TOPOLOGY 2, HOMEWORK 10 PROBLEM 1 SOLUTION

Problem: For a fixed space X and $x_{0} \in X$, we showed in class that a map $f:\left(I^{n}, \partial I^{n}\right) \rightarrow\left(X, x_{0}\right)$ induces a map $\bar{f}:\left(S^{n}, \mathbf{s}_{0}\right) \rightarrow\left(X, x_{0}\right)$, where $\mathbf{s}_{0}=(0, \ldots, 0,1)$, obtained by going right-to-left on the bottom line of the diagram below.

For two such maps f and g, show that the map $\overline{f+g}$ induced in this way is the same as $(\bar{f} \vee \bar{g}) \circ c$, where $c: S^{n} \rightarrow S^{n} /\left(\{0\} \times S^{n-1}\right)$ is the quotient map and $S^{n} /\left(\{0\} \times S^{n-1}\right)$ is homeomorphically identified with $S^{n} \vee S^{n}$.

Solution: Let us recall the definitions of maps $\phi: I^{n} \rightarrow \mathbb{D}^{n}$ and $\psi: \mathbb{D}^{n} \rightarrow S^{n}$ that induce the homeomorphisms of the bottom line above:

$$
\begin{array}{ll}
\phi(\mathbf{s})=2 \max _{i}\left\{\left|s_{i}-1 / 2\right|\right\} \frac{\mathbf{s}-\mathbf{1} / \mathbf{2}}{\|\mathbf{s}-\mathbf{1} / \mathbf{2}\|} & \mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in I^{n} \\
\psi(\mathbf{x})=\left(2 \sqrt{1-\|\mathbf{x}\|^{2}} \mathbf{x}, 2\|\mathbf{x}\|^{2}-1\right) & \mathbf{x} \in \mathbb{D}^{n}
\end{array}
$$

Above, $\mathbf{1 / 2}=(1 / 2, \ldots, 1 / 2) \in I^{n}$. Let $\Phi=\psi \circ \phi$. Note that Φ takes ∂I^{n} to $\mathbf{e}_{n+1}=(0, \ldots, 0,1) \in S^{n}$, which we will take as a base point.

We first observe that $\Phi\left(\{1 / 2\} \times I^{n-1}\right)=\{0\} \times S^{n-1}$, so since $f+g$ maps $\{1 / 2\} \times I^{n-1}$ to the basepoint x_{0} it induces a map from the further quotient $S^{n} /\left(\{0\} \times S^{n-1}\right)$ to X. For lack of a better term we will call this map $\overline{f+g}^{*}$. It satisfies $\overline{f+g}^{*} \circ c=\overline{f+g}$, where $c: S^{n} \rightarrow S^{n} /\left(\{0\} \times S^{n-1}\right)$ is the quotient map. We will show that $\overline{f+g}^{*}$ is homotopic to $\bar{f} \vee \bar{g}$ relative to $\{0\} \times S^{n-1}$, which is identified with the wedge point under any homeomorphism $S^{n} /\left(\{0\} \times S^{n-1}\right) \rightarrow S^{n} \vee S^{n}$, and hence conclude that $\overline{f+g}$ is homotopic to $(\bar{f} \vee \bar{g}) \circ c$, relative to \mathbf{e}_{n+1}.

Denote as S_{l}^{n} the copy of S^{n} in the wedge sum which is obtained from points $\mathrm{x} \in S^{n} /\left(\{0\} \times S^{n-1}\right)$ with $x_{1} \leq 0$, and let S_{r}^{n} be the other copy. We will show that the restriction of $\overline{f+g}^{*}$ to S_{l}^{n} is homotopic to \bar{f} by describing the latter as obtained from the former by a reparametrization homotopic (rel \mathbf{e}_{n+1}) to the identity map. A similar description of \bar{g} will establish the result. The key claim is:

Claim. Let $X=[0,1 / 2] \times I^{n-1}$. The restriction of $c \circ \Phi$ to X is homotopic to $\Phi \circ 2 s_{1}$ relative to ∂X, where " $2 s_{1}$ " refers to the map sending $\left(s_{1}, \ldots, s_{n}\right)$ to $\left(2 s_{1}, s_{2}, \ldots, s_{n}\right)$, and both maps above have target S_{l}^{n}. Similarly, the restriction of $c \circ \Phi$ to $[1 / 2,1] \times I^{n-1}$ is homotopic to $\Phi \circ\left(2 s_{1}-1\right)$ rel boundary, where" $2 s_{1}-1$ " is analogously defined and both of these maps target S_{r}^{n}.

Assuming the claim for the moment, we now prove the result. For $\mathbf{y}_{0}=c \circ \Phi(\mathbf{s}) \in$ $S_{l}^{n}, \overline{f+g}^{*}\left(\mathbf{y}_{0}\right)=(f+g)(\mathbf{s})=f\left(2 s_{1}, s_{2}, \ldots, s_{n}\right)$, where $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in[0,1 / 2] \times$ I^{n-1}. This is also $\bar{f}\left(\mathbf{y}_{1}\right)$, where $\mathbf{y}_{1}=\Phi \circ 2 s_{1}(\mathbf{s})$. So on $[0,1 / 2] \times I^{n-1}$ we have

$$
\overline{f+g}^{*} \circ(c \circ \Phi)=f \circ 2 s_{1}=\bar{f} \circ\left(\Phi \circ 2 s_{1}\right)
$$

Each of $c \circ \Phi$ and $\Phi \circ 2 s_{1}$ maps the entire boundary of $X=[0,1 / 2] \times I^{n-1}$ to \mathbf{e}_{n+1} and is one-one on the interior, so it induces a homeomorphism $X / \partial X \rightarrow S_{l}^{n}$. Denote these maps by $\overline{c \circ \Phi}$ and $\overline{\Phi \circ 2 s_{1}}$, respectively. Then

$$
\bar{f}=\overline{f+g}^{*} \circ(\overline{c \circ \Phi}) \circ\left(\overline{\Phi \circ 2 s_{1}}\right)^{-1} .
$$

A homotopy $H: X \times I \rightarrow S_{l}^{n}$ from $c \circ \Phi$ to $\Phi \circ 2 s_{1}$ relative to ∂X induces a homotopy $\bar{H}:(X / \partial X) \times I \rightarrow S_{l}^{n}$ between induced maps, so composing $\overline{f+g}^{*}$ with $\bar{H}\left(\left(\overline{\Phi \circ 2 s_{1}}\right)^{-1}(\mathbf{y}), t\right)$ gives one from \bar{f} to the restriction of $\overline{f+g}^{*}$ to S_{l}^{n}.

A similar construction gives a homotopy on S_{r}^{n} from \bar{g} to the restriction of $\overline{f+g}^{*}$. These homotopies fix the wedge point, since it is the image of ∂X under $c \circ \Phi$ and $\Phi \circ 2 s_{1}$, and similarly for $c \circ \Phi$ and $\Phi \circ\left(2 s_{1}-1\right)$. Therefore $\overline{f+g}^{*}$ is homotopic to $\bar{f} \vee \bar{g}$ relative to the wedge point, so $\overline{f+g}$ is homotopic to $(\bar{f} \vee \bar{g}) \circ c$ rel \mathbf{e}_{n+1}.

It remains to prove the claim. We must first define the quotient map $c: S^{n} \rightarrow$ $S^{n} \vee S^{n}$ that identifies $S^{n} \vee S^{n}$ with $S^{n} /\left(\{0\} \times S^{n-1}\right)$. For $\mathbf{y}=\left(y_{1}, \ldots, y_{n+1}\right)$, let:

$$
c(\mathbf{y})= \begin{cases}\psi\left(-y_{n+1}, y_{2}, \ldots, y_{n}\right)_{l} & y_{1} \leq 0 \\ \psi\left(y_{n+1}, y_{2}, \ldots, y_{n}\right)_{r} & y_{1} \geq 0\end{cases}
$$

Here for $\mathbf{x}=\left(y_{2}, \ldots, y_{n+1}\right) \in \mathbb{D}^{n}, \psi(\mathbf{x})_{l}$ lies in S_{l}^{n} and $\psi(\mathbf{x})_{r}$ lies in S_{r}^{n}. These spheres are wedged along \mathbf{e}_{n+1}. Note that c takes the entire equator $\{0\} \times S^{n-1}$ to the wedge point, so it is continuous, and it is one-to-one off of the equator. Therefore c induces a homeomorphism $S^{n} /\left(\{0\} \times S^{n-1}\right) \rightarrow S^{n} \vee S^{n}$ as desired.
Remark. It may seem more natural to define $c(\mathbf{y})$ as $\psi\left(y_{2}, \ldots, y_{n+1}\right)$ (note that since c crushes $\{0\} \times S^{n+1}$ it may as well factor through the projection that forgets the first entry). But up to multiplication by a positive scalar, this reshuffles the first n entries of \mathbf{y} by a cyclic permutation which is orientation-reversing for some n, so for the claim to hold it is necessary to correct this.

Proof of claim. For $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in X-\partial X$ let $\mathbf{z}=\left(z_{1}, \ldots, z_{n+1}\right)=c \circ \Phi(\mathbf{s}) \in S_{l}^{n}$. The main point of the proof is to show that $\mathbf{z} \neq-\left(\Phi \circ 2 s_{1}\right)(\mathbf{s})$. This being the case, the straight-line homotopy in \mathbb{R}^{n+1} from \mathbf{z} to $\left(\Phi \circ 2 s_{1}\right)(\mathbf{s})$ yields a homotopy in S_{l}^{n} after radial projection. Moreover, since each of these maps sends ∂X to \mathbf{e}_{n+1}, the resulting homotopy is relative to ∂X.

We begin by noting that there is a positive constant λ such that $z_{i}=\lambda\left(s_{i}-1 / 2\right)$ for each $i \in\{2, \ldots, n\}$. For such i, the i th entry of $\left(\Phi \circ 2 s_{1}\right)(\mathbf{s})$ is also a positive multiple of $s_{i}-1 / 2$, so if $\mathbf{z}=-\left(\Phi \circ 2 s_{1}\right)(\mathbf{s})$ then $s_{i}=1 / 2$ for each such i and $\mathbf{s}=(t, 1 / 2, \ldots, 1 / 2)$ for some $t \in[0,1 / 2]$. For such \mathbf{s}, direct computation reveals:

$$
\begin{aligned}
\left(\Phi \circ 2 s_{1}\right)(\mathbf{s}) & =\left(4 \sqrt{2 t(1-2 t)}(4 t-1), 0, \ldots, 0,2(4 t-1)^{2}-1\right) \\
z_{1} & =8 \sqrt{t(1-t)}(1-2 t)\left(8 t-8 t^{2}-1\right) \\
z_{n+1} & =2\left(8 t^{2}-8 t+1\right)^{2}-1
\end{aligned}
$$

Note that both z_{1} and the first entry of $\left(\Phi \circ 2 s_{1}\right)(\mathbf{s})$ are 0 at $t=0$ and $1 / 2$, negative for $t>0$ near 0 , and positive for $t<1 / 2$ near $1 / 2$. Solving for their other zeros, we find that their signs disagree only for t in the interval $\left(\frac{2-\sqrt{2}}{4}, \frac{1}{4}\right)$. But the last entry of $\left.\Phi \circ 2 s_{1}\right)(\mathbf{s})$ is negative on the interval $\left(\frac{2-\sqrt{2}}{8}, \frac{2+\sqrt{2}}{8}\right)$, and z_{n+1} is negative on $\left(\frac{2-\sqrt{2+\sqrt{2}}}{4}, \frac{2-\sqrt{2-\sqrt{2}}}{4}\right)$. The intersection of these two intervals contains $\left(\frac{2-\sqrt{2}}{4}, \frac{1}{4}\right)$, so $\mathbf{z} \neq-\left(\Phi \circ 2 s_{1}\right)(\mathbf{s})$ for any $\mathbf{s} \in X$.

A similar argument shows that $c \circ \Phi$ is homotopic to $\Phi \circ\left(2 s_{1}-1\right)$ on $[1 / 2,1] \times I^{n-1}$. In particular, for $\mathbf{s}=[t, 1 / 2, \ldots, 1 / 2]$ with $1 / 2 \leq t \leq 1$ we have:

$$
\begin{aligned}
\left(\Phi \circ\left(2 s_{1}-1\right)\right)(\mathbf{s}) & =\left(4 \sqrt{(2 t-1)(2-2 t)}(4 t-3), 0, \ldots, 0,2(4 t-3)^{2}-1\right) \\
z_{1} & =8 \sqrt{t(1-t)}(2 t-1)\left(8 t^{2}-8 t+1\right) \\
z_{n+1} & =2\left(8 t^{2}-8 t+1\right)^{2}-1
\end{aligned}
$$

Here $\mathbf{z}=\left(z_{1}, 0, \ldots, 0, z_{n+1}\right)=(c \circ \Phi)(\mathbf{s})$.

