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1t follows from this equation that from a composition of two
velocities which are less than ¢, there always results a velocity
less than ¢. For if we set v =¢c - x, w =¢ - A, xand A
being positive and less than ¢, then

- 2t — &k - A
V=620—x-—k+x)»/c <e

It follows, further, that the velocity of light ¢ cannot be
altered by composition with a velocity less than that of light.
For this case we obtain

c+ w
V—1+w/c=‘c‘

‘We might also have obtained the formula for V, for the case
when » and w have the same direction, by compounding
two transformations in accordance with § 3. If in addition
to the systems K and k figuring in § 3 we introduce still
another system of co-ordinates X' moving parallel to %, its
initial point moving on the axis of X with the velocity w, we
obtain equations between the quantities z, ¥, 2, ¢t and the
corresponding quantities of k', which differ from the equations
found in § 3 only in that the place of “v’ is taken by the
quantity
vEw
1 + vw/c*’

from which we see that such parallel transformations—neces-
sarily—form a group.

We have now deduced the requisite laws of the theory of
kinematics corresponding to our two principles, and we pro-
ceed to show their application to electrodynamics.

II. ELECTRODYNAMICAL PART

§ 6. Transformation of the Maxwell-Hertz Equations for
Empty Space. On the Nature of the Electromotive
Forces Occurring in a Magnetic Field During Motion

Let the Maxwell-Hertz equations for empty space hold
good for the stationary system K, so that we have
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where (X, Y, Z) denotes the vector of the electric force, and
(i, M, N) that of the magnetic force.

If we apply to these equations the transformation de-
veloped in § 3, by referring the electromagnetic processes to
the system of co-ordinates there introduced, moving with the
velocity v, we obtain the equations

P na- ) - el + 12))
Fale(r- ) - % aple(¥ -3y

1 2o ) 3{o00r+ 1)) %

B = 1/ - v*[c?).

Now the principle of relativity requires that if the
Maxwell-Hertz equations for empty space hold good in
system K, they also hold good in system % ; that is to say that
the vectors of the electric and the magnetic force—(X', Y', Z")
and (L', M', N")—of the moving system %k, which are defined
by their ponderomotive effects on electric or magnetic masses
respectively, satisfy the following equations :—
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Evidently the two systems of equations found for system
k must express exactly the same thing, since both systems of
equations are equivalent to the Maxwell-Hertz equations for
system K. Since, further, the equations of the two systems
agree, with the exception of the symbols for the vectors, it
follows that the functions occurring in the systems of equa-
tions at corresponding places must agree, with the exception
of a factor y~(v), which is common for all functions of the
one system of equations, and is independent of £ », {and =
but depends upon v. Thus we have the relations

X = ¥k, L = yo)L,
Y = y@B8(Y - ’N), M = y()8(M + 22),

z = ywa(z + M), ¥ = yws(xN - %¥).

If we now form the reciprocal of this system of equations,
firstly by solving the equations just obtained, and secondly
by applying the equations to the inverse transformation (from
k to K), which is characterized by the velocity - v, it follows,
when we consider that the two systems of equations thus ob-
tained must be identical, that ¥ (@)¥( - v) = 1. Further,
from reasons of symmetry * ¥(v) = ¥( - v), and therefore

Y) =1,
and our equations assume the form

* I, for example, X =Y =2 =L =M =0, and N==0, then from
reasons of symmetry It is clear that when » changes sign without changing
its numerical value, Y’ must also chenge sign without changing its numerical
value.



54 ELECTRODYNAMICS
X' =X, L'=1,

v = 8(Y - %), w = g(m + %z),

z - 8(z +"M), N = g(N - %%).

As to the interpretation of these equations we make the
following remarks: Let a point charge of electricity have
the magnitude “one” when measured in the stationary
system K, i.e. let it when at rest in the stationary system
exert a force of one dyne upon an equal quantity of electricity
at a distance of one cm. By the principle of relativity this
electric charge is also of the magnitude “one” when
measgured in the moving system. If this quantity of elec-
tricity is at rest relatively to the stationary system, then by
definition the vector (X, Y, Z) is equal to the force acting
upon it. If the quantity of electricity is at rest relatively to
the moving system (at least at the relevant instant), then the
force acting upon it, measured in the moving system, is equal
to the vector (X', Y, Z). Consequently the first three
equations above allow themselves to be clothed in words in
the two following ways :—

1. If a unit electric point charge is in motion in an
electromagnetic field, there acts upon it, in addition to the
electric force, an ‘‘ electromotive force ” which, if we neglect
the terms multiplied by the second and higher powers of v/c,
is equal tothe vector-product of the velocity of the charge
and the magnetic force, divided by the velocity of light.
(Old manner of expression.)

2. If a unit electric point charge is in motion in an
electromagnetic field, the force acting upon it is equal to the
electric force which is present at the locality of the charge,
and which we ascertain by transformation of the field to
a system of co-ordinates at rest relatively to the electrical
charge. (New manner of expression.)

The analogy holds with “magnetomotive forces.”” We
see that electromotive force plays in the developed theory
merely the part of an auxiliary concept, which owes its intro-
duction to the circumstance that electric and magnetic forces



A. EINSTEIN 55

do not exist independently of the state of motion of the
system of co-ordinates.

Furthermore it is clear that the asymmetry mentioned in
the introduction as arising when we consider the currents
produced by the relative motion of a magnet and a conductor,
now disappears. Moreover, questions as to the ‘““seat” of
electrodynamic electromotive forces (unipolar machines) now
have no point.

§ 7. Theory of Doppler’s Principle and of Aberration

In the system K, very far from the origin of co-ordinates,
let there be a source of electrodynamic waves, which in a
part of space containing the origin of co-ordinates may be
represented to a sufficient degree of approximation by the
equations

X =X,sin®, L = L,sin P,
Y=Y,sin ®, M= M, sin &,
Z=2,8in®, N =N,sin®,

It

where

b= w{t - %(lz + my + nz)}.

Here (X Y, Z;) and (L, M, N,) are the vectors defining
the amplitude of the wave-train, and [, m, n the direction-
cosines of the wave-normals. We wish to know the consti-
tution of these waves, when they are examined by an
observer at rest in the moving system %.

Applying the equations of transformation found in § 6 for
electric and magnetic forces, and those found in § 3 for the
co-ordinates and the time, we obtain directly

X' = X, sin ¥, L' = Lj,sin @',
Y = B(Y, - vNy/c) sin &', M' = B(M, + vZ,/c) sin @,
Z' = B(Z, + vMy/c) sin @', N’ = B(N, - vY,/c) sin &,

® = o{r - %(z';: + miy + g}
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where
o = Bl - lvfd),
oo Lo
1 - e

, m
™= BA < Wjey
, n
" =BA - Tvjoy

From the equation for ' it follows that if an observer is
moving with velocity v relatively to an infinitely distant
source of light of frequency v, in such a way that the connect-
ing line “source—observer” makes the angle ¢ with the
velocity of the observer referred to a system of co-ordinates
which isat rest relatively to the source of light, the frequency
v of the light perceived by the observer is given by the
equation

1 - cos ¢.v/c

YN
This is Doppler's principle for any velocities whatever.
When ¢ = 0 the equation assumes the perspicuous form

'y 1 - vfc
VEWI e

We see that, in contrast with the customary view, when
v=-¢v=0wm,

If we call the angle between the wave-normal (direction
of the ray) in the moving system and the connecting line
‘“ gource—observer "’ ¢, the equation for I’ agsumes the form

cos ¢ — vfe
1 - cos ¢.v/c

This equation expresses the law of aberration in its most
general form. If ¢ = 4 m, the equation becomes simply

cos ¢’ =

cos ¢ = - v/c.

We still have to find the amplitude of the waves, as it
appears in the moving system. If we call the amplitude of
the electric or magnetic force A or A’ respectively, accordingly
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as it is measured in the stationary system or in the moving
system, we obtain

A — Aol — cos ¢ . v/c)?

1 - v¥/¢?
which equation, if ¢ = 0, simplifies into
) 1 - v/c
2 2_ I
A% =A 1 + v/c

It follows from these results that to an observer approach-
ing a source of light with the velocity ¢, this source of light
must appear of infinite intensity.

§ 8. Transformation of the Energy of Light Rays. Theory
of the Pressure of Radiation Exerted on Perfect
Reflectors

Since A?%/8m equals the energy of light per unit of volume,
we have to regard A’?/8w, by the principle of relativity, as the
energy of light in the moving system. Thus A”/A? would
be the ratio of the ““ measured in motion ” to the “ measured
at rest” energy of a given light complex, if the volume
of a light complex were the same, whether measured in
K or in k& But this is not the case. If I, m, n are the
direction-cosines of the wave-normals of the light in the
stationary system, no energy passes through the surface
elements of a spherical surface moving with the velocity of
light :—

( - lety? + (y — med)® + (z — nct)? = R

We may therefore say that this surface permanently encloses
the same light complex. We inquire as to the quantity of
energy enclosed by this surface, viewed in system k, that
is, as to the energy of the light complex relatively to the
system %.

The spherical surface—viewed in the moving system—is
an ellipsoidal surface, the equation for which, at the time
=018

(BE - IBEv[c)* + (9 - mBEv[c)} + (¢ - nBEv/c)* = R
If S is the volume of the sphere, and S’ that of this ellipsoid,
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then by a simple calculation
8 J1 -9
S 1 -cosg.vfc
Thus, if we call the light energy enclosed by this surface E

when it is measured in the stationary system, and E’ when
measured in the moving system, we obtain

E _A? 1 -cos¢.v/c
E A JA -¥eh’

and this formula, when ¢ = 0, simplifies into

B 1 - v
E~\/1+v/c'

It is remarkable that the energy and the frequency of a
light complex vary with the state of motion of the observer
in accordance with the same law.

Now let the co-ordinate plane £ = 0 be a perfectly reflect-
ing surface, at which the plane waves considered in § 7 are
reflected. We seek for the pressure of light exerted on the
reflecting surface, and for the direction, frequency, and in-
tensity of the light after reflexion.

Let the incidental light be defined by the quantities A,
cos ¢, v (referred to system K). Viewed from k the corre-
sponding quantities are

A = AL - cos ¢.v/c
I A T

. _cos¢ - vfc
cos(I’_l—cosdxv/c’
1 - cosd.vfc

»
Vo=

v (1= et

For the reflected light, referring the process to system %, we
obtain

AII — A-l
cos ¢’ = - cos ¢
V” _ vl

Finally, by transforming back to the stationary system K,
we obtain for the reflected light
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1 + cos & . v/c 1 - 2cos ¢.v/c + v/

A" = A" A

Ja - vty Ry '
cos & = 208 " + vl _ _(A+ v?/c?) cos ¢ — 2v/c
1 + cos ¢”.vfc 1 - 2cos ¢.vfc + v¥c
o ,,1 +cosdvfc 1 -2cos¢.v/c + v’/c2
voEroJa s oy ! 1 - v?¥/c?

The energy (measured in the stationary system) which is
incident upon unit area of the mirror in unit time is evidently
A%(c cos ¢ - v)/8m.  The energy leaving the unit of surface
of the mirror in the unit of time is A"%(~ ¢ cos ¢ + v)/8.
The difference of these two expressions is, by the principle of
energy, the work done by the pressure of light in the unit of
time. If we set down this work as equal to the product Po,
where P is the pressure of light, we obtain

_ o A?(cos ¢ — vfc)
P=2 & 1w
In agreement with experiment and with other theories, we
obtain to a first approximation

A
P=2. gr;COSz ¢.

All problems in the optics of moving bodies can be solved
by the method here employed. What 1s essential is, that the
electric and magnetic force of the light which is influenced
by a moving body, be transformed into a system of co-ordin-
ates at rest relatively to the body. By this meansall problems
in the optics of moving bodies will be reduced to a series of
problems in the optics of stationary bodies.

§ 9. Transformation of the Maxwell-Hertz Equations when

Convection-Currents are Taken into Account
We start from the equations

LpX |, )M LY 37
ot QY oz c ot 2y
TR .
1Y 4 dz ' ¢ dx 2’
17, ) M 3L 1N _aX Y
dx dy’ ¢ dy &’
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where
X Y  Z

=b—z+~b—g+&-

denotes 47 times the density of electricity, and (uwz, uy, %z)
the velocity-vector of the charge. If we imagine the electric
charges to be invariably coupled to small rigid bodies (ions,
electrons), these equations are the electromagnetic basis of
the Lorentzian electrodynamics and optics of moving bodies.

Let these equations be valid in the system K, and trans-
form them, with the assistance of the equations of transform-
ation given in §§ 3 and 6, to the system k. 'We then obtain

the equations
I{DX' _D_I‘EI?E*LY_D_Z_'

e\ o7 6”}”"17 ¢cdr D

mzw,_y_@xm 2 aX
clor TP TR TRE e T E T
10 ) M AL 1N _ax Y
c\or ¢ E M’ ¢ dr dE’
where
= u/z -
W= 1o ugv/c
- W
B(l - ugvfc?)
- %
“ B = ugvley
and
, X' Y 37

P
BA - uzv/cHp.

Since—as follows from the theorem of addition of velocities
(§ 5)—the vector (ug, u,, u¢) is nothing else than the velocity
of the electric charge, measured in the system &, we have the
proof that, on the basis of our kinematical principles, the
- electrodynamic foundation of Liorentz’s theory of the electro-
dynamics of moving bodies is in agreement with the prin-
ciple of relativity.

In addition I may briefly remark that the following import-
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ant law may easily be deduced from the developed equations:
If an electrically charged body is in motion anywhere in
space without altering its charge when regarded from a
system of co-ordinates moving with the body, its charge also
remains—when regarded from the *‘ stationary ”’ system K—
constant.

§ 10. Dynamics of the Slowly Accelerated Electron

Let there be in motion in an electromagnetic field an
electrically charged particle (in the sequel called an ‘ elec-
tron "), for the law of motion of which we assume as
follows :—

If the electron is at rest at a given epoch, the motion of
the electron ensues in the next instant of time according to

the equations
d*z

Mmas = eX
d2

md_t‘? = €Y
2

mgtf =eZ

where z, y, 2 denote the co-ordinates of the electron, and m
the mass of the electron, as long as its motion is slow.

Now, secondly, let the velocity of the electron at a given
epoch be v. We seek the law of motion of the electron in the
immediately ensuing instants of time.

Without affecting the general character of our consider-
ations, we may and will assume that the electron, at the
moment when we give it our attention, is at the origin of
the co-ordinates, and moves with the velocity v along the
axis of X of the system K. It is then clear that at the given
moment (¢ = 0) the electron is at rest relatively to a system
of co-ordinates which is in parallel motion with velocity v
along the axis of X.

From the above assumption, in combination with the
principle of relativity, it i8 clear that in the immediately en-
suing time (for small values of ¢) the electron, viewed from
the system %, moves in accordance with the equations
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2

mg—i = eX/,
2

mg?z = GY‘)
2

mg;‘g = EZ,,

in which the symbols £, 9, ¢, 7, X', Y', Z’ refer to the system
k. If, further, we decide that when { = 2z = y = z = 0 then
T=§=19={=0, the transformation equations of §§ 3 and
6 hold good, so that we have

E‘_‘ 6(2 - vt),’fl=?/,§'=2,'f=/3(t = vx/c“’)
X =X,Y = B(Y - vNfe), Z' = B(Z + vM]/c).

With the help of these equations we transform the above
equations of motion from system % to system K, and obtain

dz

€
ar = m B
dy _ e v
d_ﬁ_m(Y-cN) L @A)
d2z € )
d?=m(z+zM)

Taking the ordinary point of view we now inquire as
to the ‘“longitudinal” and the *‘ transverse” mass of the
moving electron. We write the equations (A) in the form

2
mﬁag?? - X = X,

m/az‘-gt%{ - eB(Y - IN) = v,

2
mﬁ2gt—i - es(z + 'M) = ez,

and remark firstly that eX’, €Y', eZ’ are the components of
the ponderomotive force acting upon the electron, and are so
indeed as viewed in a system moving at the moment with the
electron, with the same velocity as the electron. (This force
might be measured, for example, by a spring balance at rest
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in the last-mentioned system.) Now if we call this force
simply ‘‘ the force acting upon the electron,” * and maintain
the equation—mass x acceleration = force—and if we also
decide that the accelerations are to be measured in the
stationary system K, we derive from the above equations

. . m
Longitudinal mass = ——==——.
8 (V1 -0*c?)
m
Transverse mass = I———-—TJ’—/?'

With a different definition of force and acceleration we
should naturally obtain other values for the masses. This
shows us that in comparing different theories of the motion
of the electron we must proceed very cautiously.

Weremark that these results as to the mass are also valid
for ponderable material points, because a ponderable material
point can be made into an electron (in our sense of the word)
by the addition of an electric charge, no matter how small.

We will now determine the kinetic energy of the electron.
If an electron moves from rest at the origin of co-ordinates of
the system K along the axis of X under the action of an
electrostatic force X, it is clear that the energy withdrawn

from the electrostatic field has the value f eXdz. Asthe elec-

tron is to be slowly accelerated, and consequently may not give
off any energy in the form of radiation, the energy withdrawn
from the electrostatic field must be put down as equal to the
energy of motion W of the electron. Bearing in mind that
during the whole process of motion which we are considering,
the first of the equations (A) applies, we therefore obtain

W f eXdz = m f :std'v

i

1

mc‘zj ——— e 1 .

W1 - v¥c? }

Thus, when v = ¢, W becomes infinite. Velocities
* The definition of force here given is not advantageous, as was first shown

by M. Planck. It is more to the point to define force in such a way that the
laws of momentum and energy assume the simplest form.
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greater than that of light have—as in our previous results—
no possibility of existence.

This expression for the kinetic energy must also, by
virtue of the argument stated above, apply to ponderable
masses as well.,

We will now enumerate the properties of the motion of
the electron which result from the system of equations (A),
and are accessible to experiment.

1. From the second equation of the system (A) it follows
that an electric force Y and a magnetic force N have an
equally strong deflective action on an electron moving with
the velocity v, when Y = Nv/c. Thus we see that it is pos-
sible by our theory to determine the velocity of the electron
from the ratio of the magnetic power of deflexion A, to the
electric power of deflexion A., for any velocity, by apply-
ing the law

Am _ v
A, ¢

This relationship may be tested experimentally, since the
velocity of the electron can be directly measured, e.g. by
means of rapidly oscillating electric and magnetic fields.

2. From the deduction for the kinetic energy of the
electron it follows that between the potential difference, P,
traversed and the acquired velocity v of the electron there
must be the relationship

1
P-= de =7 2{- e = 1
T= e 1 - v/
3. We calculate the radius of curvature of the path of
the electron when a magnetic force N is present (as the only

deflective force), acting perpendicularly to the velocity of the
electron. From the second of the equations (A) we obtain

d%;_v"_ev\/ v?
A TR moeW! @

- met ve L1
T e A WS N

These three relationships are a complete expression for

or
R
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the laws according to which, by the theory here advanced,
the electron must move.

In conclusion I wish to say that in working at the
problem here dealt with I have had the loyal assistance of my
friend and colleague M. Besso, and that I am indebted to
him for several valuable suggestions.



