gamma(t) \circ \lambda_{23}(s_0) = \frac{x \circ y_2 + x \circ y_3}{x \circ y_1} \cosh t - \frac{y_1 \circ y_2 + y_1 \circ y_3}{\sqrt{2(L_1 - 1)}} e^{-t} = 2 \cosh t + \frac{2L_1}{\sqrt{2(L_1 - 1)}} e^{-t} = e^t + \left(1 + \frac{L_1 \sqrt{2}}{\sqrt{L_1 - 1}}\right) e^{-t}
$$

Proof.}
Setting a derivative equal to 0 yields
\[
e^{2t} = 1 + \frac{L_1 \sqrt{2}}{\sqrt{L_1 - 1}} \Rightarrow e^t = \sqrt{1 + \frac{L_1 \sqrt{2}}{\sqrt{L_1 - 1}}}
\]
Plugging this into \(\gamma(t) \circ \lambda_{23}(s_0) \) yields the formula given above. \(\square \)

Lemma 3.5. For \(T = T(h_1, h_2, h_3, a, b, c) \) as in Definition 3.3, if \(h_i \geq h \) for each \(i \), and \(a, b, \) and \(c \) are all at least \(\ell_1 \), for fixed \(h \) and \(\ell_1 > 0 \), then the distance \(D \) between the edge of \(T \) joining \(P_1 \) to \(B \) and the edge joining \(P_2 \) to \(P_3 \) is at least \(D \) from Proposition 3.4.

We now replace another plane by a horoball. That is, consider a collection \(P_1, P_2, B_1, B_2 \) of mutually disjoint planes (the \(P_i \)) and horoballs (the \(B_i \)) such that for each \(i \in \{1, 2\}, B_1, B_2, \) and \(P_{3-i} \) are contained in a single complementary component of \(P_i \). As in the previous case, there is a partially truncated tetrahedron determined by the \(P_i, i = 1, 2 \), and the four planes orthogonal to triples of the four vertex objects.

Definition 3.6. Taking \(\ell \) be the distance from \(P_1 \) to \(P_2 \), \(d \) the distance from \(B_1 \) to \(B_2 \), and \(h_{ij} \) the distance from \(P_i \) to \(P_j \), for \(i, j \in \{1, 2\} \), denote the partially truncated tetrahedron constructed above by \(T(d, h_{11}, h_{12}, h_{21}, h_{22}, \ell) \).

Proposition 3.7. For \(T = T(d, h_{11}, h_{12}, h_{21}, h_{22}, \ell) \) as in Definition 3.6, if \(h_{ij} = h \) for each \(i, j \in \{1, 2\} \), then the distance \(D \) from the edge of \(T \) joining \(P_1 \) to \(B_1 \) to the edge joining \(P_2 \) to \(B_2 \) satisfies
\[
cosh D = 1 + \frac{e^d}{e^{2h}} + \sqrt{\frac{e^d}{e^{2h}}} \sqrt{2 + 2 \cosh \ell} + \frac{e^d}{e^{2h}}.
\]

Proof. For \(i = 1, 2 \), let \(x \in \mathbb{R}^{1,3} \) be the positive light-like vector that determines the horoball \(B_i \), and let \(y_i \) be a unit space-like vector in \(\mathbb{R}^3 \) normal to \(P_i \) and such that \(x_i \circ y_j < 0 \) for each \(i \). For each \(i \), the geodesic ray \(\gamma_i \) from the closest point \(v_i \) of \(P_i \) in the direction of \(x_i \) is given by
\[
\gamma_i(t) = \frac{\cosh t}{-x_i \circ y_i} x_i + e^{-t} y_i.
\]
Let \(\lambda \) be the mutual perpendicular to the geodesic joining the ideal point of \(B_1 \) to that of \(B_2 \) and the geodesic containing the shortest arc between \(P_1 \) and \(P_2 \). The \(\pi \)-rotation around \(\lambda \) exchanges \(B_i \) with \(B_{3-i} \) and \(P_i \) with \(P_{3-i} \), for \(i = 1, 2 \). Thus it takes \(\gamma_i(s) \) to \(\gamma_{3-i}(s) \) for \(i = 1, 2 \). It follows that the shortest distance between \(\gamma_1(s) \) and \(\gamma_2(t) \) is realized at some \(s = t \). To identify this \(t \), we set \(\frac{d}{dt} [-\gamma_1(t) \circ \gamma_2(t)] \) equal to 0. After simplification, this yields:
\[
e^{2t} = \sqrt{\frac{2 + 2 \cosh \ell_1 + e^d/e^{2h}}{e^{d}/e^{2h}}}
\]
Plugging this back into \(-\gamma_1(t) \circ \gamma_2(t) \) yields the result. \(\square \)

References

