The Birthday/Lottery Ticket Problem

John D. Norton

There are N days in the year or N lottery ticket numbers available. We choose n days or n lottery ticket numbers, independently of each other, and with equal probability for each. What is the relationship between n, N and p, the probability that there are no duplications in the days or lottery tickets chosen?

The Exact Calculation

The probability that there are no duplications is given by

$$
\begin{equation*}
p=\frac{N}{N} \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \cdot \ldots \cdot \frac{N-(n-1)}{N}=\frac{N!}{(N-n)!N^{n}} \tag{1}
\end{equation*}
$$

Approximation with Stirling's Formula

We have from Stirling's formula that large factorials are well approximated as:

$$
N!\approx \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}
$$

Substituting into the expression for p we have

$$
p \approx \frac{\sqrt{2 \pi N}}{\sqrt{2 \pi(N-n)}} \cdot \frac{(N / e)^{N}}{((N-n) / e)^{N-n}} \cdot \frac{1}{N^{n}}
$$

The first term above simplifies to

$$
\frac{\sqrt{2 \pi N}}{\sqrt{2 \pi(N-n)}}=\frac{1}{\sqrt{1-n / N}}
$$

The second term simplifies to

$$
\frac{(N / e)^{N}}{((N-n) / e)^{N-n}}=\frac{(N / e)^{N}}{((N-n) / e)^{N}} \cdot((N-n) / e)^{n}=\frac{((N-n) / e)^{n}}{(1-n / N)^{N}}
$$

The second and third terms together are

$$
\frac{((N-n) / e)^{n}}{(1-n / N)^{N}} \cdot \frac{1}{N^{n}}=\frac{((1-n / N) / e)^{n}}{(1-n / N)^{N}}=\frac{(1-n / N)^{n} e^{-n}}{(1-n / N)^{N}}
$$

Combining we have

$$
\begin{equation*}
p=\frac{1}{\sqrt{1-\frac{n}{N}}}\left[\frac{\left(1-\frac{n}{N}\right)^{\frac{n}{N}} e^{-\frac{n}{N}}}{1-\frac{n}{N}}\right]^{N} \tag{2}
\end{equation*}
$$

Check formula

For $n=23$ and $N=365$, an exact calculation from (1) gives $p=0.492703$. The formula (2) gives us $p=0.492710$. The approximation is good to four significant figures.

Simplification for small n / N

Collecting terms up to second order in n / N, we have

$$
\frac{1}{\sqrt{1-\frac{n}{N}}} \approx 1+\left(\frac{1}{2}\right)\left(\frac{n}{N}\right)
$$

Approximating $\left(1-\frac{n}{N}\right)^{\frac{n}{N}}$ is more complicated. Write

$$
Y=\left(1-\frac{n}{N}\right)^{\frac{n}{N}}
$$

Then we have

$$
\ln Y=(n / N) \cdot \ln (1-n / n) \approx(n / N) \cdot(-n / N)=-(n / N)^{2}
$$

Recovering the expression from $\ln Y$, we find

$$
\left(1-\frac{n}{N}\right)^{\frac{n}{N}}=\exp (\ln Y) \approx \exp \left(-(n / N)^{2}\right) \approx 1-(n / N)^{2}
$$

We now have

$$
\begin{gathered}
\frac{\left(1-\frac{n}{N}\right)^{\frac{n}{N}} e^{-\frac{n}{N}}}{1-\frac{n}{N}} \approx \frac{\left(1-\left(\frac{n}{N}\right)^{2}\right)\left(1-\frac{n}{N}+\frac{1}{2}\left(\frac{n}{N}\right)^{2}\right)}{1-\frac{n}{N}}=\left(1+\frac{n}{N}\right)\left(1-\frac{n}{N}+\frac{1}{2}\left(\frac{n}{N}\right)^{2}\right) \\
=1-\frac{n}{N}+\frac{1}{2}\left(\frac{n}{N}\right)^{2}+\left(\frac{n}{N}\right)-\left(\frac{n}{N}\right)^{2}+\frac{1}{2}\left(\frac{n}{N}\right)^{3} \approx 1-\frac{1}{2}\left(\frac{n}{N}\right)^{2}
\end{gathered}
$$

where the last approximation drops the third powers of n / N. Combining we find

$$
p \approx\left(1+\left(\frac{1}{2}\right)\left(\frac{n}{N}\right)\right) \cdot\left(1-\frac{1}{2}\left(\frac{n}{N}\right)^{2}\right)^{N}
$$

Approximation for n / N given p (for small n / N)

Inverting the approximation (3), we recover an expression for n / N. Raising (3) to the $1 / N$ power, we have

$$
1-\frac{1}{2}\left(\frac{n}{N}\right)^{2}=\left[\frac{p}{1+\left(\frac{1}{2}\right)\left(\frac{n}{N}\right)}\right]^{1 / N}
$$

Solving for n / N, we have

$$
\begin{equation*}
\frac{n}{N}=\sqrt{2\left[1-\left(\frac{p}{1+\left(\frac{1}{2}\right)\left(\frac{n}{N}\right)}\right)^{1 / N}\right]} \tag{4}
\end{equation*}
$$

Using (4) to compute n / N requires two steps, since the right-hand side of the equation also contains n / N. As long as the case is one of a small n / N, its value can be approximated by first computing n / N by assuming that n / N is zero in (4). That is, first compute

$$
\begin{equation*}
\frac{n}{N}=\sqrt{2\left[1-(p)^{1 / N}\right]} \tag{5}
\end{equation*}
$$

Then substitute the value recovered in (5) into (4) and use (4) to make the corresponding small adjustment to the value of n / N.

Even Simpler Approximation for n / N

If we approximate

$$
1+\left(\frac{1}{2}\right)\left(\frac{n}{N}\right) \approx 1
$$

we can recover a still simpler approximation for n / N. The approximation depends on taking a power series expansion in x for

$$
f(x)=f(1 / N)=1-(p)^{\frac{1}{N}}=1-p^{x}
$$

where we set $x=1 / N$. We need the first derivative of $f(x)$:

$$
\frac{d f(x)}{d x}=\frac{d}{d x}\left(1-p^{x}\right)=\frac{d}{d x}\left(-p^{x}\right)=-\frac{d}{d x} \exp (\log p \cdot x)=-\log p \cdot p^{x}
$$

We form the power series expansion about $x=0$, which is equivalent to $N=\infty$.

$$
f(x)=f(0)+x \frac{d f(0)}{d x}+\cdots=f(0)-x \cdot \log p \cdot p^{0}+\cdots=-x \cdot \log p+\cdots
$$

since p^{0} and $f(0)=0$. Recalling that $x=1 / N$, we recover an approximation to first order in $1 / N$:

$$
\left(1-p^{x}\right) \approx-(\log p) / N
$$

Substituting this approximation into (5), we recover ${ }^{1}$

$$
\begin{equation*}
\frac{n}{N}=\sqrt{-2(\log p) / N} \tag{6}
\end{equation*}
$$

This last formula (6) gives a rough picture of how n / N grows with increasing N, when p has a fixed value:

$$
\begin{aligned}
n / N & \propto 1 / \sqrt{N} \\
n & \propto \sqrt{N}
\end{aligned}
$$

Thus, after N is large, as N increases by a factor of 10 through 1000, 10,000, 100,000 etc., n / N decreased by a factor $\sqrt{10}=3.16$ and n itself increases by a factor $\sqrt{10}=3.16$. It follows that n can grow arbitrarily large with increasing N, but n / N will decreased arbitrarily close to 0 .

[^0]
[^0]: ${ }^{1}$ Square root of a negative number? No. Since $p<1, \log p<0$, so $-\log p>0$.

