DIFFERENTIAL GEOMETRY 2, HOMEWORK 4 ADDENDUM

Problem 1. Prove parts (1) and (assuming (2)) (3) of the proposition below.
Proposition (Prop. 5.6, Riemannian Manifolds). For an isometry $\phi:(M, g) \rightarrow$ ($\widetilde{M}, \tilde{g})$ of Riemannian manifolds:
(1) ϕ takes the Riemannian connection ∇ of g to the Riemannian connection $\tilde{\nabla}$ of \tilde{g}, in the sense that for all vector fields \mathbf{X} and \mathbf{Y} on M,

$$
\phi_{*}\left(\nabla_{\mathbf{X}} \mathbf{Y}\right)=\tilde{\nabla}_{\phi_{*} \mathbf{X}}\left(\phi_{*} \mathbf{Y}\right)
$$

Here $\phi_{*} \mathbf{X}$ is the push-forward of \mathbf{X}, the vector field on \widetilde{M} defined at $p \in \widetilde{M}$ $b y\left(\phi_{*} \mathbf{X}\right)_{p}=\left.D \phi\right|_{\phi^{-1}(p)}\left(\mathbf{X}_{\phi^{-1}(p)}\right)$.
(2) If c is a curve in M and \mathbf{V} is a vector field along c then taking $\tilde{c}=\phi \circ c$,

$$
\phi_{*} \nabla_{\dot{c}} \mathbf{V}=\tilde{\nabla}_{\dot{\tilde{c}}}\left(\phi_{*} \mathbf{V}\right),
$$

where $\left(\phi_{*} \mathbf{V}\right)_{t}=\left.D \phi\right|_{c(t)}\left(\mathbf{V}_{t}\right)$ and $\nabla_{\dot{c}}$ is the covariant derivative along c.
(3) ϕ takes geodesics to geodesics.

Hint: To prove part (1), show that the pullback $\phi^{*} \widetilde{\nabla}$ of $\widetilde{\nabla}$ to M, defined by

$$
\left(\phi^{*} \widetilde{\nabla}\right)_{\mathbf{X}} \mathbf{Y}=\phi_{*}^{-1}\left(\left(\widetilde{\nabla}_{\phi_{*} \mathbf{X}}\left(\phi_{*} \mathbf{Y}\right)\right)\right.
$$

is a torsion-free connection on M which is compatible with g. You may use the following properties of the push-forward:

Lemma. Let \mathbf{X} be a smooth vector field on a Riemannian manifold (M, g) and $\phi:(M, g) \rightarrow(\widetilde{M}, \tilde{g})$ an isometry of Riemannian manifolds. If $\mathbf{X}=\sum_{i} \xi^{i} \frac{\partial}{\partial x^{i}}$ in local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ around some $p \in M$ then

$$
\phi_{*} \mathbf{X}=\sum_{i, j}\left(\xi^{j} \circ \phi^{-1}\right)\left(\frac{\partial \phi^{i}}{\partial x^{j}} \circ \phi^{-1}\right) \frac{\partial}{\partial y^{i}}
$$

in local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ about $\phi(p)$. Moreover, for any smooth functions f and g and vector field \mathbf{Y} on M, the push-forward satisfies:

Functoriality: For an isometry ψ defined on $\widetilde{M},(\psi \circ \phi)_{*} \mathbf{X}=\psi_{*}\left(\phi_{*} \mathbf{X}\right)$. In particular, $\phi_{*}^{-1} \phi_{*} \mathbf{X}=\mathbf{X}$.
Linearity over $C^{\infty} M: \phi_{*}(f \mathbf{X}+g \mathbf{Y})=\left(f \circ \phi^{-1}\right) \phi_{*} \mathbf{X}+\left(g \circ \phi^{-1}\right) \phi_{*} \mathbf{Y}$
Compatibility with the Lie bracket: $\phi_{*}[\mathbf{X}, \mathbf{Y}]=\left[\phi_{*} \mathbf{X}, \phi_{*} \mathbf{Y}\right]$
Compatibility with the metric: For any $\tilde{p} \in \widetilde{M}$, if $p=\phi^{-1}(\tilde{p})$ then

$$
\tilde{g}_{\tilde{p}}\left(\phi_{*} \mathbf{X}_{\tilde{p}}, \phi_{*} \mathbf{Y}_{\tilde{p}}\right)=g_{p}\left(\mathbf{X}_{p}, \mathbf{Y}_{p}\right)
$$

Proof. The local coordinate description of $\phi_{*} \mathbf{X}$ is a direct consequence of the definition and the following fact proven in class: for local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ and $\left(y^{1}, \ldots, y^{n}\right)$ around p and $\phi(p)$, respectively, and a tangent vector $\left.\sum_{i} \xi^{i} \frac{\partial}{\partial x^{i}}\right|_{p}$ at p,

$$
\left.D \phi\right|_{p}\left(\left.\sum_{i} \xi^{i} \frac{\partial}{\partial x^{i}}\right|_{p}\right)=\left.\sum_{i, j} \xi^{j} \frac{\partial \phi^{i}}{\partial x^{j}}(p) \frac{\partial}{\partial y^{i}}\right|_{\phi(p)},
$$

where $\phi^{i}=y^{i} \circ \phi$.
Functoriality follows from the definition of the push-forward and the chain rule. Linearity over $C^{\infty} M$ follows from the definition and the fact that for each $p \in M$, $\left.D \phi\right|_{p}$ is a linear transformation. Compatibility with the metric also follows by checking the definition and using the fact that ϕ is an isometry. Compatibility with the Lie bracket is more complicated. You can check it by a massive computation in local coordinates (again crucially using the chain rule), or via the direct argument below.

Recall that if \mathbf{X}_{p} is regarded as a derivation on germs at p of smooth functions on M, then $\left.D \phi\right|_{p}\left(\mathbf{X}_{p}\right)$ is the derivation on germs at $\phi(p)$ of smooth functions on \widetilde{M} defined by $\left.D \phi\right|_{p}\left(\mathbf{X}_{p}\right)(f)=\mathbf{X}_{p}(f \circ \phi)$. From the derivation perspective the Lie bracket $[\mathbf{X}, \mathbf{Y}]$ is defined by:

$$
[\mathbf{X}, \mathbf{Y}]_{p}(f)=\mathbf{X}_{p}\left(q \mapsto \mathbf{Y}_{q}(f)\right)-\mathbf{Y}_{p}\left(q \mapsto \mathbf{X}_{q}(f)\right)
$$

for the germ at p of a smooth function f on M, where $q \mapsto \mathbf{Y}_{q}(f)$ refers to the germ at p of the function on M taking q to $\mathbf{Y}_{q}(f)$. Then for $\tilde{p} \in \widetilde{M}$ and the germ at \tilde{p} of a smooth function f on \widetilde{M}, by definition we have

$$
\begin{aligned}
\phi_{*}[\mathbf{X}, \mathbf{Y}]_{\tilde{p}}(f) & =\left.D \phi\right|_{p}\left([\mathbf{X}, \mathbf{Y}]_{p}\right)(f)=[\mathbf{X}, \mathbf{Y}]_{p}(f \circ \phi) \\
& =\mathbf{X}_{p}\left(q \mapsto \mathbf{Y}_{q}(f \circ \phi)\right)-\mathbf{Y}_{p}\left(q \mapsto \mathbf{Y}_{q}(f \circ \phi)\right),
\end{aligned}
$$

where $p=\phi^{-1}(\tilde{p})$. With the same notation we have on the other hand:

$$
\begin{aligned}
{\left[\phi_{*} \mathbf{X}, \phi_{*} \mathbf{Y}\right]_{\tilde{p}}(f)=} & \left(\phi_{*} \mathbf{X}\right)_{\tilde{p}}\left(\tilde{q} \mapsto\left(\phi_{*} \mathbf{Y}\right)_{\tilde{q}}(f)\right)-\left(\phi_{*} \mathbf{Y}\right)_{\tilde{p}}\left(\tilde{q} \mapsto\left(\phi_{*} \mathbf{X}\right)_{\tilde{q}}(f)\right) \\
= & \mathbf{X}_{p}\left(\left(\tilde{q} \mapsto \mathbf{Y}_{\phi^{-1}(\tilde{q})}(f \circ \phi)\right) \circ \phi\right) \\
& \quad-\mathbf{Y}_{p}\left(\left(\tilde{q} \mapsto \mathbf{Y}_{\phi^{-1}(\tilde{q})}(f \circ \phi)\right) \circ \phi\right)
\end{aligned}
$$

The point I'm trying to emphasize with this notation is that the inputs for the function $\tilde{q} \mapsto \mathbf{Y}_{\phi^{-1}(\tilde{q})}(f \circ \phi)$ are points of \widetilde{M}. Upon composing this function with ϕ one simply obtains $q \mapsto \mathbf{Y}_{q}(f \circ \phi)$, since $\phi^{-1}(\phi(q))=q$. Compatibility of the push-forward with the Lie bracket follows.

