DIFFERENTIAL GEOMETRY 2, HOMEWORK 3 ADDENDUM

(1) Suppose $F: M \to N$ is a smooth map of smooth manifolds, and g is a Riemannian metric on N. For $p \in M$, let $\phi = (x^1, \ldots, x^m): U \to \mathbb{R}^m$ be a chart on M with $p \in U$, and let $\psi = (y^1, \ldots, y^n): V \to \mathbb{R}^n$ be a chart on N with $F(p) \in V$. If

$$g_{F(p)} = \sum_{i,j=1}^{n} g_{ij}(F(p)) \, dy^i |_{F(p)} \otimes dy^j |_{F(p)}$$

then verify for F^*g as defined in class that

$$(F^*g)_p = \sum_{i,j=1}^m \left[\sum_{k,l=1}^n g_{kl}(F(p)) \frac{\partial f^k}{\partial x^i} |_p \frac{\partial f^l}{\partial x^j} |_p \right] dx^i |_p \otimes dx^j |_p,$$

where $f^k = y^k \circ F$ and $f^l = y^l \circ F$ for all k and l with $1 \le k, l \le n$.

- (2) (John M. Lee, *Riemannian Manifolds*, Problem 4-3)
 - (a) Show that the Lie bracket (aka Lie derivative) $(\mathbf{X}, \mathbf{Y}) \mapsto \mathcal{L}_{\mathbf{X}} \mathbf{Y} \doteq [\mathbf{X}, \mathbf{Y}]$ on a smooth manifold M is not a connection on M.
 - (b) Show that there are vector fields **V** and **W** on \mathbb{R}^2 with $\mathbf{V} = \mathbf{W} \equiv \frac{\partial}{\partial x^1}$ along the *x*-axis but with $\mathcal{L}_{\mathbf{V}}\left(\frac{\partial}{\partial x^2}\right) \neq \mathcal{L}_{\mathbf{W}}\left(\frac{\partial}{\partial x^2}\right)$ along the *x*-axis. (This shows that Lie differentiation does not give a well-defined way to take derivatives of vector fields along curves.)
- (3) (*Riemannian Manifolds*, Problem 5-4) Recall that a vector field \mathbf{V} on a manifold M is parallel if $\nabla_{\mathbf{X}} \mathbf{V}|_p = 0$ for every $p \in M$ and $\mathbf{X} \in T_p M$.
 - (a) Let $p \in \mathbb{R}^n$ and $\mathbf{V}_p \in T_p \mathbb{R}^n$. Show that \mathbf{V}_p has a unique extension to a parallel vector field \mathbf{V} on \mathbb{R}^n .
 - (b) Let U be the open subset of the sphere S^2 on which (German-style) spherical coordinates (θ, ϕ) are defined, and let $\mathbf{V} = \frac{\partial}{\partial \phi}$ in these coordinates. Compute $\nabla_{\frac{\partial}{\partial \theta}} \mathbf{V}$ and $\nabla_{\frac{\partial}{\partial \phi}} \mathbf{V}$ and conclude that \mathbf{V} is parallel along the equator and each meridian $\theta = \theta_0$.
 - (c) Let p = (0, 0) in spherical coordinates, and show that \mathbf{V}_p has no parallel extension to any neighborhood of p.
 - (d) Use (a) and (c) to show that no neighborhood of p is isometric to an open subset of \mathbb{R}^2 .