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I. On the Moving Force of Heat, and the Laws regarding the

Nature of Heat itself which are deducible therefrom. By
R. Clausius*.

THE steam-engine having furnished us with a means of con-

verting heat into a motive power, and our thoughts being
thereby led to regard a certain quantity of work as an equivalent
for the amount of heat expended in its production, the idea of

establishing theoretically some fixed relation between a quantity
of heat and the quantity of work which it can possibly produce,
from which relation conclusions 4'egarding the nature of heat
itself might be deduced, naturally presents itself. Already, in-

deed, have many instructive experiments been made with this

view ; I believe, however, that they have not exhausted the sub-

ject, but that, on the contrary, it merits the continued attention

of physicists ; partly because weighty objections lie in the way
of the conclusions already drawn, and partly because other con-

clusions, which might render eificient aid towards establishing
and completing the theory of heat, remain either entirely unno-

ticed, or have not as yet found sufficiently distinct expression.
The most important investigation in connexion with this sub-

ject is that of S. Camotf. Later still, the ideas of this author
have been represented analytically in a very able manner by
Clapeyronf. Carnot proves that whenever work is produced by
heat, and a permanent alteration of the body in action does not
at the same time take place, a certain quantity of heat passes

* Translated from PoggendorfF's Annalen, vol. Ixxix. p. 368.

t Reflexions sur la puissance motrice dufeu, et sur les Machines propres
a developer cette puissance, par S. Carnot. Paris, 1824.

X Journ. deVEcole Polytechniqy.e, vol. xix. (1834); and Taylor's Scien-
tific Memoirs, Part III. p. 347.
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2 M. R. Clausius on the Moving Force of Heat,

from a warm body to a cold one ; for example, the vapoui- which
is generated in tne boiler of a steam-engine, and passes thence
.to the condenser where it is precipitated, carries heat from the
fireplace to the condenser. This transmission Carnot regards as
the change of heat corresponding to the work produced. He
says expressly, that no heat is lost in the process, that the quan-
tity remains unchanged ; and he adds,

" This is a fact which
has never been disputed ; it is first assumed without investigation,
and then confirmed by various calorimetric experiments. To
deny it, would be to reject the entire theory of heat, of which it

forms the principal foundation."
I am not, however, sure that the assertion, that in the pro-

duction of work a loss of heat never occiu's, is sufficiently esta-
blished by experiment. Perhaps the contrary might be asserted
with greater justice ; that although no such loss may have been
directly proved, still other facts render it exceedingly probable
that a loss occurs. If we assume that heat, like matter, cannot
be lessened in quantity, we must also assume that it cannot be
increased ; but it is almost impossible to explain the ascension
of temperature brought about by friction otherwise than by
assiuning an actual increase of heat. The careful experiments
of Joule, who developed heat in various ways by the application
of mechanical force, establish almost to a certainty, not only the

possibiUty of increasing the quantity of heat, but also the fact
that the newly-produced heat is proportional to the work ex-

pended in its production. It may be remarked further, that

many facts have lately transpired which tend to overthrow the

hypothesis that heat is itself a body, and to prove that it con-
sists in a motion of the ultimate particles of bodies. If this be
so, the general principles of mechanics may be applied to heat ;

this motion may be converted into work, the loss of vis viva in
each particular case being proportional to the quantity of work
produced.

These circumstances, of which Camot was also well aware, and
the importance of which he expressly admitted, pressingly de-
mand a comparison between heat and work, to be imdertaken
with reference to the divergent assumption that the production
of work is not only due to an alteration in the distribution of
heat, but to an actual consumption thereof; and inversely, that

by the consumption of work heat may be produced.
In a recent memoir by Holtzmann*, it seemed at first as if the

author intended to regard the subject from this latter point of
view. He says (p. 7),

" the effect of the heat which has been
communicated to the gas is either an increase of temperature

* Ueber die Wdrme und Elasticit'dt der Gase und Diimpfe, von C. Holtz-
mann. Manheim, 1846. Also Taylor's Scientific Memoirs, Part XIV.p. 189.
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combined with an increase of elasticity, or a mechanical work_,
or a combination of both ; a mechanical work being the equiva-
lent for an increase of temperature. Heat can only be measured
by its effects; and of the two effects mentioned, mechanical
work is peculiarly applicable here, and shall therefore be chosen
as a standard in the following investigation. I name a unit of heat,
the quantity which, on being communicated to any gas, is able
to produce the quantity of work a; or to speak more definitely,
which is able to raise a kilogrammes to a height of one metre.'^

Afterwards, at page 12, he determines the numerical value of the
constant a, according to the method of Meyer*, and obtains a
number which completely agrees with that obtained in a manner
totally different by Joule. In carrying out the theory, however,
that is, in developing the equations by means of which his con-
clusions are arrived at, he proceeds in a manner similar to Cla-

peyron, so that the assumption that the quantity of heat is con-
stant is still tacitly retained.

The difference between both ways of regarding the subject has
been laid hold of with much greater clearness by W. Thomson,
who has applied the recent discoveries of Regnault on the tension
and latent heat of steam to the completing of the memoir of

Carnotf. Thomson mentions distinctly the obstacles which lie

in the way of an unconditional acceptance of Carnofs theory,
referring particularly to the investigations of Joule, and dwelling
on one principal objection to which the theory is liable. If it be
even granted that the production of work, where the body in
action remains in the same state after the production as before,
is in all cases accompanied by a transmission of heat from a warm
body to a cold one, it does not follow that by every such trans-
mission work is produced, for the heat may be carried over by
simple conduction ; and in all such cases, if the transmission
alone were the true equivalent of the work performed, an abso-
lute loss of mechanical force must take place in nature, which is

hardly conceivable. Notwithstanding this, however, he arrives
at the conclusion, that in the present state of science the prin-
ciple assumed by Carnot is the most probable foundation for an
investigation on the moving force of heat. He says,

" If we
forsake this principle, we stumble immediately on innumerable
other difficulties, which, without further experimental investiga-
tions, and an entirely new erection of the theory of heat, are

altogether insurmountable.^'
I believe, nevertheless, that we ought not to suffer ourselves

to be daunted by these difficulties ; but that, on the contrary, we
must look steadfastly into this theory which calls heat a motion,
as in this way alone can we arrive at the means of establishing

* Ann. der Chim. und Pharm., vol. xlii. p. 239.
t Transactions of the Royal Society of Edinburgh, vol. xvi.
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it or refuting it. Besides this, I do not imagine that the diffi-

culties arc so great as Thomson considers them to be ; for although
a certain alteration in our way of regarding the subject is neces-

saiy, still I find that this is in no case contradicted by proved
facts. It is not even requisite to cast the theory of Carnot over-

board ; a thing difficult to be resolved upon, inasmuch as expe-
rience to a certain extent has shown a surprising coincidence

therewith. On a nearer view of the case, we find that the new

theory is opposed, not to the real fundamental principle of Carnot,
but to the addition "no heat is lost;" for it is quite possible
that in the production of work both may take place at the same
time ; a certain portion of heat may be consumed, and a further

portion transmitted from a warm body to a cold one ; and both

portions may stand in a certain definite relation to the quantity
of work produced. This will be made plainer as we proceed ;

and it will be moreover shown, that the inferences to be drawn
from both assumptions may not only exist together, but that

they mutually support each other.

1. Deductions from the principle of the equivalence of heat and
work.

We shall forbear entering at present on the nature of the
motion which may be supposed to exist within a body, and shall

assume generally that a motion of the particles does exist, and
that heat is the measure of their vis viva. Or yet more general,
we shall merely lay down one maxim which is founded on the
above assumption :

—
Li all cases where work is produced by heat, a quantity of heat

proportional to the work done is eapended; and inversely, by the

expenditure of a like quantity of work, the same amount of heat

may be produced.
Before passing on to the mathematical treatment of this maxim,

a few of its more immediate consequences may be noticed, which
have an influence on our entire notions as to heat, and which are

capable of being understood, without entering upon the more
definite proofs by calculation which are introduced further on.
We often hear of the total heat of bodies, and of gases and

vapours in particular, this tei-m being meant to express the sum
of the sensible and latent heat. It is assumed that this depends
solely upon the present condition of the body under considera-

tion; so that when all other physical properties thereof, its

temperature, density, &c. are known, the total quantity of heat
which the body contains may also be accurately determined.

According to the above maxim, however, this assumption cannot
be admitted. If a body in a certain state, for instance a quan-
tity of gas at the temperature t^ and volume Vq, be subjected to

various alterations as regards temperature and volume, and
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brought at the conclusion into its original state, the sum of its

sensible and latent heats must, according to the above assump-
tion, be the same as before ; hence, if during any portion of the

process heat be communicated from without, the quantity thus
received must be given off again during some other portion of

the process. With every alteration of volume, however, a certain

quantity of work is either produced or expended by the gas ; for

by its expansion an outward pressure is forced back, and on the

other hand, compression can only be effected by the advance of

an outward pressure. If, therefore, alteration of volume be

among the changes which the gas has undergone, work must
be produced and expended. It is not, however, necessary that at

the conclusion, when the original condition of the gas is again
established, the entire amount of work produced should be exactly

equal to the amount expended, the one thus balancing the other ;

an excess of one or the other will be present if the compres-
sion has taken place at a lower or a higher temperature than the

expansion, as shall be proved more strictly further on. This
excess of produced or expended work must, according to the

maxim, correspond to a proportionate excess of expended or pro-
duced heat, and hence the amount of heat refunded by the gas
cannot be the same as that which it has received.

There is still another way of exhibiting this divergence of our
maxim from the common assumption as to the total heat of bodies.

When a gas at /q and Vq is to be brought to the higher tempera-
ture ^j and the greater volume Vj, the quantity of heat necessary to

effect this would, according to the usual hypothesis, be quite in-

dependent of the manner in which it is communicated. By the

above maxim, however, this quantity would be different according
as the gas is first heated at the constant volume v^ and then per-
mitted to expand at the constant temperature t-^,

or first expanded
at the temperature ^q and afterwards heated to t^ ; the quantity
of heat varying in all cases with the manner in which the altera-

tions succeed each other.

In like manner, when a quantity of water at the temperature
tQ is to be converted into vapour of the temperature t^ and the

volume ^1, it will make a difference in the amount of heat neces-

sary if the water be heated first to t^ and then suffered to evapo-
rate, or if it be suffered to evaporate by t^ and the vapour heated
afterwards to t^ ; or finally, if the evaporation take place at any
intermediate temperature.
From this and from the immediate consideration of the maxim,

we can form a notion as to the light in which latent heat must
be regarded. Referring again to the last example, we distin-

guish in the quantity of heat imparted to the water during the

change the sensible heat and the latent heat. Only the former
of these, however, must we regard as present in the produced



6 M. R. Clausius on the Moving Force of Heat,

steaui ; the second is, not only as its name impoi-ts, hidden from
our perceptions, but has actually no existence -, during the altera-
tion it has been converted into work.
We must introduce another distinction still as regards the

heat expended. The work produced is of a twofold nature. In
the first place, a certain quantity of work is necessaiy to over-
come the mutual attraction of the particles, and to separate them
to the distance which they occupy in a state of vapour. Secondly,
the vapour during its development must, in order to procure
room for itself, force back an outer pressure. We shall name
the former of these interior work, and the latter exterior work,
and shall distribute the latent heat also under the same two heads.
With regard to the interior work, it can make no difference

whether the evaporation takes place at /q or at /j, or at any other
intermediate temperature, inasmuch as the attraction of the par-
ticles must be regarded as invariable*. The exterior work, on
the contraiy, is regulated by the pressure, and therefore by the
temperature also. These remarks are not restricted to the ex-

ample we have given, but are of general application ; and when
it was stated above, that the quantity of heat necessary to bring
a body from one condition into another depended, not upon the
state of the body at the beginning and the end alone, but upon
the manner in which the alterations had been carried on through-
out, this statement had reference to that portion only of the
latent heat which corresponds to the exterior work. The re-
mainder of the latent heat and the entire amount of sensible heat
are independent of the manner in which the alteration is effected.

WTien the vapour of water at t^ and t?, is reconverted into
water at /q, the reverse occurs. Work is here expended, inasmuch
as the particles again yield to their attraction, and the outer
pressure once more advances. In this case, therefore, heat must
be produced ; and the sensible heat which here exhibits itself does
not come from any retreat in which it was previously concealed,
but is newly produced. It is not necessary that the heat developed
by this reverse process should be equal to that consumed by the
other ; that portion which corresponds to the exterior work may
be greater or less according to circumstances.
We shall now turn to the mathematical treatment of the sub-

ject, confining ourselves, however, to the consideration of per-
* It must not be objected here that the cohesion of the water at t^ is less

than at f^, and hence requires a less amount of work to overcome it. The
lessening of the cohesion implies a certain \york performed by the warming
of the water as water, and this must be atlded to that produced by evapo-
ration. From this it follows, that of the heat which the water receives from
without, only one portion must be regarded as sensible, while the other
portion goes to loosen the cohesion. This view is in harmony with the
fact, that water possesses a so much greater specific heat than ice, and pro-
bably than steam also.
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manent gases, and of vapours at their maximum density ; as
besides possessing the greatest interest, our superior knowledge
of these recommends them as best suited to the calculus. It

will, however, be easy to see how the maxim may be applied to
other cases also.

Let a certain quantity oi permanent gas, say a unit of weight,
be given. To determine its present condition, three quantities
are necessary ; the pressure under which it exists, its volume^
and its temperature. These quantities stand to each other in a
relation of mutual dependence, which, by a union of the laws of
Mariotte and Gay-Lussac*, is expressed in the following equation:

|?i;=R(« + 0, (I.)

where p, v, and t express the pressure, volume, and temperature
of the gas in its present state, a a constant equal for all gases,

and R also a constant, which is fully expressed thus,
^^

^ , where

Poy ^oj ^^d ^0 express contemporaneous values of the above three

quantities for any other condition of the gas. This last constant
is therefore different for different gases, being inversely propor-
tional to the specific weight of each.

It must be remarked, that Regnault has recently proved, by a
series of very careful experiments, that this law is not in all

strictness correct. The deviations, however, for the permanent
gases are very small, and exhibit themselves principally in those
cases where the gas admits of condensation. From this it would
seem to follow, that the more distant, as regards pressure and
temperature, a gas is from its point of condensatioij, the more
correct will be the law. Its accuracy for permanent gases in
their common state is so great, that it may be regarded as per-
fect ; for every gas a limit may be imagined, up to which the
law is also perfectly true ; and in the following pages, where the

permanent gases are treated as such, we shall assume the exist-

ence of this ideal condition.

The value - for atmospheric air is found by the experiments

both of Magnus and Regnault to be =0-003665, the tempera-
ture being expressed by the centesimal scale reckoned from the

freezing-point upwards. The gases, however, as already men-
tioned, not following strictly the law of M. and G., we do not

always obtain the same value for - when the experiment is re-

peated under different circumstances. The number given above
is true for the case when the air is taken at a temperature of (f
under the pressure of one atmosphere, heated to a temperature

* This shall be expressed in future briefly thus—the law of M. and C^. j

and the law of Mariotte alone thus—the law of M.
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of 100° , and the increase of expansive force observed. If, how-

ever, the pressure be allowed to remain constant, and the increase

of volume observed, we obtain the somewhat higher value

0*003670. Further, the values increase when the experiments
are made under a pressure exceeding that of the atmosphere, and
decrease when the pressure is less. It is clear from this, that

the exact value for the ideal condition, where the differences

pointed out would of course disappear, cannot be ascertained.

It is certain, however, that the number 0*003665 is not far from
the truth, especially as it very nearly agrees with the value found
for hydrogen, which, perhaps of all gases, approaches nearest the

ideal condition. Retaining, therefore, the above value for -, we

have «=273.

One of the quantities in equation (I.), for instance p, may be

regai-ded as a function of the two others ; the latter will then be
the independent variables which determine the condition of the

gas. We will now endeavour to ascertain in what manner the

quantities which relate to the amount of heat depend upon v

and t.

When any body whatever changes its volume, the change is

always accompanied by a mechanical work produced or expended.
In most cases, however, it is impossible to determine this with

accuracy, because an unknown interior work usually goes on at

the same time with the exterior. To avoid this difficulty, Carnot

adopted the ingenious contrivance before alluded to : he allowed
the body to undergo various changes, and finally brought it into

its primitive state ; hence if by any of the changes interior work
was produced, this was sure to be exactly nullified by some other

change ; and it was certain that the quantity of exterior work
which remained over and above was the total quantity produced.
Clapeyron has made this very evident by means of a diagram :

we propose following his method with permanent gases in the
first instance, introducing, however, some slight modifications
rendered necessai-y by our maxim.

In the annexed figure let oe

represent the volume, and ea the

pressure of the unit weight of

gas when its temperature is t ;

let us suppose the gas to be
contained in an expansible bag,
with which, however, no ex-

change of heat is possible. If

the gas be permitted to expand,
no new heat being added, the

temperature will fall . To avoid
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this, let the bag during the expansion be brought into contact
with a body A of the temperature t, from which it shall receive
heat sufficient to preserve it constant at the same temperature.
While this expansion by constant temperature proceeds, the
pressure decreases according to the law of M., and may be repre-
sented by the ordinate of a curve ah, which is a portion of an
equilateral hyperbola. When the gas has increased in volume
from oe to of, let the body A be taken away, and the expansion
allowed to proceed still further without the addition of heat ;

the temperature will now sink, and the pressure consequently
grow less as before. Let the law according to which this pro-
ceeds be represented by the curve be. When the volume of the
gas has increased from of to og, and its temperature is lowered
from t to T, let a pressure be commenced to bring it back to its

original condition. Were the gas left to itself, its temperature
would now rise ; this, however, must be avoided by bringing it

into contact with the body B at the temperature r, to which any
excess of heat will be immediately imparted, the gas being thus
preserved constantly at t. Let the compression continue till

the volume has receded to h, it being so arranged that the de-
crease of volume indicated by the remaining portion he shall be
just sufficient to raise the gas from r to t, if during this decrease
it gives out no heat. By the first, compression the pressure in-
creases according to the law of M., and may be represented by a
portion cd of another equilateral hyperbola. At the end the in-
crease is quicker, and may be represented by the curve da. This
curve must terminate exactly in a ; for as the volume and tem-
perature at the end of the operation have again attained their

original values, this must also be the case with the pressure,
which is a function of both. The gas will therefore be found in

precisely the same condition as at the commencement.
In seeking to determine the amount of work performed by

these alterations, it will be necessary, for the reasons before
assigned, to direct our attention to the exterior work alone.

During the expansion, the gas produces a work expressed by the
integral of the product of the differential of the volume into the
corresponding pressure, which product is represented geometri-
cally by the quadrilaterals ea, bfandfbcg. During the com-
pression, however, work will be expended, which is represented
by the quadrilaterals gcdh and hdae. The excess of the former
work above the latter is to be regarded as the entire work pro-
duced by the alterations, and this is represented by the quadri-
lateral abed.

If the foregoing process be reversed, we obtain at the conclu-
sion the same quantity abed as the excess of the work expended
over that produced.
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I^
In applying the foregoing Fig. 2.

conaideratious analytically, we
will assume that the various
alterations which the gas has
undergone have been infinitely
small. We can then consider
the curves before mentioned
to be straight lines, as shown
in the accompanying figure.
In determining its superficial
content, the quadrilateral abed

^ € h f
may be regarded as a parallelogi-am, for the error in this case can

only amount to a differential of the third order, while the area
itself is a differential of the second order. The latter may there-
fore be expressed by the product ef.bk, where k marks the point
at which the ordinate 6/* cuts the lower side of the parallelogram.
The quantity bk is the increase of pressure due to the raising of
the constant volume of from t to t, that is to say, due to the
differential t—T=dt. This quantity can be expressed in terms
of V and t by means of equation (I.), as follows :

dp=z
Rrf/

If the increase of volume ef be denoted by dv, we obtain the
content of the quadrilateral, and with it

TTie work produced = (1 .)

We must now determine the quantity of heat consumed during
those alterations. Let the amount of heat which must be im-
parted to change the gas by a definite process from any given
state to another, in which its volume is =« and its temperature= /, be called Q ; and let the changes of volume occurring in
the process above described, which are now to be regarded sepa-
rately, be denoted as follows : efhy dv, hg by dJv, eh by 8u, and
fg by h'v. During an expansion from the volume oe=zv to

of=^V'\-dvy at the constant temperature /, the gas must receive
the quantity of heat expressed by

and in accordance with this, during an expansion from vhzszv-\-hv
to og=iV-{-hv-\-d!v at the temperature t—dt, the quantity
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In our case, however, instead of an expansion, a compression
has taken place ; hence this last expression must be introduced
with the negative sign. During the expansion from of to og,
and the compression from oh to oe, heat has been neither
received nor given away -,

the amount of heat which the gas has
received over and above that which it has communicated, or, in
other words, the quantity of heat consumed, will therefore be

The quantities Sv and d'v must now be eliminated ; a conside-
ration of the figure furnishes us with the following equation :

dv + B'v =Bv + d'v.

During its compression from oh to oe, consequently during its

expansion under the same circumstances from oe to oh, and
during the expansion from of to og, both of which cause a de-
crease of temperature dt, the gas neither receives nor communi-
cates heat : from this we derive the equations

[(f)-i(§W»'-[(f)+£(§)*>»;From these three equations and equation (2.) the quantities
d'v, 8v and B'v, may be eliminated ; neglecting during the pro-
cess all diiferentials of a higher order than the second, we obtain

nekeate^en,ed=[^(§)-i{§)],.d, . (3.)

Turning now to our maxim, which asserts that the production
of a certain quantity of work necessitates the expenditure of a
proportionate amount of heat, we may express this in the form
of an equation, thus :

The heat expended __ , ,..
The work produced

"~
^

where A denotes a constant which expresses the equivalent of heat
for the unit of work. The expressions (1.) and (3.) being intro-
duced into this equation, we obtain

a(2)-£(g)]"- _.
B^.dvdt

or
dt
^/^Q\ d /dQ\^ A.R

,jj.
it\dv) dv\dt) v ^ *^
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This equation may be regarded as the analytical expression
of the above maxim applicable to the case of permanent gases.
It shows that Q cannot be a function of v and t as long as the

two lattei* are independent of each other. For otherwise, ac-

cording to the known princij)le of the differential calculus, that

when a function of two variables is differentiated according to

both, the order in which this takes place is matter of indiffer-

ence, the right side of the equation must be equal 0.

The equation can be brought under the form of a complete

differential, thus :

dQ=dV-{-A.U''-^dv,
.... (Lla.)

where U denotes an arbitrary function of v and t. This differ-

ential equation is of course unintegrable until we find a second
condition between the variables, by means of which t may be

expressed as a function of v. This is due, however, to the last

member alone, and this it is which corresponds to the exterior

work effected by the alteration ; for the differential of this work
is pdvj which, when

j!>
is eliminated by means of (I.), becomes

V

It follows, therefore, in the first place, from (II«.), that the
entire quantity of heat, Q, absorbed by the gas during a change
of volume and temperature may be decomposed into two portions.
One of these, U, which comprises the sensible heat and the heat

necessary for interior work, if such be present, fulfils the usual

assumption, it is a function of v and /, and is therefore determined

by the state of the gas at the beginning and at the end of the
alteration ; while the other portion, which comprises the heat

expended on exteiior work, depends, not only upon the state of
the gas at these two limits, but also upon the manner in which
the alterations have been effected throughout. It is shown above
that the same conclusion flows directly from the maxim itself.

Before attempting to make this equation suited to the deduc-
tion of further inferences, we will develope the analytical expres-
sion of the maxim applicable to vapours at their maximum density.

In this case we are not at liberty to assume the correctness of
the law of M. and G., and must therefore confine ourselves to the
maxim alone. To obtain an equation from this, we will again
pursue the com'se indicated by Camot, and reduced to a diagram
by Clapeyron." Let a vessel impervious to heat be partially filled

with water, leaving a space above for steam of the maximum
density corresponding to the temperature t. Let the volume of
both together be represented in the annexed figure by the
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owt

abscissa oe, and the pressure ofria^di ^d
VfiFig^i'SJK^'P^ erilT

the steam by the ordinate ea. Let ^IdBiiiqtjs laimm »vod*? ad* 1<>

the vessel be now supposed to r

expand,whilebothfluidand steam
are kept in contact with a bodyA of the constant temperature < Ik rtJ^v ov/
t. As the space increases, more t ijijt rijuli^

fluid is evaporated, the necessary 'fjf'p') '^f t V' -^l

amount of latent heat being sup-
plied by the body A ; so that the

temperature, and consequently
the pressure of the steam, may remain unchanged. "When the
entire volume is increased in this manner from oe to o/, an ex-
terior work is produced which is represented by the rectangle ea

bf. Let the body A be now taken away, and let the vessel con-
tinue to expand without heat being either given or received.

Partly by the expansion of the steam already present, and partly
by the formation of new steam, the temperature will be lowered
and the pressure become less. Let the expansion be suiFered to
continue until the temperature passes from t to r, and let og
represent the volume at this temperature. If the decrease of

pressure during this expansion be represented by the curve he,
the exterior work produced by it will be represented by fbcg.

Let the vessel be now pressed together so as to bring the fluid
and vapour to their original volume oe, and during a portion of
the process let the vessel be in contact with a body, B, of the

temperature t, to which any excess of heat shall be immediately
imparted, and the temperature of the fluid and vapour kept con-
stant at T. During the other portion of the process, let the body
B be withdrawn so that the temperature may rise ; let the first

compression continue till the volume has been reduced to oh, it

being so arranged that the remaining space he shall be just suf-
ficient to raise the temperature from r to t. During the first

decrease of volume the pressure remains constant at gc, and the

quantity of exterior work expended is equal to the rectangle^c dh.

During the last decrease of volume the pressure increases, and
may be represented by the curve da, which must terminate exactly
in the point a, as the original temperature t must again corre-

spond to the original pressure ea. The exterior work expended
in this case is :=-hdae.

At the end of the operation both fluid and vapour are in the
same state as at the commencement, so that the excess of the
exterior work produced over the amount expended expresses the
total amount of work accomplished. This excess is represented
by the quadrilateral ahcd, the content of which must therefore
be compared with the heat expended at the same time.
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For this purpose let it be as- Fig. 4.

sumed, as before, that the de-
scribed alterations are infinitely
small, and under this view let

the process be represented by
the annexed figure, in which the
curves ad and be shown in fig. 3
have passed into straight lines.
With regard to the content of
the quadrilateral abed, it may be -

again regardedas aparallelogram,
the area of which is expressed by the product ef. bk. Now if,
when the temperature is /, the pressure of the vapour at its
maximum tension be equal to p, and the difierence of tempera-
ture /—T be expressed by dt, we have

bk^^dt)at

ef is the increase of volume caused by the passing of a certain

quantity of fluid represented by dm into a state of vapour. Let
the volume of the unit of steam at its maximum density for the
temperature t be called s, and the volume of the same quantity
of fluid at the temperature t be called a ; then is

ef^{s—(T)dm\
and hence the content of the rectangle, or

The work produced (s— o") -jidm dt. (5.)

To express the amount of heat, we will introduce the following
notation :—Let the quantity of heat rendered latent by the pas-
sage of a unit weight of fluid at the temperature /, and under a

corresponding pressure into a state of vapour, be called r, and
the specific heat of the fluid c; both of these quantities, as

dp
Finally,also the foregoing s, a, and -^, being functions of t.

let the quantity of heat which must be communicated to a unit
weight of vapour of water to raise it from the temperature t to
t + dt,—the vapour being preserved by pressure at the maximum
density due to the latter temperature without precipitation,—be
called hdt, where h likewise represents a function of t. We shall
refer the question as to whether its value is positive or negative
to future consideration.

If we name the mass of fluid originally present in the vessel

fi, and the mass of the vapour m ; further, the mass evaporated
during the expansion from oe to of, dm, and the mass precipi-
tated by the compression from off to oh, d'm, we obtain in the
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first case the quantity
rdm

of latent heat which has been extracted from the body A ; and
in the second case, the quantity

hP')d'm

of sensible heat which has been imparted to the body B. By
the other expansion and contraction heat is neither gained nor
lost ; hence at the end of the process we have

The heat eocpended = rdm~
(
^ ~" jT ^M d^i^. . (6.)

In this equation the differential d^m must be expressed through
dm and dt ; the conditions under which the second expansion
and the second contraction have been carried out enables us to
do this. Let the mass of vapour precipitated by the compression
from oh to oSj and which therefore would deyelope itself by expan-
sion from oe to oh, be represented by hm, and the mass developed
by the expansion from of to og by am ; then, as at the conclu-
sion of the experiment the original mass of fluid and of vapour
must be present, we obtain in the first place the equation

dm + 8'm= d^m + hm.

Further, for the expansion from oe to oh, as the temperature
of the fluid mass /a and the mass of vapour m must thereby be
lessened the quantity dt without heat escaping, we obtain the
equation

rBm—fi . cdt—m . hdt= ;

and in like manner for the expansion from of to og, as here we
have only to set fi—dm and m+ ^m in the place of jm andm, and
h^m in the place of hm, we obtain

rh^m— (ft
—dm)cdt— (m + dm)hdt= 0.

If from these three equations and equation (6.) the quantities
d^m, hm and S'm, be eliminated, and all diff'erentials of a higher
order than the second be neglected, we have

The heat expended — ijr -{-c—h\dmdt. . . (7.)

The formulae (7.) and (5.) must now be united, as in the case
of permanent gases, thus :

e--)
—a)^dmdt

dmdt =A
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and hence we obtain, as the analytical expression of the maxim,
apphcablc to vapours at their maximum density, the equation

J+o-A=A(,-<.)f (III.)

If, instead of the above maxim, the assumption that the quan-
tity of heat is constant be retained, then, according to (7.), in-
stead of equation (III.) we must set

|+^-*=o- («•)

And this equation, although not exactly in the same form, has
been virtually used heretofore to determine the value of the quan-
tity h. As long as the law of Watt is regarded as true, that the
sum of the latent and sensible heat of a quantity of steam at its

maximum density is the same for all temperatures, and conse-

quently that

It +'=*''

it must be inferred that for this fluid k also is equal ; this,
indeed, has been often asserted, by saying that when a quantity
of vapour at its maximum density is compressed in a vessel im-
pervious to heat, or suffered to expand in the same, it will remain
at its maximum density. As, however, Regnault* has corrected
the law of Watt so that we can set with tolerable accuracy

^+c=0'305,
the equation (8.) gives for h also the value 0*305. It follows
from this, that a portion of the steam in the impermeable vessel
must be precipitated by compression, and that it cannot retain
its maximum density after it has been suffered to expand, as its

temperature does not decrease in a ratio corresponding to the
decrease of density.

Quite otherwise is it if, instead of equation (8.), we make use
of equation (III.). The expression on the right-hand side is

from its nature always positive, and from this follows in the first

place that h is less than 0'305. It will be shown further on
that the value of the said expression is so great that h becomes
even negative. Hence we must conclude that the above quan-
tity of vapour will be partially precipitated, not by the compres-
sion, but by the expansion ; when compressed, its temperature
rises in a quicker ratio than that corresponding to the increase
of density, so that it does not continue at its maximum density.

This result is indeed directly opposed to the notions generally
* M^, de VAcad.y vol. xxi. 9th and 10th Memoirs,
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entertained on this subject ;
I believe_, however, that no experi-

ment can be found which contradicts it. On the contrary, it

harmonizes with the observations of Pambour better than the
common notion. Pambour found* that the steam issuing from
a locomotive after a journey always possesses the temperature
for which the tension observed at the same time is a maximum.
From this it follows that h is either 0, as was then supposed,
because this agreed with the law of Watt, which was considered
correct at the time, or that h is negative. If h were positive, then
the temperature of the issuing steam must have been too high
in comparison with its tension, and this could not have escaped
Pambour. If, on the contraiy, in agreement with the above, h be

negative, too low a temperature cannot occur, but a portion ofthe

vapour wdll be converted into water so as to preserve the remainder
at its proper temperature. This portion is not necessarily large,
as a small quantity of vapour imparts a comparatively large

quantity of heat by its precipitation ; the water thus formed is

probably carried forward mechanically by the steam, and might
remain unregarded ;

the more so, as, even if observed, it might
have been imagined to proceed from the boiler.

So far the consequences have been deduced from the above
maxim alone, without any new assumption whatever being made.

Nevertheless, by availing ourselves of a very natural incidental

assumption, the equation for permanent gases (II«.) may be ren-

dered considerably more productive. Gases exhibit in their de-

portment, particularly as regards the relations of volume, tem-

perature and pressure, expressed by the laws of M. and G., so

much regularity as to lead us to the notion that the mutual
attraction of the particles which takes place in solid and fluid

bodies is in their case annulled ; so that while with solids and
fluids the heat necessary to efi*ect an expansion has to contend
with both an inner and an outer resistance, the latter only is

effective in the case of gases. If this be the case, then, by the

expansion of a gas, only so much heat can be rendered latent as

is necessary to exterior work. Further, there is no reason to

suppose that a gas, after it has expanded at a constant tempera-
ture, contains more sensible heat "than before. If this also be

admitted, we obtain the proposition, when a permanent gas ex-

pands at a constant temperature, it absorbs only as much heat as is

necessary to the exterior work produced by the expansion ; a pro-

position which is probably true for all gases in the same degree
as the law of M. and G.
From this immediately follows

«\-A.Ki±i, (9.)o-
* Traite des locomotives, 2nd edit., and Theorie des machines a vapeur,

2nd edit.

Phil, Mag, S. 4. Vol. 2, No. 8. July 1851. C
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for, SB already mentioned, R dv represents the quantity yf

exterior work produced by the expansion dv. According to this,

the function U, which appears in equation (Ha.), cannot contain

V, and hence the equation changes to

rfQ=crf/ + AR^rft;, .... (lib.)

wherein e can only be a function of / ; and it is even probable
that the quantity c, which denotes the specific heat of the gas at

a constant volume, is itself a constant.

To apply this equation to particular cases, the peculiar con-

ditions of each case must be brought into connexion therewith,
80 as to render it integrable. We shall here introduce only a

few simple examples, which possess either an intrinsic interest,

or obtain an interest by comparison with other results connected
with this subject.

In the first place, if we set in equation (11^.) v= const, and

/)s=: const., we obtain the specific heat of the gas at a constant

volume, and its specific heat under a constant pressure. In the

former case dv=iO, and (116.) becomes

f =^ ao-)

In the latter case, from the condition p= const., we obtain with

help of equation (I.),

, ndtav= ,

P
or
. :< ,

dv dt

V a-ht'

which placed in (lib.), the specific heat under a constant pressure

being denoted by c/, gives us

^=c'=c+AR (10a.)

From this it may be inferred that the difference of both specific
heats for every gas is a constant quantity AR. But this quantity
expresses a simple relation for different gases also. The com-

plete expression for R is
^^ ^

, where Pq, Vq,] and /q denote the

contemporaneous values of ^, v, and t for a unit of weight of the

gas in question ; and from this follows, as already mentioned in

expressing equation (I.), that R is inversely proportional to the

specific
heat of the gas ; the same must be tme of the difference

cr-ocsAR, as A i» for all gases the same.
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If it be desired to calculate the specific heat of the gas, not by
the unit of weight_, but by the method more in use, the unit of

volume, say at the temperature ^q and the pressure jOq, it is only
necessary to divide c and c' by Vq. Let these quotients be ex-

pressed by y and y, and we obtain ^>^ s-^'

In this last expression nothing appears which is dependent on
the peculiar nature of the gas ; the difference of the specific heats
reckoned according to the unit of volume is therefore the same

for all gases. This proposition has been deduced by Clapeyron
from the theory of Carnot ; but the constant found above .is

not given by the difference d —c, the expression found for it

having still the form of a function of the temperature.
Dividing both sides of equation (11.) by 7, we obtain

wherein k is set for shortness' sake in the place of —. This is

equal to the quotient
-

; and through the theoretic labours of

Laplace on the transmission of sound through air, has attained
a peculiar interest in science. The excess of this quotient above

unity in the case of different gases is therefore inversely propor-
tional to their specific heats, reckoned according to the unit of
volume when the latter is constant. This proposition has been

proved experimentally by Dulong* to be so nearly correct, that
its theoretic probability induced him to assume its entire truth,
and to use it in an inverse manner in calculating the specific
heat of various gases, the value of k being first deduced from
observation. It must, however, be remarked, that the propo-
sition is theoretically safe only so far as the law of M. and G.
holds good ; which, as regards the various gases examined by
Dulong, was not always the case to a sufficient degree of accuracy.

Let us suppose that the specific heat c of the gases by constant
volume is constant, which we have already stated to be very pro-
bable ; this will also be the case when the pressure is constant,

c
and hence the quotient of both specific heats — =k must be also

constant. This proposition, which Poisson, in agreement with
the experiments of Gay-Lussac and Welter, has assumed to be

correct, and made the basis of his investigations on the tension

* Ann. de Chim. et de Phys,, xli. ; and Pogg. Ann., xvi.

C3
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and heat of gases*, harmonizes very well with our present theory,
while it is not possible to reconcile it with the theory of Camot
as heretofore treated.

In equation (116.) let Q=: const., we then obtain the following
equation between v and / :

cdt + A.n^^dv=:0; .... (13.)V

from which, when c is regarded as constant, we derive

V • (a + t)= const. ;

AT? /^
*

or, since according to equation (10a.), = -— I==A— 1,

v*~*(fl + ^)= const.

Let three corresponding values of v, / and p, be denoted by g^
tQsmdpQ} we obtain from this igsWxs

a + tQ \v/ ^ ^

By means of equation (I.) let the pressure p, first for v and
then for /, be introduced here, we thus obtain

m-(B'- (-)

fe-fe)" <«•'

These are the relations which subsist between volume, tempe-
rature and pressure, when a quantity of gas is compressed, or is

suffered to expand in a holder impervious to heat. These equa-
tions agree completely with those developed by Poisson for the
same casef, the reason being that he also regarded k as constant.

Finally, in equation (lib.) let /= const., the first member at
the right-hand side disappears, and we have remaining

d(i=AU^-^dv; (17.)V
from which follows

Q=AR(a + /) log i; 4- const. ;

or when the values of v, p, t and Q, at the commencement of
the experiment, are denoted by Vq,Pq, ^q and Qo,

Q-Qo=AR(«.F/o)logf. . . . (18.)

* Traiti de M^canique, 2nd edit. vol. ii. p. 646.
t Traits de M^canique, vol. ii. p. 647.
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From this, in the first place, we derive the proposition deve-

loped also by Carnot ; whe7i a gas, without alteration of tempera-
ture, changes its volume, the quantities of heat developed or absorbed
are in arithmetical progression, while the volumes are in geometrical
progression. ^^.

Further, let the complete expression for R= ^-^-^ be set in

equation (18.), and we obtain , .

Q-Qo=Ai,o''olog-. . . .' .' (19.)

If we apply this equation to diiferent gases, not directing our
attention to equal weights of the same, but to such quantities as

at the beginning embrace a common volume Vq, the equation
will in all its parts be independent of the peculiar nature of the

gas, and agrees with the known proposition to which Dulong,
led by the above simple relation of the quantity ^— 1, has given
expression : that when equal volumes of different gases at the same

pressure and temperature are compressed or expanded an equal
fractional part of the volume, the same absolute amount of heat is

in all cases developed or absorbed. The equation (19.) is however
much more general. It says besides this, that the quantity of
heat is independent of the temperature at which the alteration of
volume takes place, if only the quantity of gas applied be always
so determined that the original volumes Vq at the diiferent tem-

peratures shall be equal; further, that when the original pressure
is in the different cases different, the quantities of heat are thereto

proportional.
[To be continued.]

II. On the Beudantite of Levy. By H. J. Brooke, F.R.S."^

HAVING
had the pleasure last week of a personal commu-

nication with M. Des Cloizeaux, and having shown him

Levy's specimen of this mineral, he at once stated that it differed

entirely from that examined by himself and M. Damouras Beu-

dantite, as well as from every other specimen under the same
name which he had seen. He said that he was not aware of the

existence of any mineral resembling Levy's in any collection on
the Continent, and that he was inclined with Levy to regard his

specimen as belonging to a separate species. The mineral known
as Beudantite on the continent appears to be only an impure
variety of cube ore of the usual form.

June 9, 1851.

* Communicated by the Author.
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XVIII. On the Moving Force of Heat, and the Laws regarding
the Nature of Heat itself which are deducible therefrom.

By R. Clausius.

[Concluded from p. 21.]

CARNOT,
as already mentioned, has regarded the production

of work as tiie equivalent of a mere transmission of heat

from a warm body to a cold one, the quantity of heat being thereby
undiminished.

The latter portion of this assumption, that the quantity of
heat is undiminished, contradicts our maxim, and must there-

fore, if the latter be retained, be rejected. The former portion,
however, may remain substantially as it is. For although we
have no need of a peculiar equivalent for the produced work,
after we have assumed as such an actual consumption of heat, it

is nevertheless possible that the said transmission may take place

contemporaneously with the consumption, and may likewise stand
in a certain definite relation to the produced work. It remains
therefore to be investigated whether this assumption, besides

being possible, has a sufficient degree of probability to recom-
mend it.

A transmission of heat from a warm body to a cold one cer-

tainly takes place in those cases where work is produced by heat,
and the condition fulfilled that the body in action is in the same
state at the end of the operation as at the commencement. In
the processes described above, and represented geometrically in

figs. 1 and 3, we have seen that the gas and the evaporating water^
while the volume was increasing, received heat from the body A,
and during the diminution of the volume yielded up heat to the

body B, a certain quantity of heat being thus transmitted fi'om

A to B j and this quantity was so great in comparison with that

which we assumed to be expended, that, in the infinitely small
alterations represented in figs. 2 and 4, the latter was a difi*er-

ential of the second order, while the former was a differential of

the first order. In order, however, to bring the transmitted
heat into proper relation with .the work, one limitation is still

necessaiy. As a transmission of heat may take place by con-

duction without producing any mechanical effect when a warm
body is in contact with a cold one, if we wish to obtain the

greatest possible amount of work from the passage of heat be-

tween two bodies, say of the temperatures t and t, the matter
must be so arranged that two substances of different tempep-
tures shall never come in contact with each other. l

It is this maximum of work that must be compared with the

transmission of the heat ; and we hereby find that it may reason-
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ably be assumed_, with Carnot, that the work depends solely upon
the quantity of heat transmitted^ on the temperatures t and t of

both bodies A and B, and not upon the nature of the substance
which transmits it. This maximum has the property, that, by its

consumption, a quantity of heat may be carried from the cold body
B to the warm one A equal to thatwhich passed from A to B during
its production. We can easily convince ourselves of this by con-

ceiving the processes above described to be conducted in a reverse

manner ; for example, that in the first case the gas shall be per-
mitted to expand of itself until its temperature is lowered from
t to T, the expansion being then continued in connexion with B ;

afterwards compressed by itself until its temperature is again t,

and the final compression eff'ected in connexion with A. The
amount of work expended during the compression will be thus

greater than that produced by the expansion, so that on the

whole a loss of work will take place exactly equal to the gain
which accrued from the former process. Further, the same

quantity of heat will be here taken away from the body B as in

the former case was imparted to it, and to the body A the same
amount will be imparted as by the former proceeding was taken

away from it ; from which we may infer, both that the quantity
of heat formerly consumed is here produced, and also that the

quantity which formerly passed from A to B now passes from
# to A.
"^ Let us suppose that there are two substances, one of which is

able to produce more work by the transmission of a certain

amount of heat, or what is the same, that in the performance of
a certain work requires a less amount of heat to be carried from
A to B than the other; both these substances might be applied

alternately ; by the first work might be produced according to
the process above described, and then the second might be applied
to consume this work by a reversal of the process. At the end
both bodies would be again in their original state ; further, the
work expended and the work produced would exactly annul each

other, and thus, in agreement with our maxim also, the quantity
of heat would neither be increased nor diminished. Only with

regard to the distribution of the heat would a diff'erence occur, as

more heat would be brought from B to A than from A to B, and
thus on the whole a transmission from B to A would take place.
Hence by repeating both these alternating processes, without

expenditure of force or other alteration whatever, any quantity
of heat might be transmitted from a cold body to a warm one ;

and this contradicts the general deportment of heat, which every-
where exhibits the tendency to annul differences of temperature,
and therefore to pass from a warmer body to a colder one.
From this it would appear that we are theoretically/ justified in

12
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retaiuing the first and really essential portion of the assumption
of Carnot, and to apply it as a second maxim in connexion with
the fonner. It will be immediately seen that this procedure
receives manifold corroboration from its consequences.

This assumption being made, we may regard the maximum
work which can be effected by the transmission of a unit of heat
from the body A at the temperature t to the body B at the tem-
perature T, as a function of t and t. The value of this function
must of course be so much smaller the smaller the difierence
/—T is; and nmst, when the latter becomes infinitely small (

= dt),

pass into the product of dt with a function of t alone. This
latter being our case at present, we may represent the work
under the form

wherein C denotes a function of / only.
To apply this result to the case of permanent gases, let us

once more turn to the process represented by fig. 2. During
the first expansion in that case the amount of heat,

passed from A to the gas ; and during the first compression, the

following portion thereof was yielded to the body B,

[(f)*i(S)»-i(S)"]".
or

(S)*-[i(S)-i(S)]"'-
The latter quantity is therefore the amount of heat transmitted.
As, however, we can neglect the differential of the second order
in comparison with that of the first, we retain simply

(S)dv.

The quantity of work produced at the same time was

V '

and from this we can construct the equation
^dv .dt

(S)dv
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(§)=^"- i".i
Let us now make a corresponding application to the process

of evaporation represented by fig. 4. The quantity of heat in
that case transmitted from A to B was

rdm-^ i-jr -\-c—h\dmdt'y

for which_, neglecting the differentials of the second order^ we
may set simply

rdm.
The quantity of work thereby produced was

{s—iT)-~-dmdt,

and hence we obtain the equation ,.

{s—o)~~' dm.dt 1

rdm C
or

'•=c.(--)J (V.)

These, although not in the same form, are the two analytical
expressions of the principle of Carnot as given by Clapeyron. In
the case of vapours, the latter adheres to equation (V.), and con-
tents himself with some immediate applications thereof. For
gases, on the contraiy, he makes equation (IV.) the basis of a
further development ; and in this development alone does the
partial divergence of his result from ours make its appearance.We will now bring both these equations into connexion with
the results furnished by the original maxim, commencing with
those which have reference to permanent gases.

Confining ourselves to that deduction which has the maxim
alone for basis, that is to equation (II«.), the quantity U which
stands therein as an arbitrary function of v and / may be more
nearly determined by (IV.) j the equation thus becomes

dQ=^B +n{^-Ayogv']dt+^'dv, {lie.)

in which B remains as an arbitrary function of t alone.
If, on the contrary, we regard the incidental assumption also
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as correct, the equation (IV.) will thereby be rendered unneces-

sary for the nearer determination of (Ila.), inasmuch as the same
object is anived at in a much more complete manner by equa-
tion (9.), which flowed immediately from the combination of the
said assumption with the original maxim. The equation (IV.),
however, furnishes us with a means of submitting both princi-
ples to a reciprocal trial. The equation (9.) was thus expressed,

c?Q\_R.A(a4-0
(S) V

and when we compare this with equation (IV.), we find that
both of them express the same thing ; with this difference only,
that one of them expresses it more definitely than the other. In
(IV.) the function of the temperature is expressed in a general
manner merely, whereas in (9.) we have instead of C the more
definite expression A{a-{-t).

To this surprising coincidence the equation (V.) adds its testi-

mony, and confirms the result that R(fl + 1) is the true expres-
sion for the function C. This equation is used by Clapeyron
and Thomson in determining the values of C for single tempe-
ratures. The temperatures chosen by Clapeyi-on were the boiling-
points of sether, of alcohol, of water, and of oil of turpentine. He
determined by experiment the values of ~, 5 and r, for these

fluids at their boiling-points ; and setting these values in equa-
tion (V.), he obtained for C the numbers contained in the second
column of the following table. Thomson, on the contrary,
limited himself to the vapour of ivater ; but has observed it at
various temperatures, and in this way calculated the value of
C for every single degree from 0° to 230*^ Cent. The observa-
tions of Regnault had furnished him with a secure basis as

regards the quantities -^ and r ; but for other temperatures than

the boiling-point, the value of s is known with less certainty.
In this case, therefore, he felt compelled to make an assumption
which he himself regarded as only approximately correct, using
it merely as a preliminary help until the discoveiy of more exact
data. The assumption was, that the vapour of water at its

maximum density follows the law of M. and G. The numbers
thus found for the temperatm'cs used by Clapeyron, as reduced
to the French standard, are exhibited in the third column of the

foUoTving table :
—
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Table I.
Tinim^- €

1.
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By means of this equation let 5 be eliminated from (Va.) ; neg-
lecting the quantity o", which, when the temperature is not

very high, disappears iu comparison with s, we obtain

^' 1 dp ^ r

pTt" Ail(fl +7p*

If the second assumption that r is constant be made here, we
obtain by integration

^;?i" A.R(a + lOO)(a4-0'

where p^ denotes the tension of the vapour at 100° . Let

/-100=T, « + 100=«, and -^^^^^ =^;
we have then

log^ =^ (21.)
^Pi a + T ^

This equation cannot of course be strictly correct, because the
two assumptions made during its development are not so. As
however the latter approximate at least in some measure to the

tinith, the fonnula expresses in a rough manner, so to speak,

the route of the quantity log
—

; and from this it may be per-
Pi

ceived how it is, when the constants « and jS are regarded as

arbitrary, instead of representing the definite values which their

meaning assigns to them, that the above may be used as an em-
pirical formula for the calculation of the tension of vapours,
without however considering it, as some have done, to be cam-

pletely true theoretically.
Our next application of equation (Ya.) shall be to ascertain

how far the vapour of water, concerning which we possess the
most numerous data, diverges in its state of maximum densityfrom
the law of M. and G. This divergence cannot be small, as car-

bonic acid and sulphurous acid gas, long before they reach their

points of condensation, exhibit considerable deviations.

The equation (Vflf.) can be brought to the following foi-m :

'

p dt

Were the law of M. and G. strictly true, the expression at the
left-hand side must be very nearly constant, as the said law
would according to (20.) immediately give
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A.ps 7=A.R«.
a-i-t

where instead of s we can, with a near approach to accuracy, set
the quantity s^a. By a comparison with its true vahies calcu-
lated from the foi-mula at the right-hand side of (22.), this equa-
tion becomes peculiarly suited to exhibit every divergence from
the law of M. and G. I have carried out this calculation for a
series of temperatures, using for r and p the numbers given by
Regnault*.
With regard to the latent heat, moreover, according to Reg-

naultf the quantity of heat X necessary to raise a unit of weight
of water from 0° to t° , and then to evaporate it at this tempera-
ture, may be represented with tolerable accuracy by the following
formula :

\=606-5 + 0-305^ (23.)

In accordance, however, with the meaning of \, we have

cdt (23«.)^
For the quantity c, which is here introduced to express the spe-
cific heat of the water, Regnault J has given in another investiga-
tion the following formula :

c=l + 0-00004. if-f 0-0000009. ^2/ ^ ^2Sb.)

By means of these two equations we obtain from (23.) the fol-

lowing expression for the latent heat :

/• = 606-5-0-695. ^-000002. /2_0-000000./3^. . (24.)

Further, with regard to the pressure, Regnault has had recourse
to a diagram to obtain the most probable value out of his nume-

* 3Iem. de VAcad. de VInst. de France, vol. xxi. (1847).
t Ibid. Mem. IX. ; also Pogg. Ann., vol. Isxviii.

X Mem. de VAcad. de VInst. de France, Mem. X.
§ In the greater number of his experiments Regnault has observed, not

so much the heat which becomes latent during evaporation, as that which
becomes sensible by the precipitation of the vapour. Since, therefore, it
has been shown, that if the maxim regarding the equivalence of heat and
work be correct, the heat developed by the precipitation of a quantity of
vapour is not necessarily equal to that which it had absorbed during evapo-
ration, the question may occur whether such differences may not have
occurred in Regnault's experiments also, the given formula for r being thus
rendered useless. I believe, however, that a negative may be returned to
this question ; the matter being so arranged by Regnault, that the precipi-
tation of the vapour took place at the same pressm-e as its development,
that is, nearly under the pressure corresponding to the maximum density
of the vapour at the observed temperature ; and in this case the same quan-
tity of heat must be produced during condensation as was absorbed by
evaporation.
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rous experiments. He has constructed curves in which the
abscissae represent the temperature, and the ordinates the pres-
sure jo, taken at different intei-vals from —33° to 230° . From
100° to 230° he has drawn another curve, the ordinates of which
represent, not;? itself, but the logarithms of;?. From this dia-
gram the following values are obtained ; these ought to be re-

garded as the most immediate results of his observations, while
the other and more complete tables which the memoir contains
are calculated from formulae, the choice and determination of
which depend in the first place upon these values.

Table II.
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or

\p dt),
log^Jar-logi?;20°

10.M (25.)

wherein log is the sign of Briggs's logarithms, and M the mo-
dulus of his system. With the assistance of these values of

— • ~^y and those of r given by equation (24.), as also the value

273 of a, the values assumed by the formula at the right-hand
side of (22.) are calculated, and will be found in the second
column of the following table. For temperatures above 100^,
the two series of numbers given above for p are made use of

singly, and the results thus obtained are placed side by side.
The signification of the third and fourth columns will be more
particularly explained hereafter.

Table III.

1.

* in Cent, degrees
of the air-ther-
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it decidedly decreases with tlie temperature. Between 35° and
90° this decrease is very uniform. Before 35° , particularly in
the neip^hbourhood of , considerable irregularities take place ;

which, however, are simply explained by the fact, that here the

pressure p and its differential quotient -—; are very small, and

hence the trifling inaccui-acies which might attach themselves to
the observations can become comparatively impoiiant. It may
be added, further, that the cune by means of which, as men-
tioned above, the single values of jo have been obtained, was not
drawn continuously from —33° to 100° , but to save room was
broken off at 0° , so that the route of the curve at this point
cannot be so accurately determined as within the separate por-
tions above and below 0° . From the manner in which the di-

vergences show themselves in the above table, it would appear
that the value assumed for p at 0° is a little too great, as this

would cause the values of Ap(s'^a-) to be too small for the
a "T~ I

temperatures immediately under 0° , and too large for those above
it. From 100° upwards the values of this expression do not
decrease with the same regularity as between 35° and 95° . They
show, how ever, a general coiTCspondence ; and particularly when
a diagram is made, it is found that the curve, which almost
exactly connects the points within these limits, as determined
from the numbers contained in the foregoing table, may be car-
ried forward to 230° , the points being at the same time equally
distributed on both sides of it.

Taking the entire table into account, the route of this curve
may be expressed with tolerable accuracy by the equation

Ap{s~-(T)—-=m—ne'^^; . . . (26.)

in which e denotes the base of the Napierian logarithms, and m,
n, and k are constants. When the latter are determined from
the values given by the curve for 45° , 125° and 205° , we obtain

m=31-549; «= 1-0486; ^=0007138; . (26^.)
and when for the sake of convenience we introduce the loga-
rithms of Briggs, we have

log[31-549-Ajo(5-o-) _^J=00206+ 0-003100^. (27.)

From this equation the numbers contained in the third column
are calculated, and the fourth column contains the differences
between these numbers and those contained in the second.
From the data before us we can readily deduce a formula
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which will enable us more definitely to recognize the manner in
which the deportment of the vapour diverges from the law of M.
and Gr. Assuming the correctness of the law, if psQ denote the
value oips for 0^, we must set in agreement with (20.),

ps __a + t

ps'o'^ a '

and would therefore obtain for the differential quotients -j-
•
( "^j

a constant quantity, that is to say, the known coefficient of ex-

pansion — =0*003665. Instead of this we derive from (26.),

when in the place oi s—a we set s itself simply, the equation

ps ^m— n.e^^ a-\-t

m-'n (38.)

and from this follows

d rps \ 1 in—nll-\-k(a + t)]^^
dt\ pSn J m—n (39.)

The differential quotient is therefore not a constant, but a func-
tion which decreases with the increase of temperature, and
which, when the numbers given by (26«.) for m, n and ky are

introduced, assumes among others the following values :
—

Table IV.

t.
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calculated must not however be regarded as expressing literally
the same thing as the coefficient of expansion, which latter is

obtained either by suffering the volume to expand under a con-
slant pressure, or by heating a constant volume, and then obser-

ving the increase of expansive force ; but wc are here dealing
with a third particular case of the general differential quotients

-f7\—)f where the pressure increases with the temperature in

the ratio due to the vapour of water which retains its maximum
density. To establish a comparison with carbonic acid, the same
case must be taken into consideration.
At 108^ steam possesses a tension of 1 metre, and at 1.29^°

a tension of 2 metres. We will therefore inquire how carbonic
acid acts when heated to 21^° , and the pressure thus increased
from 1 to 2 metres. According to Regnault*, the coefficient
of expansion for carbonic acid at a constant pressure of 760
millims. is 0*003710, and at a pressure of 2520 millims. it is

0*003846. For a pressure of 1500 millims. (the mean between
1 metre and 2 metres) we obtain, when we regard the increase
of the coefficient of expansion as proportional to the increase of

pressure, the value 0'003767. If therefore carbonic acid were
heated under this mean pressure from to 21|° , the quantity^ would be thus increased from 1 to 1 + 0003767 x 21-5

=s 1*08099. Further, it is known from other experiments of

Regnault t, that when carbonic acid at a temperature of nearly
0° , and a pressure of 1 metre, is loaded with a pressure of
1*98292 metre, the quantity j^v decreases at the same time in
the ratio of 1 : 0*99146; according to which, for an increase of
pressure from 1 to 2 metres, the ratio of the decrease would be
1 : 0*99131. If now both take place at the same time, the increase
of temperature from to 21^, and the increase of pressure from

1 metre to 2 metres, the quantity ^ must thereby increase

very nearly from 1 to 1*08099 x 0*99131 = 1*071596; andfrom
this we obtain, as the mean value of the differential quotients
d_/pv_\
dt \pvj'

We see, therefore, that for the case under contemplation a value
is obtained for carbonic acid also which is less than 0*003665 ;

* M^m. de VAcad.y vol. xxi. Mem. I. f Ibid. Mem. VI.
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and it is less to be wondered at if the same result should occur
with the vapour at its maximum density.

If, on the contrary, the real coefficient of expansion for the

vapour were sought, that is to say, the number which expresses
the expansion of a certain quantity of vapour taken at a definite

temperature and in a state of maximum density, and heated under
a constant pressure, we should certainly obtain a value greater,
and perhaps considerably greater, than 0-003665.
From the equation (26.) the relative volumes of a unit weight

of steam at its maximum density for the different temperatures,
as referred to the volume at a fixed temperature, is readily esti-

mated. To calculate from these the absolute volumes with suffi-

cient exactitude, the value of the constant A must be established
with greater certainty than is at present the case.

The question now occurs, whether a single volume may not
be accurately estimated in some other manner, so as to enable
us to infer the absolute values of the remaining volumes from their

relative values. Already, indeed, have various attempts been made
to determine the specific weight of water vapour ; but I believe
for the case in hand, where the vapour is at its maximum den-

sity, the results are not yet decisive. The numbers usually given,
particularly that found by Gay-Lussac, 0'6235, agree pretty well
with the theoretic value obtained from the assumption, that two
measures of hydrogen and one of oxygen give by their combina-
tion two measures of vapour, that is to say, with the value

2x0-06926 + 1-10563 ^q.^qq

These numbers, however, refer to observations made, not at those

temperatures where the pressure used was equal to the maximum
expansive force, but at higher ones. In this state the vapour
might nearly agree wath the law of M. and G., and hence may
be explained the coincidence of experiment with the theoretic
values. To make this, however, the basis from which, by appli-
cation of the above law, the condition of the vapour at its max-
imum density might be inferred, would contradict the results
before obtained ; as in Table IV. it is shown that the divergence
at the temperatures to which these determinations refer are too
considerable. It is also a fact, that those experiments where the

vapour at its maximum density was observed have in most cases

given larger numbers; and Regnault* has convinced himself,
that even at a temperature a little above 30° , when the vapour
was developed in vacuo, a satisfactory coincidence was first ob-
seiTed when the tension of the vapour was 0*8 of that which
corresponded to the maximum density due to the temperature

* Ann. de Chim. et de Phys., 3 ser. vol. xv, p. 148.
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existing at the time; with proportionately greater tenBion^Sttei
numbers were too large. The case, however, is not finally set at
rest by these experiments ; for, as remarked by Regnault, it is

doubtful whether the divergence is due to the too great specific
heat of the developed vapour, or to a quantity of water condensed
upon the sides of the glass balloon. Other experiments, wherein
the vapour was not developed in vacuo but saturated a current qf^

air, gave results which were tolerably free* from these irregulaii-^'
ties ; but neither from these, however important they may be in •

other respects, can a safe conclusion be di'awn as. to the depprt^t
ment of the vapour in vflCMO.

'*'"'-"« > \

The following considerations will perhaps feeiliB' to fill up to"
some extent the gap caused by this uncertainty. The table (IV.)
shows that the lower the temperature of the vapour at its max-
imum density, the more nearly it agrees with the law of M. and^
G. ; and hence we must conclude, that the specific weight foi'"

low temperatures approaches more nearly the theoretic value
than for high ones. If therefore, for example, the value of 0*622
for 0° be assumed to be correct, and the corresponding values d
for higher temperatures be calculated from the following equa-
tion deduced from (26.), i -^ \s

^Ai iai t focrao m—ne
n
Ttf ^rf rijso \8v

tazo
we shall obtain far more probable values than if we had majflrr
use of 0*622 fpr. ^11. temperatures. The follo;\vipg table gives
some of these.

Table V.

t.
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of (30.) the equation
- <t is :?^r^^x<>

''=0-623.-:^, (31.)— ne^'

From this we should derive for 0^ the specific weight 0*643(
instead of 0*622, and the other numbers of the above table would
have to be increased proportionately. But we are not yet jus-
tified in making so wide an application of the formula (26.), as

it has been merely derived empirically from the values contained
in Table III.; and among these, the values belonging to the
lowest temperatures are insecure. We must therefore for the

present regard the limit of A(^—cr)
—-- as unknown, and con-

tent ourselves with an approximation similar to that furnished

by the numbers in the foregoing table ; so much however we may
conclude, that these numbers are rather too small than too large.

By combining (Ya.) with the equation (III.), which was im-

mediately derived frOm the original maxim, we can eliminate

at a-\-t
^ '

By means of this equation, the quantity A, described above as

negative, can be more nearly determined. For c and r let the

expressions in (23Z>.) and (24.) be substituted, and for a the
number 273 ; we then obtain

I n ons. 606-5-0-695/-0-0000/2-0-0000003^^ ,^^ ,A=0-305
^^3-p^

; (33.)

and from this we derive among others the following values for h :

Table VI.

50° .

-1-9161 -1-465
1

lOQO.

I- 133

150° . 200° .

•0-879 -0-676

In a manner similar to that already pursued in the case of

water-vapour, the equation (V«.) might be applied to the vapours
of other fluids, and the results thus obtained compared with each

other, as is done in Table I., with the numbers calculated by Cla-

peyron. We will not, however, enter further upon this application,
*

We must now endeavour to determine, at least approximately,
the numerical value of the constant A, or, what is more useful,

the value of the fraction -r- : in other words, to determine theA ^

-'.'"'*
equivalent of work for the unit of heat. [mufirin

Pursuing the same course as that of Meyer and Holtzmann, we
can in the first place make use of equation {\0a.) developed for

Phil Mag, S. 4. Vol. 2. No. 9. Aug, 1851. K
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pennanent gases. This equation was

c/rsc +AR;

and when for c the equivalent expression j is introduced, we have

For atmospheric air, the number 0*267, as given by De Laroche
and Berard, is generally assumed for ^ ; and for k, as given by

Duloner, 1-421. For the determination of R= -^r^, we know

that the pressure of one atmosphere (760 millims.) on a square
metre amounts to 10333 kils. ; and the volume of 1 kil. atmo-

spheric air under the said pressure and at the temperature of the

freezing-point is =0*7733 cubic metres. From this follows

and hence
R=128§|^ =39-36,

1_ __ 1*421x29*26 __
A"" 0-421x0*267 -^^"^

that is to say, by the expenditure of one unit of heat (the quan-
tity which raises 1 kil. of water from 0° to 1° ) a weight of 370
kils. can be raised to a height of 1 metre. This value, however,
on account of the uncertainty of the numbers 0*267 and 1*421,
is deserving of little confidence. Holtzmann gives as the limits

between which he is in doubt the numbers 343 and 429.
The equation (Va.) developed for vapours can be made use of

for the same purpose. If we apply it to the vapour of water,
the foregoing determinations, whose result is expressed in equa-
tion (26.), may be used. If, for example, the temperature 100°
be chosen, and for p the corresponding pressure of one atmo-

sphere = 10333 kils. be substituted in the above equation, we
obtain

i-=257.(.-<7). .... (35.)

If it now be assumed with Gay-Lussac that the specific weight
of the water-vapour is 0-6235, we obtain s= 1*699, and hence

A
Similar results are obtained from the values of C contained in

Table I., which Clapeyron and Thomson have calculated from

equation (V.). K these be regarded as the values of A(a -fO
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corresponding to the adjacent temperatures,, a series of numbers

are obtained for -r> all of which lie between 416 and 462.

It has been mentioned above, that the specific weight of the

vapour of water at its maximum density given by Gay-Lussac is

probably a little too small, and the same may be said of the

specific weights of vapours generally. Hence the value of -r-

derived from these must be considered a little too large. If the

number 0*645 given in Table V. for the vapour of water, and
from which we find s = l"638, be assumed, we obtain

which value is perhaps still too great, though probably not
much. As this result is preferable to that obtained from the

atmospheric air, we may conclude that the equivalent of workfor
the unit of heat is the raising of something over 400 kits, to a

height of 1 metre.

With this theoretic result, we can compare those obtained by
Joule from direct observation. From the heat produced by
magneto-electricity he found

Ova \o in ]- =460*.

From the quantity of heat absorbed by atmospheric air during
its expansion,

J=438t;
ana as mean of a great number of experiments in which the heat

developed by the friction of water, of mercury, and of cast iron

was observed.

The coincidence of these three numbers with each other, not-

withstanding the difiiculty of the experiments, dispels all doubt
as to the correctness of the principle which asserts the equivalence
of heat and work; and the agreement of the same with the num-
ber 421 corroborates in like manner the truth of Carnot^s prin-

ciple in the form which it assumes when combined with our

original maxim.

* Phil. Mag., vol. xxiii. p. 441. The English measure has been reduced
to the French standard.

t Ibid. vol. xxvi. p. 381. J Ibid. vol. xxxv. p. 534. -^K'
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