The Gibbs Framework: Pro and Anti

	Wallace	Goldstein et. al
	"A system is in Boltzmann equilibrium if it lies in the	"In every energy shell there is usually one macro set $\Gamma_{\nu} = \Gamma_{eq}$
	largest of the macrostates (called the equilibrium macrostate)	that corresponds to thermal equilibrium and takes up by far
	given the system's energy." p.3	most (say, more than 99.99%) of the volume" p.4
Boltzmann equilibrium	"The approach to Boltzmann equilibrium is essentially a consequence of phase-space geometry combined with some reasonable assumptions about the dynamics [] This conception of equilibrium makes the approach to equilibrium a statistical or probabilistic matter" p. 3	"Now increase of Boltzmann entropy means that the phase point $X(t)$ moves to bigger and bigger macro sets Γ_{v} ." p.19
	"A system is at Gibbs equilibrium if ρ is time-invariant	"In the view we call the ensemblist view, a system is in
	under the system's dynamics [] if the system is ergodic, the	thermal equilibrium if and only if its phase point X is
Gibbs	equilibrium distribution must be uniform on each energy	random with the appropriate distribution[] In the
equilibrium	hypersurface" p.4	individualist view, in contrast, a system is in thermal
		equilibrium (at a given energy) if and only if its phase point <i>X</i>
		lies in a certain subset of phase space." p.34
	"There is an immediate problem with this first-pass version	"The time independence of $S_G(\rho)$ conflicts with the
	of the Gibbsian approach: it seems to have the corollary	formulation of the second law given by Clausis[]
	that real systems do not increase in entropy or approach	Clausius's statement is actually correct for the Boltzmann
	equilibrium." p.4-5	entropy." p.6-7
Time- independence of Gibbs entropy and coarse- graining	 "in statistical mechanics (as distinct from thermodynamics) the entropy is ultimately no more than a book-keeping device" p.17 "There is no dynamical principle according to which the coarse-grained entropy is a constant of the motion; indeed, it is mathematically possible for the coarse-grained entropy to increase to a maximum value and then remain there indefinitely." p.6 	"Some authors (e.g., Wallace, 2019; Tolman, 1938, § 51) have considered a partition (of an energy shell in) phase space[] It is plausible that [the coarse-grained entropy] indeed tends to increase[] the argument for the increase of [entropy] given by Tolman (1938) is without merit." p.38

Arbitrariness when carving up phase space into macostates	"Yes, formally speaking the Boltzmann entropy depends only on a system's macrostate, but it relies for its definition on a partition of the energy hypersurface into macrostates, and that partition is modal in nature - most obviously because the energy hypersurface itself depends on the dynamics." p.18 "the macrostate partition at the heart of Boltzmannian statistical mechanics is just as vulnerable to these [subjectivity] criticisms as is the Gibbsian coarse-graining- indeed, it is a special case of coarse-graining " p.19	"this description still leaves quite some freedom of choice and thus arbitrariness in the partition[] Wallace (2019) complained that this element makes the Boltzmann entropy "subjective" as well, but that complaint does not seem valid: rather, S_B and its increase provide an objective answer to a question that is of interest from the human perspective. Moreover [] this anthropomorphic element becomes less relevant for larger N. It is usually not problematical and not subject to the same problems as the subjective entropy." p.18 "we usually never go through the trouble of actually selecting Γ_{eq} and the other Γ_v : it often suffices to imagine that they <i>could</i> be selected. Specifically, for thermal equilibrium, it often suffices to specify the distribution [] with the understanding that Γ_{eq} should contain, in a reasonable case, the typical points relative to that distribution." p.34
Status of the probability density/measure ρ	 "What we want to explain in non-equilibrium statistical mechanics is itself something modal: not that systems <i>invariably</i> go to equilibrium but that they do so <i>almost certainly</i> [] A probabilistic property of a system is poorly suited to explain why the system deterministically behaves in such-and-such a way, but it is well suited to explain why it very probably behaves in that way." p.16 "For if we want to explain why a deterministic system will with high probability do <i>X</i>, probabilistic statements about its current state are pretty much all we can expect as explanada." p.20 	"While every classical system has a definite phase point X (even if we observers do not know it), a system does not "have a ρ "; that is, it is not clear which distribution ρ to use.[] In general, several possibilities for ρ come to mind: (a) ignorance[] (b) preparation procedure[] (c) coarse graining[]" p.4 Three options for ρ in the "individualist" approach to Gibbs entropy (p.31): (i) frequency in repeated preparation (genuine probability), (ii) degree of belonging, (iii) typicality

	"it is always open to the Boltzmannian to insist that	"A feature of behavior is said to be typical in a set <i>S</i> if it
	apparently 'probabilistic' predictions should be reinterpreted	occurs for most (i.e. the overwhelming majority of) elements
	as, say, claims about what is typical when an experiment is	of S." p.31 [Example: digits of π]
Reinterpreting probabilities in	repeatedly performed on a very large number of copies of the	
	system. But this is just a claim about the general foundations	"when considering a random experiment in probability
	of probability in statistical mechanics (specifically, that it	theory, we usually imagine that we can repeat the experiment,
terms of	should be understood on frequentist lines). It in no way	with relative frequencies in agreement with distribution ρ
typicality	eliminates probability from the actual statement and use	[] what we are getting at is that Gibbs's ensembles are
	of statistical mechanics." p.10	best understood as measures of typicality, not of genuine
		probability [] There is room for different choices of ρ , and
		this fits well with the fact that Γ_{ν_0} has boundaries with some
		degree of arbitrariness." p.32-33
	"It will be objected [] we are saying something objective	"Wallace, an ensemblist, feels the force of arguments against
	about the world, not something about my beliefs. I agree, as it	subjective entropy but thinks there is no alternative ." p. 30
	happens; that just tells us that the probabilities in statistical	
Subjectivity/role	mechanics cannot be interpreted epistemically. And then,	"The basic problem with the ensemblist definition of thermal
of observer's	of course, it is a mystery how they can be interpreted,	equilibrium is the same as with the Gibbs entropy: a system
knowledge	given that the underlying dynamics is deterministic [] In	has an X but not a ρ . Is it subjective? But whether or not a
0	the thermodynamics context , by contrast, it is far less clear	system is in thermal equilibrium is not subjective." p.34
	to me why my knowledge of a system's state cannot play an	
	explanatory role." p.20	
	"once it is recognized that in Gibbsian statistical mechanics	"Contrary to von Neumann's statement[] the second law
	'equilibrium' is a statement about the probability distribution	as formulated in (34) is not refuted by either [the time
	of a system, there is no contradiction between the	reversal or recurrence] objection: after all, the second law
Recurrence and	(classical) recurrence theorem and the claim that entropy	applies to <i>most</i> , not <i>all</i> , phase points $X(0)$, and it does not
the Gibbs and	is non-decreasing. For the former tells us that any given	claim that $X(t)$ will stay in thermal equilibrium <i>forever</i> , but
Boltzmann	system has some timescale at which it has returned to its	only for a very, very long time." p.21
frameworks	initial state, and the latter (for Boltzmann-apt systems) tells	only for a very, very fong time. p.21
inume works	us that at any time after the equilibration timescale the system	
	is overwhelmingly likely to be in the equilibrium macrostate,	
	and these statements are compatible." p.17	
	and mese statements are compandle. p.17	

	p.11: requirements for recovering thermodynamics from an	"Section 4.1: Cases of Wrong Values" example
	underlying mechanical theory	Section 4.1. Cases of wrong values example
	underrying incentancear theory	"Consider for example the phenomenon that by thermal
	"we have a (sketch of a) satisfactory derivation of	contact, heat always flows from the hotter to the cooler body,
	thermodynamics from Gibbsian statistical mechanics []	not the other way around. The usual explanation of this
Recovering thermodynamics from statistical mechanics	The situation is parallel to the statistical-mechanical case. For	phenomenon is that entropy decreases when hear flows to the
	the Gibbsian, there is no factive difference between the two	· · · ·
		hotter body, and the second law excludes that. Now that
	approaches: the validity of the Gibbsian approach entails that of the Boltzmannian approach, and the two strategies differ	explanation would not get off the ground if entropy meant
	only semantically." p.13	subjective entropy: in the absence of observers, does heat flow from the cooler to the hotter? In distant stars, does heat
	only semantically. p.15	flow from the cooler to the hotter? In this tails, does near
	"modern physics is extensively applying, and testing,	existed, did heat flow from the cooler to the hotter? After the
	thermodynamics in the microscopic regime, where the	human race becomes extinct" p.13
	Boltzmann-aptness assumption completely fails and	numan race becomes extinct p.15
	predictions are explicitly probabilistic." p.15	
	"Since $C(t)$ is an explicitly probabilistic quantity, it is not	"Actually, that is not correct. The individualist will be happy
Thermal coefficients:	even defined on the Boltzmannian approach.[] So: even for	as soon as it is shown that for most phase points in \mathcal{H}_{mc} , the
Two-time	Boltzmann-apt systems, there are important cases where	rate of heat conduction is practically constant and can be
correlation	probabilistic methods seem necessary and do not reduce	computed from $C(t)$ in the way considered." Goldstein p.37
function	to Boltzmannian methods in any simple way." p.8-9	
	"Here, 'the' equilibrium microstate below a certain	"a broad ρ will lead to approximately equal probabilities for
	temperature has a non-zero expectation value of magnetic	v_1 and v_2 . This leads to the question why practical procedures
	spin [] it then follows from the rotational symmetry of the	lead to broad ρ s, and that comes from typicality as expressed
	underlying dynamics that there must be another microstate	in the development conjecture. Put differently, for a large
Spontaneous	obtained by applying a rotation to each microstate in the first,	number of identical ferromagnets, it is typical that about
symmetry	of equal volume to 'the' equilibrium microstate." p.9	half of them are in v_1 and about half of them in v_2 ."
breaking in a		Goldstein p.37
ferromagnet	"We cannot, for instance, say 'typical states are equally	<u>^</u>
	likely to end up in each equilibrium macrostate' since	
	'being equally likely to end up in equilibrium macrostate' is	
	not a property that any given microstate can have in a	
	deterministic theory." p.10	

	"a hypothetical 'Gibbsian' quantum statistical mechanics	"the density matrix $\hat{ ho}$ plays the role analogous to the
Quantum statistical mechanics	works with density operators understood as probability	classical distribution density $\boldsymbol{\rho}$, and again, the question
	distributions over mixed states; a 'Boltzmannian' statistical	arises as to what exactly $\hat{\rho}$ refers to: an observer's ignorance
	mechanics instead works with density operators	or what? Our discussion of options (a)-(c) above for the
	understood as individual mixed states. But nothing at the	Gibbs entropy will apply equally to the von Neumann
	level of the mathematics will distinguish the two	entropy[]
	approaches[] And I have been arguing that the <i>machinery</i>	
	of the Gibbsian approach, not a hypothetical interpretation of	The closest quantum analog of the Boltzmann entropy is the
	that machinery, is compatible with the Boltzmannian	following. A macro state v should correspond to, instead
	conception [] at the level of machinery, there is no	of a subset Γ_{ν} of phase space, a subspace \mathcal{H}_{ν} of Hilbert
	difference between the two approaches." p.21-22	space \mathcal{H} , called a macro space [] It seems convincing that
		$S_{qB}(v)$ yields the correct value of thermodynamic entropy."
		p.8
	"fluctuations around the Boltzmann equilibrium values can be	"By a fuzzy macro set we mean using functions $\gamma_{\nu}(x) \ge 0$
	described either as fluctuations within Gibbs equilibrium, or	instead of sets Γ_{ν} as expressions of a macro state ν : some
	as fluctuations into and out of Boltzmann equilibrium, but	phase points x look a lot like ν , others less so, and $\gamma_{\nu}(x)$
The grounding framework	this is simply a semantic difference [] p.7	quantifies how much. The point here is to get rid of sharp
		boundaries between the sets as the boundaries are artificial
	"In those systems to which the latter is applicable, the	and somewhat arbitrary anyway.
	Gibbsian framework can be seen as grounding the	
	Boltzmannian one. The situation is not symmetric, for	So what would be the appropriate generalization of the
	obvious conceptual reasons. The Boltzmannian framework	Boltzmann entropy to a fuzzy macro state ? It should be k
	per se contains no explicit notion of probability, and so does	times the log of the volume over which is effectively
	not permit us even to define the Gibbsian probability	distributed- in other words, the Gibbs entropy" p.29
	distribution." p.7	

Questions for discussion:

- I. Does carving up phase space into macrostates truly make the Boltzmannian approach probabilistic or subjective? Is Goldstein's defense against this accusation enough to dismiss it?
- II. Gibbs entropy vs. "subjective entropy": is Goldstein arguing against a straw-man in Section 4: "Subjective Entropy is Not Enough"?
 - a. To what extent are Gibbs entropy and "subjective entropy" the same thing?
- III. Is Goldstein's definition of typicality satisfactory? (We can compare this definition to our readings from last week.)
- IV. Do Gibbsian ensembles measure typicality or genuine probability?
- V. The time reversal problem for the Boltzmann entropy of the entire universe
 - a. For Goldstein, Past Hypothesis + Lanford's theorem → Development Conjecture (DC). (Goldstein p. 27)
 - b. Goldstein uses DC to explain away the fact that according to the Boltzmann equation, entropy increases in both time directions. Does DC truly solve the time reversal problem?
- VI. A potential point of agreement: subjectivity and the irrelevance of the observer's knowledge of a system
 - a. Do the two authors agree when discarding subjectivity, or are they referring to different ideas when using term?
 - b. Wallace allows subjectivity to play an explanatory role in thermodynamics, while Goldstein recoils at the idea. Should we have the same visceral reaction against assigning any role in macroscopic science to subjectivity?
- VII. Whose account of the "grounding" framework is more convincing- Wallace or Goldstein? Is the Boltzmann entropy a special case of the Gibbs entropy (Wallace) or is the Gibbs entropy a "fuzzy" Boltzmann entropy (Goldstein)?
- VIII. Does Wallace have a response to Goldstein's assertion that a Boltzmann interpretation is necessary for the accuracy of macroscopic hydrodynamic equations? Is this a "naturalist" counter-example to Wallace's thermal coefficients, ferromagnet and Brownian motion? (see Goldstein p.5)
- IX. There is a lot missing from this list, e.g. ergodicity & mixing, empirical vs. marginal distributions, Boltzmann's H-theorem. Many topics discussed in Goldstein's paper have been excluded. What other questions or remarks do you have?

Sources:

- 1. D. Wallace, "The Necessity of Gibbsian Statistical Mechanics", forthcoming; <u>http://philsci-archive.pitt.edu/15290/</u>
- 2. S. Goldstein, J. Lebowitz, R. Tumulka, N. Zanghi, "Gibbs and Boltzmann Entropy in classical and quantum mechanics", forthcoming; <u>https://arxiv.org/abs/1903.11870</u>