# A Little Survey of Inductive Inference

John D. Norton
Department of History and
Philosophy of Science
University of Pittsburgh
jdnorton@pitt.edu

# **Definitions**

#### Inductive inference is...

| (Overwhelming Majority view)                      |                                                                                              |
|---------------------------------------------------|----------------------------------------------------------------------------------------------|
| Ampliative inference                              | Evidence lends support to an hypothesis, while not establishing it with deductive certainty. |
| (Minority view, largely historical)Generalization | Inference from less general to the more general.                                             |
|                                                   | May also be deductive. Example: "Perfect induction."                                         |

#### Rules of Detachment?

| YES                                | NO                            |
|------------------------------------|-------------------------------|
| Evidence,<br>Hence hypothesis      | Evidence confirms hypothesis. |
| "Induction." "Inductive inference" | "Confirmation"                |

## Three basic ideas

drive all accounts of inductive inference.

| Family    | Inductive<br>Generalization              | Hypothetical<br>Induction                               | Probabilistic<br>Induction                         |
|-----------|------------------------------------------|---------------------------------------------------------|----------------------------------------------------|
| Principle | An instance confirms the generalization. | Ability to entail<br>the evidence is<br>a mark of truth | Degrees of belief governed by a calculus.          |
| Archetype | Enumerative induction                    | Saving the phenomena in astronomy.                      | Probabilistic<br>analysis of<br>games of<br>chance |
| Weakness  | Limited reach of evidence                | Indiscriminate confirmation                             | Applicable to non-stochastic systems?              |



Families develop through efforts to remedy weaknesses.

Hybrids: Some accounts of induction straddle families.

e.g. Achinstein's view Modern demonstrative, eliminative induction

### Inductive Generalization

| Principle | An instance confirms the generalization.                                            |
|-----------|-------------------------------------------------------------------------------------|
| Archetype | Enumerative Induction                                                               |
| Weakness  | Limited reach of evidence. Some A's are B → All A's are B only narrowly applicable. |



#### **Elaborations**

| Hempel's Satisfaction<br>Criterion | Extend basic principle from simple syllogistic logic to first order predicate logic. |
|------------------------------------|--------------------------------------------------------------------------------------|
| Mill's Methods                     | Generalize instances of necessary and sufficient conditions and interpret as causes. |
| Glymour's Bootstrap                | Derive instance of hypothesis with assistance of any available theory.               |
| Demonstrative Induction            | Deduce hypothesis from evidence using auxiliary theory.                              |

## Hypothetical Induction

| Principle | Ability to entail the evidence is a mark of truth.                                    |
|-----------|---------------------------------------------------------------------------------------|
| Archetype | Saving the phenomena.                                                                 |
| Weakness  | Too indiscriminate. Frivolous conjunction: A&B entails A; so A confirms B, for any B. |



#### **Elaborations**

|                                                                                            | E confirms H if H (and auxiliaries) entail E AND   | Examples                                             |
|--------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|
| Exclusionary accounts. Error statistics (Mayo) Inference to common cause (Salmon, Janssen) | E most likely wouldn't<br>be true, if H were false | Controlled studies. Perrin's arguments for atoms.    |
| Simplicity                                                                                 | H is the simplest.                                 | Curve fitting.                                       |
| Abduction: Inference to<br>the best explanation<br>(Pierce, Harman, Lipton)                | H is the best explanation.                         | Galactic red shift. Controlled studies of telepathy. |

| Reliabilism       | H has been generated  | Any expert     |
|-------------------|-----------------------|----------------|
| (Popper, Lakatos) | by a reliable method. | investigating. |

## **Probabilistic Induction**

| Principle | Degrees of belief governed by a calculus.                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Archetype | Probabilistic analysis of games of chance.                                                                                                       |
| Weakness  | Apply a calculus designed for dice games to beliefs about non-stochastic systems? Spurious numerical precision? Priors? Ignorance vs. disbelief? |



#### **Elaborations**

| Full-blown<br>Bayesianism | Interpretive agonies. Subjective, objective, logical? Justifications: Dutch book arguments, representation theorems. Washing out of the priors. |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Extended<br>Bayesianism   | Convex sets of probability distributions. (and more)                                                                                            |
| Alternative<br>Calculi    | Shafer-Dempster theory. Possibility theory. Deductively definable logics of induction                                                           |

## Properties and Tendencies

| Family                                       | Distance between evidence and hypothesis | Justification                            |
|----------------------------------------------|------------------------------------------|------------------------------------------|
| Inductive                                    | Close.                                   | Self evidence.                           |
| Generalization ("bottom up")                 | Invites logic of discovery.              | Case studies.                            |
| Hypothetical                                 | Distant.                                 | Self evidence.                           |
| Induction<br>("top down")                    | Leans towards under-<br>determination    | Case studies.                            |
| Probabilistic<br>Induction<br>("relational") |                                          | Elaborate and sophisticated. (Bayesians) |

Rule of detachment?