Contraction of the length of a curve under uniform contraction of the enclosing space

Consider a curve in a space with Cartesian coordinates (x, y), where the curve is represented by the functional dependence

$$
y=y(x)
$$

The length of the curve between limits $x=a$ and $x=b$ is

$$
L(a, b)=\int_{x=a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

We form a new curve

$$
y^{\prime}=y^{\prime}\left(x^{\prime}\right)
$$

contracted vertically by the constant factor k and horizontally by the same factor k. The new variables y^{\prime} and x^{\prime} related to the old variables y and x according to:

$$
y^{\prime}=k y \text { and } x^{\prime}=k x
$$

(Informally, the value of the new curve y^{\prime} at a point x^{\prime} reduced by a factor of k from x is equal to the value of the original function $y(x)$ at x, but now also reduced by a factor of k.) The new curve extends between the limits $x^{\prime}=k a$ and $x^{\prime}=k b$. We have for the length of the new curve:

$$
L^{\prime}(k a, k b)=\int_{x \prime=k a}^{k b} \sqrt{1+\left(\frac{d y^{\prime}}{d x^{\prime}}\right)^{2}} d x^{\prime}
$$

Substituting unprimed variables for primed variables, this length becomes

$$
L^{\prime}(k a, k b)=\int_{k x=k a}^{k b} \sqrt{1+\left(\frac{d(k y)}{d(k x)}\right)^{2}} d(k x)=k \int_{x=a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=k L(a, b)
$$

That is, the length of the curve is also contracted by a factor k.

Inspection of the calculation shows that the result depends on both variables x and y being contracted by the same factor k. Otherwise, we have a failure of the cancellations of factors:

$$
\left(\frac{d y^{\prime}}{d x^{\prime}}\right)=\left(\frac{d(k y)}{d(k x)}\right)=\left(\frac{d y}{d x}\right)
$$

