DIFFERENTIAL GEOMETRY 1, HOMEWORK 4

(1) Chapter 2, Exercise 10.
(2) Given a finite open cover $\mathcal{V}=\left\{V_{1}, \ldots, V_{n}\right\}$ of a topological space X and a continuous map $c:[a, b] \rightarrow X$, prove there is a partition of $[a, b]$ adapted to \mathcal{V} : a collection $a=t_{0}<t_{1}<\ldots<t_{m}=b$ such that for each $i>0$, $c\left(\left[t_{i-1}, t_{i}\right]\right) \subset V_{j}$ for some $j=j(i)$.
(3) Show that every regular closed curve $c:[a, b] \rightarrow \mathbb{R}^{2}$ has a tangent line ℓ with the property that $c([a, b])$ is entirely contained on one side of ℓ.
(4) Given a continuous function $e: A \rightarrow \mathbb{R}^{2}-\{\mathbf{0}\}$ on a set $A \subset \mathbb{R}^{2}$ that is star-like with respect to some $x_{0} \in A$, show for any fixed $\mathbf{x} \in A$ that there exists $\delta>0$ such that for all $\mathbf{y} \in A$ with $\|\mathbf{x}-\mathbf{y}\|<\delta, c_{\mathbf{x}}(t)$ and $c_{\mathbf{y}}(t)$ are not antipodal for all $t \in[0,1]$. Here $c_{\mathbf{x}}(t)=e\left(t \mathbf{x}+(1-t) \mathbf{x}_{0}\right)$, and analogously for $c_{\mathbf{y}}$.
(5) For a simply closed, regular curve $c:[a, b] \rightarrow \mathbb{R}^{2}$, taking $A=\{(s, t) \mid a \leq s \leq$ $t \leq b\}$ show that the function $e: A \rightarrow \mathbb{R}^{2}-\{0\}$ defined below is continuous:

$$
e(s, t)=\left\{\begin{array}{cl}
\frac{c(t)-c(s)}{\|c(t)-c(s)\|} & s \neq t,(s, t) \neq(a, b) \\
\frac{\dot{c}(t)}{\|\dot{c}(t)\|} & s=t \\
-\frac{\dot{c}(a)}{\|\dot{c}(a)\|} & (s, t)=(a, b)
\end{array}\right.
$$

(6) Describe a non-simple regular closed plane curve with everywhere-positive curvature.

