A Little Survey of Inductive Inference

John D. Norton Department of History and Philosophy of Science University of Pittsburgh jdnorton@pitt.edu

Definitions

Inductive inference is...

(Overwhelming Majority view)	
Ampliative inference	Evidence lends support to an hypothesis, while not establishing it with deductive certainty.
(Minority view, largely historical)	Inference from less general to the more general.
	May also be deductive. Example: "Perfect induction."

Rules of Detachment?

YES	NO
Evidence, Hence hypothesis	Evidence confirms hypothesis.
"Induction." "Inductive inference"	"Confirmation"

Three basic ideas

drive all accounts of inductive inference.

Family	Inductive	Hypothetical	Probabilistic
	Generalization	Induction	Induction
Principle	An instance	Ability to entail	Degrees of
	confirms the	the evidence is	belief governed
	generalization.	a mark of truth	by a calculus.
Archetype	Enumerative induction	Saving the phenomena in astronomy.	Probabilistic analysis of games of chance
Weakness	Limited reach of evidence	Indiscriminate confirmation	Applicable to non-stochastic systems?

Families develop through efforts to remedy weaknesses.

Hybrids: Some accounts of induction straddle families.

e.g. Achinstein's view Modern demonstrative, eliminative induction

Inductive Generalization

Principle	An instance confirms the generalization.
Archetype	Enumerative Induction
Weakness	Limited reach of evidence. Some A's are $B \rightarrow$ All A's are B only narrowly applicable.

Elaborations

Hempel's Satisfaction Criterion	Extend basic principle from simple syllogistic logic to first order predicate logic.
Mill's Methods	Generalize instances of necessary and sufficient conditions and interpret as causes.
Glymour's Bootstrap	Derive instance of hypothesis with assistance of any available theory.
Demonstrative Induction	Deduce hypothesis from evidence using auxiliary theory.

Hypothetical Induction

Principle	Ability to entail the evidence is a mark of truth.
Archetype	Saving the phenomena.
Weakness	Too indiscriminate. Frivolous conjunction: A&B entails A; so A confirms B, for any B.

Elaborations

 \int

	E confirms H if H (and auxiliaries) entail E AND	Examples
Exclusionary accounts. Error statistics (Mayo) Inference to common cause (Salmon, Janssen)	E most likely wouldn't be true, if H were false	Controlled studies. Perrin's arguments for atoms.
Simplicity	H is the simplest.	Curve fitting.
Abduction : Inference to the best explanation (Pierce, Harman, Lipton)	H is the best explanation.	Galactic red shift. Controlled studies of telepathy.

Reliabilism	H has been generated	Any expert
(Popper, Lakatos)	by a reliable method.	investigating.

Probabilistic Induction

Principle	Degrees of belief governed by a calculus.
Archetype	Probabilistic analysis of games of chance.
Weakness	Apply a calculus designed for dice games to beliefs about non-stochastic systems? Spurious numerical precision? Priors? Ignorance vs. disbelief?

 \int

Elaborations

Full-blown Bayesianism	Interpretive agonies. Subjective, objective, logical? Justifications: Dutch book arguments, representation theorems. Washing out of the priors.
Extended Bayesianism	Convex sets of probability distributions. (and more)
Alternative Calculi	Shafer-Dempster theory. Possibility theory. Deductively definable logics of induction

Properties and Tendencies

Family	Distance between evidence and hypothesis	Justification
Inductive Generalization ("bottom up")	Close. Invites logic of discovery.	Self evidence. Case studies.
Hypothetical Induction ("top down")	Distant. Leans towards under- determination	Self evidence. Case studies.
Probabilistic Induction ("relational")		Elaborate and sophisticated. (Bayesians)

Rule of detachment?

Gems

There are only three big ideas in inductive inference.

We can see how each idea drives the literature in different directions.

It is not obvious why any of them should work.