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THE FOUNDATION OF THE GENERAL THEORY
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By A. EINSTEIN

A. FUNDAMENTAL CONSIDERATIONS ON THE POSTULATE OF
RELATIVITY

§ 1. Observations on the Special Theory of Relativity

HE aspecial theory of relativity is based on the
I following postulate, which is also satisfied by the
mechanics of Galileo and Newton.

If a system of co-ordinates K is chosen so that, in re-
lation to it, physical laws hold good in their simplest form,
the same laws also hold good in relation to any other system
of co-ordinates K’ moving in uniform translation relatively
to K. This postulate we call the ‘ special principle of
relativity.”” The word ‘ special ” is meant to intimate
that the principle is restricted to the case when K' has a
motion of uniform translation relatively to K, but that the
equivalence of K’ and K does not extend to the case of non-
uniform motion of K’ relatively to K.

Thus the special theory of relativity does not depart from
classical mechanics through the postulate of relativity, but
through the postulate of the constancy of the velocity of light
in vacuo, from which, in combination with the special prin-
ciple of relativity, there follow, in the well-known way, the
relativity of simultaneity, the Liorentzian transformation, and
the related laws for the behaviour of moving bodies and
clocks.

The modification to which the special theory of relativity
has subjected the theory of space and time is indeed far-
reaching, but one importantlf{)int hgs remained unaffected.
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For the laws of geometry, even according to the special theory
of relativity, are to be interpreted directly as laws relating to
the possible relative positions of solid bodies at rest; and, in
a more general way, the laws of kinematics are to be inter-
preted as laws which describe the relations of measuring
bodies and clocks. To two selected material points of a
stationary rigid body there always corresponds a distance of
quite definite length, which isindependent of the locality and
orientation of the body, and is also independent of the time.
To two selected positions of the hands of a clock at rest
relatively to the privileged system of reference there always
corresponds an interval of time of a definite length, which is
independent of place and time. We shall soon see that the
general theory of relativity cannot adhere to this simple
physical interpretation of space and time.

§ 2. The Need for an Extension of the Postulate of
Relativity

In classical mechanics, and no less in the special theory
of relativity, there isan inherent epistemological defect which
was, perhaps for the first time, clearly pointed out by Ernst
Mach. We will elucidate it by the following example :—Two
fluid bodies of the same size and nature hover freely in space
at so great a distance from each other and from all other
masses that only those gravitational forces need be taken into
account which arise from the interaction of different parts of
the same body. Let the distance between the two bodies be
invariable, and in neither of the bodies let there be any
relative movements of the parts with respect to one another.
But let either mass, as judged by an observer at rest
relatively to the other mass, rotate with constant angular
velocity about the line joining the masses. This is & verifi-
able relative motion of the two bodies. Now let us imagine
that each of the bodies has been surveyed by means of
measuring instruments at rest relatively to itself, and let the
surface of S, prove to be a sphere, and that of S, an ellipsoid
of revolution. Thereupon we put the question—What is the
reason for this difference in the two bodies? No answer can
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reason given is an observable fact of experience. The law of
causality has not the significance of a statement as to the
world of experience, except when observable facts ultimately
appear as causes and effects.

Newtonian mechanics does not give a satisfactory answer
to this question. It pronounces as follows:—The laws of
mechanics apply to the space R, in respect to which the body
S, is at rest, but not to the space R,, in respect to which the
body S, is at rest. But the privileged space R, of Galileo,
thus introduced, is a merely factitious cause, and not a thing
that can be observed. It is therefore clear that Newton’s
mechanics does not really satisfy the requirement of causality
in the case under consideration, but only apparently does so,
since it makes the factitious cause R, responsible for the ob-
servable difference in the bodies S, and S,.

The only satisfactory answer must be that the physical
gystem consisting of 8, and S, reveals within itself no imagin-
able cause to which the differing behaviour of S, and S, can
be referred. The cause must therefore lie outside this system.
We have to take it that the general laws of motion, which in
particular determine the shapes of S, and S,, must be such
that the mechanical behaviour of 8, and S, is partly con-
ditioned, in quite essential respects, by distant masses which
we have not included in the system under consideration.
These distant masses and their motions relative to S; and
S, must then be regarded as the seat of the causes (which
must be susceptible to observation) of the different behaviour
of our two bodies S, and S,. They take over the role of the
factitious cause R;,. Of all imaginable spaces R,, Ry, etc., in
any kind of motion relatively to one another, there is none
which we may look upon as privileged a prior: without re-
viving the above-mentioned epistemological objection. The
laws of physics must be of such a nature that they apply to
systems of reference in any kind of motion. Along this road
we arrive at an extension of the postulate of relativity.

In addition to this weighty argument from the theory of

* Of course an answer may be satisfactory from the point of view of episte-
mology, and yet be unsound physically, if it is in conflict with other experi-
ences.
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knowledge, there is a well-known physical fact which favours
an extension of the theory of relativity. TLet K be a Galilean
system of reference, i.e. a system relatively to which (at least
in the four-dimensional region under consideration) a mass,
sufficiently distant from other masses, is moving with uniform
motion in a straight line. TLet K' be a second system of
reference which is moving relatively to K in wuniformly
accelerated translation. Then, relatively to K', a mass
sufficiently distant from other masses would have an acceler-
ated motion such that its acceleration and direction of
acceleration are independent of the material composition and
physical state of the mass.

Does this permit an observer at rest relatively to K' to
infer that he is ona ‘“ really " accelerated system of reference ?
The answer is in the negative; for the above-mentioned
relation of freely movable masses to K' may be interpreted
equally well in the following way. The system of reference
K’ is unaccelerated, but the space-time territory in question
18 under the sway of a gravitational field, which generates the
accelerated motion of the bodies relatively to X'

This view is made possible for us by the teaching of
experience as to the existence of a field of force, namely, the
gravitational field, which possesses the remarkable property
of imparting the same acceleration to all bodies.* The
mechanical behaviour of bodies relatively to K’ is the same
as presents itself to experience in the case of systems which
we are wont to regard as ‘‘stationary ” or as ‘‘ privileged.”
Therefore, from the physical standpoint, the assumption
readily suggests itself that the systems K and K’ may both
with equal right be looked upon as “ stationary,” that is to
say, they have an equal title as systems of reference for the
physical description of phenomena.

It will be seen from these reflexions that in pursuing the
general theory of relativity we shall be led to a theory of
gravitation, since we are able to ““produce ” a gravitational
field merely by changing the system of co-ordinates. It will
also be obvious that the principle of the constancy of the
velocity of light in vacuo must be modified, since we easily

* Eotvos has proved experimentally that the gravitational field hes this
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recognize that the path of a ray of light with respect to K’
must in general be curvilinear, if with respect to K light is
propagated in a straight line with a definite constant velocity.

§ 3. The Space~Time Continuum. Requirement of General
Co-Variance for the Equations Expressing General
Laws of Nature

In classical mechanics, as well as in the special theory of
relativity, the co-ordinates of space and time have a direct
physical meaning. To say that a point-event has the X, co-
ordinate z, means that the projection of the point-event on the
axis of X,, determined by rigid rods and in accordance with the.
rules of Euclidean geometry, is obtained by measuring off a
given rod (the unit of length) z, times from the origin of co-
ordinates along the axis of X, To say that a point-event
has the X, co-ordinate z, = ¢, means that a standard clock,
made to measure time in a definite unit period, and which is
stationary relatively to the system of co-ordinates and practic-
ally coincident in space with the point-event,* will have
messured off z, = ¢ periods at the occurrence of the event.

This view of space and time has always been in the minds
of physicists, even if, as & rule, they have been unconscious
of it. This is clear from the part which these concepts play
in physical measurements; it must also have underlain the
reader’s reflexions on the preceding paragraph (§ 2) for
him to connect any meaning with what he there read. But
we shall now show that we must put it aside and replace it
by a more general view, in order to be able to carry through
the postulate of general relativity, if the special theory of
relativity applies to the special case of the absence of a gravi-
tational field.

In a space which is free of gravitational fields we introduce
a Galilean system of reference K (z, y, 2, ¢), and also a system
of co-ordinates K' (z’, ¥, #, ¢) in uniform rotation relatively
to K. Let the origins of both systems, as well as their axes

* We assume the possibility of verifying ¢ simultaneity * for events im-.
mediately proximate in space, or—to speak more precisely—for immediate
proximity or coincidence in space-time, without giving & definition of this
fundamental concept.
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of Z, permanently coincide. We shall show that for a space-
time measurement in the system K’ the above definition of
the physical meaning of lengths and times cannot be main-
tained. For reasons of symmetry it is clear that a circle
around the origin in the X, Y plane of K may at the same
time be regarded as a circle in the X', Y’ plane of K. We
suppose that the circumference and diameter of this circle
have been measured with a unit measure infinitely small
compared with the radius, and that we have the quotient of
the two results. If this experiment were performed with a
measuring-rod at rest relatively to the Galilean system X, the
quotient would be 7. With a measuring-rod at rest relatively
to K', the quotient would be greater than =. This is readily
understood if we envisage the whole process of measuring
from the ‘‘ stationary "’ system K, and take into consideration
that the measuring-rod applied to the periphery undergoes
a Lorentzian contraction, while the one applied along the
radius does not. Hence Euclidean geometry does not apply
to K'. The notion of co-ordinates defined above, which pre-
supposes the validity of Euclidean geometry, therefore breaks
down in relation to the system K'. So, too, we are unable
to introduce a time corresponding to physical requirements
in K/, indicated by clocks at rest relatively to K. To
convince ourselves of this impossibility, let us imagine two
clocks of identical constitution placed, one at the origin of
co-ordinates, and the other at the circumference of the
circle, and both envisaged from the ‘‘stationary” system
K. By a familiar result of the special theory of relativity,
the clock at the circumference—judged from K-—goes more
slowly than the other, because the former is in motion and
the latter at rest. An observer at the common origin of
co-ordinates, capable of observing the clock at the circum-
ference by means of light, would therefore see it lagging be-
hind the clock beside him. As he will not make up his mind
to let the velocity of light along the path in question depend
explicitly on the time, he will interpret his observations as
showing that the clock at the circumference ‘‘ really ™ goes
more slowly than the clock at the origin. So he will be
obliged to define time in such a way that the rate of a clock
depends upon where the clock may be.
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We therefore reach this result :—In the general theory of
relativity, space and time cannot be defined in such a way
that differences of the spatial co-ordinates can be directly
measured by the unit measuring-rod, or differences in the
time co-ordinate by a standard clock.

The method hitherto employed for laying co-ordinates
into the space-time continuum in a definite manner thus breaks
down, and there seems to be no other way which would allow
us to adapt systems of co-ordinates to the four-dimensional
universe so that we might expect from their application a
particularly simple formulation of the laws of nature. So
there is nothing for it but to regard all imaginable systems
of co-ordinates, on principle, as equally suitable for the
description of nature. This comes to requiring that :—

The general laws of nature are to be expressed by equations
which hold good for all systems of co-ordinates, that is, are
co-variant with respect to any substitutions whatever (generally
co-variant).

It is clear that a physical theory which satisfies this
postulate will also be suitable for the general postulate of
relativity. For the sum of all substitutions in any case in-
cludes those which correspond to all relative motions of three-
dimensional systems of co-ordinates. That this requirement
of general co-variance, which takes away from space and
time the last remnant of physical objectivity, is a natural
one, will be seen from the following reflexion. All our
space-time verifications invariably amount to a determination
of space-time coincidences. If, for example, events consisted
merely in the motion of material points, then ultimately
nothing would be observable but the meetings of two or more
of these points. Moreover, the results of our measurings are
nothing but verifications of such meetings of the material
points of our measuring instruments with other material
points, coincidences between the hands of a clock and points
on the clock dial, and observed point-events happening at the
same place at the same time.

The introduction of a system of reference serves no other
purpose than to facilitate the description of the totality of such
coincidences. We allot to the universe four space-time vari-
ables z;, #,, 3, z, in such a way that for every point-event
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there is a corresponding system of values of the variables
z, ...z, To two coincident point-events there corre-
sponds one system of values of the variables z; . . . z,, i.e.
coincidence 1s characterized by the identity of the co-ordinates.
If, in pla,ce of the variables 2, . . . z,, we introduce functions
of them, z}, 'y, «'5, 2's, as a new system of co-ordinates, so
that the systems of values are made to correspond to one
another without ambiguity, the equality of all four co-ordin-
ates in the new system will also serve as an expression for
the space-time coincidence of the two point-cvents. As all
our physical experience can be ultimately reduced to such
coincidences, there is no immediate reason for preferring
certain systems of co-ordinates to others, that is to say, we
arrive at the requirement of general co-variance.

§ 4. The Relation of the Four Co-ordinates to Measure-
ment in Space and Time

It is not my purpose in this discussion to represent the
general theory of relativity as a system that is as simple and
logical as possible, and with the minimum number of axioms;
but my main object is to develop this theory in such a way
that the reader will feel that the path we have entered upon
is psychologically the natural one, and that the underlying
assumptions will seem to have the highest possible degree
of security. With this aim in view let it now be granted
that :—

For infinitely small four-dimensional regions the theory
of relativity in the restricted sense is appropriate, if the co-
ordinates are suitably chosen.

For this purpose we must choose the acceleration of the
infinitely small (‘“local ”’) system of co-ordinates so that no
gravitational field occurs; this is possible for an infinitely
small region. TLet X;, X,, X;, be the co-ordinates of space,
and X, the appertaining co-ordinate of time measured in the
appropriate unit.* If a rigid rod is imagined to be given as
the unit measure, the co-ordinates, with a given orientation
of the system of co-ordinates, have a direct physical meaning

* The unit of time is to be chosen so that the velocity of light in vacuo as
measured in the *“local’’ system of co-ordinates is to be equal to unity,
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in the sense of the special theory of relativity. By the
gpecial theory of relativity the expression

ds? = - dX? - dX’ - gXi+dX, . . (1)

then has a value which is independent of the orientation of
the local system of co-ordinates, and is ascertainable by
measurements of space and time. The magnitude of the
linear element pertaining to points of the four-dimensional
continuum in infinite proximity, we call ds. If the ds belong-
ing to the element dX; . .. dX, is positive, we follow
Minkowski in calling it time-like ; if it is negative, we call it
space-like.

To the ‘“linear element * in question, or to the two infin-
itely .proximate point-events, there will also correspond
definite differentials dz, . . . dz, of the four-dimensional
co-ordinates of any chosen system of reference. If this
gystem, as well as the ‘“local "’ system, is given for the region
under consideration, the dX, will allow themselves to be
represented here by definite linear homogeneous expressions
of the dzgs:—

ax, = E‘awdzo . . . . (@)

Inserting these expressions in (1), we obtain

d32 = ggg'rdxadxr, . . . . (8)

where the g,» will be functions of the z,. These can no
longer be dependent on the orientation and the state of
motion of the ‘local” system of co-ordinates, for ds? is a
quantity ascertainable by rod-clock measurement of point-
events infinitely proximate in space-time, and defined inde-
pendently of any particular choice of co-ordinates. The gor
are to be chosen here so that gsr = ¢gro; the summation is
to extend over all values of o and 7, so that the sum consists
of 4 x 4 terms, of which twelve are equal in pairs.

The case of the ordinary theory of relativity arises out of
the case here considered, if it is possible, by reason of the
particular relations of the g,- in a finite region, to choose the
system of reference in the finite region in such a way that
the g,r assume the constant values
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-1 0 0 0

0 -1 0 0

0 0 -1 of - . )]
0 0 0 +1

‘We shall find hereafter that the choice of such co-ordinates
is, in general, not possible for a finite region.

From the considerations of § 2 and § 3 it follows that
the quantities g-s are to be regarded from the physical stand-
point as the quantities which describe the gravitational
field in relation to the chosen system of reference. Tor, if
we now assume the special theory of relativity to apply to a
certain four-dimensional region with the co-ordinates properly
chosen, then the g, have the values given in (4). A free
material point then moves, relatively to this system, with
uniform motion in a straight line. Then if we introduce new
space-time co-ordinates z,, z,, 2;, z,, by means of any substi-
tution we choose, the go7 in this new system will no longer
be constants, but functions of space and time. At the same
time the motion of the free material point will present itself
in the new co-ordinates as a curvilinear non-uniform motion,
and the law of this motion will be independent of the nature
of the moving particle. 'We shall therefore interpret this
motion as a motion under the influence of a gravitational
field. 'We thus find the occurrence of a gravitational field
connected with a space-time variability of the g, . So, too,
in the general case, when we are no longer able by a suitable
choice of co-ordinates to apply the special theory of relativity
to a finite region, we shall hold fast to the view that the gq-
describe the gravitational field.

Thus, according to the general theory of relativity, gravi-
tation occupies an exceptional position with regard to other
forces, particularly the electromagnetic forces, since the ten
functions representing the gravitational field at the same time
define the metrical properties of the space measured.

B. MATHEMATICAL AIDS TO THE FORMULATION OF
GENERALLY COVARIANT EQUATIONS

Having seen in the foregoing that the general postulate
of relativity leads to the requirement that the equations of
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physics shall be covariant in the face of any substitution of
the co-ordinates z, . . . z, we have to consider how such
generally covariant equations can be found. We now turn
to this purely mathematical task, and we shall find that inits
solution a fundamental rdle is played by the invariant ds
given in equation (3), which, borrowing from Gauss’s theory
of surfaces, we have called the *‘ linear element.”

The fundamental idea of this general theory of covariants
is the following :—Let certain things (‘‘ tensors ”’) be defined
with respect to any system of co-ordinates by a number of
functions of the co-ordinates, called the “ components” of
the tensor. There are then certain rules by which these
components can be calculated for a new system of co-ordin-
ates, if they are known for the original system of co-ordinates,
and if the transformation connecting the two systems is
known. The things hereafter called tensors are further
characterized by the fact that the equations of transformation
for their components are linear and homogeneous. Accord-
ingly, all the components in the new system vanish, if they
all vanish in the original system. If, therefore, a law of
nature is expressed by equating all the components of a tensor
to zero, it is generally covariant. By examining the laws
of the formation of tensors, we acquire the means of formu-
lating generally covariant laws.

§ 5. Contravariant and Covariant Four-vectors

Contravariant Four-vectors.—The linear element is de-

fined by the four ‘“components’ dz,, for which the law of
transformation is expressed by the equation

! iz

dz's = gs?c—l:’dz, . . . . (9

The dz's are expressed as linear and homogeneous functions

of the dz,. Hence we may look upon these co-ordinate differ-

entials as the components of a * tensor " of the particular

kind which we call a contravariant four-vector. Any thing

which is defined relatively to the system of co-ordinates by

four quantities A", and which is transformed by the same law

e D_a:_'_ﬂ’v
AT = IAL L L (5w
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we also call a contravariant four-vector. From (5a) it
follows at once that the sums A’ + B” are also components
of a four-vector, if A and B” are such. Corresponding rela-
tions hold for all ‘‘ tensors” subsequently to be introduced.
(Rule for the addition and subtraction of tensors.)

Covariant Four-vectors—We call four quantities A, the
components of a covariant four-vector, if for any arbitrary
choice of the contravariant four-vector B

3A,B’ = Invariant . . . (6)

The law of transformation of a covariant four-vector follows
from this definition. For if we replace B" on the right-hand

side of the equation
SAGB7 = SAB
o 14

by the expression resulting from the inversion of (5a),

ATy

3—=B",
e 0% ¢
we obtain
10 0Ty -
SBosY® A, = SBA.
4 v 0T ¢ a

Since this equation is true for arbitrary values of the B, it
follows that the law of transformation is

, Ay
Aa - ?mAv . . . . (7)

Note on a Simplified Way of Writing the Expressions.—
A glance at the equations of this paragraph shows that there
is always a summation with respect to the indices which
occur twice under a sign of summation (e.g. the index v in
(5)), and only with respect to indices which occur twice. It
is therefore possible, without loss of clearness, to omit the sign
of summation. In its place we introduce the convention:—
If an index occurs twice in one term of an expression, it is
always to be summed unless the contrary is expressly stated.

The difference between covariant and contravariant four-
vectors lies in the law of transformation ((7) or (5) respectively).
Both forms are tensors in the sense of the general remark
above. Therein lies their importance. Following Ricci and
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Levi-Civita, we denote the contravariant character by placing
the index above, the covariant by placing it below.

§ 6. Tensors of the Second and Higher Ranks

Contravariant Tensors.—If we form all the sixteen pro-
ducts A* of the components A* and B” of two contravariant
four-vectors

A* = A*B . . . . (8)
then by (8) and (5a) A*" satisfies the law of transformation
o _ W Wy :

AT = 3%, ax.,A . . . 9

We call a thing which is described relatively to any system
of reference by sixteen quantities, satisfying the law of trans-
formation (9), a contravariant tensor of the second rank. Not
every such tensor allows itself to be formed in accordance
with (8) from two four-vectors, but it is easily shown that
any given sixteen A" can be represented as the sums of the
A*BY of four appropriately selected pairs of four-vectors.
Hence we can prove nearly all the laws which apply to the
tensor of the second rank defined by (9) in the simplest
manner by demonstrating them for the special tensors of the
type (8).

Contravariant Tensors of Any Rank.—1t is clear that, on
the lines of (8) and (9), contravariant tensors of the third and
higher ranks may also be defined with 4° components, and so
on. In the same way it follows from (8) and (9) that the
contravariant four-vector may be taken in this sense as a
contravariant tensor of the first rank.

Covariant Tensors.—On the other hand, if we take the
sixteen products A,y of two covariant four-vectors A, and B,,

Ay = AB,, . . . . (10
the law of transformation for these is
Ay = 0T, ATy a1

W' oy M
This law of transformation defines the covariant tensor of

the second rank. All our previous remarks on contravariant
tensors apply equally to covariant tensors.
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Nore.—It is convenient to treat the scalar (or invariant)
both as a contravariant and a covariant tensor of zero rank.
Mized Tensors.—We may also define a tensor of the
second rank of the type
Al =AB . . . . (12)

which is covariant with respect to the index u, arrd contra-
variant with respect to the index ». Itslaw of transforma-
tion is

ro_ bx'—r D:l:,,,, v .
Al = 3, 3z . . . (13)
Naturally there are mixed tensors with any number of
indices of covariant character, and any number of indices of
contravariant character. Covariant and contravariant tensors
may be looked upon as special cases of mixed tensors.
Symmetrical Tensors—A contravariant, or a covariant
tensor, of the second or higher rank is said to be symmetrical
if two components, which are obtained the one from the other
by the interchange of twoindices, are equal. The tensor A*,
or the tensor A,,, is thus symmetrical if for any combination

of the indices pu, »,
A" = A" . . . (14)

Aw=Aw . . . .(l43)

It has to be proved that the symmetry thus defined is a
property which is independent of the system of reference.
It follows in fact from (9), when (14) is taken into consider-
ation, that

Uy W'y W' W7y, o .

AT o 2O TT

du T dxp T dxy 0w

or respectively,

A = AT,

The last equation but one depends upon the interchange of
the summation indices x and », i.e. merely on a change of
notation.

Antisymmetrical Tensors.—A contravariant or a covariant
tensor of the second, third, or fourth rank is said to be anti-
symmetrical if two components, which are obtained the one
from the other by the interchange of two indices, are equal
and of opposite sign. The tensor A*, or the tensor A, is
therefore antisymmetrical, if always
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A" = —A™ . ... 15
or respectively,
Aw = —A, . . . . (15a)
Of the sixteen components A**, the four components A**
vanish ; the rest are equal and of opposite sign in pairs, so
that there are only six components numerically different (a
six-vector). Similarly we see that the antisymmetrical tensor
of the third rank A" has only four numerically different
components, while the antisymmetrical tensor A***" has only
one. There are no antisymmetrical tensors of higher rank
than the fourth in a continuum of four dimensions.

§ 7. Multiplication of Tensors

Quter Multiplication of Tensors.—We obtain from the
components of a tensor of rank » and of a tensor of rank m
the components of a tensor of rank » + m by multiplying
each component of the one tensor by each component of the
other. Thus, for example, the tensors T arise out of the
tensors A and B of different kinds,

T/.wd = Ap.vBm
T“Vﬂf = A"VBO’T’
T:: = A-[AVB‘”’-

The proof of the tensor character of T is given directly
by the representations (8), (10), (12), or by the laws of trans-
formation (9), (11), (13). The equations (8), (10), (12) are
themselves examples of outer multiplication of tensors of the
first rank.

‘““ Contraction" of a Mized Tensor.—From any mixed
tensor we may form a tensor whose rank is less by two, by
equating an index of covariant with one of contravariant
character, and summing with respect to this index (“ con-
traction ). Thus, for example, from the mixed tensor of the
fourth rank A’;’, we obtain the mixed tensor of the second

v
rank,

Ay = AL (=3AD),
I

and from this, by a second contraction, the tensor of zero
rank,

A=A =AY
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The proof that the result of contraction really possesses
the tensor character is given either by the representation of a
tensor according to the generalization of (12) in combination
with (6), or by the generalization of (13).

Inner and Mized Multiplication of Tensors—These consist
in a combination of outer multiplication with contraction.

Ezamples.—From the covariant tensor of the second rank
Ay, and the contravariant tensor of the first rank B we form
by outer multiplication the mixed tensor

D7, = A,B".

On contraction with respect to the indices » and o, we obtain
the-covariant four-vector

D, - D), = AuLB".

This we call the inner product of the tensors A,, and B’.
Analogously we form from the tensors A,, and B”, by outer
multiplication and double contraction, the inner product
A,,B*. By outer multiplication and one contraction, we
obtain from A,, and B°" the mixed tensor of the second rank
D, = AwB”.  This operation may be aptly characterized as
a mixed one, being ‘‘ outer ” with respect to the indices u
and 7, and ““ inner "’ with respect to the indices » and o.

We now prove a proposition which is often useful as evi-
dence of tensor character. From what has just been ex-
plained, A,,B*" is a scalar if A, and B°" are tensors. But
we may also make the following assertion: If A,,B" is
a scalar for any choice of the tensor B*, then A,, has tensor
character. For, by hypothesis, for any substitution,

A BT = AuB*.

But by an inversion of (9)
0T Wyryigr

N bx’g bx'.r

ny

This, inserted in the above equation, gives

’ - bﬁ[ﬂ bxv ) rar
(&% o St Aw)BT = 0.

This can only be satisfied for arbitrary values of B”"if the
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bracket vanishes. The result then follows by equation (11).
This rule applies correspondingly to tensors of any rank and
character, and the proof is analogous in all cases.

The rule may also be demonstrated in this form: If B*
and C" are any vectors, and if, for all values of these, the
inner product A,B*C"is a scalar, then A,, is a covariant
tensor. This latter proposition also holds good even if only
the more special assertion is correct, that with any choice of
the four-vector B* the inner product A,B“B’is a scalar, if
in addition it is known that A, satisfies the condition of
symmetry A, = Ay For by the method given above we
prove the tensor character of (A,, + A,,), and from this the
tensor character of A, follows on account of symmetry.
This also can be easily generalized to the case of covariant
and contravariant tensors of any rank.

Finally, there follows from what has been proved, this
law, which may also be generalized for any tensors: If for
any choice of the four-vector B’ the quantities A,,B" form a
tensor of the first rank, then A, is a tensor of the second
rank. For, if C* is any four-vector, then on account of the
tensor character of A,,B’, the inner product A,B'C* is a
scalar for any choice of the two four-vectors B and C*. From
which the proposition follows.

§ 8. Some Aspects of the Fundamental Tensor g,,

The Covariant Fundamental Tensor.—In the invariant
expression for the square of the linear element,

ds? = gudz,dz,,

the part played by the dz, is that of a contravariant vector
which may be chosen at will. Since further, gu = gy, it
follows from the considerations of the preceding paragraph
that g, is a covariant tensor of the second rank. We call
it the * fundamental tensor.” In what follows we deduce
some properties of this tensor which, it is true, apply to any
tensor of the second rank. But as the fundamental tensor
plays a special part in our theory, which has its physical basis
in the peculiar effects of gravitation, it so happens that the
relations to be developed are of importance to us only in the
cage of the fundamental tensor.
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The Contravariant Fundamental Tensor.—If in the deter-
minant formed by the elements g,,, we take the co-factor of
each of the g,, and divide it by the determinant g = | gw |,
we obtain certain quantities g#*( = gv#) which, as we shall
demonstrate, form a contravariant tensor.

By a known property of determinants

Jued®? = 8; . . . . (16)
where the symbol 8 denotes 1 or 0, according as p = » or
+ ».
Instead of the above expression for ds? we may thus write
Juod,ydzudr,
or, by (16)
Guogvrg T deudzy.

But, by the multiplication rules of the preceding paragraphs,
the quantities
dfs = Quodz,

form a covariant four-vector, and in fact an arbitrary vector,
since the dz, are arbitrary. By introducing this into our ex-

pression we obtain
ds® = gord§.dEr.

Since this, with the arbitrary choice of the vector d&,, is a
scalar, and ge7 by its definition is symmetrical in the indices
o and 7, it follows from the results of the preceding paragraph
that g~ is a contravariant tensor.

It further follows from (16) that 8, is also a tensor, which
we may call the mixed fundamental tensor.

The Determinant of the Fundamental Tensor.—By the
rule for the multiplication of determinants

| $ua9® | = | gua | x | g*|.
On the other hand
| guage | = |8, ] =1
It therefore follows that
| gw | x | g =1 . . . A7)

The Volume Scalar.—We seek first the law of transfor-
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mation of the determinant g = | gu |. In accordance with
11)
_ |2y 2z
9= 1o, o 9|

Hence, by a double application of the rule for the multipli-
cation of determinants, it follows that

l I awv

_1:_ ATy
9= |5,

g | = ES:T., 9

or

N ,' 2 | V.

On the other hand, the law of transformation of the element
of volume

dr = jdacldat:zdxad:z:4

1s, in accordance with the theorem of Jacobi,

| 3’y
| 0Ty

dv’ = dr.

By multiplication of the last two equations, we obtain

Jodr = Jgdr ... (18,
Instead of \/g;, we introduce in what follows the quantity

—_—

- ¢, which is always real on account of the hyperbolic

character of the space-time continuum. Theinvariant /= gdr
is equal to the magnitude of the four-dimensional element
of volume in the ‘‘ local ” system of reference, as measured
with rigid rods and clocks in the sense of the special theory
of relativity.

Note on the Character of the Space-time Continuum.—Our
assumption that the special theory of relativity can always
be applied to an infinitely small region, implies that ds® can
always be expressed in accordance with (1) by means of real
quantities dX; . . . dX, If wedenote by dr,the “ natural ”’
element of volume dX,, dX,, dX;, dX,, then

T, = A - gdr . . . (18a)
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If o/ - g were to vanish at a point of the four-dimensional
continuum, it would mean that at this point an infinitely small
“natural ” volume would correspond to a finite volume in
the co-ordinates. TLet us assume that this is never the case.
Then g cannot change sign. We will assume that, in the
sense of the special theory of relativity, g always has a finite
negative value. This is a hypothesis as to the physical
nature of the continuum under consideration, and at the same
time a convention as to the choice of co-ordinates.

Butif - gisalways finite and positive, it is natural to settle
the choice of co-ordinates a posteriori in such a way that this
quantity is always equal to unity. We shall see later that
by such a restriction of the choice of co-ordinates it is possible
to achieve an important simplification of the laws of nature.

In place of (18), we then have simply dr" = dr, from
which, in view of Jacobi’'s theorem, it follows that

| 22+
l 0z,

=1 . . . .9

Thus, with this choice of co-ordinates, only substitutions for
which the determinant is unity are permissible.

But it would be erroneous to believe that this step indicates
a partial abandonment of the general postulate of relativity.
We do not ask ‘“ What are the laws of nature which are co-
variant in face of all substitutions for which the determinant
is unity ? ” but our question is “ What are the generally co-
variant laws of nature ?" It is not until we have formulated
these that we simplify their expression by a particular choice
of the system of reference.

The Formation of New Tensors by Means of the Funda-
mental Tensor.—Inner, outer, and mixed multiplication of a
tensor by the fundamental tensor give tensors of different
character and rank. For example,

A_“ = guo‘Ao’
A = guA".

The following forms may be specially noted :—

AY = guagvBA g,
Ay = JuagvpA®?
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(the ¢ complements "’ of covariant and contravariant tensors
respectively), and
Buw = gug*Phap

We call B, the reduced tensor associated with A,,. Similarly,
B“ = gurg,gA®e,

It may be noted that gw is nothing more than the comple-
ment of g, since

greg Bgag = gred, = gu.

§ 0. The Equation of the Geodetic Line. The Motion of a
Particle

As the linear element ds is defined independently of the
system of co-ordinates, the line drawn between two points P
and P’ of the four-dimensional continuum in such a way that
{ds is stationary—a geodetic line—has a meaning which also
is independent of the choice of co-ordinates. Its equation is

P
5[ ds=0 . . . . (20)
P

Carrying out the variation in the usual way, we obtain
from this equation four differential equations which define the
geodetic line ; this operation will be inserted here for the sake
of completeness. Let A be a function of the co-ordinates z,,
and let this define a family of surfaces which intersect the
required geodetic line as well as all the lines in immediate
proximity to it which are drawn through the points P and P".
Any such line may then be supposed to be given by expres-
sing its co-ordinates z, as functions of A. Let the symbol 8
indicate the transition from a point of the required geodetic
to the point corresponding to the same A on a neighbouring
line. Then for (20) we may substitute

jMSwdx =0
A

dzx, dx
2 _ hodad Shadndd
W= Gwg de

. (20a)

But since
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13g., dz, dz, dz..(dz, }
dw = _{é Sz, D aw et “”dxs(dx)

() - o

we obtain from (20a), after a partial integration,

and

-‘.’\Qx,&z:,dk =0,
A1
where

d {g,.., da:,.} 1 .. dz, dz, . (20b)

= o\w S T 2wde, dn dx

Since the values of 8z, are arbitrary, it follows from this that
k=0 . . . . (20c)

are the equations of the geodetic line.

If ds does not vanish along the geodetic line we may
choose the “length of the arc ’ s, measured along the geodetic
line, for the parameter .. Then w = 1, and in place of (20¢)
we obtain

d’z, 9. Az, dz, 129, dz. dz,
Iugst + s ds ds 2z, ds ds

or, by a mere change of notation,

d2$a dx“ dxv _
ga,—‘d? + [,UJ), 0]% 'ZZ? =0 . . (20&)

where, following Christoffel, we have written

_1(%u | 39 _ Gw
[, o] (Dx +az;"a_5'f) R L

Finally, if we multiply (20d) by gor (outer multiplication with
respect to =, inner with respect to ¢), we obtain the equations
of the geodetic line in the form

dx, + tu, }dzu dz,
st T W TIas s

where, following Christoffel, we have set
fwo, 7t = g[pv,a] . . . (23)

=0. . . (22



A. EINSTEIN 183

§ 10. The Formation of Tensors by Differentiation

With the help of the equation of the geodetic line we can
now easily deduce the laws by which new tensors can be
formed from old by differentiation. By this means we are
able for the first time to formulate generally covariant
differential equations. We reach this goal by repeated appli-
cation of the following simple law :—

If in our continuum a curve is given, the points of which
are specified by the arcual distance s measured from a fixed
point on the curve, and if, further, ¢ is an invariant function
of space, then d¢/ds is also an invariant. The proof lies in
this, that ds is an invariant as well as d¢.

As
d¢ _ 3¢ da
ds  dz, ds
therefore
- O dz,
V=& &

is also an invariant, and an invariant for all curves starting
from a point of the continuum, that is, for any choice of the
vector dz,. Hence it immediately follows that

A= (2

is a covariant four-vector—the “ gradient " of ¢.
According to our rule, the differential quotient
dy
X=ds
taken on a curve, is similarly an invariant. Inserting the
value of Y+, we obtain in the first place
_ V¢ dndn 3 &',
X dzdz, ds ds = Oz, ds®’
The existence of a tensor cannot be deduced from this forth-
with. But if we may take the curve along which we have

differentiated to be a geodetic, we obtain on substitution for
d’z,/ds® from (22),

x = (28

dz, oz,

¢ \dz, dz,
o, i35 ) T T

Since we may interchange the order of the differentiations,
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and since by (23) and (21) {uv, 7} is symmetrical in u and »,
it follows that the expression in brackets is symmetrical in p
and ». Since a geodetic line can be drawn in any direction
from a point of the continuum, and therefore dz,/ds is a four-
vector with the ratio of its components arbitrary, it follows
from the results of § 7 that

2
A, = 22

e~ e 2 @)

dz,

is a covariant tensor of the second rank. We have therefore
come to this result: from the covariant tensor of the first

rank
o
A.,,, = 55‘-‘
we can, by differentiation, form a covariant tensor of the
second rank
dA,
oz,

We call the tensor A,, the “ extension " (covariant derivative)
of the tensor A, In the first place we can readily show that
the operation leads to a tensor, even if the vector A, cannot
be represented as a gradient. To see this, we first observe
that

A, =

- {uy, TA, . .. (26)

R
is a covariant vector, if ¢ and ¢ are scalars. The sum of
four such terms

) A
= (I)L @
S, = >, + .+ .+ P 3z,
is also a covariant vector, if Y, ¢ . . . Y $® are scalars.

But it is clear that any covariant vector can be represented
in the form S,. For, if A, is a vector whose components are
any given functions of the z,, we have only to put (in terms
of the selected system of co-ordinates)

YO = A, ¢V =g,

‘Ir(m = A'2l ¢(2) = x2!

YO = A, 4O = 2,

YO = A, W=z,

in order to ensure that-S, shall be equal to A,.
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Therefore, in order to demonstrate that A,, is a tensor if
any covariant vector is inserted on the right-hand side for A,
we only need show that this is so for the vector S,. But for
this latter purpose it is sufficient, as a glance at the right-
hand side of (26) teaches us, to furnish the proof for the case

-2
A'F - ‘P D.E,L.
Now the right-hand side of (25) multiplied by -,
d
25 Rl s

is a tensor. Similarly

¥ 9

dr, dx,

being the outer product of two vectors, is a tensor. By ad-
dition, there follows the tensor character of

32 - tw (v 32,

As a glance at (26) w1ll show, this completes the demon-
stration for the vector
pad

T

Vo,

and consequently, from what has already been proved, for any
vector A,

By means of the extension of the vector, we may easily
define the ‘“extension ' of a covariant tensor of any rank.
This operation is a generalization of the extension of a vector.
We restrict ourselves to the case of a tensor of the second
rank, since this suffices to give a clear idea of the law of
formation,

As has already been observed, any covariant tensor of the
second rank can be represented * as the sum of tensors of the

* By outer multiplication of the vector with arbitrary components 4,,, A;,,
A, A, by the vector with components 1, 0, 0, 0, we produce a tensor with
components

All AJ‘I Al:’ AN

0 0 0 O

0 0 0 0

0 0 0 0.
By the addition of four tensors of this type, we obtain the tensor A, with any
ssigned components,
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type A, B,. It will therefore be sufficient to deduce the ex-
pression for the extension of a tensor of this special type.
By (26) the expressions

A,

2 fom 7IA,
B,
v, " {ov, 7}B,,

are tensors. On outer multiplication of the first by B,, and
of the second by A,, we obtain in each case a tensor of the
third rank. By adding these, we have the tensor of the third
rank

dA,,
P

Ao = - {ou, T}A, ~ {ov, T}A,, . .@n
where we have put A,, = A, B, As the right-hand side
of (27) is linear and homogeneous in the A, and their first
derivatives, this law of formation leads to a tensor, not only
in the case of a tensor of the type A,B,, but also in the case
of a sum of such tensors, ie. in the case of any covariant
tensor of the second rank. We call A,,, the extension of the
tensor A,,.

It is clear that (26) and (24) concern only special cases
of extension (the extension of the tensors of rank one and
zero respectively).

In general, all special laws of formation of tensors are in-
cluded in (27) in combination with the multiplication of
tensors.

§ 11. Some Cases of Special Importance

The Fundamental Tensor.—We will first prove some
lemmas which will be useful hereafter. By the rule for the
differentiation of determinants

dg = g*9dgu = - gugdg™ . . (28)

The last member is obtained from the last but one, if we bear
in mind that g.g* = &', so that g.g* = 4, and conse-

quently
g,“,dg"" + g“”dg,w = 0.



A. EINSTEIN 187
From (28), it follows that

LW -9 _2le(-9
-9 o 3z,

Further, from g,,9*° = 8:, it follows on differentiation that
Juodg*” = - g"’dg“’}

b 22— gL (29)

207 _ e (30)

g"’ba: =9 YN

From these, by mixed multiplication by g° and g.. re-
spectively, and a change of notation for the indices, we have

dger = — greg*f dg.p
Egﬂv _ o vp OFe8 g“ﬂ (31)
bx, - g“ g Zs

and
dgu = - JueGvp dge# (32)
O _ _ 99+
dx, | ImGeyg

The relation (31) admits of a transformation, of which we
also have frequently to make use: From (21)

Yot fa, B) + [Boa] - - - (39)

Inserting this in the second formula of (31), we obtain, in
view of (23)
b.J dnid
0z,

Substituting the right-hand side of (34) in (29), we have

= - g*{7a, v} - g'{To, pu} . . (34)

1 W/ -¢g .
;_/zi;;. D(L'a = {/,(.o" ,u,} . . (293)

(3]

The ‘“ Divergence” of a Contravariant Vector.—If we
take the inner product of (26) by the contravariant funda-
mental tensor g»*, the right-hand side, after a transformation
of the first term, assumes the form

l v - .D__g.::' - ‘ra(?_g_‘_‘f a_g__‘_’_ﬁ - unv) v
ny(g“ Au) - Ay X, 19 7z, + 3z, >z, g*A..
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In accordance with (31) and (29), the last term of this ex-
pression may be written

dx, ~/ - g Az,

As the symbols of the indices of summation are immaterial,
the first two terms of this expression cancel the second of the
one above. If we then write g**A. = A”, so that A" like Ay
is an arbitrary vector, we finally obtain

1 2, ——y,

7T_—;E;(~/ - gA. ). . . (35)

This scalar is the divergence of the contravariany vector A’
The ““ Curl ” of a Covariant Vector—The second term in

(26) is symmetrical in the indices w and ». Therefore

A, - A, is a particularly simply constructed antisym-

metrical tensor. We obtain

B, =

iq:vAr + %gzﬂlAT + 1 b\/ - gg‘“.AT.
i

®=

ﬁl _ DA.V
dz, 0T,

(36)

Antisymmetrical Extension of a Siz-vector—Applying
(27) to an antisymmetrical tensor of the second rank A,
forming in addition the two equations which arise through
cyclic permutations of the indices, and adding these three
equations, we obtain the tensor of the third rank

a Auv gé-wr + bAW‘

Buvv = A-p.vv + Avcu + Acuv = -BZ, bx: bzy

(37)

which it is easy to prove is antisymmetrical

The Divergence of a Siz-vector.—Taking the mixed pro-
duct of (27) by g*2g*®, we also obtain a tensor. The first
term on the right-hand side of (27) may be written in the
form

d dg+* dghe
D_a;(g#agVBAm) - gMDZ‘, Auv - gvﬂ ng”AIW‘

If we write A‘;B for gragvBA .- and A®® for grag»BA,,, and in
the transformed first term replace

bgvﬁ bgpa
o, and Y



A. EINSTEIN 139

by their values as given by (34), there results from the right-
hand side of (27) an expression consisting of seven terms, of
which four cancel, and there remains

AaB _ DAGH
Y

+ {oy, a}A" + {oy, BIAY. . (88)

This is the expression for the extension of a contravariant
tensor of the second rank, and corresponding expressions for
the extension of contravariant tensors of higher and lower
rank may also be formed.

We note that in an analogous way we may also form the
extension of a mixed tensor :—

R L TV C')

On contracting (38) with respect to the indices 8 and o
(inner multiplication by 83), we obtain the vector

e (B, BIA + (B, Gl

On account of the symmetry of {8y, a} with respect to the in-
dices B and v, the third term on the right-hand side vanishes,
if A*® is, as we will assume, an antisymmetrical tensor. The
second term allows itself to be transformed in accordance
with (29a). Thus we obtain

- a8
Ac= _1_____3_<:/.______¥7A) . . . (40)
vo-goo s
This is the expression for the divergence of a contravariant
six-vector.

The Divergence of a Mized Tensor of the Second Rank.—
Contracting (39) with respect to the indices a and o, and

taking (29a) into consideration, we obtain

AG

VT A "IN o, TG (4D

If we introduce the contravariant tensor A?” = gr7AJ in the
last term, it assumes the form

- [‘T/"') P]\/—??Ap"
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If, further, the tensor Asc is symmetrical, this reduces to
WY agMA;w

Had we introduced, instead of A"’, the covariant tensor
Aps = gpagosA®®, which is also symmetrical, the last term, by
virtue of (31), would assume the form

W

In the case of symmetry in question, (41) may therefore be
replaced by the two forms

V- gA = ?.(:_/T;ﬂ bg""J gA* . (41a)

=y N - gA) |
N o-gA, = R *ax,n/ gA,, . (41b)

T

which we have to employ later on.

§ 12. The Riemann-Christoffel Tensor

We now seek the tensor which can be obtained from the
fundamental tensor alone, by differentiation. At first sight
the solution seems obvious. We place the fundamental
tensor of the g,, in (27) instead of any given tensor A,,, and
thus have a new tensor, namely, the extension of the funda-
mental tensor. But we easily convince ourselves that this
extension vanishes identically. We reach our goal, however,
in the following way. In (27) place

dA
A“" = SE_'“ - {f“vv P}Am

Le. the extension of the four-vector A,. Then (with a some-
what different naming of the indices) we get the tensor of the
third rank

A A, dA, DA
Auor = 5557 = o, A2 — o, p}D - fom pl*

+ [ - 5%:{,“0', pt + {ur, al{as, p} + {oT, a}{apy, P}]Ap
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This expression suggests forming the tensor A, — Aur.
For, if we do so, the following terms of the expression for
A,,r cancel those of A,,, the first, the fourth, and the
member corresponding to the last term in square brackets;
because all these are symmetrical in ¢ and = The same
holds good for the sum of the second and third terms. Thus
we obtain

AM(TT - Auﬂr = B:tarA-n . . . (42)

where

d 0
Bfun = - 5;::{“6’ P} + STI:"{,LU"'! P} - {;1.0', al{ar, P}

+ {u7, aH{ao, p} (43)

The essential feature of the result is that on the right side of
(42) the A, occur alone, without their derivatives. From the
tensor character of Ausr — Aurs In conjunction with the fact
that A, is an arbitrary vector, it follows, by reason of § 7,

that Bf _is a tensor (the Riemann-Christoffel tensor).

The mathematical importance of this tensor is as follows :
If the continuum is of such a nature that there is & co-ordinate
gystem with reference to which the g,., are constants, then

all the B, vanish. If we choose any new system of co-
ordinates in place of the original ones, the g,, referred

thereto will not be constants, but in consequence of its tensor

nature, the transformed components of B _ will still vanish

in the new system. Thus the vanishing of the Riemann
tensor is a necessary condition that, by an appropriate choice
of the system of reference, the g,, may be constants. In our
problem this corresponds to the case in which,* with a
suitable choice of the system of reference, the special
theory of relativity holds good for a finite region of the
continuum.

-Contracting (43) with respect to the indices  and p we
obtain the covariant tensor of second rank

* The mathematicians have proved that this is also a sufficient condition,
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A

Gy = Bﬁw = Rw + Su
where
0
Ry = = <, a} + (o, B} 0B, o} } (44)
_Plgs/ =g, 2log /g
Sy = .00, {ur, a} ., |

Note on the Choice of Co-ordinates.—It has already been
observed in § 8, in connexion with equation (18a), that the
choice of co-ordinates may with advantage be made so that
-9 =1 A glance at the equations obtained in the last
two sections shows that by such a choice the laws of forma-
tion of tensors undergo an important simplification. This
applies particularly to G, the tensor just developed, which
plays a fundamental part in the theory to be set forth. For
this specialization of the choice of co-ordinates brings about
the vanishing of S,,, so that the tensor G,, reduces to R,,.

On this account I shall hereafter give all relations in the
simplified form which this specialization of the choice of co-
ordinates brings with it. It will then be an easy matter to
revert to the generally covariant equations, if this seems
desirable 1n a special case.

C. THEORY OF THE GRAVITATIONAL FIELD

§ 13. Equations of Motion of a Material Point in the
Gravitational Field. Expression for the Field-com-
ponents of Gravitation

A freely movable body not subjected to external forces
moves, according to the special theory of relativity, in a
straight line and uniformly. This is also the case, according
to the general theory of relativity, for a part of four-di-
mensional space in which the system of co-ordinates K;, may
be, and is, so chosen that they have the special constant
values given in (4).

If we consider precisely this movement from any chosen
system of co-ordinates K,, the body, observed from K;, moves,
according to the considerations in § 2, in a gravitational field.
The law of motion with respect to K, results without diffi-
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culty from the following consideration. With respect to K,
the law of motion corresponds to a four-dimensional straight
line, ie. to a geodetic line. Now since the geodetic line
is defined independently of the system of reference, its
equations will also be the equation of motion of the material
point with respect to K,. If we set
I, = -{w, . . . (45)
the equation of the motion of the point with respect to K,,
becomes
d’z, 1 .dr,dz,
7 I‘M T ds . . . (46)
We now make the assumption, which readily suggests itself,
that this covariant system of equations also defines the motion
of the point in the gravitational field in the case when there
is no system of reference K, with respect to which the
special theory of relativity holds good in a finite region.
‘We have all the more justification for this assumption as (46)
contains only first derivatives of the g,.,, between which even
in the special case of the existence of K,, no relations sub-
gist.*
If the T, vanish, then the point moves uniformly in a

straight line. These quantities therefore condition the devi-
ation of the motion from uniformity. They are the com-
ponents of the gravitational field.

§ 14. The Field Equations of Gravitation in the Absence
of Matter

We make a distinction hereafter between ¢ gravitational
field ” and “ matter ” in this way, that we denote everything
but the gravitational field as “ matter.” Our use of the word
therefore includes not only matter in the ordinary sense, but
the electromagnetic field as well.

Our next task is to find the field equations of gravitation
in the absence of matter. Here we again apply the method

* It is only between the second (and first) derivatives that, by § 12, the
relations Bz o7 = 0 subsist.
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employed in the preceding paragraph in formulating the
equations of motion of the material point. A special case in
which the required equations must in any case be satisfied is
that of the special theory of relativity, in which the g¢,, have
certain constant values. Let this be the case in a certain
finite space in relation to a definite system of co-ordinates K,
Relatively to this system all the components of the Riemann

tensor B,f , defined in (43), vanish. For the space under
consideration they then vanish, also in any other system of
co-ordinates.

Thus the required equations of the matter-free gravita-

tional field must in any case be satisfied if all B/ vanish.

But this condition goes too far. For it is clear that, e.g., the
gravitational field generated by a material point in its environ-
ment certainly cannot be “ transformed away ” by any choice
of the system of co-ordinates, i.e. it cannot be transformed to
the case of constant g,..

This prompts us to require for the matter-free gravitational
field that the symmetrical tensor G,,, derived from the tensor

B ? | shall vanish. Thus we obtain ten equations for the ten

Mmr?
quantities g,,, which are satisfied in the special case of the
vanishing of all B,,. With the choice which we have made
of a system of co-ordinates, and taking (44) into considera-

tion, the equations for the matter-free field are

3L, 8 _
—aE‘“mﬂF“_O} N O
V-g=1

It must be pointed out that there is only a minimum of
arbitrariness in the choice of these equations. For besides
G, there is no tensor of second rank which is formed from
the g., and its derivatives, contains no derivations higher than
second, and is linear in these derivatives.*

These equations, which proceed, by the method of pure

* Properly speaking, this can be affirmed only of the tensor
G, + Aguyg“BGaﬂ,
where A is & constant. If, however, we set this tensor = 0, we come back again
to the equations G w =0
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mathematics, from the requirement of the general theory of
relativity, give us, in combination with the equations of
motion (46), to a first approximation Newton's law of at-
traction, and to a second approximation the explanation of
the motion of the perihelion of the planet Mercury discovered
by Leverrier (as it remains after corrections for perturbation
have been made). These facts must, in my opinion, be
taken as a convincing proof of the correctness of the theory.

§ 15. The Hamiltonian Function for the Gravitational
Field. Laws of Momentum and Energy

To show that the field equations correspond to the laws of
momentum and cnergy, it is most convenient to write them
in the following Hamiltonian form :—

stdT -0
H=g~T, T} (478)
N -g=

where, on the boundary of the finite four-dimensional region

of integration which we have in view, the variations vanish.
We first have to show that the form (47a) is equivalent

to the equations (47). For this purpose we regard H as a

function of the g** and the ¢*’ (= dg»+/dz.).
Then in the first place

5}1 = F:grfu 8g'“’ + Qg“vF:BSFfa

it

~ Tiglh 8gv + 2T 8(gTh).
But
T8 = - vaer( 0m o ar _ ay
5(9" Tm) = 1}8[(]# gBA( Y + Sz, N )]
The terms arising from the last two terms in round brackets
are of different sign, and result from each other (since the de-
nomination of the summation indices is immaterial) through

interchange of the indices x and 8. They cancel each other
in the expression for 8H, because they are multiplied by the
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quantity I;,, which is symmetrical with respect to the in-
dices w and B. Thus there remains only the first term in
round brackets to be considered, so that, taking (31) into ac-
count, we obtain

= —I'“,al’psg" +I‘psg .

Thus
YH
W = - T:ﬂl‘fa
H . . . . (48)
bgnv - By
Carrying out the variation in (47a), we get in the first place
d /0H H
SZZ(ag:v) oyl U LD

which, on account of (48), agrees with (47), as was to be
proved.

If we multiply (47b) by ¢',, then because
22 _ 2

0Za hLA
and, consequently,
w D (DH)_'i( DH)_DH%
7 3Ta\dgh oz \"7 g g .’
we obtain the equa,tion
SH\ ?dH _
0Zq (q, bg“") Az,
or ¥
ot
2z, = O
¢ . . . (49
S : @
- 2t = g — - §:H
39,

where, on account of (48), the second equation of (47), and
(34)
wty = 48,9 L Te, — 9 Teelhy . . (50)

* The reason for the introduction of the factor — 2« will be apparent later.
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It is to be noticed that ¢7 is not a tensor; on the other
hand (49) applies to all systems of co-ordinates for which

A/ - g = 1. This equation expresses the law of conservation
of momentum and of energy for the gravitational field.
Actually the integration of this equation over a three-

dimensional volume V yields the four equations

4 j BV = j(lt;, +omft + a)dS. . (49a)
dz,

where 1, m, n denote the direction-cosines of direction of the
inward drawn normal at the element dS of the bounding sur-
face (in the sense of Euclidean geometry). We recognize in
this the expression of the laws of conservation in their usual
form. The quantities ¢ we call the “ energy components ™
of the gravitational field.

I will now give equations (47) in a third form, which is
particularly useful for a vivid grasp of our subject. By
multiplication of the field equations (47) by g*¢ these are ob-
tained in the ‘‘ mixed ” form. Note that

Y A d ( ) dgve
vo "~ BV T va - g __7*
AZa 2. 9T dxr,

which quantity, by reason of (34), is equal to

S—Z—a(g"'I‘I.,) ~ 9T, — g°fT4.T,

or (with different symbols for the surnmation indices)

d
(o713 - TS - T

AT,

The third term of this expression cancels with the one aris-
ing from the second term of the field equations (47); using
relation (50), the second term may be written
w(ti - 38.1),
where ¢ = ¢;. Thus instead of equations (47) we obtain
b a T o
_a}_“(g,ar“p) - - Wt - ‘}8”t)} -
v-g=1
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§ 16. The General Form of the Field Equations of
Gravitation
The field equations for matter-free space formulated in
§ 15 are to be compared with the field equation

Vi = 0

of Newton’s theory. We require the equation corresponding

to Poisson’s equation
Vi = dmep,

where p denotes the density of matter.

The special theory of relativity has led to the conclusion
that inért mass is nothing more or less than energy, which
finds its complete mathematical expression in a symmetrical
tensor of second rank, the energy-tensor. Thus in the
general theory of relativity we must introduce a correspond-

ing energy-tensor of matter T, which, like the energy-com-

ponents ¢, [equations (49) and (50)] of the gravitational field,
will have mixed character, but will pertain to a symmetrical
covariant tensor.*

The system of equation (51) shows how this energy-tensor
(corresponding to the density p in Poisson’s equation) is to
be introduced into the field equations of gravitation. For if
we consider a complete system (e.g. the solar system), the
total mass of the system, and therefore its total gravitating
action as well, will depend on the total energy of the system,
and therefore on the ponderable energy together with the
gravitational energy. This will allow itself to be expressed
by introducing into (51), in place of the energy-components
of the gravitational field alone, the sums ¢ + T of theenergy-
components of matter and of gravitational field. Thus instead
of (51) we obtain the tensor equation

) a o o o R
35,07 ) = = #l(tl + T) — 48((¢ + T)),
v -g=1

where we have set T = T/, (Laue’s scalar). These are the

(52)

*ga:T% = Tgr and goBT2 = T*Fare to be symmetrical tensors.
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required general field equations of gravitation in mixed form.
Working back from these, we have in place of (47)

-—E'T:,, + r:prfa = - "(TAV - %guvT)»}

OZa

v-g=1
It must be admitted that this introduction of the energy-
tensor of matter is not justified by the relativity postulate
alone. For this reason we have here deduced it from the
requirement that the energy of the gravitational field shall
act gravitatively in the same way as any other kind of energy.
But the strongest reason for the choice of these equations
lies in their consequence, that the equations of conservation
of momentum and energy, corresponding exactly to equations
(49) and (49a), hold good for the components of the total

energy. This will be shown in § 17.

(53)

§ 17. The Laws of Conservation in the General Case

Equation (52) may readily be transformed so that the
second term on the right-hand side vanishes. Contract (52)
with respect to the indices x and o, and after multiplying the

resulting equation by 367, subtract it from equation (52).
This gives

D L 4 -4
(g7 Tls — 4810 T0) = - #(ti + TL).  (52a)

On this equation we perform the operation d/dx,. We have

L ( o “) = D2 [ o8 a.)\(bg"’\ bgﬂ* Dq#ﬂ)]
Sz \I T o) = 1}Dm,‘bzq I oz © 2z, " am/J

The first and third terms of the round brackets yield con-
tributions which cancel one another, as may be seen by
interchanging, in the contribution of the third term, the
summation indices a and o on the one hand, and 8 and A
on the other. The second term may be re-modelled by (31),
80 that we have

bagaﬁ
oB =
0L, AT (g FEB) 4 0L, d.Lg0%y (54)

The second term on the left-hand side of (52a) yields in the
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first place

- 1}3—5‘?—;‘5‘ (9“’1';5)

dgsa , dgss 39;@)]

AByad ZA0B _ IAR

ibzabz,‘[g (Dxa + dxa dzg /L

With the choice of co-ordinates which we have made, the
term deriving from the last term in round brackets disappears

by reason of (29). The other two may be combined, and
together, by (31), they give

or

DSgaﬂ
—_—
02,0280

8o that in consideration of (54), we have the identity

2
70 a(g #Lup - %8..9*"1‘;‘5) =0 . . (5%)
From (55) and (52a), it follows that

At + T)

s (56)

Thus it results from our field equations of gravitation
that the laws of conservation of momentum and energy are
satisfied. This may be seen most easily from the consider-
ation which leads to equation (49a); except that here, instead
of the energy components ¢’ of the gravitational field, we have
to introduce the totality of the energy components of matter
and gravitational field.

§ 18. The Laws of Momentum and Energy for Matter, as
a Consequence of the Field Equations
Multiplying (58) by dg[dz,, we obtain, by the method
adopted in § 15, in view of the vanishing of
dg»
gp.v?gx:»
the equation

bt %bg“vT = 0’
(\’B‘ %y
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or, in view of (56),

2T g™
< + ‘% Tuv =0 . . . (57)
0%, Az,

Comparison with (41b) shows that with the choice of
gystem of co-ordinates which we have made, this equation
predicates nothing more or less than the vanishing of di-
vergence of the material energy-tensor. Physically, the
occurrence of the second term on the left-hand side shows
that laws of conservation of momentum and energy do not
apply in the strict sense for matter alone, or else that they
apply only when the g** are constant, i.e. when the field in-
tensities of gravitation vanish. This second term is an ex-
pression for momentum, and for energy, as transferred per
unit of volume and time from the gravitational field to matter.
This is brought out still more clearly by re-writing (57) in the
sense of (41) as

AT,
Az,

=-TT: . . . (57a)

The right side expresses the energetic effect of the gravita-
tional field on matter.

Thus the field equations of gravitation contain four con-
ditions which govern the course of material phenomena.
They give the equations of material phenomena completely,
if the latter is capable of being characterized by four differ-
ential equations independent of one another.*

D. MATERIAL PHENOMENA

The mathematical aids developed in part B enable us
forthwith to generalize the physical laws of matter (hydro-
dynamics, Maxwell's electrodynamics), as they are formulated
in the special theory of relativity, so that they will fit in with
the general theory of relativity. When this is done, the
general principle of relativity does not indeed afford us a
further limitation of possibilities ; but it makes us acquainted
with the influcnce of the gravitational field on all processes,

* On this question cf. H. Hilbert, Nachr. d. K. Gesellsch. d. Wiss. zu
Gottingen, Math.-phys. Klasse, 1915, p. 3.
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without our having to introduce any new hypothesis what-
ever.

Hence it comes about that it is not necessary to introduce
definite assumptions as to the physical nature of matter (in
the narrower sense). In particular it may remain an open
question whether the theory of the electromagnetic field in
conjunction with that of the gravitational field furnishes a
sufficient basis for the theory of matter or not. The general
postulate of relativity is unable on principle to tell us anything
about this. It must remain to be seen, during the working
out of the theory, whether electromagnetics and the doctrine
of gravitation are able in collaboration to perform what the
former by itself is unable to do.

§ 19. Euler's Equations for a Frictionless Adiabatic Fluid
Let p and p be two scalars, the former of which we call
the ‘‘ pressure,” the latter the “ density ” of a fluid; and let
an equation subsist between them. ILet the contravariant
symmetrical tensor
dz, dx
af = - % 4o L8
T gﬂp+pdsds . . . (58)

be the contravariant energy-tensor of the fluid. To it belongs
the covariant tensor

d$¢ d.’lfﬁ

Tuw= - gup + Jueusgs Fs P - . (58a)
as well as the mixed tensor *
dxg dz,
Te = - 8p + gusgs g.P - - (58D)

Inserting the right-hand side of (58b) in (57a), we obtain the
Eulerian hydrodynamical equations of the general theory of
relativity. They give, in theory, a complete solution of the
problem of motion, since the four equations (57a), together

* For an observer using & system of reference in the sense of the specia)
theory of relativity for an infinitely small region, and moving with it, the
density of energy Tj equals p -~ p. This gives the definition of p. Thus p is
not constant for an incompressible fluid.
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with the given equation between p and p, and the equation

dz, dag
9o ds ds

are sufficient, g.g being given, to define the six unknowns

dxl dxz dxs d$4
Ppgsr ds ds’ ds

If the g. are also unknown, the equations (53) are
brought in. These are eleven equations for defining the ten
functions g,,, 8o that these functions appear over-defined.
We must remember, however, that the equations (57a) are
already contained in the equations (53), so that the latter
represent only seven independent equations. There is good
reason for this lack of definition, in that the wide freedom of
the choice of co-ordinates causes the problem to remain
mathematically undefined to such a degree that three of the
functions of space may be chosen at will.*

1,

§ 20. Maxwell’s Electromagnetic Field Equations for Free
Space

Let ¢, be the components of a covariant vector—the
electromagnetic potential vector. From them we form, in
accordance with (36), the components F,, of the covariant
six-vector of the electromagnetic field, in accordance with
the system of equations

=2
Fpa = azd - —D?p . . . (59)

It follows from (59) that the system of equations

dF,, . 3F,. . F.,
A%, + oz, + RE

=0 . . . (60)

is satisfied, its left side being, by (37), an antisymmetrical
tensor of the third rank. System (60) thus contains essenti-
ally four equations which are written out as follows:—

* On the abandonment of the choice of co-ordinates with g = - 1, there

remain four functions of space with liberty of choice, corresponding to the four
arbitrary functions at our disposal in the choice of co-ordinates.
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bF23 bF3‘ DF42 _ 3

EERE PR r

2Fy,  3Fy Wy _ g

dz, dxg oz, | ) . (608)
?F_“ + bF_”’ + _b& = ()

0z, oz, oz,

3F,, F,,  2Fy

S5 T 3w, Tz, 0

This system corresponds to the second of Maxwell’s
systems of equations. We recognize this at once by setting

Fy = He, Fyy = Er}

le = Hy' F24 = Ey
Fi; = H:, Fyy = E,

(61)

Then in place of (60a) we may set, in the usual notation of
three-dimensional vector analysis,

H
= ¢ = curl E} .. . (60b)
divH=0

We obtain Maxwell’s first system by generalizing the
form given by Minkowski. We introduce the contravariant
six-vector associated with Fe8

Fr = guagF,s . .. (62)

and also the contravariant vector J* of the density of the
electric current. Then, taking (40) into consideration, the
following equations will be invariant for any substitution
whose invariant is unity (in agreement with the chosen co-
ordinates) :—
d , o TR .
D—E,F“ =J* . . . . (63)
Let

F#3=H,, F4= - E,
F = HYy, F* = - E'y} (64)
Ft =H, F*= -F,

which quantities are equal to the quantities Hy . . . E#in
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the special case of the restricted theory of relativity ; and in
addition

It =gz, I = jy, I® = js, I* = p,

we obtain in place of (63)
WE . ,
—a—t" +7 = CHIIH} (63&)
divE =p

The equations (60), (62), and (63) thus form the generali-
zation of Maxwell's field equations for free space, with the
convention which we have established with respect to the
choice of co-ordinates.

The Energy-components of the Electromagnetic Field.—
‘We form the inner product

ko= F,J* . . . . (65)

By (61) its components, written in the three-dimensional
manner, are
& = pEo +[j. HJ?
. . . . (65a)
k= — (JE)
ks 18 a covariant vector the components of which are
equal to the negative momentum, or, respectively, the energy,
which is transferred from the electric masses to the electro-
magnetic field per unit of time and volume. If the electric
masses are free, that is, under the sole influence of the
electromagnetic field, the covariant vector «, will vanish.
To obtain the energy-components T? of the electromagnetic
field, we need only give to equation «s = 0 the form of
equation (57). From (63) and (65) we have in the first place

dEH

7z,

o = Pl = G (FB) — Boiie

dz,
The second term of the right-hand side, by reason of (60),
permits the transformation

F“,D_F, F 3

il - S [ Sl L a V8
Qz, 3F Az, L 0, ’
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which latter expression may, for reasons of symmetry, also
be written in the form

_%[

But for this we may set

F,
g"p DCE:FFV .

P d
- iE(g"“g”"F apFus) + *FﬂﬂFuvsi'c;(gMng)~
The first of these terms is written more briefly
- 13 (F’"F w) s

the second, after the differentiation is carried out, and after
some reduction, results in

T a or
- 4F* F“vg”“sg:.
Taking all three terms together we obtain the relation

dTY d '
ke = 35 &g’“ I . . . (66)
where

T = = Fo.F” + }8F.gF*

Equation (66), if x, vanishes, is, on account of (30),
equivalent to (57) or (57a) respectively. Therefore the T
are the energy-components of the electromagnetic field.
With the help of (61) and (64), it is easy to show that these
energy-components of the electromagnetic field in the case
of the special theory of relativity give the well-known Maxwell-
Poynting expressions.

‘We have now deduced the general laws which are satisfied
by the gravitational field and matter, by consistently using a
gystem of co-ordinates for which /- g = 1. We have
thereby achieved a considerable simplification of formuls
and calculations, without failing to comply with the require-
ment of general covariance; for we have drawn our equations
from generally covariant equations by specializing the system
of co-ordinates.
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Still the question is not without a formal interest, whether
with a correspondingly generalized definition of the energy-
components of gravitational field and matter, even without
specializing the system of co-ordinates, it is possible to formu-
late laws of conservation in the form of equation (56), and
field equations of gravitation of the same nature as (52) or
(52a), in such a manner that on the left we have a divergence
(in the ordinary sense), and on the right the sum of the
energy-components of matter and gravitation. I have found
that in both cases this is actually so. But I do not think
that the communication of my somewhat extensive reflexions
on this subject would be worth while, because after all they
do not give us anything that is materially new.

E

§ 21. Newton’s Theory as a First Approximation

As bhas already been mentioned more than once, the
special theory of relativity as a special case of the general
theory is-characterized by the g,, having the constant values
(4). From what has already been said, this means complete
neglect of the effects of gravitation. We arrive at a closer
approximation to reality by considering the case where the
g differ from the values of (4) by quantities which are small
compared with 1, and neglecting small quantities of second
and higher order. (First point of view of approximation.)

It is further to be assumed that in the space-time territory
under consideration the g, at spatial infinity, with a suitable
choice of co-ordinates, tend toward the values (4); i.e. we are
considering gravitational fields which may be regarded as
generated exclusively by matter in the finite region.

It might be thought that these approximations must lead
us to Newton’s theory. But to that end we still need to ap-
proximate the fundamental equations from a second point of
view. We give our attention to the motion of a material
point in accordance with the equations (16). In the case of
the special theory of relativity the components

dz, dz, dz,

ds’ ds’ ds
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may take on any values. This signifies that any velocity

_ dz,\* dz,\* dxg\?
v= (@) @)+ (@)
may occur, which is less than the velocity of light in vacuo.
If we restrict ourselves to the case which almost exclusively

offers itself to our experience, of v being small as compared
with the velocity of light, this denotes that the components

ds’ ds’ ds
are to be treated as small quantities, while dz,/ds, to the
second order of small quantities, is equal to one. (Second
point of view of approximation.)

Now we remark that from the first point of view of ap-
proximation the magnitudes I';, are all small magnitudes of
at least the first order. A glance at (46) thus shows that in
this equation, from the second point of view of approximation,
we have to consider only terms for which u = » = 4. Re-
stricting ourselves to terms of lowest order we first obtain in
place of (46) the equations

dz,
az ~Ti

where we haveset ds = dz, = dt; or with restriction to terms
which from the first point of view of approximation are of
first order :—

‘f;tf’ _[44,7] (r=1,2 3)
%ﬁ; = (44, 4].

If in addition we suppose the gravitational field to bea quasi-
static field, by confining ourselves to the case where the
motion of the matter generating the gravitational field is but
slow (in comparison with the velocity of the propagation of
light), we may neglect on the right-hand side differentiations
with respect to the time in comparison with those with re-
spect to the space co-ordinates, so that we have
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dz,

att T
This is the equation of motion of the material point accord-
ing to Newton’s theory, in which 4g, plays the part of the
gravitational potential. What is remarkable in this result
is that the component g,, of the fundamental tensor alone
defines, to a first approximation, the motion of the material
point.

We now turn to the field equations (53). Here we
have to take into consideration that the energy-tensor of
“matter” is almost exclusively defined by the density of
matter in the narrower sense, i.e. by the second term of the
right-hand side of (58) [or, respectively, (58a) or (58b)].
If we form the approximation in question, all the components
vanish with the one exception of Tyy = p = T. On the left-
hand side of (53) the second term is a small quantity of
second order; the first yields, to the approximation in
question,

d d d d
ﬂ][/w, 1] + a—%[/.w, 2] + S*x—s[,u.v, 3] - —DE(’LII, 4].

9944 (r=1,28 . . (67)

For 4 = » = 4, this gives, with the omission of terms differ-
entiated with respect to time,

3944 bgn bZ__Qg;l - - 2
%< bx° + b.z:: + ;) 1V 9.

The last of equations (53) thus yields
Vs =kp . . . . (68)

The equations (67) and (68) together are equivalent to
Newton’s law of gravitation.

By (67) and (68) the expression for the gravitational
potential becomes

r

&JPdT' .. . (68a)

while Newton’s theory, with the unit of time which we have
chosen, gives
_K j pdr

) r
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in which K denotes the constant 67 x 10 - 8, usually called
the constant of gravitation. By comparison we obtain

x=8—:_—}§=1‘87x10‘27 L (89)

§ 22. Behaviour of Rods and Clocks in the Static Gravi-
tational Field. Bending of Light-rays. Motion of
the Perihelion of a Planetary Orbit

To arrive at Newton’s theory as a first approximation we
had to calculate only one component, gy, of the ten g,, of the
gravitational field, since this component alone enters into the
first approximation, (67), of the equation for the motion of the
material point in the gravitational field. From this, however,
it is already apparent that other components of the g,, must
differ from the values given in (4) by small quantities of the
first order. This is required by the condition g = - 1.

For a field-producing point mass at the origin of co-ordin-
ates, we obtain, to the first approximation, the radially
symmetrical solution

Goo = — s = a:ﬁﬁ-y (po=1, 2, 3)

Jos = g1 =0 (p=1,23) . (70)
a

Ju=1- o

where 8,, s 1 or 0, respectively, accordingly asp = o orp £ o,
and r is the quantity + &/z; + z, + 2} On account of (68a)
xM

a=g- - . . . (70a)

if M denotes the field-producing mass. It is easy to verify

that the field equations (outside the mass) are satisfied to the
first order of small quantities.

‘We now examine the influence exerted by the field of the

mass M upon the metrical properties of space. The relation

ds® = g, dz.dz,.

always holds between the ‘ locally ”’ (§ 4) measured lengths
and times ds on the one hand, and the differences of co-ordin-
ates dz, on the other hand.
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For a unit-measure of length laid “ parallel ” to the axis
of z,for example, we should have to set ds®* = - 1; dz, = dz,
= dz, = 0. Therefore - 1 = g,,d2}. If, in addition, the

unit-measure lies on the axis of z, the first of equations (70)

gives
In = - (1 + g)

From these two relations it follows that, correct to a first
order of small quantities,

dz=1-2 . . . . ()

The unit measuring-rod thus appears a little shortened in
relation to the system of co-ordinates by the presence of the
gravitational field, if the rod is laid along a radius.

In an analogous manner we obtain the length of co-
ordinates in tangential direction if, for example, we set

ds?= -1;de,=dr;=de,=0; 2= 7,23 =2, = 0.
The result is

- 1=g,dzl= -dz, . . . (71a)

With the tangential position, therefore, the gravitational
field of the point of mass has no influence on the length of a
rod.

Thus Euclidean geometry does not hold even to a first ap-
proximation in the gravitational field, if we wish to take one
and the same rod, independently of its place and orientation,
as a realization of the same interval ; although, to be sure, a
glance at (70a) and (69) shows that the deviations to be ex-
pected are much too slight to be noticeable in measurements
of the earth’s surface.

Further, let us examine the rate of a unit clock, which is
arranged to be at rest in a static gravitational field. Here we
have for a clock period ds = 1; dz, = dz, = dz; = 0

Therefore
1= gud-’lf;

1 1
dw4=‘\/ﬁ= \/(1+(944—1))=1 - 39 - 1)
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or

K
dx4=1+§[#°4; )
Thus the clock goes more slowly if set up in the neighbour-
hood of ponderable masses. From this it follows that the
spectral lines of light reaching us from the surface of large
stars must appear displaced towards the red end of the
spectrum.*

We now examine the course of light-rays in the static
gravitational field. By the special theory of relativity the
velocity of light is given by the equation

- dz] - dz, - do} + dz} =0

and therefore by the general theory of relativity by the
equation
ds* = gudzde, =0 . . . (73

If the'direction, i.e. the ratio dz, : dz, : dz, is given, equation
(73) gives the quantities

dz; dz,’ dz,

and accordingly the velocity

N 2 2
'\/<d_a;4 + d:v) * da:4> =7

defined in the sense of Euclidean geometry. We easily
recognize that the course of the light-rays must be bent with
regard to the system of co-ordinates, if the g,, are not con-
stant. If » is a direction perpendicular to the propagation of
light, the Huyghens principle shows that the light-ray, en-
visaged in the plane (v, ), has the curvature - dy/on.

We examine the curvature undergone by a ray of light
passing by a mass M at the distance A. If we choose the
system of co-ordinates in agreement with the accompanying
diagram, the total bending of the ray (calculated positively if

* According to E. Freundlich, spectroscopical observations on fixed stars of
certain types indicate the existence of an effect of this kind, but a crucial
test of this consequence has not yet been made,
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concave towards the origin) is given in sufficient approxi-
mation by

B- j > g,

dx,

while (73) and (70) give

1) 1503

Carrying out the calculation, this gives

2a <M
B = A= oA (74)
X,
WT xl
A

Fia, 8.

According to this, a ray of light going past the sun under-
goes a deflexion of 17"; and a ray going past the planet
Jupiter a deflexion of about ‘02",

If we calculate the gravitational field to a higher degree
of approximation, and likewise with corresponding accuracy
the orbital motion of a material point of relatively infinitely
small mass, we find a deviation of the following kind from
the Kepler-Newton laws of planetary motion. The orbital
ellipse of a planet undergoes a slow rotation, in the direction
of motion, of amount

€ = 247° (75)

a2
T2Y(1 - ¢%)
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per revolution. In this formula @ denotes the major semi-
axis, ¢ the velocity of light in the usual measurement, e the
eccentricity, T the time of revolution in seconds.*

Calculation gives for the planet Mercury a rotation of the
orbit of 43" per century, corresponding exactly to astronomical
observation (Lieverrier); for the astronomers have discovered
in the motion of the perihelion of this planet, after allowing
for disturbances by other planets, an inexplicable remainder
of this magnitude.

* For the calculation I refer to the original papers: A. Einstein,

Sitzungsber. d. Preuss. Aked. d. Wiss., 1915, p. 881; K. Schwarzschild,
ibid., 1916, p. 189,



