
TOPOLOGY 2, HOMEWORK 10
PROBLEM 1 SOLUTION

Problem: For a fixed space X and x0 ∈ X, we showed in class that a map
f : (In, ∂In)→ (X, x0) induces a map f̄ : (Sn, s0)→ (X, x0), where s0 = (0, . . . , 0, 1),
obtained by going right-to-left on the bottom line of the diagram below.

In

f

{{

φ //

��

Dn

�� $$
X In/∂Inoo ≈ // Dn/∂Dn ≈ // Sn

For two such maps f and g, show that the map f + g induced in this way is the same
as (f̄∨ḡ)◦c, where c : Sn → Sn/({0}×Sn−1) is the quotient map and Sn/({0}×Sn−1)
is homeomorphically identified with Sn ∨ Sn.

Solution: Let us recall the definitions of maps φ : In → Dn and ψ : Dn → Sn that
induce the homeomorphisms of the bottom line above:

φ(s) = 2 max
i
{|si − 1/2|} s− 1/2

‖s− 1/2‖
s = (s1, . . . , sn) ∈ In

ψ(x) =
(

2
√

1− ‖x‖2 x, 2‖x‖2 − 1
)

x ∈ Dn

Above, 1/2 = (1/2, . . . , 1/2) ∈ In. Let Φ = ψ ◦ φ. Note that Φ takes ∂In to
en+1 = (0, . . . , 0, 1) ∈ Sn, which we will take as a base point.

We first observe that Φ({1/2}×In−1) = {0}×Sn−1, so since f+g maps {1/2}×In−1
to the basepoint x0 it induces a map from the further quotient Sn/({0}×Sn−1) to X.

For lack of a better term we will call this map f + g
∗
. It satisfies f + g

∗ ◦ c = f + g,
where c : Sn → Sn/({0} × Sn−1) is the quotient map. We will show that f + g

∗
is

homotopic to f̄ ∨ ḡ relative to {0} × Sn−1, which is identified with the wedge point
under any homeomorphism Sn/({0} × Sn−1) → Sn ∨ Sn, and hence conclude that
f + g is homotopic to (f̄ ∨ ḡ) ◦ c, relative to en+1.

Denote as Snl the copy of Sn in the wedge sum which is obtained from points
x ∈ Sn/({0} × Sn−1) with x1 ≤ 0, and let Snr be the other copy. We will show that

the restriction of f + g
∗

to Snl is homotopic to f̄ by describing the latter as obtained
from the former by a reparametrization homotopic (rel en+1) to the identity map. A
similar description of ḡ will establish the result. The key claim is:

Claim. Let X = [0, 1/2]× In−1. The restriction of c ◦Φ to X is homotopic to Φ ◦ 2s1
relative to ∂X, where “2s1” refers to the map sending (s1, . . . , sn) to (2s1, s2, . . . , sn),
and both maps above have target Snl . Similarly, the restriction of c◦Φ to [1/2, 1]×In−1
is homotopic to Φ ◦ (2s1 − 1) rel boundary, where “2s1 − 1” is analogously defined
and both of these maps target Snr .

1



2 TOPOLOGY 2, HOMEWORK 10 PROBLEM 1 SOLUTION

Assuming the claim for the moment, we now prove the result. For y0 = c ◦Φ(s) ∈
Snl , f + g

∗
(y0) = (f + g)(s) = f(2s1, s2, . . . , sn), where s = (s1, . . . , sn) ∈ [0, 1/2] ×

In−1. This is also f̄(y1), where y1 = Φ ◦ 2s1(s). So on [0, 1/2]× In−1 we have

f + g
∗ ◦ (c ◦ Φ) = f ◦ 2s1 = f̄ ◦ (Φ ◦ 2s1)

Each of c ◦ Φ and Φ ◦ 2s1 maps the entire boundary of X = [0, 1/2] × In−1 to en+1

and is one-one on the interior, so it induces a homeomorphism X/∂X → Snl . Denote
these maps by c ◦ Φ and Φ ◦ 2s1, respectively. Then

f̄ = f + g
∗ ◦ (c ◦ Φ) ◦ (Φ ◦ 2s1)

−1.

A homotopy H : X × I → Snl from c ◦ Φ to Φ ◦ 2s1 relative to ∂X induces a ho-

motopy H : (X/∂X) × I → Snl between induced maps, so composing f + g
∗

with

H
(
(Φ ◦ 2s1)

−1(y), t
)

gives one from f̄ to the restriction of f + g
∗

to Snl .

A similar construction gives a homotopy on Snr from ḡ to the restriction of f + g
∗
.

These homotopies fix the wedge point, since it is the image of ∂X under c ◦ Φ and
Φ ◦ 2s1, and similarly for c ◦ Φ and Φ ◦ (2s1 − 1). Therefore f + g

∗
is homotopic to

f̄ ∨ ḡ relative to the wedge point, so f + g is homotopic to (f̄ ∨ ḡ) ◦ c rel en+1.
It remains to prove the claim. We must first define the quotient map c : Sn →

Sn ∨ Sn that identifies Sn ∨ Sn with Sn/({0} × Sn−1). For y = (y1, . . . , yn+1), let:

c(y) =

{
ψ(−yn+1, y2, . . . , yn)l y1 ≤ 0
ψ(yn+1, y2, . . . , yn)r y1 ≥ 0

Here for x = (y2, . . . , yn+1) ∈ Dn, ψ(x)l lies in Snl and ψ(x)r lies in Snr . These spheres
are wedged along en+1. Note that c takes the entire equator {0}×Sn−1 to the wedge
point, so it is continuous, and it is one-to-one off of the equator. Therefore c induces
a homeomorphism Sn/({0} × Sn−1)→ Sn ∨ Sn as desired.

Remark. It may seem more natural to define c(y) as ψ(y2, . . . , yn+1) (note that since
c crushes {0} × Sn+1 it may as well factor through the projection that forgets the
first entry). But up to multiplication by a positive scalar, this reshuffles the first n
entries of y by a cyclic permutation which is orientation-reversing for some n, so for
the claim to hold it is necessary to correct this.

Proof of claim. For s = (s1, . . . , sn) ∈ X − ∂X let z = (z1, . . . , zn+1) = c ◦Φ(s) ∈ Snl .
The main point of the proof is to show that z 6= −(Φ ◦ 2s1)(s). This being the case,
the straight-line homotopy in Rn+1 from z to (Φ ◦ 2s1)(s) yields a homotopy in Snl
after radial projection. Moreover, since each of these maps sends ∂X to en+1, the
resulting homotopy is relative to ∂X.

We begin by noting that there is a positive constant λ such that zi = λ(si − 1/2)
for each i ∈ {2, . . . , n}. For such i, the ith entry of (Φ ◦ 2s1)(s) is also a positive
multiple of si − 1/2, so if z = −(Φ ◦ 2s1)(s) then si = 1/2 for each such i and
s = (t, 1/2, . . . , 1/2) for some t ∈ [0, 1/2]. For such s, direct computation reveals:

(Φ ◦ 2s1)(s) =
(

4
√

2t(1− 2t)(4t− 1), 0, . . . , 0, 2(4t− 1)2 − 1
)

z1 = 8
√
t(1− t)(1− 2t)(8t− 8t2 − 1)

zn+1 = 2(8t2 − 8t+ 1)2 − 1
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Note that both z1 and the first entry of (Φ ◦ 2s1)(s) are 0 at t = 0 and 1/2, negative
for t > 0 near 0, and positive for t < 1/2 near 1/2. Solving for their other zeros,

we find that their signs disagree only for t in the interval
(

2−
√
2

4
, 1
4

)
. But the last

entry of Φ ◦ 2s1)(s) is negative on the interval
(

2−
√
2

8
, 2+

√
2

8

)
, and zn+1 is negative on(

2−
√

2+
√
2

4
,
2−
√

2−
√
2

4

)
. The intersection of these two intervals contains

(
2−
√
2

4
, 1
4

)
, so

z 6= −(Φ ◦ 2s1)(s) for any s ∈ X.
A similar argument shows that c◦Φ is homotopic to Φ◦ (2s1−1) on [1/2, 1]×In−1.

In particular, for s = [t, 1/2, . . . , 1/2] with 1/2 ≤ t ≤ 1 we have:

(Φ ◦ (2s1 − 1))(s) =
(

4
√

(2t− 1)(2− 2t)(4t− 3), 0, . . . , 0, 2(4t− 3)2 − 1
)

z1 = 8
√
t(1− t)(2t− 1)(8t2 − 8t+ 1)

zn+1 = 2(8t2 − 8t+ 1)2 − 1

Here z = (z1, 0, . . . , 0, zn+1) = (c ◦ Φ)(s). �


