DIFFERENTIAL GEOMETRY 2, HOMEWORK 5 ADDENDUM

(1) For a Riemannian manifold (M, g) and a smooth one-form ω on M, prove that there is a unique smooth vector field $\omega^{\#}$ on M with the property that

$$\omega_p(\mathbf{Y}_p) = g_p(\mathbf{Y}_p, \omega_p^{\#})$$

for all $p \in M$ and $\mathbf{Y}_p \in T_p M$. Show moreover that in local coordinates, if $\omega = \sum_j \alpha_j dx^j$ then $\omega^{\#} = \sum_{i,j} g^{ij} \alpha_j \frac{\partial}{\partial x^i}$.

(2) Spherical coordinates on \mathbb{R}^3 are the inverse of the map

$$(\rho, \theta, \phi) \mapsto (\rho \cos \phi \cos \theta, \rho \cos \phi \sin \theta, \rho \sin \phi),$$

defined on the image of $(0, \infty) \times (0, 2\pi) \times (-\pi/2, \pi/2)$. Cylindrical coordinates are the inverse of

$$(r, \theta, z) \mapsto (r \cos \theta, r \sin \theta, z),$$

again only defined on a subset of \mathbb{R}^3 : the image of $(0, \infty) \times (0, 2\pi) \times \mathbb{R}$. In each of cylindrical and spherical coordinates, calculate:

- (a) the coefficients of the standard inner product g;
- (b) the Christoffel symbols of g; and
- (c) the coefficients of the Riemann curvature tensor.