DIFFERENTIAL GEOMETRY 2, HOMEWORK 2 ADDENDUM

(1) (a) For the affine charts $\phi_1 = (x^1, \dots, x^n)$ and $\phi_2 = (y^1, \dots, y^n)$ on $\mathbb{R}P^n$ express the $\frac{\partial}{\partial x^j}|_p$ in terms of the $\frac{\partial}{\partial y^i}|_p$ at $p = [1, \dots, 1]$. (Recall that the affine chart ϕ_i : $\{[u^1, \dots, u^{n+1}] \in \mathbb{R}P^n \mid u^i \neq 0\} \to \mathbb{R}^n$ is given by

$$\phi_i \left[u^1, \dots, u^{n+1} \right] = \left(\frac{u^1}{u^i}, \dots, \frac{u^{i-1}}{u^i}, \frac{u^{i+1}}{u^i}, \dots, \frac{u^{n+1}}{u^i} \right)$$

- (b) For the map $P[x, y, z] = [x^2 yz, y^2 xz, z^2]$ on $\mathbb{R}P^2$, describe $DP|_{[1,1,1]}$ in local coordinates. (Why is P well-defined?)
- (2) (a) Show that the quotient map $\mathbb{R}^2 \to T^2$ is a local diffeomorphism, where T^2 is the abstract torus $\mathbb{R}^2/\mathbb{Z}^2$.
 - (b) Show that the map $F(x, y) = (\cos(2\pi x), \sin(2\pi x), \cos(2\pi y), \sin(2\pi y))$ induces an immersion from T^2 to \mathbb{R}^4 . (The *induced map* takes the equivalence class [(x, y)] of (x, y) to F(x, y); you must check this is well-defined.)
- (3) (Gullemin & Pollack, $\S2.4 \#11$)
 - (a) The $n \times n$ matrices with determinant 1 form a group denoted SL(n). Prove that SL(n) is a submanifold of M(n) (the set of $n \times n$ matrices, identified with \mathbb{R}^{n^2}). (*Hint*: The only critical value of the determinant det: $M(n) \to \mathbb{R}$ is 0; indeed, if det $(A) \neq 0$ then the restriction of det to $\{tA \mid t \neq 0\}$ is already a submersion.)
 - (b) Check that the tangent space to SL(n) at the identity matrix consists of all matrices with trace equal to 0.