DIFFERENTIAL GEOMETRY 2, HOMEWORK 3 ADDENDUM

(1) Suppose $F: M \rightarrow N$ is a smooth map of smooth manifolds, and g is a Riemannian metric on N. For $p \in M$, let $\phi=\left(x^{1}, \ldots, x^{m}\right): U \rightarrow \mathbb{R}^{m}$ be a chart on M with $p \in U$, and let $\psi=\left(y^{1}, \ldots, y^{n}\right): V \rightarrow \mathbb{R}^{n}$ be a chart on N with $F(p) \in V$. If

$$
g_{F(p)}=\left.\left.\sum_{i, j=1}^{n} g_{i j}(F(p)) d y^{i}\right|_{F(p)} \otimes d y^{j}\right|_{F(p)}
$$

then verify for $F^{*} g$ as defined in class that

$$
\left(F^{*} g\right)_{p}=\left.\left.\sum_{i, j=1}^{m}\left[\left.\left.\sum_{k, l=1}^{n} g_{k l}(F(p)) \frac{\partial f^{k}}{\partial x^{i}}\right|_{p} \frac{\partial f^{l}}{\partial x^{j}}\right|_{p}\right] d x^{i}\right|_{p} \otimes d x^{j}\right|_{p}
$$

where $f^{k}=y^{k} \circ F$ and $f^{l}=y^{l} \circ F$ for all k and l with $1 \leq k, l \leq n$.
(2) (John M. Lee, Riemannian Manifolds, Problem 4-3)
(a) Show that the Lie bracket (aka Lie derivative) $(\mathbf{X}, \mathbf{Y}) \mapsto \mathcal{L}_{\mathbf{X}} \mathbf{Y} \doteq[\mathbf{X}, \mathbf{Y}]$ on a smooth manifold M is not a connection on M.
(b) Show that there are vector fields \mathbf{V} and \mathbf{W} on \mathbb{R}^{2} with $\mathbf{V}=\mathbf{W} \equiv \frac{\partial}{\partial x^{1}}$ along the x-axis but with $\mathcal{L}_{\mathbf{V}}\left(\frac{\partial}{\partial x^{2}}\right) \neq \mathcal{L}_{\mathbf{W}}\left(\frac{\partial}{\partial x^{2}}\right)$ along the x-axis. (This shows that Lie differentiation does not give a well-defined way to take derivatives of vector fields along curves.)
(3) (Riemannian Manifolds, Problem 5-4) Recall that a vector field \mathbf{V} on a manifold M is parallel if $\left.\nabla_{\mathbf{x}} \mathbf{V}\right|_{p}=0$ for every $p \in M$ and $\mathbf{X} \in T_{p} M$.
(a) Let $p \in \mathbb{R}^{n}$ and $\mathbf{V}_{p} \in T_{p} \mathbb{R}^{n}$. Show that \mathbf{V}_{p} has a unique extension to a parallel vector field \mathbf{V} on \mathbb{R}^{n}.
(b) Let U be the open subset of the sphere S^{2} on which (German-style) spherical coordinates (θ, ϕ) are defined, and let $\mathbf{V}=\frac{\partial}{\partial \phi}$ in these coordinates. Compute $\nabla_{\frac{\partial}{\partial \theta}} \mathbf{V}$ and $\nabla_{\frac{\partial}{\partial \phi}} \mathbf{V}$ and conclude that \mathbf{V} is parallel along the equator and each meridian $\theta=\theta_{0}$.
(c) Let $p=(0,0)$ in spherical coordinates, and show that \mathbf{V}_{p} has no parallel extension to any neighborhood of p.
(d) Use (a) and (c) to show that no neighborhood of p is isometric to an open subset of \mathbb{R}^{2}.

