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3. In a displacement of the spectral lines toward the red end 
of the spectrum in the case of light transmitted to us from 
stars of considerable magnitude (unconfirmed so far)." 

The chief attraction of the theory lies in its logical complete-
ness. If a single one of the conclusions drawn from it proves 
wrong, it must be given up; to modify it without destroying 
the whole structure seems to be impossible. 

Let no one suppose, however, that the mighty work of N ew-
ton can really be superseded by this or any other theory. His 
great and lucid ideas will retain their unique significance for 
all time as the foundation of our whole modem conceptual 
structure in the sphere of natural philosophy. 

Note: Some of the statements in your paper concerning my 
life and person owe their origin to the lively iroagination of 
the writer. Here is yet another application of the principle of 
relativity for the delectation of the reader: today I am described 
in Germany as a "German savant," and in England as a "Swiss 
Jew." Should it ever be my fate to be represented as a bete 
noire, I should, on the contrary, become a "Swiss Jew" for the 
Germans and a "German savant" for the English. 

GEOIVIETRY AND EXPERIENCE 

Lecture before the Prussian Academy of Sciences, January 
27, 1921. The last part appeared first in a reprint by 
Springer, Berlin, 1921. 

One reason why mathematics enjoys special esteem, above all 
other sciences, is that its propositions are absolutely certain 
and indisputable, while those of all other sciences are to some 
extent debatable and in constant danger of being overthrown 
by newly discovered facts. In spite of this, the investigator in 

• This criterion bas since been confirmed. 
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another department of science would not need to envy the 
mathematician if the propositions of mathematics referred to 
objects of our mere imagination, and not to objects of reality. 
For it cannot occasion surprise that different persons should 
arrive at the same logical conclusions when they have already 
agreed upon the fundamental propositions (axioms), as well as 
the methods by which other propositions are to be deduced 
therefrom. But there is another reason for the high repute of 
mathematics, in that it is mathematics which affords the exact 
natural sciences a certain measure of certainty, to which with-
out mathematics they could not attain. 

At this point an enigma presents itself which in all ages has 
agitated inquiring minds. How can it be that mathematics, be-
ing after all a product of human thought which is independent 
of experience, is so admirably appropriate to the objects of 
reality? Is human reason, then, without experience, merely by 
taking thought, able to fathom the properties of real things? 

In my opinion the answer to this question is, briefly, this: as 
far as the propositions of mathematics refer to reality, they are 
not certain; and as far as they' are certain, they do not refer to 
reality. It seems to me that complete clarity as to this state of 
things became common property only through that trend in 
mathematics which is known by the name of "axiomatics." The 
progress achieved by axiomatics consists in its having neatly 
separated the logical-formal from its objective or intuitive con-
tent; according to axiomatics the logical-formal alone forms the 
subject matter of mathematics, which is not concerned with 
the intuitive or other content associated with the logical-formal. 

Let us for a moment consider from this point of view any 
axiom of geometry, for instance, the following: through two 
points in space there always passes one and only one straight 
line. How is this axiom to be interpreted in the older sense 
and in the more modern sense? 

The older interpretation: everyone knows what a straight line 
is, and what a point is. Whether this knowledge springs (Tom 
an ability of the human mind or from experience, from some 
cooperation of the two or from some other source, is not for the 
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mathematician to decide. He leaves the question to the philoso-
pher. Being based upon this knowledge, which precedes all 
mathematics, the axiom stated above is, like all other axioms, 
self-evident, that is, it is the expression of a part of this a priori 
knowledge. 

'The more modern interpretation: geometry treats of objects 
which are denoted by the words straight line, point, etc. No 
knowledge or intuition of these objects is assumed but only the 
validity of the axioms, such as the one stated above, which are 
to be taken in a purely formal sense, i.e., as void of all content 
of intuition or experience. 'These axioms are free creations of 
the human mind. All other propositions of geometry are logical 
inferences from the axioms (which are to be taken in the nomi-
nalistic sense only). 'The axioms define the objects of whicb 
geometry treats. Schlick in his book on epistemology has there-
fore characterized axioms very aptly as "implicit definitions." 

'This view of axioms, advocated by modern axiomatics, purges 
mathematics of all extraneous elements, and thus dispels the 
mystic obscurity which formerly surrounded the basis of mathe-
matics. But such an expurgated exposition of mathematics 
makes it also evident that mathematics as such cannot predicate 
anything about objects of our intuition or real objects. In 
axiomatic geometry the words Upoint," "straight line," etc., 
stand only for empty conceptual schemata. 'That which gives 
them content is not relevant to mathematics. 

Yet on the other hand it is certain that mathematics generally, 
and particularly geometry, owes its existence to the need which 
was felt of learning something about the behavior of real ob-
jects. 'The very word geometry, which, of course, means earth-
measuring, proves this. For earth-measuring has to do with the 
possibilities of the disposition of certain natural objects with 
respect to one another, namely, with parts of the earth, measur-
ing-lines, measuring-wands, etc. It is clear that the system of 
concepts of axiomatic geometry alone cannot make any asser-
tions as to the behavior of real objects of this kind, which we 
will call practically-rigid bodies. 'To be able to make such asser-
tions, geometry must be stripped of its merely logical-formal 
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character by the coordination of real objects of experience 
with the empty conceptual schemata of axiomatic geometry. To 
accomplish this, we need only add the proposition: solid bodies 
are related, with respect to their possible dispositions, as are 
bodies in Euclidean geometry of three dimensions. Then the 
propositions of Euclid contain affirmations as to the behavior 
of practically-rigid bodies. 

Geometry thus completed is evidently a natural science; we 
may in fact regard it as the most ancient branch of physics. 
Its affirmations rest essentially on induction from experience, 
but not on logical inferences only. We will call this completed 
geometry "practical geometry," and shall distinguish it in 
what follows from "purely axiomatic geometry." The question 
whether the practical geometry of the universe is Euclidean or 
not has a clear meaning, and its answer can only be furnished by 
experience. All length-measurements in physics constitute prac-
tical geometry in this sense, so, too, do geodetic and astronomi-
cal length measurements, if one utilizes the empirical law that 
light is propagated in a straight line, and indeed in a straight 
line in the sense of practical geometry. 

I attach special importance to the view of geometry which I 
have just set forth, because without it I should have been unable 
to formulate the theory of relativity. Without it the following 
reflection would have been impossible: in a system of reference 
rotating relatively to an inertial system, the laws of disposition 
of rigid bodies do not correspond to the rules of Euclidean 
geometry on account of the Lorentz contraction; thus if we 
admit non-inertial systems on an equal footing, we must aban-
don Euclidean geometry. Without the above interpretation the 
decisive step in the transition to generally covariant equations 
would certainly not have been taken. If we reject the relation be-
tween the body of axiomatic Euclidean geometry and the prac-
tically-rigid body of reality, we readily arrive at the following 
view, which was entertained by that acute and profound 
thinker, H. Poincare: Euclidean geometry is distinguished 
above all other conceivable axiomatic geometries by its sim-
plicity. Now since axiomatic geometry by itself contains no 
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assertions as to the reality which can be experienced, but can 
do so only in combination with physical laws, it should be pos-
sible and reasonable-whatever may be the nature of reality-
to retain Euclidean geometry. For if contradictions between 
theory and experience manifest themselves, we should rather 
decide to change physical laws than to change axiomatic Eucli-
dean geometry. If we reject the relation between the practi-
cally.rigid body and geometry, we shall indeed not easily free 
ourselves from the convention that Euclidean geometry is to 
be retained as the simplest. 

Why is the equivalence of the practically-rigid body and the 
body of geometry-which suggests itself so readily-rejected 
by Poincare and other investigators? Simply because under 
closer inspection the real solid bodies in nature are not rigid, 
because their geometrical behavior, that is, their possibilities 
of relative disposition, depend upon temperature, external 
forces, etc. Thus the original, immediate relation between 
geometry and physical reality appears destroyed, and we feel 
impelled toward the following more general view, which char-
acterizes Poincare's standpoint. Geometry (G) predicates noth-
ing about the behavior of real things, but only geometry to-
gether with the totality (P) of physical laws can do so. Using 
symbols, we may say that only the sum of (G) + (P) is subject to 
experimental verification. Thus (G) may be chosen arbitrarily, 
and also parts of (P); all these laws are conventions. All that is 
necessary to avoid contradictions is to choose the remainder of 
(P) so that (G) and the whole of (P) are together in accord with 
experience. Envisaged in this way, axiomatic geometry and the 
part of natural law which has been given a conventional status 
appear as epistemologically equivalent. 

Sub specie aeterni Poincare, in my opinion, is right. The idea 
of the measuring-rod and the idea of the clock coordinated with 
it in the theory of relativity do not find their exact correspond-
ence in the real world. It is also clear that the solid body and 
the clock do not in the conceptual edifice of physics play the 
part of irreducible elements, but that of composite structures, 
which must not play any independent part in theoretical 
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physics. But it is my couviction that in the preseut stage of 
development of theoretical physics these concepts must still be 
employed as independent concepts; for we are still far from 
possessing such certain knowledge of the theoretical principles 
of atomic structure as to be able to construct solid bodies and 
clocks theoretically from elementary concepts. 

Further, as to the objection that there are no really rigid 
bodies in nature, and that therefore the properties predicated 
of rigid bodies do not apply to physical reality-this objection 
is by uo meaus so radical as might appear from a hasty examina-
tion. For it is not a difficult task to determine the physical state 
of a measuring-body so accurately that its behavior relative to 
other measuring-bodies shall be sufficiently free from ambiguity 
to allow it to be substituted for the "rigid" body. It is to meas-
uring-bodies of this kind that statements about rigid bodies 
must be referred. 

All practical geometry is based upon a principle which is 
accessible to experience, and which we will now try to realize. 
Suppose two marks have been put upon a practically-rigid body. 
A pair of two such marks we shall call a tract. We imagine two 
practically-rigid bodies, each with a tract marked out on it. 
These two tracts are said to be "equal to one another" if tl,e 
marks of tile one tract can be brought to coincide permanently 
with the marks of tlle other. We now assume that: 

If two tracts are found to be equal once and anywhere, they 
are equal always and everywhere. 

Not only the practical geometry of Euclid, but also its nearest 
generalization, the practical geometry of Riemann, and there-
with the general tlleory of relativity, rest upon this assumption. 
Of the experimental reasons which warrant tl,is assumption I 
will mention only one. The phenomenon of the propagation of 
light in empty space assigns a tract, namely, the appropriate path 
of light, to each interval of local time, and conversely. Thence it 
follows that the above assumption for tracts must also hold good 
for intervals of clock-time in the theory of relativity. Conse-
quently it may be formulated as follows: if two ideal clocks 
are going at the same rate at any time and at any place (being 

-".'< .1 .... .",-' 
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then in immediate proximity to each other), they will always go 
at the same rate, no matter where and when they are again 
compared with each other at one place. If this law were not 
valid for natural clocks, the proper frequencies for the separate 
atoms of the same chemical element would not be in such exact 
agteement as experience demonstrates. The existence of sharp 
spectral lines is a convincing experimental proof of the above-
mentioned principle of practical geometry. This, in the last 
analysis, is the reason which enables us to speak meaningfully 
of a Riemannian metric of the four-dimensional space-time con-
tinuum. 

According to the view advocated here, the question whether 
this continuum has a Euclidean, Riemannian, or any other 
structure is a question of physics proper which must be answered 
by experience, and not a question of a convention to be chosen 
on gtounds of mere expediency. Riemann's geometry will hold 
if the laws of disposition of practically-rigid bodies approach 
those of Euclidean geometry the more closely the smaller the 
dimensions of the region of space-time under consideration. 

It is true that this proposed physical interpretation of geome-
try breaks down when applied immediately to spaces of sub-
molecular order of magnitude. But nevertheless, even in ques-
tions as to the constitution of elementary particles, it retains 
part of its significance. For even when it is a question of describ-
ing the electrical elementary particles constituting matter, the 
attempt may still be made to ascribe physical meaning to those 
field concepts which have been physically defined for the pur-
pose of describing the geometrical behavior of bodies which are 
large as compared with the molecule. Success alone can decide 
as to the justification of such an attempt, which postulates physi-
cal reality for the fundamental principles of Riemann's geome-
try outside of the domain of their physical definitions. It might 
possibly turn out that this extrapolation has no better warrant 
than the extrapolation of the concept of temperature to parts of 
a body of molecular order of magnitude. 

It appears less problematical to extend the concepts of prac-
tical geometry to spaces of cosmic order of magnitude. It might, 



GEOMETRY AND EXPERIENCE 239 

of course, be objected that a construction composed of solid rods 
departs the more from ideal rigidity the greater its spatial ex-
tent. But it will hardly be possible, I think, to assign fundamen-
tal significance to this objection. Therefore the question 
whether the universe is spatially finite or not seems to me an 
entirely meaningful question in the sense of practical geometry. 
I do not even consider it impossible that this question will be 
answered before long by astronomy. Let us call to mind what 
the general theory of relativity teaches in this respect. It offers 
two possibilities: 

1. The universe is spatially infinite. This is possible only if 
in the universe the average spatial density of matter, concen· 
trated in the stars, vanishes, i.e., if the ratio of the total mass of 
the stars to the volume of the space through which they are scat-
tered indefinitely approaches zero as greater and greater vol-
umes are coruidered. 

2. The universe is spatially finite. This must be so, if there 
exists an average density of the ponderable matter in the uni-
verse which is different from zero. The smaller that average 
density, the greater is the volume of the universe. 

I must not fail to mention that a theoretical argument can be 
adduced in favor of the hypothesis of a finite universe. The 
general theory of relativity teaches that the inertia of a given 
body is greater as there are more ponderable masses in prox-
imity to it; thus it seems very natural to reduce the total inertia 
of a body to interaction between it and the other bodies in the 
universe, as indeed, ever since Newton's timeJ gravity has been 
completely reduced to interaction between bodies. From the 
equations of the general theory of relativity it can be deduced 
that this total reduction of inertia to interaction between masses 
-as demanded by E. Mach, for example-is possible only if the 
universe is spatially finite. 

Many physicists and astronomers are not impressed by this 
argument. In the last analysis, experience alone can decide 
which of the two possibilities is realized in nature. How can 
experience furnish an answer? At first it might seem possible 
to determine the average density of matter by observation of 
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that part of the universe which is accessible to our observation. 
This hope is illusory. The distribution of the visible stars is 
extremely irregular, so that we on no account may venture to 
set the average density of star-matter in the universe equal to, 
let us say, the average density in the Galaxy. In any case, how-
ever great the space examined may be, we could not feel con-
vinced that there were any more stars beyond that space. So it 
seems impossible to estimate the average density. 

But there is another road, which seems to me more prac-
ticable, although it also presents great difficulties. For if we 
inquire into the deviations of the consequences of the general 
theory of relativity which are accessible to experience, from the 
consequences of the Newtonian theory, we first of all find a 
deviation which manifests itself in close proximity to gravitat-
ing mass, and has been confirmed in the case of the planet Mer· 
cury. But if the universe is spatially finite, there is a second 
deviation from the Newtonian theory, which, in the language 
of the Newtonian theory, may be expressed thus: the gravita-
tional field is such as if it were produced, not only by the 
ponderable masses, but in addition by a mass·density of negative 
sigo, distributed uniformly throughout space. Since this ficti-
tious mass·density would have to be extremely small, it would 
be noticeable only in very extensive gravitating systems. 

Assuming that we know, let us say, the statistical distribution 
and the masses of the stars in the Galaxy, then by Newton's law 
we can calculate the gravitational field and the average velocities 
which the stars must have, so that the Galaxy should not col· 
lapse under the mutual attraction of its stars, but should main· 
tain its actual extent. Now if the actual velocities of the stars-
which can be measured-were smaller than the calculated 
velocities, we should have a proof that the actual attractions at 
great distances are smaller than by Newton's law. From such 
a deviation it could be proved indirectly that the universe is 
finite. It would even be possible to estimate its spatial dimen-
SIons. 

Can we visualize a three·dimensional universe which is finite, 
yet unbounded? 
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The usual answer to this question is "No," but that is not the 

right answer. The purpose of the following remarks is to show 
that the answer should be "Yes." I want to show that without 
any extraordinary difficulty we can illustrate the theory of a 
finite universe by means of a mental picture to which, with some 
practice, we shall soon grow accustomed. 

First of all, an observation of epistemological nature. A 
geometrical-physical theory as such is incapable of being directly 
pictured, being merely a system of concepts. But these concepts 
serve the purpose of bringing a multiplicity of real or imaginary 
sensory experiences into connection in the mind. To 
izc" a theory therefore means to bring to mind that abundance 
of sensible experiences for which the theory supplies the sche-
matic arrangement. In the present case we have to ask ourselves 
how we can represent that behavior of solid bodies with respect 
to their mutual disposition (contact) which corresponds to the 
theory of a finite universe. There is really nothing new in what 
I have to say about this; but innumerable questions addressed 
to me prove that the curiosity of those who are interested in 
these matters has not yet been completely satisfied. So, will the 
initiated please pardon me, in that part of what I shall say has 
long been known? 

What do we wish to express when we say that our space is 
infinite? Nothing more than that we might lay any number of 
bodies of equal sizes side by side without ever filling space. Sup-
pose that we are provided with a great many cubic boxes all of 
the same size. In accordance with Euclidean geometry we can 
place them above, beside, and behind one another so as to fill an 
arbitrarily large part of space; but this construction would never 
be finished; we could go on adding more and more cubes with-
out ever finding that there was no more room. That is what we 
wish to express when we say that space is infinite. It would be 
better to say that space is infinite in relation to practically-rigid 
bodies, assuming that the laws of disposition for these bodies are 
given by Euclidean geometry. 

Another example of an infinite continuum is the plane. On 
a plane surface we may lay squares of cardboard so that each 
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side of any square has the side of another square adjacent to it. 
The construction is never finished; we can always go on laying 
squares-if their laws of disposition correspond to those of plane 
figures of Euclidean geometry. The plane is therefore infinite 
in relation to the cardboard squares. Accordingly we say that 
the plane is an infinite continuum of two dimensions. and space 
an infinite continuum of three dimensions. What is here meant 
by the number of dimensions. I think I may assume to be 
known. 

Now we take an example of a two·dimensional continuum 
which is finite. but unbounded. We imagine the surface of a 
large globe and a quantity of small paper discs. all of the same 
size. We place one of the discs anywhere on the surface of the 
globe. If we move the disc about. anywhere we like. on the 
surface of the globe. we do not come upon a boundary any-
where on the journey. Therefore we say that the spherical sur-
face of the globe is an unbounded continuum. Moreover. the 
spherical surface is a finite continuum. For if we stick the paper 
discs on the globe. so that no disc overlaps another. the surface 
of the globe will finally become so full that there is no room for 
another disc. This means exactly that the spherical surface of 
the globe is finite in relation to the paper discs. Further. the 
spherical surface is a non·Euclidean continuum of two 
sions. that is to say. the laws of disposition for the rigid figures 
lying in it do not agree with those of the Euclidean plane. This 
can be shown in the following way. Take a disc and surround 
it in a circle by six more discs. each of which is to be surrounded 
in turn by six discs. and so on. If this construction is made on 
a plane surface. we obtain an uninterrupted arrangement in 
which there are six discs touching every disc except those which 
lie on the outside. On the spherical surface the construction also 

FIG. I 
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seems to promise success at the outset, and the smaller the radius 
of the disc in proportion to that of the sphere, the more promis-
ing it seems. But as the construction progresses it becomes more 
and more patent that the arrangement of the discs in the 
manner indicated, without interruption, is not possible, as it 
should be possible by the Euclidean geometry of the plane. In 
this way creatures which cannot leave the spherical surface, and 
cannot even peep out from the spherical surface into three-
dimensional space, might discover, merely by experimenting 
with discs, that their two-dimensional "space" is not Euclidean, 
but spherical space. 

From the latest results of the theory of relativity it is probable 
that our three-dimensional space is also approximately spherical, 
that is, that the laws of disposition of rigid bodies in it are not 
given by Euclidean geometry, but approximately by spherical 
geometry, if only we consider parts of space which are suffi-
ciently extended. Now this is the place where the reader's 
imagination boggles. "Nobody can imagine this thing," he cries 
indignantly. "It can be said, but cannot be thought. I can 
imagine a spherical surface well enough, but nothing analogous 
to it in three dimensions." 

We must tty to surmount this barrier in the mind, and the 
patient reader will see that it is by no means a particularly diffi-
cult task. For this purpose we will first give our attention once 
more to the geometry of two-dimensional spherical surfaces. 
In the adjoining figure let K be the spherical surface, touched 
at S by a plane, E, which, for facility of presentation, is shown 
in the drawing as a bounded surface. Let L be a disc on the 
spherical surface. Now let us imagine that at the point N of the 

N 

FIG. 2 
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spherical surface, diametrically opposite to S, there is a lumi-
nous point, throwing a shadow L' of the disc L upon the plane 
E. Every point on the sphere has its shadow on the plane. If 
the disc on the sphere K is moved, its shadow L' on the plane E 
also moves. When the disc L is at S, it almost exactly coincides 
with its shadow. If it moves on the spherical surface away from 
S upwards, the disc shadow L' on the plane also moves away 
from S on the plane outwards, growing bigger and bigger. As 
the disc L approaches the luminous point N, the shadow moves 
off to infinity, and becomes infinitely great. 

Now we put the question: what are the laws of disposition 
of the disc·shadows L' on the plane E? Evidently they are ex-
actly the same as the laws of disposition of the discs L on the 
spherical surface. For to each original figure on K there is a 
corresponding shadow figure on E. If two discs on K are touch-
ing, their shadows on E also touch. The shadow-geometry on 
the plane agrees with the disc-geometry on the sphere. If we 
call the disc-shadows rigid figures, then spherical geometry holds 
good on the plane E with respect to these rigid figures. In par-
ticular, the plane is finite with respect to the disc-shadows, since 
only a finite number of the shadows can find room on the plane. 

At this point somebody will say, "That is nonsense. The disc-
shadows are not rigid figures. We have only to move a two-foot 
rule about on the plane E to convince ourselves that the shadows 
constantly increase in size as they move away from S on the 
plane toward infinity." But what if the two-foot rule were to 
behave on the plane E in the same way as the disc-shadows L'? 
It would then be impossible to show that the shadows increase 
in size as they move away from S; such an assertion would then 
no longer have any meaning whatever. In fact the only objec-
tive assertion that can be made about the disc-shadows is just 
this, that they are related in exactly the same way as are the rigid 
discs on the spherical surface in the sense of Euclidean geome-
try. 

We must carefully bear in mind that our statement as to the 
growth of the disc-shadows, as they move away from S toward 
infinity, has in itself no objective meaning, as long as we are 



GEOMETRY AND EXPERIENCE 245 
unable to compare the disc-shadows with Euclidean rigid bodies 
which can be moved about on the plane E. In respect of the 
laws of disposition of the shadows L', the point S has no special 
privileges on the plane any more than on the spherical surface. 

The representation given above of spherical geometry on the 
plane is important for us, because it readily allows itself to be 
transferred to the three-dimensional case. 

Let us imagine a point S of our space, and a great number 
of small spheres. L', which Can all be brought to coincide with 
one another. But these spheres are not to be rigid in the sense 
of Euclidean geometry; their radius is to increase (in the sense 
of EuclideaIl geometry) when they are moved away from S to-
ward infinity; it is to increase according to the same law as 
the radii of the disc-shadows L' on the plane. 

After having gained a vivid mental image of the geometrical 
behavior of our L' spheres. let us assume that in our space there 
are no rigid bodies at all in the sense of Euclidean geometry. but 
only bodies having the behavior of our L' spheres. Then we 
shall have a clear picture of three-dimensional spherical space, 
or, rather of three-dimensional spherical geometry. Here our 
spheres must be called "rigid" spheres. Their increase in size 
as they depart from S is not to be detected by measuring with 
measuring-rods. any more than in the case of the disc-shadows 
on E, because the standards of measurement behave in the same 
way as the spheres. Space is homogeneous, that is to say, the 
same spherical configurations are possible in the neighborhood 
of every point." Our space is finite. because, in consequence of 
the "growth" of the spheres. only a finite number of them can 
find room in space. 

In this way. by using as a crutch the practice in thinking and 
visualization which Euclidean geometry gives us, we have ac-
quired a mental picture of spherical geometry. We may without 
difficulty impart more depth and vigor to these ideas by carry-
ing out special imaginary constructions. Nor would it be diffi-
cult to represent the case of what is called elliptical geometry in 

• This is intelligible without calculation-but only for the two-dimensional 
case-if we revert once more to the case of the disc on the surface of the sphere. 
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an analogous manner. My only aim today has been to show 
that the human faculty of visualization is by no means bound 
to capitulate to non-Euclidean geometry. 

ON THE THEORY OF RELATIVITY 

Lecture at King's College, London, 1921. Published in 
Mein Weltbild, Amsterdam: Querido Verlag, 1934. 

It is a particular pleasure to me to have the privilege of speak-
ing in the capital of the country from which the most important 
fundamental notions of theoretical physics have issued. I am 
thinking of the theory of mass motion and gravitation which 
Newton gave us and the concept of the electromagnetic field, by 
means of which Faraday and Maxwell put physics on a new 
basis. The theory of relativity may indeed be said to have put 
a sort of finishing touch to the mighty intellectual edifice of 
Maxwell and Lorentz, inasmuch as it seeks to extend field 
physics to all phenomena, gravitation included. 

Turning to the theory of relativity itself, I am anxious to 
draw attention to the fact that this theory is not speculative in 
origin; it owes its invention entirely to the desire to make physi-
cal theory fit observed fact as well as possible. We have here no 
revolutionary act but the natural continuation of a line that 
can be traced through centuries. The abandonment of certain 
notions connected with space, time, and motion hitherto treated 
as fundamentals must not be regarded as arbitrary, but only as 
conditioned by observed facts. 

The law of the constant velocity of light in empty space, 
which has been confirmed by the development of electro-
dynamics and optics, and the equal legitimacy of all inertial sys-
tems (special principle of relativity), which was proved in a par-
ticularly incisive manner by Michelson's famous experiment, 
between them made it necessary, to begin with, that the concept 
of time should be made relative, each inertial system being 
given its own special time. As this notion was developed, it 


