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Abstract
Machine learning methods have recently created high expectations in the climate
modelling context in view of addressing climate change, but they are often considered
as non-physics-based ‘black boxes’ that may not provide any understanding. However,
in many ways, understanding seems indispensable to appropriately evaluate climate
models and to build confidence in climate projections. Relying on two case studies, we
compare how machine learning and standard statistical techniques affect our ability
to understand the climate system. For that purpose, we put five evaluative criteria of
understanding to work: intelligibility, representational accuracy, empirical accuracy,
coherence with background knowledge, and assessment of the domain of validity. We
argue that the two families of methods are part of the same continuum where these
various criteria of understanding come in degrees, and that therefore machine learning
methods do not necessarily constitute a radical departure from standard statistical
tools, as far as understanding is concerned.
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1 Introduction

The topic of this paper is understanding with climatemodels.More specifically, we are
interested in the question of how the use of statistical techniques and machine learning
in climate models affects our ability to understand the climate system and its response
to external forcings. It is tempting to deny that understanding is important to climate
modelling in the first place. The central task of climatemodelling, it could be argued, is
to provide climate projections in order to inform decision-makers about future climate
change. Accordingly, it seems that careful evaluation of the trustworthiness of climate
model projections is a more important matter to address than understanding.

But in many ways, understanding is not at all secondary for climate modelling,
quite to the contrary (e.g. Held 2005; Parker 2014). It can be convincingly argued that
understanding is an essential aspect of climate model evaluation: it is crucial to the
identification of the reasons for the successes or for the failures of climate models to
fit empirical data1 and furthermore, understanding is essential to building confidence
in (e.g. long-term, high-forcing) climate projections (Baumberger et al. 2017; Knutti
2018).

In recent years, the application of machine learning methods in climate modelling
have created high expectations in terms of more reliable climate (change) projections.
The use of machine learning in science has also been met with suspicion, in particular
by those who emphasise the importance of understanding. The predictive power we
gain using these methods may come at the cost of understanding, because machine
learningmodels are non-physics-based, ‘black box’ models (see e.g. López-Rubio and
Ratti 2019; Alain and Bengio 2016). This potentially prevents understanding and the
identification of proper explanatory mechanisms whenever these methods are used in
climate modelling.

However, the claim thatmachine learning prevents understandingwith climatemod-
els altogether is an extreme position that should be avoided. For one, difficulties with
understanding also occur in climate modelling without machine learning, for instance
at the level of regional climate models, which are central to tackling climate change
and also use various standard statistical methods (and hence constitute an interest-
ing case study). We should expect a certain continuity with respect to understanding
between the use of machine learning and more traditional statistical methods. Over-
stating the contrast between these methods may lead us to neglect a critical perspective
on understanding in climate modelling, independently of the use of machine learning
methods.

What is more, it is generally acknowledged in the philosophical literature, if only
implicitly, that understanding comes in degrees (although this may not have been
taken seriously enough, see Baumberger 2019). One of the main points of the present

1 Such identification may actually be constrained by a form of holism of confirmation and refutation that
generally characterizes (complex) climate models (Lenhard and Winsberg 2010).
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paper is that there is a continuum in climate modelling with respect to various criteria
of understanding. Taking this point seriously will allow us to avoid the two extreme
positions: neither is understanding completely absent from or unimportant to climate
modelling, nor is it completely eradicated by the use of machine learning models.

Climate models are best considered with respect to their adequacy for a certain pur-
pose (Parker 2020), and many climate models (in particular regional climate models
relying on statistical techniques and climate models incorporating machine learning
methods) may not have understanding as their primary purpose. From this point of
view, it can be asked to what extent and in what sense these climate models can never-
theless provide some understanding; addressing these questions will allow for a more
detailed characterisation of the understanding gap in climate modelling (highlighted
in Held 2005).

The strategy of this paper is not to elaborate a general philosophical theory of sci-
entific understanding, valid across domains (as discussed in, e.g., Wilkenfeld 2017
and de Regt 2017). Rather, we focus on five evaluative criteria of understanding in
the context of climate modelling.2 They include intelligibility in the sense of the abil-
ity to anticipate qualitative behaviour, representational accuracy, empirical accuracy,
coherence with background knowledge and assessment of the domain of validity. We
endeavour to articulate those criteria in Sect. 2. We then discuss how standard statisti-
cal techniques in regional climate modelling affect these five criteria of understanding
in Sect. 3, before turning to climate modelling involving machine learning methods in
Sect. 4. We finally discuss in Sect. 5 how the five criteria come in degrees in a similiar
way in both cases, before concluding in Sect. 6.

2 Understanding with scientific models

Historically, the distinction between explanation and understanding, viz. “erklären”
and “verstehen”, was introduced to emphasise the methodological and disciplinary
oppositions between natural science and humanities; there was a lively philosophical
debate about this distinction at the beginning of the 20th century, in particular in the
German-speaking world. Later, the logical positivists (e.g. Hempel and Oppenheim
1948) considered understanding to be a mere psychological by-product of explana-
tion, and a mental process that is internal and hardly communicable. For this reason,
understanding has been dismissed in order to avoid human and subjective influence
from the hypothetico-deductive reconstruction of science. The psychological effect
of cognitively grasping an explanation (of ‘haha!’ or ‘Eureka!’ type) has later been
called ‘sense of understanding’. It has been shown to artificially increase one’s con-
fidence in explanations, and therefore to be a fallible criterion for good explanations
(e.g. Trout 2002; Kuorikoski 2011 in the context of computer simulations). Recent
philosophical accounts of understanding solve this problem by elaborating a multi-

2 The approach here is similar to the framework proposed in Knüsel and Baumberger (2020), although our
aims are different (and complementary): whereas they want to show that climate models involving machine
learning can provide some understanding in certain cases (they discuss a case study, on which part of their
argument crucially relies), we aim to emphasise that this is all a matter of degree, already within ‘standard’
climate modelling without machine learning.
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dimensional concept, in particular in the context of the use of models (cf. references
in the next paragraph). By putting evaluative criteria forward, they offer a concept
of understanding that cannot be confounded anymore with a mere subjective feeling,
since one’s understanding can be measured by people with respect to the very criteria.
The criteria are supposed to account for both (i) the adequacy of the model to produce
explanations about the target phenomenon or system, and (ii) the ability of the agents
in drawing these explanations from the model.

In this section, in order to compare understandingwithmachine learning and under-
standing with common statistical tools, we use evaluative criteria for understanding
with amodel in general.We provide five criteria that wemostly adopt (with the notable
exception of thefifth one) from the recent philosophical literature on understanding and
more particularly understanding with climate models (e.g. Wilkenfeld 2017; Baum-
berger et al. 2017; Knüsel and Baumberger 2020). As we will argue, these criteria are
not categorical, but come in degrees depending on how well they are individually met.

2.1 Intelligibility

Understanding with a model presumes adequacy of the model to provide explanations.
But understanding with a model also requires understanding of the model, and this
bears on the intelligibility of the model (see, e.g., de Regt and Dieks 2005; de Regt
2017; Wilkenfeld 2017). While adequacy concerns the representational function of
the model with respect to the target phenomenon, intelligibility is based on the ability
and skill of the agent to use the model and to obtain explanations from it, and on the
features of the model that enable its manipulability (in agreement with the literature
on the topic, we will focus on these latter, and not on the more subjective features of
the agent).3 The first criterion we want to highlight is thus related to the intelligibility
of the model.

A prominent criterion of intelligibility is provided by de Regt and Dieks (2005). De
Regt andDieks (2005) suggest that a “scientific theory T is intelligible for scientists (in
context C) if they can recognise qualitatively characteristic consequences of T without
performing exact calculations” (Ibid., p. 151). On this view, understanding results
from the reasoning of a computationally unaided agent with the help of an external
representation, i.e., a theory. However, in the case of complex modelling, it is worth
questioning whether it is possible to anticipate qualitatively consequences without
computer assistance. In many contemporary scientific domains, e.g. in astrophysics
and in climate science, some predictions are impossible without running a computer
simulation. Scientists can familiarise themselves with the model, and probably learn

3 Adequacy and intelligibility are commonly considered as the two central ‘pillars’ of understanding.
Thus, de Regt distinguishes understanding a phenomenon–that is, having an adequate explanation of the
phenomenon–andunderstanding a theory–that is, being able to use the theory (2017, p. 23).WhenWilkenfeld
(2017) introduces his Multiple Understanding Dimensions (MUD) theory as “a natural synthesis of existing
views” of understanding, he argues that “representational-accuracy (of which we assume truth is one kind)
and intelligibility (which we will define so as to entail abilities) are good-making features of a state of
understanding” (Wilkenfeld 2017, p. 1274). Following the example, Knüsel and Baumberger (2020, §3)
offer three “dimensions” of understanding encompassing representational accuracy, representational depth,
and graspability.
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to anticipate, to some extent, the qualitative behaviour of the model, but only by using
the model in the first place, i.e. by making local changes in the model inputs, and
running computer simulations.

In such circumstances, intelligibility can rather be obtained through relevantmanip-
ulation of the model, which then may allow one to anticipate its qualitative behaviour.
Following Kuorikoski and Ylikoski (2015), we assume that understanding with a
model should be viewed as an extended cognitive activity that relies on the “inferential
aid” of an implemented model used to produce explanations and on the agent’s ability
to manipulate the model. In Kuorikoski and Ylikoski’s (2015) inferentialist account
of model-based understanding, the understanding of a model is obtained by the ability
of the agent to answer what-if-things-would-have-been-different questions about the
target phenomenon by manipulating the model. Manipulating a model means ‘playing
around’ with the model, i.e. varying the model parameters, the parameterisations, the
discretisation-based numerical schemes, or the initial conditions, and then running
computer simulations in order to explore the resulting changes in the simulated phe-
nomenon and to get a sense of the qualitative behaviour of the model. Then, a model
is more or less intelligible and can thus provide more or less understanding (along
this criterion) depending on the number of what-if-things-would-have-been-different
questions it can enable the agent to answer.

That said, as Kuorikoski and Ylikoski (2015) make it clear, “it is not enough to be
able tomake just any inferences onewishes; onemust get those inferences right” (Ibid.,
p. 3819). Therefore, evaluative criteria, used to assess to which extent the model is an
accurate representation of the target phenomenon, are also required. In what follows,
our aim is to articulate additional evaluative criteria of understanding that assess the
connection of the model with the target phenomenon.

2.2 Representational accuracy

Models can provide scientists with understanding if they are adequate representations
for providing explanations. In this regard, representational accuracy is a second impor-
tant criterion for understanding with a model. It is evaluated with regard to how well
a model captures the relevant physical processes at work in the target system under
investigation.

Physics-based equations aim at explicitly describing the physical processes of inter-
est in mathematical terms, and are supposed to contribute to a better representational
accuracy in virtue of their high degree of confirmation. In contrast, statistical tech-
niques deliver model outputs based on functional relations between model inputs and
outputs that rely on statistical rather than physical considerations.

Representational accuracy depends on the way a model captures the physical pro-
cesses, but also the extent to which the system’s aspects being omitted are relevant for
the purpose under consideration, and the degree of idealisation. Thus, a physics-based
equation can be more accurate than another one if, for instance, it describes additional
variables of interest in a comprehensive manner, or if it corrects for previous misrepre-
sentations such as parameterisations or model biases. Representational accuracy can
be constrained by the available computational means: stronger computational power
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allows higher resolution, which, in turn, is supposed to generate smaller discretisation
errors, thus increasing overall representational accuracy.

Representational accuracy is one evaluative criterion of understandingwith amodel.
But understanding clearly involves further criteria. For instance, a physics-based equa-
tion may be better than a mere statistical correlation at describing some of the physical
processes at stake in the target system, but can still fail to account for observational
data in a satisfactory way (e.g. because of various biases). More criteria are there-
fore needed to explicate how we can legitimately gain understanding from models:
they include empirical accuracy, physical consistency and delimiting the domain of
validity.

2.3 Empirical accuracy

Empirical accuracy is evaluated with regard to how well the model outputs match
the available observations. This third criterion is evaluated on the basis of the model
outputs (while representational accuracy can be assessed on the basis of the model,
before even running the computer programme).

However, it is recognised that meeting empirical accuracy is not sufficient to pro-
vide understanding. Indeed, a model matching the available data may remain unable
to yield explanations of phenomena that occur beyond the domain covered by the
available data. Thus, for the model to be adequate beyond this domain (e.g. in view of
making future climate projections), one should appeal to additional criteria, in partic-
ular coherence with background knowledge, as recently emphasised by Baumberger
et al. (2017).

2.4 Physical consistency

Physical consistency of themodel outputs constitutes an additional criterion for under-
standing with a model. In particular, when data is missing, it is worth questioning
whether the model outputs are physically plausible, i.e. coherent with background
knowledge. This latter typically includes fundamental physical laws like conservation
laws, available empirical relationships, and observed behaviour of relevant physical
processes.

Fromour perspective, physical consistencypartly contributes to building confidence
in climate projections (as rightly defended by Baumberger et al. 2017), in virtue
of providing (some degree of) understanding of the relevant phenomena with the
considered model. It should be noted that if physical consistency is closely related
to (and clearly not independent from) representational accuracy, the two should be
clearly distinguished and considered separately (as we will also see in the case studies
below in Sects. 3 and 4)—in particular, representational accuracy involves certainmore
pragmatic aspects, such as idealisation, that are absent from (and possibly in tension
with) the physical consistency criterion.4 Now, we believe that an additional important

4 In Knüsel and Baumberger (2020), empirical accuracy and representational accuracy are also closely
related notions: they see the first as an evaluative criterion for the second. What we mean with represen-
tational accuracy here also partly includes what they call—but leave on the side—representational depth.
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criterion, which has not yet been much discussed in relation to understanding, is
especially relevant in the climate context.

2.5 Delimiting the domain of validity

Delimiting the domain of validity, we believe, is a genuine token of understanding.
Models are not supposed to be reliable in any circumstances but, since they are only
partial and idealised representations of the target phenomena, they should be adequate
for the specific purpose (or set of purposes) at stake (Parker 2020). If scientists don’t
know the domain of validity of the model they are using, they encounter the risk of
misusing it, e.g., of running the simulation in a physical domain inwhich the underlying
model fails to apply. Insofar as simulations are ‘doomed to succeed’, theywould deliver
misleading outputs when used in domains on which they are not supposed to apply.

In particular, users who did not participate in the model development process may
not be aware of the precise model idealisations being involved, and of the extent
to which they are valid in the target domain. For example, a fluid dynamics model
assuming that a fluid is a macroscopic continuum does not apply in transitional flow
regime or collisionless flow regime (Meiburg 1986). But there are subtler cases for
which the scope of the underlying model can be difficult to assess, as we will discuss
in the next sections.

Importantly, we should specify that a narrow scope of validity is no reason to believe
that the model does not yield understanding; it yields understanding to some (limited)
extent. As soon as one is able to delimit the scope of validity, be it narrow or large, then
one certainly gains some understanding with the model. This fifth criterion also bears
on the agent’s ability and skill of grasping the extent to which the model correctly
applies, which may involve the first criterion of understanding we have discussed
above, namely intelligibility—here, the ability to manipulate the model and identify
qualitatively the model’s possible problematic behaviour, in view of evaluating its
domain of validity.

As we see, the five criteria of understanding we have articulated—
intelligibility, representational accuracy, empirical accuracy, physical consistency,
delimiting the domain of validity—are not independent of each other; for example,
delimiting the domain of validity also relies on the assessment of representational
accuracy and empirical accuracy.

However, it could still be thought that intelligibility in particular is independent from
the other criteria of adequacy; indeed, some philosophers, e.g. Sullivan (2019), even
claim that, in the case of machine learning models, understanding with a model can be
achievedwithout understanding thesemodels better thanwe currently do.However,we
think that this claim is inaccurate. For example, increasing our understanding through
manipulability could lead to an understanding of how robust a model behaves under
small changes in the input; this, in turn, is relevant for empirical adequacy, say, if the

Footnote 4 continued
Note that we do not make the distinction between dimensions of understanding and evaluative criteria for
understanding, since we reckon that the former, as we define them here, are also directly evaluative.
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model is not robust and this is an artifact of the model itself, not a feature of the target
system.

We will now apply these five evaluative criteria to two important case studies in
the climate modelling context, involving statistical downscaling and machine learning
methods. We will argue on this basis that understanding (according to the criteria
defined here) actually comes in degrees and that, therefore, machine learning methods
do not necessarily constitute a radical departure from standard statistical tools, as far
as understanding is concerned.

3 Understanding with statistical downscaling

In the face of the climate challenge, information about climate change at the regional
scale is crucially needed, in particular in view of adaptation (but also, to some extent,
for mitigation). Indeed, adaptation measures naturally take place at the regional scale:
for instance, it is the change in precipitation patterns at the local rather than global
scale that is relevant in order to devise appropriate measures (e.g. against possible
future flooding). In this context, downscaling constitutes a family of methods that
aim to provide regional climate change information in view of impact assessments; in
this sense, downscaling techniques can furnish decision makers with relevant tools to
address (the adaptation side of) the climate challenge.

This section investigates to what extent regional climate modelling—and more
specifically: downscaling techniques—can provide some understanding of the target
regional climate system, where understanding is articulated using the five criteria we
have introduced in Sect. 2. In particular, regional climate modelling and downscaling
allow us to focus on the impact of standard statistical techniques on understanding
in the climate context. After introducing the idea of downscaling in the main lines—
taking the recent climate scenarios for Switzerland CH2018 as an illustration—we
discuss to what extent our five criteria for understanding are affected by downscaling
techniques.

3.1 Dynamical and statistical downscaling

In the context of producing climate change information, downscaling aims to bridge
the modelling gap between, on the one hand, the large scales where global circulation
models (GCM) operate and, on the other hand, the regional and local scales rele-
vant for impact assessments. There are two main families of downscaling techniques,
namely dynamical downscaling and statistical downscaling. In very schematic terms,
dynamical downscaling involves high-resolution regional climate models (RCMs)
whose boundary conditions are prescribed (‘driven’) by GCMs (the RCM is said to
be ‘nested’ into the GCM); in contrast, statistical downscaling aims at identifying
empirical-statistical relationships between relevant climate variables at the large and
local scales, in view of applying these relationships to future climate projections.
Dynamical and statistical downscaling are not exclusive; the two can be combined in
a two-step process (dynamical downscaling first, then statistical downscaling, as in
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the example discussed below). Indeed, from a post-processing perspective, statistical
downscaling naturally includes the correction or adjustment of regional climate model
output biases with the help of an empirical-statistical link with observations (bias cor-
rection, also sometimes denoted ‘model output statistics’).5 Within the framework of
climate change projections, it is crucial to emphasise that such bias correction makes
sense only under the assumption that the empirical-statistical link that is used remains
stationary.

3.2 Example: CH2018

These are very general considerations and it can be helpful to briefly discuss a concrete
example. We consider the recent climate scenarios CH2018 for Switzerland. These
scenarios constitute an example of state-of-the-art regional climate change information
in view of climate change impact assessment and decision-making.Moreover, the geo-
graphical location, small size and complex Alpine topography make regional climate
modelling for Switzerland particularly interesting and relevant. Among other outputs,
CH2018 provides localised projections at meteorological stations and on a high-
resolution (2 km) grid for various climate variables, for three future 30-year periods,
2020–2049, 2045–2074 and 2070–2099 (1981–2010 being the reference period), and
for three standard “Representative Concentration Pathways” (RCPs), which encode
the anthropogenic forcing corresponding to different emission scenarios up to 2100,
from 2°C compliant mitigation to unabated emissions (RCP2.6, RCP4.5 and RCP8.5,
see IPCC 2013, ch. 12.3).6 These localised projections are based on regional climate
models (RCMs) from the standardised ensemble EURO-CORDEX, with boundary
conditions prescribed by GCMs from the CMIP5 ensemble.7 In the post-processing
phase, RCM outputs are bias-corrected, in particular using quantile mapping tech-
niques, and further statistically downscaled (to the stations or the high-resolution
grid).

The central elements of quantilemapping are (quantile-based) transfer or correction
functions matching the model simulation (quantiles) with the reference observations
(quantiles) in the historical calibration period; climate change projections can then be
bias-corrected using these transfer functions, crucially assuming their time-invariance.
In the context of CH2018, quantile mapping also includes a downscaling step for
localised projections: it relates the model outputs at a certain scale (e.g. on a certain

5 Biases in model outputs can have different origins, one of the most obvious being the finite resolution
of climate models, leading to various types of model errors at the global, regional and local scales. It is
important to emphasise that bias correction “cannot overcome errors from a substantial misrepresentation of
relevant processes” (Maraun andWidman 2018, p. 117), in particular such as global scale circulation biases
or missing (or misrepresented) local scale processes (e.g. linked to complex orography, as in the example
discussed below); to evaluate precisely when relevant processes are being substantially misrepresented can
of course be a tricky issue (especially in the climate change context) and actually lies at the heart of the
discussion below.
6 We closely follow CH2018 here, to which we refer for more details.
7 CMIP5 is the fifth phase of the Coupled Model Intercomparison Project, which provides a standardised
framework for comparing GCM simulations; EURO-CORDEX is the European branch of the Coordinate
Regional Climate Downscaling Experiment, which is the regional counterpart of CMIP5 for RCM simula-
tions.
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grid) to observations at a smaller scale, e.g. on a higher-resolution grid or directly
to individual meteorological stations. For instance, in the latter case, the quantile
mapping reference for daily mean temperature consists of observations of this variable
in the period 1981–2010 from85weather stations distributed across Switzerland; these
reference observations allow for the calibration of the bias correction, which can then
be applied to ‘raw’ regional climate model (simulation) outputs in order to provide
bias corrected (and downscaled) regional climate change signals for the considered
variable (e.g. mean temperature) at individual meteorological stations (see CH2018,
ch. 5).

3.3 Understanding with statistical downscaling

How does downscaling impact our understanding of the regional climate system under
consideration and of the related regional climate change signal? We can evaluate this
impact using the five criteria for understanding we have defined in Sect. 2. This topic
can be seen as part of the discussion on the added value of regional climate modelling
and downscaling (e.g. see recently Rummukainen (2016) and Maraun and Widman
(2018), in particular ch. 15 and 17), with a focus on the explanatory and understanding-
related dimensions. It should also be mentioned that there is actually a plethora of
methods that are referred to as downscaling in the climate science literature, and we
do not aim to discuss them all in detail (see Table 1 in Hewitson et al. 2014, pp. 546–
547, for a good overview). We rather discuss generic features of downscaling—and
of statistical downscaling in particular8—related to the issue of understanding (partly
relying on CH2018 as a concrete example).

• Intelligibility. Several features of both dynamical and statistical downscaling may
hinder the ability to get a sense of the qualitative behaviour of the model through
manipulability in counterfactual situations. For instance, regional climate models
may inherit biases from their driving GCMs through the boundary conditions and
thus have their qualitative behaviour affected—as alreadymentioned in footnote 8,
dynamical downscaling raises similar issues for intelligibility (and understanding
in general) as global climate modelling. Statistical downscaling further limits the
manipulability of the downscaled model in view of meaningfully addressing what-
if-things-would-have-been-different questions, and hence limits the intelligibility
of the model: in generic terms, the main worry is that answers to what-if-things-
would-have-been-different questions can turn out to be mere statistical artifacts
(especially if the stationarity assumption of the empirical-statistical link or bias
correction is violated, such as possibly in a climate change context). An example
of a statistical artifact, mentioned in CH2018, is that quantile mapping “tends
to amplify temperature changes at high elevations along the Alpine ridge and to
dampen change signals in valleys”, while noting that these “modifications cannot
be explained by physical reasoning in a straightforward sense” (Ibid., p. 85)—this

8 From the point of view of understanding, regional climate modelling involving ‘only’ dynamical down-
scaling raises similar issues as global climate modelling (e.g. about model complexity, parameterisation
and opacity); in contrast, and to a certain extent, statistical downscaling involves some different—typically
statistical—issues for understanding, akin to those encountered inmachine learning approaches (see Sect. 4).
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issue is also clearly related to representational accuracy, to which we turn next.
However, more generally, this does not mean that statistical downscaling prevents
any intelligibility of the downscaled models, but the issue requires a very careful
and case-by-case evaluation.9

• Representational accuracy. Within the dynamical downscaling component,
increasing resolution and complexity can involve an increase in representational
accuracy to some extent, depending on the context (variables, regions, etc.), for
instance through the better resolution of the topography of the region under con-
sideration. The important point is that dynamical downscaling can unveil physical
mechanisms that are left unseen by lower resolution models; as a consequence,
the climate change signal from RCMs and GCMs can be relevantly different (see
e.g. the examples discussed in Rummukainen 2016, pp. 151–153). This is in stark
contrast with the statistical downscaling component of regional climatemodelling,
which is mainly statistical and data-driven. In this sense, statistically downscaled
models can perform poorly in terms of representational accuracy—and, in gen-
eral, statistical downscaling does not improve representational accuracy—since
the sub-grid physical processes (beyond the scale resolved by the underlying
regional climate models) that can be at the origin of the biases to be corrected
are simply not considered. As already mentioned above, statistical downscaling
can actually introduce certain statistical artifacts and additional biases; for exam-
ple, quantile mapping in CH2018 can “misrepresent spatial climate variability
on short timescales” (Ibid., p. 99). Indeed, it seems that adequate application of
statistical downscaling and bias correction requires some prior knowledge of the
representational accuracy of the relevant underlying processes as well as of the
biases themselves (Maraun 2017).

• Empirical accuracy. Generally speaking, the discussion about empirical accuracy
is similar in many ways in the case of regional climate modelling as in the case
of global climate modelling.10 An important aspect of the discussion concerns
future climate projections, for which there is obviously no direct way to evalu-
ate their empirical accuracy; moreover, empirical accuracy with past and current
observations is clearly not a sufficient condition forwarranting confidence in future
climate (change) projections, see the discussion in e.g. Baumberger et al. (2017).11

There is also a straightforward sense in which, in principle, statistical downscaling
involving bias correction (e.g. such as quantile mapping in the case of CH2018),
can directly improve empirical accuracy, since, very schematically, models outputs
are corrected toward observations; however, the evaluation of bias correction tech-
niques can be difficult—e.g. cross-validation may not be relevant, because “model

9 Various limitations to statistical downscaling (and to the intelligibility of statistically downscaled models)
arise in particular in “topographically structured terrain” such as the Alpine region of Switzerland.
10 For instance, empirical accuracy is not the same for all variables; e.g., it is in general better for temperature
than for precipitation. It should be noted that, overall, empirical accuracy is better at the global scale than
at the regional and local scales.
11 One reason has to dowith the role of calibration of parameter values in achieving empirical accuracywith
past and current observations. Another important reason relates to the criteria concerning representational
accuracy and the domain of validity (see below): in the context of radically different boundary conditions,
such as high forcing scenarios, certain empirical parameterisation procedures may not be valid anymore
and important feedbacks may be missing.
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and observations are not in synchrony” (Maraun 2017, p. 765)—especially under
climate change conditions (see Maraun and Widman 2018, ch. 15 and 16).

• Physical consistency. To the extent that “statistical downscaling methods […]
do not represent the fundamental laws of thermodynamics and fluid dynamics”
(Maraun and Widman 2018, p. 273), physical consistency is not guaranteed a
priori in this context, and so needs careful evaluation. Specific aspects of this
issue include inter-variable consistency and inheritance of large-scale circulations
biases (affecting the driving GCMs) or consistency with the large-scale flow (as
described by the driving GCMs) (for instance, see the discussion in CH2018, §5.7
in the case of the climate scenarios for Switzerland; see also Maraun 2017).

• Domain of validity. Within the statistical downscaling framework, one of the cru-
cial assumptions in this respect is the stationarity of the climate model biases and
hence of the correction function. From a climate change perspective, this assump-
tion is meaningful only up to some point—in very rough and intuitive terms: when
training or historical data are not representative anymore. But it is extremely dif-
ficult to pin down precisely this point in a given concrete situation; consequently,
it is extremely difficult to define precisely the domain of validity of (statistical)
downscaling techniques for future climate projections.

Evaluating these criteria for understanding suggests that understandingwith climate
models comes in degrees—and, as we have seen in this section, this is very much so
when statistical techniques like statistical downscaling are involved. We will see in
the next section that the situation is—perhaps surprisingly—similar when machine
learning methods are involved, despite their aura of novelty and opacity.

4 Understanding withmachine learning

In this section, we examine how the use of machine learning (ML) in climate models
affects our ability to understand with climate models. We will do this with the help of
a case study. First, we will briefly review relevant aspects of ML.

4.1 Machine learning: basic ideas and challenges

ML is a technique to automatically extract rules for classification and prediction from
data.12 Here we will only be concerned with supervised learning for prediction. The
goal is to automatically find a rule f̂ that takes a variable x as an input, and outputs a
variable ŷ = f̂ (x), such that the distance between f̂ (x) = ŷ and the actual value y is
small. In the case we will consider here (Gentine et al. 2018), x is a vector of physical
quantities like temperature and humidity at a given time, while the output ŷ is a vector
of physical quantities like temperature and humidity tendencies.

Gentine et al. (2018) use deep neural networks (DNNs), a kind ofMLmodel (LeCun
et al. 2015; Goodfellow et al. 2016). In DNNs, the input is processed through many

12 Note that this section provides a standard overview of some basic, well-known facts about machine
learning; similar, more detailed accounts can be found in any good introduction to machine learning or deep
learning (Hastie et al. 2009; Goodfellow et al. 2016).

123



Synthese (2021) 199:1877–1897 1889

connected layers of a network. Each layer consists of many nodes. In a simple, fully
connected DNN, the value of each node is computed as follows: first, a weighted sum
(plus bias) of the values of the previous layer is computed; the resulting value is then
further processed through a non-linear activation function. The parameters of a DNN
are the weights and biases. The basic idea of supervised learning is to train the DNN
on a data set X = {(xi , yi )}i∈I , where xi is an input instance, and yi is the correct
output for that instance. The DNN is fed with a subset of X , a so-called batch, and
computes the output ŷi for the inputs xi of this batch. Then the distance between the
output ŷi and the correct answer yi is calculated using a loss function; this provides us
with a measure of the error made by the DNN. In the next, learning step, the weights
and biases of the network are adapted to make the error a little smaller. The error
correction is propagated backwards through the network. This procedure is repeated
until the set X is exhausted. Trained DNNs are evaluated using a test set X ′, which
is drawn from the same distribution as X , but disjoint from it. This procedure is the
foundation of the recent surge of applications of deep learning.

Despite their success, many questions with respect to ML models and their use in
science remain open. Leading figures in ML research have called DNNs black boxes
(Alain and Bengio 2016). One of themain issues is that while DNNs have been applied
successfully, a theoretical understanding of this success and many of their properties
is still missing (Goodfellow et al. 2016; Vidal et al. 2017). There are also challenges
that arise from the use of ML models in the context of climate modelling in particular
(Reichstein et al. 2019). These challenges include guaranteeing physical consistency,
the heterogeneity and high-dimensional nature of climate data, and obtaining labeled
training data for the application of supervised learning techniques.

4.2 Case study: machine learning approach to convective parameterisation

To better understand the advantages and challenges of understanding with ML in
climate science, we now turn to a case where DNNs are used in climate modelling
(Gentine et al. 2018). In this case, an existing, physics-based climate model is taken
as a starting point. Physical sub-models of this climate model are then replaced by
DNNs in order to make parameterisation computationally tractable. We first give a
short account of this case; then we turn to the question how the use of DNNs affects
our ability to understand climate phenomena.13

Current climatemodels with parameterised convection cannot capture some aspects
of convection that are relevant to climate predictions. For example, so-calledmesoscale
convective systems (MCS), systems of thunderstorms of the order of 100km in diam-
eter, are not accurately represented. Problems with parameterised convection could
in principle be overcome by using climate models with higher resolution, specifi-
cally, horizontal grids of 2km or less. Cloud resolving models (CRMs) are able to
accurately represent relevant aspects of MCSs. The use of global CRMs would there-

13 It could be asked whether this case is representative of the use of machine learning in climate science.
It is difficult to answer this question, because the use of DNNs in climate science is still relatively novel,
see Reichstein et al. (2019). The results by Gentine et al. (2018) can be interpreted as proof of concept:
they show that DNNs have the potential to address some computational problems. Consequently, climate
projections under different forcings are not considered.
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fore be highly desirable. However, such models are computationally intractable for
timescales relevant to climate modelling (several decades and more).

One approach to overcome this problem is superparameterisation (SP). The idea
behind SP is to add a layer of fine-grained CRMs to a large-scale global circulation
model (GCM); see Khairoutdinov et al. (2005) for details. The GCM is spatially
coarse-grained with horizontal grids of the order of 100km; the CRMs are more fine-
grained, physics-basedmodels, which are embedded into each grid cell. TheCRMs run
independent of each other, with time-steps of about 20s; the GCM runs on time-steps
of about 1h. The two layers are coupled: at each time step of the GCM, the CRMs are
forced by the large-scale tendencies of the GCM. The CRMs, in turn, return an average
of the locally calculated physical variables to the GCM. In this way, the evolution of
the entire model is a mixture of local and global tendencies.

Of course, SP comes with its own problems. SP is computationally expensive, such
that several idealisations have to be introduced. For one, there is no direct interaction
between the CRMs except via the global level. Some versions of SP are 2D, which
means that the physical evolution is only calculated for one horizontal direction, e.g.,
east-west; in calculating the spatial average, the CRMs output is a statistical sample.
Finally, aspects of convection are still not accurately represented by GCMs augmented
by SP due to physical idealisations.

This is where machine learning comes in. Gentine et al. (2018) replaced the 8129
CRM modules of an SP model with DNNs in order to obtain a better convection
parameterisation. Specifically, they used the so-called SuperParameterised Commu-
nity Atmosphere Model (SPCAM-3), a well-known GCM, to obtain training and test
data for the DNNs. The SPCAM was set up in a configuration which simulates an
aqua planet with a resolution of the order of 100km. 8129 CRMs are embedded in
this version of SPCAM; they interact as described above. Gentine et al. (2018) ran this
model for a period of two years and made a record of the CRM’s input and output.
Half of these data, the first year, was set aside for training the DNNs, and the other half
as test data (validation). They then prepared 8129 copies of DNNs, and trained them
on the training set obtained from the original SPCAM. Finally, they added the trained
DNNs to a global model, which they called CBRAIN. This model was validated by
comparing the output of CBRAIN with the output of SPCAM-3 of the second year.

The general conclusion drawn by Gentine et al. (2018) is positive. They found that
SPCAM-3 and CBRAIN agree surprisingly well. They claim to have demonstrated
that DNNs can “skillfully represent many of the effects of unresolved clouds and
convection” (Gentine et al. 2018, p. 5748). In their discussion, Gentine et al. high-
light the computational efficiency of CBRAIN in comparison to SPCAM as the main
benefit; tests show that CBRAIN is ten times faster than SPCAM. They identify two
main challenges: first, DNNs do not accurately represent some physical properties; in
particular, they do not capture energy and moisture conservation, which is required
for climate prediction. Second, it is not clear whether CBRAIN will generalise well
in situations not represented in the training data; for example, it is not clear whether
CBRAIN would accurately represent convection over continents, because it has been
trained on data from an aqua planet.
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4.3 Understanding withmachine learning

What does this case tell us about the prospect of gaining understanding from climate
models that use DNNs? We will now evaluate the proposal by Gentine et al. using the
five criteria we have outlined in Sect. 2.

• Intelligibility. First, it is a general, well-known fact that DNNs are not robust with
respect to manipulations of the input. A prominent example for this deficiency
is the existence of adversarial examples (Szegedy et al. 2014). These are inputs
designed to fool the models into making classification errors; usually, the manip-
ulations are such that, in the case of input images, the perturbed inputs cannot be
distinguished from the original by humans. Importantly, while computer scientists
know how to construct adversarial examples, they do not yet fully understand why
they occur and how models can be made robust against them. Thus, arguably,
intelligibility with respect to manipulability in DNNs is low in general. Then, the
CBRAIN modellers did not try to improve their understanding of the ML compo-
nents of the model through manipulating either inputs or parameters. Presumably,
one reason for this is that the input and parameter space are just too big to be
investigated systematically, and it is not clear what would be achieved by carrying
out just a few manipulations. Finally, what researchers working with DNNs do
routinely is tweak these models to improve performance, by adapting optimisa-
tion procedures and other features of the learning algorithm. However, this does
not improve intelligibility per se, because it is mostly geared towards a better per-
formance, not towards understanding how the model behaves in different kinds
of circumstances. All these points suggest that intelligibility decreases, or at least
does not increase, by using DNNs in CBRAIN.

• Representational accuracy. In the case we just considered, representational accu-
racy is the degree to which the SPCAM, and CBRAIN, respectively, faithfully
represent the physical processes producing the output variables, convective heating
and moistening, and longwave and shortwave heating rates. The representational
accuracy of CBRAIN is lower in comparison to SPCAM. The latter in itself is
already highly idealised in several respects; and the GCM part is the same in both
models. However, the CRM submodels of SPCAM are based on physical equa-
tions. This is not the case for the DNNs that replace the CRMs in CBRAIN. The
only objective of the DNNs is to minimise the empirical error with respect to the
output variables. There is no requirement for representational accuracy.

• Empirical accuracy. By decreasing computational costs, CBRAIN makes it pos-
sible to obtain predictions for longer time periods, while the empirical accuracy
is comparable to the physical simulation by SPCAM in the periods for which we
have empirical data. Thus, for this criterion, there is an increase of understanding
because CBRAIN provides comparable empirical accuracy, but, potentially, for a
longer period of time, due to computational gains. However, the increase in under-
standing has to be qualified, as Gentine et al. (2018) acknowledge: there is no
guarantee that CBRAIN is empirically adequate if boundary conditions change,
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e.g., if the planet had land masses. Thus, there is uncertainty with respect to this
criterion. We will return to this point below.14

• Physical consistency. Gentine et al. (2018) point out that that the DNNs do not
intrinsically satisfy energy and moisture conservation, which is a relevant kind
of physical consistency. They write: “This can be fine for implementation in a
weather forecast model but energy and moisture conservation are required for
climate prediction” (Ibid, p. 5748). Thus, we have a loss of understanding in
CBRAIN in comparison to SPCAM, where conservation laws are easier to check.
Also, physical consistency becomes more relevant at the timescales of climate
predictions.

• Domain of validity. Along this criterion, CBRAINwill presumably performworse
than SPCAM. The reason for this is that the DNNs have only been trained on a
dataset that represents a very specific type of scenario, viz., an aqua planet with a
very specific range of physical variables. As soon as boundary conditions change,
or if global temperatures change, there is no guarantee that CBRAIN will still
agree with SPCAM. In fact, it is well known that DNNs are very unreliable when
applied to out-of-distribution data (see also Kawamleh 2021 on this very limit of
DNNs). Thus, the use of DNNs may be particularly problematic in the case of
climate change.

At this point, an important feature of this case should be stressed. Gentine et al.
(2018) replace physics-based CRMswith DNNs. In order to do this, they first generate
training and test data using SPCAM. Thus, this case highlights advantages and draw-
backs of understanding with DNNs if we have access to clean, synthetically generated
data. However, this is not always the case, as highlighted in Reichstein et al. (2019). If
we were to use real data, there are additional problems with obtaining labeled training
data, and also with messy, high-dimensional data. Thus, the present case only provides
a partial picture of the challenges of understanding with DNNs in the climate context.

5 Understanding in degrees

In this section, we systematically compare how the respective (statistical) methods
used in the two case studies affect our ability to understand climate phenomena.

Beforewe beginwith the comparison,we should clarifywhat exactly it is thatwe are
comparing. Our question is how the use of the two (sets of) methods—statistical down-
scaling in RCMs and the use of DNNs as an alternative to superparameterisation—
affects our ability to understand with the respective climate models. We should note a
dissimilarity between the two case studies: in themachine learning example, we exam-
ined the difference between a ‘base case’, which does not use DNNs (that is, SPCAM)
and the case in which DNNs are used (that is, CBRAIN). In contrast, downscaling
techniques provide regional climate (change) information at resolutions that are in

14 Gentine et al. (2018) do not examine or discuss how CBRAIN would perform with respect to different
forcings, or howwell it is suited to address the issue of climate change in general. In principle, it is possible to
evaluate how well CBRAIN performs in comparison to SPCAM for different boundary conditions, because
SPCAM can generate test data for a variety of boundary conditions, and one could evaluate CBRAIN on
these test sets.
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general not available without them (e.g. by GCMs); in this latter case, we can however
investigate to what extent downscaling techniques provide additional understanding
compared to GCMs.

How do the two methods affect understanding? Beginning with the criterion of
intelligibility, both statistical downscaling and DNNs in GCMs do not fare well with
respect to manipulability and anticipating the qualitative behavior of the model; the
use of both methods arguably makes things worse. The specific reasons—biases in the
case of statistical downscaling, errors for small perturbations in the case ofDNNs—are
different for the two methods, but the common root of the problem is that both run the
danger of exhibiting statistical artifacts. Intelligibility may decrease more in the case
of DNNs in comparison to statistical downscaling,15 particularly due to robustness
(see Sect. 4).

Along the criterion of representational accuracy, we can observe that both statistical
downscaling and DNNs in GCMs create challenges because they are not designed to
capture the processes producing the output variables. In a nutshell, both are statistical
techniques that try to reproduce input–output patterns. However, in both cases, there
is not a total loss of representational accuracy. In the case of statistical downscaling,
the GCM, as well as the dynamical downscaling step, are based on physical equations
and thus representationally accurate to a certain extent. The same is true for the GCM
in the second case, which is combined with DNNs.

Turning to empirical accuracy, we see that there is a (qualified) increase in both
cases. In the case of statistical downscaling, variables are bias-corrected to match
observations, which increases empirical accuracy. The use of DNNs makes it possible
to obtain predictions that are comparable to predictions without DNNs, but for longer
periods (thanks to their smaller computational costs compared to superparameterisa-
tion). Thus, arguably, empirical accuracy is increased. In both cases, a qualification
related to the domain of validity has to be added: it is difficult to gauge the empirical
accuracy of both methods for climate (change) projections.

At this point, it should be stressed that the purpose of using the methods in the two
cases is different. In the case of statistical downscaling in RCMs, the goal is to adapt
a GCM to a regional context such that climate projections can be obtained at a higher
spatial resolution. Accordingly, empirical accuracy increases because model output is
changed to match observations. In the case of DNNs, model output is not corrected.
Rather, the goal is to overcome a computational deadlock, and DNNs make it possible
to obtain predictions which would not be available otherwise. Still, both methods are
geared towards improving predictive capabilities—higher precision in one case, more
predictions in the other.

Physical consistency is not guaranteed in both cases. This is certainly a drawback
in comparison to physics-based modelling. Lack of physical consistency can lead to
problems in the context of climate predictions specifically. However, it should be noted
that while physical consistency is not guaranteed due to the statistical nature of the

15 The precise extent towhich statistical downscalingmethods allow for somemanipulability (and hence for
some intelligibility) is an open (and a case-by-case) issue; there is actually a call in the climate modelling
community for designing “ensembles of statistical downscaling methods or even ensembles combining
GCMs, RCMs and a range of statistical methods” (Maraun and Widman 2018, p. 284)—such ensembles
would help to get a clearer picture on the manipulability issue.
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methods—this is related to the lack of representational accuracy—we can expect that
physical consistency is satisfied to a certain degree, because we have a certain degree
of empirical accuracy.

Finally, the domain of validity criterion is a reason for concern in both cases. For
both statistical downscaling and DNNs in GCMs, it is necessary to make stationarity
assumptions, viz., that training or observational data are valid for future scenarios (this
is critical in the context of climate change projections). In both cases, it is extremely
hard to pin downwhenwe should expect this assumption to be violated. One difference
between the two methods is that DNNs are known to be very sensitive to changes in
the underlying distribution, i.e., to non-stationarity. We should expect that applying
DNNs outside a known domain will lead to inaccurate predictions along all criteria
discussed above.

Taking stock,we can see that both statistical downscaling and the use ofDNNsaffect
the five criteria of understanding in a qualitatively similar manner. Both are statistical
methods that are not based on physical principles, and thus may involve a decrease
of understanding along the criteria of intelligibility, representational accuracy and
physical consistency. The strength of both methods is to increase empirical accuracy.
This supports the thesis that there is not a categorial difference between machine
learning methods and more traditional statistical techniques, as far as understanding
is concerned. This does not mean, however, that the two methods are on a par.

The two cases also support the thesis that understanding as a whole comes in
degrees. All five criteria we considered should not be interpreted as yielding catego-
rial results, but relative increases or decreases. In both cases, the methods are applied
in the context of complex models, and in combination with physics-based compo-
nents, idealisations, further statistical techniques, and thus do not affect our ability to
understand with these models in a categorical manner, but gradually. In particular, it
is wrong to say that the use of statistical downscaling, or of machine learning, leads
to an overall loss of understanding.

We can also observe that in both cases, there are similar tradeoffs between the five
criteria of understanding. In a nutshell, the tradeoff is between an increase of empirical
accuracy and a decrease along the other four criteria. This also implies that we cannot
interpret the useof anyoneof thesemethods as yielding a loss or a gain in understanding
tout court. The five criteria we have proposed in this article precisely aim to articulate
and shed some light on these tradeoffs as well as the various aspects of understanding.
And the latter, in turn, show that, with respect to understanding, regional climate
models obtained from ‘common’ statistical downscaling16 and climate models using
‘fancy’ machine learning methods such as deep neural networks are actually part of
the same continuum, where the various criteria of understanding come in degrees.

Finally, a word of caution is in order. We have not argued that the use of statistical
techniques or of machine learning in the context of climate models is unproblematic
because these methods do not necessarily lead to a loss of understanding. Rather,
we have argued that these methods do affect certain criteria of understanding, and in
particularwhat could be called the physical (and explanatory) criteria of understanding.

16 Downscaling techniques are applied inweather forecasting since the late 1950s (seeMaraun andWidman
2018, ch. 3).
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This, of course, may well be problematic, because, for instance, a loss of process
understanding affects our confidence in climate predictions (see Baumberger et al.
2017).

6 Conclusion

A central goal of climate modelling is to provide projections in view of decision-
making with respect to climate change. But understanding is not secondary. Under-
standing is indispensable to appropriately evaluate climate models and to build
confidence in climate projections.

Contemporary techniques in climate modelling, including statistical methods and
machine learning techniques, are, to some extent, like black boxes and, despite the
fact that they can considerably enhance our predictive abilities, they affect our ability
to understand with climate models.

In order to assess the impact of statistical methods andmachine learning techniques
on understandingwith climatemodels, we have articulated five criteria for understand-
ing: intelligibility, representational accuracy, empirical accuracy, physical consistency
and delimiting the domain of validity.

We have argued that these criteria are not categorical, but come in degrees. We have
put these five criteria to work in two important case studies in the climate context. In
the first case, we have investigated (statistical) downscaling techniques, which play
a crucial role in the elaboration of regional climate change information and impact
assessments. In the second case, we have contrasted these standard statistical tech-
niques with the machine learning approach in climate modelling, focusing specifically
on the use of deep neural networks as an alternative to superparameterisation in a global
circulation model.

The main upshot of the paper is a twofold continuity of the multidimensional and
graded notion of understanding in the climate modelling context. First, the use of
machine learning decreases understanding along some criteria; however, the same
tendencies can also be observed for more standard statistical methods such as those
involved in downscaling, showing that there is no categorical difference between the
two cases, as far as understanding is concerned. Second, we have highlighted the trade-
off between an increase in empirical accuracy (the main focus of both the statistical
and machine learning methods in the climate context) and a decrease along the criteria
of intelligibility, representational accuracy, physical consistency and delimiting the
domain of validity.
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