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I. On the Moving Force of Heat, and the Laws regarding the
Nature of Heat itself whick are deducible therefrom. By
" R. Cravsius*,

HE steam-engine having furnished us with a means of con-
verting heat into a motive power, and our thoughts being
thereby led to regard a certain quantity of work as an equivalent
for the amount of heat expended in its production, the idea of
establishing theoretically some fixed relation between a quantity
of heat and the quantity of work which it can possibly produee,
from which relation conclusions-regarding the nature of heat
-itself might be deduced, naturally presents itself. Already, in-
deed, have many instructive experiments been made with this
view; I believe, however, that they have not exhausted the sub-
ject, but that, on the contrary, it merits the continued attention
of physicists; partly because weighty objections lie in the way
of the conclusions already drawn, and partly because other con-
clusions, which might render efficient aid towards establishing
and completing the theory of heat, remain either entirely unno-
ticed, or have not as yet found sufficiently distinct expression.
The most important investigation in connexion with this sub-
ject is that of 8. Carnott+. Later still, the ideas of this author
ave been represented analytically in a very able manner by
Clapeyron{. Carnot proves that whenever work is produced by
heat, and a permanent alteration of the body in action does not
at the same time take place, a certain quantity of heat passes

* Translated from Poggendorff’s Annalen, vol. Ixxix. p. 368.

T Reflezions sur la puissance motrice du feu, et sur les Machines propres
@ déveloper cette puissance, par S. Carnot. Paris, 1824.

I Journ. de I’ Ecole Polytecknique, vol. xix. (1834); and Taylor’s Scien-
tific Memoirs, Part III. p. 347.

Phil. Mag, S. 4. Vol, 2, No. 8. July 1851. B

By g
b



2 M. R. Clausius on the Moving Force of Heat,

from a warm body to a cold one; for example, the vapour which
is generated in the boiler of a steam-engine, and passes thence
to the condenser where it is precipitated, carries heat from the
fireplace to the condenser. This transmission Carnot regards as
the change of heat corresponding to the work produced. He
says expressly, that no heat is lost in the process, that the quan-
tity remains unchanged; and he adds, “This is a fact which
has never been disputed ; it is first assumed without investigation,
and then confirmed by various calorimetric experiments. To
deny it, would be to reject the entire theory of heat, of which it
forms the principal foundation.”

I am not, however, sure that the assertion, that in the pro-
duction of work a loss of heat never occurs, is sufficiently esta-
blished by experiment. Perhaps the contrary might be asserted
with greater justice; that although no such loss may have been
directly proved, still other facts render it exceedingly probable
that a loss occurs. If we assume that heat, like matter, cannot
be lessened in quantity, we must also assume that it cannot be
increased ; but it is almost impossible to explain the ascension
of temperature brought about by friction otherwise than by
assuming an actual increase of heat. The careful experiments
of Joule, who developed heat in various ways by the application
of mechanical force, establish almost to a certainty, not only the
possibility of increasing the quantity of heat, but also the fact
that the newly-produced heat is proportional to the work ex-
pended in its production. It may be remarked further, that
many facts have lately transpired which tend to overthrow the
hypothesis that heat 1s itself a body, and to prove that it con-
sists in a motion of the ultimate particles of bodies. If this be
80, the general principles of mechanics may be applied to heat ;
this motion may be converted into work, the loss of vis viva in
each particular case being proportional to the quantity of work
produced.

These circumstances, of which Carnot was also well aware, and
the importance of which he expressly admitted, pressingly de-
mand a comparison between. heat and work, to be undertaken
with reference to the divergent assumption that the production
of work is not only due to an alteration in the distribution of
heat, but to an actual consumption thereof ; and inversely, that
by the consumption of work heat may be produced.

In a recent memoir by Holtzmann*, it seemed at first as if the
author intended to regard the subject from this latter point of
view. He says (p. 7), “the effect of the heat which has been
communicated to the gas is either an increase of temperature

* Ueber die Wirme und Elasticitiit der Gase und Dampfe, von C. Holtz-
mann. Manheim, 1845. Also Taylor’s Scientific Memoirs, Part XIV.p.189.



and the Laws regarding the Nature of Heat. 3

combined with an increase of elasticity, or a mechanical work,
or a combination of both ; a mechanical work being the equiva-
lent for an increase of temperature. Heat can only be measured
by its effects; and of the two effects mentioned, mechanical
work is peculiarly applicable here, and shall therefore be chosen
as a.standard in the following investigation. I name a unit of heat,
the quantity which, on being communicated to any gas, is able
to produce the quantity of work @ ; or to speak more definitely,
which is able to raise @ kilogrammes to a height of one metre.”
Afterwards, at page 12, he determines the numerical value of the
constant a, according to the method of Meyer*, and obtains a
number which completely agrees with that obtained in a manner
totally different by Joule. In carrying out the theory, however,
that 1is, in developing the equations by means of which his con-
clusions are arrived at, he proceeds in a manner similar to Cla-
peyron, so that the assumption that the quantity of heat is con-
stant is still tacitly retained.

The difference between both ways of regarding the subject has
been laid hold of with much greater clearness by W. Thomson,
who has applied the recent discoveries of Regnault on the tension
and latent heat of steam to the completing of the memoir of
Carnott. Thomson mentions distinctly the obstacles which lie
in the way of an unconditional acceptance of Carnot’s theory,
referring particularly to the investigations of Joule, and dwelling
on one principal objection to which the theory is liable. If it be
even granted that the production of work, where the body in
action remains in the same state after the production as before,
is in all cases accompanied by a transmission of heat from a warm
body to a cold one, it does not follow that by every such trans-

“mission work is produced, for the heat may be carried over by
simple conduction; and in all such cases, if the transmission
alone were the true equivalent of the work performed, an abso-
lute loss of mechanical force must take place in nature, which is
hardly conceivable. Notwithstanding this, however, he arrives
at the conclusion, that in the present state of science the prin-
ciple assumed by Carnot is the most probable foundation for an
investigation on the moving force of heat. He says, “If we
forsake this principle, we stumble immediately on innumerable
other difficulties, which, without further experimental investiga-
tions, and an entirely new erection of the theory of heat, are
altogether insurmountable.” S

I believe, nevertheless, that we ought not to suffer ourselves
to be daunted by these difficulties ; but that, on the contrary, we
must look steadfastly into this theory which calls heat a motion,
as in this way alone can we arrive at the means of establishing

* Ann. der Chim. und Pharm., vol. xlii. p.239."
+ Transactions of the Royal Socieg of Edinburgh, vol. xvi.
2



4 M. R. Clansius on the Moving Force of Heat,

it or refuting it. Besides this, I do not imagine that the diffi-
culties are so great as Thomson considers them to be ; for although
a certain alteration in our way of regarding the subject is neces-
sary, still I find that this is in no case contradicted by proved
facts. It is not even requisite to cast the theory of Carnot over-
board ; a thing difficult to be resolved upon, inasmuch as expe-
rience to a certain extent has shown a surprising coincidence
therewith. On a nearer view of the case, we find that the new
theory is opposed, not to the real fundamental principle of Carnot,
but to the addition “no heat is lost;” for it is quite possible
that in the production of work both may take place at the same
time ; a certain portion of heat may be consumed, and a further
portion transmitted from a warm body to a cold one; and both
portions may stand in a certain definite relation to the quantity
of work produced. This will be made plainer as we proceed ;
and it will be moreover shown, that the inferences to be drawn
from both assumptions may not only exist together, but that
they mutually support each other.

1. Deductions from the principle of the equivalence of heat and
work.

We shall forbear entering at present on the nature of the
motion which may be supposed to exist within a body, and shall
assume generally that a motion of the particles does exist, and
that heat is the measure of their vis viva. Or yet more general,
we shall merely lay down one maxim which is founded on the
above assumption :(—

In all cases where work is produced by heat, a quantity of heat

proportional to the work done is expended; and inversely, by the
expenditure of a like quantity of work, the same amount of heat
may be produced.
. Before passing on to the mathematical treatment of this maxim,
a few of its more immediate consequences may be noticed, which
have an influence on our entire notions as to heat, and which are
capable of being understood, without entering upon the more
definite proofs by calculation which are introduced further on.

We often hear of the fotal heat of bodies, and of gases and
vapours in particular, this term being meant to express the sum
of the sensible and latent heat. It is assumed that this depends
solely upon the present condition of the body under considera-
tion; so that when all other physical properties thereof, its
temperature, density, &c. are known, the total quantity of heat
which the body contains may also be accurately determined.
According to the above maxim, however, this assumption cannot
be admitted. If a body in a certain state, for instance a quan-
tity of gas at the temperature £, and volume v,, be subjected to
various alterations as regards temperature and volume, and
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brought at the conclusion into its original state, the sum of its
sensible and latent heats must, according to the above assump-
tion, be the same as before ; hence, if during any portion of the
process heat be communicated from without, the quantity thus
received must be given off again during some other portion of
the process. With every alteration of volume, however, a certain
quantity of work is either produced or expended by the gas ; for
by its expansion an outward pressure is forced back, and on the
other hand, compression can only be effected by the advance of
an outward pressure. If, therefore, alteration of volume be
among the changes which the gas has undergone, work must
be produced and expended. It is not, however, necessary that at
the conclusion, when the original  condition of the gas is again
established, the entire amount of work produced should be exactly
equal to the amount expended, the one thus balancing the other ;
an excess of one or the other will be present if the compres-
sion has’taken place at a lower or a higher temperature than the
expansion, as shall be proved more strictly further on. This
excess of produced or expended work must, according to the
maxim, correspond to a proportionate excess of expended or pro-
duced heat, and hence the amount of heat refunded by the gas
cannot be the same as that which it has received.

There is still another way of exhibiting this divergence of our
maxim from the common assumption as to the fofal heat of bodies.
When a gas at 7, and v, is to be brought to the higher tempera-
ture ¢, and the greater volume v,, the quantity of heat necessary to
effect this would, according to the usual hypothesis, be quite in-
dependent of the manner in which it is communicated. By the
above maxim, however, this quantity would be different according
as the gas is first heated at the constant volume v, and then per-
mitted to expand at the constant temperature ¢,, or first expanded
at the temperature 7, and afterwards heated to ¢, ; the quantity
of heat varying in all cases with the manner in which the altera-
tions succeed each other. 1

In like manner, when a quantity of water at the temperature
¢, 1s to be converted into vapour of the temperature £, and the
volume v,, it will make a difference in the amount of heat neces-
sary if the water be heated first to ¢, and then suffered to evapo-
rate, or if it be suffered to evaporate by 7, and the vapour heated
afterwards to 7, ; or finally, if the evaporation take place at any
intermediate temperature.

From this and from the immediate consideration of the maxim,
we can form a notion as to the light in which Jafent heat must
be regarded. Referring again to the last example, we distin-
guish in the quantity of heat imparted to the water during the
change the sensible heat and the latent heat. Only the former
of these, however, must we regard as present in the produced
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steam ; the second is, not only as its name imports, hidden from
our perceptions, but has actuuﬁy no existence ; during the altera-
tion 1t has been converted into work.

We must introduce another distinetion still as regards the
heat expended. The work produced is of a twofold nature. In
the first place, a certain quantity of work is necessary to over-
come the mutual attraction of the particles, and to separate them
to the distance which they occupy in a state of vapour, Secondly,
the vapour during its development must, in order to procure
room for itself, foree back an outer pressure. We shall name
the former of these interior work, and the latter exterior work,
and shall distribute the latent heat also under the same two heads.

With regard to the interior work, it can make no difference
whether the evaporation takes place at ¢, or at ¢;, or at any other
intermediate temperature, inasmuch as the attraction of the par-
ticles must be regarded as invariable*. The exterior work, on
the contrary, is regulated by the pressure, and therefore by the
temperature also. These remarks are not restricted to the ex-
ample we have given, but are of general applieation ; and when
it was stated above, that the quantity of heat necessary to bring
a body from one condition into another dépended, not upon the
state of the body at the beginning and the end alone, but upon °
the manner in which the alterations had been earried on through-
out, this statement had reference to that portion only of the
latent heat which corresponds to the exterior work. The re-
mainder of the latent heat and the entire amount of sensible heat
are independent of the manner in which the alteration is effected.

When the vapour of water at ¢ and », is reconverted into
water at /o, the reverse occurs. Work is here expended, inasmuch
as the particles again yield to their attraction, and the outer
}ﬁzessure onee more advances, In this case, therefore, heat must

produced ; and the sensible heat which here exhibits itself does
not come from any retreat in which it was previously concealed,
but is newly produced. 1tisnot necessary that the heat developed
by this reverse process should be equal to that consumed by the
other ; that portion which corresponds to the ezterior work may
be greater or less according to circumstances.

We shall now turn to the mathematical treatment of the sub-
ject, confining ourselves, however, to the consideration of per-

* It must not be objected here that the cohesion of the water at ¢, is less
than at ¢, and hence requires a less amount of work to overcome it. The
lessening of the cohesion implies a certain work performed by the warming
of the water as water, and this must be added to that produced by evapo-
ration. From this it follows, that of the heat which the water receives from
without, only one portion must be regarded as sensible, while the other

rtion goes to loosen the cohesion. This view is in harmony with the

act, that water possesses & so much greater specific heat than ice, and pro-
bably than steam also. a
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manent gases, and of vapours at their maximum density ; as
besides possessing the greatest interest, our superior knowledge
of these recommends them as best suited to the caleculus. It
will, however, be easy to see how the maxim may be applied to
other cases also.

Let a certain quantity of permanent gas, say a unit of weight,
be given. To determine its present condition, three quantities
are necessary ; the pressure under which it exists, its volume;
and its temperature. These quantities stand to each other in a
relation of mutual dependence, which, by a union of the laws of
Mariotte and Gay-Lussac*, is expressed in the following equation :

AN Virue SUl( i ot Qg W some (18]
where p, v, and t express the pressure, volume, and temperature
of the gas in its present state, @ a constant equal for all gases,

and R also a constant, which is fully expressed thus, ff? where

3

Do Yor and £, express contemporaneous values of the above three
quantities for any other condition of the gas. This last constant
is therefore different for different gases, being inversely propor-
tional to the specific weight of each.

It must be remarked, that Regnault has recently proved, by a
series of very careful experiments, that this law is not in all
strictness correct. The deviations, however, for the permanent
gases are very small, and exhibit themselves principally in those
cases where the gas admits of condensation.  From this it would
seem to follow, that the more distant, as regards pressure and
temperature, a gas is from its point of condensation, the more
correct will be the law, Its accuracy for permanent gases in
their common state is so great, that it may be regarded as per-
fect ; for every gas a limit may be imagined, up to which the
law is also perfectly true; and in the following pages, where the
permanent gases are treated as such, we shall assume the exist-
ence of this ideal condition, :

The value le' for atmospheric air is found by the experiments

both of Magnus and Regnault to be =0-003665, the tempera-
ture being expressed by the centesimal scale reckoned from the
freezing-point upwards. The gases, however, as already men-
tioned, not following strictly the law of M. and G:, we do not

b L . p g
always obtain the same value for - when the experiment is re-

peated under different circumstances. The number given above
1s true for the.case when the air is taken at a temperature of 0°
under the pressure of one atmosphere, heated to a temperature

* This shall be expressed in future briefly thus—the law of M. and G+j
and the law of Mariotte alone thus—the law of M.

.
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of 100°, and the increase of cxpansive force observed. If, how-
cver, the pressure be allowed to remain constant, and the increase
of volume observed, we obtain the somewhat higher value
0'003670. - Further, the values increase when the experiments
are made under a pressure exceeding that of the atmosphere, and
decrease when the pressure is'less. It is clear from this, that
the exact value for the ideal condition, where the differenccs
pointed out would of course disappear, cannot be ascertained.
It is certain, however, that the number 0-003665 is not far from
the truth, especially as it very ncarly agrees with the value found
for hydrogen, which, perhaps of all gases, approaches nearest the

: A, S 1
ideal condition. Retaining, therefore, the above value for - we
have a=273.

One of the quantities in equation (I.), for instance p, may be
regarded as a function of the two others; the latter will then be
the independent variables which determine the condition of the
gas. We will now endeavour to ascertain in what manner the
quantitics which relate to the amount of heat depend upon v
and ¢.

When any body whatever changes its volume, the change is
always accompanied by a mechanical work produced or expended.
In most cases, however, it is impossible to determine this with
accuracy, because an unknown interior work usually goes on at
the same time with the exterior. To avoid this difficulty, Carnot
adopted the ingenious contrivance before alluded to : he allowed
the body to undergo various changes, and finally brought it into
its primitive state ; hence if by any of the changes inferior work
was produced, this was sure to be exactly nullified by some other
change ; and it was certain that the quantity of exterior work
which remained over and above was the total quantity produced.
Clapeyron has made this very evident by means of a diagram :
we propose following his-method with permanent gases in the
first instance, introducing, however, some slight modifications
rendered necessary by our maxim.

In the annexed figure let oe Fig. 1.
represent the volume, and ea the
pressure of the unit weight of
gas when its temperature is ¢;
let us suppose the gas to be
contained in an expansible bag,
with whieh, however, no ex-
change of heat is possible. If
the gas be permitted to expand,
no new heat being added, the
temperature will fall.  To avoid
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this, let the bag during the expansion be brought into contact
with a body A of the temperature #, from which it shall receive
heat sufficient to preserve it constant at the same temperature.
While this expansion by constant temperature proceeds, the
pressure decreases according to the law of M., and may be repre-
sented by the ordinate of a curve ad, which is a- portion of an
equilateral hyperbola. When the gas has increased in volume
from oe to of, let the body A be taken away, and the expansion
allowed to proceed still further without the addition of heat ;
the temperature will now sink, and the pressure consequently
grow less as before. = Let the law according to which this pro-
ceeds be represented by the curve be. When the volume of the
gas has increased from of to og, and its temperature is lowered
from ¢ to 7, let a pressure be commenced to bring it back to its
original condition. Were the gas left to itself, its temperature
would now rise’;' this, however, must be avoided by bringing it
into contact with the body B at the temperature 7, to which any
excess of heat will be immediately imparted, the gas being thus
preserved constantly at 7. Let the compression continue till
the volume has receded to %, it being so arranged that the de-
crease of volume indicated by the remaining portion %e shall be
Just sufficient to raise the gas from 7 to £, if during this decrease
it gives out no heat. By the first compression the pressure in-
creases according to the law of M., and may be represented by a
portion cd of another equilateral hyperbola. At the end the in-
crease is quicker, and may be represented by the curve da. This
curve must terminate exactly in @; for as the volume and tem-
perature at the end of the operation have again attained their
original values, this must also be the case with the pressure,
which is a function of both. The gas will therefore be found in
precisely the same condition as at the commencement.

In secking to determine the amount of work performed by
these alterations, it will be necessary, for the. reasons before
assigned, to direct our attention to the eaxterior work alone.
During the expansion, the gas produces a work expressed by the
integral of the product of the differential of the volume into the
corresponding pressure, which product is represented geometri-
cally by the quadrilaterals ea, &f and fbcg. During the com-
pression, however, work will be expended, which is represented
by the quadrilaterals ged® and kdae. The excess of the former
work above the latter is to be regarded as the entire work pro-
duced by the alterations, and this is represented by the quadri-
lateral abed. s

If the foregoing process be reversed, we obtain at the conclu-
sion the same quantity abed as the excess of the work ezpended
over that produced.
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In applying the foregoing Fig. 2.
considerations analytically, we
will assume that the various
alterations which the gas has e
undergone have been snfinitely b
small. We can then consider '
the curves hefore mentioned
to be straight lines, as shown
in the accompanying figure.
In determining its superficial
content, the quadrilateral abcd ¢ ¢ hst g
may be regarded as a parallelogram, for the error in this case can
only amount to a differential of the third order, while the area
itself is a differential of the second order. The latter may there-
fore be expressed by the product ef.bk, where £ marks the point
at which the ordinate 4f cuts the lower side of the parallelogram.
The quantity b% is the increase of pressure due to the raising of
the constant volume of from T to ¢, that is to say, due to the
differential #—7r=d¢. This quantity can be expressed in terms
of v and ¢ by means of equation (I.), as follows:

Rdt
dp: T.

If the increase of volume ef he denoted by dv, we obtain the
content of the quadrilateral, and with it

R dv dt
r—— |

(1)

We must now determine the quantity of heat consumed during
those alterations. Let the amount of heat which must be im-
parted to change the gas by a definite process from any given
state to another, in which its volume is =v and its temperature
=1, be called Q ; and let the changes of volume occurring in
the process above described, which are now to be regarded sepa-
rately, be denoted as follows : efhy dv, g by d'v, ek by &v, and
fg by &v. During an expansion from the volume oe=v to
of=v+dv, at the constant temperature #, the gas must receive
the quantity of heat expressed by

(% )i

and in accordance with this, during an expansion from vh=v+ 8
to og=v+dv+d'v at the temperature ¢ —d¢, the quantity

aQ d'dQ) d (dQ
- %(EE M= z;)‘”] >

The work produced =
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In our case, however, instead of an expansion, a compression
has taken place ; hence this last expression must be introduced
with the negative sign. During the expansion from of to oy,
and the compression from ok to oe, heat has been neither
received nor given away ; the amount of heat which the gas has
received over and above that which it has communicated, or, in
other words, the quantity of heat consumed, will therefore be

Do [(8) + 2D 5(Dalon. o

The quantities 6v and d'v must now be eliminated ; a conside-

ration of the figure furnishes us with the following equation :
dv + 8v="~0v +dM.

During its compression from ok to e, consequently during its
expansion under the same circumstances from oe to 04, and
during the expansion from of to og, both of which cause a de-
crease of temperature df, the gas neither receives nor communi-
cates heat : from this we derive the equations

(8- (o

[({2%) + %(d?%)dv] So—. [ (% + %(%?) dv]dt:O.

From these three equations and equation (2.) the quantities
d'v, dv and 8'v, may be eliminated ; neglecting during the pro-
cess all differentials of a higher order than the second, we obtain

The heat eapended = [dit(%) 4 E‘% ‘fl—?) dodr. . @)

Turning now to our maxim, which asserts that the production
of a certan quantity of work necessitates the expenditure of a
proportionate amount of heat, we may express this in the form
of an equation, thus : .

The heat expended _ A (4.)
L The work produced ~ > ~ ~ ° °
where A denotes a constant which expresses the equivalent of heat

Jor the unit of work. The expressions (1.) and (3.) being mtro-
duced into this equation, we obtain

[4(59)- (D) Jwa_,

R.dvdt

(IL)

v
T dw\di v

<.)r 3 %(%‘% d dQ)____A.R.
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This equation may be regarded as the analytical expression
of the above maxim applicable to the case of permanent gases.
It shows that Q cannot be a function of » and ¢ as long as the
two latter are indcpendent of each other. For otherwise, ac-
cording to the known principle of the differcntial caleulus, that
when a function of two variables is differentiated according to
both, the order in which this takes place is matter of indiffer-
ence, the right side of the equation must be equal 0.

The equation can be brought under the form ofia complete
differential, thus :

Q=dU+AR L m, L (Il
where U denotes an arbitrary function of v and ¢. This differ-
ential equation is of course unintcgrable until we find a second
condition between the variables, by means of which ¢ may be
expressed as a function of ». This is due, however, to the last
member alone, and this it is which corresponds to the eaterior
work effected by the alteration ; for the differential of this work
is pdv, which, when p is eliminated by means of (I.), becomes

WS
v

It follows, therefore, in the first place, from (IIa.), that the
entire quantity of heat, Q, absorbed by the gas during a change
of volume and temperature may be decomposed into two portions.
One of these, U, which comprises the sensible heat and the heat
necessary for interior work, if such be present, fulfils the usnal
assumption, it is a function of v and ¢, and is therefore determined
by the state of the gas at the beginning and at the end of the
alteration ; while the other portion, which comprises the heat
expended on ewterior work, depends, not only upon the state of
the gas at these two limits, but also upon the manner in which
the alterations have been effected throughout. It is shown above
that the same conclusion flows directly from the maxim itself.

Before attempting to make this equation suited to the dedue-
tion of further infercnces, we will develope the analytical expres-
sion of the maxim applicable to vapours at their mazimum density.

In this case we are not at liberty to assume the correctness of
the law of M. and G., and must therefore confine ourselves to the
maxim alone. To obtain an equation from this, we will again
gursue the course indicated by Carnot, and reduced to a diagram

y Clapeyron.” Let a vessel impervious to hcat be partially filled
with water, leaving a space above for steam of the maximum
density corresponding to the temperature £, Let the volume of
hoth together be rcpresented in the anncxed figure by the
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abscissa oe, and "the ‘pressure of v : 1 v Rig 8,
the steam by the ordinate ea.’ Let ‘ ORI
the vessel be now supposed to
expand, whileboth fluidand steam @ b
are kept in' contact with' a body: (ot Aol )

A’ of ' the constant  temperature
¢. 'As the space increases; more
fluid is evaporated, the necessary
amountof latent heat being sup-
plied by the body A ; sothat the
temperature, and consequently ¢ € R i
the pressure of the steam, may remain unchano'ed When the
entire volume 1is increased in this manner from oe to of, an ex-
terior work is produced which is represented by the rectangle ea
4f.  Let the body A be now taken away, and let the vessel con-
tinue to expand without heat being either given or received.
Partly by the expansion of the steam alr eady present, and partly
by the formation of new steam, the temperature will be lowered
and 'the pressure become less.  Let the expansion be suffered to
continue until the temperature passes from £ to 7, and let og
represent the volume at this temperature. If the decrease of
pressure during this expansion be represented by the curve &c,
the exterior Work produced by it will be represented by fbey.

" Let ‘the vessel be now pressed together so as to bring the fluid
and vapour to their original volume oe, and during a portion of
the process let the vessel be in contact with a body, B, of the
temperature 7, to which any excess of heat shall be 1mmedlately
imparted, and the temperature of the fluid and vapour kept con-
stant at 7.~ During the other portion of the process, let the body
B be withdrawn so that the temperature may rise; let the first
compression continue till the volume has been reduced to oh, it
being so arranged that the remaining space 4e shall be just suf-
ficient to raise the temperature from 7 to Z. During the first
décrease of volume the pressure remains constant at ge, and the
quantity of exterior work expended is equal to the rectangle gc dk.
During the last decrease of volume the pressure increases, and
may be represented by the curve da, which must terminate exactly
in the point g, as the original temperature ¢ must again corre-
spond to the original pressure ea. The exterior work expended
in this case is = /dae.

At the end of the operation both fluid and vapour are in the
same state as at the ‘commencement, so that the excess of the
exterior work produced over the amount expended expresses the
total amount of work accomplished. This excess is represented
by the quadrilateral abed, the content of which must therefore
be compared with the /zeat expended at the same time.
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For this purpose lct it be as- Fig. 4.
sumed, as before, that the de-
scribed alterations are infinitely
small, and under this view let
the process be represented by 3 ¢
the annexed figure, in which the k
curves ad and bec shown in fig. 3
have passed into straight lines.
With regard to the content of
the quadrilateral abed, it may be ¢
againregardedas aparallelogram,
the arca of which 1s expressed by the product ef.bk.  Now if,
when the temperature is ¢, the pressure of the vapour at its
maximum tension be equal to p, and the difference of tempera-
ture £—7 be expressed by dt, we have

dp
. bk= i dt;
ef 1s the incrcase of volume caused by the passing of a certain
quantity of fluid represented by dm into a state of vapour. Let
the volume of the unit of steam at its maximum density for the
temperature ¢ be called s, and the volume’ of the same quantity
of fluid at the temperature ¢ be called o ; then is

ef=(s—c)dm;
and hence the content of the rectangle, or

The work produced = (s— o) %dm & (Y

@ £

h - S

To express the amount of heat, we will introduce the following
notation :—Let the quantity of heat rendered latent by the pas-
sage of a unit weight of fluid at the temperature ¢, and under a
corresponding pressure into a state of vapour, be called r, and
the specific heat of the fluid ¢; both of these quantities, as
dp A
dt’
let the quantity of heat which must be communicated to a unit
weight of vapour of water to raise it from the temperature £ to
¢+ dt,—the vapour being preserved by pressure at the maximum
density duc to the latter temperature without precipitation,—be
called hdt, where % likewise representsa function of #.  'We shall
refer the question as to whether its value is positive or negative
to future consideration.

If we name the mass of fluid originally present in the vessel
#, and the mass of the vapour m; further, the mass evaporated
during the expansion from ce to of, dm, and the mass precipi-
tated by the compression from og to ok, d'm, we obtain in the

also the forcgoing s, @, and -, being functions of £.  Finally,
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first case the quantity
rdm

of latent heat which has been extracted from the body A ; and
in the second case, the quantlty

(r— ——dt)d’m

of sensible heat which has been imparted to the body B. By
the other expansion and contraction heat is neither gained nor
lost; hence at the end of the process we have

The heat expended = rdm— (r—-zt-dt) T (6)

" In this equation the differential &'m must be expressed through.
dm and df ; the conditions under which the second expansion
and the second contraction have been carried out enables us to
do this, Let the mass of vapour precipitated by the compression
from o/ to oe, and which therefore would develope itself by expan-
sion from oe to ok, be represented by dm, and the mass developed
by the expansion from of to og by &'m; then, as at the conclu-
sion of the experiment the original mass of fluid and of vapour
must be present, we obtain in the first place the equation

dm + 0'm=d'm + ém.

Further, for the expansion from oe to ok, as the temperature
of the fluid mass p and the mass of vapour m must thereby be
lessened the quantity df without heat escaping, we obtain the
equation

rém— . cdt—m.hdt=0;

and in like manner for the expansion from of to og, as here we
have only to set 4 —dm and m +dm in the place of x and m, and
&'m in the place of ém, we obtain

rd'm— (w—dm)cdt — (m + dm)hdt =0.

If from these three equations and equation (6.) the quantities
d'm, &m and &'m, be eliminated, and all differentials of a higher
order than the second be neglected ‘we have

The hoat eapentled = (d te—h)dmdt. . . (7)

The formulee (7.) and. (5.) must now be united, as in the case
of permanent gases, thus:

dr
di

(s—0)7> o = dm dt

+c-—h>dmdt
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and hence we obtain, as the analytical expression of the maxim,
applicable to vapours at their maximum density, the equation

ﬂ.}.c—h:A(s—a)@. .. . . (HL)

If, instead of the above maxim, the assumption that the quan-
tity of heat is constant be retained, then, according to (7.), in-
stead of cquation (IIL.) we must set

dr
T Hhe—=h=0." .4 & = LU @
And this equation, although not exactly in the same form, has
been virtually used heretofore to determine the value of the quan-
tity 4. As long as the law of Watt is regarded as true, that the
sum of the latent and sensible heat of a quantity of steam at its
maximum density is the same for all temperatures, and conse-
quently that

dr
b7 +¢=0,
it must be inferved that for this fluid % also is equal O; this,
indeed, has been often asserted, by saying that when a quantity
of vapour at its maximum density is compressed in a vessel im-
pervious to heat, or suffered to expand in the same, it will remain
at its maximum density. As, however, Regnault* has corrected
the law of Watt so that we can set with tolerable accuracy

dr
d_t +C=0'305,
the equation (8.) gives for % also the value 0:305. It follows
from this, that a portion of the steam in the impermeable vessel
must be precipitated by compression, and that it cannot retain
its maximum density after it has been suffered to expand, as its
temperature does not decrease in a ratio corresponding to the
decrease of density.

Quite otherwise is it if, instead of equation (8.), we make use
of cquation (III.). The expression on the right-hand side is
from its nature always positive, and from this follows in the first
place that 4 is less than 0-305. It will be shown further on
that the value of the said expression is so great that 4 becomes
even negative. Hence we must conclude that the above quan-
tity of vapour will be partially precipitated, not by the compres-
sion, but by the ezpansion; when compressed, its temperature
rises in a quicker ratio than that corresponding to the increase
of density, so that it does not continue at its maximum density.

This result is indeed directly opposed to the notions generally

* Mém. de U Acad., vol. xxi. 9th and 10th Memoirs.
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entertained on this subject; I believe, however, that no experi-
ment can be found which contradicts it. On the contrary, it
harmonizes with the observations of Pambour better than the
common notion. Pambour found* that the steam issuing from
a locomotive after a journey. always possesses the temperature
for which the tension observed at the same time is a maximum.
From this it follows that % is either O, as was then supposed,
because this agreed with the law of Watt, which was considered
correct at the time, or that % is negative. If h were positive, then
the temperature of the issuing steam must have been too high
in comparison with its tension, and this could not have escaped
Pambour. If, on the contrary, in agreement with the above, % be
negative, too low a temperature cannot occur, but a portion of the
vapour will be converted into water so as to preserve the remainder
at its proper temperature. This portion is not necessarily large,
as a small quantity of vapour imparts a comparatively large
quantity of heat by its precipitation ; the water thus formed 1s
probably carried forward mechanically by the steam, and might
remain unregarded ; the more so, as, even if observed, it might
have been imagined to proceed from the boiler.

So far the consequences have been deduced from the above
maxim alone, without any new assumption whatever being made.
Nevertheless, by availing ourselves of a very natural incidental
assumption, the equation for permanent gases (IIa.) may be ren-
dered considerably more productive. Gases exhibit in their de-
portment, particularly as regards the relations of volume, tem-
perature and pressure, expressed by the laws of M. and G., so
much regularity as to lead us to the notion that the mutual
attraction of the particles which takes place in solid and fluid
bodies is in their case annulled ; so that while with solids and
fluids the heat necessary to effect an expansion has to contend
with both an inner and an outer resistance, the latter only is
effective in the case of gases. If this be the case, then, by the
expansion of a gas, only so much heat can be rendered latent as
is necessary to ewxterior work. Further, there is no reason to
suppose that a gas, after it has expanded at a constant tempera-
ture, contains more sensible heat ;than before. . If this also be
admitted, we obtain the proposition, when a permanent gas ex-
pands at a constant temperature, it absorbs only as much heat as is
necessary to the exterior work produced by the expansion ; a pro-
position which is probably true for all gases in the same degree
as the law of M. and G.

From this immediately follows

d! a+t
(%):A.R ey T e

v

* Traité des locomotives, 2nd edit., and Théorie des machines & vapeur,
2nd edit.

Phil, Mag, S, 4, Vol, 2, No, 8, July 1851, C

-
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for, as already mentioned, R a—-:—! dv represents the quantity of

exterior work l})roduced. by the expansion dv. According to this,
the function U, which appears in equation (I1a.), cannot contain
v, and hence the equation changes to

WQ=cdt+ AR d, . . .. (W)
wherein ¢ can only be a function of ¢#; and it is even probable
that the quantity ¢, which denotes the specific heat of the gas at
a constant volume, is itself a constant. )

To apply this equation to particular cases, the peculiar con-
ditions of each case must be brought into connexion therewith,
so as to render it integrable. 'We shall here introduce only a
few simple examples, which possess either an intrinsic interest,
or obtain an interest by comparison with other results connected
with this subjeet. .

In the first place, if we set in equation (II5.) v= const, and
p= const., we obtain the speeific heat of the gas at a constant
volume, and its specific heat under a constant pressure. In the
former case dv=0, and (I115.) becomes .

‘%%:c.. E@ES e o ey (10)

In the latter case, from the condition p= const., we obtain with
help of equation (I.), )

dv=-Bﬁ, .
or

do_

v a+t’ !

whieh placed in (I14.), the specific heat under a constant pressure
being denoted by ¢, gives us

daQ
SF=¢=ctAR. . . . . . (l0a)

From this it mdy be inferred that the difference of both specific
heats for every gas is a constant quantity AR. But this quantity
expresses a simple relation for different gases also, The com-

plete expression for R is %—;—’—, where pg, v, and ¢, denote the

contemporancous values of p, v, and ¢ for a unit of weight of the

gas in question ; and from this follows, as already mentioned in

expressing equation (I.), that R is inversely proportional to the

?eciﬁc heat of the gas; the same must be true of the difference
—c=AR, as A is for all gases the same,
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«. If it be desired to calculate the specific heat of the gas, not by
the unit of weight, but by the method more in use, the unit of
volume, say at the temperature #, and the pressure p,, it is only
necessary to divide ¢ and ¢! by v,. Let these ‘quotients be ex-
pressed by v and ¢/, and we obtain b

AR . p

G o _Aa+t0' '

In this last expression nothing appears which is dependent on
the peculiar nature of the gas; the difference of the specific heats
reckoned according to the unit of volume is therefore the same
Jfor all gases. This proposition has been deduced by Clapeyron
from the theory of Carnot; but the constant found above .is
not given by the difference ¢/—¢, the expression found for it
having still the form of a function of the temperature.

Dividing both sides of equation (11.) by ¢, we obtain

(11.)

HApS AR PRREHIERL il (12.

wherein £ is set for shortness’ sake in the place of *~, Thisis
o \
equal to the quotient = and through the theoretic labours of

Laplace on the transmission of sound through air, has attained
a'peculiar interest in science. ' T%e excess of this quotient above
unity in the case of different gases is therefore inversely propor-
tional to their specific heats, reckoned according to the unit of
volume when the latter is constant. This proposition has heen
proved experimentally by Dulong* to be so nearly correct, that
its theoretic probability induced him to assume its entiré truth,
and to use it in an inverse manner in calculating the specific
heat of various gases, the value of & being first deduced from
observation. It must, however, be remarked, that the propo-
sition is theoretically safe only so far as the law of M. and G.
holds good ; which, as regards the various gases examined by
Dulong, was not always the case to a sufficient degree of accuracy.
. Let us suppose that the specific heat ¢ of the gases by constant
volume is constant, which we have already stated to be very pro-
bable ; this will also be the case when the pressure is constant,

and hence the quotient of both specific heats E_J- =k must be also

constant. This proposition, which Poisson, in agreement with
the experiments of Gay-Lussac and Welter, has assumed to be
correct, and made the basis of his investigations on the tension

* Ann. de Chim. et de Phys., xli.; and Pogg. Ann., xvi.
C2
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and heat of gases*, harmonizes very well with our present theory,
while it is not poss1ble to reconcile it with the theory of Carnot
as heretofore treated.

In equation (I13.) let Q= const., we then obtain the following
equation between v and /: :

i+ AR gm0y sy

from which, when ¢ is regarded as constant, we derive
AR
i (a+t)= const.;

or, since according to equation (10a.), —— AR — g- —1=k-1,

v¥=1(a+ )= const.

Let three corresponding values of v, £ and p, be denoted by vo,
t, and pg; we obtain from this |

a+t ™ gg)k- A - f
aHo_( RSEAR RG] (14.)

By means of equation (I.) let the pressure p, first for v and
then for ¢, be introduced here, we thus obtain

s =(11;;o) T IRVARG .5

If_():(l})". 2w b v (M)

A
These are the relations which subsist between volume, tempe-

rature and pressure, when a quantity of gas is compressed, or is
suffered to expand in a holder impervious to heat. These equa-
tions agree completely with those developed by Poisson for the
same caset, the reason being that he also regarded £ as constant.
" Finally, in equation (II5.) let #=const., the first member at
the right-hand side disappears, and we have remaining

Q=AR ;. L an

from which follows
Q=AR(z+1?) logv+const. ;
or when the values of v, p, # and Q, at the commencement of
the experiment, are denoted by v, p,, ¢, and Q,,
Q—Qu=AR(a+1,) 1ogvl. iy 1, 1618Y)
0

* Traité de Mécanique, 2nd edit. vol. ii. p. 646.
+ Traité de Mécanique, vol, ii. p. 647.
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. From this, in the first place, we derive the proposition deye-
loped also by, Carnot ; when a 90, without alteration of tempera-
ture, changes s volume, the quantities of heat developed or absorbed
are in arithmetical progression, while the volumes are n geometrzcal
progression.

:Further, let the complete expressmn for R= 5—3_0 be set in

equatlon (18.), and we obtain , =
Q~— Qo_Apovolo": (9N

If we apply thls equation to different gases, not directing our
attention to equal weights of the same, but to such quantities as
at the begmmng embrace a common volume v, the equation
will in all its parts be independent of the peculiar nature of the
gas, and agrees with the known proposition to which Dulong,
led by the above simple relation of the quantity £—1, has given
expression : that when equal volumes of different gases at the same
pressure and temperature are compressed or expanded an equal
Jractional part of the volume, the same absolute amount of heat is
in all cases developed or absorbed. The equation (19.) is however
much more general. It says besides this, that the quantity of
heat is independent of the temperature at which the alteration of
volume takes place, if only the quantity of gas applied be always
so determined that the original volumes v, at the different tem-
peratures shall be equal ; further, that when the original pressure
is:in the different cases different, the quantities of heat are thereto

proportwnal
[To be continued. ]

1. ‘On the Beudantite of Levy. By H. J. Brooxs, F.R.S* '

HA ING had the pleasure last week of a personal commu-

nication with M. Des Cloizeaux, and ‘having shown him
Levy’s specimen of this mineral, he at once stated that it differed
entirely from that examined by himself and M. Damour as Beu-
dantite, as well as from every other specimen under the same
name which he had seen. He said that he was not aware of the
existence of any mineral resembling Levy’s in any collection on
the Continent, and that he was inclined with Levy to regard his
specimen as belongmg to a separate species. The mineral known
as Beudantite on the continent appears to be only an impure
variety of cube ore of the usual form.

June 9, 1851.
* Communicated by the Author.
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XVIIL. On the Moving Force of Heat, and the Laws regarding
the Nature of Heat itself whick are deducible  therefrom.
By R. Crausius.

[Concluded from p. 21.]

CARNOT, as already mentioned, has regarded the production

of work as the equivalent of a mere transmission of heat
Jrom a warm body to a cold one, the quantity of heat being thereby
undiminished.

The latter portion of this assumption, that the quantity of
heat 1s undiminished, contradicts our maxim, and must there-
fore, if the latter be retained, be rejected. The former portion,
however, may remain substantially as it is. For although we
have no need of a peculiar equivalent for the produced work,
after we have assumed as such an actual consumption of heat, it
is nevertheless possible that the said transmission may take place
contemporaneously with the consumption, and may likewise stand
in a certain definite relation to the produced work. It remains
therefore to be investigated whether this assumption, besides
being possible, has a sufficient degree of probability to recom-
mend it. '

A transmission of heat from a warm body to a cold one cer-
tainly takes place in those cases where work 1s produced by heat,
and the condition fulfilled that the body in action is in the same
state at the end of the operation as at the commencement.  In
the processes described above, and represented geometrically in
figs. 1 and 3, we have seen that the gas and the evaporating water,
while the volume was increasing, received heat from the body A,
and during the diminution of the volume yielded up heat to the
body B, a certain quantity of heat being thus transmitted from
A to B; and this quantity was'so great in comparison with that
which we assumed to be expended, that, in the infinitely small
alterations represented in figs. 2 and 4, the latter was a differ-
ential of the second order, while the ‘former was a differential of
the first order. In order, however, to bring the transmitted
heat into proper relation with the work, one limitation .is still
necessary. As a transmission of heat may take place by con-
duction without producing any mechanical effect when a warm
body is in contact with a cold one, if we wish to obtain the
greatest possible amount of work from the passage of heat be-
tween two bodies, say of the temperatures ¢ and 7, the matter
must be so arranged that two substances of different tempera-
tures shall never come in contact with each other.

It is this mazimum of work that must be compared with the
transmission of the heat ; and we hereby find that it may reason-
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ably be assumed, with Carnot, that the work depends solely upon
the quantity of heat transmitted, on.the temperatures.# and + of
both bodies A and B, and notupon the nature of the substance
which transmitsit. This maximum has the property, that, by its
consumption, a quantity of heat may be carried from the cold body

B to the warm one A equal to thatwhich passed from A to B during
its production. * convince ourselves of this by con-
ceiving the Ma ove described to be conducted in a reverse

; for example, that in the first case the gas shall be per-
mitted to expand of itself until its temperature is lowered from
t to. 7, the expansion being then continued in connexion with B ;
afterwards compressed by 1itself until its temperature is again ¢,
and the final compression effected in connexion with A. The
amount of work expended during the compression will be thus
greater than that produced by the expansion, so that on the
whole a loss of work will take place exactly equal to the gain
‘which ‘accrued from the. former process. Further, the same
quantity of heat will be here taken away from the body B as in
the former case was imparted to it, and to the body A the same
amount will be imparted as by the former proceeding was taken
away from it; from which we may infer, both that the quantity
of heat formerly consumed is here produced, and also that the
‘%iiaptity"which formerly passed from A to B now passes from

B Vi ST ' .

* Let us suppose that there are two substances, one of which is
able to produce more work by thé transmission of a certain
amount of heat, or what is the same, that in the performance of
a certain work requires a less amount of heat to be carried from
A to B than the other; both these substances might be applied
alternately ; by the first work might be produced according to
the process above described; and then the second might be applied
to’consume, this work by a reversal of the process. At the end
both bodies would be again in their original state; further, the
work expended and the work. produced would exactly annul each
other, and thus, in agreement with our maxim also, the quantity
of heat would neither be increased nor diminished. Only with’
regard to the distribution of the heat would a difference occur, as
more heat would be brought from B to A than from A to B, and
thus on the whole a transmission from B to A would take place.
Hence by repeating both these ‘alternating processes, without
expenditure of force or other alteration whatever, any quantity
of heat might be transmitted from a cold body to a warm one;
and this contradicts the general deportment of heat, which every-
where exhibits the tendency to annul differences of temperature,
and therefore to pass from a warmer body to a colder one.

From this it would appear thf.t we are theoretically justified in
- 2
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retaining the first and really essential portion of the assumption
of Carnot, and to apply it as a second maxim in connexion with
the former. It will be immediately seen that this procedure
receives manifold corroboration from its consequences.

This assumption being made, we may regard the maximum
work which can be effected by the transmission of a unit of heat
from the body A at the temperature ¢ to the body B at the tem-
perature 7, as a function of £ and 7. The value of this function
must of course be so much smaller the smaller the difference
t—7is; and must, when the latter becomes infinitely small (=dt),
pass into the product of d¢ with a function of ¢ alone. This
latter being our case at present, we may represent the work
under the form :

1 .
C
wherein C denotes a function of ¢ only.

To apply this result to the case of permanent gases, let us
once more turn to the process represented by fig. 2. During
the first expansion in that case the amount of heat,

d
(@)
passed from A to the gas; and during the first compression, the
following portion thereof was yielded to the body B, ol

[+ () &S

() L4~ £

The latter quantity is therefore the amount of heat transmitted.
As, however, we can negleet the differential of the second order
in comparison with that of the first, we retain simply

(%) dv.

The quantity of work produced at the same time was
R dv.dt
v 2

dt,

or

and from this we can construct the equation
R dv . dt

v

%%)dv

-di,

(@I
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W o (%‘)—- T. a o e . . . (IV-)
Let us now make a corresponding application to the process
of evaporation represented by fig. 4. The_quantity of heat in
that case transmitted from A to B was , '
.dr ) -
(7‘— t—i; dt d m,
or ll . ,
dr
rin— (g to—h)dn dt

for which, neglecting the differentials ‘of the second order, we
may set simply
rdm.

The quantity of work thereby produced was
d
( (s—0o) 7‘galm dt,
and hence we obtain the equation -

dp
(s—o-)z,—t-- dm .‘dt La

— . dt
rdm C ¢

or
r=Cle=a) L, e e (V)

These, although not in the same form, are the two analytical
expressions of the principle of Carnot as given by Clapeyron. In
the case of vapours, the latter adheres to equation (V.), and con-
tents himself with some immediate applications thereof. For
gases, on the contrary, he makes equation (IV.) the basis of a
further development; and in this development alone does the
partial divergence of his result from ours make its appearance.

. We will now bring both these equations into connexion with
the results furnished by the original maxim, commencing with
those which have reference to permanent gases.

Confining ourselves to that deduction which has the maxim
alone for basis, that is to equation (IIa.), the quantity U which
stands therein as an arbitrary function of v and ¢ may be more
nearly determined by (IV.); the equation thus becomes

dQ= [B—}-R(%Ct- —-A)logv]dt+ 2 dv, ‘(Ile.)

in which B remains as an arbitrary function of ¢ alone.
If, on the contrary, we regard the incidental assumption also
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as correct, the equation (IV.) will thereby be rendered unneces-
sary for the nearer determination of (Ila.), inasmuch as the same
object is arrived at in 8 much more complete manner by equa-
tion (9.), which flowed immediately from the combination of the
said assumption with the original maxim. The equation (IV.),
however, furnishes us with a nieans of submitting both princi-
ples to a reciprocal trial. The equation (9.) was thus expressed,

(49. _R.Ale+9)
dv v :

and when we compare this with equation (IV.), we find that
both of them express the same thing ; with this difference only,
that one of them expresses it more definitely than the other. f;l
(IV.) the function of the temperature is expressed in a general
manner merely, whereas in (9.) we have instead of C the more
definite expression A(a+1).

To this surprising coincidence the equation (V.) adds its testi-
mony, and confirms the result that R(a+¢) is the true expres-
sion for the function C. This equation is used by Clapeyron
and Thomson in determining the values of C for single tempe-
ratures. The temperatures chosen by Clapeyron were the boiling-
points of wther, of alcohol, of water, and of oil of turpentine. He

determined by experiment the values of g]{-, s and r, for these

fluids at their boiling-points ; and setting these values in equa-
tion (V.), he obtained for C the numbers contained in the second
column of the following table. Thomson, on the contrary,
limited himself to the vapour of water; but has observed it at
various temperatures, and in this way calculated the value of
C for every single degree from 0° to 230° Cent. The observa-
tions of Regnault had furnished him with a secure basis as
dp
dt
the boiling-point, the value of s is known with less certainty.
In this case, therefore, he felt compelled to make an assumption
which he himself regarded as only approximately correct, using
it merely as a preliminary help until the discovery of more exact
data. The assumption was, that the vapour of water at its
maximum density follows the law of M. and G. The numbers
thus found for the temperatures used by Clapeyron, as reduced
. to the French standard, are exhibited in the third column of the
following table :—

regards the quantities - and 7; but for other temperatures than
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“Table I
l: 148 A v AT U - g spe 0 B
¢t in Cent. degrees, C according to Clapeyron, C according to Thomson.
355 e, il 0728
788 0-828 . oy 0814
100 - : 0-897 . - 0-855
156-8 0930 0952

We see that the values of C found in both cases increase, like
those of A(a+1), slowly with the temperature. They bear the
same ratio to each'other as the numbers of the following series :

1; 1:13; 1-22; 1:27;
1;1:12;1.17; 131

and when the ratio of the values of A(a+¢) (obtained by setting
a=278) corresponding to the same temperatures are calculated,
we obtain
' 1; 1:145 1-21; 1 39 -,

'I‘hls series of relative values deviates from the former only so far
as ' might be expected from the insecurity of the data from which
those are derived : the same will also exhibit itself further on in
the determination of the absolute value of the constant A.

Such a coincidence of results derived from two entirely differ-
ent bases cannot be accidental. . Rather does it furnish an im-
portant corroboration of both, and ‘also of the additional inci-
dental assumptlon

" Let us now turn again to the application of equations (IV.)
and (V. ); the former, as regards permanent gases, has merely
served to substantiate conclusions already known. For vapours,
however, and for other substances to which the principle of Carnot
may be applicable, the said equation furnishes the important
advantage, that by it we are _]ustlﬁed in substituting everywhere
for the function C the definite expressmn Aa+1). :

The equation (V.) changes by this mto

- r=Ala+?).6— (Va.)

7 o dt’
we thus obtain for the vapour a simple relation between the tem-
perature at which it is formed, the pressure, the volume, and
the latent heat, and can make use of it in drawing still further
conclusions.

 Were the law of M. and G. true for vapours at their max1mum

denmty, we should have :
s SRRUEREHE « S5, g (20.)
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By means of this equation let s be eliminated from (Va.) ; neg-
lecting the quantity o, which, when the temperature is not
very high, disappears in comparison with s, we obtain

1dp 7

pdt— AR(a+8)*
If the second assumption that r is constant be made here, we
obtain by integration

S N (2 ()
8 = A R(a+100)(at1)’
where p, denotes the tension of the vapour at 100°. Let

t—100=7, a+100=«, and

k-4 ¢ Uiininca ag B;
AR(e+100) "7
we have then

oy A R AT, e

i a+t i
This equation cannot of course be strictly correct, because the
two assumptions made during its development are not so. As

however the latter apploumatc at least In some measure to the

15 .
expresses in a rough manner, so to speak,

the route of the quaﬂtity log £ ; and from this it may be per-

truth, the formula

ceived how it is, when the constants « and 8 are regarded as
arbitrary, instead of representing the definite values which their
meaning assigns to them, that the above may be used as an em-
pirical formula for the calculation of the tension of vapours,
without however considering it, as some have done, to be com-
pletely true theoretically.

Our next application of equation (Va.) shall be to ascertain
how far the vapour of water, concerning which we possess the
most numerous data, diverges in its state of maximum density from
the law of M. and G. 'Ths divergence cannot be small, as car-
bonic acid and sulphurous acid gas, long before they reach their
points of condensation, exhibit considerable deviations.

The equation (Va.) can be brought to the following form :

a ar
Ap(s— = R (.0
RN ity 4 s
pdt
Were the law of M. and G. strictly true, the expression at the
left-hand side must be very nearly constant, as the, said law
would according to (20.) immediately give
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ar7 =B '
where instead of s we can, with a near approach to accuracy, set
the quantity s—o. By a comparison with its true values calcu-
lated from the formula at the right-hand side of (22.), this equa-
tion becomes peculiarly suited to exhibit every divergence from
the law of M. and G. I have carried out this calculation for a
series of temperatures, using for » and p the numbers given by
Regnault*.

With regard to the latent feat, moreover, according to Reg-
naultt the quantity of heat A necessary to raise a unit of weight
of water from 0° to #°, and then to evaporate it at this tempera-
ture, may be represented with tolerable accuracy by the following
formula : e

A .ps

A=6065+0303¢ . . . . . (23)
In accordance, however, with the meaning of A, we have

¢
7\:7'4—‘/ cdi. o, . . e 1(230Y)
0

For the quantity ¢, which is here introduced to express the spe-
cific heat of the water, Regnault{ has given in another investiga-
tion the following formula : |

¢=1+0:00004.¢+0:0000009.22. . . (23b)

By means of these two equations we obtain from (23.) the fol-
lowing expression for the latent heat : '

7=606"5—0695.£—0-00002.£2—0-000000.3§. . (24.)
Further, with regard to the pressure, Regnault has had recourse
to a diagram to obtain the most probable value out of his nume-

* Meém. de U Acad. de VInst. de France, vol. xxi. (1847).

T Ibid. Mem. IX.; also Pogg. Ann., vol. Ixxviii.

1 Mém. de U'Acad. de U Inst. 5{3 France, Mem. X.

§ In the greater number of his experiments Regnault has observed, not
so much the hcat which becomes latent during evaporation, as that which
becomes sensible by the precipitation of the vapour. Since, therefore, it
has been shown, that if the maxim regarding the equivalence of heat and
work be correct, the heat developed by the precipitation of a quantity of
vapour is not necessarily equal to that which it had absorbed during evapo-
ration, the question may occur whether such differences may not have
occurred in Regnault’s experiments also, the given formula for 7 being thus
rendered useless. I believe, however, that a negative may be returned to
this question ; the matter being so arranged by Regnanlt, that the precipi-
tation of the vapour took place at the same pressure as its development,
that is, nearly under the pressure corresponding to the maximum density
of the vapour at the observed temperature ; and in this case the same quan-

tity of heat must be produced during condensation as was absorbed by
evaporation. Wi P
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rous experiments. He has constructed curves in which the
abscisse represent the temperature, and the ordinates the pres-
sure p, taken at different intervals from —83° to 230°. From
100° to 230° he has drawn another curve, the ordinates of which
represent, not p itself, but the logarithms of p. From this dia-
gram the following values are obtained ; these ought to be re-
garded as the most immediate results of his observations, while
the other and more complete tables which the memoir contains
are calculated from formule, the choice and determination of
which depend in the first place upon these values.

Table II.
2 in millimetres,
¢ inCent. degrees| ¢in Cent. deg
of the air-ther- | p in millimetres.| of the air-ther- | according to the according to the

mometer. mometer. curve of the curve of the
numbers. logarithms*.

—26 091 110 1073-7 1073:3

—10 2-08 120 1489-0 14907

0 4:60 130 20290 20305

10 9-16 140 27130 27115

20 17:39" T} 150 35720 35785

30~ 31-55 160 4647-0 4651-6

40 54-91 170 59600 5956-7

50 91-98 180 75450 75370

60 148:79 190 94280 | 94254

70 233-09 \ 200 116600 116790

80 354:64 210 143080 | ' 143250

90 52545 20 | 173900 | 173900

100 760-00 230 209150 | 20927-0

To carry out the intended calculations from these data, I have
first obtained from the table the values of ;1) . Z—‘?— for the tempe-
ratures —15°, —5°, 5° 15°, &ec. in the following manner. As
the quantity% . l‘% decreases but slowly with the increase of
temperature, I have regarded the said decrease for intervals of
10°, that is, from —20° to —10°, from — 10° to 0°, &c. as uniform,
so that the value due to 25° might be considered as a mean
between that of 20° and that of 30°, As - o . 1 0 T was
by this means enabled to use the following formula :

(l Jdp\ _ log pspe—1og paee
p dt 256_ 10 2
* This column contains, instead of the logarithms derived immediately

from the curve and given by Regnault, the corresponding numbers, so that
they may be more readily compared with the values in the column preceding:
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or , .
1. dp\ . log Pawe = log page 1 el
(p dt Jgge T 0 110.M O R (25')

wherein log is the sign of Briggs’s lo‘rarlthms, and M the mo-
dulus of his system.. With the assistance of these values of

;—- z -+, and those of » glven by equatlon (24 ), as also the value

273 of a, the values assumed by the formula at the right-hand
side of (22.) are calculated, and will be found in the second
column of the following table. For temperatures above 100°
the two series of numbers given above for p are made use of
singly, and the results. thus .obtained are placed side by side.
The signification of the third and fourth columns will be more
partlcularly explained hereafter.

Table III.
- a
& Ap(s—0) e -
t:r? gi?:{lse erfs 2. 3. Differences.
momcter. According to the values [ According to
observed. equation (27.).
—15 3061 - ! 30-61 0-00
=5 © 2921 3054 +1-33
5 30-93 - 3046 — 047
15 © 3060 30-38 —022
25 30-40 30°30 —010
35 30-23 30-20 —003
45 30-10 30°10 000
55 ' 29:98 - 30:00 +0-02
680 4, .29-88 29-88 000
T o 29:76 2976 0-00
85 29-65 29:63 —0:02
95 2949 29-48 —001
105 2947 29-50 29-33 —0-14 —017
115 . | 2916, . 2902 |. 2917 | 4001 4015
2125 T NIE89 28:93 28-99 4-0:10" +0-06
135 28-88 29:01 28:80 —0-08 —-021
145 © 2865 ¢ - 2840 2860 | '—0-05 +0-20
155 28:16 2825 28:38 +0:22 4013
165 2802 2819 | 28 +012 —0-05
175 27-84 27-90 27-89 -+0-05 —0-01
185 2776 27:67 12762 —014 = —005
195 2745 2720 27-33 —012 +013
205 2689 26-94 27-02 4-0-13 +0-08
215 2656 | 2679 | 2668 4012 —011
| 225 2664 26-50 2632 =032 —018

We sce d_lrectly from thls table that Ap(s—o-)T is not con-
stant, as it must be if the law of M and G. were valid, but that
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it decidedly decreases with the temperature. Between 35° and
90° this decrcase is very uniform. Before 35°, particularly in
the neighbourhood of 0° considerable irregularities take place ;
which, however, are simply explained by the fact, that here the
pressure p and its differential quotient E‘? are very small, and
hence the trifling inaccuracies which might attaeh themselves to
the observations ean become comparatively important. It may
be added, further, that the curve by means of which, as men-
tioned ahove, the single values of p have been obtained, was not
drawn continuously from —33° to 100° but to save room was
broken off at 0° so that the route of the curve at this point
cannot be so aceurately determined as within the separate por-
tions above and below 0°.  From the manner in which the di-
vergences show themselves in the above table, it would appear
that the value assumed for p at 0°is a little too great, as this

would cause the values of Ap(s—a) Zz—?ﬁ- to be too small for the

temperatures immediately under 0°, and too large for those above
it. From 100° upwards the values of this expression do not
decrease with the same regularity as between 35°and 95°. They
show, however, a general correspondenee ; and particularly when
a diagram is made, it is found that the curve, which almost
exactly connects the points within these limits, as determined
from the numbers contained in the foregoing table, may be car-
ried forward to 230° the points being at the same time equally
distributed on both sides of it.

Taking the entire table into account, the route of this curve
may be expressed with tolerable aceuracy by the equation

- _a__ = = nekt D)
Ap(s—o) = Be* sammny .1, o (26.)
in which e denotes the base of the Napierian logarithms, and m,
n, and k£ are constants. When the latter are determined from
the values given by the curve for 45% 125° and 205°, we obtain

m=31'549; n=1-0486; k=0007138; . (26a.)

and when for the sake of convenience we introduce the loga-
rithms of Briggs, we have

log [31'549—Ap(s—c) ﬁ—t] =00206+0:003100¢.  (27.)

From this equation the numbers contained in the third column

are caleulated, and the fourth column contains the differcnces

between these numbers and those contained in the second.
From the data before us we can readily deduce a formula
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which will enable us more definitely to recognize the manner in
which the deportment of the vapour, diverges from the law of M.
and G. Assuming the correctness of the law, if ps, denote the
value of ps for 0°, we must set in agreement with: (20.), .

B Rt
s, a’
d s
g and would thelefore obtain for the dlﬁ'erentlal quotlents "\ )
PSo

a constant quantlty, ‘that is to say, the known coefficient of ex-
pansion —1— =0003665. Instead of this we derive from (26.),

when in the ‘place of s—o we set s 1tself slmply, the equation
pso —m—_n—""l‘—“a‘— 5 o s ookl 9 i  . . (28)
and from this follows
d(ps ) 1 m——n[l+k(a+t)]e"‘
¢ dt\psy a Come—n 0
The differential quotient is therefore not a constant but a func-
tion which decreases with _the ‘increase of temperature, and

which, when the numbers’ given by (26a.) for m, n and £, are
1nt10duced assumes among others the following values :—

(29.)

. Table IV.

P8 d s E cd g psy’
‘. dt ) ! ¢ m). ¢ = 1736)'
0 ‘000342 | 70 | 060307 140 | 0-00244
10 | 000338 | 80 | 000300 150 | 0-00231
20 |. 000334 90 | 000293 160 | 0-00217
30 | 000329 || 100 | 000285 170 | 000208
40 | 000325 | 110 | 000276 180 | 0-00187
50 | 000319 | 120 | 000266 || 190 | 0-00168
60 | 000314 | 130 | 000256 | 200 | 000149

We see fxom thls that the devmtlons ﬁom the law of M. and
G. are small at low temperatures; at high temperatures, how-
ever, for example at 100° and upwards, they are no longer to be
neglected.

It may perhaps at first sight’appear strange that the ‘values

found for dt( ) are less than 0003665 ‘as it 1s known that

for those gases. whlch deviate most from the law. of M. and G.,
as carbonic acid and sulphurous acid, the coefficient of expansion
is not. smaller but greater. The. differential quotients - hefore
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calculated must not however be regarded as expressing literally
the same thing as the coefficient of expansion, which latter is
obtained either by suffering the volume to expand under a con-
stant pressure, or by heating a constant volume, and then obser-
ving the increase of expansive force; but we arc here dealing
with a third particular case of the general differential quotients

d( J L .
Et—(ﬁs'i)’ where the pressure increases with the temperature- in
o !

the ratio due to the vapour of water which retains its maximum
density. To establish a comparison with carbonic acid, the same
case must be taken into consideration.

At 108 steam possesses a tension of 1 metre, and at 1293°
a tension of 2 metres. We will therefore inquire how carbome
acid acts when heated to 211°, and the pressure thus increased
from 1 to 2 metres. According to Regnault*, the coefficient
of expansion for carbonic acid at a constant pressure of 760
millims. is 0003710, and at a pressure of 2520 millims. it is
0°003846. For a pressure of 1500 millims. (the mean between
1 ‘metre and 2 metres) we obtain, when we regard the increase
of the coefficient of expansion as proportional to the increase of
pressure, the value 0:003767. If therefore carbonic acid were
heated under this mean pressure from O to 211° the quantity

—‘1% would be thus increased from 1 to 1-0:008767 x 215

0 )
=108099. Further, it is known from other experiments of
Regnaultt, that when carbonic acid at a temperature of nearly
0°% and a pressure of 1 metre, is loaded with a pressure of
1:98292 metre, the quantity pv decreases at the same time in
the ratio of 1:099146; according to which, for an increase of
pressuré from 1 to 2 metres, the ratio of the decrease would be
1:0'99131. Ifnow both take place at the same time, the increase
of temperature from O to 21}, and the increase of pressure from

1 metre to 2 metres, the quantity %’i must thereby increase

very nearly from 1 to 1:08099 x 0-09131 = 1071596 ; and from
this we obtain, as the mean value of the differential quotients

d [ pv )
0071596
2T

We see, therefore, that for the case under contemplation a value

is obtained for carbonic acid also which 1is less than 0:003665 ;

=000333.

* Mém. de I’ Acad., vol. xxi. Mem, I. + Ibid. Mem, VI.
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and it is less to be wondered at if the same result should 'occur
with the vapour at ils mazimum density. {

If, on the contrary, the real coefficient of expansion for the
vapour were sought, that is to say, the number which expresses
the expansion of a certain quantity of vapour taken at a definite
temperature and in a state of maximum density, and heated under
a constant pressure, we should certainly obtain a value greater,
_ and perhaps considerably greater, than 0-003665. e

From the equation (26.) the relative volumes of a unit weight
of steam at its maximum density for the different temperatures,
as referred to the volume at a fixed temperature, is readily esti-
mated. To calculate from these the absolute volumes with suffi-
cient exactitude, the value of the constant A must be established
with greater certainty than is at present the case.

. The question now occurs, whether a single volume may not
be accurately éstimated in some other.manner, so as to enable
us to infer the absolute values of the remaining volumes from their
relative values. Already, indeed, have various attempts been made
to determine. the specific weight of water vapour; but I believe
for the case in hand, where the vapour is at its maximum den-
sity, the results are not yet decisive. ~ The numbers usually given,
particularly that found by Gay-Lussac, 0:6235, agree pretty well
with the theoretic value obtaimed from the assumption, that two
measures of hydrogen and one of oxygen give by their combina-
tion two measures of vapour, that is to say, with the value

2 x 0106926 4110563
3 .

These numbers, however, refer to observations made, not at those
temperatures where the pressure used was equal to the maximum
expansive force, but-at higher ones. In this state the vapour
might nearly agree with the law of M. and G., and hence may
be explained the coincidence of experiment with the theoretic
values. To make this, however, the basis from which, by appli-
cation of the above law, the condition of the vapour at its max-
imum  density might be inferred, would -contradict the results
before obtained ; as'in Table IV: it is shown that the divergence
at the temperatures to which these determinations refer are too
considerable. It is also a fact, that those experiments where the
vapour-at its maximum density was observed have in most cases
given larger numbers; and Regnault* has convinced himself,
that even 'at a temperature a little above 30° when the vapour
was ‘developed in vacuo, a satisfactory coincidence was first ob-
served when ‘the tension of the vapour was 08 of that which
corresponded to the maximum density due to the temperature

* 'Ann, de Chim, et de Phys., 3 ser. vol. xv. p. 148.

=0622.
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cxisting at the time ; with proportionately greater,tension, thie,
numbers were too 1argc «The caney however, is not finally se at
rest by these experiments ; for, as ‘temiarked by Regnault, it is
doubtful whether the dwcxgcnce is due to the too cat ecxﬁc
lieat of the déveloped \apdux,for toa quantlty of wa ér cot {c” i
upén the' sxdes of the glass ba]loon - Other c‘cpcnmcnm, w mcm
the’ vapom' was not dcvclopcd in vacuo but, safuratcd a currcn
aif, gave résults which were tolcrably fide* from these ir rcgulanq
ties’; “biit neither fioni’ thcso, ‘however 1mpoxtant fhe ma% be.in
othcr rpspccts, c'm a safe couclusxon bc dmwn as to. t cpozt-_
ment'of the vapour in'bacuo.

.iFhe following considerations will perhaps. sorsc;to Aill up
some extent the gap caused by this uncertainty. . The ﬁable IV) :
shows that the lower the: ‘teinperature’ of the: vapour at its max-
imumn density, the more ‘nearly it agrees' with the law ‘.'of M. and'
G.; and hence we niust conclude, that the sp001ﬁc wcl it fbr
low" ‘temperatures’ approaches more ne'nly the théoretlc “vilue
than for high ones. - If therefore, for cxample, the value of 0° 625
for 0° be assumed to be correct, and the corresponding values'd”
for higher temperatures be calculated from the following equa-

tion deduced fmm (26 T An
eh svika Simfrroeit o dtipee aidt 1o ensegg yil
3 gof ~ barn'o yo® (l....O 6”2,2”’ ghi oDt ST L (%9.:)

AEC) i 2 rr 4e91qY.
we sha]l obtam far more plobablc values than if we had made,
use of 0:622 for all temperatuves., 'l‘he followm" table glves
some of these. P =4

Table V. wilh ow el 11 Lts

, & 0°, 500, | 100°. | 150°. | 200°.

!. d. | 0622] 0:631| 0645 | 0666 | 0698

Strictly speakmg, however, we must ploceed still fmthcr. In
Tablc 111, 1t is sccn that the values of Ap(s—tr) t’ as the,

tcmpcmtu\'c decreases, approach a limit which is not’ attained
cven by the!lowest temperatures in the table ; and not until this
limit: be' reached can we really admit the \ahdlty of the law of
M. and G:, or assume- the specific weight to be 06227 The
question now occurs, what is this limit 7. Could we' r(:%ard the
formula (26.) to be true for temperatures under —15° also, it
would only be necessary to take that value to which it approaches
as an asymptote, _.31 549 and we could then setin the place\

ark 11 '
P S 5,,t< i 3 ot {

*, Ann. de Chm. et de Phys 3scr vol. xv. p 148.
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(30) the equation Yodstieanons Sl

i Jort a1

Ll ool A06R2 2 MM qzon oreil (31

From this we should denvc f01 0 the specific, weight 0: 643;
instead of 0622, and the other pumbers of the ahove ta%lc vould
have to be mcrcasc;d plopomonately .But we, are not yet, Jus-
tified in maklnw 50, wide an apphmtlon of the, formula (26.), a

1t has been me;‘ely dcmved empmcally ﬁom the values, contamed.
in Table IH., and among these, the, values, Belongmv t0.the
lowest temperatures arc insecure. ‘Ve must, thercfore for the

present 1egard ‘the hmlt of A(s—o-) —-_—l_ut as “unknown, "and ‘con-
tent ourselves w1th an appmumatlon snmlar to that furnished
by “the numbers in the foregoing table ; so much however we may
conclude, ‘that these numbers are rather too small than too large:

By, comblmnfr (Va.). with, the equation. (I1L.), which was im-.
medlately derlved from.. the ougmal mamm, we.can. ehmmate
A(s— a),, and we have, FMAMNG e el o1 [y e )

R18 » d) ol
g T
By means of this equation, the quantity %, described ahove as
negatlve, can be more nearly determined. For ¢ and 7 let the
expressions in (236.) and (24.) be. substituted, and for a the
numbéxv273 PR T B Nl e ey

| 1= 0305_ 60650695t — 0-0000/2— 0'0000003t35 (33)

’(32;)"

R73+1
and from this we derive among others the following values for 4 :
. Table VI. :
3 [ / 0°. * 50% ;7|7 100% |- 150°. 200°.

b | —1916] —1465] —1133] —0879 -0-577

In a manner similar to that already pur sued in the case of -
water-vapour, the-equation (Va.) might be applied to the vapours
of other fluids, and the results thus obtained compared with each:
other, asis done, in Table L., with the numbers calculated by Cla=
peyron. We will not, however, enter further upon this application.

-We must now endeavour to determine, at. least approximately,
the numemcal value of the constant: A, or, what 1s more usefuly
the value of the flactlon 11&, ‘in other wordx to det_ermmc the
equnalent of work Sfor the unit of heat. v 4

Pursuing the same course as that of Meyer aud Holtzmann, we
can in the first place make use of équation’(10a.) developed for

Phil. Mag. S. 4. Vol. 2. No. 9. 4uy. 1851. K
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permanent gases. This equation was

d=c+AR 3

and when for ¢ the equivalent expression % is introduced, we have
1 kR ‘
y Ao 50y (34.)

For atmospheric air, the number 0-267, as given by De Laroche
and Bérard, is generally assumed for ¢/; and for £, as given by

Dulong, 1'421. For the determination of R= ffg, we know
g 0

that the pressure of one atmosphere (760 millims.) on a square

metre amounts to 10833 kils.; and the volume of 1 kil. atmo-

spheric air under the said pressure and at the temperature of the

freezing-point is =0°7733 cubic metres. ¥rom this follows
_10838.0-7733

= ———2—7-3—— = 29'26,

and hence

1 1421 x29'26

A7 0421 x0R67 41 :
that is to say, by the expenditure of one unit of heat (the quan-
tity which raises 1 kil. of water from 0° to 1°) a weight of 370
kils. can be raised to a height of 1 metre. This value, however,
on'account of the uncertainty of the numbers 0-267 and 1°421,
is deserving of little confidence. Holtzmann gives as the limits
between which he is in doubt the numbers 343 and 4R9.

The equation (Va.) developed for vapours can be made use of
for the same purpose. If we apply it to the vapour of water,
the foregoing determinations, whose result is expressed in equa-
tion (26.), may be used. If, for example, the temperature 100°
be chosen, and for p the corresponding pressure of one atmo-
sphere =10333 kils. be substituted in the above equation, we
obtain , .

1 sl

- =27.(s—0). .. . . . (85)
If it now be assumed with Gay-Lussac that the specific weight
of the water-vapour is 0'6235, we obtain s=1-699, and hence

1
x =437.

Similar results are obtained from the values of C contained in
Table I., which Clapeyron and Thomson have calculated from
equation (V.). If these be regarded as the values of A(a-+?)
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corresponding to the adjacent temperatures, a series of numbers
are obtained for i—, all of which lie between 416 and 462.

+ It has been mentioned above, that the specific weight of the
vapour of water at its maximum density given by Gay-Lussac is
probably a little too small, and the same may be said of the

speclﬁc weights of vapours generally., Hence the value of —A~

derived from these must be considered a little too large. If the
number 0-645 given in Table V. for the vapour of water, and
from Whlch we find s=1-638, be assumed, we obtain

K =421 B

which value is perhaps still too great, though probably not
much. As this result is preferable to that obtained from the
atmospheric air, we may conclude that the equivalent of work for
the unit of heat is the raising of something over 400 kils. to
height of 1 metre.

With this theoretic result, we can compare those obtained by
Joule from direct observation. From the heat produced by
magneto-electricity he found

— =460%,

2 460
From the quantity of heat absmbed by atmosphenc air during
its expansmn,

A_ =4~*38'|';
and as mean of a great number of experiments in which the heat
developed by the friction of water, of mercury, and of cast iron
was observed, .
A

The coincidence of these three numbers with each other, not-
withstanding the difficulty of the experiments, dispels all doubt
as to the correctness of the principle which asserts the equivalence
of heat and work; and the agreement of the same with the num-
ber 421 corroborates in like manner the truth of Carnot’s prin-
ciple in the form which it assumes when combined with our
original maxim.

=4251.

% Ph11 Mag ., vol. xxiii. p-441. The English measure has been reduiced
t0 the French standard.
“42Ibid. vol, xxvi. p. 381, 1 Ibid. vok xxxv. p. 534.
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