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Can Machines Learn How Clouds Work?
The Epistemic Implications of Machine
Learning Methods in Climate Science
Suzanne Kawamleh*y

Scientists and decision makers rely on climate models for predictions concerning future
climate change. Traditionally, physical processes that are key to predicting extreme events
are either directly represented (resolved) or indirectly represented (parameterized). Scien-
tists are now replacing physically based parameterizations with neural networks that do not
represent physical processes directly or indirectly. I analyze the epistemic implications of
this method and argue that it undermines the reliability of model predictions. I attribute
the widespread failure in neural network generalizability to the lack of process representa-
tion. The representation of climate processes adds significant and irreducible value to the
reliability of climate model predictions.
1. Introduction. The success of machine learning (ML) methods in facil-
itating scientific discovery in disciplines like biology (e.g., bioinformatics)
has led some to declare data-intensive science as a fourth paradigm of sci-
ence, a fundamental transformation of the scientific method (Gray 2007).
The nascent field of climate informatics was established on the basis of the
optimism thatMLmethodswill have similarly profound effects in climate sci-
ence (Monteleoni et al. 2013).

There is a growing literature exploring the potential of using ML tech-
niques in connection with general circulation models (GCMs) to outperform
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and possibly replace traditional models by improving predictions (Dueben
and Bauer 2018), providing insight into key climate processes (Ganguly et al.
2014), facilitating causal discovery (Ebert-Uphoff and Deng 2015), and re-
ducing biases and uncertainties in GCM simulations (Steinhaeuser, Chawla, and
Ganguly 2010; Rasp, Pritchard, andGentine 2018).1 Some question the possibil-
ity of replacing physically based models with data-driven models: “can forecast
models that are based ondeep learning and training on atmospheric data compete
with or even beat weather and climate models that are based on physical knowl-
edge and the basic equations of motion?” (Dueben and Bauer 2018, 4000).

Whether ML methods can replace weather prediction and climate mod-
els is an open question. I focus my attention on a follow-up question: What
would such a shift in climate science methodology imply for the reliability
of climate model projections? I explore such implications by examining the
increasingly common practice of replacing traditional model parameteriza-
tions with ML parameterizations in climate models. Whereas traditional pa-
rameterizations indirectly represent climate processes, ML parameterizations
aim to secure the same predictive skill without directly or indirectly represent-
ing climate processes. I argue that the advent of MLmethods, like neural net-
work parameterization (NNP), fundamentally transforms the development
and evaluation of climate models. I support my argument with a case study
of how artificial neural networks (ANNs) are used to replace convective pa-
rameterizations in climate models. The climate models with ML parameteri-
zations fail to be predictively accurate outside of the training data. I attribute
this failure to the lack of process representation. The representation of climate
processes adds significant and irreducible value to the reliability of climate
model predictions.

2. Convective Parameterization

2.1. Convective Processes. Convection is heat and moisture transfer
due to a current created by hot air rising and cold air sinking. Convection is
a key process in the formation of clouds that (1) produces extreme precipita-
tion, tornados, and so on, and (2) determines the magnitude of atmospheric
warming in response to rising greenhouse gas concentrations. Scientists and
decision makers rely on climate models for predictive insight concerning fu-
ture climate change, particularly extreme events like droughts, tornadoes, and
monsoons. However, many physical processes that are key to accurately pre-
dicting extreme events are not well understood and occur on scales much
smaller than the model’s resolution. But modeling at a convective-permitting
1. I use model predictions and projections interchangeably throughout the article. Model
projections are model predictions that are conditional on certain emissions scenarios or
initial conditions.
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resolution at the global scale is computationally intensive. As a result, such
processes are simplified and approximated in indirect representations called
parameterizations.

2.2. Traditional Parameterization. Parameterization is a method of in-
directly representing such processes using simplified mathematical expres-
sions. These expressions describe the effects of the process on the rest of the
model as a function of variables that are directly represented in the model.
The parameterization takes the state of the grid box as an input and calcu-
lates how large-scale variables evolve over time. A necessary condition for
parameterization is the closure assumption, or the hypothesized existence of
a physical relationship between the resolved large-scale variable and subgrid
processes. This relationship facilitates the identification of appropriate large-
scale variables with which scientists can indirectly represent the subgrid pro-
cesses. Closure assumptions can be independently and empirically constrained
by observational studies. For example, a common closure assumption is that
cumulus convection occurs only if the environment is conditionally unstable
(Betts and Miller 1984).

However, observational studies like Thompson et al. (1979) demonstrated
that instability was inversely related to convective activity. Thus, observational
studies challenged the soundness of this assumption and decreased confidence
in the projections of models that incorporated this assumption. This is one ex-
ample of how traditional parameterizations incorporate physical and empirical
knowledge to effectively constrain model projections.

2.3. Parametric Uncertainty. Nevertheless, the indirect representation of
climate processes in traditional parameterization does not provide a strong enough
constraint on model predictions. The parameterization of cloud-related pro-
cesses, particularly convection, is the primary driver of intermodel disagree-
ment and the source of the largest uncertainty for model predictions of climate
change (Bony et al. 2015). This is due to parametric uncertainty concerning
the best parameter value for a model.

An important difference between various parameterization schemes of a
climate process is the estimation of the parameter values associated with the
large-scale variables used to indirectly represent subgrid processes. Such pa-
rameter values are poorly constrained by first principles or observational data.
A common practice is to tune a climate model, whereby a scientist estimates
or makes ad hoc changes to the values of uncertain parameters to improve the
statistical fit between model results and observational data. Given the large
set of parameters required to start up and run a complex model like a GCM,
this parametric uncertainty is compounded. This is significant given that para-
metric uncertainty concerning ideal parameter values gives rise to uncertainty
about model predictions and behavior.
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Scientific practices, like tuning, can limit the value of using model fit as-
sessments to build confidence in model predictions. Model fit assessment, as-
sessing the statistical fit of model results to observational data, is a poor indi-
cation of the model’s ability to adequately represent key processes and predict
the observed values of variables related to those processes since themodelwas
deliberately tuned to achieve fit to observational data. Extensively tuning a
model’s parameters to fit past data undercuts the model’s skill in making reli-
able predictions about a future climate that is different from the past and pre-
sent climate to which the model parameters were tuned.

Traditional parameterization methods face challenges from parametric un-
certainty and widespread practices like parameter tuning. Both challenges are
rooted in the indirect representation of key processes that provides a weaker-
than-needed constraint onmodel projections. These limitations give rise to the
development of cloud-resolving models (CRMs).
3. Cloud-Resolving Models. A CRM is a high-resolution model that di-
rectly represents subgrid processes like deep convective clouds. As a result,
CRMs lead to significant improvements in model predictions and reduce
model uncertainty (Prein et al. 2015, 340).

Example: Zelinka et al. (2017).—The following example highlights how
high resolution process models have advanced scientific understanding and
reduced uncertainty. In the Third Assessment Report of the UN Intergov-
ernmental Panel on Climate Change (IPCC), Stocker et al. state that the accu-
rate and reliable simulation of climate change is contingent on climatemodels’
adequate representation of climate processes, especially feedback processes
(2001, 419–31). Cloud feedback processes are the source of “the greatest un-
certainty in future projections of climate” and, in fact, “even the sign of this
feedback remains unknown” (419), with some models producing a positive
net feedback and others producing a negative net feedback. However, by
the IPCCFifthAssessmentReport, scientistswere able to confidently (90%con-
fidence, “very likely”) state that “the sign of the net radiative feedback due to
all cloud types is . . . likely positive” (Zelinka et al. 2017, 676) with all global
climate models simulating a positive net cloud feedback.

Zelinka et al. attribute the improvement in model estimates of cloud feed-
back across five IPCC assessment reports to “high resolution processmodels”
that “illuminated the competing processes that govern changes in low cloud
coverage and thickness” (2017, 677). This is because process models directly
represented low cloud processes, like cloud microphysics and phases, which
were found to produce positive feedbacks, thus improving model estimates of
net radiative feedback. The direct representation of such processes introduces
additional physical and empirical constraints that improve climate models’
predictive performance.
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However, although a CRM has substantial advantages over traditional
parameterizations, it is too computationally intensive to run at a global scale
for climate prediction. As such, scientists are developing NNPs in an attempt
to capture the predictive advantages of the CRMwithout directly representing
clouds and convective processes.
4. Neural Network Parameterizations

4.1. Artificial Neural Networks. Neural networks have been successfully
used in a wide array of applications such as image recognition, self-driving
cars, and so on. Given a large body of data, neural networks are trained to de-
scribe the evolution of nonlinear processes. Many climate processes are non-
linear, and different components of the climate system interact in a nonlinear
way. Because of the immense complexity of the climate system and the tech-
nical limitations of computing power, it is necessary to approximate the non-
linear functions that describe climate processes. ANNs have a property, the
universal approximation function, that enables the ANN to approximate any
nonlinear deterministic function. This property holds irrespective of the char-
acter of the application (Earth’s climate system) or limited knowledge of un-
derlying processes (cloud-related processes) that may pose a challenge for the
development of a clear physically based algorithm (Schmidhuber 2015). Thus,
ANNs are a promising method by which scientists can better incorporate
cloud-related processes, like convection, which cannot be adequately repre-
sented by physical equations in GCM.

4.2. Neural Network Parameterization. Scientists are training an ANN
to learn the improved representation of convective clouds from a CRM.
This involves fitting a statistical model to the output data of a CRM. The
ML model predictions are then repeatedly compared to the CRM predictions
with the aim ofminimizing error between theMLmodel output andCRMout-
put. Thus, theMLmodel learns themapping between the input and output var-
iables from the CRM, without being explicitly programmed. The trained neu-
ral network then replaces the traditional parameterization in a GCM (now a
hybrid GCM) and interacts with other parts of the model.

Climate scientists check for three thingswhen testing theNNP:whether the
hybrid GCMwith theNNP can accurately simulate (1) basic climate statistics,
(2) patterns of climate variability and extreme events, and (3) climate change.
The ability to simulate climate change is a test of the generalizability of the
NNP beyond the training data. Does the hybrid GCM exhibit model fit for cli-
mate statistics and variability because the NNP memorized the CRM data or
because it learned some basic physical relations underlying the CRM output
data and driving climate change from the CRM? This is important because
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one of the aims of developingMLparameterizations is to generate insight into
physical processes from large climate data sets (Monteleoni et al. 2013; Gan-
guly et al. 2014).

Example: Rasp et al. (2018).—Rasp et al. (2018) train a nine-layer-deep
neural network to learn atmospheric subgrid processes from a multiscale
model that explicitly resolves convection. They use Community Atmosphere
Model v3.0 (SPCAM) as the CRM. This CRM explicitly represents deep con-
vective clouds and uses parameterizations for small-scale turbulence and
cloud microphysics. The CRM is embedded in each grid column of the GCM.
The embedded CRM outputs predictions of the subgrid tendencies of climate
variables like humidity as a function of the atmospheric state at each grid col-
umn and for every time step. A neural network is trained on a year’s worth of
CRM output data for these variables and generates its own predictions of the
output variables. It is tested to see whether it can learn from the explicitly rep-
resented convection in SPCAM.

Rasp et al. then replace a traditional parameterization in a GCM with the
trained neural network. The neural network version of CAM is called Neural
Network Community Atmosphere Model (NNCAM), and they run simula-
tions for 5 and 50 years. A key test for Rasp et al. iswhether the neural network
can learn from SPCAM to avoid the shortcomings characteristic of traditional
parameterizations, such as a double ITCZ (a precipitation bias). They then run
a stablemultiyear predictive simulation using the hybridGCMwith the trained
neural network.
5. What Machines Fail to Learn

5.1. Failure of Generalizability. When scientists speak of ML models
competing or beating physically based climate models, they generally mean
in terms of predictive performance. It is widely accepted that ML models,
neural networks in particular, are highly predictive and generalize very well
but at the expense of being “black boxes” or opaque to scientific understand-
ing and physical interpretation (McGovern et al. 2019).

Generalizability is a question of how well the ML model learns by testing
its predictive skill in new situations.With respect to Rasp et al.’s (2018) study,
can NNCAM accurately simulate climate and learn the effects of unprece-
dented forcing levels, like high sea surface temperatures of 4 K, which are
not seen in the training data? Can neural nets learn the effects of extremely
high CO2 levels or predict climate system behavior in areas not included in
the training data set?

Unfortunately, ML parameterizations fail to generalize. Despite Rasp et al.’s
claims that “NNCAM’s ability . . . represents a major advantage compared
with traditional parameterizations” (2018, 9687), NNCAM fails to generalize
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outside the training data set. The failure in generalizability is a significant
blow to the utility of NNPs in GCMs for climate model prediction.

5.2. NNCAMFailure and Beyond. Despite initially positive results, the
hybrid GCM (NNCAM) generalizes poorly to out-of-sample temperatures.
NNCAM undergoes three sensitivity tests with perturbed sea surface temper-
atures to assess the parameterization’s generalizability outside the range of its
training data. NNCAM is able to run stably with sea surface temperature per-
turbations up to 3 K. However, when the perturbations have an amplitude of
4 K, the NNCAM is unable to generalize: “the ITCZ signal is washed out and
unrealistic patterns develop in and above the boundary layer. . . . As a result the
temperature bias is significant, particularly in the stratosphere” (Rasp et al.
2018, 9688). For these reasons, Rasp et al. conclude that “the neural network
cannot handle temperatures that exceed the ones seen during training” (9687).
Rasp et al. attribute this failure of generalizability to the traditional problem
of overfitting in ML (9688).

This failure in generalizability is a recurring problem for ML parameteri-
zationmodels (see table 1).2 The consistent failure to generalize is problematic
on two fronts. First, the goal of adopting ML methods in climate modeling
was to leverage the advantages of CRMs for global climate prediction. Inad-
equate predictive skill is a failure to fulfill this primary aim. Second, neural
networks are often presumed to be highly predictive but not explanatory.
Much attention has been paid to opening the “black box” of neural networks
and the challenges neural networks pose for understanding and explanation
(McGovern et al. 2019). However, surprisingly, prediction is also a challenge
for neural networks in climate science applications. In the next section, I offer
an explanation that relates NNPs’ lack of process representation to their pre-
dictive inadequacy.

6. What Went Wrong? An Explanation. ML parameterizations fail to
generalize because, as Rasp et al. note, they overfit the CRM output data. In
the process of training the neural network on the output CRM data, the neural
network remembers and reproduces themapping between the input and output
variables of that particular CRM data set instead of learning the general phys-
ical or causal relations that underlie the CRM output data. As such, the neural
network fails to accurately predict outside the training data set even though it
fits the CRM data very well—too well in fact.

There are generally two ways to improve a model’s ability to predict out
of sample: improving and evaluating process representations. Both strategies
2. Scher and Messori (2019) investigate the generalization properties of neural networks
for climate science. Their findings are directly relevant for, but not limited to, the gen-
eralizability of convective parameterizations.
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impose physical and empirical constraints that are more robust against over-
fitting than model fit assessment. This is important because NNPs are partic-
ularly vulnerable to overfitting due to the training of NNPs on previously
tuned CRMs. However, ML parameterizations like NNPs do not represent
processes directly or indirectly, ruling out both strategies for improvingmodel
predictions, leaving scientists with model fit assessment as the primary form
of model evaluation. This makes for an unfortunate dilemma.
6.1. From Tuning to Training and Back Again. The original concern
with using model fit assessment to support a model’s adequacy for purpose
was thatmodel performancemay be due to ad hoc tuning rather than amodel’s
accurate representation or prediction of climate processes. This concern is ex-
acerbated with neural network models that are trained on a CRM whose pa-
rameters have been individually tuned to observational data and that may still
incorporate parameterized components.

For example, the CRM in the Rasp et al. (2018) study—SPCAM—still
parameterizes cloud microphysics and small-scale turbulence. The CRM in-
cludes processes that are directly represented and others that are parameterized
because they are not well understood. The values of those parameters are es-
timated to maximize the statistical fit of the CRM’s output with the observa-
tional data. TheANN is then trained on the output data of the previously tuned
CRM.NNP predictions are then repeatedly compared to theCRMoutput with
the aim of minimizing error between the NNP predictions and CRM output
(see fig. 1). This can be summarized, as follows.

1. P is a key parameter in a CRM. Scientists may tune the parameter, or
estimate the value of P, to maximize the statistical fit between the ob-
servational data and the CRM output.

2. A neural network is trained on the output data of the CRM, which are
calculated from the CRM as a whole including P.

3. NNP predictions are repeatedly compared to the CRM outputs with
the aim of minimizing the statistical distance between the CRM and
NNP predictions.
86/71487
TABLE 1. STUDIES THAT INVESTIGATE MACHINE LEARNING CONVECTIVE

PARAMETERIZATIONS AND THEIR GENERALIZABILITY

Study Does It Generalize?

Rasp, Pritchard, and Gentine (2018) No
O’Gorman and Dwyer (2018) No
Scher and Messori (2019) No
Yuval and O’Gorman (2020) No
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This means neural network predictions may fit with CRM predictions for
any number of reasons: (1) chance, (2) adequacy, (3) tuning/overfitting, or
(4) some combination of these.

Training ML parameterizations on previously tuned CRMs has two con-
sequences. First, it is more challenging to identify how model performance
depends on tuning and training procedures. Second, it diminishes the epi-
stemic import of model fit assessment, the only form of model evaluation
available. It is more likely that there would be good model fit whether the
model is or is not adequately predictive out of sample because the purpose
of tuning and training is to optimize model fit to observational and CRM out-
put data, respectively. The iterative training of an NNP on a previously tuned
CRM makes 3 the most likely explanation for model fit.
6.2. Potential Objection. Some may object that this concern is over-
blown. As long as the variables assessed for model fit are distinct from
the parameters subject to tuning methods, then the epistemic value of good
model fit can be upheld. In fact, the CRM parameters most likely to be tuned
in an ad hoc manner are, for example, cloud microphysics parameters, not
variables associated with directly represented convective clouds or large-
scale variables like temperature. When the NNP is trained on the CRM,
it is being evaluated for model fit with respect to mean climate statistics like
mean temperature. This independence of the variables tuned and variables
Figure 1. Visual representation of the cascade of uncertainty in neural network pa-
rameterizations due to model tuning and training practices.
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evaluated for fit ought to dispel worries about the dependence of fit or per-
formance on tuning practices.

However, in the development of the NNP, we are concerned not just with
tuning but with tuning coupled with training practices. The independence is
no longer that of just the variable assessed for fit and the parameter tuned.
Scientists now face the threefold challenge of distinguishing whether per-
formance depends on tuning, training, or the compounded effects of train-
ing a model on a previously tuned CRM. Complex dependencies arise out
of practices and interactions that span three related contexts: observational
data, the CRM, and the neural network model. Put simply, epistemic opac-
ity is deepened in more than one way (Alvarado and Humphreys 2017).

Furthermore, we know that the neural network model is trained on CRM
data concerning the same climate variables for which it is subsequently eval-
uated usingmodelfit assessment. For example, inRasp et al. (2018), NNCAM
is trained on 140 million training samples from SPCAM, about a year’s worth
of training data, for temperature and wind profiles. Rasp et al. then evaluate
NNCAM’s ability to reproduce SPCAM’s climate with respect to temperature
and wind profiles (9685). Neural networks improve performance via training
methods whose efficacy relies on a dependence between the variables used in
training and those evaluated for fit with the CRM output data. Training im-
proves performance because it exploits exactly the type of dependence that
scientists need to rule out in order for model fit evaluations to have epistemic
value. Otherwise, scientists risk overtuning or overfitting to past or recent
conditions, and “the model’s predictive accuracy might well deteriorate as
GMST projections are made for farther and farther into the future” (Parker
2009, 239)—a failure in generalizability.

6.3. Significance. This is a significant concern since the evaluation of
the NNP centers on model fit assessment. Rasp et al. assess the hybrid GCMs
simulation of (1) key climate statistics like mean climate and climate variabil-
ity, (2) properties like energy conservation, and (3) the degree to which the
hybrid GCM can generalize outside the training data. They do so by compar-
ing NNCAM’s ability to reproduce SPCAM’s climate, a form of model fit as-
sessment whose value relies on the improved statistical fit of SPCAM to ob-
servational data relative to the traditional parameterization. Rasp et al. find
that the hybrid GCM, NNCAM, successfully reproduces important aspects
of the SPCAM training model’s mean climate, key patterns of climate vari-
ability, and effectively conserves energy (2018, 9687). This is taken to support
NNCAM’s adequacy for accurately representing and predicting the outcome
of processes associated with mean climate statistics, variability, and thermo-
dynamic principles. Rasp et al. claim that the neural network learned two
things from the data set: (1) the higher-level concept of energy conservation
86/714877 Published online by Cambridge University Press
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and (2) the physical relation between input and output variables. Thus, they
conclude that NNCAM’s performance “is to some extent unexpected and
represents a major advantage compared with traditional parameterizations”
(9687) and take their study to present a “paradigm shift” in the design of sub-
grid parameterizations (9688).

However, if the good model fit of NNCAM to the CRMmodel—whether
for mean statistics, variability, or thermodynamics—is due to overfitting
that particular CRM data set, then model fit is a poor test of NNCAM’s
ability to learn either (1) the higher-level concept of energy conservation or
(2) the physical relation between input and output variables. The failure of
NNCAM’s generalizability outside the training data supports the attribution
of NNCAM’s performance to the extensive tuning and training of the NNP.

Contrary to the claims of Rasp et al., the NNP has failed to learn any mean-
ingful underlying principle or physical relations among relata. Rather, the NNP
cannot make accurate or reliable predictions for temperatures that lie outside of
the range to which it had been repeatedly and iteratively made to fit with by the
training procedure. The limited success of the NNP with respect to the training
data is due to the development and evaluation methods used in connection with
the NNP, not the NNP’s having learned or captured underlying relations that
give rise to those mean climate statistics, variability, and so on.

6.4. Summary. Improving and evaluating process representations are
primary means of improving the reliability of model predictions and provide
safeguards against overfitting through physical/empirical constraints onmodel
predictions. This is especially valuable in the context of NNPs and other ML
applications for which overfitting is a particularly trenchant challenge due to
the unique coupling of tuning and training practices in the development pro-
cess. But, such process-based forms ofmodel improvement and evaluation are
unavailable because NNPs do not directly or indirectly represent climate pro-
cesses. This leaves scientists withmodel fit assessment as the only and primary
form of model evaluation for NNPs. However, model fit assessment is not ro-
bust against overfitting and is of limited epistemic value due to the tuning and
training methods involved in ML model development. Thus, the replacement
of traditional and cloud-resolving parameterizations with NNPs undermines
the reliability of model projections. Traditional and cloud-resolving parame-
terizations represented processes directly or indirectly, and this process repre-
sentation has added an irreducible value for the reliability ofmodel predictions
because it (1) provides physical/empirical constraints and (2) facilitates forms
of model development and evaluation that guard against overfitting. This is
particularly important for making reliable out-of-sample predictions. The ad-
vent of ML methods, like neural networks, transforms the development and
evaluation of climate model parameterizations—not always for the better.
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7. Conclusion. One of the central aims of Rasp et al.’s development of an
NNP was to capture all the advantages of a CRM’s improved process repre-
sentation at a fraction of the computational cost (2018, 9684). However, the
NNP did not represent those processes; it attempts to bypass the direct and in-
direct representation of physical processes that give rise to the output data by
identifying and reproducing quantitative relations that hold among variables
in the CRM output data. In short, the trained NNP fails to learn convection
and generalize beyond its training data because it fails to represent the causal
convective processes that relate the climate variables of interest. One cannot,
as Rasp et al. had hoped, reap the predictive advantages of high-resolution
cloud models while leaving out the key reason for their improved perfor-
mance—the direct and improved representation of subgrid processes that gov-
ern model predictions. The very representation of processes adds significant
and irreplaceable value for the reliability of climate model predictions.
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