DIFFERENTIAL GEOMETRY 2, HOMEWORK 2 ADDENDUM

(1) (a) For the affine charts $\phi_{1}=\left(x^{1}, \ldots, x^{n}\right)$ and $\phi_{2}=\left(y^{1}, \ldots, y^{n}\right)$ on $\mathbb{R} P^{n}$ express the $\left.\frac{\partial}{\partial x^{j}}\right|_{p}$ in terms of the $\left.\frac{\partial}{\partial y^{i}}\right|_{p}$ at $p=[1, \ldots, 1]$. (Recall that the affine chart $\phi_{i}:\left\{\left[u^{1}, \ldots, u^{n+1}\right] \in \mathbb{R} P^{n} \mid u^{i} \neq 0\right\} \rightarrow \mathbb{R}^{n}$ is given by

$$
\phi_{i}\left[u^{1}, \ldots, u^{n+1}\right]=\left(\frac{u^{1}}{u^{i}}, \ldots, \frac{u^{i-1}}{u^{i}}, \frac{u^{i+1}}{u^{i}}, \ldots, \frac{u^{n+1}}{u^{i}}\right)
$$

(b) For the map $P[x, y, z]=\left[x^{2}-y z, y^{2}-x z, z^{2}\right]$ on $\mathbb{R} P^{2}$, describe $\left.D P\right|_{[1,1,1]}$ in local coordinates. (Why is P well-defined?)
(2) (a) Show that the quotient map $\mathbb{R}^{2} \rightarrow T^{2}$ is a local diffeomorphism, where T^{2} is the abstract torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$.
(b) Show that the map $F(x, y)=(\cos (2 \pi x), \sin (2 \pi x), \cos (2 \pi y), \sin (2 \pi y))$ induces an immersion from T^{2} to \mathbb{R}^{4}. (The induced map takes the equivalence class $[(x, y)]$ of (x, y) to $F(x, y)$; you must check this is well-defined.)
(3) (Gullemin \& Pollack, §2.4 \#11)
(a) The $n \times n$ matrices with determinant 1 form a group denoted $S L(n)$. Prove that $S L(n)$ is a submanifold of $M(n)$ (the set of $n \times n$ matrices, identified with $\mathbb{R}^{n^{2}}$). (Hint: The only critical value of the determinant det: $M(n) \rightarrow \mathbb{R}$ is 0 ; indeed, if $\operatorname{det}(A) \neq 0$ then the restriction of det to $\{t A \mid t \neq 0\}$ is already a submersion.)
(b) Check that the tangent space to $S L(n)$ at the identity matrix consists of all matrices with trace equal to 0 .

