DIFFERENTIAL GEOMETRY 2, HOMEWORK 5 ADDENDUM

(1) For a Riemannian manifold (M, g) and a smooth one-form ω on M, prove that there is a unique smooth vector field $\omega^{\#}$ on M with the property that

$$
\omega_{p}\left(\mathbf{Y}_{p}\right)=g_{p}\left(\mathbf{Y}_{p}, \omega_{p}^{\#}\right)
$$

for all $p \in M$ and $\mathbf{Y}_{p} \in T_{p} M$. Show moreover that in local coordinates, if $\omega=\sum_{j} \alpha_{j} d x^{j}$ then $\omega^{\#}=\sum_{i, j} g^{i j} \alpha_{j} \frac{\partial}{\partial x^{i}}$.
(2) Spherical coordinates on \mathbb{R}^{3} are the inverse of the map

$$
(\rho, \theta, \phi) \mapsto(\rho \cos \phi \cos \theta, \rho \cos \phi \sin \theta, \rho \sin \phi),
$$

defined on the image of $(0, \infty) \times(0,2 \pi) \times(-\pi / 2, \pi / 2)$. Cylindrical coordinates are the inverse of

$$
(r, \theta, z) \mapsto(r \cos \theta, r \sin \theta, z)
$$

again only defined on a subset of \mathbb{R}^{3} : the image of $(0, \infty) \times(0,2 \pi) \times \mathbb{R}$. In each of cylindrical and spherical coordinates, calculate:
(a) the coefficients of the standard inner product g;
(b) the Christoffel symbols of g; and
(c) the coefficients of the Riemann curvature tensor.

