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Abstract

As machine learning has gradually entered into ever more sectors of public and private
life, there has been a growing demand for algorithmic explainability. How can we
make the predictions of complex statistical models more intelligible to end users?
A subdiscipline of computer science known as interpretable machine learning (IML)
has emerged to address this urgent question. Numerous influential methods have been
proposed, from local linear approximations to rule lists and counterfactuals. In this
article, I highlight three conceptual challenges that are largely overlooked by authors
in this area. I argue that the vast majority of IML algorithms are plagued by (1)
ambiguity with respect to their true target; (2) a disregard for error rates and severe
testing; and (3) an emphasis on product over process. Each point is developed at length,
drawing on relevant debates in epistemology and philosophy of science. Examples and
counterexamples from IML are considered, demonstrating how failure to acknowledge
these problems can result in counterintuitive and potentially misleading explanations.
Without greater care for the conceptual foundations of IML, future work in this area
is doomed to repeat the same mistakes.

Keywords Artificial intelligence - Explainability - Scientific explanation - Causality -
Severe testing

1 Introduction

Machine learning (ML) is ubiquitous in modern society. Complex learning algorithms
are widely deployed in private industries like finance (Heaton et al., 2017) and insur-
ance (Lin et al., 2017), as well as public services such as healthcare (Topol, 2019) and
education (Peters, 2018). Their prevalence is largely driven by results. ML models
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outperform humans not just at strategy games like chess (Silver et al., 2018) and Star-
Craft (Vinyals et al., 2019), but at important scientific tasks like antibiotic discovery
(Stokes et al., 2020) and predicting protein structure (Jumper et al., 2021).

High-performance algorithms are often opagque, in the sense that it is difficult or
impossible for humans to understand the internal logic behind individual predictions.
This raises fundamental issues of trust. How can we be sure a model is right when
we have no idea why it predicts the values it does? Accuracy on previous cases may
suggest reliability, but epistemologists are well aware that a good track record is
no guarantee of future success. Just as inductive inferences can lead us astray when
presumptions of uniformity fail, so models can err when deployed in new contexts.
This can lead to discriminatory predictions with potentially disastrous consequences
in high-stakes settings like healthcare (Obermeyer et al., 2019) and criminal justice
(Angwin et al., 2016). European regulators, sensitive to these concerns, have begun
introducing explainability guidelines into data protection law, although the proper
interpretation of the relevant texts remains a matter of some dispute (Selbst & Powles,
2017; Wachter et al., 2017).

While interpreting models is by no means a new concern in computer science
and statistics, it is only in the last few years that a formal subfield has emerged to
address the issues surrounding algorithmic opacity. I shall refer to this subdiscipline
as interpretable machine learning (IML), also sometimes called explainable artificial
intelligence (XAI). I employ the former term because it emphasizes the subjective goal
of interpretation over the (ostensibly) objective goal of explanation, while simultane-
ously specifying the focus on ML as opposed to more generic artificial intelligence
tasks. IML comprises a diverse collection of technical approaches intended to render
statistical predictions more intelligible to humans.! My focus in this article is pri-
marily on model-agnostic post-hoc methods, which attempt to explain the outputs of
some underlying target function without making any assumptions about its form. Such
explanations may be global (spanning the entire feature space) or local (applying only
to some subregion of the feature space). Both types are considered here.

The last few years have seen considerable advances in IML, several of which will
be examined in detail below. Despite this progress, I contend that the field has yet to
overcome or even properly acknowledge certain fundamental conceptual obstacles. In
this article, I highlight three in particular:

1. Ambiguous fidelity. Everyone agrees that algorithmic explanations must be faith-
ful—but to what exactly? The target model or the data generating process? Failure
to appreciate the difference has led to confusing and unproductive debates.

2. Errorrate control. The vast majority of IML methods do not even bother to quantify
expected error rates. This makes it impossible to subject algorithmic explanations
to severe tests, as is required of any scientific hypothesis.

3. Process vs. Product. Current approaches overwhelmingly treat explanations as
static deliverables, computed once and for all. In fact, successful explanations are
more of a process than a product. They require dynamic, iterative refinements
between multiple agents.

I For good overviews of the current state of the art, see (Barredo Arrieta et al., 2020; Das & Rad, 2020;
Molnar, 2019; Vilone & Longo, 2020).
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A number of other conceptual challenges surrounding IML have already garnered
much attention in the literature, especially those pertaining to subtle distinctions
between explanations, interpretations, and understanding (Krishnan, 2020; Paez, 2019;
Zednik, 2019); the purported trade-off between model accuracy and intelligibility
(Rudin, 2019; Zerilli et al., 2019); as well as typologies and genealogies of algorithmic
opacity (Burrell, 2016; Creel, 2020). I have little to add to those debates here, which I
believe have been well argued by numerous authors. The challenges I highlight in this
article, by contrast, are woefully under-examined despite their obvious methodologi-
cal import. To make my case, I shall draw upon copious literature from epistemology
and philosophy of science to unpack points (1)-(3) and demonstrate their relevance for
IML through a number of hypothetical and real-world examples. While each challenge
is unique, together they point toward a singular conclusion—that despite undeniable
technical advances, the conceptual foundations of IML remain underdeveloped. Fortu-
nately, there are glimmers of hope to be found in this burgeoning discourse. I consider
exceptions to each trend that collectively suggest a promising horizon of possibility
for IML research.

The remainder of this article is structured as follows. I review relevant background
material in Sect. 2, framing IML as a demand for causal explanations. In Sect. 3, I
distinguish between two oft-conflated notions of explanatory fidelity, revealing the
apparent contradiction to be a simple confusion between complementary levels of
abstraction. In Sect. 4, I draw on error-statistical considerations to argue that popular
IML methods fail to meet minimal severity criteria, making it difficult to judge between
competing explanations. I defend a dialogic account of explanation in Sect. 5, arguing
that satisfactory solutions must include some degree of user interaction and feedback.
I conclude in Sect. 6 with a review of my findings and some reflections on the role
and limits of philosophy as a theoretical guide in critiquing and designing algorithmic
explanations.

2 Background

In this section, I provide necessary background on IML methods, as well as formal
details on empirical risk minimization and structural causal models. Building on Wood-
ward (2003)’s minimal theory of explanation, I frame the IML project as a certain sort
of causal inquiry. This perspective elucidates the conceptual challenges that follow,
as causal reasoning helps to disambiguate targets (Sect. 3), identify proper estimands
for inference (Sect. 4), and ensure fruitful explanatory dialogue (Sect. 5).

2.1 All IML is causal

Say some high-performance supervised learner f has been trained on copious volumes
of biomedical data, and diagnoses Jack with rare disease y. Jack’s general practitioner,
Dr. Jill, is as perplexed as he is by this unexpected diagnosis. Jack shows no outward
symptoms of y and does not match the typical disease profile. Treatment for y is
aggressive and potentially dangerous, so Jack wants to be certain before he proceeds.
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When Jack and Dr. Jill try to find out why f made this prediction, they receive a curt
reply from the software company that licenses the technology, informing them that
they should accept the diagnosis because f is very accurate. Most commentators would
agree that this answer is unsatisfactory. But how exactly should we improve upon it?
What is the proper form of explanation in this case?

I shall argue that what Jack and Dr. Jill seek is a causal account of why f made
the particular prediction it did. Following the interventionist tradition, I regard an
explanation as causal insomuch as it identifies a set of variables which, when set to
certain values, are sufficient to bring about the outcome in question; and, when set
to alternative values, are sufficient to alter the outcome in some prespecified way.
Woodward (2003, p. 203) formalizes these criteria, stating that model M provides a
causal explanation for outcome Y if and only if:

(1) The generalizations described by M are accurate, or at least approximately so,
as are the observations Y = y and X = x.

(i) According to M, Y = y under an intervention that sets X = x.

(iii) There exists some possible intervention that sets X = x’ (where x # x’), with
M correctly describing the value Y = y’ (where y # y’) that ¥ would assume
under the intervention.

The full details of Woodward’s program are beyond the scope of this article. However,
his minimal account of explanation is a valuable starting point for analysis. In Jack’s
case, we may satisfy these criteria empirically by finding some other patient who is
medically similar to Jack but receives a different diagnosis. Alternatively, we could
query the model f directly using synthetic data in which we perturb Jack’s input features
until we achieve the desired outcome. If, for instance, we devise an input vector x’
identical to Jack’s input x except along one dimension—say, decreased heartrate—and
the model does not diagnose this hypothetical datapoint with rare disease y, then
we may justifiably conclude that heartrate is causally responsible for the original
prediction. This kind of explanation constitutes at least one viable explanans for the
target explanandum.

Current IML approaches can be roughly grouped into three classes: feature attri-
bution methods, case-based explanations, and rule lists. The latter category poses
considerable computational challenges for large datasets, which may explain why the
first two are generally more popular. Local linear approximators, a kind of feature
attribution technique, are the most widely used approach in IML (Bhatt et al., 2020).
Notable instances include local interpretable model-agnostic explanations, aka LIME
(Ribeiro et al., 2016); and Shapley additive explanations, aka SHAP (Lundberg &
Lee, 2017). Specifics vary, but the goal with these methods is essentially the same—to
compute the linear combination of inputs that best explains the decision boundary
or regression surface near a point of interest (see Fig. 1). Counterfactual explana-
tions (Wachter et al., 2018), which account for predictions via synthetic matching
techniques like those described above, are another common approach. Variants of
LIME, SHAP, and counterfactual explanations have recently been implemented in
open-source algorithmic explainability toolkits distributed by major tech firms such

@ Springer



Synthese (2022) 200:65 Page50f33 65

(a,f(a))

y=rf'(a)(x—a)+f(a)

Fig. 1 A nonlinear function f(x) (blue curve) is approximated by a linear function L(x) (green curve) at the
point x = a. Since L is simpler than f, it may help users better understand the model’s predictive behavior
near the input. Computing such tangents is the basic idea behind local linear approximators like LIME and
SHAP

as Google,” Microsoft,> and IBM.* When I speak of “popular IML methods”, I have
these algorithms in mind.

No matter one’s methodological approach, the central aim of IML is always, more
or less explicitly, to answer questions of the form:

Q. Why did model f predict outcome J; as opposed to alternative y; # 3; for input
vector x;?
A global explanation answers Q for each i € [n], while local explanations limit them-
selves to individual samples. At either resolution, successful answers must satisfy
Woodward’s three criteria. Those that fail to do so are unfaithful to their target (i), or
else do not provide necessary (iii) or sufficient (ii) conditions for the explanandum.5
This is perhaps most obviously true in the case of rule lists (see, e.g., Ribeiro et al.,
2018), which specify sufficient conditions (i.e., causal rules) for certain sorts of model
predictions. An explanatory rule list for Jack’s diagnosis may say something like, “If
heartrate is decreased, then predict y’.” The causal connection is similarly straightfor-
ward for feature attribution methods, which attempt to quantify the predictive impact
of particular variables. In Jack’s case, it may be that heartrate receives the largest vari-
able importance score because it has the greatest causal effect on model outcomes.
Interestingly, the creators of the counterfactual explanation algorithm explicitly moti-
vate their work with reference to Lewis’s theory of causation (1973). According to
this view, we causally explain Jack’s prediction by appealing to the nearest possible
world in which he receives a different diagnosis. Though there are important differ-
ences between this account and the interventionist theory I endorse here, the citation

2 See https://pair-code.github.io/what-if-tool/.
3 See https://github.com/interpretml/interpret.
4 See http://aix360.mybluemix.net/.

5 This insight has recently led several groups of IML researchers to design tools that directly optimize for
these desiderata. See (Galhotra, Pradhan, & Salimi, 2021; Mothilal et al., 2021; Watson et al., 2021).
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only serves to underscore the reliance of IML on causal frameworks—as well as the
ambiguity this reliance can engender.

If the causal foundations of IML are not always clear, perhaps this is because
most authors in this area are steeped in a tradition of statistics and computer science
that has historically prioritized prediction over explanation (Breiman, 2001; Shmueli,
2010). I will briefly formalize the distinction between supervised learning and causal
modelling to pre-empt any potential confusion and ground the following discussion
in established theory.

2.2 Empirical risk minimization and structural causal models

A supervised learning algorithm is a method for predicting outcomes ¥ € R¥ based
on inputs X € R? with minimal error.® This requires a training dataset of input/output
pairs z; = {(x;, y,-)}f’:1 , where each sample z; represents a draw from some unknown
distribution P(Z). An algorithm is associated with a function space JF, and the goal is
to find the model f € F that minimizes some predetermined loss function L(f, Z),
which quantifies the distance between model outputs f(X) = Y and true outcomes Y.
Common examples include mean squared error for regression and cross-entropy for
classification. The expected value of the loss is the risk, and empirical risk minimization
(ERM) is the learning strategy whereby we select whichever model attains the minimal
loss within a given function class 7. ERM is provably consistent (i.e., guaranteed to
converge uniformly upon the best model in ) under two key assumptions (Vapnik &
Chervonenkis, 1971): (1) samples are independently and identically distributed (i.i.d.);
and (2) F is of bounded complexity.’

The ERM approach provides the theoretical basis for all modern ML techniques,
including support vector machines (Scholkopf & Smola, 2017), boosting (Schapire
& Freund, 2012), and deep learning (Goodfellow et al., 2016).8 As noted in Sect. 1,
these algorithms have proven incredibly effective at predicting outcomes for complex
tasks like image classification and natural language processing. However, critics argue
that ERM ignores important structural dependencies between predictors, effectively
elevating correlation over causation. The problem is especially acute when variables
are confounded. To cite a famous example, researchers trained a neural network to help
triage pneumonia patients at Mount Sinai hospital in New York (Caruana et al., 2015).
The model was an excellent predictor, easily outperforming all competitors. Upon
close inspection, however, the researchers were surprised to discover that the algorithm

6 In the classification setting, we typically one-hot encode the k-class variable Y such that Y € {0, 1}% and
Vi, le;l Vij = 1‘. While regressiops typically assume a univariate target., more high—dimensignal outputs
are possible; this is known as multitask learning (Caruana, 1997). For simplicity’s sake, I will generally
assume that k = 1. Except where specified otherwise, all the analysis in this paper applies equally to
regression and classification problems, as well as cases where k > 1.

7 Exact proposals for bounding the complexity of F vary. In this article, I am more concerned with
assumption (1) than (2), and so will have little to say about VC dimension, Rademacher complexity, or
other learning theoretic measures. For details, see (Shalev-Shwartz & Ben-David, 2014).

8 Note that though ERM may motivate these algorithms, they do not all enjoy uniform convergence
guarantees. For instance, radial basis function kernels are known to be of infinite VC dimension, as are over-
parametrized mixed layer networks. However, both methods work well in many settings. In this section, I
identify ERM with the goal of minimizing empirical risk rather than the guarantee of uniform convergence.
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assigned low probability of death to pneumonia patients with a history of asthma, a
well-known risk factor for emergency room patients under acute pulmonary distress.
The unexpected association was no simple mistake. Because asthmatics suffering from
pneumonia are known to be high risk, doctors quickly send them to the intensive care
unit (ICU) for monitoring. The extra attention they receive in the ICU lowers their
overall probability of death. This confounding signal obscures a more complex causal
picture that ERM is fundamentally incapable of learning on its own.

Examples like this highlight the importance of interpretable explanations for high-
stakes ML predictions such as those commonly found in clinical medicine (Watson
et al., 2019). They also demonstrate the dangers of relying on ERM when the i.i.d.
assumption fails. The external validity of a given model depends on structural facts
about training and test environments (Pearl & Bareinboim, 2014), e.g. the assignment
mechanism that dictates which patients are sent to the ICU. If we were to deploy the
pneumonia triage algorithm in a new hospital where doctors are not already predis-
posed to provide extra care for asthma patients—perhaps a hospital where doctors rely
exclusively on a high-performance ML model to prioritize treatment—then empirical
risk may substantially underestimate the true generalization error. In light of these
considerations, a number of prominent authors have advocated for an explicitly causal
approach to statistical learning (Pearl, 2000; Peters et al., 2017; Spirtes et al., 2000; van
der Laan & Rose, 2011). The basic strategy can be elucidated through the formalism of
structural causal models (SCMs). A probabilistic SCM M isatuple (U, V, F, P(u)),
where U is a set of exogenous variables, i.e. unobserved background conditions; V is
a set of endogenous variables, i.e. observed features; F is a set of deterministic func-
tions mapping causes to direct effects; and P(u) is a probability distribution over U.
An SCM induces an associated graph, where nodes are variables and directed edges
denote causal relationships (see Fig. 2). A fully specified M provides a map from
background conditions to a joint distribution over observables, M : U — P(v).

With SCMs, we can express the effects not just of conditioning on variables,
but of intervening on them. In graphical terms, an intervention on a variable effec-
tively deletes all incoming edges, resulting in the submodel M,. Interventions
are formally expressed by Pearl’s (2000) do-operator. The interventional distribu-
tion P(Y|do(X = 1)) may deviate considerably from the observational distribution
P(Y|X = 1) within a given M. For instance, if all and only men (Z = 1) take some
drug (X = 1), then health outcomes Y could be the result of sex or treatment, since

(a) (b)

Fig. 2 Simple examples of causal graphs. Solid edges denote observed causal relationships, dashed edges
unobserved. (a) A model with confounding between variables X and Y. (b) The same model after intervening
on X, thereby eliminating all incoming causal effects and removing the confounding signal from Z
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P(Y|X =1) = P(Y|Z = 1). However, if we randomly assign treatment to patients
independent of their sex, then we may get a very different value for P(Y|do(X = 1)),
especially if there is a confounding effect between sex and outcomes, for example if
men are more likely than women to respond to treatment. Only by breaking the associ-
ation between X and Z can we disentangle the relevant from the spurious effects. This
is the motivating logic behind randomized control trials (RCTs), which are widely used
by scientists and regulatory agencies to establish treatment efficacy.” The do-calculus
provides a provably complete set of rules for reasoning about interventions (Shpitser
& Pearl, 2008), including criteria for deciding whether and how causal effects can be
estimated from observational data.

Though the models we seek to explain with IML tools are typically ERM algo-
rithms, the causal nature of this undertaking arguably demands an SCM approach.
The mismatch between these two modelling strategies sets the stage for a number of
conceptual problems. Sullivan (2020) argues that algorithmic opacity derives not from
any inherent complexity in models or systems per se, but rather from the “link uncer-
tainty” that results when there is little empirical evidence connecting the two levels.
Even when such links are well-established, however, it is not always clear which level
is the intended target of explanation. Causal reasoning, as formalized by SCMs, can
help diagnose and resolve issues of link uncertainty by making the assumptions of any
given IML tool more explicit.

3 Ambiguous fidelity

One obvious desideratum for any IML tool is accuracy. We want explanations that are
true, or at least probably approximately correct, to use Valiant’s memorable phrase
(1984). This accords with the first of Woodward’s three criteria cited above. In this
section, I argue that this uncontroversial goal is underspecified. Though the problem
emerges for any IML approach, I will focus here on a longstanding dispute between
proponents of marginal and conditional variable importance measures, two popular
kinds of feature attribution methods. I show that the debate between these two camps
is dissolved (rather than resolved) as soon as we recognize that each kind of measure is
faithful to a different target. The question of which should be preferred for a given IML
task cannot be answered without taking into account pragmatic information regarding
the context, level of abstraction, and purpose of the underlying inquiry.

3.1 Systems and models

I'have argued that IML’s fundamental question Q poses a certain sort of causal problem.
However, it is important to note how Q differs from more familiar problems in the
natural and social sciences. Toward that end, I briefly review three well-known and
interrelated challenges that complicate efforts to infer and quantify causal effects.

9 The supremacy of RCTs for causal inference has not gone unchallenged. See (Deaton & Cartwright,
2018; Kaptchuk, 2001; Pearl, 2018; Worrall, 2007).
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The problem of induction. Although commonly associated with Hume (1739, 1748)
in the anglophone tradition, inductive skepticism goes back at least as far as Sextus
Empiricus. The basic idea, familiar to philosophy undergraduates the world over, is
that inference from particular observations to universal generalizations relies on some
assumption of natural uniformity. For example, the leap from “All hitherto observed
swans have been white” to “All swans are white” presumes that the regularity in ques-
tion, corroborated in some bounded region of space and time, holds everywhere (and
potentially always). Skeptics argue that such a premise cannot be justified by reason
(because it is conceivably false) or experience (as this would be circular). This poses
major challenges for any account of causality that seeks to go beyond mere correla-
tions, since, according to the inductive skeptic, deeper structures are unobservable in
principle. “One event follows another,” Hume writes, “but we never can observe any
tie between them. They seem conjoined, but never connected” (1748, §7, Part II).

Possible confounders. Reichenbach (1956) conjectures that any sufficiently persis-
tent statistical dependency between two variables X and Y can only be explained by
one of three circumstances: either (i) X causes Y; (ii) Y causes X; or (iii) some third
variable Z causes both X and Y. In the latter case, we say that Z is a confounder, since
it induces a spurious correlation between X and Y that tempts us into misclassifying
an instance of (iii) as an instance of (i) or (ii). For example, demographic factors may
spell disaster for a clinical study if it turns out that treatment and control groups differ
substantially along relevant variables such as age or sex, as per the example above. The
problem is that we can never be certain we have controlled for all possible confounders,
because we are limited by unavoidable constraints on our budget, instruments, and/or
imagination. A version of this objection lies at the root of the Duhem-Quine thesis
(Duhem, 1954; Quine, 1960), which states that scientific theories are always under-
determined by evidence. Any observation can be made consistent with any theory, so
long as we are willing to add sufficient auxiliary hypotheses (e.g., make exceptions or
add latent confounders).

Counterfactuals. RCTs may be the gold standard of causal inference, but there are
fundamental limits to what they allow us to infer. This is because RCTs are designed
to reveal average rather than individual treatment effects. The trouble is that no sin-
gle individual can simultaneously enter into both treatment arms—a person either
does or does not undergo some intervention, and whichever path they take automat-
ically forecloses the alternative. This is what Holland (1986) calls “the fundamental
problem of causal inference”: that individual treatment effects require some form
of counterfactual reasoning. This inspired Rubin’s (1974) potential outcomes frame-
work, in which causal inference is treated as a missing data problem. Lewis (1973)
elevates this challenge into a unifying principle, reducing all causality to relations of
counterfactual dependence. Among analytic philosophers, Quine (1960, 1980) is per-
haps the most forceful in his opposition to this view, arguing that all talk of so-called
“possible worlds” is conceptually confused, not to mention ontologically profligate.
Dawid (2000) makes a statistical case against counterfactuals, reasoning that they are
unnecessary given careful Bayesian decision analysis.

Upon considering these issues, it may appear that IML researchers are in luck.
After all, when tracing causal effects from inputs to outputs in a supervised learning
algorithm, not one of these obstacles applies. Assuming that the target model is:
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(a) static (i.e., not retraining on the fly);
(b) deterministic (i.e., predictions do not involve random sampling); and
(c) accessible (i.e., researchers can query f at little or no cost),

then the task of causal inference should be remarkably straightforward. We can just
dial each predictor up and down at will, one at a time or in conjunction, to observe the
resulting behavior. In this scenario, the future will always resemble the past, there are
no possible confounders, and counterfactuals can be directly observed with the push
of a button.

However, matters are not so simple—and not just because assumptions (a), (b), and
(c) may not always hold.'? Recall the case of Jack. His unexpected diagnosis can be
appreciated on (at least) two distinct levels of abstraction (LoAs). On the one hand,
there is the model-LoA. At this level, when Jack asks Q, he is seeking information
about the diagnostic algorithm itself. What about f—its training data, parameters,
etc.—led to this particular prediction? On the other hand, there is the system-LoA.
At this level, when Jack asks Q, he is seeking information about Jack gua biological
organism. What set of physical circumstances account for the (presumed) fact that he
has rare disease y despite showing no apparent symptoms? Causal inference is trivial at
the model-LoA, where many IML tools implicitly operate, and notoriously challenging
at the system-LoA, where many practitioners expect and require explanations.

There is an inherent ambiguity in IML’s most obvious, uncontroversial goal. Of
course, we want algorithmic explanations that are true, or accurate, or faithful—but
faithful to what? The model or the system? Do we care more about the diagnostic
function that predicts Jack has rare disease y, or the biological facts that constitute
truth conditions for the prediction? The two can quickly come apart, even when f
attains perfect predictive accuracy. The issue, once again, is one of confounding. It
may be that heartrate is a reliable proxy for some unobserved biological mechanism
z that in fact drives y. Alternatively, heartrate may be strongly correlated with an
observed covariate w (perhaps another proxy for z) such that any perturbation of one
has an immediate effect on the other. We know that the synthetic datapoint x” achieves
the desired outcome y’, but there are legitimate concerns about how informative this
is when x’ is biologically impossible. The model f has no preconceived notions about
how interventions on one predictor may impact others, but nature inevitably imposes
certain non-trivial constraints. These are just a few of the problems that emerge when
we confuse explanatory levels of abstraction.

3.2 Variable importance measures

The dichotomy between model- and system-LoAs echoes a debate between advocates
of two different approaches to measuring variable importance (VI). As noted above,
feature attribution methods are an active area of IML research, especially local linear
approximators. The first major work in this area was arguably the quantitative input
influence algorithm, aka QII (Datta et al., 2016), although user-friendly Python imple-
mentations have made the aforementioned LIME (Ribeiro et al., 2016) and SHAP

10 For more on these points, see (Watson & Floridi, 2020, Sect. 4).
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(Lundberg & Lee, 2017) algorithms dominant in recent years. Methodological dif-
ferences notwithstanding, each of these algorithms attempts to answer Q by means
of a linear combination of input features optimized to hold around the point x;. Cru-
cially, these methods all assume that predictors are mutually independent, i.e. for all
J» k € [d] such that j # k, X; 1 X;. This enables something like the naive approach
described above, in which predictors may be dialed up and down at will without
concern for the plausibility of the resulting inputs.

Itis not always clear whether the authors fully appreciate just how strong the mutual
independence assumption really is, or just what its implications truly are. For exam-
ple, Ribeiro et al. pass over the point in silence. Datta et al. explicitly defend the
choice on causal grounds, which will be explored more thoroughly below. Lundberg
& Lee appear almost apologetic, explaining that feature independence is not so much
an assumption as an “approximation” (2017, p. 5). They go on to plead innocence
by association, pointing out that a similar move is made by many others in the field.
Subsequent work relaxed the assumption in the special case of tree-based models
(Lundberg et al., 2020), further indicating that the creators of SHAP were never fully
comfortable with the choice. A number of authors have criticized the original SHAP
algorithm for failing to model covariate dependencies and proposed various “improve-
ments” that incorporate conditional information (Aas et al., 2021; Frye et al., 2020;
Kumar et al., 2020). Meanwhile, Janzing et al. (2020) insist that the original SHAP
algorithm is sound, and that purported improvements are conceptually misguided.

I shall argue that every one of these authors is right—or at least that none of them
is entirely wrong. But that does not mean that the decision to incorporate or ignore
dependencies between covariates should be made lightly. On the contrary, the choice
has major implications for how results should be interpreted. In statistical terms, we
may formalize the difference as one between marginal and conditional association
measures. The null hypothesis of a marginal feature attribution test is:

HY X L{Y, X_j},

where X _; denotes a set of covariates. A conditional dependence measure, on the
other hand, tests against a different null hypothesis:

HS: X;LlY|X_;.

Observe that the former entails the latter, as conditional independence is just one
possible form of marginal independence. Since H is more restrictive, we may find
instances in which it holds but H{" does not. Specifically, this will be the case whenever
X ;’s marginal importance is high due to its association with X _; rather than Y.

The impulse to estimate feature importance in an entirely model-centric manner
that ignores covariate dependencies altogether is evident in permute-and-predict (PaP)
approaches, which take their inspiration from classical methods (Fisher, 1935). In
supervised learning contexts, the most famous PaP technique is Breiman’s (2001)
permutation importance for random forests. He proposes to estimate the VI of X ; ina
given forest f by comparing predictive performance on data before and after permuting
X j. Large post-permutation error inflation is interpreted as strong evidence that f relies
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on X to estimate outcomes Y. A more general “reliance” statistic is introduced by
Fisher et al. (2019), who derive uniform bounds for a number of PaP tests, as well
as analytic formulae for estimating reliance when models are additive functions in a
reproducing kernel Hilbert space. The partial dependence plot, originally proposed by
Friedman (2001), is another popular PaP method. These graphs visualize the change
in expected value of a function f as we marginalize over the empirical distribution of
a feature subset while holding values for the complementary subset constant.

Critics of PaP methods charge that marginal VI measures overstate the importance
of uninformative variables when predictors are highly correlated. This has been the
focus of considerable research in random forests, where numerous authors have pro-
posed alternatives designed to overcome this perceived shortcoming of Breiman’s
permutation importance (Altmann et al., 2010; Gregorutti et al., 2015; Mentch &
Hooker, 2016; Nembrini et al., 2018; Nicodemus et al., 2010; Strobl et al., 2008).
Other, more general tests of conditional independence often rely on model refitting
(Lehmann & Romano, 2005; Lei et al., 2018; Rinaldo et al., 2019) or kernel methods
(Doran et al., 2014; Fukumizu et al., 2008; Zhang et al., 2011), which can be compu-
tationally expensive for large datasets. In general, conditional independence testing is
statistically hard in the precise sense that any procedure that controls the false positive
rate at target level o cannot detect true positives for arbitrary alternative hypotheses
with sensitivity greater than o (Shah & Peters, 2020). This result is somewhat surpris-
ing given the fact that permutation tests are exact and uniformly valid in the marginal
case.

In a recent article with a blunt title—"Please stop permuting features: An explana-
tion and alternatives”—Hooker and Mentch (2019) provide an intuitive explanation
for how and why PaP methods can mislead. Permuting some X ; does not just break
its dependence with the target Y, but also with the remaining features X ;. When
covariance between predictors is high, the resulting inputs will tend to look unlike
anything in f’s training data. For example, Hooker & Mentch note that a PaP proce-
dure evaluating the importance of pregnancy status in a model f that also includes sex
would force f to predict outcomes for pregnant males as often as pregnant females.
Should f perform poorly on such datapoints—as we might expect—then pregnancy
will receive high VI, even if it is independent of the response Y. Since the efficacy of
supervised learning relies crucially on the i.i.d. assumption, which states that training
and test data are sampled from the same distribution, we should not be surprised to see
f err in this new environment. When queried with exotic data, synthetically generated
and far from its training manifold, the model has no choice but to extrapolate. Just
because a model struggles to extrapolate well from real observations to imaginary
hypotheticals does not mean that the permuted variable was predictive.

The validity of these objections notwithstanding, PaP methods occasionally boast
attractive theoretical properties. For instance, Fisher et al., (2019, Sect. 8) demon-
strate that under some common assumptions,'! their model reliance measure may
be decomposed into a sum of familiar terms from causal inference. Zhao and Hastie

1 These assumptions include conditional ignorability, which states that potential outcomes are independent
of treatment given covariates, and positivity, which states that propensity scores are bounded away from the
extrema of the unit interval. Neither assumption is trivial, but both are fairly common in causal inference.
See (Imbens & Rubin, 2015).
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(2019) observe that Friedman’s partial dependence function is formally identical to
Pearl’s (2000) backdoor adjustment when conditioning variables meet certain condi-
tions.!? In other words, the partial dependence of an outcome on a given feature subset
in a purely predictive model may have a natural interpretation as the causal effect of
those variables on the outcome. A similar idea lies behind Datta et al.’s (2016) QII pro-
cedure and Janzing et al.’s (2020) defense of the original SHAP method. Both groups
argue that marginalizing over covariates is the right choice because the ERM algo-
rithm itself does not explicitly model interdependencies. The resulting VI estimates
are therefore causal at the model-LoA.

3.3 Correctness theory of truth

To review—advocates of conditional VI measures argue that their method alone recov-
ers causal effects in the data generating process. Advocates of marginal VI measures
respond that their method alone recovers causal effects in the target model. The solu-
tion to this impasse, as foreshadowed in Sect. 3.1, lies in the realization that there is
no impasse at all. Proponents of marginal and conditional association tests are ask-
ing different questions. They should not be surprised to receive different answers.
One approach is preferable at the model-LoA, while the other performs better at the
system-LoA. There is no statistical inconsistency here, merely underspecified prag-
matics.

The essential role of pragmatics in ordinary language is highlighted by numer-
ous twentieth century philosophers (Austin, 1961; Grice, 1989; Strawson, 1964). For
a concise formalization that requires relatively little background, I turn to Floridi’s
(2011) correctness theory of truth (CTT). The complete details of Floridi’s episte-
mology of information are beyond the scope of this article; for our purposes, I shall
focus merely on how it clarifies the essential semantic work done (often implicitly)
by pragmatic auxiliaries. According to the CTT, information can always be polarized
into question/answer pairs—but these pairs may only be evaluated once we have spec-
ified a particular context, level of abstraction, and purpose (collectively labelled “CLP
parameters”). The decomposition takes the form of a sum:

i =[g+r]cLp

where i denotes the information in question, g the interrogative expression thereof,
and r a Boolean yes/no reply to g. The CLP indexing is essential to ground g, and
therefore define truth conditions for . Floridi cautions that “Queries cannot acquire
their specific meaning in isolation or independently of CLP parameters” (2011, p. 155).
This is most obviously the case when questions contain one or more indexicals—e.g.,
pronouns such as “I” and “she”, or qualifiers like “here” and “presently”—however,
the point applies much more broadly.

12° A set of variables Z satisfies the backdoor criterion relative to an ordered pair of variables (X;, X ;) in
a directed acyclic graph G if (i) no node in Z is a descendant of X;; and (ii) Z blocks every path between
X and X ; that contains an arrow into X;. See (Pearl, 2000).
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To borrow Floridi’s own example, consider the proposition “The beer is in the
fridge.” This sentence conveys some semantic information, which constitutes the LHS
of the above equation, i. The interrogative form of this sentence is ¢ = “Is there beer in
the fridge?” Such a question does not and cannot occur in a vacuum. It must be uttered
by and to embedded agents with certain interests and motivations. Call these agents
Inquirer and Responder. Perhaps Inquirer is preparing for a party (context). Or maybe
the question is not about the immediate circumstance, but about whether, in general,
Responder is in the habit of keeping beer in the fridge (level of abstraction). Inquirer
may be asking because she wants a cold beer, or perhaps because she just bought
some groceries and is worried they will not fit in the overcrowded fridge (purpose).
Note that these pragmatic considerations all interact with one another, and may not be
well distinguished in some cases. However, with sufficient modification of the CLP
parameters, we can always alter the meaning of g, and with it, truth conditions for r.

This lesson has immediate implications for IML. Our guiding question, as specified
in Sect. 2.1, is Q. But the proper interpretation of this query varies as a function of
the CLP parameters. For instance, if we have reason to believe that Jack’s unexpected
diagnosis is a result of algorithmic discrimination—e.g., that he was misdiagnosed
with disease y due to a sensitive attribute such as race—then we probably want to
focus on the model-LoA. Our goal here is simply to find out what the algorithm has
learned, in full awareness that this may deviate substantially from the ground truth.
In this case, marginal VI measures such as those provided by LIME and SHAP are
appropriate, and the causal inferences they license tell us how f relies on race to make
predictions. Alternatively, if we have full confidence inf, we may want IML methods to
help shed light on poorly understood mechanisms. Perhaps the algorithm has correctly
identified some elusive biomarker for y, and Dr. Jill would like an explanation of Jack’s
diagnosis at the system-LoA. In this case, conditional VI measures are needed in order
to find the right causal structure.

The choice of whether to assume the mutual independence of predictive features
cannot be determined by mathematical considerations alone, for it depends crucially
on the inquiring agent’s CLP parameters. Both methods of quantifying feature attri-
butions have their place; neither dominates the other as an all-purpose tool for model
interpretability. Marginal tests are ideally suited to tasks such as auditing or trou-
bleshooting a supervised learning model, where we are generally more concerned
with internal properties of the algorithm than with the data generating process. Condi-
tional tests are better suited to tasks of discovery and planning, where the model is not
an object of inherent value so much as an instrument through which we may learn about
an underlying system that is too complex, expensive, and/or risky to probe directly. In
this setting, we do not have the luxury of ignoring feature covariance and treating all
points on some large grid as approximately equiprobable. We must take great pains
to understand the joint distribution of the data, create an SCM that approximates the
behavior of the system, and use conditional tests to evaluate feature importance in a
principled manner.

Some authors speak of conditional VI as an “improvement” over marginal measures
(Aas et al., 2021; Frye et al., 2020; Kumar et al., 2020), perhaps because the former
is generally more complex or closer to nature. But the concept of “improvement” is
misplaced here. The relationship between marginal and conditional measures is not
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that of a line progressing from less to more refined or informative statistics. A more
apt geometric analogy would be a pair of nested spheres, representing a hierarchy of
abstraction; or perhaps even two perpendicular lines that intersect at a point. They may
agree at or near their region of intersection, but the approaches are orthogonal.

4 Error rates and severe testing

In Sect. 3, I argued that pragmatic considerations can and must inform IML analyses. In
this section, I argue that, regardless of CLP parameters, we cannot rely on algorithmic
explanations that do not pass severe tests. The utter lack of severity in the vast majority
IML methods represents a missed opportunity to establish some much-needed rigor
in this young and fast-evolving field of research.

4.1 Severity Criteria

In a pair of influential monographs, Mayo (1996, 2018) advances a statistically sophis-
ticated philosophy of science in which the problem of induction is reduced to the
practice of severe testing. The basis for this reduction is her severity principle, which,
in its strong form, states that “We have evidence for a claim C just to the extent it
survives a stringent scrutiny. If C passes a test that was highly capable of finding flaws
or discrepancies from C, and yet none or few are found, then the passing result, x, is
evidence for C” (2018, p. 14). This principle shifts the focus of scientific discourse
from physical theories to testing procedures. On Mayo’s view, the justification for
believing a given hypothesis is a function not just of the hypothesis itself or the data
it purportedly explains, but, crucially, of the tests it has passed. When a test of claim
C given data x is sufficiently sensitive (i.e., likely to affirm true C) and specific (i.e.,
likely to reject false C), then we say it is severe.

Mayo works in the falsificationist tradition of Popper (1959). However, she aims
to move beyond his negative result—that science can only advance knowledge by
disproving theories—to a positive conclusion—that severe tests provide (defeasible,
statistical) evidence in favor of particular hypotheses. Unlike Bayesian epistemolo-
gists, who typically interpret probabilities as degrees of belief computed by combining
subjective priors'3 with evidential likelihoods, Mayo places her approach in the fre-
quentist tradition, emphasizing the importance of hypothesis testing with bounded
error rates. Her work is grounded in a descriptive fact—ignored or lamented by both
Popper and Bayesians, albeit for different reasons—that null hypothesis significance
testing has been the dominant method of statistical inference across the natural and
social sciences for the better part of a century. This is no oversight. The procedures
originally conceived by Fisher (1925) and later extended by Neyman and Pearson
(1933) provide a firm groundwork for rational and progressive theory testing, even if
the founders themselves did not always see eye to eye on what exactly those methods
were intended to show.

13 Some Bayesians, it should be noted, self-identify as “objectivists”; see, e.g., (Berger, 2006; Jaynes,
2003). I will not concern myself too much with these distinctions. See (Talbott, 2016) for an overview.
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ML is not inherently associated with either Bayesian or frequentist interpretations
of probability. Some may choose to view this agnosticism as a sign of strength—the
algorithms work no matter how you feel about p-values or prior distributions—others
as a dangerous portent of ML’s theoretical vacuity. I will not have much to say here
regarding the (occasionally bitter) foundational debates between competing schools
of probability theory.'* It will suffice to observe that most applied statisticians are
unmoved by the dogmatism of either camp and willing to use whatever combination
of methods is best suited to a given problem. Partisans of both traditions largely agree
on particular inferences, especially when Bayesians use uninformative priors and/or
when datasets are sufficiently large. Numerous convergence theorems have shown that
priors wash out in the limit, as we might hope and expect (Earman, 1992).'> Moreover,
methodological syntheses are possible. Empirical Bayes inference (Efron, 2010) and
PAC-Bayes learning (Guedj, 2019) are just two examples of popular methods that
borrow heavily from both traditions. In any case, though Mayo’s allegiance undoubt-
edly skews frequentist, her error-statistical philosophy has been reinterpreted along
Bayesian lines (Gelman & Shalizi, 2013). In what follows, I will generally stick to her
frequentist exposition more out of convenience than conviction.

Mayo grounds her severity approach in the Neyman-Pearson (NP) testing frame-
work (Lehmann & Romano, 2005). To make matters concrete, I will briefly explicate
her severity criteria using the simplest and most common sort of hypothesis in sta-
tistical inference, namely one positing some value or range of values for a single
parameter.16 Let T be a test that decides between, say, Hy : © < 0and H; : n > 0.
We observe sample data x and compute sufficient statistic d(x), which measures the
disagreement between x and Hy. Test T rejects Hy when d(x) meets or exceeds the
critical value c,,. We say that Hy passes an («, B)-severe test T with data x if and only
if:

(S1) d(x) < cu; and.
(S2) with probability at least 1 — B, if H; were true, then we would observe some
sufficient statistic d(x”) such that d(x') > c.

Readers well-versed in frequentist inference will recognize some familiar concepts
in these criteria. The critical value is indexed by the type I error rate «, such that, under
H)y, the rejection region of statistics greater than or equal to ¢, integrates to «w. The type
I error rate is given by B, such that, under Hi, the rejection region of statistics less than
cq integrates to B (see Fig. 3). The complement of this value, 1 — 8, denotes the power
of the test. A test with small « is said to be specific, since it only accepts hypotheses
that are likely to be true; a test with small B is said to be sensitive, since it is able to
detect even slight deviations from the null. A maximally severe test is one that finds
all (8 = 0) and only (a¢ = 0) true effects. Such stringency is generally not possible
in real-world experiments, where there is an inevitable trade-off between sensitivity

14 gee (Romeijn, 2017) for a good introduction. For a more comprehensive compendium, see (Bandyopad-
hyay & Forster, 2011).

15 Somewhat disconcertingly, it can also be shown that, for any body of evidence, we may construct priors
such that corresponding posteriors differ by an arbitrarily large amount. See (Kyburg, 1992).

16 Extensions to composite hypotheses and/or multiple testing scenarios are conceptually straightforward,
but technically tedious and beyond the scope of this article.
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Fig. 3 Null and alternative Hy Ca H,
distributions for a given 1
hypothesis test. The critical :
value is denoted by the dashed |
line. Type I error is represented !
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and specificity. According to Mayo, science advances knowledge not just by falsifying
theories, as Popper would have it, but by subjecting hypotheses to increasingly severe
tests. Hypotheses earn their warrant by passing such tests, thereby providing positive
justification for successful theories.

My brief account here glosses over a number of important subtleties that matter a
great deal in practice, such as how exactly one goes about defining hypotheses, gath-
ering data, and computing probability distributions. This arguably constitutes the bulk
of puzzle-solving activity that Kuhn (1970) regards as central to “normal science”.
There is no simple recipe for any of these crucial steps, however a handful of valuable
heuristics are known to work well in a variety of settings. Of course, failure to ade-
quately consider these sorts of questions could doom any experiment and inevitably
opens the door to skeptical objections such as the aforementioned underdetermina-
tion of theory by evidence. The best antidote is generally a combination of statistical
assumptions, epistemological theory, and rigorous misspecification tests; see (Mayo
& Spanos, 2004) for an overview. No matter the details of particular testing methods,
the point I want to stress is that minimizing expected errors of the first and second
kind is an obvious desideratum for any inference procedure, not to mention a faithful
description of most modern scientific practice.!”

Frequentist overtones notwithstanding, this account of severity is in fact very gen-
eral. Unlike Mayo, I am agnostic with respect to how conditional probabilities ought
to be computed or interpreted. Whether we use sampling distributions or posteriors
makes no substantive difference. Some Bayesians may take issue with the dichoto-
mous thinking implicitly endorsed here. Why stipulate that test outcomes be only
of the “accept” or “reject” variety? Surely, we can entertain intermediate degrees of
belief. I have no objection to more inclusive approaches, such as plotting relationships
between test statistics, error rates, and sample sizes, or visually inspecting conditional
distributions. But note that the («, B) parameters themselves serve to qualify test
outcomes by specifying thresholds at which the relevant hypotheses are accepted or
rejected. A similar procedure occurs in Bayesian analysis, where decisions typically
turn on Bayes factors or credible intervals. Blind insistence on particular thresholds,
such as @ = 0.05, is obviously problematic, especially when conventions arising from
one discipline or experimental design are mindlessly transported into another with
different statistical properties (Ioannidis, 2005; Wasserstein & Lazar, 2016; Ziliak &
McCloskey, 2008). Yet the mistake here lies in how people use or interpret severity

17 Other sorts of statistical errors have also been studied, such as those pertaining to sign and magnitude
(Gelman & Carlin, 2014). For the sake of brevity, I will limit myself to type I and type II errors.
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criteria, not with the criteria themselves (Greenland, 2019). Matters would be no better
if we were to replace an uncritical dogmatism about p-values with an uncritical dog-
matism about Bayes factors, completely independent of any concerns regarding the
provenance of prior distributions. A severe test is just one that should detect errors if
they are present. As Floridi’s CTT foreshadowed in Sect. 3, the fact that tolerable type
I and type II error rates vary according to context, level of abstraction, and purpose is
only to be expected.

4.2 Severity in IML

Given the prevalence of ML in high-stakes public and private sector applications (to
say nothing of scientific research), one might expect authors in this area to take error
rates very seriously. In fact, there is a shocking dearth of methods for estimating
the sensitivity and specificity of algorithmic explanations. The most popular open-
source software solutions make no effort to test the causal effects they infer, evaluate
the uncertainty of their outputs, or bound their region of relevance. Some notable
counterexamples exist (more on these below), but they are conspicuously, scandalously
few. Given that algorithmic explanations are essentially causal claims, and that causal
claims are typically the realm of science, we may justifiably wonder whether Mayo’s
severity criteria can be fruitfully applied in this setting. I argue that they can and
should. In this subsection, I highlight two ways that algorithmic explanations mislead
when severity criteria are not taken into account.

4.2.1 How local is “local”?

Local explanations are constructed to apply only in some fixed region of the feature
space. Yet IML methods do not generally provide information about the bounds of a
given explanation or goodness of fit within the target region, facts that may be crucial
for someone facing a consequential decision on the basis of an algorithmic explanation.
For illustration, I will focus here on linear approximators, but the point applies more
broadly.

If you zoom in far enough to any point on a continuous function, you will eventu-
ally find a linear tangent. This is the intuition behind methods like LIME and SHAP.
However, when the regression surface or decision boundary around the target point is
extremely nonlinear, the linear region tends to be very small and the estimated coef-
ficients highly unstable. In this case, model weights are acutely sensitive to regional
bounds. In a simple two-dimensional example, Wachter et al. (2018) visually demon-
strate how a linear explanation for the same model prediction may assign positive,
negative, or zero weight to a feature depending on the scope of the linear window (see
Fig. 4). This is a simple consequence of model misspecification. Recall that the output
of local linear approximators is just a weighted sum of inputs. This explanation inherits
all the virtues and vices of linear functions, which are often preferred for their relative
ease of interpretation but bemoaned for their inflexible model assumptions. The less
these assumptions hold near a given point, the less reliable our linear approximation
will be.
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Fig. 4 Unstable linear approximations. The grey line in each panel shows a local approximation of the same
function centered at the same location. The varying range is indicated by the black bars, leading to vastly
different linear explanations. From (Wachter et al., 2018, p. 885)

The most obvious statistical solution here, should we insist on sticking with linear
approximators, would be to augment IML outputs with some information regarding the
scope and fit of the approximation. It is common, for instance, in linear regression to
compute the significance and standard error of model coefficients. This would satisfy
(S1). Power analysis typically requires parametric assumptions or data simulations,
which could be used to satisfy (S2). Unfortunately, these strategies are not readily
available to algorithms like LIME and SHAP, which use unconventional sampling
techniques, kernel weights, and regularization penalties that preclude easy analytic
solutions for calculating expected error rates. Resampling methods such as bootstrap-
ping (Davison & Hinkley, 1997) could help evaluate parameter uncertainty; however,
this would substantially reduce the computational efficiency of these algorithms, which
is arguably one of their greatest selling points. The problem could become especially
acute as the number of explananda increases.

While reporting standard errors would certainly be an improvement over current
practice, it would by no means resolve the fundamental problem of model misspec-
ification. To evaluate the utility of a given linear approximation, we need a better
sense of the target function’s topology near our input point of interest. Formally, we
are focused on a d-dimensional hypersphere around x; with radius ¢.'® For each fea-
ture X ;, we need to know how the corresponding weight ¢; and standard error o
vary with e. This three-dimensional surface will likely be more informative than the

18 Assume here, for simplicity, that all predictors have been scaled to unit variance and our distance metric
is Lp. Of course, both assumptions are often violated in practice, but these complications do nothing to
mitigate the problem; on the contrary, they only make matters worse.
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linear approximation itself. Extreme sensitivity to ¢ on the part of VI scale and loca-
tion parameters indicates a highly nonlinear neighborhood around x;, which means
that any local linear approximation should be interpreted with caution—or, better yet,
abandoned altogether. Statistical tests offer a principled way to evaluate these rela-
tionships, but informal methods may serve just as well. Old-fashioned scatterplots can
be enormously helpful in exploring these sorts of multivariate associations. Of course,
this can quickly become impractical as the number of features grows.

4.2.2 Correlated predictors

Another challenging scenario for IML tools is when predictors are strongly correlated.
For instance, as noted above, it will be difficult if not impossible to decide whether sex
or treatment best explains drug trial outcomes when the two are strongly confounded.
This issue can be especially nefarious in the setting of algorithmic fairness. When
a sensitive attribute is associated with a permissible variable—e.g., if race is well
predicted by zip code (Datta et al., 2017)—then the latter can serve as a proxy for the
former. This allows bad actors to get away with discrimination, so long as they can
fool an auditor into believing they were using the permissible variable rather than the
sensitive one. The concern is not merely speculative. Lakkaraju and Bastani (2020)
demonstrate how such deceptive practices are possible even under perfect explanatory
fidelity, and generate misleading explanations on a range of real-world examples.
Pruthi et al. (2020) use similar methods to manipulate weights in a way that makes a
discriminatory natural language processing model appear fair in a user study. Slack
et al. (2020) design an adversarial procedure for obscuring biases from LIME and
SHAP, and use it to create a racist classifier from a criminal recidivism dataset that
passes fairness audits according to both IML methods.

Severe testing cannot, on its own, prevent bad actors from engaging in discrimina-
tory behavior. However, it can make it harder for them to get away with it by elucidating
the uncertainty associated with algorithmic explanations under confounding. Just as
standard errors for regression coefficients are inflated by collinear predictors, the sever-
ity of particular explanations will tend to decrease with strongly correlated features.
Reporting the error rates of given outputs at local or global scales will provide some
much-needed context for users and regulators alike. When predictors are strongly cor-
related, then it is very difficult to assert with high confidence that one variable and not
another is causally responsible for the observed outcome without introducing some
structural assumptions. Such assumptions may be justifiable, but they will need to
be articulated and defended. Even better, they can in many cases be severely tested
themselves.

Algorithmic fairness is a complex and contested topic. Dozens of statistical fairness
criteria have been proposed—see (Barocas et al., 2019) for a good overview—while
impossibility theorems have shown that most of the popular definitions are mutually
incompatible except in trivial cases (Kleinberg et al., 2017). No matter which criteria
one adopts for a given application, almost all may be expressed in terms of marginal or
conditional independence relations, which means that classical NP tests can be used
for auditing purposes. Despite Shah and Peters (2020)’s aforementioned hardness
result, a large number of conditional independence tests have been developed over the
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years, many with impressive performance on real-world datasets.'® Severity therefore
has a central role to play in holding people and institutions accountable for their
algorithmically mediated decisions.

4.3 Severity and trust

Many authors motivate the IML project with appeals to trust. “Why should I trust
you?” reads the title of Ribeiro et al.’s (2016) paper introducing LIME. Successful
algorithmic explanations “engender appropriate user trust,” (Lundberg & Lee, 2017,
p- 1) write the creators of SHAP on the first page of their award-winning NeurIPS paper.
In their Harvard Journal of Law and Technology article introducing counterfactual
explanations, Wachter et al. argue that “Building trust is essential to increase societal
acceptance of algorithmic decision-making” (2018, p. 843). So long as complex black
box algorithms remain opaque and impenetrable, users will harbor suspicions about
their reliability in particular cases. That is why we seek transparent explanations that
can assuage concerns about unfair or unreasonable model predictions.

Yet do methods like LIME and SHAP really settle matters, or merely push the
problem one rung up the ladder? After all, why should we trust the outputs of IML
algorithms? Presumably the original function f at least has the advantage of per-
forming well on some test dataset. According to reliabilist philosophers, this may be
sufficient to justify belief in its predictions (Goldman, 1979). Can we say the same
of algorithms like LIME or SHAP? Their outputs are readily intelligible, and that is
clearly a start. But does that necessarily mean that their explanations should all be
given equal weight, or are some more reliable than others? How can we be sure that
they have not produced unstable estimates or selected the wrong features? Are there
principled methods for critically evaluating individual explanations, much like we can
critically evaluate individual predictions?

I argue that severe testing holds the key to securing the trustworthiness of algo-
rithmic explanations. Recall that the response to Q is always a certain sort of causal
claim, and causal claims can in principle be tested. That, for instance, is how we
come to trust scientific theories—by mercilessly subjecting them to numerous tests
with quantifiable error rates. It is not always immediately obvious how one ought to
go about testing algorithmic explanations, especially those that do not boil down to
particular parameter estimates. However, some IML authors have begun to try. In a
follow up to their LIME article, Ribeiro et al. (2018) introduce a novel IML algorithm
called “anchors”. Anchors are sets of Boolean conditions that hold at the target point,
selected to ensure some minimal level of precision (i.e., guaranteed with some fixed
probability near the input) and optimized for coverage (i.e., designed to apply across
a maximally large region of the feature space). Other methods for testing local expla-
nations include the localized knockoff procedure (Gimenez & Zou, 2019), as well
as leave-one-covariate-out (LOCO) inference techniques (Lei et al., 2018; Rinaldo
et al., 2019). Some recent NeurIPS papers suggest a growing interest in the problem
(Schwab & Karlen, 2019; Slack et al., 2021).

19 For a good review of such methods, see (Heinze-Deml et al., 2018).
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These methods are not without their difficulties. They typically require onerous pre-
or post-processing, and what few formal guarantees they provide often rely on heuristic
reasoning or convenient assumptions. However, they represent a notable advance over
the previous state of the art, in that they explicitly try to quantify and optimize the
quality of individual explanations with testable claims. Unfortunately, the majority of
IML authors have yet to take notice. Until severe testing is built into IML, the field
will fail to meet the standards of scientific rigor required for widespread adoption and
user trust.

5 Process versus product

One way to classify IML algorithms is by their output class. Saliency methods, which
are popular for image classification tasks, produce visual explanations highlighting
the pixels (or superpixels) that are most relevant in generating particular predictions.
VI methods, by contrast, produce statistical outputs measuring importance at global
or local resolutions. Counterfactual and case-based explanations generate examples
intended to elucidate model predictions. In each case, the output is a product—that is,
a static deliverable that is computed once and for all. In this section, I argue that a more
helpful way to think of explanations is as a process—an iterative exchange between
(at least) two agents engaged in a certain sort of causal inquiry. Such explanations are
not just more mimetic of how explanations unfold in real life but are also more likely
to ensure understanding on the part of the inquiring agent.

5.1 Dialogical explanations

There is a tendency in analytic philosophy to think of explanations as arguments or
models with certain characteristics. Famous twentieth examples include the deductive-
nomological model (Hempel, 1965), the statistical relevance model (Salmon, 1971),
the causal mechanical model (Dowe, 2000; Salmon, 1984), and the unificationist
model (Kitcher, 1989).2° However, there is a more ancient tradition that conceives
of explanations in a very different way—as fundamentally interactive and dialogical.
The roots of this form go back to Ancient Greece, although adherents may be found
among the scholastics (e.g., Anselm, 2002) and early moderns (e.g., Berkeley, 1979).
Even within the ranks of the most staid contemporary logicians, there are those who
find it helpful to frame formal proofs as dialogues or games (Hintikka, 1999; Hodges &
Viidninen, 2019; Keiff, 2011). I believe there are good reasons to prefer explanations
of this sort as well.

I highlighted the role of pragmatic information—specifically, CLP parameters—in
Sect. 3. However, there is more to pragmatics than assiduously indexing the context,
level of abstraction, and purpose of particular inquiries. By defining the overarching
goal of IML as answering Q, I have already framed the undertaking as essentially
interrogative, with the implicit suggestion that at least two agents are engaged in some
form of inquiry regarding the predictions of a target algorithm. Yet even if we allow

20 For more on these and other related proposals, see (Woodward, 2019).
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CLP parameters to vary, the static form of explanation remains irreparably impover-
ished. The idea that tacking on some extra information will always suffice to explain
predictions is restrictive and naive. It ignores the possibility that answers to Q may
leave an agent confused or open up whole new avenues of inquiry. Interactive explana-
tions allow the inquiring agent to get a more complete picture of the explanans and its
place in a wider body of knowledge. This is essential as soon as we acknowledge that
agents will request algorithmic explanations with different motivations, expectations,
and beliefs. Rather than creating a one-size-fits-all solution, the dialogical approach
lets the inquiring agent guide the discussion to best satisfy her needs and curiosity.

Pragmatists have long argued against monolithic theories of explanation. A number
of notable twentieth century philosophers proposed alternative accounts (Achinstein,
1983; Bromberger, 1966; Scriven, 1962), but perhaps no one crystallizes their collec-
tive critique so neatly as van Fraassen:

The discussion of explanation went wrong at the very beginning when explana-
tion was conceived of as a relation like description: a relation between a theory
and a fact. Really, it is a three-term relation between theory, fact, and context.
No wonder that no single relation between theory and fact ever managed to fit
more than a few examples! Being an explanation is essentially relative for an
explanation is an answer ...it is evaluated vis-a-vis a question, which is a request
for information. But exactly...what is requested differs from context to context.
(1980, p. 156)

If van Fraassen is right, then there can be no objective criteria that constitute neces-
sary and sufficient conditions for successful explanations, no single set of parameters
to optimize. The pragmatist starts from the simple, indisputable observation that expla-
nations do not occur in a vacuum. Rather, they are the product of interactions between
epistemic agents with certain beliefs and interests. For example, Dr. Jill may be sat-
isfied with an explanation for Jack’s unexpected diagnosis in terms of transcriptomic
signatures and cellular phenomena. Jack, by contrast, may seek a higher-level expla-
nation in terms of more familiar biological functions. This reflects a difference not
just in background knowledge, but in goals. Dr. Jill’s aim is to understand disease
mechanisms in order to better detect warning signs in future patients; Jack’s aim is
to treat his own condition, preferably through non-invasive behavioral adjustments.
Of course, these goals are not mutually exclusive, but they suggest different explana-
tory emphases. In general, successful explanations must take into account both the
epistemic state and guiding interests of whoever is asking the questions.

Among contemporary commentators, Walton has most extensively developed the
dialogic model of explanation. In a series of articles (2004; 2006; 2011), he puts
forward a framework for explanatory dialectics in which one agent imparts under-
standing to another through a sequence of well-structured exchanges. Though his
focus is primarily on the closing stage of such dialogues—how can we be sure that an
explanation has successfully concluded?—I am especially interested in the interme-
diate explanation stage (Walton, 2011, Sect. 7), during which agents jointly explore a
target system’s behavior and anomalies. Building on Moulin et al.’s (2002) tripartite
distinction between trace explanations, strategic explanations, and deep explanations
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in Al, Walton argues that dialogic models are especially well suited to the latter cat-
egory, in which agents help each other fill gaps in one another’s knowledge. Current
IML strategies at best provide trace explanations, which track the sequential reason-
ing steps of a target model, or strategic explanations, which outline more abstract
problem-solving approaches. Yet all three modes are essential to help agents like Jack
and Dr. Jill understand predictions like his unexpected diagnosis. On Walton’s model,
the two may each chart their own course through the algorithm’s reasoning, address-
ing whatever strikes them as unclear or anomalous through a series of speech acts
that gradually bring them closer to understanding the original prediction. Such a per-
sonalized process is simply impossible with popular IML algorithms like LIME and
SHAP.

5.2 Advantages for IML

There are at least two clear advantages to interactive explanations for IML. First,
such approaches are inherently customizable, since they must respond to each agent’s
idiosyncratic questions. This accommodates the inevitable variability among users,
who will approach unexpected predictions with a range of different assumptions
and background beliefs. Second, interactive explanations promote greater user trust.
Whereas a static IML algorithm simply spits out a set of parameters with no obvious
account of how they were derived or how they are meant to fit in with other known
facts about the system, an interactive method can address ambiguous or unexpected
aspects of a model’s reasoning one step at a time. This ensures users that the model is
working as it should, or, alternatively, helps to isolate the error that led to an anomalous
prediction.

As anyone who has spent time with young children can attest, an initial explanans
often merely sets the stage for further questions about constituent terms or related
phenomena. This recursive pattern may continue more or less indefinitely, subject to
constraints on the child’s interest and the adult’s patience. A similar pattern unfolds
in scientific inquiry, with researchers assuming the role of curious children and nature
the informed (though stubbornly coy) adult (Eberhardt, 2010). A preliminary question
about some particular observation (e.g., “Why do finch beaks vary so widely across
the Galdpagos Islands?”’) can quickly lead to profound questions about fundamental
mechanisms (e.g., “How do species evolve over time?”). It is tempting to regard the
final product of such an inquiry—say, Darwin’s On the Origin of Species—as the
explanation we were seeking all along. But this, I contend, would be a vast oversim-
plification. The journey counts every bit as much as the destination. We learn best
not through the passive transmission of knowledge, but rather by actively formulat-
ing questions, gathering data, designing experiments, and generally engaging with
the material. Because agents will tend to take different paths towards a discovery,
converging on it from various angles, it would be a mistake for IML algorithms to
ignore humans’ natural epistemic heterogeneity. Giving all users the same answer,
with no allowance for follow up questions, turns algorithmic explanations into oracu-
lar pronouncements, overstating our confidence in these potentially unstable outputs
and precluding the most fruitful aspects of the natural explanation processes.
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The inflexibility of an IML method that delivers static explanations, as the vast
majority of algorithms in use today do, works against the goal of promoting greater
user trust. The problem is especially acute when those explanations vary wildly in
response to minor perturbations of hyperparameters or even due to random sampling,
as we saw in Sect. 4.2. To avoid the (justified) perception that such methods merely
replace one black box (for predictions) with another (for explanations), we need algo-
rithms that can address various aspects of the learning pipeline, answering a range of
questions about model behavior under real and hypothetical interventions. Just as a
knowledgeable scientist should be able to answer a student’s questions about a target
system, a successful IML algorithm should promote learning and trust among users.

5.3 Interactive IML approaches

There is an acknowledged dearth of interactive methods in IML, despite some recent
calls for more research in this area (Miller, 2019; Mittelstadt et al., 2019; Murdoch
etal.,2019). A small group of intrepid computer scientists is actively working to fill the
lacuna. The project has come farthest in algorithmic recourse, the IML subdiscipline
devoted to advising agents on how to change unfavorable outcomes (e.g., unsuccessful
loan applications). Aware that not every feature is within an agent’s power to alter,
authors have devised various methods for computing counterfactuals that are “ac-
tionable” or “feasible” based on user-provided criteria (Karimi et al., 2020; Poyiadzi
et al., 2020; Ustun et al., 2019). Despite their promise, these algorithms have not gen-
erally been implemented via graphical user interfaces—with the notable exception of
Google’s simplified method based on empirical sampling (Wexler et al., 2020)—which
means that widespread adoption by non-data scientists remains aspirational.

Lakkaraju et al. (2019), specifically motivated by clinical applications for ML,
developed a customizable decision set algorithm that allows users to specify features of
interest. The explanations provided by Model Understanding through Subspace Expla-
nations (MUSE) are compact and provably optimal within a bounded subspace defined
by the user. Akula et al. (2019) propose a natural language interaction method—Iliter-
ally instantiating a dialogic model—through which users may query a target algorithm
about particular predictions. The approach is not very scalable, however, as it requires
hand-crafted ontologies as well as unique and-or graphs for each application. In a pair
of recent articles, Sokol and Flach (2020a, 2020b) develop and implement techniques
for interactively interrogating black box algorithms. Their LIMEtree method is espe-
cially promising, providing local fidelity guarantees. However, at the time of writing,
source code for this approach has not been made publicly available, which makes it
difficult to benchmark against alternatives.

The last few years have also seen tepid first steps into interactive methodologies for
the closely related field of algorithmic fairness. Jung et al. (2019), acknowledging the
inherent difficulties in defining a context-independent metric for measuring the sim-
ilarity of individuals, propose a flexible learning procedure in which human judges
evaluate pairs of data points on a case-by-case basis. The resulting similarity scores
are plugged directly into their algorithm, even though measures almost certainly devi-
ate from the classic criteria for a metric (e.g., the triangle inequality). The Jung et al.
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approach is specifically designed to accommodate such unorthodox kernels, which
means it may be deployed in any setting where human judges can claim legitimate
expertise. Meanwhile Canetti et al. (2019) develop post-processing methods that allow
users to make targeted revisions to potentially unfair classifiers. Their approach effec-
tively circumvents the aforementioned impossibility results, which purport to show
that intuitive measures of statistical fairness cannot simultaneously hold except under
extreme and improbable circumstances.

These examples of interactive algorithms are perhaps most notable for their scarcity.
None of these methods has yet to gain much popularity among practitioners. However,
it should also be noted that no algorithm mentioned in this section has yet to reach its
second birthday. While the importance of the problem is widely acknowledged, the
jury is still out on proposed solutions.

6 Conclusion

Feyerabend (1975) famously argues that the ideal structure of scientific discovery
is neither a logical sequence of conjectures and refutations (Popper, 1959) nor an
orderly cycle of rising and falling paradigms (Kuhn, 1970), but rather a marketplace—a
teeming bazaar in which theories multiply, combine, and clash in a protean struggle for
supremacy. If Feyerabend’s epistemological anarchism represents a scientific ideal,
then IML may be in a sort of golden era. Research is expanding at a remarkable rate,
with few checks on the proliferation of proposals.

However, Feyerabend’s pluralism is too inclusive. The last three sections have
chronicled major shortcomings of popular IML software. Practice has outpaced theory
in this realm, and the result is a dizzying number of tools that suffer from similar over-
sights. Conceptual foundations are necessary in this new and urgent area of research.
By articulating these critiques, my goal is not to inaugurate some new paradigm in
which all IML research must henceforth be conducted. A degree of pluralism is wel-
come and fruitful in young, dynamic subdisciplines such as this, and indeed, the
methodological imperatives enumerated above may occasionally be incompatible.
Instead, my aim is merely to set up some pragmatic guardrails, to alert stakeholders
to potential failures, and to identify promising new directions that are already being
pursued by pioneering computer scientists.

I am sensitive to charges of pessimism. It is far easier to point out what is wrong
with existing approaches than it is to advance positive counterproposals. However,
this negative move in the dialectic is a critical first step toward that end. The technical
work of developing practical algorithms for computing local and global explanations
begins with an act of conceptual desk clearing. Wittgenstein’s comments from the
Philosophical Investigations are particularly apposite:

It is the business of philosophy, not to resolve a contradiction by means of
a mathematical or logico-mathematical discovery, but to make it possible for
us to get a clear view of the state of mathematics that troubles us: the state
of affairs before the contradiction is resolved....One might also give the name
“philosophy” to what is possible before all new discoveries and inventions. (1953,
pp. 125-126)
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I have argued that epistemology and philosophy of science are uniquely positioned
to diagnose what ails IML, thereby setting the stage for new discoveries in this area.
Building on centuries’ worth of lessons from the analysis of scientific and statistical
inquiry, philosophy has a key role to play in disambiguating interrelated concepts,
drawing instructive analogies, and suggesting standards and strategies that are likely
to promote greater algorithmic explainability.

For a relatively young research program, IML has come a long way in a short time.
Numerous sophisticated proposals have been developed and implemented in just the
last few years, including a number of popular off-the-shelf open-source tools. The
rapid adoption of such software is understandable given the widespread deployment
of supervised learning algorithms in high-risk applications. Public and private stake-
holders all share an interest in making ML models more intelligible and trustworthy.
The creators of IML software credibly argue that their solutions can ensure greater
fairness, accountability, and transparency in artificial intelligence.

I have argued that despite the urgency of IML’s mission, the conceptual founda-
tions of the field are underdeveloped. I have highlighted three especially pressing,
largely unacknowledged problems—ambiguous fidelity, lack of severe testing, and
an emphasis on product over process—that undermine the vast majority of explain-
ability software in use today. Without greater attention to these concerns, algorithmic
explanations run the risk of being unclear, unstable, and unhelpful. Research has metic-
ulously demonstrated failure conditions for a number of popular IML tools. The bad
news is that it does not take much to break these methods. Some simple confound-
ing between predictors is typically sufficient. These worries are especially urgent as
algorithms expand into ever more sensitive and high-risk areas of public and private
life. Data regulation policy notwithstanding, the so-called “right to explanation” will
remain not just unrealized but functionally impossible without technical procedures
for overcoming these obstacles.

Fortunately, there is room for optimism. I have identified counterexamples to each
of these problems from the IML literature that point the way toward more satisfactory
solutions. Just because today’s most popular methods do not always meet the highest
standards is no cause for despair. On the contrary, a process of iterative refinement
is only to be expected for a research program still in its infancy. The explainability
discourse is teeming with novel methods and promising research on a number of fronts.

There are of course practical challenges to enacting the changes proposed herein.
The relative merits of potentially incompatible explanatory desiderata must be care-
fully weighed. The resulting algorithms may be slow and unfamiliar, requiring more
user input than some people would like. Considerations of proper design, typically
the domain of human computer interaction, will be paramount. But if the stakes are
sufficiently high that we need an algorithmic explanation in the first place—perhaps
even a legally mandated one—then it is important that we get that explanation right.
Shortcuts and heuristics do us no favors here. A healthy mix of Feyerabendian plu-
ralism and Kuhnian collective focus will go a long way toward advancing the state of
the art for IML. That is an outcome that data scientists, policymakers, and end users
alike can all get behind.
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