Non-Existence of Limit Set

Supplement to Badly Behaved Curves
John D. Norton

Consider the sets of real numbers for all $n \in \mathbb{N}$

$$
\begin{align*}
& C_{1}=(1 / 2,1) \\
& C_{2}=(1 / 4,1 / 2) \cup(3 / 4,1) \\
& C_{3}=(1 / 8,1 / 4) \cup(3 / 8,1 / 2) \cup(5 / 8,3 / 4) \cup(7 / 8,1) \\
& \cdots \tag{1}\\
& C_{n}=\cup_{m=1}^{2^{n-1}}\left(\frac{2 m-1}{2^{n}}, \frac{2 m}{2^{n}}\right)
\end{align*}
$$

Here $(a, b)=\{x: a<x<b\}$, so that the interval is open. That is, it is the set of real numbers between a and b, excluding a and b. The result shown here is that there is no well-defined limit set formed by taking the limit at $n \rightarrow \infty$ of the sets C_{n}. The members of the limit set are defined by the condition

$$
\begin{equation*}
x \in C_{l i m} \quad \text { iff } \quad \text { there is an } N \text { such that } x \in C_{n} \text { for all } n>N . \tag{2}
\end{equation*}
$$

The non-existence of the set follows from two results:
(a) If $x=r / 2^{N}$ for some N and natural number $r \leq N$, then $x \notin C_{n}$ for all $n>N$. It follows from (1) that $x \notin C_{\text {lim }}$.
(b) If $x \neq r / 2^{N}$ for some N and natural number $r \leq N$, then x never satisfies condition (2).

Rather for every x and n such that $x \in C_{n}$, there is an $n^{\prime}>n$, such that $x \notin C_{n}$; and for every x and n such that $x \notin C_{n}$, there is an $n^{\prime}>n$, such that $x \in C_{n}$.

The result (a) is compatible with the limit set existing but being empty. Result (b) is more troublesome since (2) does not enable to say whether the values of x to which it applies are in the set or not. Hence the set is not empty, but not well defined.

Proof of (a)

To see (a), consider a real x such that $x=r / 2^{N}$ for some natural number N and natural number $r \leq N$. Then there is an m in the formula (1) such that $x=r / 2^{N}=(2 m+1) / 2^{N}$ or $x=r / 2^{N}=$
$2 m / 2^{N}$. That is, x is one of the extremal reals in the specification of the open sets of (1). Since the intervals in (1) are open, it follows that $x \notin C_{N}$.

It now also follows that $x \notin C_{N+1}$. For x will now be one of the extremal reals in the specification of the open sets of C_{N+1}. For $x=2 r / 2^{N+1}=(4 m+2) / 2^{N+1}$ or $x=2 r / 2^{N+1}=4 m / 2^{N+1}$. Iterating, it follows that $x \notin C_{N+2}, x \notin C_{N+3}, \ldots$ and so on for all C_{n} with $n>N$.

Proof of (b)

If $x \neq r / 2^{N}$ for some N and natural number $r \leq N$, then, for any n, x is not one of the extremal reals used to specify the open sets in C_{n}. To proceed, pick any $n>1$. (The choice will not affect the result.) There must exist some value of m in (1) such that
either (i) $x \in\left(\frac{2 m-1}{2^{n}}, \frac{2 m}{2^{n}}\right)$ or (ii) $x \in\left(\frac{2 m}{2^{n}}, \frac{2 m+1}{2^{n}}\right)$.
In case (i), we have that $x \in C_{n}$. The quick way to see this is to note that the open sets included in C_{n} have the form ($\frac{\text { odd number }}{2^{n}}, \frac{\text { even number }}{2^{n}}$). The sets excluded from C_{n} have the form $\left(\frac{\text { even number }}{2^{n}}, \frac{\text { odd number }}{2^{n}}\right)$. Since $x \neq(4 m-1) / 2^{n+1}$, we must have that either (i.a) $x \in\left(\frac{4 m-2}{2^{n+1}}, \frac{4 m-1}{2^{n+1}}\right)$ or (i.b) $x \in\left(\frac{4 m-1}{2^{n+1}}, \frac{4 m}{2^{n+1}}\right)$.

In case (i.a), we have that $x \notin C_{n+1}$ since (i.a) has the form ($\frac{\text { even number }}{2^{n+1}}, \frac{\text { odd number }}{2^{n+1}}$. If, however, we have case (i.b), then $x \in C_{n+1}$, since x lies in an interval of the form ($\frac{\text { odd number }}{2^{n}}, \frac{\text { even number }}{2^{n}}$). In this case (i.b), we repeat the analysis and check whether $x \in C_{n+2}$; and so on for C_{n+3} etc. Eventually we must find a C_{N} with $N>n$ such that $x \notin C_{N}$. For otherwise, x can be brought arbitrarily close to a real number of the form (even number / 2 N) for some N. This can only be the case if x has the form (even number / 2^{N}) for some N. However, by supposition of case (i), x does not have this form. Hence in either case (i.a) or (i.b), we eventually find a value of $N>n$, such that $x \notin C_{N}$. That is, if $x \in C_{n}$, there exists $N>n$, such that $x \notin C_{N}$.

Case (ii) above is the case of x a member of an open set of the form (even number $\frac{\text { odd number }}{2^{n}}$, so that $x \notin C_{n}$. By reasoning analogous to that of case (i), we find that there exists $N>n$, such that $x \in C_{N}$.

The case of $x=1 / 3$

This is a simple case of a number for which there is no definite limiting fact over its membership in the limit set. This failure of the limit fact arises because $x=1 / 3$ alternatives in its membership of the sets C_{n} indefinitely according to:

$$
1 / 3 \notin C_{1}, 1 / 3 \in C_{2}, 1 / 3 \notin C_{3}, 1 / 3 \in C_{4}, \ldots
$$

That is, we have $1 / 3 \notin C_{n}$, when n is odd; and $1 / 3 \in C_{n}$, when n is even.

Approximations for 1/3

To arrive at these results, we need some approximation formulae for $1 / 3$. We have that

$$
1 / 3=1 / 4+1 / 16+1 / 64+\ldots+1 / 2^{2 n}+\ldots
$$

We can split this series into two terms,

$$
1 / 3=\text { lower sum }+ \text { error }
$$

where

$$
\begin{gathered}
\text { lower sum }=1 / 4+1 / 16+1 / 64+\ldots+1 / 2^{2 n}=\frac{1}{3}\left(\frac{2^{2 n}-1}{2^{2 n}}\right) \\
\text { error }=1 / 2^{2 n+1}+1 / 2^{2 n+2}+\ldots=\frac{1}{3}\left(\frac{1}{2^{2 n}}\right)
\end{gathered}
$$

For the first approximation, we have that $0<\operatorname{error}=\frac{1}{3}\left(\frac{1}{2^{2 n}}\right)<\left(\frac{1}{2^{2 n}}\right)$. It follows that

$$
\begin{equation*}
\frac{1}{3} \in\left(\frac{1}{3}\left(\frac{2^{2 n}-1}{2^{2 n}}\right), \frac{1}{3}\left(\frac{2^{2 n}-1}{2^{2 n}}\right)+\frac{1}{2^{2 n}}\right) \tag{3}
\end{equation*}
$$

A tighter approximation arises from $0<\operatorname{error}=\frac{1}{3}\left(\frac{1}{2^{2 n}}\right)<\frac{1}{2}\left(\frac{1}{2^{2 n}}\right)$. It follows that

$$
\begin{equation*}
\frac{1}{3} \in\left(\frac{1}{3}\left(\frac{2^{2 n}-1}{2^{2 n}}\right), \frac{1}{3}\left(\frac{2^{2 n}-1}{2^{2 n}}\right)+\frac{1}{2} \frac{1}{2^{2 n}}\right) \tag{4}
\end{equation*}
$$

$1 / 3 \in C_{n}$, when n is even

This result follows from approximation (3). To use it, we need to show that

$$
\left(2^{2 n}-1\right) / 3 \text { is an odd number }
$$

To see this, sum the series

$$
1+4+4^{2}+\ldots+4^{n-1}=\frac{2^{2 n}-1}{2^{2}-1}=\frac{2^{2 n}-1}{3}
$$

The sum on the left is a sum of $n-2$ even numbers and 1 . Hence it is odd, as must be the term of interest on the right. Applying this to approximation (3), we have that

$$
\frac{1}{3} \in\left(\frac{1}{3}\left(\frac{2^{2 n}-1}{2^{2 n}}\right), \frac{1}{3}\left(\frac{2^{2 n}-1}{2^{2 n}}\right)+\frac{1}{2^{2 n}}\right)=\left(\frac{\text { odd number }}{2^{2 n}}, \frac{\text { next even number }}{2^{2 n}}\right)
$$

Hence it follows that $1 / 3 \in C_{2 n}$, or that $1 / 3 \in C_{n}$, when n is even.

$1 / 3 \notin C_{n}$, when n is odd

To see this, we use the approximation (4). If the fractions delimiting the open set are multiplied by $2 / 2$, we recover:

$$
\frac{1}{3} \in\left(\frac{2}{3}\left(\frac{2^{2 n}-1}{2^{2 n+1}}\right), \frac{2}{3}\left(\frac{2^{2 n}-1}{2^{2 n+1}}\right)+\frac{1}{2^{2 n}}\right)
$$

We know from earlier that $(1 / 3)\left(2^{2 n}-1\right)$ is an odd number. Hence $(2 / 3)\left(2^{2 n}-1\right)$ is an even number. Thus the approximation becomes

$$
\frac{1}{3} \in\left(\frac{\text { even number }}{2^{2 n+1}}, \frac{\text { next odd number }}{2^{2 n+1}}\right)
$$

These open intervals are not subsets of $C_{2 n+1}$. It follows that $1 / 3 \notin C_{2 n+1}$, or that $1 / 3 \in C_{n}$, when n is odd.

