DIFFERENTIAL GEOMETRY 2, HOMEWORK 4 ADDENDUM

Problem 1. Prove parts (1) and (assuming (2)) (3) of the proposition below.

Proposition (Prop. 5.6, Riemannian Manifolds). For an isometry $\phi: (M,g) \rightarrow (\widetilde{M}, \widetilde{g})$ of Riemannian manifolds:

(1) ϕ takes the Riemannian connection ∇ of g to the Riemannian connection ∇ of \tilde{g} , in the sense that for all vector fields **X** and **Y** on M,

$$\phi_*(\nabla_{\mathbf{X}}\mathbf{Y}) = \nabla_{\phi_*\mathbf{X}}(\phi_*\mathbf{Y})$$

Here $\phi_* \mathbf{X}$ is the push-forward of \mathbf{X} , the vector field on \widetilde{M} defined at $p \in \widetilde{M}$ by $(\phi_* \mathbf{X})_p = D\phi|_{\phi^{-1}(p)}(\mathbf{X}_{\phi^{-1}(p)}).$

(2) If c is a curve in M and V is a vector field along c then taking $\tilde{c} = \phi \circ c$,

$$\phi_* \nabla_{\dot{c}} \mathbf{V} = \tilde{\nabla}_{\dot{\tilde{c}}} (\phi_* \mathbf{V}),$$

where $(\phi_* \mathbf{V})_t = D\phi|_{c(t)}(\mathbf{V}_t)$ and ∇_c is the covariant derivative along c.

(3) ϕ takes geodesics to geodesics.

Hint: To prove part (1), show that the *pullback* $\phi^* \widetilde{\nabla}$ of $\widetilde{\nabla}$ to M, defined by

$$(\phi^*\widetilde{\nabla})_{\mathbf{X}}\mathbf{Y} = \phi_*^{-1}\left((\widetilde{\nabla}_{\phi_*\mathbf{X}}(\phi_*\mathbf{Y})\right)$$

is a torsion-free connection on M which is compatible with g. You may use the following properties of the push-forward:

Lemma. Let \mathbf{X} be a smooth vector field on a Riemannian manifold (M, g) and $\phi: (M, g) \to (\widetilde{M}, \widetilde{g})$ an isometry of Riemannian manifolds. If $\mathbf{X} = \sum_i \xi^i \frac{\partial}{\partial x^i}$ in local coordinates (x^1, \ldots, x^n) around some $p \in M$ then

$$\phi_* \mathbf{X} = \sum_{i,j} \left(\xi^j \circ \phi^{-1} \right) \left(\frac{\partial \phi^i}{\partial x^j} \circ \phi^{-1} \right) \frac{\partial}{\partial y^i}$$

in local coordinates (y^1, \ldots, y^n) about $\phi(p)$. Moreover, for any smooth functions f and g and vector field \mathbf{Y} on M, the push-forward satisfies:

- **Functoriality:** For an isometry ψ defined on \widetilde{M} , $(\psi \circ \phi)_* \mathbf{X} = \psi_*(\phi_* \mathbf{X})$. In particular, $\phi_*^{-1} \phi_* \mathbf{X} = \mathbf{X}$.
- Linearity over $C^{\infty}M$: $\phi_*(f\mathbf{X} + g\mathbf{Y}) = (f \circ \phi^{-1})\phi_*\mathbf{X} + (g \circ \phi^{-1})\phi_*\mathbf{Y}$
- Compatibility with the Lie bracket: $\phi_*[\mathbf{X}, \mathbf{Y}] = [\phi_* \mathbf{X}, \phi_* \mathbf{Y}]$
- Compatibility with the metric: For any $\tilde{p} \in \widetilde{M}$, if $p = \phi^{-1}(\tilde{p})$ then

$$\tilde{g}_{\tilde{p}}(\phi_* \mathbf{X}_{\tilde{p}}, \phi_* \mathbf{Y}_{\tilde{p}}) = g_p(\mathbf{X}_p, \mathbf{Y}_p)$$

Proof. The local coordinate description of $\phi_* \mathbf{X}$ is a direct consequence of the definition and the following fact proven in class: for local coordinates (x^1, \ldots, x^n) and (y^1, \ldots, y^n) around p and $\phi(p)$, respectively, and a tangent vector $\sum_i \xi^i \frac{\partial}{\partial x^i}|_p$ at p,

$$D\phi|_p\left(\sum_i \xi^i \left.\frac{\partial}{\partial x^i}\right|_p\right) = \sum_{i,j} \xi^j \frac{\partial \phi^i}{\partial x^j}(p) \left.\frac{\partial}{\partial y^i}\right|_{\phi(p)},$$

where $\phi^i = y^i \circ \phi$.

Functoriality follows from the definition of the push-forward and the chain rule. Linearity over $C^{\infty}M$ follows from the definition and the fact that for each $p \in M$, $D\phi|_p$ is a linear transformation. Compatibility with the metric also follows by checking the definition and using the fact that ϕ is an isometry. Compatibility with the Lie bracket is more complicated. You can check it by a massive computation in local coordinates (again crucially using the chain rule), or via the direct argument below.

Recall that if \mathbf{X}_p is regarded as a derivation on germs at p of smooth functions on M, then $D\phi|_p(\mathbf{X}_p)$ is the derivation on germs at $\phi(p)$ of smooth functions on \widetilde{M} defined by $D\phi|_p(\mathbf{X}_p)(f) = \mathbf{X}_p(f \circ \phi)$. From the derivation perspective the Lie bracket $[\mathbf{X}, \mathbf{Y}]$ is defined by:

$$[\mathbf{X}, \mathbf{Y}]_p(f) = \mathbf{X}_p(q \mapsto \mathbf{Y}_q(f)) - \mathbf{Y}_p(q \mapsto \mathbf{X}_q(f))$$

for the germ at p of a smooth function f on M, where $q \mapsto \mathbf{Y}_q(f)$ refers to the germ at p of the function on M taking q to $\mathbf{Y}_q(f)$. Then for $\tilde{p} \in \widetilde{M}$ and the germ at \tilde{p} of a smooth function f on \widetilde{M} , by definition we have

$$\phi_*[\mathbf{X}, \mathbf{Y}]_{\tilde{p}}(f) = D\phi|_p \left([\mathbf{X}, \mathbf{Y}]_p \right)(f) = [\mathbf{X}, \mathbf{Y}]_p(f \circ \phi)$$
$$= \mathbf{X}_p(q \mapsto \mathbf{Y}_q(f \circ \phi)) - \mathbf{Y}_p(q \mapsto \mathbf{Y}_q(f \circ \phi)),$$

where $p = \phi^{-1}(\tilde{p})$. With the same notation we have on the other hand:

$$\begin{split} [\phi_* \mathbf{X}, \phi_* \mathbf{Y}]_{\tilde{p}}(f) &= (\phi_* \mathbf{X})_{\tilde{p}}(\tilde{q} \mapsto (\phi_* \mathbf{Y})_{\tilde{q}}(f)) - (\phi_* \mathbf{Y})_{\tilde{p}}(\tilde{q} \mapsto (\phi_* \mathbf{X})_{\tilde{q}}(f)) \\ &= \mathbf{X}_p \left((\tilde{q} \mapsto \mathbf{Y}_{\phi^{-1}(\tilde{q})}(f \circ \phi)) \circ \phi \right) \\ &- \mathbf{Y}_p \left((\tilde{q} \mapsto \mathbf{Y}_{\phi^{-1}(\tilde{q})}(f \circ \phi)) \circ \phi \right) \end{split}$$

The point I'm trying to emphasize with this notation is that the inputs for the function $\tilde{q} \mapsto \mathbf{Y}_{\phi^{-1}(\tilde{q})}(f \circ \phi)$ are points of \widetilde{M} . Upon composing this function with ϕ one simply obtains $q \mapsto \mathbf{Y}_q(f \circ \phi)$, since $\phi^{-1}(\phi(q)) = q$. Compatibility of the push-forward with the Lie bracket follows.