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Introduction

§ 1. The question as to whether the aether shares the motion
of ponderable bodies or not, has still found no answer that
satisfies all physicists. For the decision, primarily the
aberration of light and related phenomena could be used,
but so far none of the two contested theories, neither that of
FRESNEL, nor that of STOKES, were fully confirmed with
respect to all observations, so concerning the choice
between the two views we can only weigh against each
other the remaining problems for both of them. By that I
was long ago led to believe that with FRESNEL's view, i.e.
with the assumption of a stationary aether, we are on the
right way. While against the view of STOKES there is hardly
more than one objection, i.e. the doubt that his assumptions
regarding the aether-motion in the vicinity of Earth are
contradictory[1], but this objection is of great weight, and I
can't see at all how it could be eliminated.

The difficulties for FRESNEL's theory stem from the known
interference experiment of MICHELSON[2] and, as some think,
from the experiments, by which DES COUDRES in vain
sought to find an influence of Earth's motion on the
induction of two circuits[3]. The results of the American
scientist, however, allow of an interpretation by an auxiliary
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hypotheses, and the findings of DES COUDRES can easily be
explained without such one.

Concerning the observations of FIZEAU[4] on the rotation of
polarization in glass columns, the matter is as follows. At
first glance, the result is decidedly against STOKES' view. Yet
when I tried to improve FRESNEL's theory, the explanation of
FIZEAU's experiments was not quite successful, so I
gradually suspected that this result had been obtained by
observational error, or at least it had not met the theoretical
considerations which formed the basis of the experiments.
And FIZEAU was so friendly to tell my colleague VAN DE

SANDE BAKHUIJZEN after his request, that at present he
himself doesn't see his observations as crucial.

In the further course of this work, I will come back in more
detail to some of the issues raised at this place. Here I was
concerned only with the preliminary justification of the
standpoint I have taken.

In favor of FRESNEL's theory several well-known reasons can
be cited. Especially the impossibility of locking the aether
between solid or liquid walls. As far as we know, a space
devoid of air behaves (in the mechanical sense) like a real
vacuum, when ponderable bodies are in motion. When we
see how the mercury of a barometer rises to the top when
the tube is inclined, or how easily a closed metal shell can
be compressed, one can not avoid the idea, that solid and
liquid bodies let the aether pass through without hindrance.
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One hardly will assume, that this medium could suffer a
compression, without giving resistance to it.

That transparent bodies can move, without communicating
their full velocity to the contained aether, was proven by
FIZEAU's famous interference experiment with streaming
water[5]. This experiment, that later was repeated by
MICHELSON and MORLEY[6] on a larger scale, could
impossibly have had the observed success, when everything
within the tube would possess a common velocity. By that,
only the behavior of nontransparent substances and very
extended bodies remains questionable.

It should be noted, moreover, that we can imagine the
permeability of a body in two ways. First, this property
might not be present in individual atoms, yet when the
atoms were very small compared to the gaps between them,
it might be present in matter of greater extension; but
secondly, it may be assumed - and this hypothesis I will use
in the following - that ponderable matter is absolutely
permeable, namely that at the location of an atom, also the
aether exists at the same time, which would be
understandable if we were allowed to see the atoms as local
modifications of the aether.

It is not my intention to enter into such speculations more
closely, or to express assumptions about the nature of the
aether. I only wish to keep myself as free as possible from
preconceived opinions about that substance, and I won't, for
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example, attribute to it the properties of ordinary liquids
and gases. If it is the case, that a representation of the
phenomena would succeed best under the condition of
absolute permeability, then one should admit of such an
assumption for the time being, and leave it to the
subsequent research, to give us a deeper understanding.

That we cannot speak about an absolute rest of the aether, is
self-evident; this expression would not even make sense.
When I say for the sake of brevity, that the aether would be
at rest, then this only means that one part of this medium
does not move against the other one and that all perceptible
motions are relative motions of the celestial bodies in
relation to the aether.

§ 2. Since MAXWELL's views became more and more
accepted, the question of the properties of the aether
became highly important also for the theory of elasticity.
Strictly speaking, not a single experiment in which a
charged body or a current conductor moves, can be handled
carefully, if the state of motion of the aether is not
considered at the same time. In any phenomenon of
electricity, the question arises whether an influence of the
earth's motion is to be expected; and regarding the
consequences of the latter for optical phenomena, we have
to demand from the electro-magnetic theory of light that it
can account for the already established facts. Namely, the
aberration theory isn't one of those parts of optics, for
which treatment the general principles of wave theory are
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sufficient. Once a telescope comes into play, one can not
help but to apply FRESNEL's dragging coefficient to the
lenses, yet its value can only be derived from special
assumptions about the nature of light vibrations.

The fact that the electro-magnetic theory of light really
leads to that coefficient assumed by FRESNEL, was shown by
me two years ago[7]. Since then I have greatly simplified the
theory and extended it also to the processes involved in
reflection and refraction, as well as birefringent bodies[8]. It
may be permitted for me, to come back to this matter.

To come to the basic equations for the phenomena of
electricity in moving bodies, I joined an opinion that has
been represented in recent years by several physicists; I
have indeed assumed that small electrically charged
molecules exist in all bodies, and that all electric processes
are based on the location and motion of these "ions". As
regards the electrolytes, this view is widely recognized as
the only possible one, and GIESE[9], SCHUSTER[10],
ARRHENIUS[11], ELSTER and GEITEL[12] have defended the
view, that also as regards the electricity conduction in gases,
we are dealing with a convection by ions. It seems to me,
that nothing prevents us to believe that the molecules of
ponderable dielectric bodies contain such particles, which
are connected to certain equilibrium positions and are
moved only by external electric forces thereof; just herein
the "dielectric polarization" of such bodies would consist.
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The periodically changing polarization, which forms a light
ray according to MAXWELL's theory, become vibrations of
the ions in this conception. It is well known that many
researchers, who stood on the basis of the older theory of
light, considered the resonance of ponderable matter as the
cause of color dispersion, and this explanation can in the
main also included into the electro-magnetic theory of light,
for which it is only necessary to ascribe to the ions a certain
mass. This I have shown in a previous paper[13], in which I
admittedly have derived the equations of motion from
actions at a distance, and not, what I now consider to be
much easier, from MAXWELL's expressions. Later, VON

HELMHOLTZ[14] in his electromagnetic theory of color
dispersion started from the same point of view[15].

GIESE[16] has applied to various cases the hypothesis, that
electricity is connected to ions in metallic conductors as
well; but the picture which he gives of the processes in
these bodies is at one point substantially different from the
idea that we have on the conduction in electrolytes. While
the particles of dissolved salt, however often they may be
stopped by the water molecules, eventually might travel
over large distances, the ions in a copper wire will hardly
have such a great mobility. We can however be satisfied
with forward and backward motion at molecular distances,
if we only assume that one ion often transfers its charge to
another, or that two oppositely charged ions, if they meet, or
after they were "connected" with one another, exchange
their charges against each other. In any case, such processes
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must take place at the boundary of two bodies, when a
current flows from one to the other. If for example 
positively charged copper atoms are separated at a copper
plate, and we also want for the latter all the electricity be
connected to ions, then we have to assume that the charges
are transferred to  atoms in the plate, or that  of the

deposited particles exchange their charges with 
negatively charged copper atoms, which were already in the
electrode.

Thus, if the adoption of this transition or exchange of the
ionic charges - one of course still very dark process - is the
essential complement to any theory that requires an
entrainment of electricity by ions, then a persistent electric
current never consists of a convection alone, at least not
when the centers of two touching or interconnected
particles are in some distance  from each other. Then the
electricity motion happens without convection over a
distance of order , and only if this is very small in
proportion to the distance over which a convection takes
place, we on the whole are dealing almost exclusively with
this latter phenomenon.

GIESE is of the opinion that in metals a real convection was
not at all in play. But since it does not seem possible to
include the "jumping" of the charges into the theory, then
one would excuse, that for my part I totally disregard such a
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process, and that I interpret a current in a metal wire simply
as a motion of charged particles.

Further research will have to decide whether the results of
the theory remains at a different view.

§ 3. The theory of ions was very suitable for my purpose,
because it makes it possible to introduce the permeability of
the aether in a rather satisfactory way in the equations. Of
course, these were decomposed into two groups. First, we
have to express as to how the state of the aether by charge,
position and motion of the ions is determined; then,
secondly, we have to indicate by which forces the aether is
acting on the charged particles. In my paper already
cited[17] I have derived the formulas by means of
D'ALEMBERT's principle from certain assumptions and
therefore selected a path, that has much resemblance with
MAXWELL's application of LAGRANGE's equations. Now I
prefer for the sake of brevity, to introduce the basic
equations themselves as hypotheses.

The formulas for the aether are in agreement, regarding the
space between the ions, with the known equations of
MAXWELL's theory, and generally express that any change
that was caused by an ion in the aether, propagates with the
velocity of light. But we regard the force exerted by the
aether on a charged particle, as a function of the state of that
medium at the point where the particle is located. The
adopted fundamental law differs in a major point from the
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laws, that were introduced by WEBER and CLAUSIUS. The
influence that was suffered by a particle B due to the
vicinity of a second one A, indeed depends on the motion of
the latter, but not on its instantaneous motion. Much more
relevant is the motion of A some time earlier, and the
adopted law corresponds to the requirement for the theory
of electrodynamics, that was presented by GAUSS in 1845 in
his known letter to WEBER[18]

In general, the assumptions that I introduce represent in a
certain sense a return to the earlier theories of electricity.
The core of MAXWELL's views is therefore not lost, but it
cannot be denied that with the adoption of ions we are not
far away from the electric particles, which were used
earlier. In some simple cases, this occurs particularly clear.
Since the essence of electric charge is seen by us in the
accumulation of positive or negative charged particles, and
since the basic formulas for stationary ions give COULOMB's
law, therefore, for example, the entire electrostatics can be
brought into the earlier form.

1. ↑ Lorentz. De l’influence du mouvement de la terre sur
les phénomènes lumineux. Arch. néerl., T. 21, p. 103,
1887; LODGE. Aberration problems. London Phil.
Trans., Vol. 184. A, p. 727, 1893; LORENTZ. De
aberratietheorie van STOKES. Zittingsverslagen der
Akad. v. Wet. te Amsterdam, 1892—93, p. 97.

2. ↑ MICHELSON. American Journal of Science, 3d. Ser.,
Vol. 22, p. 120; Vol. 34, p. 333, 1887; Phil. Mag., 5th.

https://en.wikisource.org/wiki/The_Relative_Motion_of_the_Earth_and_the_Luminiferous_Ether
https://en.wikisource.org/wiki/On_the_Relative_Motion_of_the_Earth_and_the_Luminiferous_Ether
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Ser., Vol. 24, p. 449, 1887.
3. ↑ DES COUDRES. Wied. Ann., Bd. 38, p. 71, 1889.
4. ↑ FIZEAU. Ann. de chim. et de phys., 3e sér., T. 58, p.

129, 1860; Pogg. Ann., Bd. 114, p. 554, 1861.
5. ↑ FIZEAU. Ann. de chim. et de phys., 3e sér. T. 57, p.

385, 1859; Pogg. Ann., Erg. 3, p. 457, 1853.
6. ↑ MICHELSON and MORLEY. American Journal of

Science, 3d. ser., Vol. 31, p. 377, 1886.
7. ↑ LORENTZ. La théorie électromagnétique de Maxwell

et son application aux corps mouvants. Leide, E. J.
Brill, 1892. (Also published in Arch, néerl., T. 25).

8. ↑ A preliminary report about that was published in
Zittingsverslagen der Akad. v. Wet. te Amsterdam,
1892—93, pp. 28 and 149.

9. ↑ GIESE. Wied. Ann., Bd. 17, p. 538, 1882.
10. ↑ SCHUSTER. Proc. Roy. Soc., Vol. 37, p. 317, 1884.
11. ↑ ARRHENIUS. Wied. Ann., Bd. 32, p. 565, 1887; Bd.

33, p. 638, 1888.
12. ↑ ELSTER and GEITEL. Wiener Sitz.-Ber., Bd. 97, Abth.

2, p. 1255, 1888.
13. ↑ LORENTZ. Over net vorband tusschen de

voortplantingssnelheid van het licht en de dichtheid en
samenstelling der middenstoffen. Verhandelingen der
Akad. van Wet. te Amsterdam, Deel 18, 1878; Wied.
Ann., Bd. 9, p. 641, 1880.

14. ↑ V. HELMHOLTZ. Wied. Ann., Bd. 48, p. 389, 1893.
15. ↑ Also KOLÁČEK (Wied. Ann., Bd. 32, pp. 224 and 429,

1887) attempted to explain (albeit in a different
manner) dispersion by electrical vibrations in the

https://en.wikisource.org/wiki/Influence_of_Motion_of_the_Medium_on_the_Velocity_of_Light
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molecules. 
Also the theory of GOLDHAMMER (Wied. Ann., Bd. 47,
p. 93, 1892) has to be mentioned.

16. ↑ GIESE. Wied. Ann., Bd. 37, p. 576, 1889.
17. ↑ LORENTZ. La théorie électromagnétique de MAXWELL

et son application aux corps mouvants.
18. ↑ GAUSS. Werke, Bd. 5, p. 629.
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Some definitions and mathematical
relations

§ 4. a. We want to say, that a rotation in a plane
corresponds to a certain direction of the perpendicular, and
namely it shall be the direction into that side, at which an
observer must be located, so that for him the rotation is
counter-clockwise.

b. The mutually perpendicular coordinate axes OX, OY, OZ
are chosen by us, so that the direction of OZ corresponds to
a rotation around a right angle of OX to OY.

c. A space, a surface and a line we denote by the letters , 
and  throughout, and infinitely small parts by ,  and 

.

The perpendicular to a surface will by sketched by n, and is
always drawn into a certain side, the "positive" one. As
regards the line, a certain direction will be called "positive",
and namely we note, when we are dealing with the border
line s of a surface , the following rule: If P is a fixed point
of , very near to s, and if a second point Q traverses the
nearest part of s in positive direction, then the rotation of
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PQ shall correspond to the direction of the perpendicular to 
.

As regards a closed surface, the outer side shall be positive.

d. Usually we denote vectors by German letters; these
sometimes also serve to denote the magnitude only. By 
we understand the component of the vector  into the
direction l; by  therefore the components into
the axis-directions.

For a vector with components  we sometimes also
write .

e. If  is a scalar magnitude, then we understand by  the
derivative with respect to time t. The letter  denotes a
vector with components: , or  etc.

f. The expression

we call the "integral of vector  over the surface ", and
the magnitude
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the "line integral of line s".

g. If a vector  in any point of space is given, then

has everywhere a certain value, independent of the choice
of coordinate system. We call this magnitude "divergence"
of vector  and denote it by

.

For any space limited by a surface , the relation is given

when, as already mentioned, the perpendicular n will be
drawn into the outside.

h. The magnitudes

can be interpreted as the components of vector , which
(independent from the choses coordinate system) is defined
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by the distribution of . We call this vector the rotation of 
 and denote it by

and its components occasionally by

If s is the border line of surface , then we have

(1)

Furthermore we will easily find

and for the components of vector 

 etc.

Here, the letter  has, like in all our formulas, the meaning

i. If m and n are scalar magnitudes, then we attribute to the
expressions
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the known meanings.

j. By  we understand the so-called "vector product",
namely a vector whose magnitude is given by the area of
the parallelogram drawn over  and , and whose
direction is perpendicular to the plane that is laid trough 
and , and namely in a way, by that the direction of  is
transformed into the direction of .

As regards the components it can be written ; the
components into the axis-directions are:

and

k. The advantage of the previously introduced expressions
mainly consists in the fact, that now three equations like

can be summarized in one formula
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However, in the course of the investigation we will often
use the three individual equations. If they have the same
form, so that they transform into one another by cyclic
permutation of the letters, then we can restrict ourselves to
only writing down the first equation, and to sketch the two
others by "etc.".

l. We will often have to consider bodies with molecular
structure. Then functions arise, whose value quickly
changes in the individual molecules and in the interspaces,
and namely in a highly irregular way, as the molecules
themselves are not always structured and oriented regularly.
In those cases it is recommended, to calculate with
averages, which we define as follows:

We describe around center-point P a sphere of area I, and
calculate for it, when  is the magnitude to be considered,

the integral . Then we call

(2)

for which we want to write , the "average of  at point P".

If we give to the sphere, where ever P may lie, always the
same magnitude, then  can obviously only depend on t
and the coordinates x, y, z of point P. It is clear that also 
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will show "rapid" changes from point to point, as long the
sphere encloses only a few molecules, yet by a continuing
increase the changes will step back more and more. We
think for once and for all time a certain R as chosen, which
is just as great that — with respect to the degree of
exactitude that can be reached by the observations — we
can neglect the rapid changes in . Then only the slow
changes from point to point remain, that are accessible to
our senses, and in all real cases they proceed so slow, that
they hardly appear in spaces which are considerably greater
as the sphere I. In these cases,  will be given only by
expression (2), when we don't apply it to the mentioned
sphere, but to an arbitrary formed larger space.

Of course  everywhere, as soon as  doesn't show
rapid changes.

Furthermore we easily find

m. By the average of a vector  we understand a vector —
it may be called  —, whose components are the averages
of . Consequently we have
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The fundamental equations for a system of
ions located in the aether.

The equations for the aether.

§ 5. When forming the equations of motion we will express all
magnitudes in electromagnetic measure, and preliminarily use a
coordinate system that is at rest in the aether. Now according to
MAXWELL, two kinds of deviations from the equilibrium state can
exist in this medium. The deviation of first kind, which (among
others) can be found in the vicinity of any charged body, we call
the dielectric displacement; it is a vector quantity and may get the
designation [1]. It is solenoidally distributed in "pure" aether, i.e.
in the spaces between the ions, and we have

(3)

We now want to assume, that aether exists in the space where an
ion is located, and that a dielectric displacement can happen at this
place, i.e. that the dielectric displacement caused by a single ion is
extended over the interior of the other ions.

The charge of an ion we see as distributed over a certain space;
the spatial density may be called , and we want to assume, that
this function steadily goes over to 0 when passing from the
interior of the particle into the pure aether. In this assumption, that
gives us the advantage that no discontinuities must be considered,
there is no essential restriction. Because the charge distribution
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over a surface and a discontinuity of  can be treated as limiting
cases of states to which that assumption are applicable.

In the cases to be considered,  is different from zero only in the
interior of a very great number of small spaces which are
completely mutually separated. Yet we can start with the general
case, that an electric density exists in arbitrary great spaces. Since
we think of the electric charges as always connected to ponderable
matter, then this would correspond to a continuous distribution of
matter.

Ponderable matter, which is not charged, has only to be
considered by us, when it exerts molecular forces on the ions.
Concerning the electric phenomena, it has no influence at all and
everything happens, as if the space where it is located would only
contain the aether.

Where  is different form zero, equation (3) is not applicable
anymore. According to a known theorem from MAXWELL's theory,
we have for any closed surface , when E represents the entire
charge in the interior,

or

so everywhere it must be
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(I)

If the ponderable matter is moving, then — since it carries the
charge along with it — at a certain point of space there always
exists another , and soon it is (when we are dealing with
mutually separated ions) different from zero here and there. Yet
the condition of the aether has constantly to obey equation (I).

§ 6. The change of , that happens with time at a certain point of
space, constitutes an electric current (MAXWELL's displacement
current) that can be represented by . We assume that it exists also
in the interior of charged matter. Yet additionally we find a
convection current  there. This is considered by me, when  is
the velocity of ponderable matter, as given in magnitude and
direction by

and I put for the total current

(4)

In charged matter,  shall continuously vary from point to point[2].
Additionally the charge of every mass element shall stay
unchanged during the motion. Thus  must be constant, when 
is the — maybe variable — volume of the element.

From this assumption we derive the property of solenoid
distribution for the total current, which will be expressed by

(5)
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§ 7. The second deviation of the equilibrium state of the aether
will be determined by the magnetic force . It depends on the
instantaneous current distribution, and satisfies the requirements

(II)
(III)

whose applicability we also presuppose for the interior of
ponderable matter[3].

Eventually we also assume the relation, for the interior of the
ions[4] as well as for the interspaces, by which in MAXWELL's
theory the dielectric displacement is connected with the temporal
variation of the magnetic force. The relation reads

(IV)

if we denote by V the ratio of the electromagnetic and electrostatic
units of electricity, or the velocity of light in the aether.

Now we have written down all equations for the aether. If  and 
for  are given everywhere, we know for all subsequent
instants the motion of charged bodies, and if we also add the
requirement, that  and  vanish in infinite distance, then these
vectors are definitely specified.

Where , the equations go over into the formulas for pure
aether, from which it is knowingly given, that the variations
represented by  and  propagate with the velocity of light.

Since the equations are linear, various solutions can be composed
to a more general one by addition. For example, the motion of n
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ions shall be given, and n value systems of  and  shall be found
that determine the state of the aether for the case in which only
one ion exists, and the others were neglected. Then we obtain by
superposition the state of the aether, being in agreement with the
motions of all n ions. In this sense we may say, that any ion
influences the state of aether in exactly such way, as if the others
wouldn't exist.

§ 8. If the ponderable matter is at rest and  is independent of
time, then  and  vanish, while  will be determined by

(I)

and

This last equation says, that  can be considered as
partial derivatives of a single function, which we want to call 

. We thus put

(6)

and derive from (I)

(7)

After we determined  from that,  can be calculated
from (6).
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The first part of the force acting on ponderable matter.

§ 9. According to the older electrostatics, whose conclusions are
in agreement with experience, we obtain the force components
that act on the volume element in the case previously considered,
when we at first determine the "potential function" by means of
POISSON's equation, and then multiply its derivatives by 
[5]. Since our formula (7) is in agreement with POISSON's equations,
the potential function must coincide with ; therefore we have to
assume as values of the force components

(8)

If the forces, as it is claimed by MAXWELL's theory, shall be caused
by the state of the aether, then it is probable that it depends on the
dielectric displacement in the considered volume element. Indeed,
when we consider (6), we can write for (8)

Therefore I will assume, that in all cases in which a dielectric
displacement exists in element , the aether exerts a force with
the mentioned components on ponderable matter located at this
place, i.e. a force[6]which can be represented for the unit of charge
by

§ 10. Let two stationary ions with charges e and  be given,
whose dimensions are small in relation to distance r. To find the
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force that acts on the first one, we have to decompose it into space
elements, to apply on any of them the previous theorem, and then
to integrate. Thereby  may be considered as composed of the
dielectric displacements, that stem from the first and the second
particle. We easily find that the first part of  doesn't contribute
anything to the total force. The second part has (within the first
ion) everywhere the direction of r and the magnitude ; so
e will be repulsed by  by the force

As this is in agreement with COULOMB's laws, it is clear that the
theory of ions, as regards the ordinary problems, leads back to the
older way of treatment.

Electric currents in ponderable conductors.

§ 11. In a ponderable conductor, in which a current flows through,
and in which innumerable ions are in motion according to our
view, ,  and  are changing in an irregular way from point to
point. Yet from equations (II) and (III) it follows

since  coincides with  in measurable distance from the
conductor, and the action into the outside will only be determined
by the average current . It is this current, with which the
ordinary theory (which neglects molecular processes) is dealing.
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By equation (4) we have

If the state of flow is stationary, then the observable magnitudes
and also the averages are independent of time. Thus it will be

i.e. only the convection currents cause the action into the outside.

By the definition given in § 4, the components of  are

or, when  is different from zero only within the ions, and any ion
is displaced without rotation

where e is the charge of an ion, and the sum is related to all
charged particles contained in sphere I. We can easily see, that the
result can be summarized in the formula

and this remains valid, when we don't interpret I just as a sphere,
but as an arbitrary space, whose dimensions (albeit very small)
are nevertheless much greater than the average distance of the
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ions. Of course, then the sum must be extended over the chosen
space as well.

If there is a current within a lead wire with cross-section , then
we can take for I the part, that lies between two cross-sections
which are mutually distant by ds[7]. Since the magnitude of
current will be determined by:

and , thus we obtain

where  is to be considered as a vector in the direction of the
current.

The second part of the force acting on ponderable
matter

§ 12. A current element as the one previously considered, may be
located in a magnetic field generated by external causes.
According to a known law it suffers an electrodynamic force

for which we also can write now

or
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This action results (according to our view) from the forces, which
will be exerted by the aether upon the ions of the current element.
It is thus near at hand, to assume for the force acting on a single
ion

a hypothesis, which we still want to extend in a way, so that we
generally assume a force acting on ponderable matter of the
volume element 

In unit charge this would be

[8].

By putting this vector together with  that was considered earlier
(§ 9), we obtain for the total force exerted on the unit of charge,
i.e. for the electric force,

(V)
We refuse to express the thus stated law by words. By elevating it
to a general fundamental-law, we have completed the system of
equations of motion (I)—(V), since the electric force, in
connection with possible other forces, determines the motion of
ions.

Concerning the latter, we still want to introduce the assumption,
that the ions never rotate.[9]
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The conservation of energy.

§ 13. To justify our hypotheses, it is necessary to show its
agreement with the energy law. We consider an arbitrary system
of ponderable bodies that contain ions, around which only the
aether exists up to an infinite distance, and around it we put an
arbitrarily closed surface . During an element of time , the
work that affects ponderable matter and which stems from , is

where it is to be noted, that no work is done by the forces (which
are derived from ), because they are always perpendicular to
the direction of motion. Furthermore, if dA is the work of all other
forces acting on matter, and L is the ordinary mechanical energy
of that matter, then

(9)

The integral is related to the space filled with ponderable matter;
but we can also extend it over the entire space enclosed by . All
other space integrals in this § are to be understood in the latter
sense.

We replace in (9), by (4) and (III)

by
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(10)

and transform the parts of the integral, that contain derivatives of 
, by partial integration.

By consideration of equation (IV) we will find

(11)

where

(12)

At first is should be assumed, that the electric motions are
restricted to a certain finite space, and that surface  is entirely
outside of that space. Then at the surfaces it will be 
, and

Therefore the magnitude L + U really applies, whose increase is
equal to the work of the external forces, and which therefore is
denoted by the expression "energy". It is composed of the
ordinary mechanical energy L and the "electrical" energy U, and
as regards the latter we find again the value given by MAXWELL.

The theorem of Pointing.
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§ 14. Even if we abandon the previously made assumption about 
, formula (11) allows of a simple interpretation. With MAXWELL

we not only assume that the electric force would have the value
(12), but also, that it is really distributed over the space as it is
expressed by the formula, i.e. that it amounts for unit volume

In equations (11), L + U thus means the whole energy within
surface , and therefore the view is near at hand, that a quantity of
energy

has traveled through the surface into the outside. It is most simple,
if we put for the "energy flow" related to unit time and area

(13)

By that we come to the known theorem formulated by POYNTING.
Here, we don't discuss the subtle, related question concerning the
localization of the energy. We can restrict ourselves with the fact,
that the entire energy located in an arbitrary space — the
"electric" portion calculated by formula (12) — always varies, as
if the energy would travel according to the way determined by
(13).

Tensions in the aether.
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§ 15. The forces determined by our formula (V), not only require
the motion of ions in ponderable bodies, but also in some
circumstances can unify themselves to an action, that tends to set
the body into motion. In this way all "ponderomotive" forces
emerge, as for example the ordinary electrostatic and
electrodynamic ones, as well as the pressure that is exerted by
light rays on a body.

We want to consider the body as rigid, and calculate (by simple
addition) all the forces that were exerted by the aether in the
direction of the x-axis, i.e. the total force  in this direction. The
investigation should be based on the things said at the beginning
of § 13.

We immediately obtain

where the integrals only have to be extended over the ponderable
body, but like in § 13, it should taken for the entire space enclosed
by .

At first, we replace , etc. by the expressions (10), and,
because of (I),  by

thus
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(14)

Furthermore, a partial integration and application of (IV) and (II)
gives (when we denote the direction constants of the
perpendicular to  by )

If we substitute this value into (14), then several terms occur, that
can be completely integrated, and eventually by a simple
transformation we have
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(15)

Two similar equations serve for the determination of the other
components  and  of the ponderomotive action.

Besides it is to be noticed, that ,  and  must vanish, as soon
space  doesn't contain ponderable matter. Then it would be

(16)

§ 16. In some cases the space integral the remained in (15), will
become independent of t, and if the last member vanishes, namely
as soon as we have to deal with a stationary state, may it be with
an electric charge, or may it be with a system of constant currents.
Then, at least concerning the resultant force, the ponderomotive
action can be calculated by integration over an arbitrary surface
that encloses the body, and it is near at hand, to view them in a
way, so that we (like Maxwell did) attribute to the aether a certain
state of tension, and consider the tensions as the cause of the
ponderomotive actions.[10] If we as usual understand by 

 the force related to unit area, that the aether exerts
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at the side (given by n) of an element  upon the opposite aether,
then by (15) we would have to put

(17)

From that, it is easy to derive the values of , , , ; then
we exactly obtain the system of tensions that was given by
MAXWELL.

§ 17. Since in (15) the space integral doesn't vanish, the
assumption of tensions (17) doesn't generally lead to the action
stated by us. If we would reject equation (V) as the basis of the
calculation of the ponderomotive forces, and employ the tensions,
then the case would in no way be finished by formulas (I)—(IV)
and (17). One wouldn't even obtain the same values for , when
we would apply the equation

on one area and then on the other area, that encloses the
considered body. It is connected with the fact, that the tensions
(17) wouldn't let the aether to be at rest.

Above we have found formulas (16) for a space which is free of
ponderable matter. That it's correct, as long as the aether is at rest,
can hardly be doubted, since for the derivation only generally
taken equations come into play. From the formulas
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and

it is given, namely, that the right-hand side of equation (14) is zero
for the free aether; the application of (IV) and (II) then leads to the
first of formulas (16).

Now, in those formulas, the forces (that follow from the tensions
at surface ) are on the left side, and thus the formulas say that the
considered part of the aether cannot remain at rest under the
influence of these forces. All who consider equations (17) as
generally valid, must conclude that in all cases, where POYNTING's
energy flow is variable with time[11], the aether as a whole will be
set into motion. Thus it would be necessary to study the from of
the emerging aether flows, and under consideration of them to
again tackle the question after the ponderomotive actions.

The basics of a theory of the mentioned aether flows was already
sketched by the masterhand of HERMANN VON HELMHOLTZ in one[12]

of his last papers, which he was able to complete.

We cannot discuss the considered questions, because the
fundamental assumption by which we started, gives another view.
Indeed, why should we, since we assumed that the aether is not in
motion, ever speak about a force acting on that medium? The
most simple would by, to assume that on a volume element of the
aether, considered as a whole, never acts a force, or even refuse to
apply the concept of force on such an element that of course never
moves from its place. Of course this view violates the equality of
action and reaction —, since we have reason to say that the aether
exerts forces on ponderable matter —; but, as far I can see,
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nothing forces us to elevate this theorem to an unrestricted
fundamental law.

Once we have decided ourselves in favor of the previously
discusses view, then we must refuse from the outset, to reduce the
ponderomotive forces (that follow from (V)) to tensions of the
aether.

Nevertheless we may apply equation (15) to simplify the
calculation, and it won't cause a misunderstanding, when we
express ourselves for brevities sake, as if the elements of the two
first integrals would mean real tensions in the aether.

From these merely fictitious "tensions" we can, as we saw,
directly derive the interaction between charged bodies and
electrodynamic actions. It is also to be recommended, to operate
with them, when the phenomena are periodic and when we only
wish to know the averages of the ponderomotive forces during a
full period; the last member of (15) namely doesn't contribute
anything to these values.

In this way we come to MAXWELL's theorem on the pressure
generated by motion of light.

The reversibility of motions and the mirror image of
motion.

§ 18. For subsequent applications we include the following
considerations at this place.

Let a system of moving ions be given, and , ,  and  are
the various relevant magnitudes within. We may denote the
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corresponding magnitudes for a second system by , ,  and 
, and we want to imagine that in an arbitrary point, these

magnitudes are at time +t in agreement with the magnitudes , 
,  and  at time -t.

We can easily see that, as regards  and , those conditions can
be satisfied by a real motion of the ions, and namely the system of
these ions must completely be in agreement with the first system;
the same configurations with the same interval must occur one
after the other, as in that first system, but in opposite order; in
other words, we obtain the motions of the ions in the second
system, when we reverse the motions given at first.

Furthermore, since  and  satisfy the conditions (I), (II), (III)
and (IV), thus the condition of the aether as determined by these
vectors, is in agreement with the motion of the ions.

Eventually it follows from equation (V), that in the second system
at time +t, the forces exerted upon the ions have the same
direction and magnitude, as the corresponding forces in the first
system at time -t. Now, if also the remaining forces that act on the
ions in both cases — and in the same instances — are the same,
then we can conclude, that the second state of motion is realizable
in any way.

By means of similar considerations the possibility of motion can
be demonstrated, which is the "mirror image" of a given motion
with respect to a fixed plane.

We call  the mirror image of a point  and denote the
magnitudes that are valid for two system — namely for the first in

 and for the second in  — by , , ,  and , , , 
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. There it should constantly be , and the vectors , 
,  should be the mirror images of the vectors ,  and .

That the second state of motion can now conveniently be called
"mirror image", requires no explanation. If the forces of non-
electric origin are of such a manner, so that the vectors by which
they can be represented in both cases behave like objects and their
mirror images, then the second motion will be possible as soon as
the first one is possible.

1. ↑ A prove of the designations employed can be found at the
end of the treatise.

2. ↑ By that it is of course not excluded, that mutually separated
ions can often have very different velocities.

3. ↑ The justification of this lies in equation (5)
4. ↑ We neglect special magnetic properties of ponderable

matter — which by the way would be explained by the
motion of ions. Consequently we don't have to distinguish
between the magnetic force and the magnetic induction.

5. ↑ The factor  must be added, because we use the
electromagnetic system of units.

6. ↑ Since this force is the only one, which exists in relation to
electrostatic phenomena, it can well be called electrostatic
force, although in general it also depends on the motion of
ions.

7. ↑ Here, this letter doesn't mean something infinitely small in
the strict sense of the word, but a distance that is of course
very small compared to the dimensions of the conductor, but
nevertheless much greater than the distance of the molecules.

8. ↑ If we don't want to consider an ordinary electric current as
a convection current, then we must substantiate this formula
by the assumption, that a body in which a convection takes
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place, experiences the same electrodynamic actions as a
corresponding current conductor.

9. ↑ In an earlier published derivation of the equations of
motion (La théorie électromagnétique de MAXWELL et son
application aux corps mouvants), I have discussed the
necessary conditions.

10. ↑ Also with respect to the resultant force couple, the
ponderomotive action on a rigid body is equivalent to the
system of tensions (17) on an arbitrary surface  that
encloses the body. If we also want to consider the
ponderomotive actions on flexible or fluid bodies, then we
would have to come back to volume elements. But this
would lead too far.

11. ↑ Except the factor , the components of the energy flow
are located on the right-hand side of equations (16) under the
integral sign.

12. ↑ V. HELMHOLTZ. Folgerungen aus MAXWELL’s Theorie über
die Bewegungen des reinen Aethers. Berl. Sitz.-Ber., 5. Juli
1893; Wied. Ann., Bd. 53, p. 135, 1894.
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Electric phenomena in ponderable bodies
that are moving with constant velocity
through the stationary aether.

Transformation of the fundamental equations.

§ 19. From now on it will be assumed that the bodies to be
considered are moving at a steady velocity of translation , under
which we will have to understand in almost all applications, the
speed of the earth in its motion around the sun. It would be
interesting at first to further develop the theory for stationary
bodies, but for brevity's sake let us immediately turn to the more
general case. Besides, it may be still set .

The treatment of the problems that are now coming into play is
most simple, when instead of the co-ordinate system used above,
we introduce another one which is rigidly connected with
ponderable matter and therefore shares its displacement.

While the coordinates of a point with respect to the fixed system
were called x, y, z, let those, which refer to the moving system and
which I call the relative coordinates, denoted by (x), (y), (z) for the
time being. Until now, all the variable parameters were seen as
functions of x, y, z, t; furthermore , , etc. shall be seen as
functions of (x) (y), (z) and t.

Under a fixed point, we now understand one point, that has a
steady position with respect to the new axis; in the same way, by
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rest or motion of a physical particle we shall mean the relative rest
or the relative motion in relation to ponderable matter. With ions,
which move in this sense of the word, we will have to do as soon
as the displaced matter is the seat of electric motions.

By  we shall not represent the real velocity, but the velocity of
the previously mentioned relative motion. The real velocity is thus

and hereby  is to be replaced in equations (4) and (V).

In addition, we have, instead of the derivatives with respect to x, y,
z and t, to establish such with respect to (x), (y), (z) and t.

The first mentioned derivative I denote by

however, the latter by

Now we have, by application to an arbitrary function,
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By that it follows, that we can write for  the expression

and for the components of 

The expressions  and  have still the meaning given
in § 4, g and h, if, after having abandoned the old coordinates one
and for all, for simplification we don't indicate the new ones with
(x), (y), (z), but with x, y, z.

We also want, after we have passed to the new coordinates, use
the sign  instead of  for a differentiation with respect to

time at constant relative coordinates, so that

(18)

The derivative with respect to time, which occurs in the basic

equations (I) - (V), are all of the kind indicated by . We

will maintain this sign as an abbreviation for the longer term (18).

In contrast, a point over a letter shall henceforth — such as  -
indicate a differentiation with respect to time at constant relative
coordinates. Thus the terms  and  in (4) and (IV) may not be
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left unaltered. By , for example, we understood a vector with
components

or

We can suitably write this vector

while

 or 

will mean the vector with components

Based on the system of axes associated with ponderable matter,
eventually the fundamental equations become

(Ia)
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(4a)

(IIa)

(IIIa)

(IVa)

(Va)

§ 20. For some purposes, a different form of some equations is
more appropriate.

The first of the three (IV) summarized relations is namely

where, by equation (IIa), we can write for the last three members

which is nothing else than the first component of

Accordingly, we obtain instead of (IVa)
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Furthermore, the current  can be entirely eliminated. The first of
equations (IIIa) becomes, when we consider (4a) and (Ia),

By that it follows, if we define a new vector  by means of the
equation

thus

If we now introduce the sign  for the electric force-action on
stationary ions, we obtain the following set of formulas

(Ib)

(IIb)

(IIIb)

(IVb)
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(Vb)

(VIb)

(VIIb)

§ 21. From equations (Ia)—(Va) (§ 19) also some formulas can be
derived, any of them contains only one of the magnitudes , , 

, , , .

At first, it follows from (IVa)

If we consider here what has been said in § 4, h, as well as the
relations (Ia), (IIIa) and (4a), we arrive at the three formulas

(A)

Similarly, we find

(B)

The last members of these six equations are completely known
once we know how the ions are moving.



55

Application to electrostatics.

§ 22. We want to calculate by which forces the ions act on one
another, when all of them are at rest with respect to ponderable
matter. In this case a state occurs, where at every point  and 
are independent of time. We have

(19)

and equations (A) and (B) will be reduced, when for brevity's sake
the operation

is indicated by , to

(A')

and

(B')

To fulfill these conditions, we determine a function  by

and put



56

(20)

(21)

i.e., values that really satisfy the fundamental equations (Ia) -
(IVa).

From (Va) it also follows

(22)

so that the sought forces are found.

Without prejudice to generality, we may assume that the
translation happens in the direction of the x-axis. It is then 

, and the formula for the determination of  will be
transformed into

(23)

§ 23. To clearly define the meaning of the above formulas, we will
compare the considered system  with a second one . The
latter should not be moved, and it arises from  by increasing all
the dimensions that have the direction of the x-axis (therefore the
relevant dimensions of the ions as well), in the ratio 
to , or: between the coordinates x, y, z of a point of  and the
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coordinates  of the same corresponding point of , we
let remain the relations

(24)

In addition, the mutually corresponding volume elements, and
therefore also the ions, shall have the same charges in  and .

If we apply to all magnitudes, which are related to the second
system, a prime so they can be distinguished, then

and

Then the equation (23) can be written in the form

then
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and since in the second system

thus

The same relations, as they exist between the components of 
and , also exist, since the charges in  and  are equal,
between the force components acting on an ion.

If in the second system at certain places , then  vanishes
at the corresponding points of the first system.

§ 24. Several implications of this theorem are obvious. From
ordinary electrostatics, we know for example that an excess of
positive (or negative) ions can be distributed over a conductor,
namely over its surface , so that in the interior no electric force
is acting. If we take this distribution for the system  and derive
from it a system  by the above-discussed transformation, then
also in this one an excess of positive ions only exists at a certain
surface , while in all interior points the electric force  vanishes.
The fact that an electric charge is located at the surface of a
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conductor, won't be changed by the translation of ponderable
matter.

Similar considerations apply to two or more bodies. If a conductor
C is confronted with a charged body K, then there exists,
according to a known theorem, always a certain amount of charge
on the surface of C, which together with K exerts no action on the
ions in the interior of the conductor. This theorem remains valid,
if the ponderable matter is moving, and it is even still allowed to
assume that, under the influence of K, an "induced" charge is
formed by itself upon C, which just cancels the effect of K on the
interior points.

Since by (22) the components of  are proportional to the
derivative of ω, we can also say that inducing and inducted
charges together cause a constant ω at all points of C. It follows
then by means of equations (20), (21) and (Va), that also a moving
ion in the interior of C does not experience any force-action from
the two charges.

Finally, it should be noted that by our formulas, the distribution of
a charge over a given conductor, as well as the attraction or
repulsion of charged bodies by the motion of the earth, must be
changed. But this influence is limited to the second order, namely
if the fraction  is called a magnitude of first order, and thus
the fraction  is called a magnitude of second order.

Since , we may not hope, neglecting some very
special cases, to find with respect to electrical and optical
phenomena an influence of earth's motion that depends on 
. The only thing that could be observed in relation to bodies at rest
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on earth, is the magnetic force (21). At first glance, we might
expect a corresponding effect on the current elements. We will
return to this question in § 26.

Values of  and  at a stationary current.

§ 25. On the basis of equations (A) and (B) we again tackle the
problem treated in § 11. We consider, as there, the mean values
and take into account that for them the simplification (19) is
permitted in stationary states; moreover, we assume at first that
the conductors do not have a significant charge, so that .

It is near at hand to interpret the vector  as being a "current".
We think of it as solenoidally distributed and denote it by ,
where it remains, however, temporarily undecided whether this is
also the mean value of the vector occurring in (4a).

We now derive from (A) and (B)

 

If we determine thus the three auxiliary magnitudes , , [1]

by means of the equations

so everywhere we have
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(25)

(26)

and by (Va) the electric force acting on stationary ions,

(27)

At first glance, it therefore seems as if a current that streams
through a conductor, is acting on a stationary ion with a force of
first order. However, on closer reflection we find that the force
(27) is just being compensated by another force.

The values (27) are in fact in perfect agreement with the
expressions (22), if we substitute

(28)

By § 22, ω would belong to an electric charge, its density is

or by the given formulas

(29)
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Let us imagine for a moment that the current does not exist, but
there is a charge with the average density ρ. This would of course
exist only in the conductor, and the total sum would be zero, as it
follows from (29) and

Obviously this ion distribution would completely vanish, if it is
left alone. This can also be expressed by saying that the charge
will set them in motion by virtue of its action on resting ions, and
that therefore eventually another charge with the average density
-ρ occurs besides it, or

Since the current that we considered initially, exactly acts on
resting ions as the charge (29), it will also generate the charge A
after a short time; this eliminates the effects on stationary ions,
namely not only in the outer points, but also, at least with respect
to the averages of the forces, in the interior of the conductor.

I want to call this charge A the compensation charge. Once
generated, the conductor does not cause any electricity motion in a
neighboring body. A stationary current in a wire moving with the
Earth therefore exerts no inductive action on a circuit which is
also at rest with respect to Earth, regardless of Earth's motion[2].

It should be noted now that in the finally occurring state of the
system, ρ and  have certain values of order . Neglecting the
magnitudes of second order, then it really follows from (4a)
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Interaction between a charged body K and a conductor.

§ 26. After the foregoing, we have to assume that in the conductor
next to the current , a compensation charge does exist, and also
(at the surface of the conductor) the electrostatic induction-charge
B caused by K. For simplicity, we imagine that ,  and  co-
exist as independent ion systems[3]. Each of the four systems , 

,  and  now forces a special state to the aether, and thus acts
on any of the others. To shortly indicate these actions, we want to
put  for those actions, which for example were exerted by

 on , where we have to notice that perhaps  and 

 are not equal and opposite, and that also actions such as 

 may exist, namely forces which act on one of the ion

systems due to condition changes in the aether, which were caused
by itself.

In easily understandable symbols we can now write for the total
action on K

which, however, due to § 25
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is reduced to the first two terms and thus becomes independent of
the current.

On the other hand, the forces which act on the conductor, can be
represented by a expression consisting of 12 members, since the
action of , ,  and  on ,  and , has to be considered
each time. It is now

so that by the aforementioned expression it only remains

(30)

Those forces represented by the first two members would also
exist, when , and the last two members are independent of
the charged body K. An action of K exerted on the conductor as
such, doesn't exist.

Besides, in each of the four members (30), the part that depends
on  is of second order. We already know this from 

, since this represents an electrostatic effect. 

 and , however, represent forces acting on a
current, in which the mean electric density is zero. As it can be
seen from (Va), such forces are determined by the value of ,
which belongs to the acting system. Inasmuch as  (that belongs
to ) depends on , it is of second order (§ 25), and the
compensation charge A only produces by its velocity  a magnetic
force of second order, since its density already contains the factor 

.
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Electrodynamic actions.

§ 27. The question as to how these effects are influenced by
earth's motion, can now easily be answered. If we denote the
currents in two conductors by  and , and the corresponding
compensation charges by A and , then the action exerted on the
second conductor is

in which the last two terms are mutually canceled. That 

and the -dependent part  are of order , follows
from considerations such as those communicated above.

Induction in a linear conductor.

§ 28. A closed secondary wire from B will be displaced from 
into position , while a primary conductor A at the same time
passes from position  to , and the intensity of the primary
current increases from  to . At the beginning and the end of
time T, in which these processes take place, the two conductors
shall be at rest and the primary current shall be constant; if no
other electromotive forces acts on B, then this wire will eventually
be, as before, without current. We want to determine the quantity
of electricity, which has passed in time T through a cross section
of the wire, and namely we will only consider the convection
current at this place.

After the expiry of the whole process, the surface of B has
nowhere a electric charge. It follows that the quantity of electricity
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that streamed through is the same for all cross sections, and that
the conductor can be decomposed into infinitely thin current
tubes, so that in each of them and equally through all cross-
sections, the same quantity of electricity is streaming.

We consider in detail one of these tubes, and call ds an element of
their length, ω is a vertical cross-section, Ndt the number of
positive ions which pass through it during the time dt in the
assumed positive direction s, N'dt the number of negative ions
which move in the opposite direction, e is the charge of a positive
and  the charge of a negative ion. The total current through ω
is then

(31)

Furthermore,  and  are the electric forces acting in the
direction of ds, which come into consideration for a positive or a
negative ion. By OHM's law we shall assume, that the motion of
ions by these forces is thus determined, so that N and  are
proportional to its mean value; this and the proportionality to ω,
we express by

where p and q are constant factors.

It is now necessary to distinguish between the velocity of the
considered conductor element and the relative velocity of an ion
in the wire. The former shall be called  and the latter . From
(Va) it is given
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Yet, the velocity  has the direction of ds; consequently we have 
, and for positive as well as for negative ions

Finally, equation (31) transforms into

 

Let us divide by , multiply by ds, and integrate over the whole
current-line. If we consider here, that i has everywhere the same
value in the current-line, and if we put

we shall find

(32)

§ 29. The following discussion is intended to derive the known
fundamental law of induction from this formula. Imagine an area
σ on which the current-line constantly is located during its motion,
and consider the integral

(33)
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for the part that is cut by the line.

This quantity, which is usually called "the number of magnetic
force-lines covered by s", changes over time, namely for two
reasons. First,  varies at each point, and second, the area of
integration changes.

During time dt, the first cause produces the following increase of
P

As to the second variation, it should be noted that each element ds
describes an infinitely small parallelogram on the surface, and that

the value of the surface integral  of this parallelogram,
by suitably chosen signs, goes into dP. This value is determined
by the area of the parallelepiped, with ,  as its sides, and the
distance  in the direction of . We will find for it

and for the whole increase of (33)

or, if the relations (IVb) and (Vb), as well as the theorem stated in
(1) (§ 4, h), were considered,
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Consequently, (32) transforms into

where  and  belong to the beginning and the end of the
considered time.

The magnitude P depends on the different parts of . Since an
induced current neither exists at the beginning nor at the end of
time T, we commit no mistake when we substitute into (33) for 
only the magnetic force generated by the primary current. The
prime above the letter can be omitted here, and if the induced wire
is very thin, we may calculate for all current-lines with the same
P. Finally, if  is the sum of all numbers C (i.e., the conductivity
of the induced electrical circuit), then the integral-current which
we wished to calculate, becomes

which is consistent with a known theorem.

The motion of Earth was never overlooked during the given
derivation; consequently the formula admits of a conclusion about
the influence of this motion on the phenomena of induction.
There, only magnitudes of second order come into account. ,
which should serve to determine the magnitude P, is indeed
composed of the vector specified by (26) and the magnetic force
which is generated by the compensation charge. The latter
magnetic force is of order , and since in equations (§ 25)
that serve to determine , , , also just the square of  is
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included, then the values (26) differ only to second order from the
expressions that apply to a stationary earth.

By proving, that no first-order influence may be expected from the
phenomena of induction, we have achieved the explanation for the
negative result of DES COUDRES[4].

1. ↑ These magnitudes are only different by a constant factor
from the components of the vector potential, when .

2. ↑ It should be remembered that Mr. BUDDE (Wied. Ann., Vol
10, p. 553, 1880), on the basis of CLAUSIUS' law, reached the
same conclusions, as it was drawn here by me. His value for
the density of the compensation current even completely
agrees with the above-found, if  is neglected.

3. ↑ This mode of imagination, however, is in no way
necessary. To show that the considerations communicated in
the texts are correct, we don't need to assume, that the ions
which form the charges A and B, were remaining at rest and
were altogether uninfluenced by the adjacent existing
current. We can also imagine that all ions are moving, similar
to an electrolyte, in a most irregular manner. But a constant,
non-zero mean value  is very well possible; because this
constitutes the charges designated by A and B (i.e.,  is
composed of two terms of a sum  and ), while the

current  is determined by . If in (A) and (B) all members
are replaced by the mean values, one easily sees that each of
the vectors  and  consists of two parts, where one of them
only depends on  and the other one only depends on .
Now, as the actions to the outside were determined by those
vectors, then they are just so, as if the charge and the current
were not connected with each other at all. The same is true
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for the actions exerted on the conductor. Namely, if  and 
are the variations caused by external causes in the aether,
then by (Va) the force acting on a volume element is given by

The action, to which a noticeable part of the body is
subjected, can thus be calculated in a manner, by which we
put as unit volume

which again decomposes into two parts  and .

Strictly taken, also a third charge would have to be taken into
account. The current can not exist without a potential
gradient, and this cannot exist without electric charges of the
parts of the conductor. These charges, however, play in the
considered questions no essential role, and could even more
be left out, as we can think of them as vanishingly small if
we assume a very high conductivity.

4. ↑ Actually, we would have to consider now, under
consideration of the Earth's motion, the effect of the
induction of a galvanometer. In the experiments of DES

COUDRES (Wied. Ann., Vol 88, p. 71, 1889) an induction role
was located between two successive connected primary roles,
which have been streamed by the current, so that its effects
are just compensated. Since, whatever influence the
translation may have by the way, the galvanometer must
remain at rest if I disappears, thus we may infer from the
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theory that, neglecting magnitudes of second order, the
compensation is not disturbed by Earth's motion.
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Investigation of oscillations excited by
oscillating ions.

General formulas.

§ 30. Once the motion of the ions is given, known functions of x,
y, z and t appear on the right-hand side of equations (A) and (B)
(§ 21); with respect to the last variable, these are periodic
functions if the ions carry out oscillations with constant
amplitude and a common oscillation interval T. It is easy to see,
that in this case the equations are satisfied by values of , , 
, , , , which also have the period T. Therefore, the
important and almost self-evident theorem is given:

If ion oscillations of period T take place in a light source, then 
and  indicate the same periodicity at each point that shares the
translation of the source.

The resolution of the equations leads to quite complicated
expressions. For simplicity, it is advisable to calculate the
components of the vector  (§ 20) at first.

According to (VIb)
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Accordingly, we want to multiply the second and third of
equations (A) by  and  respectively, and then add
them to the first of equations (B). We obtain in this way, under
consideration of the importance of  (§ 19),

§ 31. In the following calculation, magnitudes of order 
should be neglected. First, we neglect on the right-hand side the
terms with two factors ,  or , since we find a similar term
in ; and we therefore retain only

Second, we write for the operation that has to be applied to ,
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The form of this expression suggests the introduction of a new
independent variable instead of t

(34)

and to consider , as well as  and , as functions of x, y,
z and . We denote the derivative that corresponds to this view
by

and give to the sign  the meaning

It is now
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(35)

and

so that we find for the determination of 

A solution of these equations is easy to give. Namely, imagine
three functions , ,  that satisfy the conditions

(36)

and put

(37)

Once  is found by that, equation (IIIb) provides us with the
value of  and thus also, as far as we don't use additive constants,
the value of . From (VIb) it also follows ; from (Vb) and (VIIb)
it follows  and . That in this way really all the equations are
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satisfied, can be proven, but should not be discussed here for
brevity.

In contrast, in the next section the value of  shall be given, and
in § 33 the solution for a special case shall be further developed.

It should also be remarked before, that the variable  can be
regarded as a time, counting from an instant that depends on the
location of the point. We can therefore call this variable the local
time of this point, in contrast to the general time t. The transition
from one time to another is provided by equation (34).

§ 32. The product  in the first of equations (36), as noted
already, is a known function of x, y, z and . We accordingly set

and thus have

(38)

a solution of (36)[1]. By that we have to imagine two points; first,
the fixed point (x, y, z), for which we want to calculate  and
which we call P; second, a moving point Q, which has to traverse
the whole space, where  is different from zero. r represents
the distance QP, and  the local time of P at the instant for which
we wish to calculate ; furthermore we have to understand by
ξ, η, ζ, the coordinates of Q, and by dτ an element of the just

mentioned space. The function  is the value
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of  in this element, namely, if the local time that is valid at
this place, is .

A single luminous molecule.

§ 33. To excite electric oscillations, a single molecule with
oscillating ions shall serve; let  be an arbitrary fixed point in it
— for brevity, we say, "the molecule is present in " —, and
for P a place is chosen, whose distance from  is much larger
than the dimensions of the molecules. For distinction, 
.

We now want to replace the various distances r, that are present
in formula (38), by  and also neglect the differences of local
times at the various points of the molecule. In this way,

where all occurring  are related to the same instant, namely to
the instant when

is the local time of .

Since  is equal for all points of an ion, then, if we write e for
the charge of such a particle, the last integral transforms into
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The sum is extending over all ions of the molecule.

Furthermore, if  is now the displacement of an ion from its
equilibrium position, then

and

This has a simple meaning. We can conveniently call the vector 
 the electric moment of the molecule and denote it by .

Then it is

after the things said here, we have to take the value of the
derivative for the instant when the local time in  is .
Obviously we can also write

where  means the first component of the electric moment in
that very instant. After (by that and by two equations of the same
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from) we have found , ,  for the point (x, y, z) and the
local time  at this place, the study of the propagating
oscillations is very simple. The equations (37) give

(39)

and because we seek the value of  outside the molecule, (IIIb) is
transformed into

or, due to (35), it is transformed into

If we bring the last two terms on the left side, then we just obtain 
 or , as it can be seen by (Vb); since  and  only

differ by magnitudes of order , we may replace the vector
product (Vb) by .

From

we obtain  by integration; constants were omitted by us, since
we are only dealing with vibrations.
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We substitute the values (39) and put

It is then

(40)

and namely, , ,  are still related to the instant given
above.

As to how the other magnitudes occurring in (Ib)-(VIIb) can be
determined, can immediately be seen.

§ 34. Just some words on the error committed in the above
calculation. That in (38) the factor  was replaced by , needs
surely no justification. But we also haven't taken the values of 
for the function f at the the correct times. Once we have replaced 

 by  in (38), then in the time when l is one of the
dimensions of the molecule, we have committed an error of order

, secondly, the inequality of the local times at the various
locations of the molecule were not considered, and in this lies an
error of order  by (34). But even then, if we want to keep

magnitudes of the order , we don't need to care about this
second error, when already the first may be neglected. Now this
is indeed the case when the dimensions of the molecule are much
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smaller than the wavelength of TV. Then also l/V is considerably
smaller than T, and the state in the molecule will not noticeably
change in the time l/V.

§ 35. The formulas for the propagation of oscillations is obtained,
if goniometric functions of time are substituted into the equations
(39) and (40) for ,  , . If, for example,

and, as a function of local time which is valid for the location of
the molecule,

thus at an external point in the distance r and for the local time 
that belongs to it

If we eventually want to consider a stationary light source once,
so we simply have to omit all accents. The formulas then are in
accordance with the expressions, by which HERTZ[2] represented
the oscillations in the vicinity of his vibrator.
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The direction of the wave normal.

§ 36. Now we shall examine the oscillations in such distances
from the luminous molecules, which are considerably larger than
the wavelength. It should be noted that in (39) and (40), , , 

 are goniometric functions of

;

we namely want to write from now on r instead of . The
assumption made about the length of this line justifies to consider
only the variability of the argument of any goniometric function
for all differentiations with respect to x, y, z, but to consider as
constant all factors such as , or , by which these
functions are multiplied.

For any of the magnitudes , , , , ,  - we will
call them φ — it can therefore be found an expression of the form

(41)

where A and B are indeed dependent on the length and the
direction of line  —  is the location of the molecule, and
P is the considered external point —, but, if r were just big
enough, it may be regarded as constant in a space that comprises
many wavelengths. While x, y, z are the coordinates of P, we
denote by ξ, η, ζ the coordinates of , and by , ,  the
direction constants of the connection-line . If we now
replace in the formula (41) r by
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and  by the value (34), we obtain

(42)

In an area that isn't too extended, we may also regard , , 
as constant, and thus regard the motion as a system of plane
waves. The direction constants , ,  of the wave normal are
obviously to be determined from the condition

(43)

For , , ,  fall into , , , and the waves are
perpendicular to . This is not the case if the light source is
moving. From (43) follows, that the waves are perpendicular to
the line that connects P with that point at which the light source
was at the moment, when the light was sent that reaches P at time
t.

The law of Doppler.
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§ 37. In a point that moves together with the luminous molecule
— and thus also for an observer who shares the translation — the
values of  are changing, as we have seen (§ 30), as
often in unit time as it corresponds to the actual period of
oscillation T of the ions.

We can also examine, with which frequency these values in a
stationary point are changing their sign. This frequency causes
the oscillation period for a stationary observer. The question can
be solved immediately, if instead of x, y, z we introduce new
coordinates , , , which refer to a stationary system of axes. If
the two systems have the same directions of axes and the same
origin at time t = 0, then

(44)

and by (42) for  we obtain expressions of the form

where

is the component of  with respect to the connection line .

The "observed" period of oscillation is thus
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what is in agreement with the known law of DOPPLER[3]. If the
law, as it is usually applied, should be given, it must of course
still be assumed, that the translation does not change the actual
period of oscillation of the luminous particles. I must abstain
from giving an account of this hypothesis, since we know
nothing about nature of the molecular forces that determine the
oscillation period.

§ 38. The case that the light source is at rest and the observer
progresses, allows of a similar treatment. If namely, as above, , 

,  are the coordinates based on stationary axes, then in a
distant point P, any of the magnitudes  shall now
be represented by

(46)

We most conveniently describe the perception of motion by
means of a co-ordinate system, which shares the translation  of
the observer. Here, again the relations (44) are applicable, and
(46) transforms into

from which it is given for the "observed" period of oscillation
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1. ↑ The proof for this can be found, for example, in my
treatise: La théorie électromagnétique de MAXWELL et son
application aux corps mouvants.

2. ↑ HERTZ. Wied. Ann., Bd. 36, p. 1, 1889.
3. ↑ The derivation given here can easily be generalized so that

it can be applied to all similar cases, for example also to
sounding bodies. An arbitrary body A move with constant
velocity  in a medium that either remains at rest, or comes
into a stationary state of motion. In this latter case (which
also encloses the former one) we find at any point P, which
translates with the body A, always the same state of motion,
and it can be said, that the whole figure representing the
distribution of velocities in the vicinity of A, shares the
translation .
Furthermore, imagine now that the parts of the body
perform simple oscillations of period T and of constant
amplitude. It seems clear without further ado, when a
sufficiently long time has elapsed since the beginning of this
motion, that in the just-mentioned point P, the deviation
from equilibrium or rather from the stationary state of flow,
must necessarily have the period T. If we now introduce the
co-ordinates x, y, z with respect to a system of axes
progressing with the body (relative coordinates), and if we
restrict ourselves to a space, that is so far from A and so
small that we can speak of plane waves in it, then the above
deviation can be represented by expressions of the form

(45)
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Here, , ,  are the direction constants of the wave
normal, while V is the velocity of propagation.

If we now want to know, by which frequency φ (in a
stationary point) its sign is varying, then we have to
introduce coordinates , ,  with respect to stationary axes.
By using the relations (44), (45) transforms into

where

are the components of  with respect to the wave normal

For the observed oscillation period we now obtain

What we have already stated without proof, namely that the
period T exists throughout in the medium, is nothing else
than what PETZVAL, in his attacks against DOPPLER's theory,
called the law of the immutability of the oscillation period
(Wiener Sitz.-Ber., vol 8, p. 134, 1852). He only forgot to
notice, that this law only would apply, if we consider the
phenomena as a function of t and the relative coordinates.



89

The proof of the theorem is, by the way, easy to give, when
the oscillations are infinitely small, and when we have to do
with homogeneous linear differential equations.

As regards the acoustic phenomena, the problem was
discussed in detail by WAS (Het beginsel van DOPPLER in de
geluidsleer, Leiden, Engels, 1881).
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The equations of motion of light for
ponderable bodies.

Equations for the aether enclosed in ponderable bodies.

§ 39. Let us now turn to the motion of light in ponderable, dielectric,
and completely transparent bodies. It shall be assumed, that they are
moving with velocity  in an arbitrary direction, and that, as already
said, the molecules contain ions that are connected with certain
equilibrium position.

For one of these particles we again denote the charge by e, and the
displacement from the equilibrium position by . The components ,

, , as well as the velocities , ,  we consider as infinitely
small; i.e. besides magnitudes that only contain one of these
components as factor, we neglect terms in which two such factors
occur.

Any of the considered bodies shall be homogeneous. However, for that
the cases of reflexion and refraction are not excluded, we imagine two
different bodies, they may (Fig. 1) either sharply mutually separated at
a surface , or steadily go into one another at a thin limiting layer,
such as between the surfaces , and , (Fig. 2). If we speak in the
latter case about a "limiting surface", then we shall mean by that, for
example, a surface  halfway between  and .
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We will always calculate by averages, and namely not only by those
defined in §4 l, but sometimes also by others, that come into
consideration when the relevant magnitude only exist in a single point
Q, for example in one point of the various molecules, or if we have
reason to consider only the values of a function in such points. Such a
average of second kind we distinguish from the averages of first kind
by a double horizontal prime, and besides we follow a similar
calculation rule as during the last calculation. Namely we understand

under the value of  in a point P the arithmetic average of the values
of  in the points Q, so far as they are present within the sphere I
around P (as mentioned in §4, l).

By the assumption made about the radius R (§4), all "rapid" variations
are vanished from the averages; however, concerning the velocity of
the remaining variations, we have to distinguish between the interior of
the body and the border. If we are positioning in Figures 1 and 2 the
surfaces  and  in such a way, so that in the first figure they are
both distant from  by R, while in the second this distance exists, first,
between  and , and second, between  and , then for the

calculation of  or  in the points, that are outside of the layer ( , 
), only the values of  come into play. While the averages, although in
a completely steady way, can be considerably different from  to ,
we want to assume, that the variations from point to point are much
slower in the interior of the body. This will be indeed satisfied in the

https://en.wikisource.org/wiki/File:Lversuch1.png
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problems to be considered, when only the wavelength  is many times
greater than the distance a of  and 

We even want to assume, that between  and a, we can also introduce
the distance l, so that  and  become very great. The purpose of
this assumption will become clear soon.

If the limiting surface  is curved, then the radii of curvature shall be
greater than , or at least of the same order.

§ 40. We already have spoken about the electric moment of a molecule
in § 33. We want also now to retain the definition given there, and in
similar manner call the vector

, (47)

where the sum is extended over all ions in the interior of sphere I, the
moment of unit volume. More precisely we say, that (47) may indicate
the value of this moment in the center of the sphere. If we choose for
this new vector the sign , then

, etc. (48)

With this , another magnitude is most closely connected. During the
displacement of the ions from the equilibrium positions, a fixed surface
will namely be interspersed, which we may call a "convection current
through the surface". If  is an element of surface, with P as its center
and n as its perpendicular, then the charge  that passed through it into
the side designated by n, will depend on the location of P, if we specify
the magnitude  and the direction of n once and for all. Let  be
very small in relation to the molecular distances, but as great, so that
we don't have to consider the cases in which an ion just is in contact
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with the borderline. Obviously some locations of P will exist, where
the element won't intercept any ion at all, and others where it will
intersect the path  of an ion. In the first case , in the latter it is
equal to the positive and negative calculated charge of the ion.

Since  depends on the location of P, we can form the average  in the
ordinary way; it is now, as it shall be shown in the next §,

.
§ 41. The rule contained in the formula

can be express somewhat differently. Namely we shall choose for the
point P an infinite amount, we want to say k, locations that are
uniformly distributed over the sphere I, and take the arithmetic mean of
the values of  that are valid for these locations, i.e. we put

(49)

Any ion, that has its equilibrium position in the interior of I, will
(during its displacement) now pass through some positions that are
connected with the element  and thus add some terms to the sum 
. We obtain the whole sum, if we at first add to one another the terms
that stem from a certain ion, and than sum over all ions.

Let Q be the equilibrium position of the considered ions, and Q the
new position; so . The length and the direction of this line are
given, as well as the direction and magnitude of . Whether the
particle hits the surface element and provides the part e for the sought
sum, only depends on the relative positions of P and Q. Thus we can,
instead of giving k positions in the sphere l to P, also let remain the
point at its position and lead point Q around a sphere I. As  now
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hits the fixed element , when Q lies in a certain, easily specifiable
cylinder of area , then the number of "relevant" positions is
related to the integer k, as the area of that cylinder is related to the area
of sphere I. This number is thus

,

and the sum , as far it is caused by the ion Q,

.

Eventually in formula (49) we obtain

,

where the sum is extended over all ions of sphere I, and

,

or by (48)

.

§ 42. Equations ( ) — ( ) (§ 20) may form the initial point for the
subsequent considerations. At first we notice, that the first of them is
equivalent to

,

for an arbitrary closed surface (n is to be drawn into the outside), when
E is the electric charge enclosed by it. If now in one element  of the
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inner space in equilibrium state, a density  exists, and if (for an
element of the surface)  has the meaning given above, then

,

where the sum is related to all elements .

By that

.

From the definition of the average we easily find now

.

Since now

,

and

.

it is eventually given

.

We now want to define a new vector  by the equation
,

and call it the dielectric polarization.
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This vector, that goes over for the free aether (where ) into , is
exactly that, what Maxwell calls "dielectric displacement". Its basic
property is according to the above, that for any closed surface

(50)

and also in the interior of any body

. (
)

§ 43. Formula (50) leads to an important limiting-condition, if we
apply it to a surface, that lies partly in the first, and partly in the second
body. Around a certain point P of the limiting-surface (Fig. 1 and 2)
we shall lay a cylinder-surface C that is parallel to the perpendicular in
P, and choose for the mentioned area the surface of the space that is cut
from layer ( , ). If now the dimensions of the parts limited in 
and  are of order l (§ 39), then we may consider the parts as
elements that are equal, parallel and plane, and as they are much
greater than the part of C that lies between  and , we can omit the
integral taken over the latter

Thus we find, if we mutually distinguish the values that are valid in 
and  by the indices 1 and 2, and draw either at  as well as at 
the perpendicular n from the first to the second body,

(51)
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In relation to this, we have to notice one thing. In any medium, 
 can be represented as slowly (§ 39) varying functions of

coordinates, and we would have to substitute in these functions the
coordinates of a point of  or , to obtain  and . Instead
of this we can without noticeable error — due to the small distance of
the surfaces — introduce the coordinates of the point P that lies in .
Thus it is allowed to say, that  and  are the values at the
limiting-surface and that the previous formula expresses the continuity
of .

Similar formulas as equations (Ic) and (51) are emerging from ( );
namely for the interior of a body

,

and for the limiting-surface

.

§ 44. From fundamental equation ( ) we derive

,

or, be means of the definition

,

.

This derivation is true for the interior of a body. To arrive at the
limiting condition, we note at first, that (§ 4, h) (by the equation ( )



98

for an arbitrary surface , with the borderline s')

and thus also

(52)

Now we lay through the point p (Fig. 1 and 2) a plane, that contains the
perpendicular of the borderline and the arbitrary direction h tangential
to , and choose as surface  the part of this plane, that lies between 

 and  and which is limited by two lines parallel to that
perpendicular. If the length of this layer in the direction h is of order l
(§ 39), then we may neglect all magnitudes of order a and we obtain
from (52)

.

where the indices 1 and 2 have the same meaning as above. For the two

components of  we may take at this place the values in point P
again, and thus the equations says, that the tangential components of

vector  were steady.

§ 45. Equation ( ) admits of a similar application. Before, I give the
remark that no magnetic forces exists, as long the ions are at rest, thus
that  is of same order as the velocities . In ( ) we can
consequently neglect the last term; it becomes , consequently by
( ) for the interior of a body

,
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and for the borderline

.

At last it still follows from ( ) and ( )

, (53)

and

(54)

The equations of motion for ions.

§ 46. So far everything was quite simple. Yet great difficulties arise,
when we also want to form the equations of motion for the oscillating
ions themselves. To express in these equations the relations, which are
the basis for dispersion, birefringence, and circular polarization, it
would be required an understanding of molecular processes that wasn't
achieved by us by far. We want to restrict ourselves, to derive from a
very simple presupposition the most probable shape of the sought
relations, and then help on ourselves as good as possible. It is of course
an advantage, that for this task we have to consider the interior of the
homogeneous body, since (regarding the borderlines) the already
derived equations enclose all required conditions.

The mentioned assumption is now, that any of the mutual completely
equal molecules, only contains a single movable ion, while all others
are fixed.

Let m be the mass of a movable ion,  the total force acting on it, N
the number of molecules in unit volume. For the equations
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, etc.

it follows, when we take the averages of second kind and multiply
them by eN

, etc.

As regards , it is at first to note, that by our assumption the fixed
parts of the molecule are acting upon the ion by a certain force, that is
exactly caused by the displacement . Let the components of this force
be linear, homogeneous functions of , or rather, since only
this is relevant for the following, let the averages of those components
be given by

(55)

in which certain constants are denoted by s.

We also assume for these forces, that they won't be changed by the
translation , at least not as regards magnitudes of first order.

§ 47. In consequence of the electric motions, also the aether exerts an
action upon the ions. This can be derived from formula ( ), since 

 as we have seen. If it would be allowed, to put for the electric
force  everywhere the average , that has the same magnitude and
direction at all points of an ion, then we would have to add into the
expressions (55) only the terms
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(56)

But this matter isn't all that simple. First, the oscillating ion itself
causes a value of , that is not the same in all points of the particle, so
that we could find the corresponding part of  only by an integration
over the space in which the ion is located. Second, even if we could

neglect this, for the calculation of  the average  is of relevance, not
the average , and it is not allowed, to mutually interchange both. Of
course nothing would be in the way, in so far the motions of ions that
cause the electric force , take place in the distance P from the
considered point that is much greater as the distance of the molecules,
but  is partly caused by molecules that are located more nearly — we
want to say, by the oscillations within the sphere I drawn around P —

and an inequality  and  is very well possible for a irregular
distribution of the thus produced states in the aether.

When we now, in agreement with these remarks and to obtain , add
to the expressions (55) not only the values (56) but also certain
supplementary terms

and thus put

,etc.
(57)

then we can maintain for the magnitudes , that they only depend on
processes within sphere I. Additionally it is given, that also the
supplementary terms only exist during the displacement of the ions
from their equilibrium positions and — since  can be considered as
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infinitely small — they must be linear, homogeneous functions of the
magnitudes , etc., or rather of their averages. In consequence of
equations (48), also  are homogeneous, linear functions of the values
of , etc. in the various points of the spherical space
I. Eventually we still have to consider, that all these values can be
expressed by application of TAYLOR's theorem by the values, which will
be assumed by , etc., and the derivatives with
respect to x, y, z in the considered point P, the center of the sphere. All
these values thus are linearly included into the expressions for 

.

To which extend these latter ones must contain the translation velocity 
, remains undecided for now. In any case, since we neglect

magnitudes of second order, only the first powers of  will
occur. If we also consider now, that in formulas (57) the magnitudes 

, etc., could be replaced by , etc., and if we think of these
equations as solved with respect to , etc., then we can see, that these
components of the electric force can be represented as linear,
homogeneous functions of  and their derivatives with
respect x, y, z, t, and that the coefficients in these functions can linearly
contain the velocities .

For brevity, the equations that would result in a completely developed
theory for , may be summarized in the formula

(58)

As regards any of the vectors , ..., we also have to consider
the derivatives of its components with respect to the coordinates.
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If we now eventually let fall our simplifying presupposition, and
consider any molecule as a formation of, maybe, very complicated
structure that contains several movable ions, then it is near at hand to
assume, that still a relation like the one represented in (58) does exist.
Our next task shall be, to simplify as much as possible the relation by
means of certain, general considerations.

Simplification for transparent bodies.

§ 48. If a certain motion exists in a system, then, as it was shown in §
18, also the inverse motion is possible, as soon as forces of non-electric
origin are the same for a certain location of the ions as well, as in the
original case. From this it directly follows, that all motions in a body,
that besides ions also contain uncharged mass particles, can be
reversed, in case all molecular forces are determined by the
configurations and not, for example, depending on the velocities.

During the inversion of motions all velocities obtain an opposite
direction, thus also the translation . Furthermore we can easily see, —
look at formulas of §§ 43 and 44 —, that in the new state at time t, the
vectors

 und 

have the same direction and magnitude, as the vectors

 und 

in the original state at time -t.

Obviously, the transparent bodies, namely only those,[1] in which the
light motions are reversible in the alluded sense, and it may be clearly
emphasized, that the circular polarizing substances form no exception
from this rule.[2]
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We now want to see, which simplification of equation (58) is obtained
from this reversibility; there, terms without and with  shall be
considered separately.

§ 49. If , then it must be possible to express  as
homogeneous, linear functions of the magnitudes , etc.,
and their derivatives with respect to the coordinates; the relations that
serve for this, must stay unchanged, when we pass to the inverse
motion. As to this motion we now have (at time t) , and
also the components , as well as their derivatives with
respect to the coordinates, have the same value and the same sign as
with the original motion (at time -t). The same is true for all even
derivatives with respect to time. The uneven derivatives with respect to
t have, however, the same magnitude as regards the two motions, but
opposite signs, and thus these derivatives cannot occur in the relations
between  and . To indicate this, we replace (58) for resting bodies
by

(59)

If we again allow the translation, then we have to add to  still
another vector, whose components are linear and homogeneous
functions of , ..., and which contain in any term one of the
factors ; also this new vector must stay unchanged when
passing to the inverse motion. As in this case the components 

 contain opposite signs, thus they can only be multiplied by
such magnitudes which also change the sign, i.e. by uneven derivatives
with respect to time. The equations (58) therefore generally assume the
form

(60)
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An additional simplifications we can achieved, by considering a certain
kind of homogeneous light, i.e. by considering goniometric functions
of time of a certain period T. Then

, etc. (61)

If we in (60) express in this way all even derivatives by  and all
uneven by , it will be given

(62)
The components of  are now homogeneous functions of 

 and its derivatives with respect to x, y, z, while 
depends in a similar way on . The coefficients of this function may
well depend on the oscillation period T, since we have introduced the
values (61) into (60).

The dispersion of light.

§ 50. There are two ways of attempting to explain the dispersion of
colors, either by (like CAUCHY) considering from location to location
the variation of the equilibrium disturbance, or by considering as
relevant the variation with respect to time. In one case it is the wave
length, in the other one the oscillation period, that directly determines
the propagation velocity, although at the end both have the same result.

If we would take the first path and also reproduce the explanation
given by CAUCHY — in its mathematical form — in our theory, then we
would have to assume, that the equations summarized in (59) likely
contain derivatives with respect to x, y, z, but not such with respect to t,
and that namely, due to the smallness of m, the first term in (57) would
vanishes. It is clear, that the propagation velocity must change with
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wave length, as soon as, for example, , and  are standing

next to one another. Namely, the latter magnitude gains with respect to
the first a greater influence, the smaller the wavelength.

The straight opposite assumption would be, that only derivatives with
respect to t, but none with respect to x, y, z occur in formula (59). Now,
in so far, that the only magnitude of the first kind (whose introduction
has proven to be necessary) is the term

in equation (57), we can say that the second mentioned view reduces
the phenomenon to the mass of the co-oscillating ion.

That this explanation can really be achieved now, was already proven
by V. HELMHOLTZ and earlier also by me. The new form that I now give
to the theory, makes no difference in this respect.

As we know, mainly the phenomena of anomalous dispersion speak in
favor of the assumption of co-oscillating masses. On the other hand, as
regards the derivative with respect to x, y, z, it is the question, whether
the terms in which they occur, are really great enough to exert a
considerable influence. As we saw, the mentioned terms can only stem
from the fact, that the electric moment  doesn't have in all points of
sphere I the same magnitude and direction. Since the radius is much
smaller than the wave length, thus the differences are surely very
insignificant, and we won't hesitate to neglect them, if it is about an
action upon a distant point. Anyway, is would be premature to claim
that also this small variation of  couldn't have an influence on the
phenomena in the interior of the sphere. The rotation of the
polarization plane, to which we will return too, which presumable can't
be understood without the aid of derivatives with respect to x, y, z,
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must prevent us from denying from the outset an influence of such
terms on dispersion.

With more justification we can derive from the phenomena the
insignificance of that influence. Namely, if we retain in equations (59)
the derivatives with respect to x, y, z, and then simplify the equations,
so far it is possible due to the known symmetry relations of crystals,
then we are lead to laws for the motion of light, which are more
complicated than the ones actually applied, and only go over into them
by further simplification of the formulas, for which we cannot give any
reason. For example, according to these laws the regular crystals
wouldn't be isotropic, but must show a peculiar kind of birefringence.
[3]

The things said may justify, that we, while preliminarily the circular-
polarizing media remain excluded, assume for the other transparent
bodies that the relation (62) contains no derivative with respect to x, y,
z. We thus put

(63)

and here we understand by  expressions,
which are linear and homogeneous with respect to  as
well as to . The coefficients in these expressions, as well as
the factors  are to be viewed as functions of T.

Now I will prove, that for a very general class of bodies, the terms 
, etc. will vanish; at the same time we reach on that occasion

also a simplification of the terms independent from .
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Bodies with three mutually perpendicular planes of
symmetry.

§ 51. Let A be an arbitrary body, and  a second body that is the
mirror image of the first one with respect to a certain plane E, and
namely down to the smallest parts, thus also for the distribution of the
smallest particles. If the molecular forces depend in such way from the
configurations, that the vectors, by which they were represented in A
and , behave like objects and their mirror images, then ion motions
can occur in the two bodies in connection with state changes of aether
(§ 18), so that also regarding these phenomena, one system is forever
the mirror image of the other one. When passing from the first system
to the second, the vectors  and  are transformed into their mirror
images.

The inner construction of body A can only be such, by appropriate
choice of the plane E, so that A and  with respect to the same
coordinate system have the same properties, i.e. that the properties in A
and  can be expressed by the same equations, without change of a
constant or sign. In this case we call E a plane of symmetry. The bodies
which we now consider, and to which we will restrict ourselves
preliminarily, are those, for which three mutually perpendicular
symmetry planes of this kind exist.

We give the coordinate planes the direction with of the symmetry-
planes, and consider at first the mirror image with respect to the yz-
plane. When passing to this image,  and  change their sign,

while the other components of  and  remain completely
unchanged. This is only possible, when (after , etc. are
represented as functions of ) the index x
appears in every term of the first formula once, or in every term of the
second and third either not at all, or two times. To a similar conclusion
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we come also with respect to indices y and z. If we additionally
consider the mirror images with respect to the zx- and the xy-plane,
then we find, that not a single term as  is applicable, and that
from the nine coefficients , only ,  and  can be different
from zero.

Thus we obtain

, (64)

or

, u.s.w.

If we add these formulas to the three summarized in (53), and put

then

where, for a certain type of light,  and  are constants.

Summary of the equations.

§ 52. Neglecting the primes over the letters — since was continue to
only speak about averages — we summarize the equations of motion
now in the following way.

In the interior of any body it is given
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,

,

,

,

and

,

since, neglecting magnitudes of second order, we may replace, by the
relation (53),  by  in equation (54).

At the borderline the conditions apply

,

If there is no translation, then  falls into ; then the equations ( )
and ( ) go over into

,

, etc.

and the last of the limiting conditions ( ) into

.
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Thus for this case, the known equations of motion and limiting
conditions of the electromagnetic theory of light are given. From
formulas  and  we derive (when 

 are different from each other) the laws of light motion in
crystals of two axes, while the assumption  leads back
to isotropic bodies. Besides, since  and  depend on the
oscillation period, also the explanation of the dispersion of light is
contained in the formulas.

Also the case of the pure aether is not excluded. Since no electric
moments  exist in it, then we have to set by (64) 

 and thus . The
equations ) and ( ) thereby are transformed into

,

.

We can easily see, that the equations which we obtain in this way for
the aether, are in agreement with formulas (I)-(V) or ( )-( )

It is self-evident, as regards the interior of the pure aether, that the
connection between the various magnitudes is always the same, the
ponderable matter may be in motion or not.

Circular polarizing media.

§ 53. Bodies, which turn the polarization plane, were excluded above.
It's not feasible to form a thorough theory for them until now;
nevertheless some general consideration, as required by our purpose,
may find their place here.
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Since the rotation of the polarization plane is connected with the fact,
that the medium is not in accordance in all its properties with its mirror
image, then the things said in § 51 are not applicable anymore.
Nevertheless, everything becomes quite easy when we restrict
ourselves to isotropic media.

If we assume, in the relation between  and , that no derivatives
with respect to x, y, z are present, then we have to understand under 

 of equation (62), a vector that is completely determined even
by , namely the isotropy requires that the figure consisting of  and

 can be rotated in an arbitrary manner, without that 
ceases to fit to . If we now choose the direction of  itself as the
rotation axis, then  always remains the same vector; thus 
must remain unchanged, which is only possible when this vector has
the direction of . With respect to the linear character of the sought
relation, we consequently have to set

, (65)

where  is a scalar constant.

The second vector  occurring in (62), has the following
properties. First, its components are homogeneous, linear functions of 

 as well as from . Second, after an arbitrary
rotation of the figure consisting of the three vectors  and 

,  must still fit to  and . By that we derive[4]

, (66)

where k is a positive or negative constant, which by the way, as 
above, can also depend on the oscillation period T.
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§ 54. The presupposition, that no derivatives with respect to x, y, z
occur, has led us to equation (65), from which the rotation of the
polarization plane does not arise. Thus it is necessary, as it was already
indicated earlier to assume (at least in the expression )
derivatives with respect to the coordinates. The most simple is, to add
to the second term of (65) another vector , whose components do
linearly and homogeneously depend on the first derivatives of 

. Magnitude and direction will now again be closely
determined by isotropy. Namely, if we imagine at any point of space a
line, that represents the vector , and in addition in the considered
point the vector , then after an arbitrary rotation of that entire figure, 

 must still fit to . Only the assumption[5]

,

is in agreement with this, where j is a certain constant and which we
want to add for resting bodies (65) to

Now, we could introduce (into the term ) derivatives with
respect to x, y, z; however, we will omit this, since the things already
said are sufficient for our purpose. By that we have (when we omit the
prime over  from now on) to put for isotropic, circular-polarizing
media

(68)

§ 55. It is not without interest, to consider for a moment the mirror
image of a motion to which the found equation applies. The vectors
that apply to this new motion, which may be called  and ,
are mirror images of the vectors  and . From that if follows,
that the mirror images of  and  don't fall into 
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and , but into  and . Now, since the linear
relation between four vectors expressed in (68), also then remains
when we replace any of them by its mirror image, hence

By that we see, that the processes that can occur in the mirror image of
the considered body, don't satisfy the relation (68) anymore, but a
relation in which the terms with j and k have difference signs. Thus it is
confirmed, that these terms are likely be connected with the fact, that
body and its mirror image have different properties; we may expect,
that a rotation of the polarization plane will actually be in agreement
with them.

I postpone the details about this. Here, it only shall be remarked that
the magnitude  (we will make that the natural rotation of the
polarization plane will depend on it) has much similarity with the
terms, that were assumed by various physicists in the equations of
motion of light, to explain circular-polarization. Indeed I regard, in the
absence of a theory that explains the phenomenon more deeply, the
introduction of the term  as neither better nor worse than the
hypotheses of those physicists.

The last term in (68) has a peculiar meaning. Namely a rotation of the
polarization plane would correspond to it, that would be caused in a
body (that is different from its mirror image) by the motion of earth[6].

1. ↑ If we would reverse the motions in an absorbing medium, then a
state would arise, at which the amplitude would be increased in
the direction of propagation.

2. ↑ The magnetic rotation of the polarization plane remains
excluded from our considerations

3. ↑ See my earlier considerations (Over het verband tauchen de
voortplantingsanelheid van het licht en de dichtheid en
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samenstelling der middenstoffen. Verhandelingen der Akad. van
Wet. te Amsterdam, Deel 18, pp. 68—77; Wied. i., Bd. 9, p. 656).

4. ↑ If we decompose  into two components  and , then it
follows from the first mentioned property of 

It is assumed, that  falls into the direction of , and  is
perpendicular to it. If we now rotate the figure (consisting of 

 and ) around an axis that falls into ,  and 
 stay were they are, and thus  may not change as

well. Consequently, this vector must have the direction of  and 
. That

(67)

can be shown in addition, by means of a rotation of 180° around
an axis perpendicular to  and . In the course of this rotation,
the vector  would obtain the opposite direction; yet it
shouldn't be changing, because both vectors  and  change
their sign.

To find out the direction of , we turn the figure (which
is formed by this vector with  and ) around an axis
perpendicular to the plane  or , namely around
180°. Here,  and  go over into  and ; the vector 

 thus may not be changed, which is only possible
when it has the direction of the axis.

Thus the vector  — and thus by (67) also the vector 
 — is perpendicular to the plane ; its magnitude
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is proportional to the values of  and . Both we have
expressed in (66).

5. ↑ After a rotation of the mentioned figure we want, as we are
really free to do this, to apply again the original coordinate axis
for the decomposition of the vectors and the formation of the
derivatives. At first, only a rotation of 180° around the axis takes
place. Here,  remains unchanged; consequently in the
expression for this component only these derivatives of 

 can occur, which do not change the sign. These
are

.

If we further notice, that in the course of a rotation of 180° around
the y- or z-axis,  assumes the opposite direction, and that also
those derivatives are excluded, which retain the same sign during
one of these rotations, the we find, that  must be of the form

Eventually we imagine still another rotation around 90° around
the x-axis, whereby OY is transformed into OZ. After that rotation,

 and  have the values, that previously belonged to 

 and ; however, since  hasn't changed, then 

. From  we find  and  by permutation of the
letters.
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6. ↑ The following consideration might be sufficient, to make the
existence of the electric force  somewhat probably, for
which only the possibility was shown in the text. Since a molecule
of a circular-polarizing substance must have a so-called "helical"
structure, then the particles from which it consists may be
mutually connected, so that the displacement of one of them
produces a circular motion of one or many others. Let, for
example, a positive ion A be in motion along the line G, and by
that the moment  shall be produced, so that the velocity is
proportional to , and this motion may be accompanied by the
rotation (in a circle with G as its axis) of some other ions B that
are also positive. Between the velocities of A and B there is a
constant relation. The motion of particle B then forms a circular
electric current, proportional to , and this produces in the
molecule and in its vicinity a local magnetic force, which in A
falls into line G and thus also into , and which is proportional
to . If we combine, in accordance with the last term of
fundamental equation (V), this magnetic force with the velocity ,
then we obtain an electric force like .
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Application to optical phenomena.

Reduction to a resting system.

§ 56. The specification of the influence, that the motion of
ponderable bodies exerts on the phenomena of light, can be
achieved in a very simple manner, if we neglect circular
polarization, as it will always take place in this section.

Namely we want, as we did it earlier (§ 31) already, by continuing
omission of magnitudes of second order, to introduce (instead of t)
the "local time"

as an independent variable; besides we want (instead of )
consider a new vector , which we define by the formula

(IX)

If we consider an arbitrary magnitude as a function of x, y, z and t' ,
then (as before (§81)) we denote the partial derivative by

.

Furthermore, according to this notation, we shall understand by
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the expression

,

and by

a vector with the components

 etc.

The introduction of t' and  gives the advantage, that (as I will
show now) the equations ( ) — ( ) assume the same form as the
formulas that apply to .

§ 57. At first we obtain, by consideration of formulas (35),

,

or by ( ), if we replace (in the terms multiplied by )
 by  and Div by 



120

.

Hence the equation ( ) becomes

In a similar way

i.e., by ( ),

,

so that it can be written for ( )

(
)

Now let us turn to formula ( ). In this one, three equations are
summarized, namely in the first of them on the left side, the
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expression

.

is stated. For that, we can write with respect to (35)

,

and thus for the equation itself

The two other equations admit of a similar transformation, and
therefore we have

(

Furthermore, as regards the first of equations ), this one goes
over, since

into

,
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so that ( ) is equivalent with

Eventually it follows from

§ 58. To introduce the new variables also into the limiting
conditions, we consider the perpendicular n for the considered
point, and also two directions h and k that are perpendicular to one
another and to n. There, the direction n shall correspond to a
rotation by a right angle from h to k. Consequently it follows from
(IX) (§ 56)

.

Now, since  and  are steady, then this must also be so for
.

In a similar manner we derive from the continuity of  and 
, by means of the relation to be derived from ( )

,

the continuity of .
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If we also notice the other equations ( ), then it is clear, that
all limiting conditions are contained in the formulas

,

in which h can be now any arbitrary direction in the border surface.

§ 59. The equations  and ( ) differ from the
equations which apply to stationary bodies by § 52, only by the fact
that

 und 

has taken the place of

 and 

This coincidence opens for as a way, to treat problems regarding
the influence of Earth's motion on optical phenomena, in a very
simple way.

Namely, if a state of motion for a system of stationary bodies is
known, where

. (69)

are certain functions of x, y, z and t, then in the same system, if it is
displaced by the velocity , there can exist a state of motion, where

. (70)
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are exactly the same functions of x, y, z and t' [that is, 

].

Although we have given (in the previous consideration) to the
coordinate axes the directions of the symmetry axis, the derived
theorem applies to any right-angled coordinate system. We can
easily recognize this, when we consider, that for local time  it can
also be written

,

where r is the line drawn from the coordinate origin to the point (x,
y, z), and  is independent of the direction of the coordinate axes.

We may remember the fact, that in a moving system we always
have to understand by x, y, z the coordinates with respect to the
axes that share the translation.

If the magnitudes (70) are known as functions of x, y, z and t' , thus
also as functions of x, y, z and t, then  can
be calculated fron the equations (IX) and ( ).

Different applications.

§ 60. We want to call the two states of motion — in the stationary
and in the moving system of bodies —, of which we have spoken
so far, corresponding states. Now, they shall be mutually compared
more precisely.

a. If in a stationary system the magnitudes (69) are periodic
functions of t with the period T, then in the other system the



125

magnitudes (70) have the same period with respect to , thus also
with respect to t, when we let x, y, z remain constant. When
interpreting this result, we have to consider, that two periods must
be distinguished in the case of translation (see §§ 37 and 38), which
we accordingly can call absolute and relative period. We are
dealing with the absolute one, when we consider the temporal
variations in a point that has a fixed position against the aether; but
we are dealing with the relative one, when we consider a point that
moves together with ponderable matter. The things found above
can now be expressed as follows:

If a state of oscillation in the moving system shall correspond to a
state in the stationary system, then the relative oscillation period in
the first mentioned case must be equal to the oscillation period in
the second mentioned case.

b. In the stationary system, no motion of light may take place at an
arbitrary location, i.e.,  and  may vanish at this place. At the
corresponding location of the moving bodies it is consequently 

, thus also , so that at this
place the motion of light is missing as well.

From that it directly follows, that a surface that forms the border of
a space filled with light within a stationary body, can have the
same meaning when the body is moving.

In a stationary, homogeneous medium, for example, light bundles
are possible which are limited by cylindric surfaces, if it is only
assumed that the dimensions of the bisections are much greater
than the wave length. By our theorem, such bundles also can exist
in a moving system.
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The described lines of the mentioned cylindric surfaces we call
light rays, and in the case of translation: relative light rays. The
cylinders we have to imagine as rigidly connected with ponderable
matter; thus they form the paths for the propagation of light relative
to that matter.

c. A cylindric light bundle falls upon a plane limiting-surface in a
stationary system, and it will be mirrored and refracted by it, — for
generality we want to say: bi-refracted. The new light bundles have
a cylindric border as well. If we now apply the things said under a
and b to the corresponding case of the moving system, then we
come to the theorem:

In the moving system, relative light rays of relative oscillation
period T were mirrored and refracted by the same laws, as rays of
the oscillations period T in the stationary system.

d. Let in the stationary system be a transparent body of arbitrary
form, that was hit by a cylindric light bundle, and by that an
arbitrary interference- or diffraction-phenomenon occurs. If dark
strips do occur on that occasion, then they must appear in the
corresponding state of the moving system at exactly the same
locations.

An extreme case of a diffraction-phenomenon is the unification of
all light in a focus. By the preceding, the laws by which a light ray
of certain cylindric limitation is concentrated by a telescope
objective, won't be changed at all by a translation.

e. While in corresponding states the lateral limitation of a light ray
is the same, the wave normals have different directions. If it is set,
for example, that plane waves are propagating with the velocity W
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in the stationary system whose perpendicular has the direction (
), so that the deviation from equilibrium is a function of

then for the moving system, similar functions of

occur. The direction constants  of the wave normal will
thus be determined for this system by the condition

,

or, in the case of a propagation in pure aether, by

.

From this equation is is given in reverse

. (71)

The aberration of light.

§ 61. Let  be the direction constants of the line drawn
from a stationary celestial body to earth, thus also the direction
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constants of the perpendicular with respect to the plane waves that
arrive in the vicinity of earth. So when we, to investigate the
following path of propagation, relate the motion of light to a
coordinate system, that shares the motion of earth, then of course
the direction constants of the wave normal remain , while
that one comes into play as the relative oscillation period  (§ 37),
which was modified by DOPPLER's law. As we have seen, the motion
(as regards the lateral limitation of a light bundle cut out by a
diaphragm, the concentration through lenses, and the passage
through other transparent bodies) will correspond to a motion in a
stationary system, for which the oscillation period is , and the
perpendicular to the incident waves has the direction constants 

 that are to be determined by (71).

Thus all phenomena happen exactly in such a manner, as if the
earth were at rest, the oscillation period ware T', and the celestial
body, as seen from earth, would be located not in the direction (

), but in the direction ( ).

Now, aberration exactly consists of the latter. That the magnitude
and direction, which we find for it, actually corresponds to the
known rule which is in accordance with observations, follows
immediately from equation (71). Namely, we obtain a vector of
direction ( ), when we compose a vector of direction (

), whose length represents the velocity of light, with a
second one which is equal and opposite to Earth's velocity .

By the way, in our theorem also lies the explanation for the fact,
that during the observation by a lens system, always that aberration
arises which is determined by the previously mentioned rule[1], as
well as the explanation for the known experiments of ARAGO[2] by a
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prism, and for the experiment proposed by BOSCOVICH and executed
by AIRY, in which the tube of a telescope was filled with water[3].

Observations by sun light.

§ 62. The trajectory of Earth deviates as little from a circle, that,
when we are dealing with sun rays, we can neglect the velocity
component , on which the variation of the oscillation period
depends (§ 37). Experiments with these rays must have the result,
as if the earth were at rest, and the sun were in a direction changed
by aberration, and would emanate types of light of the same
oscillation period, as in reality[4]

From that it immediately follows, that (as regards a certain line of
FRAUNHOFER during a refraction in a prism, or the diffraction
through a lattice) we don't register any influence of Earth's motion,
thus it cannot make any difference, whether the direction of light
(that falls upon the prism of the lattices) would form this or that
angle with the translation of earth. As regards the lattice-spectra,
this result was confirmed by the careful experiments of MASCART[5].
This physicist has additionally demonstrated by certain
experiments[6], that as regards the mentioned spectra, the deflection
for a certain FRAUNHOFER line fully agrees with the deflection for
the corresponding rays of a terrestrial light source[7].

Moving light sources.

§ 63. Above, in § 61, the celestial body was assumed to be at rest.
Yet also for a moving body we arrive at a simple result. We already
know (§ 36), that the perpendicular to the waves arriving at Earth,
is directed to location P, where the light source was present in the
instant when the light was emitted. Now the motion of Earth
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causes, that we observe the star not at this place P, but at another
place , namely the displacement from P to P' can be derived by
the ordinary rule for aberration. By the consideration of § 61 its
prove is at hand.

Eventually a simple figure shows, that P' falls into the true place at
the time of observation, as soon as the velocity of the light source
agrees in magnitude and direction with that of earth.

Experiments with terrestrial light sources.

§ 64. From the results previously obtained it directly follows, that
we will see a distant terrestrial object always in the direction, where
it is actually located. We also have already seen, that for a light
sources rigidly connected with earth, no difference exists between
the true and the observed oscillation period.

In general, the motion of Earth will never have an influence of first
order on the experiments with terrestrial light sources.

To justify this theorem, we want at first (by application of the
superposition principle (§ 7)) derive from the formulas of § 33
other ones, which are valid for an arbitrary system of luminous
molecules. On that occasion we assume, that they have the
common translation , and we choose the local time  specified by
(34), and the relative coordinates (§ 19), as independent variables.

Let

, etc.

be the locations of the molecules, and
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(72)

or

(73)

be the electric moments that occur within.

The condition that was caused by a single molecule in the point
(x,y,z) of the aether, will be determined by equations (39) and (40).
The latter one we additionally want to transform (to subsequently
apply the theorem of § 59 more conveniently) by introducing the
expressions  and  for the aether. For this medium, as we know,

 is equal to , and thus by (IX) (§ 56),  is equal to

.

By means of equation ) we may replace  by  in (40).

Furthermore, if we denote by  the sum of terms, any of them
stemming from a luminous molecule, then we obtain from (39) and
(40) the following formulas for the condition in the aether caused
by ion oscillations (72):
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(74)

Here, r denotes the distance of point (x, y, z) from the location (
) of one of the luminous molecules, while 

represent the moments of this molecule at local time . The

two first members of the sum

are for example

 und ,

when  and  are the distances between (x, y, z) and the two first
molecules.

§ 65. From the preceding formulas, others immediately arise, which
apply to a stationary light source when we simply erase all accents.
If in this case in the luminous molecules the moments exist
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(75)

then we have in the aether

(76)

where  are now the moments of a molecule at time 

, so that e.g. the two first members of the sum

have the values

 and 

Of course, , x, y, z are now the coordinates related to
stationary axes.

§ 66. The two cases considered in §§ 64 and 65 (with or without
translation) shall be compared to one another. Here, we imagine
that the spatial arrangement of the luminous molecules is the same
in the two cases, i.e. that all  have the same value; the latter
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we also assume for x, y, z, with the result that we consider the state
of the aether in a point that has a particular location with respect to
the light source. Eventually we understand by  etc.
the same function-sign for both cases.

A look upon the formulas (74) and (76) let us recognize, that we
are dealing with corresponding states, on which the theorem of §
59 is applicable. If the light is incident on a non-transparent screen
with one opening, then the limitation of light and shadow, or the
location of dark diffraction fringes behind of it, will be the same in
both cases. Also no difference in the spatial distribution of light and
dark will be seen, when the rays were mirrored or refracted at an
arbitrary transparent body, or when a lens concentrates them, or
when some interference phenomena occur.

Of course, motions that are present in the light source itself, which
generate these corresponding states, are not quite the same. In one
case they will be determined by (73), and in the other case by (75).
If we put

, etc.,

then we may thus also say:

A moving light source, in which ion motions as represented by

(77)

take place, generates the same phenomena as a stationary light
source, to which the formulas
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(78)

apply.

If we are dealing with oscillations, then the difference between (77)
and (78) is reduced to a variation of the phases, namely this will be
determined for an arbitrary molecule by

consequently it is not equal for the various molecules.

It is now to be noticed, that the molecules of a light source, e.g. a
flame, must be considered as totally independent from one another,
so that, as it is ordinarily expressed, the rays emanated by two of
these particles cannot mutually interfere. From that if follows, that
arbitrary variations in the phases of the single molecules cannot
have any influence on the observable phenomena. The stationary
light source with motions (78) will give nothing other than a
stationary source (also at rest) with motions (77), and thus we may
claim:

If we set a light source into translation, without changing anything
of the oscillations of their ions, then the observable phenomena in
bodies rigidly connected with them, remain as they were.
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§ 67. Numerous experiments have proven, that when using
terrestrial light sources, the phenomena are indeed independent of
the orientation of the devices with respect to the direction of Earth's
motion. Here, the observations of RESPIGHI,[8]HOEK,[9]KETTELER[10]

and MASCART[11] on refraction do belong, as well as the experiments
of the three last mentioned physicists on interference phenomena.
[12] We are indebted to KETTELER for an investigation on the inner
reflection and the refraction at calcite prisms.[13] and to MASCART

for an investigation[14] on the interference fringes that appear at
calcite plates in polarized light.

The entrainment of light waves by ponderable matter.

§ 68. In a stationary, isotropic or anisotropic body a bundle of plane
light waves propagate, as to which the components of  and  can
be expressed by expressions of the form

(79)

thus W is the velocity of propagation. This magnitude can depend
on , and T. After we have given to the body the velocity ,
a state of motion can occur in it, for which expressions like

or

(80)
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apply. The direction constants  of the wave normal are
now proportional to the magnitudes

If we consequently put

,
(81)

then (80) becomes

for which we can see, that  is the velocity by which the waves
of relative oscillation period T are propagating in the direction (

) within the moving body.

From (81) we find

,

and for that we can write, neglecting magnitudes of second order,

.
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Here,  is the component of velocity into the direction of the wave
normal, with which  is related. Eventually

(82)

§ 69. Up to now, the investigation was general. Now it shall be
assumed, that the body be isotropic. The velocity W is thus
independent of the direction of the waves, and also the ratio

,

the absolute refraction index of the stationary body, only depends
on T.

When interpreting formula (82), which now passes to

, (83)

we have to remember, that we have used a coordinate system for
the description of the phenomena, that moves together with
ponderable matter. Thus (83) is the velocity of the light waves
relative to that matter. If we wish it know the relative velocity 
with respect to the aether, we have to compose the velocity (83),
which has the direction of the wave normal, with the component 
of the translation velocity (that exactly falls in that direction). By
that we obtain

, (84)



139

which is in agreement with the known assumption of FRESNEL.

As regards this result, two things shall be remarked. First, the given
derivation applies to every value of T, thus for every kind of light,
and second, this has to be understood, that the substitution of the
values of N and W, which belong in the stationary body to a
particular T, gives the value of  for the relative oscillation
period T.[15]

§ 70. If the considered body is birefringent, than it may not be
forgotten, that W and W' in equation (82) are related to different
directions of the wave normal, namely W to direction ( ),
and W to direction ( ). Concerning the question, as to how
the velocities in stationary and in moving bodies are mutually
different for a given direction of the waves, the equation doesn't
directly give an answer. To a simple theorem, however, leads the
introduction of light rays.

In a stationary birefringent body, to any direction of the wave
normal (as soon as one of the two possible oscillation directions is
chosen) belongs a particular direction for the light-rays, i.e., for the
describing lines of a cylindric limiting-surface of a light bundle.
For the points of such a line, it is now, when  are the
direction constants, and s means the distance of a fixed point (

) of the line,

. (85)

By that, when we put
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and understand by  a new constant, the expression (79) is
transformed into

.

The magnitude  is, what we usually call the velocity of the light
ray.

If we now pass to the corresponding motion in the progressing
body, then the considered line remains (§ 60, b) a light ray, and we
obtain for the determination of the deviations of equilibrium, in the
different points of it, expressions as

.

or, by (34) and (85),

, (86)

where  is the component of  in the direction of the light ray,
while the new constant  has the value

The expression (86) goes over into

.
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and here,  is the velocity of the light ray in the moving body,
when we put

From that we conclude

, (87)

a formula, whose shape agrees with (82), in which  and  are
now related to light rays of the same direction.

§ 71. Formula (84) has found a nice confirmation by the
experiment, that were first executed by FIZEAU and later repeated by
MICHELSON and MORLEY[16], on the propagation of light in streaming
water. The arrangement of them should be sufficiently known, so
that we can restrict ourselves to compare (still more deeply than it
is usually happening) the results with the theory.

To apply the formula, we first have to derive the relative period
from the experimental conditions, and then (from the dispersion
formula for stationary water) the refraction exponent N
corresponding with this period. The value of V/N calculated in this
way, we eventually have to substitute into (82) for W. However, as
regards the relative period, a more closer consideration is required.

It's known that, as regards these experiment, two tubes were used
which are closed by glass plates and which are lying next to one
another, through which the water was flowing with the same
velocity, but in different direction; since the base tubes were
present entirely at the edges, we may assume, that at all places (at
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least in the middle parts of the bisection) the same velocity 
occurred[17]. The two light bundles, which should mutually
interfere, passed through the device, so that one was propagated in
both tubes in the direction of the water stream, and the other one
steadily in the opposite direction.

We now consider a fixed point P in the interior of one of the tubes.
The conditions, under which the light is propagating from the
source to this point, obviously remain — when the water stream is
stationary — constantly the same, and namely this applies to both
ways, on which the rays can reach point P. Impulses, which
emanate by certain periods from the source, will arrive with the
same periods in P, and when T is the oscillation period of the light
source, then this is also the absolute oscillation period in P.

From that if follows for the relative oscillation period related to the
water

, (88)

where  is exactly the sought velocity of the waves, while (as
also in the following formulas) the above or below sign is to be
applied, depending on whether the considered light bundle is
propagating in the direction of the water motion, or in the opposite
direction.

We always neglect magnitudes of second order and thus we may
put instead of (88)

(89)
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Under  in equation (82) — and also in this expression (89) itself
— we have now to understand the value, which belong to period
(89) in the stationary body. The corresponding refraction exponent
is

,

in case we denote the refraction exponent for period T by n;
consequently we have to substitute

,

or, when we replace W by  in the last member,

.

Furthermore it is in (82)

,

so that we find

,

and for the relative velocity with respect to the aether, thus also
with respect to the closing plates of the tubes,
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. (90)

§ 72. The mentioned physicists have compared their observations,
not with that formula, but with another in which the last term is
missing; a satisfying agreement occurred at this place. Namely, if
we put

,

thus the coefficient ε can be derived from the experiments. Now,
while MICHELSON and MORLEY found in this manner

,

"with a possible error of ",  for D-light has the value

0,438.

By our theory it should be

or, if we consider n as a function of wave length λ in air,

For the FRAUNHOFER line D, this becomes

0,451.
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Thus formula (90) somewhat further deviates from the observations
than the simpler equation

; (91)

however, the observation were possibly not as exact for allowing us
to put weight to this condition.

If it should be achieved, which namely appears to be difficult but
not impossible, to experimentally distinguish between the equations
(90) and (91), and if the first one should be justified, then we would
have observed the DOPPLER variation of the oscillation period for an
artificially generated velocity. It is only by consideration of this
variation, that we have derived equation (90).

§ 73. It is hardly necessary to recall at this place the importance of
the role, which is played by formula (84) in the theory of aberration
and the related phenomena. FRESNEL based his explanation of

ARAGO's prism experiment upon the value  of the dragging

coefficient. Subsequent scientists have applied this equations to
many other cases, and have derived from it, that the motion of
earth, as regards most of experiments with terrestrial light sources,
is without influence, and that experiments with the light of a
celestial body must give a result, as if the direction altered by
aberration would be the real one. How easy the theoretical
considerations are formed, when we look, not upon the direction of
the waves, but on the path of light rays, I have demonstrated
(following the example of VELTMANN[18]) in my treatise of the year
1887.[19] At that time, I restricted myself to isotropic bodies, since
it wasn't known to me yet, how to extend FRESNEL's law for crystals.
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Now, since it was demonstrated, that the propagation velocity of
light rays obeys in these bodies the simple law expressed in
formula (87), it is easy to show, that also the birefringence of rays
is independent of Earth's motion.[20] For this purpose we can start
with a simple theorem that follows from the principle of HUYGENS,
and I allow myself to shortly state it at this place.

Let A and B two arbitrary, which may lie within different mutually
adjacent media. In general, only a restricted amount of light rays
can travel from one to another. If we now form (for one such ray, as
well as for other ways between A and B with only small deviations)
the integral

,

in which U means the velocity for a light rays that follows the line
element ds, then (by the referred theorem) the integral for the light
ray is a minimum.

However, I neither want to dwell more closely on these
considerations, nor on further applications of formulas (82) and
(87), since we have solved the question concerning the influence of
Earth's motion in different cases, already above in a much simpler
way.

Closer consideration of light bundles of plane waves.

§ 74. In the application of the general theorem found in § 59, I was
as brief as possible and I didn't dwell more into the details, as it just
was required. For further explanation is seems justified, however,
to show by some examples, as to how all details of the light
motions are given from that theorem as well.
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At first, we consider a light bundle of plane waves, that propagates
in the aether, after it went through an additional opening in a non-
transparent screen which is connected to Earth. For a moment we
neglect the motion of Earth. Let:

l, m, n the direction constants of the wave normal,
q a constant,
f, g, h the direction constants of the dielectric displacement,
a the "amplitude" of the latter.

Consequently, the light motion can be represented by the equations

, (92)

,

,
(93)

, (94)

with the condition
. (95)

We can easily see, that these values satisfy all equations of motion.
The vectors  and  are perpendicular to one another and to the
wave normal; the direction of the light rays (§ 60, b) falls into the
latter.

§ 75. If the Earth is moving, then by the theorem of § 59 a
condition is possible, which (related to a moving coordinate
system), will be represented by
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, (96)

,

,
(97)

,
(98)

By  we have to understand a vector  for the pure aether, which
is defined by (IX) (§ 56).

While the light rays, which determine the lateral limitation of the
bundle, have still the direction (l, m, n), the wave normal deviates
from it. Its direction constants l', m', n' satisfy, as it can be seen
from (98), the conditions

.

We will neglect all magnitudes of second order again. Then, by
denoting the components of  in the direction of the rays by , we
have

, etc. (99)

by which (98) is transformed into
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.

While T is now the relative oscillation period, we find for the
absolute one (§§ 60 and 37)

.

For the determination of  and , the formulas (IX) (§ 56) and (
) (§ 20) can serve, which we may replace by

and

If follows

, etc. (100)

, etc. (101)

or, if we put by (99)

, etc.

and if we consider (95).
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, etc.
(102)

, etc.

By that we see, that  and  are both perpendicular to the wave
normal, as it was expected. Additionally, both vectors are mutually
perpendicular, which can be seen most easily, when by replace
(100) by

, etc.

Furthermore, we can conclude, that the vector  which is
present in POYNTING's theorem, falls into the wave normal. We can
easily convince ourselves, that it has the direction, in which the
waves are propagating, and we find for its magnitude

.

The energy flux through a plane which is parallel to the waves, thus
amounts for the unit of area and time

(103)

§ 76. From a light bundle as the one considered above, others of the
same kind can arise by refraction and mirroring at plane limiting
surfaces. Here, we only consider such ones, that are again
propagating in the aether, and we represent (for the case that the
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earth is at rest) one of the bundles, which emerge from the incident
motion considered in § 74, by the following formula

,

.

§ 77. With this motion only that corresponds, which (in case Earth
is moving together with the reflecting or refracting body) emerges
from the light represented by (96)-(98). For this new state of
motion we can thus write

,

, etc.,

,

from which it again follows — see (100) and (101) —
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,

etc.,

,
etc.

In these equations  determine the direction of the rays,
which we also want to denote by .

§ 78. In the course of mirroring or refraction, the absolute period
will be changed in general, while, as it nearly goes without saying
and as it is also expressed by our formulas, the relative period is the
same for all relevant light bundles. The absolute period of the
incident motion is (§ 75)

.

Also, as regards the bundle considered in the previous paragraph it
becomes

.

Thus it has changed in the ratio of 1 to .

If e.g. the rays are falling perpendicular upon a plate, which retreats
by the velocity  in the direction of the perpendicular, then for the
incident light , and for the reflected light . The
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variation of the absolute oscillation period during reflection will

consequently be determined by the ratio .

Also in the ratio between the amplitudes of the incident and the
mirrored or refracted light, an influence of Earth's motion can be
seen. The amplitude of the dielectric displacement  is namely with
respect to the states of motion considered in §§ 74, 75, 76 and 77

.

The ratio just mentioned is

,

in case the earth is at rest, and

,

if it is moving.

In the case previously considered, where the rays are falling
perpendicular to the retreating plate, the latter expression becomes

;

the reflected light will thus be weakened by the motion of the plate.
Of course, the opposite motion would strengthen it.
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Now the important question emerges, whether these variations of
intensity are in accordance with the conservation of energy. To
decide this matter, we have to consider, that the aether (due to the
motion of light), is acting by certain forces on the mirroring or
refracting body (§ 17), and that these forces do some work, as soon
as the body is displaced by the velocity .

Now, we imagine (limited by plane surfaces and surrounded by
aether) a transparent body K, upon which a system of plane waves
is falling, and from which reflected and refracted light-bundles are
emanating again. Let us put a fixed, closed surface  around it, and
calculate for a time interval which is equal to the relative period T,

1°. the amount of energy A, which is flows rather in- than outwards
through ,

2°. the growth B of the electric energy within the surface, and

3°. the work C of the forces mentioned above.

For simplification we assume, that the amplitudes be constant, and
that the body will be continuously hit by rays in the same way,
which is the case, when the light source, or the diaphragm that
serves to limit a bundle of sunlight, shares the translation of K.
After expiration of time T, the energy itself has again the original
value within the body, and even the energy located in  wouldn't be
changed, when also the surface would be displaced by the velocity 

. As regards the calculation of B, consequently only the energy in
certain parts of space that lie in the direct vicinity of , come into
consideration.

Eventually, we will find
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, (104)

by which its is proven, that we were always (as regards our
developments) in agreement with the energy theorem.

However, I don't want to hinder myself with the verification of
equation (104), since it might be preferable to treat the question
more generally.

The conservation of energy in a more general case.

§ 79. An arbitrary transparent body K shall be hit by a
homogeneous light motion, whose intensity remains constant;
consequently, a certain motion arises in the body and in the aether
in its vicinity.

Here, when Earth is at first imagined as stationary, the components
of  and  in the aether are certain functions of x,y,z,t, and namely
as regards the last variable, goniometric functions with the period
T. During a complete period, e.g. in the time interval from 
to , equal quantities of energy must flow in- and outwards
through an arbitrary surface σ that surrounds the surface, which can
be expressed by POYNTING's theorem by

(105)

By assuming, that this condition is fulfilled, we want to show, that
also state of motion that corresponds with that above, which can
exist in the case of a translation , satisfies the energy theorem.
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If we replace in the functions, which apply to , etc. when
the Earth is at rest, the time t by the "local time"  (§ 31), and if we
understand in those functions by x, y, z the coordinates with respect
to a movable system, then we obtain values of , etc. for the
new state. From (105) it thus directly follows, that

(106)

if it is presupposed, that we choose for σ a surface, which shares
the motion of the body.

§ 80. However, now the flux of energy through a fixed surface 
shall now be considered. The energy flux related to its unit shall be

,

or, as we find from the formulas (IX) and ( ) (§§ 56 and 20),
under continuing omission of magnitudes of second order,

(107)

If we want, on that basis, to calculate the energy which flows more
out- than inwards between the times  and , and
consequently, by remarking the latter, integrate with respect to
time. As regards the two latter terms, we can also think of a
surface, that progresses with velocity .
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§ 81. To also arrange the integration of the first term in such a way,
that we have to deal with such a movable surface, we at first set for

the increase of the integral  at certain t, when we

displace the surface  in the direction of  about an infinitely small
distance , the sign

,

where  is of course a very special function of t. Furthermore, we
think of a surface , which falls into  at time , yet which is
rigidly connected with earth. Then, at time t the "distance" of  and

 has the value , which is to be considered as infinitely
small, and our integral for the fixed surface  amounts

,

more than for . The time integral, about which we speak
eventually, is thus about

(108)

greater than the time integral taken for , and, since the latter
vanishes by (106), we have only to deal with the value (108).

By the way, in  we don't have to consider the magnitudes
containing , and thus we may understand, since with this omission

,

is the energy flux, under
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the difference calculated for the unit time, and under

the difference calculated for the element dt, of the energy fluxes
through two fixed surfaces that are mutually distant by the length ε.

Now, let  be the energy, which at time t is more surrounded by
our surface  in its fixed location, as when this surface would be
displaced by  in the direction of ; then we immediately see, that

,

By that, and furthermore by partial integration, (108) is
transformed into

,

or

,

since, except magnitudes of order , Q has again the original value
after the expiration of time T.
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§ 82. Until now, we only spoke about the first member in (107). If
we denote the two other members by A, then we have

the complete value of the energy, that travelled outwards through .
If we add the increase of the energy in the interior of , and the
work of the forces, by which the aether is acting on the ponderable
body, then we must, if the energy theorem shall be satisfied,
obviously obtain zero.

The increase energy in a full period T would be zero, if the surface 
 together with the body K would be displaced over the distance 

, and at this place would have taken the location ; it factually
consists of the energy amount, which, at time , is more contained
in  than in . This is now, as it follows form the definition given
for Qε, exactly

.

The work mentioned above can be expressed, as we will see soon,
by an expression of the form

;

thus the energy law requires that
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If it is additionally achieved, to represent Q as an integral over ,
e.g. in the form

and to show, that

(109)

then we have achieved our goal.

§ 83. From the definition given for  we derive, that by  we
have to understand the energy content of the space, which is
traversed by the element during the displacement ε, and namely we
have, depending on whether the displacement takes place with
respect to the inner- or the outer-side of , to apply the positive or
the negative sign. Thus we have

,

and

.

Second, as regards the work, we don't have to care about the last
member in equation (15) and the analogous formulas.[21] Only the
"tensions" come into account, and
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is the work of the tension with respect to . The components of
this tension are

, etc.,

from which it follows

,

Eventually, A means the sum of the two last members in (107).

The given values now actually satisfy the condition (109).

1. ↑ That this is also the case during the observation by a mirror
telescope, would also follow from our theorem, when the
mirror would consist of transparent material. However, as
regards the actual mirrors that are constructed by metal, we
can remark, that the direction by which the light rays are
reflected, and the location of the unification point only
depends on the curvature, but not on the material nature of the
mirror. For the determination of this location, as it was done
by various physicists, also the Principle of HUYGENS can be
applied, (see also my treatise in Arch. neerl., T. 21).

2. ↑ ARAGO. OEuvres completes, T. 1, p. 107; BIOT. Traité
élémentaire d'astronomie physique, 3e éd., T. 5, p. 364.

3. ↑ AIRY. Proc. Royal Society of London, Vol. 20, p. 35, 1871;
Vol. 21, p. 121, 1873; Phil. Mag., 4th Ser., Vol. 43, p. 310,
1872.
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4. ↑ We neglect the rotation of the sun and the motions at its
surface, from which it is known that they cause a displacement
of the spectral lines in accordance with DOPPLER's law. As
regards the experiments that will mentioned soon, light of the
whole disc of the sun was used.

5. ↑ MASCART. Ann. de l'école normale, 2e ser., T. 1, pp. 166—
170, and p. 190, 1872.

6. ↑ MASCART. L. c., pp. 170 and 189.
7. ↑ During the experiments with sun-light, of course, metallic

mirrors were used. However, we can easily see, that this
changes nothing as regards our considerations (see the note 1
at p. 89)

8. ↑ RESPIGHI. Memor. di Bologna (2), II, p. 279. (Cited in
KETTELER. Astronomische Undulationstheorie, p. 66).

9. ↑ HOEK. Astr. Nachr., Bd. 73, p. 193.
10. ↑ KETTELER. Astr. Und.-Theorie, p. 66, 1873; Pogg. Ann., Bd.

144, p. 370,1872.
11. ↑ MASCART. Ann. de l'ecole normale, 2e sér., T. 3, p. 376,

1874.
12. ↑ HOEK. Arch. neerl., T. 3, p. 180, 1868. KETTELER. Astr. Und.-

Theorie, p. 67; Pogg. Ann., Bd. 144, p. 372. MASCART. L. c.,
pp. 390—416.

13. ↑ KETTELER. Astr. Und.-Theorie, pp. 158 and 166; Pogg. Ann.,
Bd. 147, pp. 410 and 419, 1872.

14. ↑ MASCART. Ann. de l'école normale, 2e sér., T. 1, pp. 191—
196, 1873

15. ↑ A derivation of equation (84) from the electromagnetic light
theory was published by R. REIFF Wied. Arm., Bd. 50, p. 861,
1893). Long before me, also J. J. THOMSON has dealt with this
subject (Phil. Mag., 5th. Ser., Vol. 9, p. 284, 1880; Recent
Researches in Electricity and Magnetism, p. 543), however,
without obtaining FRESNEL's coefficient.
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16. ↑ MICHELSON and MORLEY. American Journal of Science, 3d
Ser., Vol. 81, p. 377, 1886.

17. ↑ In the following formulas of this paragraph,  simply means
the magnitude of velocity.

18. ↑ VELTMANN. Pogg. Ann., Bd. 150, p. 497, 1873.
19. ↑ LORENTZ. Arch. néerl., T. 21.
20. ↑ A derivation of this theorem from formula (87) was

published by me in Zittingsverslagen of the Akad. T. Wet. te
Amsterdam, 1892—93, p. 149,

21. ↑ Namely, to calculate the work, we can multiply the path 
with the average of the force acting in its direction. This
average would be zero for the last member in (15), when the
surface σ would be displace together with the body, from
which it follows, that it is in reality of order .

https://en.wikisource.org/wiki/Influence_of_Motion_of_the_Medium_on_the_Velocity_of_Light
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Experiments whose results cannot be
explained without further ado.

The rotation of the polarization plane.

§ 84. As the equations of motion of light for an isotropic body that
has not the same properties as its mirror image, we have to assume
by the considerations of the 4th section:

,

,

,

,

,

,

, (X)
, (XI)

where by  and  we have to understand averages.

We now want to presuppose, that the velocity  would have the
direction of the x-axis, and to study the propagation of plane waves,
whose normal coincides with that axis as well.
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§ 85. To find a particular solution of the equations corresponding to
such waves, we put

where a, ν, n and m are constants. Already by that, the condition (
) is satisfied.

Now, the equation ( ) will be satisfied by us, by putting

,

and then it follows from ( ), ( ) and ( ), one after the
other,

,

.

,

whose latter values are also in agreement with condition ( ).

Eventually we derive from (X)
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,

,

and then we only have to satisfy condition (XI).

The first one of the herein summarized relation gives nothing new,
while the second and third ones read:

, (110)

and

. (111)

Now, since by the reported formulas

 und 

it can be written for (110) and (111)

,

and

,
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thus at first we find

,

and furthermore

. (112)

Now, if  and n are given, we can determine m from this
equation, namely we obtain two values, depending on whether we
apply the above, or the below sign.

§ 86. We put

,

by that, equation (112) is transformed into

.
(113)

from which two real values are given from , which we want to
denote by  and .

For , it becomes now

,

and for ,

.
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If we eventually take the real parts, we arrive at the following two
particular solutions

, (114)

, (115)

which obviously represent two opposite, circular-polarized light
beams of propagation velocities  and .

The composition of these states of motion leads in a known way to
a beam of linear-polarized light, whose oscillation direction gets
rotated. Namely, addition of the values (114) and (115) gives the
solution

,

.

The rotation  of the polarisation plane related to unit volume,
consequently amounts

.

§ 87. If we replace in equation (113),  by , and  by , it
follows

.
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Since the terms with  and  are in any case very small, the
value of m following from it, can be represented by a row that
progresses with respect to the powers of  and . The first term
independent of these magnitudes, has the value

,

and then we also find

,

where we didn't calculated the three latter terms more closely, and
we have neglected all higher powers of  and , as well as all
terms that include . To these latter ones, also the terms with 
and  do belong, since .

Now, we obtain , or , depending on whether we put 
, or . The sought rotation

of the polarization consequently becomes

,

or, when we denote the propagation velocity  by W,
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.

The natural rotation of the polarization plane in stationary bodies
would consequently be

; (116)

if we were allowed to consider as constant  and j, then it would
be, as it follows from the meaning of , proportional to the square
of the oscillation time. It's known that all bodies deviate more or
less from this law; but we already know, that  is changing with the
duration of oscillation, and j probably might depend on it as well.

The translation has two influences by our equation. First, it changes
the already existing rotation in the ratio

, (117)

and furthermore it additionally causes a rotation.

. (118)

The theory cannot give a relation between this value and (116);
probably such a relation doesn't exist at all, and cases could exist,
in which j is very small, while k nevertheless has a noticeable
value.
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By the way, it is probably not required to be remarked, that the
phenomena represented by (118) are similar to the polarization in
so far, as it also only arises by an exterior influence, namely by the
translation, and most strongly emerges, when this influence has the
direction of the light rays.

§ 88. Experiments on the rotation of the polarization plane at
different orientation, as far as I know, were only undertaken by
MASCART[1] He was unable to conclude a change of rotation with
respect to quartz, when the light rays have, on one hand, the
direction of Earth's motion, and on the other hand, the opposite
direction. For the observation it had to be concluded, that the
change in any case didn't amount the 20000th part of the rotation,
and as regards a certain direction of the light rays, the rotation was
altered by Earth's motion by less than 1/40000.

Due to the lack of a theory applicable for anisotropic bodies, we
maybe also apply the above reported formulas to quartz. Now,
since the refractive index is 1,55, and , then the
value of the second member in (117) becomes 0,000064. The
change of rotation caused by that, could not have been overlooked
by MASCART, and thus his negative result can only by explained by
the assumption, that, in the formula for , k has a value comparable
with , and the opposite sign of j.

Now, whether (for quartz and other bodies) the two terms
containing  will mutually be cancelled, or whether an observable
influence of Earth's motion remains finally, has to be decided by
additional investigations.

The interference experiment of Michelson.
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§ 89. As it was first noticed by MAXWELL, and which follows from
a very simple calculation, the time required by a light ray to travel
forth and back between two points A and B must change, as soon as
these points are subject to a common displacement, without
dragging the aether. Although the variation is a magnitude of
second order, it is nevertheless big enough that it can be
demonstrated by means of a sensitive interference method.

The experiment was executed by MICHELSON in the year 1881.[2]

His apparatus, a kind of interference-refractor, had two equally
long, horizontal, mutually perpendicular arms P and Q, and from
the two mutually interfering light beams, one went forth and back
along arm P and the other one along arm Q. The whole instrument,
including the light source and the observation device, could be
rotated around a vertical axis, and especially the two locations
come into consideration, at which arm P or arm Q had (so far as
possible) the direction of Earth's motion. Now, during the rotation
from one "main-position" into the other, a displacement of the
interference fringes was expected on the basis of FRESNEL's theory.

However, the change in this displacement caused by the variation
of the propagation times — we want to call it MAXWELL's
displacement for sake of brevity — was found, and thus MICHELSON

thought that he is allowed to conclude that the aether wouldn't
remain at rest when the Earth is moving, a conclusion however,
whose correctness was soon questioned. By inadvertence,
MICHELSON has estimated the change of the phase differences as
expected by the theory, to double of the correct value; if we correct
this error, we arrive at displacements, which just could be hidden
by the observational errors.
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Together with MORLEY, MICHELSON has started again the
investigation,[3] where (to increase the sensitivity) he let reflect
every light beam by some mirrors back and forth. This artifice gave
the same advantage, as if the arms of the earlier apparatus would
have been considerably extended. The mirror was carried by a
heavy stone plate, that floated on mercury and thus was easily
rotatable. Altogether, every beam had to traverse a path of 22
meters, and by FRESNEL's theory, when passing from one main-
position to the other, a displacement of 0,4 of the fringe-distance
was to be expected. Nevertheless, during the rotation only
displacements of at most 0,02 of the fringe-distance were obtained;
they probably might stem from observational errors.

Now, is it allowed to assume on the basis of this result, that the
aether shares the motion of Earth, and thus STOKES' aberration
theory is the correct one? The difficulties, with which this theory is
confronted when explaining aberration, seem too great to me as for
having that opinion, so I rather should try to remove the
contradiction between FRESNEL's theory and MICHELSON's result.
Indeed this can be achieved by means of a hypothesis, which I
already have spoken out some time ago,[4] and to which, as I found
out later, also FITZGERALD arrived.[5] Of which the hypothesis
consists, shall be shown in the next §.

§ 90. For simplification we want to assume, that we would work
with an instrument as that during the first experiments, and that
with respect to one main-position, the arm P coincides exactly with
the direction of Earth's motion. Let  be the velocity of this motion,
and L the length of every arm, thus 2L the path of the light rays.
Then by the theory [6], the translation causes that the time, in which
one light-beam travels forth and back along P, is longer by
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than the time, in which the other beam completes its path. Exactly
this difference would also exist, when (without that the translation
would have an influence) arm P would be longer by

than arm Q. Similar things are true for the second main-position.

Thus we see, that the phase difference expected by the theory could
also arise, when (during the rotation of the apparatus) sometimes
one, sometimes the other arm would have the greater length. From
that if follows, that they can be compensated by opposite variations
of the dimensions.

If we assume, that the arm lying in the direction of Earth's motion,
is shorter by

than the other one, and simultaneously the translation would have
an influence which follows from FRESNEL's theory, then the result of
Michelson's experiment is fully explained.

Consequently we have to imagine, that the motion of a rigid body,
e.g. a brass rod or of the stone plate used in later experiments,
would have an influence on the dimensions throughout the aether,
which, depending on the orientation of the body with respect to the
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direction of motion, is different. E.g, if the dimensions parallel to
the direction of motion would be changed in the ratio of 1 to ,
and the dimensions perpendicular to them by a ratio of 1 to ,
than it should be

(119)

Here, the value of one of the magnitudes  and  would remain

undetermined. It could be , but also 

, or , and .

§ 91. As strange as this hypothesis would appear at first sight,
nevertheless one must admit that it's not so far off, as soon as we
assume that also the molecular forces, similarly as we now
definitely can say it of the electrical and magnetic forces, are
transmitted through the aether. If this is so, then the translation will
change the action between two molecules or atoms most likely in a
similar way, as the attraction or repulsion between charged
particles. Now, since the shape and the dimensions of a fixed body
are, in the last instance, determined by the intensity of the
molecular effects, then also a change of the dimensions is
inevitable.

Thus from a theoretical perspective there is no objection to the
hypothesis. As regards the experimental confirmation, it is to be
noticed at first, that the relevant elongations and contractions are
extremely small. We have , and thus (in case we
put ) the contraction of one diameter of Earth would amount
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ca. 6,5 c.M. The length of a meter rod, however, changes by 1⁄200
Micron (when we bring it from one main-position into the other). If
we would like to observe magnitudes so small, then we probably
can hope to succeed only by an interference method. Thus we
would have to work with two mutually perpendicular rods, and of
two mutually interfering light beams, let one travel back and forth
with respect to the first rod, and the other with respect to the
second rod. By that we come again, however, to MICHELSON's
experiment, and we wouldn't observe any displacement of the
fringes during the rotation. In reverse as we have expressed it
earlier, we could say now, that the displacement stemming from the
changes of length, is compensated by MAXWELL's displacement.

§ 92. It is noteworthy, the we are led exactly to the above
presupposed changes of dimensions, when we first (without
consideration of the molecular motion) assume, that in a rigid body
which remains at its own, the forces, attractions or repulsions
which act on an arbitrary molecule, are mutually in equilibrium,
and second — for which, however, there is no reason — when we
apply to these molecular forces the law which we have derived in §
23 for the electrostatic actions. If we understand by  and , not
two systems of charged particles as in that paragraph, but two
systems of molecules, — the second at rest and the first with the
velocity  in the direction of the -axis —, between whose
dimensions the relation given early exists, and if we assume, that in
both systems the x-components of the forces are the same, but the
y- and z-components are mutually different by the factors given in
§ 23, then it is clear, that the forces in  will be mutually
canceled, as soon as this happens in . Consequently, if  is the
state of equilibrium of a stationary, rigid body, then in  the
molecules have exactly those positions, in which they can remain
under the influence of translation. The displacement would of
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course cause this configuration by itself, and thus by (24) it would
cause a contraction in the direction of motion in the ratio of 1 to 

. This leads to the values

,

which is in agreement with (119).

In reality the molecules of a body are not at rest, but there exists a
stationary motion in every "equilibrium state". As to how this
condition is of influence as regards the considered phenomenon,
may remain undecided; in any case, due to inevitable observational
errors, the experiments of MICHELSON and MORLEY let remain a
considerable wide margin for the values of  and .

The polarization experiments of Fizeau.

§ 93. In the oblique passage of a polarized light beam through a
glass plate, the azimuth of the polarization changes in general,
namely this phenomenon is depending on the nature of the plate, so
that the increase or decrease of its refractive index is followed by a
rotation of the polarization plane of the emanating light. This fact
was the starting point for the experiments with glass columns,
executed by FIZEAU[7], whose results deserve our attention to a high
degree. The apparatus employed, consisted of a polarized prism, a
number of glass columns located after one another, and an analyzer.
At the time of solstice, mostly at noon, the devise was turned at
first with the polarizator into the east, and with the analyzer into the
west, then they were brought into the opposite direction, while in
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the whole time, a beam of light rays was sent through by means of
appropriately located mirrors. Although some irregularities showed
up in the settings of the analyzer, yet altogether, a constant
difference between the obtained readings for both locations seemed
to exist.

When I developed the present theory, I hoped at first to be able to
explain this difference, but soon I found myself disappointed in my
expectation. If the equations developed by me are correct, then an
influence, as the one expected by FIZEAU, cannot exist. The prove
for that should be given by the next paragraph.

§ 94. Since we were working with white light, and the rotation of
the polarization plane in the glass columns is not the same for all
colors, so it was necessary to compensate the dispersion that arose
from it. For that, circular-polarizing fluids were used, e.g. lemon oil
or turpentine, and sometimes thin quartz plates that were cut
perpendicular to the axis. For simplicity, we want to assume
however, that light is homogeneous and therefore that no such
substances are available in the apparatus. The theorem derived in §
59, is then readily applicable as it applies to an arbitrary system of
refractive or birefringent bodies.

Now, an ideal experiment with respect to a stationary earth shall be
compared with a real experiment, in which the apparatus in relation
to Earth's motion is oriented in an arbitrary way. In the first case,
the polarizer shall receive rays from the direction s and the
oscillation period T; here, we imagine the analyzer thus placed that
it does not transmit light. In the latter case the "corresponding"
state of motion (§ 59) shall exist. For that, the incident light must
have the relative oscillation period T(§ 60 a), and still have the ray-
direction s (§ 60, b ). Behind the analyzer, it will be dark again (§
60, b), and we may therefore conclude:
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Which direction Earth's motion may have, whether from the
polarizer to the analyzer, or vice versa, light will always be erased
at the presupposed position of the analyzer, as long as nothing is
changed as regards the relative period of oscillation and the
direction of the rays in relation to the apparatus.

Obviously, these conditions would have been met by the
experiments, when the sun would have emitted white light. The
relative oscillation period would thus have been as it is required by
DOPPLER's law, and namely at each position of the apparatus. As for
the direction of the beams in relation to the glass columns, it has
probably not been exactly the same with respect to the various
readings; however, this has not caused an error, since an influence
of a small directional change of the incident light would hardly
have been overlooked by the observer.

§ 95. The phenomenon that was expected by FIZEAU and what he
really believed to have observed, would have to occur even when
using homogeneous light. Thus, here we come to a contradiction,
that I can not solve. A source of error, of which one could say that
it would have caused the differences in the analyzer locations, I
could not discover. The activated circular-polarizing substances
were probably a little too thick to allow a prominent influence of
Earth's motion considered in § 87. Nor is it possible to think of an
effect of terrestrial magnetism. The only thing might yet be, that
the two mirrors located east and west of the apparatus, have not
always received light of the same nature. Namely, to reflect rays of
the sun, sometimes by one, and sometimes by the other mirror, the
heliostat had to have different positions; between the angles at
which he threw back light in both cases, there was a difference
depending on the position of the sun, and we know that light
reflected by a metal surface, has not the same composition in all
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directions of incidence. . Since the mutual position of the mirror
was not known to me, I was unable to calculate the influence of
this error, and it was only possible to estimate it only superficially,
by making an appropriate assumption on that location, and by
applying the usual formulas for the metal reflection. In this way,
the calculation, however, led to a difference in the analyzer
positions with respect to the two locations of the system, but it was
clearly smaller than the differences observed by FIZEAU. It should
be noted, incidentally, that by one of the experimental series, the
heliostat mirror was replaced by a totally reflecting prism and that
this seems to have been without influence on the results.

Everything taken together, the question is forced upon us, whether
it might be possible to adapt the theory to observations, without
ceasing to explain the other phenomena discussed in this work. I
haven't succeeded in this, and I must therefore leave the whole
question open, in the hope that others might overcome the
difficulties that still exist.

That the improvement of the theory will not be so easy, and that the
phenomena in the experiments of FIZEAU in any case did not happen
in the way, as they were interpreted by him in his introductory
observations, this is what I finally want to show.

It will suffice to consider for this purpose, a single glass plate. If
we decompose the velocity of translation in two component that are
perpendicular to the plate, or parallel, then, if we neglect
magnitudes of second order, the effects of those components
remain side by side. The problem can thus be reduced to two
simpler cases. It is now possible, without making special
assumptions about the nature of light oscillations, that a translation
perpendicular to the plate, can not have the expected influence of
FIZEAU; we will derive some general considerations. As for the
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other direction of translation, we can not speak so determined; it
can only be shown, that the moving plate certainly not behaves like
a stationary one of somewhat different refractive index.

§ 96. We consider two isotropic media (separated from each other
by a plane) whose ponderable parts are either at rest, or move with
a common velocity  in a direction perpendicular to the marginal
surface. If one part of this surface, whose dimensions are
considerably larger than the wavelength, is hit by plane waves,
which are laterally limited by a cylinder that shares the translation,
then the reflection and refraction give rise to two similar light
beams. Any theory of aberration has to assume now that,
independent of translation, the describing lines of the cylindrical
marginal-surfaces, the relative light rays, are subject to the ordinary
laws of reflection and refraction.

Accordingly, we can once and for all imagine four cylinder: 1, 2, 3,
4, as those mentioned above, — we want to say "four paths of
light" —, of which 1 and 2 are in the first, 3 and 4 in the second
medium, and which belong together in the following way. From an
incident motion in 1, a reflected one shall emerge in 2, and a
transmitted one in 4, while also an incident beam in 3 gives rise to
motions in 2 and 4. In reverse, incident oscillations in 2 or 4 will
excite motions in paths 1 and 3.

For simplicity, we also assume [8] that the part of the marginal
surface that was hit by light, has two symmetry axes that are
mutually perpendicular, one of which lies in the plane of incidence
of the rays. The figure consisting of four light paths, thus has two
symmetry planes which go through one of these axes and the
normal to the marginal surface. That one, which coincides with the
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plane of incidence, may be called the first, the other one be called
the second symmetry plane.

§ 97. Of the deviations from equilibrium that constitutes light, it
shall be assumed that they belong to vector quantities. If several
such variables come into account, such as in the electro-magnetic
theory of light: the dielectric polarization, the electric force, the
magnetic force, or even the earlier vectors  and , then we have
to imagine that for a given body (at a given beam direction, relative
oscillation period and translation) these vectors were all determined
by one of them. Thus it will be sufficient, to choose one of the
vectors for consideration. This we call the light vector and
introduce the following presuppositions, which partly includes a
hypothesis about the nature of bodies and light, and partly a
limitation in the choice of the light vector.

1°. If a state of motion exists in a system of bodies, in which the
components of the light vector are certain functions of relative
coordinates and time t, thus also the functions that arise when we
replace t by -t, represents the values of the components that
correspond to a possible motion. But, in the course of this reversal,
we also have to reverse the motion and the velocity .

2°. We also arrive at a possible motion, when we take the mirror
image of an arbitrary, given motion in relation to a stationary plane,
namely in such a way that both the translational velocity, as well as
all light-vectors are replaced by the mirror images.

If we are dealing with the pure aether, then we satisfy these
conditions if we choose the dielectric displacement as the light
vector.
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§ 98. In a polarized light beam, the light vector is parallel at all
points to a certain line; it can be decomposed into three mutually
perpendicular components, the first having the direction of the
beam, while the second lies in the plane of incidence and the third
is perpendicular to it. Now, since the properties of a polarized
beam, except the intensity and period of oscillation, only depends
on one magnitude — such as the azimuths of the polarizer —, then
the ratios between the mentioned components must have specific
values, as soon as the ratio between the second and third is given;
yet this single ratio must be allowed to have any arbitrary value.
This can also be expressed as: If we decompose the light vector
into two components, of which one has the direction of the beam,
while the other is perpendicular to it, then the latter can be
arbitrarily rotated around the beam, and in every direction, the ratio
is determined between the two.

The state of motion is thus completely known, once the nature of
the body, the translation, the relative period, the ray direction and
finally the direction and magnitude of the "transverse" component
of the light vector, are given. At the places where we will later
speak of the light vector, we will only think of that transverse
component.

Now, if this vector in the incident light is perpendicular to the plane
of incidence, it must also have the same direction in the reflected
and transmitted beams; in the same way, also the light vector in
these beams must be parallel to the plane of incidence, as soon as
the light vector of the incident light lies in that plane. To justify
these theorems, we only have to consider the mirror image of the
entire state of motion in relation to the first plane of symmetry. For
example, the light vector of the incident light might have the first
of those directions. In the transition to the mirror image, this vector
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gets the opposite direction, or, as it can also be said, the opposite
phase; the light vector of the other two light beams now must be
changed in the same way, hence the accuracy of the above claim
follows immediately.

The problem is now reduced to the two main cases, i.e. that the
light vectors are everywhere perpendicular to the plane of
incidence, or are everywhere located in its interior. In the course of
the further investigation, we always have to think of one of these
cases; however, it applies to one case as well as to the others.

As regards each light path, we call a certain direction of the light
vector positive, and namely, this direction shall be the same for all
the light paths in the first main-case, while in the second main-case
the positive directions chosen for 2 and 4 are mirror images of
those adopted for 1 and 3 with respect to the second plane of
symmetry.

Eventually, in order to represent the vibrations conveniently, we
look at two pointsP and Q, which on both sides of the border area,
lie in a fixed distance from it, at the intersection of two planes of
symmetry.

Let P belong to the space, in which 1 and 2 are overlapping.
Similarly, let Q simultaneously lie in 3 and 4. Only values of the
light vectors in P and Q shall be given.

§ 99. If the light vector as regards incident motion has the value

,
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it can be represented (for a reflected or transmitted beam that
emerges from it) by

,

where a and b are certain constants. In order to mutually
distinguish the various cases, we want to append two indices on
any of these magnitudes, the first of them is related to the path of
the incident light, and the second is related to the beam that arose
from it; additionally, also those a and b which remained without
prime, are related to the case, when the translation is directed into
the side of the incident light, while the primed letters apply to an
equal and opposite displacement.

Let in light path 1 be an incident motion (while the system is
progressing into the side of the first medium), at which the light
vector has the value

From that, in 2 and 4 the light beams emerge which are represented
by

,

and

,
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Afterwards, we imagine this state of motion as reversed. First, we
thus assume, that the translation is turned away from the first
medium, and second, we replace t by -t. Then we find, that in 1 the
light emerges

when in the paths 2 and 4 the incident motions

(120)

and

(121)

exist.

However, since the light vector, which is generated by the motion
(120) in the first path, has the value

and also the light vector emerging form (121), is to be replaced by

,

then it is given
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From that if follows

, (122)

and

, (123)

§ 100. The following remark leads to a simple relation. If we start
by a condition, at which the incident light follows path 1, and if we
take the mirror image with respect to the second plane of symmetry
(§ 96), then we arrive at a condition, at which the light is incident
in 2. Consequently it has to be

(124)

and in the same way

. (125)
For the difference  which comes into (123), we may put 

, which is evidently of order , since the magnitudes 
 and  are only different form one another by having

different directions of translation.
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By (123), also  must now be of order . Since
we additionally (without changing anything of the matter) can
increase or decrease  by a multiple of , and also an uneven
multiple of  as long as the sign of  is reversed, then we may
assume, that also the angle  itself is of order . The
two cosines in (122) thus differ from unity only by magnitudes of
second order, so that we may put

.

In the same way

,

and under consideration of (124) and (125) we thus find

.

Now suppose, similarly to the experiment of FIZEAU, a plan-parallel
glass plate (at whose two sides the aether is located) will be hit in
oblique direction by a light beam, whose light vector has one of the
directions previously distinguished, i.e. that it is polarized either in
the plane of incidence, or perpendicular to it. The relation, be
which the amplitude is diminished during the entrance, can thus be
(depending in the direction of translation) represented by  or 

, and also, as we can easily see, by the corresponding relation
when leaving the plate by  or . Altogether, the amplitude is
thus altered in the ratio of 1 to  or . Now, since
these products have the same value, the reversal of the translation
changes nothing of the intensity of the leaving light, which
consequently must be (except magnitudes of second order) the
same, as if the plate would stand still: This is true for both main-
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positions of the polarization plane; consequently, when the incident
rays are linearly polarized in an arbitrary way, the oscillation
direction of the transmitted light is independent of the translation.

Here, it is to be noticed, that for the plane of incidence, as well as
for the component polarized perpendicularly to the plane of
incidence, we have to assume the dragging coefficient of FRESNEL.
Thus both are propagating with the same velocity, by which a
phase difference between them and an elliptic polarization of the
transmitted light is excluded.

§ 101. If the direction of translation is, as it was assumed in the last
paragraph, not parallel to the marginal surface, but parallel to it,
thus it must be distinguished, whether it lies in the plane of
incidence, or perpendicular to it. We only want to consider the first
case, and additionally restrict ourselves to the plane of incidence of
polarized light.

At first it should be remembered, as to how we arrive to the value
of the reflected amplitude for such light. If we choose the marginal
surface with respect to y z-, and the plane of incidence with respect
to the x z-plane, and we argue on the basis of the electromagnetic
theory, then we have to put , and also , while
the marginal conditions consist of the continuity  and .
Since in every of both media it is given by equation ( ) (§ 52)

, und ,

the the continuity of  and  has the same meaning as the
continuity of  and . The first of those derivatives,
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however, will be steady, as soon as  has this property itself, and

at the end we are only dealing with  and .

Indeed — and this remark is true for every light theory — the
known formula of FRESNEL is given, when we assume, that this or
that magnitude that come into consideration as regards to
oscillations, and simultaneously its derivative with respect to the
normal of the marginal surface, is steady.

As regards plane waves, the differentiation with respect to x
amounts to the same, as if we would differentiate with respect to t,
and then multiply by a factor m dependent on the direction and
velocity of the waves. If we denote (for the incident, reflected and
transmitted light) the values of the magnitude just mentioned in the
immediate vicinity of the marginal surface by

 and ,

and the values of m by

 und 

then we obtain as marginal conditions

and

.

The last formula leads — when we neglect additive constants — to
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,

and it is further given by elimination of 

.

Now, that the amplitude of the reflected beam (at constant direction
of the incident light) depends on the refractive index of the second
body, stems from the fact, that, as it can easily be seen,  changes
with this exponent.

Now, in the next paragraph it should be demonstrated, that this 
(as long as the direction of the incident relative ray remains the
same) is not affected by a translation in the direction of the z-axis.
If it would be allowed to assume, that also with respect to a moving
plate, the marginal conditions consist of the continuity of a certain
magnitude  and its derivatives, then, at least for light polarized in
the plane of incidence, we would have demonstrated the
impossibility of the phenomenon sought by FIZEAU. However, in
reality the assumption on the marginal conditions is not allowed
without closer investigation; the things said show at least, however,
that the moving plate in no ways acts as a stationary one of
somewhat different refractive index.

§ 102. Let, with respect to the previously introduced axes,

be the direction constants of the rays incident on the plate.
Neglecting magnitudes of second order, we consequently obtain the
direction of the wave normal by application of the fundamental law
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of aberration; namely we have to compose a velocity V in the
direction of the rays with a translational velocity . Now, if the
latter is parallel to the z-axis, then the direction constants of the
wave normal become,

where

The absolute velocity of the waves is V; however, the relative
velocity  will be found, when we diminish V by the component
of  with respect to the wave normal. If we understand by x, y, z
relative coordinates, then for the incident light, expressions of the
form

apply, or

(126)

On the other hand, for glass we have to assume FRESNEL's dragging
coefficient. Consequently, when we denote the propagation
velocity in stationary glass by W, and the directions constants of
the wave normal in the plate by
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we have to put for the relative velocity of the waves with respect to
glass, by (82),

(127)

To light in the plate an expression applies now, which has the form:

(128)

and those will follow the incident oscillations in all points of the
marginal surface, when the coefficient of z is the same as in
formula (126).

Therefore we have

,

or we denote the refraction angle in the stationary plate by , so
that

.

From that it follows
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(129)

However, for the factor which we above have called , the value
is given by (128)

,

and this one, in consequence of (127) and (129), actually is
independent of the translation.

1. ↑ MASCART. Ann. de l'école normale, 2e sér., T. 1, pp. 210—
214, 1872.

2. ↑ MICHELSON. American Journal of Science, 3d Ser., Vol. 22, p.
120, 1881.

3. ↑ MICHELSON and MORLEY. American Journal of Science, 3d
Ser., Vol. 34, p. 333, 1887; Phil. Mag. 5th Ser., Vol 24, p. 449,
1887.

4. ↑ LORENTZ. Zittingsverslagen der Akad. v Wet. te Amsterdam,
1893—93, p. 74.

5. ↑ As FITZGERALD was so friendly to tell me, that he dealt with
this hypothesis already for a longer time in his lectures. In the
literature, I only found it mentioned by LODGE, in the treatise
„Aberration problems" (London Phil. Trans, Vol. 184, A, p.
727, 1893). I allow myself, to also add at his place, that this
treatise, besides some theoretical considerations, also contains
the description of very interesting experiments, in which two
discs of metal (Diameter 1 Yard) perpendicularly fixed on that
axis, were rotated with great velocity. By means of a certain
interference method it was investigated, whether the aether
that was present between the discs, was co-rotating; the result

https://en.wikisource.org/wiki/The_Relative_Motion_of_the_Earth_and_the_Luminiferous_Ether
https://en.wikisource.org/wiki/On_the_Relative_Motion_of_the_Earth_and_the_Luminiferous_Ether
https://en.wikisource.org/wiki/Translation:The_Relative_Motion_of_the_Earth_and_the_Aether
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was negative, even though the number of rotations in a second
was increased up to 20 or more. LODGE concludes, that the
discs haven't communicated to the aether the 800th part of
their velocity.

6. ↑ see LORENTZ, Arch. néerl., T. 21, pp. 168—176, 1887.
7. ↑ FIZEAU. Ann. de chim. et de phys., 3e sér., T. 58, p. 129.

1860; Pogg. Ann., Vol. 114, p. 554, 1861.
8. ↑ This assumption can be dropped later, since the ratio of the

intensities of the light beams is independent of the size and
shape of the cross sections.
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COLLECTION OF THE MOST IMPORTANT

EXPRESSIONS
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Charge of an ion.
m Mass of an ion.
V Velocity of light in the aether.
t Time.
t' Local time (§ 31).
T Oscillation period.

Velocity of an ion.
Translational velocity of ponderable matter.
Displacement of an ion from its equilibrium
position.
Electric moment of a molecule.
Electric moment of the unit volume of
ponderable matter.
Dielectric displacement in the aether.
Dielectric polarization in a ponderable body.
Electric current.
Electric force.
Electric force for stationary ions.
Magnetic force.
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