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226. To Wilhelm Wien

Zurich [7 October 1910]
Highfy esteemed Cclieagu&'

.........

with Boitzmann 8 prmmpic is perhaps too cngthy But please do not tal\c this amiss; I

have been wantmg to expound on my opinion about this topic, and this was an
Respcctfuuy you'i{é;

A. Einstein
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~ The Theory of the Opalescence
of Homogeneous Fluids and Liquid
~ Mixtures near the Critical State

by A. Einstein.
Wnnalen der Physik 33 (1910): 1275-1298]

..........

In an important theoretical papcf Smhschowskr has shown that the opalescence of
fluids near the critical state as well as the opalescence of liquid mixtures near the critical
mixing ratio and the critical temperature can be explained in a simple way from the point
of view of the molecular theory of heat. {This explanation is based on the following

‘general implication of Boltzmana's entropy-probability principle: In the course of an|
Mp«bﬁdﬁn&,mmwﬂyd&cﬂqﬂmm&m@aﬂtka&&:
probability

that are compatible with the (constant) value of its energy. [However, the statistical

i ‘a state is noticeably different from zero only when the work that would
have to be expended according to thermodynmicsm produce the state in question from
the state of ideal thermodynamic equilibrium is of the same order of magnitude as the
kinetic encrgy of @ mmam;c gas Mewlc at the temperature under mﬁcrm \
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order of magnitude of the cube of a wavelength, a density that deviates markedly from

the average density of the fluid or a mixing ratio that deviates markedly from the average,

then, obviously, the phenomenon of opalescence (the Tyndall phenomenon) must take /
place,/ Smoluchowski has shown that this condition is actually fulfilled near the critical

state; however, Mdﬁwmmmm&m@mﬁwwwaoﬂ

laterally through opalescence. mwwummmm
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§1. General Remarks about the Boltzmann Principle
Boltzmann's principle can be expressed by the equation

~——"

(1) sugngmm.,
where

R is the gas constant,

N is the number of molecules in one gram-molecule,

S is the entropy,

W is the quantity customarily designated as the “probability”
of the state with which the entropy value § is associated,
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W is commonly equated with the number of different possible ways (complexions) in
which the state considered—which is incompletely defined in the sense of a molecular
theory by obscrvable parameters of a system—can conceivably be realized. In order to
be ablc to calculatc W, onc nceds a complete theory (perhaps a complete
molccular-mechanical theory) of the system under consideration. Given this kind of
approach, it therefore seems questionable whether Boltzmann’s principle by itself has any
meaning whatsoever, i.c., without a complete molecular-mechanical or other theory that
completely represents the elementary processes (clementary theory). If not supplemented
by an elementary theory or—to put it differently—considered from a phenomenological
point of view, equation (1) appears devoid of content.
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However, Boltzmann's principle does acquire some content independent of any
clementary theory if one assumes and generalizes from molecular kinetics the proposition
that the irreversibility of physical processes is only apparent.
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For let the state of a system be determined in the phenomenological sense by the
variables 4, ... 4, that arc observable in principle. To each state Z there corresponds
a combination of values of these variables. If the system is externally closed, then the
energy—and, indeed, in general, no other function of the variables—is constant. Let us
think of all the states of the system that are compatible with the energy value of the
system, and let us denote themby Z,...Z,. If the irreversibility of the process is not one
of principle, then, in the course of time, the system will pass through these states Z, ..
Z, again and again. Onmmmnmammspukofthewtydmc
individual states in the following sense: Suppose we observe the system for an immensely
long period of time 8 and determine the fraction t; of the time 8 during which the
system is in the state Z;; then 1,8 represents the probability of the state Z,. The
same holds for the probability of the other states Z. According to Boltzmann, the
apparent irreversibility must be attributed to the fact that the states differ in their
Mﬁmmﬁﬂmm»ﬁzmkmm;ﬁngmammmdh@ctpmmay,

if it happens to find itself in a state of relatively low probability. That which appears to
be completely law governed in irreversible processes is to be attributed to the fact that
the probabilities of the individual states Z are of different orders of magnitude, so that
a given state Z will practically always be followed by one state, from among all the
states bordering on Z, because of this one state’s enormous probability as compared with
the probabilities of the other states.
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the proi)abiliiies of the individual states Z are of different orders of magnitude, so that
a given state Z will practically always be followed by one state, from among all the

states bordering on Z, hecause of this one state’s enormous probability as compared with
the probabilities of the other states.
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It is this probability we have just described, for the definition of which no elementary
theory is needed, which is related to the entropy in the way expressed by equation (1).
It can easily be recognized that equation (1) must really be valid for the probability so
defined. For entropy is a function that does not decrease in any process in which the
system is isolated (within the range of validity of thermodynamics). There are other
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system is isolated (within the range of validity of thermodynamics). There are other
functions, too, that have this property; however, if the energy E is the only function of
the system that does not vary with time, then all of these functions are of the form
@(S, I), where 0¢/aS is always positive. Since the probability W is, as well, a function
that does not decrease in any process, then W is also a function of § and E alone,
or—if only states of the same energy are being compared—a function of § alone. That
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or—if only states of the same energy are being compared—a function of § alone. That
the relation between § and W given in equation (1) is the only possible one can be

deduced, as we know, from the theorem that the entropy of a total system that is
composed of subsystems equals the sum of the entropies of the subsystems. Equation (1)
can thus be proved for all of the states Z that belong to the same value of energy.
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Prolplem - Mepmakh of quantties

The following objection can be raised against this interpretation of Boltzmann’s
principle: one cannot speak of the statistical probability of a state, But only of that of a
state region. The latter is defined by a portion g of the “energy surface” E(A,..A,) =
0. Obviously, W tends toward zero along with the size of the chosen portion of the
energy surface. For this reason, equation (1) would be totally meaningless if the relation
between § and W were not of a quite special kind. That is to say, Ilg W appears in
the equation (1) multiplied by the very small factor R/N. If one imagines that W has
been obtained for a region G, just large enough that its dimensions lie on the border
of the perceptible, then Ig W will have a certain value. If the region is reduced perhaps
¢'® times, then the right-hand side will only be diminished by the vanishingly small
quantity 10(R/N) on account of the reduction in the size of the region. Thus, if the
dimensions of the region are indeed chosen small compared with perceptible dimensions,
but nevertheless large enough for R/N Ig G,/G to be a numerically negligible quantity,
then equation (1) will have a sufficiently exact meaning.
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We have assumed so far that A,...J, determinescompletely, in the phenomenological
sense, the state of the system in question. However, equation (1) also retains its meaning
undiminished if we seek the probability of a state that is incompletely determined in the
phenomenological sense. For let us seek the probability of a state that is defined by
specific values of A, ... A, (where v < n), while the values of A, ... 14, are left
indeterminate. Among all the states with the values A,...A,, those values of 1,...4,
will be far and away the most frequent which make the entropy of the system at constant
A, ... A, a maximum. In that case, equation (1) will hold between this maximum value
of the energy and the probability of this state.
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