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Chapter1 
The Description of Matter 
in Bulk 

A sample of material solid, liquid or gas may be described in one of two basic 
ways. On the one hand, it may be descnbed in terms of the component atoms 
and molecules of which it is formed, of the interactions between these com-
ponents, and of the boundaries imposed upon them by the sample shape or the 
containing vessel. Alternatively, it may be described in terms of the bulk 
properties of the sample, which are determined in practical measurements, such 
as mass, volume, density, specific heat, dielectric constOJII, elastic moduli, magnetic 
permeability, surface tension, thermal expansion coefficient, thermal conductivity 
and so on. 

These measurable quantities may be said to describe the various features of a 
body of material in its interaction with its surroundings. They also describe those 
phenomena observed during experiments on the body in which the state of the 
body is affected by external constraints. Their values may be varied by the 
application of pressure, or electric and magnetic fields, or by changing the 
temperature. In the study of thermodynamics it is these bulk properties or 
parameters which are of interest and, in particular, the dependence of these 
parameters on temperature. At the same time, since the temperature of a body 
is so closely related to the energy content of that body, this study must also involve 
consideration of the changes of energy which occur in bulk processes and in 
particular the effect of heat energy and work energy on the state of a body. 

If any useful m formation is to be obtained about the behaviour of matter in 
bulk, in terms of these macroscopic properties, and if predictions are to be made 
of this behaviour under varying conditions, it is necessary that fundamental laws 
... garding these properties should be established in as simple a manner as possible. 
The fact that such laws can be established is the basis of the logical structure 
which is known as thermodynamics, and this leads to many relationships between 
the various properties. At first sight these relationships arc surprising in their 
complexity, in view of the substantial omission of any detailed description of the 
component particles of the materials under consideration. 

The four laws on which the structure of thermodynamics largely depends, and 
which will be described in the succeeding chapters, may be summarized as 
follows. 
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The zeroth law of thermodynamics defines the condition known as thermal 
equilibnum and hence allows a definition of temperature. 

The first law of thermodynamics specifies the energy balance which exists in any 
closed thermodynamic system. 

The second law of thermodynamics determines the direction m which thermo-
dynamic processes will occur and the equilibrium state of a physical system. 

The third law of thermodynamics sets a limit to both the thermodynamic tempera-
ture and enrropy. 

A thermodynamic system, as referred to in this summary (and also later in the 
text), may be defined conveniently as a buJk system of matter wh1ch has proper-
tics and measurable parameters which depend on temperature, pressure and other 
imposed conditions. (As a special case, an evacuated enclosure in which there is 
energy present in the form of electromagnetic radiation is also considered as a 
thermodynamic system.) The particular condition of such a system, which is 
specified by assigning values to these various properties, is termed the state of 
the system (which is not to be confused with the phase of the system as referred 
to in the term 'liquid state'). A thermodynamic process is any process which 
involves a change in this state. If the system does not interact with its surround-
ings, by for example exchanging heat, energy or material with them, it is said to 
be isolated from its surroundings. This state of isolation will not be the most 
common case, however, and normally the system will interact with its surround-
ings in some specified manner, so that any thermodynamic process involving the 
system will also involve its surroundings. In some cases, the system and its 
surroundings are referred to as the unil:erse. 

Tn any macroscopic thermodynamic system there will be components such 
as molecules, ions or photons. If the system is to obey the generalized macro-
scopic laws of thermodynamics it must necessarily consist of a sufficient quantity 
of matter, or a sufficient number of components, that fluctuations in the arrange-
ment of these components, their position, concentration, momentum, etc. do 
not affect significantly any measured macroscopic properties of the system. This 
condition must apply even if, for mathematical convenience, an 'infinitesimally 
small' element of volume is considered. 

Although the laws of thermodynamics are sometimes' shown' to follow very 
closely from logic and common sense, it must be remembered that they are 
subject, at all times, to experimental test and may be regarded as being firmly 
based on experiment and observation. For this reason these laws are used to 
establish a methodology which may be applied in the treatment of practical 
problems, as wiiJ be seen from 1 he many examples of such application which will 
be given by way of illustration. 
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2.1 

Chapter2 
The Zeroth Law 
and Temperature 

Thermal equilibrium 

An important concept in the study of thermodynamics is that of thermal 
equilibrium. The concept of such equilibrium, involvmg as it does the establish-
ment of a steady state from which there are no macroscopic fluctuations, is 
largely intuitive. For example, consider a thermodynamic system A, one property 
of which is monitored continuously. This property might be the electrical resist-
ance of a piece of wire, or the pressure of a gas contained in some restraining 
enclosure. If the system is in an environment which is not subject to fluctuation 
or to varying external influences, the chosen property of the system will tend to 
a steady value which will cease to vary with time. If the system is then introduced 
into a new stable environment, the value of the chosen property will at first 
change with time and will then settle down to some new steady value. When this 
steady state is reached the system is said to be in equilibrium with its surroundings. 

Consider now that the system A is, by some means, isolated from any contact 
with its surroundtngs. (Such isolation might be obtamcd approximately in 
practice by suspending the system by fine threads inside a highly evacuated 
container with highly reflecting walls.) The properties of the system A will now 

diolhermrc (conducting) wall 

system A system B adiabauc 
(insulat•nol 
wall 

Figure 1 Systems A and B in thermal contact. (The adiabatic wall could be, for 
example, an evacuated region surrounding the system) 
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remain constant and no change will be observed, O\Cr any time period, m the 
value of the chosen property. If a second system B, wh1ch has a previous history 
very different from that of A, IS introduced close to A bur isolated from it and 
from its surroundings, the properties of B will also remain unaltered with ;ime. 
Suppose next that the systems A and B be brought into intimate contact within 
the enclosure in which they are isolated, as in Figure I, such that energy can be 
exchanged bet\\een them through a diathermic or thermally conducting wall. 
As energy is exchanged through this wall, the properties of the two systems will 
change until, after a period of time, a steady state is reached in which there are no 
further observable changes. The two systems are then said to be in thermal 
equilibrium. 

The establishment of thermal equilibrium does not, in fact, mean that the 
system will be in complete, or lhermodynamic, equilibrium. The definition given 
above ignores, for example, any exchange of material, rather than energy, 
between the systems. The condition for chemical equilibrium is discussed in 
section 19.1. In addition, those cases have not been considered in which there 
is mechanical disequilibrium because one system exerts a force on the other. 

2.2 The zeroth law of thermodynamics 

Consider now that, within their isolating enclosure, the systems A and B in 
the1r mllial disequilibrium states are each placed in thermal contact with a third 
system C, so that, as indicated in Figure 2, they are not in contact with each 
other. I walls 

A c 8 +!--
I 

F1gure 2 Systems A and B each placed in contact with the system C 

Agam after lapse of time a stable or steady state w1ll be attained in which the 
of the three systems reach values which do not further wuh 

In terms of our original definition, systems A and Care then in equilibrium 
wuh each other, as are systems B and C. It is a natural assumption, intuitively 
based, that the systems A and 8, though not in intimate contact with each other 
are then also in thermal equilibrium. The postulate that this is so is referred to 
the zeroth law of thermodynamics ('zeroth. because it was formulated after the 
'first law' had been well accepted). There is no experimental evidence which 
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runs contrary to this law. Indeed we may imagine its truth to be tested in the 
arrangement of Figure 2 by breaking the contact between the systems A and C 
and the systems Band C, once the steady state has been reached, and establishing 
such contact between A and B. All the evidence is that there would then be no 
further change with time of the values of any monitored properties of the 
systems A and B. 

The zeroth Jaw of thermodynamics is most usefully stated in the form: 
When two thermodynamic systems are each in thermal equilibrium with a third 
system, they are also in thermal equilibrium with one another. 

When a number of systems are in equilibrium according to this definition it is 
convenient to consider that there is some property which has the same value for 
each system, however different these systems may be in size and composition. 
This property is defined to be the temperature of the systems. Thus in the situation 
represented in Figure I, when thermal equilibrium has been reached the tempera-
ture is the same for the two systems A and B; similarly in Figure 2, the three 
systems A, 8 and C w1ll attain the same temperature. 

This very necessary, basic definition of the condition for thermal equilibrium 
does not define a scale of temperature any more than the definition of distance 
defines the metre. However, the corresponding establishment of scales of 
temperature, which is discussed in detail later, will be seen to require far greater 
elaboration than does the cutting of two notches in a piece of steel as a standard 
of length. On the other hand, it is clearly possible to recognize a difference in 
temperature between two systems from the fact that when they are placed in 
thermal contact these bodies approach a state of equilibrium from a state of 
disequilibrium. It is further possible to state that, during the establishment of 
this equilibrium, some quantity known as heat flows from one system to the 
other. If this heat flows unidirectionally from the system A to the system 8, the 
system A is said to be 'hotter', or at a higher temperature, than 8 (and con-
versely). However, this discusston then encroaches on the second law of 
thermodynamics, as will be seen in section 4.1, and requires a close defimtion 
of the term 'heat'. 

The rate at which the equilibrium state is attained in an arrangement such as 
that shown in Figure 2 will depend rather critically on the nature of the systems 
and, in particular, on the system C. If the equilibrium is established rapidly 
through the system C, this system is said to be a good conduc10r of heat. If, on 
the contrary, a long time is required for the establishment of equilibrium, then 
the system C will be a bad conductor of heat and, if C should be a high vacuum, 
the rate of attainment of equilibrium may be substanually zero. 
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3.1 

Chapter 3 
The First Law 

Work and energy 

If a body is subjected to a force F such that it is caused to move through a distance 
I, then the force is said to perform an amount of work Won the body. The quantity 
of work is defined in mechanics as the product of the force with the distance 
through which the point of application moves in the direction of the force. (ln 
mathematical terms this is equal to W - F .I, the scalar product of the vectors 
F and 1.) In the case where the body on which the force acts is free to accelerate, 
it is shown in Newtonian mechanics that the work done results in the creation of 
an equivalent amount of kinetic energy. That energy is W - tmul, where m is 
the mass oft be body and u is the resultant velocity (assuming that the body moves 
from rest). If the body is now decelerated and brought to rest so that it loses its 
kinetic energy, the force exerted by the body during deceleration will perform 
work exactly equal to the kinetic energy tmu2• 

It is thus possible to state that, in mechanics, work may be converted to an 
equivalent quantity of kinetic energy, and vice versa, so that, af work is con-
sidered as another form of energy, it would be possible to state that energy is 
conserved in this single system. However, it is also found that there are systems 
in mechanics which, although they arc not in motion, are capable of performing 
work. Thus a coiled spring, a compressed gas, or a weight suspended above the 
earth, are each capable, on being released, of causing work to be performed and 
kinetic energy generated. To account for the appearance of this kinetic energy it 
has been found convenient to ascribe to the system which performs the work a 
latent or potential energy. Then, ignoring the intermediary role played by the 
work, it is possible to state that, if the initiating system, the spring, the gas or the 
suspended weight, produces in some object (including itself) a certain amount of 
kinetic energy, it must have lost an equivalent amount of potential energy.Tbis 
statement appears in mechanics as the law of conservation of energy wriuen in 
the form: 

Gain in kinetic energy - loss in potefllial energy 

or, The sum of the potemial energy and the kinetic energy is a constam. 
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3.2 Forms of work 

In thermodynamics the force which is exerted by one system on another, or by 
one body on another, need not be of the normal mechanical form. There can be, 
for example, work performed by an electric field on an electric charge, or by a 
magnetic field on a magnetic dipole. However, the main distinction which must 
be made is between extemalwork, which may be performed on a system, and the 
imernalwork, which is performed within a system. When, for example, a heated 
gas expands and drives a piston, there will be work done by the gas on the piston, 
and this will be observed outside the gas as external work. At the same time, if 
there are attractive forces between the molecules of the gas, there will be work 
done by these molecules as they move apart during expansion. This work will 
not be observed in the production of kinetic energy or potential energy outside 
the gas, and is therefore referred to as internal work. We shall, in general, be 
concerned with the external work and it is useful here to consider a number of 
illustrative examples in whach work is performed on a particular system by means 
of an externally impressed force. 

F 

F, -------------------------------------------

area • F dl 

- - dl 

Figure 3 Wire obeying Hooke's law 
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3.2.1 An extensible wire 

If a force F is applied to a wire, possibly by means of a weight suspended from 
the wire, and this force causes the wire to extend from a length 1 to a length 
I dl, then the work done by the force on the wire will be dW'- F dl. For the 
case of a wire obeying Hooke's law, a force F will produce an extension from 
!he original length lo to a length 1- 10 + F(A, where A. the modulus of the wire, 
IS equal to the product of the area of the cross-section and Young's modulus 
divided by the original length /0 . This extension may be expressed in the form 
of the graph of Figure 3. The work F dl may be represented by the area shown 
shaded and the total work done in extending the wire from /0 to /0 .._ Ill as the 
force is increased from zero to F1 is thus the total area up to Ill or 
W' t:J. 
(The same result is obtained by evaluating 
t.l J Fdl, 
0 

and both give f..\(6/)2 as the work done.) The work W done by the system 
namely the wire, on its surroundings (which could in this case be the work don; 
011 the earth by the wire via the gravitational field) will be the negative of the 
work done by the force. Thus 

dW = -Fdl 
and fF1 M. 

This distinction between whether we are talking about work done o11 the system 
or work done by the system must be carefully noted in all thermodynamic 
treatments. 

3.2.2 A compressiblejfuid 

a which is contained in a cylinder, one end of which is closed by a 
fncttonless ptston, as shown in Figure 4. The pressure of the fluid will exert a 

- p 

, __ . 
- p 

Figure 4 Fluid contained in a cylinder fitted with a friction less piston 
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force on the piston in a direction tending to increase the volume of the fluid and, 
at equilibrium, there will be an equal and opposite pressure acting on the outside 
surface of the piston. If the area of the piston is A and the pressure exened is p, 
the force on the piston will be 

F = pA. 

When the piston moves a distance dx in the direction of the force, the work done 
by the fluid will be 

dW= Fdx - pA dx. 

The change in volume of the fluid during this movement dx is given by dv dx, 

so that dW - p dv. 3.1 

3.2.3 General cases 

As has been stated, the work done by a system may be performed in a number of 
ways and may be the result of forces arising electrically, magnetically, mechanic-
ally, etc. In each case the increment of work performed is found to be equal to 
the product of some generalized 'force', such as electric or magnetic field or 
pressure, with an incremental change in some generalized 'coordinate', such as 
polarization or magnetic moment or volume. Typical values of the work dW 
performed by a system when there is a particular type of force acting on, or due 
to, the system are shown in Table J ; dW is positive when work is done by the 
system. 

Table 1 Increments of Work Performed in Various Systems 

System 

wire 
fluid 
magnetic• material 
dielectric• material 
surface 

lncremellf 
of work 

dW--Fdl 
dW- pdv 
dW- BodM/p.o 
dW- EdP 
dW- -<TdA 

Intensive 
variable 
(Ge11eralized 
force) 

forceF 
pressurep 
magnetic field B0 
electric field E 
surface tension u 

Extensive 
variable 
(Generalized 
coordi11ate) 

length I 
volumev 
magnetic moment M 
dipole moment P 
area A 

•tn dielectric and magnetic materials we quote lhc work done per unit volume. 

It is seen from the table that the generalized coordinates, or extensive variables, 
are proportional to the amount of material or to the extension of the system, 
while the generalized forces, or intensive variables, are independent of the size 
of the system. 
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3.3 

3.4 

Internal energy 

When the compressible fluid referred to in 3.2.2 expands and performs work dW 
on its surroundtngs, this work will result, in an ideal mechanical context, in the 
generation of either a potential energy or a kinetic energy, equal to dW. If the 
fluid of Figure 4 is surrounded by adiabatic walls, the mechanical law of conser-
vation of energy will cease to apply unless it is assumed that, in some way, the 
fluid has lost an amount of energy also equal to dW. Similarly, if a voltaic cell 
produces an electric current which results in the generation of kinetic energy 
of an electric motor, or if the action of surface tension causes the movement of 
a thread across the surface of a liquid, there is an imbalance in the energy equa-
tion. The problem is resolved if it is supposed that each system possesses a certain 
i111emal energy, which is a function of the state of that system. For example, 
consider that in its mitial condition the fluid of Figure 4 has a definite internal 
energy U. During the expansion of the fluid, this internal energy changes to 
U -to dU. It is then possible to maintain the principle of energy conservation by 
requiring that 

dU --dW or d(W T U) 0, 3.2 

so that the total energy of the system and its surroundings remains constant. 
If the internal energy of a system is to be a definite quantity when the system 

is in a g1ven state (that is, when the system is at a given temperature with a given 
set of constraints acting upon it), this tntemal energy can only be a function of 
that state oft he system and not of the way in which that state was attained. Thus, 
if the expansion of tbe fluid is reversed, so that work dW is performed on the 
fluid while its temperature and other constraints return to their original values, 
the internal energy must return from the value U + dU to the original value U. 

Heat 

ll has been postulated that, during the establishment of thermal equilibrium 
between two bodies which were initially at different temperatures, there is a 
flow of heat from the hotter body to the colder body. That this quantity heat has 
the nature of energy (rather than, say, the nature of the postulated fluid caloric) 
has been long established by the work of Count Rum ford and Humphrey Davy. 
These workers showed that the temperature of a system could be made to rise 
purely by the performance of work on the system and that the greater the amount 
of work which was performed the greater was this rise in temperature. The 
subsequent quantitativeexperiments performed to establish the exact equivalence 
of heat and work, and hence of heat and energy, were performed by such workers 
as Joule and Rowland and, more recently, by La by and Hercus and others. The 
results oftheseexperiments were largely discussed in terms of a quantity known as 
'the mechanical equivalent of heat', which defined the amount of mechanical 
energy required to produce a given quantity of heat such as, for example, that 
required to raise the temperature of one gramme of water by one degree on the 
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3.5 

centigrade scale. Defined in terms of the normal heat unit, which was derived to 
account for the changes in temperature when beat passed from one body to 
another, this mechanical equivalent of heat was found to be 

J - 4·186 joules per I5 °C calorie, 

where one calorie is the amount of heat required to raise the of.on.e 
gramme of water by one degree centigrade at 15 C . However, smce 1t IS 

established that heat and work areentirelyequivalent, this statement 
the specific heat of water at 15 °C to be 4·186joules per gramme per degree centi-
grade. 

The first law of thermodynamics 
The experiments by which the quantity J has been measured were carried out 
under substantiaJJy adiabatic conditions so that, by 3.2, the work done 011 any 
system to raise its temperature simply goes to increase the internal energy of the 
system by an amount equal to the work done. Once the of heat.and 
work have been established it becomes apparent that the add1t1on of a g1ven 
quantity of heat to a system will s1mply increase the internal energy by an equiva-
lent amount, provided no other change takes place. . . 

Consider again the expansion of the fluid of Figure 4. Jf the walls 
are replaced by thermaiJy conducting walls, it is possible that, durmg the 
expansion, heat dQ will flow through the walls into the flu.id. work dW 
done by the fluid, which decreases the internal energy of the flu1d, w11l be counter-
acted by this heat dQ. With the tnternal energy content defined so that the energy 
balance is preserved, 3.2 will now be replaced by 

d(W + U) .... dQ. 
This implies that the work done plus the change in internal energy must just 
equal the energy added to the fluid in the form of heal and the normal form of 
this energy-balance equation is 

dQ = dU dW, 3.3 

which, in mathematical form, expresses the first law of thermodynamics. 
extension of this expression to include any system, with the internal energy m 
the form of potential energy of a spring, the kinetic energy of the of 
a gas, or the chemical energy of a voltaic cell, allows us to express th1s first Jaw 
in the form: 
Jn a conservative system e11ergy is 11either created nor destroyed but may be 
co11verted from one form to another. 

ln this case the work dW represents an interchange of energy between one 
system and a neighbouring system which together form a system. 
The work dW may thus appear as kinetic or potential energy, mternal energy or, 
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3.6 

where the work is done against frictional forces, it may be dissipated as heat. 
(The law could be generalized to include the conversion of mass to energy.) 

The inexact differential 

Although it may appear initially to introduce mathematical complications, it is 
of particular importance in thermodynamics to establish how various quantities, 
such as pressure and temperature, work and beat, depend on the state of a 
system as opposed to the method or manner by which that state was attained. 
This may be illustrated by considering the fluid discussed in relation to Figure 4 
and imagining that this fluid is heated and expands while doing work upon its 
surroundings. Such an expansion could take the fluid from the state A (with 
pressure P1 and volume t·l) of Figure 5(a) along the path I to finish at the state B 

p p 
I (p,.v, ) I (p,.v,) &...,8 

(p,. v1) 11 

1/ 1/ 

(e) ( b) (c) 

Figure 5 Work done by a flu1d for different paths between two states 

(p l , vl). Since, for a small change dv in volume,3.1 gives the work done asp dv, 
the work done by the fluid during the expansion would be 

8 8 J pdv - J. dW, 
A A (Pith I) 

which is equal to the shaded area under the line AB. lf now the temperature of 
the fluid were varied during the expansion, so that its pressure at a given volume 
were different from the value along the path I, the expansion from A to B might 
be caused to occur, for example, along the path marked II in Figure 5(b), 
provaded that the pressure and temperature and hence the volume returned to the 
required values at the end of the path. It is clear that the work done in this case, 
being the shaded area under this new path, is different from that in Figure 5(a). 

8 11 

Thus J. dW ;I; J. dW, 3.4 
A (path I) A (Pith 11) 

even though the initial and final states of the fluid are exactly the same for the 
two paths. In a similar manner it may be shown that this type of inequality may 
arise for the work done by any system when the system changes by two different 
routes between a given initial state and a given final state. 

30 The First Law 

If a cyclic process is now constructed such that the fluid is expanded from A 
along the path I and compressed from B back to A along path 11, the work done 
during such a process is clearly equal to the cross-hatched area between the paths, 
as shown in Figure 5(c). However, the system returns to its imtial state at A, and 
we have postulated that there is a definite internal energy for a system in a given 
state. There can therefore be no change in the internal energy of the system over 
the complete cycle and hence, by the first law, any energy which was necessary 
to supply the work done by the fluid over the cycle must have been gained in the 
form of heat from some source or sources external to the fluid. Tt is possible to 
generalize therefore that, for a cyclic process, in which we require f dU = 0, 

and, from 3.3, 

fdQ - fdw, 3.5 

where f indicates integration round a complete cycle returning to the original 
state. It is usual, on the basis of these equations, to s tate that dU is a perfect, 
exact or total differential while dQ and dW are inexact differentials. An alterna-
tive, but entirely equivalent, statement is that V is a function of the state of the 
system alone, while Q and Ware functions both of the state of the system and of 
the particular process by which that state bas been attained. 

Since it is obvious from the discussion of the processes involved in Figure 5 
that the initial and final states at A and B can only be specified if the values of the 
temperature, pressure and volume are fixed for these states, it follows that we 
can write 

f dT = f dp - f dv - 0. 

Thus T, p and v are functions of the state of the system only, and dT, dp and dv 
are therefore exact differentials. 
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4.1 

Chapter 4 
The Second Law 

Reversible and irreversible processes 

The first law of thermodynamics, with its requirement that during any process 
which changes the state of a system the overall energy shall be conserved, 
provides a powerful tool for determining which thermodynamic processes are 
allowed and which are not. However, this law does not give any indication 
whether a particular process will occur, but only whether the process is allowed 
to occur by the condition that the energy is conserved. Thus, for example, it is 
just as possible for energy to be conserved when a person winds up a clock 
spring as when the spring is unwound during the driving of the clock mechanism. 
In the first case, manual energy, derived from stored chemical energy, is converted 
into potential energy of the clock spring. In the second, this internal potential 
energy is converted into kinetic energy of the clock mechanism and is substantially 
dissipated as heat. However, while the unwinding of the spring can occur spon-
taneously, the winding-up cannot. Similarly, in many systems in nature, it is 
possible for a process to occur spontaneously in one direction but for the 
reverse process to occur only under the conscious application of an external 
agency .It is the role of the second law of thermodynamics to predict the direction 
in which such natural processes occur once they are allowed by the condition 
imposed by the first law. 

It will be seen to be difficult to express the second law of thermodynamics in a 
simple manner while at the same time covering the generality of processes and 
conditions to which it must apply. (The difficulty of making a simple statement of 
this law is frequently the cause of much confusion!) First of all, the direction in 
which a process can occur is intimately involved with the concept of time and with 
the' arrow' of time. It is accepted as a natural phenomenon that time is increasing 
in one direction only. Therefore, if we state that a process occurs spontaneously 
from an initial state A to a final state B, it is understood that the state B occurs 
at a later time than the state A. What we should like as scientists is some logical 
general statement, which can preferably be written in a mathematical form, that 
expresses the fact that spontaneous processes occur in one direction only, so 
that the final state occurs at a later time than the initial state! 

ln order to be able to obtain and to state an understandable form for the 
second law of thermodynamics in its full sense, it is necessary first to distinguish 
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between two types of processes, that is, between reversible and irreversible 
processes. 

For a system to undergo a reversible process during which the state of the 
system is changed in some manner, it is necessary that the sense in which the 
change is occurring can be reversed exactly at any point in the process. This wiiJ 
require that the change is occurring under the in6uencc of forces which are only 
infinitesimally in disequilibrium and which are of such a nature that, if the sense 
of the disequilibrium is reversed, then the whole sequence of events constituting 
the change wilJ likewise be reversed in time. The whole process which has occurred 
up to a given point can then be reversed and the steps retraced to the original 
state without leaving any change in the rest of the universe. For these conditions 
to be satisfied it is clear that, during the whole of such a process, the system will 
at all times be in an equilibrium state with relation to its surroundings and to its 
own motion, so that no irreversible effects such as gas turbulence and electrical 
eddy currents can be produced, or work done against frictional forces. Thus, for 
example, if the pressure applied externally to the fluid of Figure 4 is instan-
taneously increased to be appreciably greater than the pressure within the fluid, 
the piston wiiJ accelerate during the compression of the fluid and the resulting 
kinetic energy of the piston will be dissipated either as a turbulence in the gas, 
which is subsequently converted to beat, or as sound waves as the piston oscillates 
about some equilibrium position. The process in which the fluid is involved in 
such a case will not therefore be reversible. Similarly, in a reversible process. there 
must be no expenditure of energy in overcoming friction or viscosity, since work 
which is so expended during motion in one direction cannot be regained when 
the motion is reversed. Some irreversible processes are illustrated in Figure 6. 

-
applied force 
F + dF 

frictional force F 

viscous force -·--- t -

-I-- --- -

Figure 6 Examples of irreversible processes 
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The definition of a reversible process effectively ensures that no practical 
process can be exactly reversible. However, an ideal limiting system can be 
envisaged where the necessary equilibrium is maintained while some change in 
the state of the system occurs infinitely slowly, and there is no friction or viscosity, 
whether mechanical, electrical or magnetic. (Some practical systems may 
approximate closely to this ideal case.) Much consideration wiU be given to 
these ideally reversible processes. 
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Those processes which do not, even ideally, satisfy the conditions for revers-
ibility are termed irreversible. Such a case, for example, is seen in the Joule 
paddle-wheel experiment, which contributed to the establishment of the first 
law of thermodynamics. Here a \'Oiume of water is heated as weights fall through 
a predetermined height, so causing a paddle to rotate agamst the viscosity of the 
water. Thefallingofthe, .. eightsand theheatingofthewateroccurspontaneously. 
However, no amount of heat subsequently applied to or extracted from the water 
wall cause the weights to rise again to their original positions! Here the irreversi-
bility of the turbulence of the water is the main contribution to the irreversible 
nature of the process. 

In nature the processes which occur spontaneously are necessarily irreversible, 
although many do not obviously involve irreversible forces. Thus a plant may 
grow from a seed, wither and die but it cannot • ungrow'. A small amount of 
coloured dye placed in a beaker of water will spread out and will become, in 
time, dispersed uniformly through the water. Since there is no violation of 
conservation of energy in either of these processes, it is possible to visualize 
another universe, still subject to the law of conservation of energy, in which 
plants reverse their growing sequence to return to seeds and a dye uniformly 
distributed in water gradually gathers itself into one small volume. However 
this is not our universe, and our problem is to formulate some principle which 
will predict the observed behaviour in the universe which is familiar to us. 

One well-known observation, which can be related in a convenient manner to 
the zeroth and first Jaws, has been taken as a basis for a statement of the required 
principle but describes thedirectionality in a rather restricted form. This observa-
tion is that a body placed in contact with cooler surroundings cools down spon-
taneously by giving up heat to these surroundings and that the body will not get 
hotter, spontaneously, by extracting heat from such surroundings. Thus we 
may state that: 

The Irons/er of heal from a cooler 10 a houer body ca11nor occur sponlaneously, 
btll will require the performance of work. 

The transfer of heat produced by the application of external work would take 
place in some form of refrigerator, and the consideration of the operation of 
idealized refrigerators led Clausius to the conclusion that: 

It is impossible to construe/ a self-acting device lltat, operating in a cycle, will 
produce 110 olher effect than tlte lrnnsfer of heat from a cooler 10 a holler body. 

From the equivalence of heat energy and work energy, this statement may be 
shown to be equivalent- see Appendix A - to an alternative statement by Kelvin 
and Planck, namely: 

/1 is impossible to co11struct an engine that, operating in a cycle, will produce no 
other effect than tlte extraction of heat from a reservoir and the performance of a11 
equivalelll amount of work. 
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4.2 

These two statements arc just different ways of expressing the second law of 
tltermody11amics and, while they are exact in the context in which they are given, 
they are necessarily largely restricted to such a context. 

Entropy 

In order to obtain a more generally applicable formulation of this law which 
governs the direction of thermodynamic processes we may define a quantity, 
which is to be called the entropy, which necessarily increases during irreversible 
processes and which never decreases. For this quantity to be useful in describing 
the behaviour of a particular system it must necessarily be a function of the state 
of that system, so that whenever the system is in a particular state the entropy 
wilJ have a particular value. If we can find some quantity which has this property, 
then the condition that this quantity increases will determine the direction in 
which any spontaneous process will occur, and it will be possible to state the 
second law of thermodynamics in the form: 

In any thermodynamic process tlte entropy of tlte universe will increase or remain 
constant but will never diminish. 

Three points regarding this 'law' may be noted. First, if the particular process 
occurs in an isolated system that system may be considered as its own universe. 
However, in most cases the systems will not be isolated from all their surround-
ings, and, in any process which occurs, the entropy of both the system itself and 
its surroundings will be altered. Strictly, therefore, in such cases the whole 
universe must be considered as a single system. Second, the condition that the 
entropy can remain constant during a thermodynamic change is necessary to 
allow for those processes which are reversible. This follows since for an isolated 
system (or for the whole universe) to return reversibly to its original state- and 
hence to its original value of entropy without the entropy ever decreasing 
requires that the entropy shall have remained at a constant value throughout 
the whole process. Third, this defimtion gives no indication of the nature of the 
quantity which we have called 'entropy', nor has it given any indication that it 
will be possible even to find such a quantity for all types of systems. 

lf the entropy is, for convenience, gaven the symbol S it is possible to write 
the second law in mathematical form such that, for an isolated system, 

4.1 

for any thermodynamic process. The inequality sign then applies to those 
processes which are irreversible and theequalitysign to those which are reversible. 
The 'arrow' of time will then be specified by stating that if there are two states 
of the universe, or of an isolated system, the one with the higher entropy will 
occur at the later time. The entropy changes corresponding to the two cases of 
4.1 are indicated in Figure 7 for an isolated system. 
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4.3 

state A state B 

s irreversible 
S' > S 

cim;t, time ta > t , 
(a) 

State A state C state A 

s revarsible s reversible s 
timet, time t2 > t1 time t3 > t2 

(b) 

Figure 7 Changes in entropy with time for an isolated system 

In order to advance usefuJJy from this point it is necessary to obtain a specifica-
tion for the entropy in terms of known thermodynamic quantities and, as we 
shall see, this may be partiaJJy achieved by the use of the classical statements of 
the second Jaw which were given above. 

Stages in the Camot reversible cycle 

The thermodynamic concept of entropy was first formulated from consideration 
of the efficiency of practical and ideal engines by a French engineer, Carnot, 
although the results were not expressed in terms of entropy until some time later. 
The essence of the discussion was an idealized reversible engine, postulated by 
Carnot, which may be described in the following manner which we have made 
as general as possible. 

Consider that the working substance of an engine is connected by frictionless 
means to an extcmalload on which it can perform work. The working substance 
may be, for example, a fluid, a rod of metal, a paramagnetic salt or a thermo-
couple, provided that, whatever substance is employed, the thermodynamic 
changes in which that substance is involved within the engine can occur reversibly. 
(The working substance is frequently taken to bean ideal gas but, although it will 
be seen in section I 1.4 that the results obtained in this case are of particular 
interest, such a treatment is too restrictive for the present purpose.) There is 
considered to be available to the engine two heat reservoirs at different tem-
peratures o. and 82 with o. > 82 , the definition of the temperature difference 
being such that heat will flow from the higher temperature reservoir (the source) 
at 8, to the lower temperature reservoir (the sink) at 81 • 

The engine is now allowed to perform a cycle of completely reversible opera-
tions in which it does work on the external load and returns to its initial state. 
This cycle is performed in a series of four distinct stages. 

(a) The engine is first placed in contact with the higher-temperature heat reservoir 
(or source), so that the working substance attains the temperature 81• The engine 
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is then allowed to do work on the load as the state of the working substance 
changes reversibly at constant temperature Bit while heat Q1 is taken in from the 
reservoir, as illustrated in Figure 8(a). The first stage of the cycle is thus isothermal 
and reversible. 

fworkdone 
on load 

engine 

I 
reservoir 81 (source) 
(a) 

t l 

I 
insulator 
(b) 

engine 

Figure 8 Stages in the Carnot reversible cycle 

I 

work donel 
by load+ 

engine 

reservoir 112 (sink) 
(c) 

(b) The engine is now isolated from its surroundings by means of some insulator, 
as indicated in Figure 8(b), while it is allowed to do work on the load, so that the 
internal energy of the working substance decreases and its temperature decreases 
to the value of the second heat reservoir (or sink) at 81• This process is thus 
adiabatic and reversible. 
(c) The engine at temperature 81 is placed in contact with the sink and, as 
indicated in Figure 8(c), the load is now allowed to perform work on the engine. 
The load thus returns towards its original position, while the working substance 
is held at the constant temperature 81• This stage of the cycle is carried out 
reversibly and isothermally while heat Q1 is given to the sink and the process 
continues until a state is reached such that 
(d) when the engine is insulated from its surroundings again and the load is 
allowed to perform further work, adiabatically and reversibly, on the engine, 
the load returns to its original position and the engine returns to its original 
state at temperature e •. 
By the first Jaw of thermodynamics, the work done by the engine during the 
above cycle of events must be equal to the difference between the heat Q1 given 
to the engine by the source and the heat Q1 absorbed from the engine by the 
sink, since the internal energy will return to its original value and there is no 
gain or loss of heat during the adiabatic processes. Hence 

4.2 

Tf the thermodynamic efficiency 'TJ of an engine (as opposed to any mechanical 
efficiency) is defined, in terms of the work done Wand the heat Q1 which must 
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be taken in at the higher temperature in order to obtain this work, as 

w 
7} - -· 

Qa 

we have, for the Carnot-type engine, 

Qa - Q, 
7} -

Qa 

4.3.1 Camot's principle 

4.3 

4.4 

Because of the form of the engine described by Camot, it is possible to enunciate 
the principle that: 

No engine operating between two given reservoirs COJI be more efficient than a 
Camot engine operatinl{ between the same two reservoirs. 

This statement follows from, and can be shown to be equivalent to, the 
Kelvin- Pianck and Clausius statements of the second law of thermodynamics. 
Consider that there is an irreversible engine Ea which drives a Carnot engine Ec 
in reverse, while both operate with the same source and sink. Suppose also that 
the engine Ea takes heat Qa from the source while the work W which it does 
during the cycle drives the engine Ec to give heat Q' back to this source, as 
indicated in Figure 9. 

9 Carnot engine Ec driven in reverse by engine E1• (lt is not strictly 
amportant whether E1 is reversible or not, since only the Carnot engine is driven 
in reverse. lt is important. however, that the heat exchange by E1 only occurs with 
the same source and the sink) 

Ea will give heat Q1 to the sink such that, by equation 4.2, 

Ql-Qa - W 
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and similarly Ec will take heat Q; from the sink given by 

w. 
The efficiencies of the two engines Ea and Ec may be written as 

Qa - Ql w Q; - Q; w 
"'1• - - and 7}c -

Qa Qa Q; Q; 
If, in contradiction to Carnot's principle, we assume that the Carnot engine 

has the lower efficiency, that is, 

this will require that 

w w 
- > -• 
Qa Qr 

4.5 

and so Q; must be greater than Qa. Thus, during the process in which work W 
is done by Ea on Ec without involving any external agency, the source wiJJ 
become hotter by taking in heat Q; - Qa, which is exactly equal to the heat 
Q;- Q1 1ost by the source. This result clearly contravenes the Clausius statement 
of the second law of thermodynamics, and hence the assumption 4.5 must be 
invalid. Thus Carnot's principle follows directly as a result of this statement, and 
we must write 

7}a :} 7]c. 

If the engine Ea were replaced by another Carnot reversible engine Ec·. it 
would be possible to reverse the direction of operation and thus to consider the 
inverse of the relation 4.5. Then we could show by the same logic that 

"'1c ::> 7}c· 

as well as 

"'1c· :} "'1c· 
The only way in which both these relations may be satisfied is that 

when the two Carnot engines are working between the same temperatures. 
One consequence of Carnot's principle may be seen if it is realized that (a) all 

Carnot engines which are working between the same temperatures will necessarily 
have the sarneefficieney; (b) by virtue of the processes which make them irrevers-
ible, irreversible engines working between the same temperatures will be less 
efficient than the corresponding Carnot engines. Thus if we can determine these 
efficiencies it may be possible to obtain a measure of the irreversibility, and 
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4.4 

therefore to give a specification for the entropy. First of all, however, it is 
necessary to define, by means of the Carnot cycle, a universal scale of temperature 
on which the temperatures of the source and sink may be measured. 

A tbennodynamic scale of temperature 

Because the efficiency of aJJ Carnot engines operating between the same two 
reservoirs is the same, independent of their form or of their working substances 
it follows that this efficiency can only be a function of the temperatures of 
source and the sink, since these temperatures are the only constant parameters 
in the description of the engines. We thus have a basis for defining a temperature 
scale independent of any property of any particular material, that is, a universal 
or absolute scale. For this purpose we define the temperatures of the source and 
sink of a given Carnot engine on an absolute temperature scale as T1 and T1 
respectively, such that the efficiency of the Carnot engine operating between 
these temperatures is 

T, - Tl 
"1 - -. r. 
By comparison with 4.4 we can see that this implies that 

r.-Tl Q. Q1 "1 - --- -
T, Q. 

Figure 10 Two Carnot engines operating with the sink of one 
as the source of the other 

4.6 
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T1 Ql 
or - =-· T, Q, 4.7 

so that the temperatures of the two reservoirs, in this definition, are in the ratio 
of the heats which the engine absorbed from one and rejected to the other. 

That the definition of 4.6 gives a logical choice of a temperature scale may be 
seen by supposing that two Carnot engines operate as shown in Figure 10, 
where the sink of one engine acts as the source of the other. The heat Q1 given 
out by the engine Ec1 at temperature T1 is absorbed by Ec2 at the same 
temperature. Then, by the definition of 4.7, 

T. Q. T1 Ql 
- - - (for Ec1) and - - - (for Ec), T1 Ql T3 Q3 

so that, whatever the value of the intermediate temperature T1 , 

T, Q, - - -, 
TJ QJ 

which is the relation which would apply for a single Carnot engine operating 
between temperatures T1 and T3 • Thus, by taking a complete series of Camot 
cycles, any range of temperatures may be specified in a self-consistent manner. 

The temperatures defined by 4.6 and 4.7 will obviously contain an arbitrary 
constant. Jn practice this constant will be evaluated by taking some fixed tem-
perature as a reference point for the whole temperature scale. This fixed point is 
normally taken at the triple point of water with the value 273·16 K (degrees 
Kelvin, or simply kelvins). Then it is possible to refer all other temperatures to 
this value since there will be an absolute zero of temperature, 0 K, such that, as 
the temperature of the sink of a Camot engine approaches this zero of tempera-
ture, the value of Q1, the heat rejected by the engine, approaches asymptotically 
to zero. With the fixed points chosen on this basis, the interval of temperature 
between the melting point of pure ice under standard atmospheric pressure and 
the boiling point of pure water under standard atmospheric pressure is a hundred 
degrees on the Kelvin scale, and with T3 = 273·16 K, T1 273·16 QdQJ K. 

The fact that there are thus established a hundred degrees in the so-called 
• fundamental interval' of temperature between the ice point and the steam 
point does not mean that the Kelvin scale, or thermodynamic scale, is equivalent 
to any other centigrade scale. Tbas will be clear in the discussion of Chapter 19 
where it will be seen that, when the practical measurement of a temperature 
depends on some particular property of some particular substance this practical 
temperature must be reduced to an absolute temperature by calibration against 
the Kelvin scale. 

The establishment of the hundred steps or degrees necessary between the ice 
point and the steam point by use of the Carnot engine alone is theoretically 
achieved by establishing a sequence of a hundred such Carnot engines, as shown 
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4.5 

w 

j_ 
0 

w w 

0 

'• Ec0 Ec•• ' • 
-T, Ec

2 

Figure 11 Sequence of a hundred Carnot engines, the sink of one acting as the 
source for its neighbour. Each engine performs the same amount of work and 
takes in the heat given out by the one above in the temperature sequence 

in Figure 11 . With each engine taking in the heat given out by its neighbour 
and each perfonning work W , it is clear that 

4.8 
It is clear also that, since the temperatures are defined in 4.6 to be in direct ratio 
to the heats taken in and given out, 4.8 implies that 

Taoo - T,, - Tn - T,. ... ... - T, - To. 

There are thus a hundred equal intervals between the ice point and the steam 
point, and each of these may be taken to be equal to one kelvin or, on the scale 
with the ice point at ooc and the steam point at l00°C, to 1 °C. 

The quantity Q/T 

In the above discussion of the Camot engine it was seen that the engine takes in 
heat Qa from the reservoir at temperature T1 and gives out heat Q1 to the sink at 
temperature T1, the temperatures being effectively defined by the values of Q1 
and Q,. We now distinguish between high-quality heat (i.e. heat at a high tem-
perature) and low-quality heat (i.e. heat at a low temperature) by defining a 
quantity u which is the ratio of the quantity of heat to the temperature at which 
that heat is available. Then, for the heat Q1 taken from the source, this quantity 
will have the value 

Q. 
aa - -• T, 

while for the heat Q1 delivered to the sink it will be 
Q, u, - - · 
T, 

Over the whole Camot cycle there will be a change in the quantity u for the 
system consisting of the engine, the source and the sink by an amount 

4.9 
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since u 1 has been taken from the source and u, delivered to the sink while the 
working substance returns to its original state and therefore suffers no change 
in 11. (There is, of course, no change in u over the adiabatic processes where there 
is no exchange of heat.) Taking the values given for 111 and u, we have 

Q, Qa 
flq - - - -· 

T, Ta 
4.10 

However, since the definition of our absolute temperature is chosen to give 
QafQ1 = Ta/T1 (see 4.7), so that Q1/T1 - Qa!Ta , the change in u over the com-
plete Camot cycle is 

flu = 0. 4.11 

Not only does this argument give flu .. 0 for the complete cycle but, if any 
single part of the reversible cycle is considered, the same result is seen to be 
obtained. For example, when during the first stage of the cycle the engine takes 
in heat Q1 from the source of temperature T1, there is a decrease in the quantity 11 

of the source by an amount - Qa/T 1 while the working substance of the engine 
gains an amount ... Q afT1 and so, over this stage, fl11 ... 0 for the complete system 
of engine and source, although it is not zero for the source separately nor for the 
working substance separately. Similarly, as explained above, flu is zero over 
the adiabatic stages. 

The above argument may be extended to any reversible process, since it will 
always be found that any such process can be divided into sequences of infini-
tesimal reversible isothennal and adiabatic processes, each of which must 
separately satisfy the condition du - 0 for the complete system. This condition 
is nonnally expressed in tenns of the sum of increments such that, if a part of 
the system gains a heat dQ while it is at temperature T, the change io u over a 
reversible process is 

w • 0 , -o, • ., 0 , _ __ _;..,:.._...:_-..:..·• c=---1 Carnoa 
Ao- 0 engone 

IOU!C8 T, 

sink T, 

orrev- w· - 0, -o· • • 'I• o, ersoble 1-
6
;,:.

0
- > ... 

engine 

Figure 12 Reversible and irreversible engines between the same reservoirs 
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4.11 

where the changes in a are considered for alJ parts of the system (and for the 
universe if the system is not isolated). 

It is immediately clear from the above analysis that the quantity t::.a satisfies 
the condition that we have required for the change in entropy AS for any 
reversible process, namely that t::.S = 0, as in 4.1. This result gives encouragement 
therefore to examine the behaviour of this quantity a for the case of an irreversible 
process. 

Let us suppose that, as expected from Camot's principle, the irreversible 
engine shown in Figure 12 has an efficiency TJ• which is, through the very processes 
which make it irreversible, less than TJc, the efficiency of the corresponding 
Camot engine. Then, if heat Q; is given to the sink by the irreversible engine 
for heat Q, taken in from the source, 

Q, - Q; Q, - Ql T, - T1 
TJ• - TJc - = ---Q, Q, T, 
and hence, for TJ• < TJc, 

Q, - Q; T, - Tl __ ..,;;;..;. < ---· 
Q, T, 

Thus, on rearranging, we see that 

Qi- Q, > 0 
T1 T1 

4.13 

and, taking our definition for a and comparing with 4.10, we see that this 
equation corresponds, for the irreversible engine, to 

!::.a > 0. 

As for the general reversible process, it is also possible to express a general 
irreversible process as a combination of infinitesimal steps, but in this case while 
some steps may be reversible others will definitely be irreversible. Then com-
bining 4.12 and 4.13 to give the result for both the reversible and irreversible 
increments of a over the whole irreversible cycle will give 

t::.a - f 
lrre•c,..lble: 

eye le 

dQ 
- > 0. 
T 4.14 

That this inequality holds for any irreversible stage of a complete cycle may then 
be demonstrated by considering that stage to be but a single part of an otherwise 
reversible cycle. Then, since A a > 0 for the whole cycle and t::.a 0 for the part 
that is reversible, it is necessary that t::.a > 0 for the irreversible part. 4.14 may 
thus be generalized so that 
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4.6 

f::.q = I 
l.rrct'enlble 

procut 

dQ 
- > 0 T . 

Also, although the value of u of the substance which is undergoing the cychc 
process may increase or decrease during different parts of a cycle, the value of u 
will be unchanged at the completion of the cycle because the substance will 
return to its original state. Any total increase in t::.u over the whole cycle must 
therefore occur in the system as a whole and is usually expressed as an increase 
in u for the universe, since this will cover all interaction between the working 
substance and its surroundings. 

It is thus seen that the quantity u has all the properties required of the entropy 
by 4.1. We therefore make the transfer by defining a change in entropy such that: 

Jf a system or substance at temperature T increases its heat con/ell/ by an amount 
dQ there is an increase in the entropy of the system or substance of 

dQ 
dS = -

T 
4.15 

and, over any complete process, the change in entropy of the system is the integral 
of dS over that process, so that 

.lS - J 4.16 
J)fOC.C:.U 

The condition, that in a reversible process the total change in entropy of the 
universe as a whole is zero, is satisfied because for every gain by a system of heat 
dQ at temperature T some other system must lose the same amount of heat at 
the same temperature or the process will not be reversible. 

Properties or entropy 

Because of the manner in which the entropy has been defined, we know that: 

{a) we can only be concerned with changes in entropy and not with absolute 
entropy since no basis has been laid for absolute values; 
{b) because the entropy of a system returns to its original value at the end of a 
reversible cycle, this value must be a function of the state of the system and not 
of its history, that is, dS is an exact differential. 
(c) it may be possible to consider independently those changes of entropy which 
occur within a system and those which occur in the surroundings, but it is the 
combination of these, the change in the complete universe, which will determine 
whether the process is reversible or not; 
(d) in a reversible, adiabatic process there is no change of heat content of any 
system at any point and hence 
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r dQ 
6.S - J T 
is identically zero and the process is therefore referred to as isentropic. (In some 
discussions adiabatic processes are frequently stated to take place rapidly in 
order to ensure that dQ - 0. It would not be expected that such a process would 
be since we require that, to be reversible, the changes should follow 

states. Hence we expect there to be an increase in entropy in such an 
ad1abat1c process performed rapidly and the distinction must be made between 
isentropic and non-isentropic adiabatic processes.) 

On t_he basis o! these criteria and definitions, and equations 4.15 and 4.16, it is 
poss1ble to denve a number of simple, though important, relationships involving 
the entropy. 

4.6.1 The temperature-entropy diagram 

Any process in which a system can exchange heat with its surroundings may be 
represented on a temperature-entropy diagram by representing any point in the 
process by the value of temperature and entropy at that point. If the process is 
reversible, any in the heat content may be represented by writing 
dQ = T dS. (Th1s relatton cannot be assumed for an irreversible process since, 
T 

T, 

{d) (b) 

r, ----- --
1 (C) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

s. s, s 
Figure 13 T-$ diagram of the Carnot cycle 
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in such cases, there may be entropy changes associated with processes other than 
the addition of heat to a system.) Since only changes in entropy are considered, 
the actual value of entropy will be taken relative to some arbitrary zero. 

Thus, for example, the Carnot cycle may be represented by two processes (the 
isothermal processes) at constant temperature (T, and T1) and two (the adiabatic 
processes) at constant entropy (S1 and S1). The form that this representation of 
the cycle will take is shown in Figure 13 where (a) and (c) represent the isothermal 
processes and (b) and (d) represent the adiabatic processes. The heat taken from 
the source along the stage (a) is clearly 

T,(S, - S1) ... Q., 

while the heat given to the sink along (c) is 

T1(S, - S1) = Q1. 

The work done during the cycle is, as before, 

W ... Q 1 - Q1 = (T, - T1)(S, - S1), 

which is the area of the cycle on the T- S diagram. (Not surprisingly, because 
of our original definition, we see that the thermodynamic efficiency 7J is 

Q, T, 

4.6.2 Available work 

When a system undergoes an irreversible change, which necessarily involves an 
increase in the entropy of the universe, there will be a decrease in the total work 
which is available from any energy sources involved. This may be illustrated 
very simply by considering a system consisting solely of two vessels each con-
taining an identical mass of liquid but at two different temperatures. Useful work 
could be obtained from the masses of liquid in these vessels if they were used 
respectively as the source and sink of a Carnot engine. However, if the two 
volumes of liquid are first mixed together so that they become a single volume 
with double the mass and with a single temperature, they can no longer be so 
used. The useful work which was originally available and which has been lost 
by the mixing process is directly proportional to the gain in the entropy, 6.S, 
which occurs during the irreversible mixing. In fact, as shown in Appendix B, 
if the lowest temperature sink which is accessible to the system is at temperature 
T0 , the loss of available work is T0 6.S. 

On the other hand, if the two volumes of liquid had been brought to the same 
temperature reversibly there would be no gain in entropy and the maximum 
amount of work would be extracted from them. 

The fact that an increase in entropy is associated with a decrease in available 
work indicates that as the entropy of the universe increases with time so there 
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4.6.3 

is a decrease in the useful activity available from the original energy sources. 
We thus see the increase in entropy as involving at the same time the 'running 
down' of the universe. 

Irreuersible changes ;, sysrems 

We have seen from 4.1, which we used as a definition for a change in entropy 
the condition AS .> 0 must be satisfied for an irreversible process which' 

mvolves the exchange of heat. However, there are irreversible processes in which 
no exchange of energy occurs, whether in the form of heat or otherwise. Such 

usually involve a change in the form or arrangement of the system, 
as w11l happen for example when one pure gas diffuses into another pure gas to 

a mixture of gases. Similarly, but in a different system, there will be a 
d1sordering, or change in the arrangement, of the atomic magnetic moments 
when a magnetized paramagnetic material (thermally isolated from its sur-
roundings) becomes demagnetized on the sudden removal of the magnetic 
field. The processes arc certainly irreversible, there being no question that they 
proceed under equilibrium conditions, whlle there is equally no change of heat 
content of the system. In each of these processes there will be a gain in entropy 
although 

- o 

since dQ = 0 identically. It is clear that for processes of this type we must write 

f dQ T 4.17 

if we wish the entropy to increase for all irreversible processes. 
Tl is. fai.rly easy to account for this additional entropy (which obviously does 

not anse m these cases from such effects as friction, eddy currents and so forth 
which would involve exchange between different forms of energy) by the method 

in the following discussion. However, we must note at once that, because 
of thJs result, the calculation of changes in entropy according to equation 4.16 
is only strictly permissible for processes which are reversible. For this reason it 
will be observed that in subsequent calculations the change in the entropy of a 
system will be calculated, where possible, as if the system had followed a 
reversible path between the initial and final state, even if it has not. Then since 
the entropy of the initial and final states will be a function of those states 
the difference between the two entropies will be the same when calculated 

path as for any other sequence of changes between the two states. 
Tnev1tably, though, there will be seen to be cases where no reversible path is in 
fact possible. 

Consider an example. Two beakers each contain a mass m of a liquid which 
has temperature-independent specific heat c. The one beaker is at temperature 
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T., the other at temperature T1 • The two masses of hquid are added together in 
a thlrd beaker (which is insulated from its surroundings and has zero thermal 
capacity) to give a total mass 2m at temperature !(T, -+ T1). Because the process 
is irreversible there will be a gain in the total entropy of the universe. However, 
in order to calculate the change in entropy we must use the fact that the entropy 
of the final state is independent of the path by which this final state is attained. 
We thus compute the change in entropy of the two masses of liquid as if they had 
followed reversible paths to the temperature !(T, + T2), so that it is possible to 
write the change in entropy as in 4.16. Such reversible paths would necessarily 
consist of a series of equilibrium stages. The reversible heating (or cooling) of 
the two beakers would therefore require a series of heat reservoirs, each at an 
infinitesimally lower temperature than its neighbour. However, since these are 
only required for a • thought ' experiment, they present us with no problem. 

Putting dQ - me dT (by the definition of the specific heat), the change in 
entropy of-the liquid which startS at temperature T1 is 

(T1 + T 2)/l 

fdQ f mcdT T1 T1 
AS(liquid at T1) - -T - -T- - mcln --- • 

27i 
r, 

while the change in entropy of the liquid which starts at T, is 

If the two volumes of liquid are now added together in the original isolated 
beaker to form a single volume, we shall have reached the same state as in the 
case of direct mixing. The process of the mixing will now be entirely reversible 
and involve no change in entropy, and so the total change in entropy of the 
liquid will be 

In--- • In---[ 
T1 1- T2 T1 +T,] 

2T1 2Tl 
(T1 + T1)1 

- mcln • 
4T1 T2 

which is necessarily posirive since 

(T1 + T2)1 > 4T, T2 forT,#; T,. 

In the reversible processes which we have envisaged there will be no change in 
the universal entropy, since our imaginary reservoirs will have lost an amount 
of entropy equivalent to AS(total). In the case of the direct mixing no external 
systems are involved and the entropy gain is an absolute gain for the whole 
universe. 
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4.7 

If the two liquids contained by the beakers had been of different chemical 
composition and entirely immiscible, so that they could exchange heat but could 
not mix.. this type of calculation would still be valid, since the ' mixing' process 
would Still be reversible. However, if the liquids had been different but had been 
miscible, it would not have been possible to separate the liqu1ds by any simple 
process after they had been mixed together and the entropy change wouJd have 
been greater. (For a discussion of such mixing see section 1 1.5.) 

Entropy, probability and disorder 

have already mentioned that such processes as the mixing together of two 
d1fferent gases or the demagnetizing of a paramagnetic material wiiJ result in a 

in not because of an exchange of heat but because of the very 
1rrevers1b1hty of the changes which occur. The property which these processes 
have in common is that they involve a spontaneous change from a more ordered 
arrangement to a less ordered arrangement of the components of the particular 
system. Thus, in Figure 14{a) the initial state of the separated gases, indicated 

unit volume 
oxygen gas 

1notial state 
(a) 

8, 

(b) 

\ t I 
I i t 
t t \ 

unh volume 
notrogen gas 

two units or volume 
m1xed oxygon and n1trogen 

fonal state 

Figure 14 Increase in disorder when (a) two different gases at the same 
temperature and pressure are mixed together, and (b) when a magnetic field is 
removed from a paramagnetic specimen 

for convenience as oxygen and nitrogen, is more ordered than the final mixture. 
That the process is irreversible is obvious if it is considered that the mixing 
process follows spontaneously on the removal of the partition between the gases 
but that the .replacement of the partition will not cause the gases to separate out 
from the m1xture. Indeed, quite a complicated procedure would be required 

rcsegregatc oxygen and nitrogen molecules. Similarly, in Figure 14(b), 
1f the field Bo wh1ch causes the magnetizat ion is instantaneously removed, the 
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atomic magnetic moments will instantaneously be partially aligned with no 
field applied. The magnetization which results from this alignment will disappear 
with time as the system tends spontaneously to a state where these moments 
are arranged in a random manner. Again the direction of the spontaneous 
change from the magnetized to the demagnetized state will result in a more 
disordered state replacing the ordered state of the magnetized specimen. Since 
the transfer from the initial state to the final state in both of the cases illustrated 
in Figure 14 is irreversible, there is clearly a gain of entropy in each case. We 
may therefore conclude that a disordered state has a higher entropy than an 
ordered state. (Although in both the cases illustrated here the final state is 
that of higher entropy, in most cases both the energy and the entropy of the 
system have to be considered in order to determine the final state - see section 
6.2.) 

Tf there is to be any exact relation established between the ':lisorder and the 
entropy of a system, it is clearly necessary that the disorder shall be expressible 
in some way in terms of e1ther the macroscopic or microscopic parameters of 
the system. The way in which such an expression can be obtained is seen most 
simply if it is noted that a disordered state of a system can be achieved in more 
ways (or by more arrangements of the components) than can an ordered state. 
Thus in the final (or mixed) state of Figure 14(a), where both gases have 
sprea'd through twice their original volumes, each molecule can be found in 
twice as many positions as were possible in the initial state where the gases were 
confined by the partition, each to one haJf of the complete enclosure. 

Consider that the unit volume of oxygen contains N molecules and that these 
can be arranged in the limited volume in .Qt(01) distinct ways. When the partition 
is removed, each molecule can take up two positions for every one in the initial 
state and so the number of arrangements will increase by a factor to 

.0r(01) = .QI(Ol) X 2N. 

Similarly, if .Q1(N1) is the initial number of ways of arranging the nitrogen 
molecules in one half of the enclosure, there will be 

n,(Nl) - n.(Nl) x 2fl 

ways of arranging theN nitrogen molecules once the partition has been removed. 
Consequently, if the total number of arrangements possible in the initial and 
final states of the whole gas system are .Q(initial) and .Q(final), then 

.Q(initial) - n.(Ol) X .Qt(Nl) 
and .Q(finaJ) .0r(01) X .Q,(Nl) - .QI(Ql) X 2" X .QI(Nl) X 2·", 

since each arrangement of the oxygen molecules may be taken together with each 
arrangement of the nitrogen molecules. Thus 

.Q (final) lfl 
. 

.Q (initial) 
4.18 
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Since N will be of the order of 1011 for a litre of gas at standard temperature and 
pressure, this ratio is considerable and the number of ways of arranging the 
molecules with the partition removed is considerably greater than the number of 
arrangements available before this removal. Consequently, once the partition 
has been removed, the molecules moving in a random manner will have a far 
greater probability of being found in the completely mixed state than in the 
segregated state. The irreversible mixing of the gases associated with the increase 
in entropy is therefore also associated with an increase in the likelihood of finding 
the mixed state relative to that of finding the unmixed state once the partition 
has been removed. 

A similar argument applied to the magnetized specimen of Figure t4(b) 
would show that there is only one way of finding the magnetic moments com-
pletely aligned, but many ways of finding them orientated at random. The final 
disordered state is, in both cases, the most probable state and it appears therefore 
that there is a relation between high probability and high entropy. 

If we now consider that heat energy, involving as it does a random motion of 
molecules in a gas or of ionic vibrations in a solid or of electromagnetic radiation 
in space, is a disordered form of energy, it is possible to associate the increase in 
entropy which occurs with the addition of heat to a body with an increase in 
disorder. However, the manner in which the disorder due to the addition of beat 
energy can be expressed in terms of arrangements of the molecules or ions is 
beyond the scope of our present text. 

Suppose that for some system the number of distinct arrangements of its 
components, which we shall call the statistical weight of the system, is 0 The 
relation between the entropy and the disorder can then be envisaged in the form 

s - /(0). 4.19 

The actual form of the function /(0) may be simply established by considering 
a composite system composed of two separate systems A and B which do not 

system A system B 

n,. n , 
s,. S a 

v \ I 

n,. •. s,.. 
Figure 15 Two non-interacting systems A and B 

interact in any way, as indicated in Figure 15. Then the entropy of the composite 
system will be 

4.20 
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where s and S8 are the individual entropies of A and B. At the same time the 
total Of the combinatiOn WiJI be given by the prOdUCt Of the weightS OA 
and 0 8 of A and B respectively, i.e. 

O,.e - OA x na, 4.21 

since every one of then,. possible arrangements of the system A. may be taken 
together with every one of the arrangements Oa. For equauons 4.20 and 
4.21 to be consistent with each other the relation between S and n must be of 
the form 

s - kLnn, 4.22 

where, after the originator of this expression, the constant k is called Boltzmann's 
constant. Then 
SAa ... kLnOAB - klnOA - klnOa = SA "' Sa. 

This problem of the relation between entropy and the weight ':'ill 
be discussed further in subsequent sections of the text. However, 111s mterestmg 
at this point to note that, by virtue of 4.22, the result of mixing the equal 
volumes of the two gases shown in Figure 14(a) (the gases both bemg at the 
same temperature and pressure) is to increase the entropy by the amount 

AS - Snnal - $ 1011101 - k Ln il(final) kIn O(initial), 

which, on substituting from 4.18, gives the entropy of mixing as 

AS - 2Nkln2. 4.23 

(The value of Boltzmann's constant which is required to give the same change 
in entropy for a reversible process from both the equations 

dQ 
dS -- and dS kd(lnn> 

T 

k I· 38 X 10- l) J K I. 

This constant will occur later in our treatment of the kinetic theory of gases.) 

The combined first and second Jaws 
Because of the introduction of the concept of entropy it is possible to rewrite 
the mathematical form of the first Jaw of thermodynamics for a reversible 
process with dQ replaced by T dS. Then 3.3 becomes, for a system at tempera-
ture T, 
TdS = dU + dW. 4.24 

The advantage of this expression compared with the original is that, while dQ 
is an inexact differential, dS is an exact differential. Then, because dU is an exact 
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differential and dW may also be expressed in terms of an exact differential 
(which depends on the panicular system and its constraints, as is seen from 
Table 1), it is possible for mathematical relationships to be established between 
the various parameters of the system in question, as will be discussed in Chapter 6. 

For irreversible processes, the combined law gives 

TdS > dU . dW, 

but, as is very clear, such an expression has more physical significance than 
mathematical application and, as already explained, changes in entropy will be 
calculated, using 4.24, for reversible paths between the initial and final states. 

The substitution T dS dQ is often used to obtain an expression for the 
specific heat of a material. The thermal capacity of a body is defined as dQ/dT 
and the specific heat (stnctly, the specific thermal capacity) is the thermal 
capacity per unit mass (denoted c) or per mole {denoted C). The value of the 
specific heat will depend on the conditions under which the heat dQ is supplied 
and the so-called pnncipal specific heats Cp and c. are the values with pressure 
and volume respectively maintained constant. These specific heats may be 
expressed in terms of changes in entropy, since dQ/dT T dS/dT, as 

and c. - r(as) . 
iJT o 

4.25 

If the volume v of a fluid is maintained constant, then dW .... p dv - 0, and so 
it follows from 4.24 that 

c. - (iJU) . iJT • 4 .. 26 

The usefulness of these expressions will be seen in Chapter 6. 

Caratheodory's principle 

The method by which the entropy has been introduced so far has required an 
appreciation of physical method and procedure. ll is, however, possible to 
introduce the entropy in a more formal mathematical manner, of which we shall 
give here only the bnefest indication, and that for a particular case. 

Consider that, by the first Jaw of thermodynamics, the heat supplied to a 
dielectric system is given by 

dQ - Co dT - p dv E dP, 4.27 

where work is performed by the system as it expands against the pressure and 011 
the system by the electric field as the polarization P increases. The substitution 
dU - c. dThas been made from 4.26. Consider further that the system is in the 
state X defined by a given set of values ofT, v and Pas indicated in Figure 16. 

It is known that the states which are accessible from X by an adiabatic process, 
i.e. by a process in which dQ - 0, are limited to a surface in (P, T,v) space, while 
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p 

X 

edlebatlc surtece 
C.dT + p dv - EdP-0 

T 

V 

Figure 16 State X of system represented in the coordinates P. T and v 

any state lying off this surface is not accessible from X by such It is 
Caratheodory's principle that, for such inaccessible states to extst, tt must be 
possible to write 4.27 in the form 

dQ = Co dT -t p dv - E dP - Y dy, 

where y and y are both functions of T, v and P, while dy must be a perfect 
differential. Tt is then possible to identify Y with T and y with a function of 
state S, the entropy, so that 

dQ-TdS 

and the heat change is expressed in terms of a perfect differential. 

4.10 Calculation of change in entropy 

As an example of change in entropy, consider that heat is supplied to a wire of 
resistance ten ohms by a current of one ampere flowing for one minute. Consider 
two cases. (a) That the wire is isolated from its surroundings and, having a 
temperature-independent thermal capacity of I 0 J K - •, increases in temperature 
from its initial state at 0 °C. (b) That the wire is in thermal contact with a large 
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quantity of ice at its melting point, so that the addiuonal heat will melt a certain 
amount of ice without raising the temperature. 

There are 600 J of energy supplied, so that the temperature of the wire will 
nse from ooc to 60°C. lf this change in temperature were caused to occur in 
a reversible manner, the difference io entropy of the wire between the initial 
and final states would be, taking Cas the thermal capacity, so that dQ .. c dT, 

Tr 333 

tlS. - --- 10Jn- • l·98JK- • J CdT J lOdT 333 
T T 273 . 

T1 173 

In a reversible process this amount of entropy would have been lost by the 
agency supplying the heat to the wire, but in the present, irreversible process the 
ordered electrical energy is converted to disordered heat energy. The change in 
entropy represents a net gain, therefore, both to the wire and to the universe as 
a whole. 

(b) The 600 J of energy are supplied to the wire, in this case at constant tem-
the heat created being used to convert ice at ooc to water at ooc. 

Tf th1s process had been carried out reversibly there would bave been a gain in 
entropy of the ice-water system by 

600 600 
- - - 2-J9JK- 1 
T 273 ' 

since the process is irreversible, represents a net gain of entropy for the 
umverse. 
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Chapter 5 
The Third law 

5.1 Behaviour of matter at low temperatures 

The experimental observation of the properties of matter as the temperature is 
lowered below room temperature towards the lowest values attainable leads to 
the conclusion that the disorder of any system decreases as the temperature 
decreases and, as measured in terms of the entropy, tends to a limiting value. 
Any attempt to formulate a law which will account for this behaviour, and which 
will supplement the laws discussed m the preceding chapters, must take into 
account a number of basic observations. 

(a) On the temperature scale defined thermodynamically in section 4.4 (and 
later to be defined practically in Chapter 20) there is found to be an absolute zero 
of temperature at which, for example, the volume of an ideal gas extrapolates to 
zero. However, the gas phase itself does not exist at the lowest temperatures 
since, as this zero of temperature is approached, the gas undergoes changes of 
phase to more ordered condensed states, first to a liquid and then, generally, to 
a solid. Once the solid phase is formed its internal energy will extrapolate to 
some zero-point value at the absolute zero of temperature. 
(b) If we maintain our definition for a reversible process that 

f dQ 
!ls - -r· 
then, if C is the thermal capacity of a given condensed system so that dQ - C dT, 
we have 

It is cJear that there will be a singularity in the entropy as T approaches zero 
unless C also approaches zero at least as fast as T. As will be discussed in Chapter 
10, this required temperature dependence of the specific heat is confirmed by 
experimental observations on solids and is, furthermore, predicted by the 
method of statistical physics. 
(c) The experimental evidence from chemical reactions which were allowed to 
take place at low temperatures suggested to Nerost that: 
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The entropy change which occurs in a chemical reaction between two ordered solids 
tends to zero as the temperature tends to zero. 

This statement is known as the Nernst heat theorem. 
(d) It is observed that in any magnetic system the spin magnetic moments from 
which the magnetism arises will tend to a completely ordered arrangement as 
the zero of temperature is approached, so that the weight of the state of the 
magnetic moments at absolute zero tends to unity (there being only one way of 
attaining complete order). The corresponding entropy, given by the logarithm 
of the weight, is zero. 

The experimental results summarized here led Simon to produce a general state-
ment govemmg the thermodynamic behaviour of such properties as specific heat, 
paramagnetism of solids and many others as absolute zero is approached. The 
result was the 'Nernst- Simon' statement, viz.: 

The entropy change associated with any reversible isothermal process of a condensed 
system approaches zero as the temperature approaches zero. 

This more general statement is the third law of thermodynamics. (In this statement 
'condensed system' normally refers to a solid but will, in the case of liquid-
helium-II, refer to the liquid phase.) 

Table 2 Some Results of the Third Law 

System Quantity considered Result 

voltaic cell electromotive force V r dV o am - ... 
dT 

elastic solid isothermal bulk modulus f3 lim d/3 - o 
T--odT 

surface of liquid surface tension q r du 0 am --
T·odT 

magnetic material magnetic moment M r dM o •m--
Too() dT 

superconductor critical field Be I' dBc O am --
T•O dT 

solid specific heat c. lim c. - o 

solid- liquid pressure p for change of r dp o am --
phase change phase at temperature T, T,.odT, 
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Although we have not dealt with detailed thermodynamic properties so far, 
it is instructive to list in Table 2 a few of the significant results of this law which 
will illustrate its importance. (It must be pointed out, however, that the absolute 
zero of temperature has not actually been reached and that the verification of 
these predictions is based on extrapolation to T - 0.) 

The results of the third Jaw of thermodynamics for magnetic materials are 
illustrated in Figure 17. This shows the variation 'vith temperature of the 
magnetization for a paramagnetic material in the presence of a magnetic field, 

M 

0 
paramagnetic material 
(a) 

0 

slope of magneuzauon curve 
(e) 

T 

M 

0 
lenomagnetlc material 
(b) 

lerromagnetoe 

T 

Figure 17 Behaviour of magnetic materials as absolute zero is approached 
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and for a single domain ferromagnetic material of Curie temperature Tc, and 
also the variation of dM/dTfor each case. It is clear that the experimental results 
indicate agreement with the third law. 

5.2 The Wlllttainability of absolute zero 

An alternative form oft be third Jaw to that given by the Nernst-Simon statement 
is obtained by considering the representation of a system on a temperature-
entropy diagram as the temperature approaches zero. Such a representation is 
shown in Figure 18, where the curves X = X 1 and X = X2 represent two possible 

r 

______________________________ 
Figure 18 Temperature-entropy diagram for a system approaching T = 0 

values of a particular constraint parameter X which is maintained constant 
while the temperature and entropy are varied along the curves. (Usually the 
system chosen for these discussions is a paramagnetic salt and the parameter 
held constant is the magnetic field. Then we normaUy have X1 ... where 8 01 
is zero, and X1 ""' Bo1, where Bo1 is a large magnetic field capable of producing a 
high degree of magnetic ordering. However, X could equally be the pressure 
applied to a gas or fluid, the force on a wire or the electric field on a dielectric.) 
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In the figure So, the entropy remaining at T = 0, is the zero-poinr entropy, which 
may be considered to be due to the disorder which remains 'frozen' into the 
solid even at absolute zero. 

Now suppose that, starting with the system in the state represented by the 
point A, the value of X is changed isothermally from X1 to X1 , so that the entropy 
changes to the value at B. (This process would require some beat reservoir at 
constant temperature to supply or remove heat as required to maintain the 
isothermal condition.) Once the system is at the state B it may be isolated from 
its surroundings while the value of X is changed isentropically from X 1 to X1 
so that the temperature falls to the value at C. A repetition of each of these steps 
in turn will trace the path C -? D -+ E -+ F -+ etc., provided that at each step 
there is available a constant-temperature reservoir at the appropriate tempera-
ture. With each step the successive changes in entropy and temperature become 
smaller as is required by the third Jaw, and approach zero as Tapproaches zero, 
since the curves along x, = constant and X1 - constant must both finish at the 
same value of entropy at T = 0 for the Nemst-Simon statement to be valid. 
It foJJows that an infinite number of steps will be needed to attain absolute zero 
by such a series of processes in which the changes produced in the entropy 
diminish towards zero and it is possible to generalize by stating that: 

lt is impossible by any procedure, no matter how idealized, to reduce any system 
to rhe zero of temperature in a finite series of operations. 

This statement is referred to as the principle of the wtattainability of absolute 
zero, and by exactly the same reasoning we see that: 

lt is impossible by any procedure, no matter how idealized, to reduce the ell/ropy 
of any system to its zero-point value in a finite number of steps. 

The first of these statements is very well borne out by experience (see Chapter 
15), while the equivalence of both to the Nernst-Sirnon statement is demon-
strated in detail in Appendix C. 
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