Philosophy of Physics
Part A
Philosophy of Physics
Part A

Edited by

Jeremy Butterfield
All Souls College, University of Oxford, Oxford, UK

and

John Earman
Department of History and Philosophy of Science,
University of Pittsburgh, Pittsburgh, PA, USA
GENERAL PREFACE

Dov Gabbay, Paul Thagard, and John Woods

Whenever science operates at the cutting edge of what is known, it invariably runs into philosophical issues about the nature of knowledge and reality. Scientific controversies raise such questions as the relation of theory and experiment, the nature of explanation, and the extent to which science can approximate to the truth. Within particular sciences, special concerns arise about what exists and how it can be known, for example in physics about the nature of space and time, and in psychology about the nature of consciousness. Hence the philosophy of science is an essential part of the scientific investigation of the world.

In recent decades, philosophy of science has become an increasingly central part of philosophy in general. Although there are still philosophers who think that theories of knowledge and reality can be developed by pure reflection, much current philosophical work finds it necessary and valuable to take into account relevant scientific findings. For example, the philosophy of mind is now closely tied to empirical psychology, and political theory often intersects with economics. Thus philosophy of science provides a valuable bridge between philosophical and scientific inquiry.

More and more, the philosophy of science concerns itself not just with general issues about the nature and validity of science, but especially with particular issues that arise in specific sciences. Accordingly, we have organized this Handbook into many volumes reflecting the full range of current research in the philosophy of science. We invited volume editors who are fully involved in the specific sciences, and are delighted that they have solicited contributions by scientifically-informed philosophers and (in a few cases) philosophically-informed scientists. The result is the most comprehensive review ever provided of the philosophy of science.

Here are the volumes in the Handbook:

- Philosophy of Science: Focal Issues, edited by Theo Kuipers.
- Philosophy of Physics, edited by Jeremy Butterfield and John Earman.
- Philosophy of Biology, edited by Mohan Matthen and Christopher Stephens.
- Philosophy of Mathematics, edited by Andrew Irvine.
- Philosophy of Logic, edited by Dale Jacquette.
- Philosophy of Chemistry and Pharmacology, edited by Andrea Woody and Robin Hendry.

Philosophy of Information, edited by Pieter Adriaans and Johan van Benthem.

Philosophy of Technological Sciences, edited by Anthonie Meijers.

Philosophy of Complex Systems, edited by Cliff Hooker and John Collier.

Philosophy of Economics, edited by Uskali Mäki.

Philosophy of Linguistics, edited by Martin Stokhof and Jeroen Groenendijk.

Philosophy of Anthropology and Sociology, edited by Stephen Turner and Mark Risjord.

Philosophy of Medicine, edited by Fred Gifford.

Details about the contents and publishing schedule of the volumes can be found at http://www.johnwoods.ca/HPS/.

As general editors, we are extremely grateful to the volume editors for arranging such a distinguished array of contributors and for managing their contributions. Production of these volumes has been a huge enterprise, and our warmest thanks go to Jane Spurr and Carol Woods for putting them together. Thanks also to Andy Deelen and Arjen Sevenster at Elsevier for their support and direction.
ACKNOWLEDGEMENTS

It is a pleasure to thank several people. First and foremost, we are grateful to John Woods, Dawn Collins, Jane Spurr and their colleagues at Lethbridge, Alberta, and London, England for their unflagging support and encouragement. We also thank Brian Hepburn for invaluable help with references and the preparation of the text.
This page intentionally left blank
CONTENTS

General Preface

Dov Gabbay, Paul Thagard, and John Woods

Introduction

Jeremy Butterfield and John Earman

List of Contributors

Part A

On Symplectic Reduction in Classical Mechanics

Jeremy Butterfield

The Representation of Time and Change in Mechanics

Gordon Belot

Classical Relativity Theory

David B. Malament

Non-Relativistic Quantum Mechanics

Michael Dickson

Between Classical and Quantum

N. P. Landsman

Quantum Information and Computing

Jeffrey Bub

The Conceptual Basis of Quantum Field Theory

Gerard ‘t Hooft

Algebraic Quantum Field Theory

Hans Halvorson (with an Appendix by Michael Müger)

Index to Part A and Part B
Part B

Compendium of the Foundations of Classical Statistical Physics 923
Jos Uffink

Quantum Statistical Physics 1075
Gérard Emch

Issues in the Philosophy of Cosmology 1183
George F.R. Ellis

Quantum Gravity 1287
Carlo Rovelli

Symmetries and Invariances in Classical Physics 1331
Katherine Brading and Elena Castellani

Aspects of Determinism in Modern Physics 1369
John Earman

Index to Part A and Part B I-1
This volume is dedicated to the memories of

Robert Clifton (1964–2002)

and

INTRODUCTION

Jeremy Butterfield and John Earman

1 THE PHILOSOPHY OF PHYSICS TODAY

In the last forty years, philosophy of physics has become a large and vigorous branch of philosophy, and so has amply won its place in a series of Handbooks in the philosophy of science. The reasons for its vigour are not far to seek. As we see matters, there are two main reasons; the first relates to the formative years of analytic philosophy of science, and the second to the last forty years.

First, physics had an enormous influence on the early phase of the analytic movement in philosophy. This influence does not just reflect the fact that for the logical positivists and logical empiricists, and for others such as Russell, physics represented a paradigm of empirical knowledge. There are also much more specific influences. Each of the three main pillars of modern physics — thermal physics, quantum theory and relativity — contributed specific ideas and arguments to philosophical debate. Among the more obvious influences are the following.

Thermal physics and the scientific controversy about the existence of atoms bore upon the philosophical debate between realism and instrumentalism; and the rise of statistical mechanics fuelled the philosophy of probability. As to quantum theory, its most pervasive influence in philosophy has undoubtedly been to make philosophers accept that a fundamental physical theory could be indeterministic. But this influence is questionable since, as every philosopher of science knows (or should know!), indeterminism only enters at the most controversial point of quantum theory: viz., the alleged “collapse of the wave packet”. In any case, the obscurity of the interpretation of quantum theory threw not only philosophers, but also the giants of physics, such as Einstein and Bohr, into vigorous debate: and not only about determinism, but also about other philosophical fundamentals, such as the nature of objectivity. Finally, relativity theory, both special and general, revolutionized the philosophy of space and time, in particular by threatening neo-Kantian doctrines about the nature of geometry.

These influences meant that when the analytic movement became dominant in anglophone philosophy, the interpretation of modern physics was established as a prominent theme in its sub-discipline, philosophy of science. Accordingly, as philosophy has grown, so has the philosophy of physics.

But from the 1960s onwards, philosophy of physics has also grown for a reason external to philosophy. Namely, within physics itself there has been considerable
interest in foundational issues, with results that have many suggestive repercussions for philosophy. Again, there have been various developments within physics, and thereby various influences on philosophy. The result, we believe, is that nowadays foundational issues in the fundamental physical theories provide the most interesting and important problems in the philosophy of physics. We have chosen the topics for this volume in accord with this conviction. In the next Subsection, we will articulate some of these foundational issues, and thereby introduce the Chapters of the volume.

2 CURRENT FOUNDATIONAL ISSUES IN PHYSICS

We will first discuss these issues under five headings. The first three correspond to the three pillars of modern physics mentioned in Section 2.1; i.e. thermal physics, quantum theory and relativity theory. The fourth and fifth concern combinations of these pillars; and lead to speculations about the future of physics. These five headings will provide a way of introducing most of this volume's Chapters, albeit not in the order in which they occur. Then, after these five headings, we will introduce the volume's remaining two Chapters.

2.1 Thermal physics

Controversies about the foundations of thermal physics, especially the characterization of the approach to equilibrium, have continued unabated since the days of the field's founding fathers, such as Maxwell and Boltzmann. Some aspects of the original controversies can be seen again in modern discussions. But the controversies have also been transformed by the development of several scientific fields; especially the following three, which have grown enormously since the 1960s:

(i) classical mechanics, and its offspring such as ergodic theory and chaos theory;

(ii) quantum thermal physics; and

(iii) cosmology, which nowadays provides a very detailed and so fruitful context for developing and evaluating Boltzmann's bold idea that the ultimate origin of the "arrow of time" is cosmological.

In this volume, the foundations of thermal physics is represented by the Chapters by Uffink and by Emch, who cover classical and quantum aspects, respectively. Among the topics Uffink discusses, two receive special attention: the evolution of Boltzmann's views, and the mathematical framework of stochastic dynamics. Emch adopts the formalism of algebraic quantum statistical mechanics, and reviews many results about that formalism's notion of equilibrium, i.e. KMS states. Two other Chapters also provide a little stage-setting for Uffink and Emch, though without pursuing the relation to thermal physics: viz. the Chapters by Butterfield on classical mechanics, and by Ellis on cosmology.
2.2 Quantum theory

Since the 1960s, the physics community has witnessed a revival of the debates about the interpretation of quantum theory that raged among the theory's founding fathers. In the general physics community, the single most influential author has no doubt been John Bell, not only through his non-locality theorem and the many experiments it engendered, but also through his critique of the "Copenhagen orthodoxy" and his sympathy towards the pilot-wave and dynamical collapse heterodoxies. But in more specialist communities, there have been other crucial factors that have animated the debate. Mathematical physicists have developed a deep understanding of the various relations between quantum and classical theories. Since the 1970s, there has been progress in understanding decoherence, so that nowadays, almost all would accept that it plays a crucial role in the emergence of the classical world from quantum theory. And since the 1990s, the burgeoning fields of quantum information and computation have grown out of the interpretative debates, especially the analysis of quantum non-locality.

In this volume, these topics are taken up by Dickson, Landsman and Bub. Dickson surveys the formalism of non-relativistic quantum theory, and some of the main interpretative issues, including empirical content, quantum uncertainty, the measurement problem, and non-locality. For the most part, Landsman reviews from the perspective of mathematical physics the relations between quantum and classical theories. In particular, he discusses various approaches to quantization and the rigorous treatments of the classical limits $\hbar \to 0$ and $N \to \infty$. But Landsman also includes discussions of the Copenhagen interpretation and decoherence. Finally, Bub presents some central ideas and results about quantum information and quantum computation. As a backdrop to this, he also briefly reviews classical information and computation; and he ends by proposing some provocative morals about the interpretation of quantum theory.

2.3 Relativity theory

The decades since the 1960s have seen spectacular developments, for both theory and experiment, in general relativity and cosmology. But this Renaissance has also been very fruitful as regards foundational and philosophical issues. Mathematical relativists have continued to deepen our understanding of the foundations of general relativity: foundations which, as mentioned in Section 1, were recognized already in the 1920s as crucial for the philosophy of space and time. And the recent transformation of cosmology from a largely speculative enterprise into a genuine science has both brought various philosophical questions closer to scientific resolution, and made other philosophical questions, e.g. about method and explanation in cosmology, much more pressing.

In this volume, these topics are represented by the Chapters by Malament, Belot and Ellis. Malament first expounds classical relativity. Then he discusses three special topics: the definition of simultaneity in special relativity, the geometrization of Newtonian gravity, and the extent to which causal structure determines
spacetime geometry. Belot’s main aim is to give a clear statement of the “problem of time” as it occurs in classical general relativity; and to do that, he first reviews the way time is represented in simpler classical theories, including mechanics. (Belot’s Chapter thereby complements Butterfield’s: both expound aspects of classical Hamiltonian theories, and stress how some of these aspects reappear in quantum theories.) Ellis first reviews the present state of relativistic cosmological theory and its observational basis; and then investigates nine philosophical themes, including the anthropic principle and the possible existence of multiverses.

So much by way of introducing some foundational issues, and this volume’s corresponding Chapters, arising within one of the three pillars: thermal physics, quantum theory and relativity. We turn to issues arising from combining the pillars — or rather, parts of them! We have already adumbrated the combination of the first and second: viz., in quantum thermal physics, reviewed here by Emch. It is the combination of the second and third — quantum theory and relativity — which we must now address. We shall do so under two headings, corresponding to the distinction between special and general relativity. The first corresponds, of course, to quantum field theory, which forms such a deep and well-established framework for particle physics. The second corresponds to the quantum theory of gravity — which unfortunately still remains only a hope and a goal.¹

2.4 Quantum field theory

Although there are relativistic quantum mechanical theories of a fixed number of particles, by far the most important framework combining quantum theory and special relativity is quantum field theory. Broadly speaking, the foundational issues raised by quantum field theory differ from quantum theory’s traditional interpretative issues, about measurement and non-locality (cf. Quantum theory, §2.2 above). There are two points here.

(i) Although quantum field theory of course illustrates the latter issues just as much as elementary quantum theory does, it apparently cannot offer a resolution of them. The measurement problem and the puzzles about non-locality arise so directly from the unitarity and tensor-product features of quantum theories, as to be unaffected by the extra mathematical structures

¹Our image of three pillars prompts the question: what about the combination of thermal physics and relativity? When Einstein’s special theory of relativity won acceptance, the rush was on to revise the various branches of classical physics to make them properly relativistic. In the case of thermodynamics, this program produced disputes about the Lorentz transformation properties of the thermodynamic quantities of heat, temperature and entropy that persisted well into the 1970s; (see [Liu, 1994] for an overview of this debate). As for classical general relativity theory, there does not currently exist a statistical mechanics that incorporates the “gravitational entropy of the universe”, and it seems unlikely that there can be such a theory. But for all anyone knows, the ideas of thermal physics may play a crucial role in the hoped-for quantum theory of gravity. There are hints to that effect from, for example, black hole thermodynamics, the Unruh effect, and Hawking radiation. These topics are discussed briefly in Rovelli’s chapter.
and physical ideas supplied by quantum field theory. And accordingly, it has seemed to most workers to be wisest to pursue the traditional interpretative issues within non-relativistic quantum theory: if you identify a problem in a simple context, but are confident that it is not an artefact of the context's simplicity, it is surely wisest to attack it there. (And as shown in this volume by Dickson's and Landsman's Chapters, that context is by no means "really simple": non-relativistic quantum theory, and its relation to classical theories, provides an abundance of intricate structure to investigate.)

(ii) On the other hand, there are several foundational issues that are distinctive of quantum field theory. Perhaps the most obvious ones are: the nature of particles (including the topic of localization), the interpretation of-renormalization, the interpretation of gauge structure, and the existence of unitarily equivalent representations of the canonical commutation relations.

In this volume, these topics are taken up by 't Hooft and by Halvorson and Müger. First, 't Hooft provides an authoritative survey of quantum field theory, from the perspective of particle physics. Among the main topics he expounds are: the quantization of scalar and spinor fields, Feynman path integrals, the ideas of gauge fields and the Higgs mechanism, renormalization, asymptotic freedom and confinement.

Halvorson and Müger discuss a smaller and distinctively foundational set of issues, using the apparatus of algebraic quantum field theory. (So their use of the algebraic approach complements the uses made by Emch and Landsman.) They discuss the nature of particles and localization, non-locality, the assignment of values to quantities (i.e. the measurement problem) and the definability of quantum fields at individual spacetime points. But they devote most of their effort to the Doplicher-Haag-Roberts theory of superselection. This theory yields deep insights into crucial structures of quantum field theory: in particular, the set of representations, the relation between the field and observable algebras, and gauge groups.

2.5 Quantum gravity

Finally, we turn to the combination of quantum theory with general relativity: i.e., the search for a quantum theory of gravity. Here there is of course no established theory, nor even a consensus about the best approach for constructing one. Rather there are various research programmes that often differ in their technical aims, as well as their motivations and conceptual frameworks. In this situation, various

\footnote{In some respects relativistic QFT makes the measurement problem worse. In non-relativistic quantum mechanics, the collapse of the state vector is supposed to happen instantaneously; so in the relativistic setting, one would have to develop some appropriate analogue. On the other hand, the modal interpretation of ordinary QM — which arguably provides the best hope for a no-collapse account of quantum measurement — faces formidable obstacles in relativistic quantum field theory; (see [Clifton, 2000] and Halvorson and Müger, this volume, Section 5).}
foundational issues about the "ingredient" theories are cast in a new light. For example, might quantum gravity revoke orthodox quantum theory's unitarity, and thereby en passant solve the measurement problem? And does the general covariance (diffeomorphism invariance) of general relativity represent an important clue about the ultimate quantum nature of space and time?

In this volume, these and related questions are taken up by Rovelli. He also presents details about other topics: for example, the subject's history, the two main current programmes (string theory and loop quantum gravity), and quantum cosmology. Ellis' Chapter also discusses quantum cosmology. In this way, and indeed by addressing other fundamental questions about the idea of an "ultimate" physical theory, Ellis's Chapter provides a natural complement to Rovelli's.

So much by way of introducing Chapters that correspond to our initial three pillars of modern physics, or to combinations of them. We turn to introducing the volume's remaining two Chapters. Here our intention has been to provide Chapters whose discussions bridge the divisions between physical theories, and even those between our three pillars. In this connection, it seemed to us that of the various possible themes for such a cross-cutting discussion, the two most appropriate ones were determinism and symmetry.\(^3\)

Accordingly, Earman discusses how determinism fares in a wide class of theories: his examples range from classical mechanics to proposals for quantum gravity. He also addresses the relations between determinism and other issues: in particular, predictability, the nature of spacetime, and symmetry. Symmetry in classical physics is given a wide-ranging survey by Brading and Castellani. Among other topics, they discuss: Curie's principle, the advent of group theory into physics, canonical transformation theory, general covariance in general relativity, and Noether's theorems. Various aspects of symmetry and invariance in quantum physics are discussed in the Chapters by Dickson, Emch, Halvorson, and Landsman. But a synoptic overview of this complex topic remains to be written — which we hope will be taken as a challenge by some of our readers.

Let us sum up this introduction to the Chapters that follow, with two comments that are intended to give the prospective reader — perhaps daunted by the many pages ahead! — some courage.

First, it is obvious that by our lights, there is no sharp line between philosophy of physics and physics itself. So it is no surprise that some of the best work in philosophy of physics is being done by physicists (as witnessed by several contributions to this volume). No surprise: but certainly, to be welcomed. Conversely, to the traditionally trained philosopher, work by philosophers of physics is liable to look more like physics than philosophy. But for us, this blurring of disciplinary boundaries is no cause for concern. On the contrary, it represents an opportunity for philosophy to enrich itself. And in the other direction, philosophers can hope

\(^3\)Other good candidates include the "direction of time", or irreversibility, and the constitution of matter. But adding chapters on these or other cross-cutting themes would have made the volume altogether too long.
that the foundations, and even philosophy, of physics can be a source of heuristic ideas for physics. Or at least, physicists’ interest in foundational questions now offers philosophers of physics the opportunity of fruitful discussion with physicists.

But agreed: this enrichment of philosophy does not come for free. And the need to master technical material which is often difficult can be a barrier to entering the philosophy of physics. In designing this volume, our response to this problem has of course been, not to try to lower the barrier, at the cost of scholarship and of fostering illusory hopes: rather our strategy has been to commission Chapters that cover their chosen topics as expertly and completely as possible. So to the reader, our message is simple: take heart! Once you are over the barrier, new vistas open for the philosophy of science.

3 OUTLOOK: HALF WAY THROUGH THE WOODS

Finally, we would like to set the stage for this volume, by making two connected comments about the present state of fundamental physics. Though it may seem naive or hubristic for philosophers to make such comments, we believe it is worth the risk. For we think that at the present juncture fundamental physics is unusually open to contributions from philosophical reflection; and it will be clear from our comments that together they represent an invitation to the reader to make such contributions! The first comment concerns the amazing successes of present-day physics; the second, the fact that so much remains to be understood.

3.1 Successes

First, we want to celebrate the extraordinary achievements of modern physics; specifically of quantum theory and relativity theory. We propose to do this by emphasising how contingent, indeed surprising, it is that the basic postulates of relativity and quantum theory have proved to be so successful in domains of application far beyond their originally intended ones.

Examples are legion. We pick out two examples, almost at random. Why should the new chronogeometry introduced by Einstein’s special relativity in 1905 for electromagnetism, be extendible to mechanics, thermodynamics and other fields of physics? And why should the quantum theory, devised for systems of atomic dimensions \((10^{-8} \text{ cm})\) be good both for scales much smaller (cf. the nuclear radius of ca. \(10^{-12} \text{ cm}\)) and vastly larger (cf. superconductivity and superfluidity, involving scales up to \(10^{-1} \text{ cm}\))? Indeed, much of the history of twentieth century physics is the story of the consolidation of the relativity and quantum revolutions: the story of their basic postulates being successfully applied ever more widely.

The point applies equally well when we look beyond terrestrial physics. We have in mind, first, general relativity. It makes a wonderful story: the theory was created principally by one person, motivated by conceptual, in part genuinely philosophical, considerations — yet it has proved experimentally accurate in all
kinds of astronomical situations. They range from weak gravitational fields such as occur in the solar system — here it famously explains the minuscule portion of the precession of the perihelion of Mercury (43" of arc per century) that was unaccounted for by Newtonian theory; to fields 10,000 times stronger in a distant binary pulsar — which in the last twenty years has given us compelling (albeit indirect) evidence for a phenomenon (gravitational radiation) that was predicted by general relativity and long searched for; and to exotic objects such as black holes. But general relativity is not the only case. Quantum theory has also been extraordinarily successful in application to astronomy: the obvious example is the use of nuclear physics to develop a very accurate and detailed theories of nucleosynthesis in the very early universe, and of stellar structure and evolution.

Indeed, there is a more general point here, going beyond the successes of relativity and quantum theory. Namely, we tend to get used to the various unities in nature that science reveals — and thereby to forget how contingent and surprising they are. Of course, this is not just a tendency of our own era. For example, nineteenth century physics confirmed Newton’s law of gravitation to apply outside the solar system, and discovered terrestrial elements to exist in the stars (by spectroscopy): discoveries that were briefly surprising, but soon taken for granted, incorporated into the educated person’s ‘common sense’. Similarly nowadays: the many and varied successes of physics in the last few decades, in modelling very accurately phenomena that are (i) vastly distant in space and time, and/or (ii) very different from our usual laboratory scales (in their characteristic values of such quantities as energy, temperature, or pressure etc.), reveal an amazing unity in nature. General theoretical examples of such unity, examples that span some 200 years, are: the ubiquitous fruitfulness of the field concept; and more specifically, of least action principles. For a modern, specific (and literally spectacular) example, consider the precision and detail of our models of supernovae; as confirmed by the wonderful capacity of modern telescope technology to see and analyse individual supernovae, even in other galaxies.

3.2 Clouds on the horizon

And yet: complacency, let alone triumphalism, is not in order! Current physics is full of unfinished business — that is always true in human enquiry. But more to the point, there are clouds on the horizon that may prove as great a threat to the continued success of twentieth century physics, as were the anomalies confronting classical physics at the end of the nineteenth century.

Of course, people differ about what problems they find worrisome; and among the worrisome ones, about which problems are now ripe for being solved, or at least worth addressing. As philosophers, we are generalists: so we naturally find all the various foundational issues mentioned above worrisome. But being generalists, we will of course duck out of trying to say which are the closest to solution, or which are most likely to repay being addressed! In any case, such judgments are hard to adjudicate, since intellectual temperament, and the happenstance of what one
knows about or is interested in, play a large part in forming them. But we would like to end by returning to one of Section 2’s “clouds”: a cloud which clearly invites philosophical reflection, and perhaps contributions. Namely, the problem of quantum gravity; in other words, the fact that general relativity and quantum theory are yet to be reconciled. As mentioned in Section 2.5, Rovelli (this volume) discusses how the contrasting conceptual structures of the “ingredient” theories and the ongoing controversies about interpreting them, make for conflicting basic approaches to quantum gravity.

But we want here to emphasise another reason why we still lack a successful theory, despite great effort and ingenuity. In short, it is that the successes of relativity and quantum theory, celebrated in Comment 3.1 above, conspire to deprive us of the relevant experimental data.

Thus there are general reasons to expect data characteristic of quantum gravity to arise only in a regime of energies so high (correspondingly, distances and times so short) as to be completely inaccessible to us. To put the point in terms of length: the value of the Planck length which we expect to be characteristic of quantum gravity is around 10^{-33} cm. This is truly minuscule: the diameters of an atom, nucleus, proton and quark are, respectively, about 10^{-8}, 10^{-12}, 10^{-13}, and 10^{-16} cm. So the Planck length is as many orders of magnitude from the (upper limit for) the diameter of a quark, as that diameter is from our familiar scale of a centimetre!

We can now see how quantum gravity research is in a sense the victim of the successes of relativity and quantum theory. For those successes suggest that we will not see any “new physics” intimating quantum gravity even at the highest energies accessible to us. The obvious example is quasars: these are typically a few light-days in diameter, and yet have a luminosity 1000 times that of our galaxy (itself 100,000 light-years across, containing a hundred billion stars). They are the most energetic, distant (and hence past!) celestial objects that we observe: they are now believed to be fuelled by massive black holes in their cores. Yet suggestions, current thirty years ago, that their stupendous energies and other properties that we can observe, could only be explained by fundamentally new physics, have nowadays given way to acceptance that “conventional physics” describing events outside the black hole’s event-horizon can do so. (Agreed, we expect the physics deep inside the black hole, in the vicinity of its singularity, to exhibit quantum gravity effects: but if ever a region deserved the name “inaccessible”, this is surely one!) So the situation is ironic, and even frustrating: quantum gravity research is a victim of its ingredient theories’ success.

In any case, the search for quantum gravity is wide open. In closing, we would like to endorse an analogy of Rovelli’s [1997]. He suggests that our present search is like that of the mechanical philosophers such as Galileo and Kepler of the early seventeenth century. Just as they struggled with the clues given by Copernicus and Brahe, en route to the synthesis given by Newton, so also we are “halfway through the woods”. Of course we should be wary of too grossly simplifying and periodizing the scientific revolution, and a fortiori of facile analogies between different
historical situations. Nevertheless, it is striking what a “mixed bag” the doctrines of figures such as Galileo and Kepler turn out to have been, from the perspective of the later synthesis. For all their genius, they appear to us (endowed with the anachronistic benefits of hindsight), to have been “transitional figures”. One cannot help speculating that to some future reader of twentieth century physics, enlightened by some future synthesis of general relativity and quantum theory, our current and recent efforts in quantum gravity will seem strange: worthy and sensible from the authors’ perspective (one hopes), but a hodge-podge of insight and error from the reader’s!

BIBLIOGRAPHY

CONTRIBUTORS

Gordon Belot
Department of Philosophy, University of Pittsburgh, 1001 Cathedral of Learning, Pittsburgh, PA 15260, USA.
gbelot@pitt.edu

Katherine Brading
Department of Philosophy, University of Notre Dame Notre Dame, 100 Malloy Hall, Indiana 46556, USA.
kbrading@nd.edu

Jeffrey Bub
Department of Philosophy, University of Maryland, College Park, MD 20742, USA.
jbub@umd.edu

Jeremy Butterfield
Trinity College, Cambridge, CB2 1TQ, UK.
jb56@cus.cam.ac.uk

Elena Castellani
Department of Philosophy, University of Florence, via Bolognese 52, 50139, Firenze, Italy.
elena.castellani@unifi.it

Michael Dickson
Department of Philosophy, University of South Carolina, Columbia, SC 29208, USA.
dickson@sc.edu

John Earman
Department of History and Philosophy of Science, 1017 Cathedral of Learning, University of Pittsburgh, Pittsburgh, PA 15260, USA.
jeearman+@pitt.edu

George F. R. Ellis
Mathematics Department, University of Cape Town, Rondebosch, Cape Town 8001, South Africa.
elis@maths.uct.ac.za
Gérard Emch
Department of Mathematics, University of Florida, 358 Little Hall, PO Box
118105, Gainesville, FL 32611–8105, USA.
gge@math.ufl.edu

Hans Halvorson
Department of Philosophy, Princeton University, Princeton, NJ 08544, USA.
hhalvors@princeton.edu

Gerard ’t Hooft
Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CC
Utrecht, The Netherlands, and Spinoza Institute, Postbox 80.195, 3508 TD Utrecht,
The Netherlands.
g.thooft@phys.uu.nl

N.P. Landsman
Institute for Mathematics, Astrophysics, and Particle Physics, Radboud Univer-
siteit Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
landsman@math.ru.nl

David B. Malament
Department of Logic and Philosophy of Science, University of California at Irvine,
3151 Social Science Plaza, Irvine, CA 92697-5100, USA.
dmalamen@uci.edu

Michael Müger
Institute for Mathematics, Astrophysics, and Particle Physics, Radboud Univer-
siteit Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
mueger@math.ru.nl

Carlo Rovelli
Centre de Physique Théorique de Luminy, Université de la Méditerranée, case 907,
F-13288 Marseille, France.
rovelli@cpt.univ-mrs.fr

Jos Uffink
Institute for History and Foundations of Science, Utrecht University, PO Box 80
000, 3508 TA Utrecht, The Netherlands.
uffink@phys.uu.nl
ON SYMPLECTIC REDUCTION IN CLASSICAL MECHANICS

J. Butterfield

Mottoes
The current vitality of mechanics, including the investigation of fundamental questions, is quite remarkable, given its long history and development. This vitality comes about through rich interactions with pure mathematics (from topology and geometry to group representation theory), and through new and exciting applications to areas like control theory. It is perhaps even more remarkable that absolutely fundamental points, such as a clear and unambiguous linking of Lie's work on the Lie-Poisson bracket on the dual of a Lie algebra ... with the most basic of examples in mechanics, such as the rigid body and the motion of ideal fluids, took nearly a century to complete.

Marsden and Ratiu [1999, pp. 431–432]

In the ordinary theory of the rigid body, six different three-dimensional spaces \mathbb{R}^3, \mathbb{R}^3^*, g, g^*, T^*G_g, T^*G_g are identified.

Arnold [1989, p. 324]

1 INTRODUCTION

1.1 Why classical mechanics?

All hail the rise of modern physics! Between 1890 and 1930, the quantum and relativity revolutions and the consolidation of statistical physics through the discovery of atoms, utterly transformed our understanding of nature; and had an enormous influence on philosophy; (e.g. [Kragh, 1999; Ryckman, 2005]). Accordingly, this Handbook concentrates on those three pillars of modern physics — quantum theories, spacetime theories and thermal physics. So some initial explanation of the inclusion of a Chapter on classical mechanics, indeed the classical mechanics of finite-dimensional systems, is in order.

The first point to make is that the various fields of classical physics, such as mechanics and optics, are wonderfully rich and deep, not only in their technicalities, but also in their implications for the philosophy and foundations of physics. From Newton's time onwards, classical mechanics and optics have engendered an enormous amount of philosophical reflection. As regards mechanics, the central
philosophical topics are usually taken (and have traditionally been taken) to be space, time, determinism and the action-at-a-distance nature of Newtonian gravity. Despite their importance, I will not discuss these topics; but some other Chapters will do so (at least in part, and sometimes in connection with theories other than classical mechanics). I will instead focus on the theory of symplectic reduction, which develops the well-known connection between continuous symmetries and conserved quantities, summed up in Noether's "first theorem". I choose this focus partly by way of preparation for parts of some other Chapters; and partly because, as we will see in a moment, symplectic reduction plays a central role in the current renaissance of classical mechanics, and in its relation to quantum physics.

I said that classical physics engendered a lot of philosophical reflection. It is worth stressing two, mutually related, reasons for this: reasons which today's philosophical emphasis on the quantum and relativity revolutions tends to make us forget.

First: in the two centuries following Newton, these fields of classical physics were transformed out of all recognition, so that the framework for philosophical reflection about them also changed. Think of how in the nineteenth century, classical mechanics and optics gave rise to classical field theories, especially electromagnetism. And within this Chapter's specific field, the classical mechanics of finite-dimensional systems, think of how even its central theoretical principles were successively recast, in fundamental ways, by figures such Euler, Lagrange, Hamilton and Jacobi.

Second, various difficult problems beset the attempt to rigorously formulate classical mechanics and optics; some of which have considerable philosophical aspects. It is not true that once we set aside the familiar war-horse topics — space, time, determinism and action-at-a-distance — the world-picture of classical mechanics is straightforward: just "matter in motion". On the contrary. Even if we consider only finite-dimensional systems, we can ask, for example:

(i) For point-particles (material points): can they have different masses, and if so how? What happens when they collide? Indeed, for point-particles interacting only by Newtonian gravity, a collision involves infinite kinetic energy.

(ii) For extended bodies treated as finite-dimensional because rigid: what happens when they collide? Rigidity implies that forces, and displacements, are transmitted "infinitely fast" through the body. Surely that should not be taken literally? But if so, what justifies this idealization; and what are its scope and limits?

As to infinite-dimensional systems (elastic solids, fluids and fields), many parts of their theories remain active research areas, especially as regards rigorous formulations and results. For contemporary work on elastic solids, for example, cf. Marsden and Hughes [1982]. As to fluids, the existence and uniqueness of rigorous solutions of the main governing equations, the Navier-Stokes equations, is still an
open problem. This problem not only has an obvious bearing on determinism; it is regarded as scientifically significant enough that its solution would secure a million-dollar Clay Millennium prize.

These two reasons — the successive reformulations of classical mechanics, and its philosophical problems — are of course related. The monumental figures of classical mechanics recognized and debated the problems, and much of their technical work was aimed at solving them. As a result, there was a rich debate about the foundations of classical physics, in particular mechanics, for the two centuries after Newton’s *Principia* [1687]. A well-known example is Duhem’s instrumentalist philosophy of science, which arose in large measure from his realization how hard it was to secure rigorous foundations at the microscopic level for classical mechanics. A similar example is Hilbert’s being prompted by his contemporaries’ continuing controversies about the foundations of mechanics, to choose as the sixth of his famous list of outstanding mathematical problems, the axiomatization of mechanics and probability; (but for some history of this list, cf. [Grattan-Guinness, 2000]). A third example, spanning both centuries, concerns variational principles: the various principles of least action formulated first by Maupertuis, then by Euler and later figures — first for finite classical mechanical systems, then for infinite ones — prompted much discussion of teleology. Indeed, this discussion ensnared the logical empiricists [Stöltzner, 2003]; it also bears on contemporary philosophy of modality [Butterfield, 2004].

In the first half of the twentieth century, the quantum and relativity revolutions tended to distract physicists, and thereby philosophers, from these and similar problems. The excitement of developing the new theories, and of debating their implications for natural philosophy, made it understandable, even inevitable, that the foundational problems of classical mechanics were ignored.

Besides, this tendency was strengthened by the demands of pedagogy: the necessity of including the new theories in physics undergraduate degrees. By mid-century, the constraints of time on the physics curriculum had led many physics undergraduates’ education in classical mechanics to finish with the elementary parts of analytical mechanics, especially of finite-dimensional systems: for example, with the material in Goldstein’s well-known textbook [1950]. Such a restriction is understandable, not least because: (i) the elementary theory of Lagrange’s and Hamilton’s equations requires knowledge of ordinary differential equations, and (ii) elementary Hamiltonian mechanics forms a springboard to learning elementary canonical quantization (as does Hamilton–Jacobi theory, from another perspective). Besides, as I mentioned: even this restricted body of theory provides plenty of material for philosophical analysis — witness my examples above, and the discussions of the great figures such Euler, Lagrange, Hamilton and Jacobi.

However, the second half of the twentieth century saw a renaissance in research in classical mechanics: hence my first motto. There are four obvious reasons for this: the first two “academic”, and the second two “practical”.

(i) Thanks partly to developments in mathematics in the decades after Hilbert’s list of problems, the foundational questions were addressed afresh, as much
by mathematicians and mathematically-minded engineers as by physicists. The most relevant developments lay in such fields as topology, differential geometry, measure theory and functional analysis. In this revival, the contributions of the Soviet school, always strong in mechanics and probability, were second to none. And relatedly: —

(ii) The quest to deepen the formulation of quantum theory, especially quantum field theory, prompted investigation of (a) the structure of classical mechanics and (b) quantization. For both (a) and (b), special interest attaches to the generally much harder case of infinite systems.

(iii) The coming of spaceflight, which spurred the development of celestial mechanics. And relatedly: —

(iv) The study of non-linear dynamics ("chaos theory"), which was spurred by the invention of computers.

With these diverse causes and aspects, this renaissance continues to flourish — and accordingly, I shall duck out of trying to further adumbrate it! I shall even duck out of trying to survey the philosophical questions that arise from the various formulations of mechanics from Newton to Jacobi and Poincaré. Suffice it to say here that to the various topics mentioned above, one could add, for example, the following two: the first broadly ontological, the second broadly epistemological.

(a) The analysis of notions such as mass and force (including how they change over time). For this topic, older books include Jammer [1957; 1961] and McMullin [1978]; recent books include [Boudri, 2002; Jammer, 2000; Lutzen, 2005] and [Slovak, 2002]; Grattan-Guinness [2006] is a fine recent synopsis of the history, with many references.

(b) The analysis of what it is to have an explicit solution of a mechanical problem (including how the notion of explicit solution was gradually generalized). This topic is multi-faceted. It not only relates to the gradual generalization of the notion of function (a grand theme in the history of mathematics — well surveyed by Lutzen [2003]), and to modern non-linear dynamics (cf. (iv) above). It also relates to the simplification of problems by exploiting a symmetry so as to reduce the number of variables one needs — and this is the core idea of symplectic reduction. I turn to introducing it.

1.2 Prospectus

The strategy of simplifying a mechanical problem by exploiting a symmetry so as to reduce the number of variables is one of classical mechanics' grand themes. It is theoretically deep, practically important, and recurrent in the history of the subject. The best-known general theorem about the strategy is undoubtedly Noether's theorem, which describes a correspondence between continuous symmetries and conserved quantities. There is both a Lagrangian and a Hamiltonian
version of this theorem, though for historical reasons the name ‘Noether’s theorem’ is more strongly attached to the Lagrangian version. However, we shall only need the Hamiltonian version of the theorem: it will be the “springboard” for our exposition of symplectic reduction.¹

So I shall begin by briefly reviewing the Hamiltonian version in Section 2.1. For the moment, suffice it to make four comments (in ascending order of importance for what follows):

(i) Both versions are underpinned by the theorems in elementary Lagrangian and Hamiltonian mechanics about cyclic (ignorable) coordinates and their corresponding conserved momenta.²

(ii) In fact, the Hamiltonian version of the theorem is stronger. This reflects the fact that the canonical transformations form a “larger” group than the point transformations. A bit more precisely: though the point transformations $q \rightarrow q'$ on the configuration space Q induce canonical transformations on the phase space Γ of the qs and ps, $q \rightarrow q', p \rightarrow p'$, there are yet other canonical transformations which “mix” the qs and ps in ways that transformations induced by point transformations do not.

(iii) I shall limit our discussion to (a) time-independent Hamiltonians and (b) time-independent transformations. Agreed, analytical mechanics can be developed, in both Lagrangian and Hamiltonian frameworks, while allowing time-dependent dynamics and transformations. For example, in the Lagrangian framework, allowing velocity-dependent potentials and-or time-dependent constraints would prompt one to use what is often called the ‘extended configuration space’ $Q \times \mathbb{R}$. And in the Hamiltonian framework, time-dependence prompts one to use an ‘extended phase space’ $\Gamma \times \mathbb{R}$. Besides, from a philosophical viewpoint, it is important to consider time-dependent transformations: for they include boosts, which are central to the philosophical discussion of spacetime symmetry groups, and especially of relativity

¹For discussion of the Lagrangian version, cf. e.g. Brading and Castellani (this vol., ch. 13) or (restricted to finite-dimensional systems) Butterfield [2004a, Section 4.7]. For an exposition of both versions that is complementary to this paper (and restricted to finite-dimensional systems), cf. Butterfield [2006]. Brading and Castellani also bring out that, even apart from Noether’s theorems in other branches of mathematics, there are other ‘Noether’s theorems’ about symmetries in classical dynamics; so the present theorem is sometimes called Noether’s “first theorem”. Note also (though I shall not develop this point) that symplectic structure can be seen in the classical solution space of Lagrange’s equations, so that symplectic reduction can be developed in the Lagrangian framework; cf. e.g. Marsden and Ratiu [1999, p. 10, Sections 7.2–7.5, and 13.5].

²Here we glimpse the long history of our subject: these theorems were of course clear to these subjects’ founders. Indeed the strategy of exploiting a symmetry to reduce the number of variables occurs already in 1687, in Newton’s solution of the Kepler problem; (or more generally, the problem of two bodies exerting equal and opposite forces along the line between them). The symmetries are translations and rotations, and the corresponding conserved quantities are the linear and angular momenta. In what follows, these symmetries and quantities will provide us with several examples.
principles. But beware: rough-and-ready statements about symmetry, e.g. that the Hamiltonian must be invariant under a symmetry transformation, are liable to stumble on these transformations. To give the simplest example: the Hamiltonian of a free particle is just its kinetic energy, which can be made zero by transforming to the particle’s rest frame; i.e. it is not invariant under boosts.

So a full treatment of symmetry in Hamiltonian mechanics, and thereby of symplectic reduction, needs to treat time-dependent transformations — and to beware! But I will set aside all these complications. Here it must suffice to assert, without any details, that the modern theory of symplectic reduction does cope with boosts; and more generally, with time-dependent dynamics and transformations.

(iv) As we shall see in detail, there are three main ways in which the theory of symplectic reduction generalizes Noether’s theorem. As one might expect, these three ways are intimately related to one another.

(a) Noether’s theorem is “one-dimensional” in the sense that for each symmetry (a vector field of a special kind on the phase space), it provides a conserved quantity, i.e. a real-valued function on the phase space, whose value stays constant over time. So in particular, different components of a conserved vector quantity, such as total linear momentum, are treated separately; (in this example, the corresponding vector fields generate translations in three different spatial directions). But in symplectic reduction, the notion of a momentum map provides a “unified” description of these different components.

(b) Given a symmetry, Noether’s theorem enables us to confine our attention to the level surface of the conserved quantity, i.e. the sub-manifold of phase space on which the quantity takes its initial value: for the system’s time-evolution is confined to that surface. In that sense, the number of variables we need to consider is reduced. But in symplectic reduction, we go further and form a quotient space from the phase space. That is, in the jargon of logic: we define on phase space an equivalence relation (not in general so simple as having a common value for a conserved quantity) and form the set of equivalence classes. In the jargon of group actions: we form the set of orbits. Passage to this quotient space can have various good technical, and even philosophical, motivations. And under good conditions, this set is itself a manifold with lower dimension.

(c) Hamiltonian mechanics, and so Noether’s theorem, is usually formulated in terms of symplectic manifolds, in particular the cotangent bundle T^*Q of the configuration space Q. (Section 2.1 will give details.) But in symplectic reduction, we often need a (mild) generalization of the idea of a symplectic manifold, called a Poisson manifold, in which a
bracket, with some of the properties of the Poisson bracket, is taken as the primitive notion. Besides, this is related to (b) in that we are often led to a Poisson manifold, and dynamics on it, by taking the quotient of a symplectic manifold (i.e. a phase space of the usual kind) by the action of a symmetry group.

As comment (iv) hints, symplectic reduction is a large subject. So there are several motivations for expounding it. As regards physics, many of the ideas and results can be developed for finite-dimensional classical systems (to which I will confine myself), but then generalized to infinite-dimensional systems. And in either the original or the generalized form, they underpin developments in quantum theories. So these ideas and results have formed part of the contemporary renaissance in classical mechanics; cf. (i) and (ii) at the end of Section 1.1.

As regards philosophy, symmetry is both a long-established focus for philosophical discussion, and a currently active one: cf. [Brading and Castellani, 2003]. But philosophical discussion of symplectic reduction seems to have begun only recently, especially in some papers of Belot and Earman. This delay is presumably because the technical material is more sophisticated: indeed, the theory of symplectic reduction was cast in its current general form only in the 1970s. But as Belot and Earman emphasise, the philosophical benefits are worth the price of learning the technicalities. The most obvious issue is that symplectic reduction’s device of quotienting a state space casts light on philosophical issues about whether two apparently distinct but utterly indiscernible possibilities should be ruled to be one and the same. In Section 2, I will follow Belot in illustrating this issue with “relationist” mechanics. Indeed, I have selected the topics for my exposition with an eye to giving philosophical readers the background needed for some of Belot’s discussions. His papers (which I will cite in Section 2) make many judicious philosophical points, without burdening the reader with an exposition of technicalities: excellent stuff — but to fully appreciate the issues, one of course has to slog through the details.

Finally, in the context of this volume, symplectic reduction provides some background for the Chapters on the representation of time in mechanics [Belot, this vol., ch. 2], and on the relations between classical and quantum physics [Landsman, this vol., ch. 5, especially Sections 4.3–4.5 and 6.5; Dickson, this vol., ch. 4].

The plan of the Chapter is as follows. I first review Noether’s theorem in Hamiltonian mechanics as usually formulated, in Section 2.1. Then I introduce the themes mentioned in (b) and (c) above, of quotienting a phase space, and Poisson manifolds (Section 2.2); and illustrate these themes with “relationist” mechanics (Section 2.3).

Thereafter, I expound the basics of symplectic reduction: (confining myself to finite-dimensional Hamiltonian mechanics). Section by Section, the plan will be as follows. Sections 3 and 4 review the modern geometry that will be needed. Section 3 is mostly about Frobenius’ theorem, Lie algebras and Lie groups.3 Section

3Its first two Subsections also provide some pre-requisites for Malament (this vol.).
expounds Lie group actions. It ends with the central idea of the co-adjoint representation of a Lie group G on the dual \mathfrak{g}^* of its Lie algebra. This review enables us to better understand the motivations for Poisson manifolds (5.1); and then to exhibit examples, and prove some main properties (Section 5.2 onwards). Section 6 applies this material to symmetry and conservation in mechanical systems. In particular, it expresses conserved quantities as momentum maps, and proves Noether’s theorem for Hamiltonian mechanics on Poisson manifolds. Finally, in Section 7, we prove one of the several main theorems about symplectic reduction. It concerns the case where the natural configuration space for a system is itself a Lie group G: this occurs both for the rigid body and ideal fluids. In this case, quotienting the natural phase space (the cotangent bundle on G) gives a Poisson manifold that “is” the dual \mathfrak{g}^* of G’s Lie algebra.

To sum up: — The overall effect of this exposition is, I hope, to illustrate this Chapter’s mottoes: that classical mechanics is alive and kicking, not least through deepening our understanding of time-honoured systems such as the rigid body — whose analysis in traditional textbooks can be all too confusing!

2 SYMPLECTIC REDUCTION: AN OVERVIEW

We begin by briefly reviewing Hamiltonian mechanics and Noether’s theorem, in Section 2.1.\footnote{In this endeavour, my sources are four books by masters of the subject: [Abraham and Marsden, 1978; Arnold, 1989; Marsden and Ratiu, 1999; Olver, 2000]. But again, be warned: my selection is severe, as anyone acquainted with these or similar books will recognize.} This prepares us for the idea of symplectic reduction, Section 2.2: which we then illustrate using “relationist” mechanics, Section 2.3.

2.1 Hamiltonian mechanics and Noether’s theorem: a review

2.1.1 Symplectic manifolds; the cotangent bundle as a symplectic manifold

A \textit{symplectic structure} or \textit{symplectic form} on a manifold M is defined to be a differential 2-form ω on M that is closed (i.e. its exterior derivative $d\omega$ vanishes) and is non-degenerate. That is: for any $x \in M$, and any two tangent vectors at x, $\sigma, \tau \in T_x$:

\begin{equation}
(1) \quad d\omega = 0 \quad \text{and} \quad \forall \tau \neq 0, \quad \exists \sigma : \quad \omega(\tau, \sigma) \neq 0.
\end{equation}

Such a pair (M, ω) is called a \textit{symplectic manifold}. There is a rich theory of symplectic manifolds; but we shall only need a small fragment of it. (In particular, the fact that we mostly avoid the theory of canonical transformations means we will not need the theory of Lagrangian sub-manifolds.)

\footnote{For more details about differential geometry, cf. Sections 3.1 and 3.2. For more details about the geometric formulation of mechanics, cf. [Arnold, 1989; Marsden and Ratiu, 1999]; or [Singer, 2001] (more elementary than this exposition) or [Abraham and Marsden, 1978] (more advanced); or [Butterfield, 2006] (at the same level). Of many good textbooks of mechanics, I admire especially [Deslouge, 1982; Johns, 2005].}
First, it follows from the non-degeneracy of \(\omega \) that \(M \) is even-dimensional. The reason lies in a theorem of linear algebra, which one then applies to the tangent space at each point of \(M \). Namely, for any bilinear form \(\omega : V \times V \to \mathbb{R} \): if \(\omega \) is antisymmetric of rank \(r \leq m = \dim(V) \), then \(r \) is even. That is: \(r = 2n \) for some integer \(n \), and there is a basis \(e_1, \ldots, e_i, \ldots, e_m \) of \(V \) for which \(\omega \) has a simple expansion as wedge-products

\[
(2) \quad \omega = \sum_{i=1}^{n} e^i \wedge e^{i+n};
\]
equivalently, \(\omega \) has the \(m \times m \) matrix

\[
(3) \quad \omega = \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.
\]

where \(1 \) is the \(n \times n \) identity matrix, and similarly for the zero matrices of various sizes. This normal form of antisymmetric bilinear forms is an analogue of the Gram-Schmidt theorem that an inner product space has an orthonormal basis, and is proved by an analogous argument.

So if an antisymmetric bilinear form is non-degenerate, then \(r = 2n = m \). That is: eq. 3 loses its bottom row and right column consisting of zero matrices, and reduces to the \(2n \times 2n \) symplectic matrix \(\omega \) given by

\[
(4) \quad \omega := \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}.
\]

Second, the non-degeneracy of \(\omega \) implies that at any \(x \in M \), there is a basis-independent isomorphism \(\omega^b \) from the tangent space \(T_x \) to its dual \(T^*_x \). Namely: for any \(x \in M \) and \(\tau \in T_x \), the value of the 1-form \(\omega^b(\tau) \in T^*_x \) is defined by

\[
(5) \quad \omega^b(\tau)(\sigma) := \omega(\sigma, \tau) \quad \forall \sigma \in T_x.
\]

This also means that a symplectic structure enables a covector field, i.e. a differential one-form, to determine a vector field. Thus for any function \(H : M \to \mathbb{R} \), so that \(dH \) is a differential 1-form on \(M \), the inverse of \(\omega^b \) (which we might write as \(\omega^\sharp \)), carries \(dH \) to a vector field on \(M \), written \(X_H \). This is the key idea whereby in Hamiltonian mechanics, a scalar function \(H \) determines a dynamics; cf. Section 2.1.2.

So far, we have noted some implications of \(\omega \) being non-degenerate. The other part of the definition of a symplectic form (for a manifold), viz. \(\omega \) being closed, \(d\omega = 0 \), is also important. We shall see in Section 2.1.3 that it implies that a vector field \(X \) on a symplectic manifold \(M \) preserves the symplectic form \(\omega \) (i.e. in more physical jargon: generates (a one-parameter family of) canonical transformations) iff \(X \) is Hamiltonian in the sense that there is a scalar function \(f \) such that \(X = X_f = \omega^\sharp(df) \). Or in terms of the Poisson bracket, with \(\cdot \) representing the argument place for a scalar function: \(X(\cdot) = X_f(\cdot) \equiv \{\cdot, f\} \).

So much by way of introducing symplectic manifolds. I turn to showing that any cotangent bundle \(T^*Q \) is such a manifold. That is: it has, independently of a choice of coordinates or bases, a symplectic structure.
Given a manifold Q ($\dim(Q) = n$) which we think of as the system's configuration space, choose any local coordinate system q on Q, and the natural local coordinates q, p thereby induced on T^*Q. We define the 2-form

$$(6) \quad dp \wedge dq := dp_i \wedge dq^i := \sum_{i=1}^{n} dp_i \wedge dq^i. $$

In fact, eq. 6 defines the same 2-form, whatever choice we make of the chart q on Q. For $dp \wedge dq$ is the exterior derivative of a 1-form on T^*Q which is defined naturally (i.e. independently of coordinates or bases) from the derivative (also known as: tangent) map of the projection

$$(7) \quad \pi : (q, p) \in T^*Q \mapsto q \in Q. $$

Thus consider a tangent vector τ (not to Q, but) to the cotangent bundle T^*Q at a point $\eta = (q, p) \in T^*Q$, i.e. $q \in Q$ and $p \in T^*_q$. Let us write this as: $\tau \in T_{\eta}(T^*Q) \equiv T_{(q,p)}(T^*Q)$. The derivative map, $D\pi$ say, of the natural projection π applies to τ:

$$(8) \quad D\pi : \tau \in T_{(q,p)}(T^*Q) \mapsto (D\pi(\tau)) \in T_q. $$

Now define a 1-form θ_H on T^*Q by

$$(9) \quad \theta_H : \tau \in T_{(q,p)}(T^*Q) \mapsto p(D\pi(\tau)) \in \mathbb{R};$$

where in this definition of θ_H, p is defined to be the second component of τ's base-point $(q, p) \in T^*Q$; i.e. $\tau \in T_{(q,p)}(T^*Q)$ and $p \in T^*_q$.

This 1-form is called the canonical 1-form on T^*Q. One now checks that in any natural local coordinates q, p, θ_H is given by

$$(10) \quad \theta_H = p_i dq^i. $$

Finally, we define a 2-form by taking the exterior derivative of θ_H:

$$(11) \quad d(\theta_H) := d(p_i dq^i) \equiv dp_i \wedge dq^i. $$

One checks that this 2-form is closed (since $d^2 = 0$) and non-degenerate. So $(T^*Q, d(\theta_H))$ is a symplectic manifold. Accordingly, $d(\theta_H)$, or its negative $-d(\theta_H)$, is called the canonical symplectic form, or canonical 2-form.

There is a theorem (Darboux's theorem) to the effect that locally, any symplectic manifold "looks like" a cotangent bundle: or in other words, a cotangent bundle is locally a "universal" example of symplectic structure. We will not go into details; but in Section 5.3.4, we will discuss the generalization of this theorem for Poisson manifolds. But first we review, in the next two Subsections, Hamilton's equations, and Noether's theorem.
2.1.2 Geometric formulations of Hamilton's equations

As we already emphasised, the main geometric idea behind Hamilton's equations is that a gradient, i.e. covector, field dH determines a vector field X_H. So to give a geometric formulation of Hamilton's equations at a point $x = (q, p)$ in a cotangent bundle T^*Q, let us write ω^x for the (basis-independent) isomorphism from the cotangent space to the tangent space, $T^*_x \rightarrow T_x$, induced by $\omega := -d(\theta_H) = dq^i \wedge dp_i$ (cf. eq. 5). Then Hamilton's equations may be written as:

$$\dot{x} = X_H(x) = \omega^x(dH(x)) = \omega^x(dH(x)) .$$

There are various other formulations. Applying ω^b, the inverse isomorphism $T_x \rightarrow T^*_x$, to both sides, we get

$$\omega^b X_H(x) = dH(x) .$$

In terms of the symplectic form ω at x, this is: for all vectors $\tau \in T_x$

$$\omega(X_H(x), \tau) = dH(x) \cdot \tau ;$$

or in terms of the contraction (also known as: interior product) $i_X\alpha$ of a differential form α with a vector field X, with \cdot marking the argument place of $\tau \in T_x$:

$$i_{X_H}\omega := \omega(X_H(x), \cdot) = dH(x)(\cdot) .$$

More briefly, and now written for any function f, it is:

$$i_{X_f}\omega = df .$$

Finally, recall the relation between the Poisson bracket and the directional derivative (or the Lie derivative \mathcal{L}) of a function: viz.

$$\mathcal{L}_{X_f}g = dg(X_f) = X_f(g) = \{g, f\} .$$

Combining this with eq. 16, we can state the relation between the symplectic form and Poisson bracket in the form:

$$\{g, f\} = dg(X_f) = i_{X_f}dg = i_{X_f}(i_{X_g}\omega) = \omega(X_g, X_f) .$$

2.1.3 Noether's theorem

The core idea of Noether's theorem, in both the Lagrangian and Hamiltonian frameworks, is that to every continuous symmetry of the system there corresponds a conserved quantity (a first integral, a constant of the motion). The idea of a continuous symmetry is made precise along the following lines: a symmetry is a vector field on the state-space that (i) preserves the Lagrangian (respectively, Hamiltonian) and (ii) "respects" the structure of the state-space.

In the Hamiltonian framework, the heart of the proof is a "one-liner" based on the fact that the Poisson bracket is antisymmetric. Thus for any scalar functions f and H on a symplectic manifold (M,ω) (and so with a Poisson bracket given by eq. 18), we have that at any point $x \in M$
(19) \[X_f(H)(x) \equiv \{H, f\}(x) = 0 \quad \text{iff} \quad 0 = \{f, H\}(x) \equiv X_H(f)(x) . \]

In words: around \(x\), \(H\) is constant under the flow of the vector field \(X_f\) (i.e. under what the evolution would be if \(f\) was the Hamiltonian) iff \(f\) is constant under the flow \(X_H\). Thinking of \(H\) as the physical Hamiltonian, so that \(X_H\) represents the real time-evolution (sometimes called: the dynamical flow), this means: around \(x\), \(X_f\) preserves the Hamiltonian iff \(f\) is constant under time-evolution, i.e. \(f\) is a conserved quantity (a constant of the motion).

But we need to be careful about clause (ii) above: the idea that a vector field “respects” the structure of the state-space. In the Hamiltonian framework, this is made precise as preserving the symplectic form. Thus we define a vector field \(X\) on a symplectic manifold \((M, \omega)\) to be symplectic (also known as: canonical) iff the Lie-derivative along \(X\) of the symplectic form vanishes, i.e. \(\mathcal{L}_X \omega = 0\). (This definition is equivalent to \(X\)'s generating (active) canonical transformations, and to its preserving the Poisson bracket. But I will not go into details about these equivalences: for they belong to the theory of canonical transformations, which, as mentioned, I will not need to develop.)

We also define a Hamilton system to be a triple \((M, \omega, H)\) where \((M, \omega)\) is a symplectic manifold and \(H : M \to \mathbb{R}\), i.e. \(M \in \mathcal{F}(M)\). And then we define a (continuous) symmetry of a Hamiltonian system to be a vector field \(X\) on \(M\) that:

(i) preserves the Hamiltonian function, \(\mathcal{L}_X H = 0\); and

(ii) preserves the symplectic form, \(\mathcal{L}_X \omega = 0\).

These definitions mean that to prove Noether's theorem from eq. 19, it will suffice to prove that a vector field \(X\) is symplectic iff it is locally of the form \(X_f\). Such a vector field is called locally Hamiltonian. (And a vector field is called Hamiltonian if there is a global scalar \(f : M \to \mathbb{R}\) such that \(X = X_f\).) In fact, two results from the theory of differential forms, the Poincaré Lemma and Cartan’s magic formula, make it easy to prove this; (for a vector field on any symplectic manifold \((M, \omega)\), i.e. \((M, \omega)\) does not need to be a cotangent bundle).

Again writing \(d\) for the exterior derivative, we recall that a \(k\)-form \(\alpha\) is called:

(i) exact if there is a \((k - 1)\)-form \(\beta\) such that \(\alpha = d\beta\); (cf. the elementary definition of an exact differential);

(ii) closed if \(d\alpha = 0\).

The Poincaré Lemma states that every closed form is locally exact. To be precise: for any open set \(U\) of \(M\), we define the vector space \(\mathcal{O}^k(U)\) of \(k\)-form fields on \(U\). Then the Poincaré Lemma states that if \(\alpha \in \mathcal{O}^k(M)\) is closed, then at every \(x \in M\) there is a neighbourhood \(U\) such that \(\alpha \mid_U \in \mathcal{O}^k(U)\) is exact.

Cartan's magic formula is a useful formula (proved by straightforward calculation) relating the Lie derivative, contraction and the exterior derivative. It says that if \(X\) is a vector field and \(\alpha\) a \(k\)-form on a manifold \(M\), then the Lie derivative of \(\alpha\) with respect to \(X\) (i.e. along the flow of \(X\)) is
(20) \(\mathcal{L}_X \alpha = d i_x \alpha + i_X d \alpha \).

We now argue as follows. Since \(\omega \) is closed, i.e. \(d \omega = 0 \), Cartan's magic formula, eq. 20, applied to \(\omega \) becomes

(21) \(\mathcal{L}_X \omega = d i_x \omega + i_X d \omega = d i_X \omega \).

So for \(X \) to be symplectic is for \(i_X \omega \) to be closed. But by the Poincaré Lemma, if \(i_X \omega \) closed, it is locally exact. That is: there locally exists a scalar function \(f : M \rightarrow \mathbb{R} \) such that

(22) \(i_X \omega = df \) i.e. \(X = X_f \).

So for \(X \) to be symplectic is equivalent to \(X \) being locally Hamiltonian.

Thus we have

Noether’s theorem for a Hamilton system If \(X \) is a symmetry of a Hamiltonian system \((M, \omega, H)\), then locally \(X = X_f \); so by the anti-symmetry of the Poisson bracket, eq. 19, \(f \) is a constant of the motion. And conversely: if \(f : M \rightarrow \mathbb{R} \) is a constant of the motion, then \(X_f \) is a symmetry.

We will see in Section 6.2 that most of this approach to Noether's theorem, in particular the “one-liner” appeal to the anti-symmetry of the Poisson bracket, eq. 19, carries over to the more general framework of Poisson manifolds. For the moment, we mention an example (which we will also return to).

For most Hamiltonian systems in euclidean space \(\mathbb{R}^3 \), spatial translations and rotations are (continuous) symmetries. Let us consider in particular a system we will discuss in more detail in Section 2.3: \(N \) point-particles interacting by Newtonian gravity. The Hamiltonian is a sum of two terms, which are each individually invariant under translations and rotations:

(i) a kinetic energy term \(K \); though I will not go into details, it is in fact defined by the euclidean metric of \(\mathbb{R}^3 \), and is thereby invariant; and

(ii) a potential energy term \(V \); it depends only on the particles' relative distances, and is thereby invariant.

The corresponding conserved quantities are the total linear and angular momentum.\(^6\)

2.2 The road ahead

In this Subsection, four comments will expand on the introductory comment (iv) of Section 1.2, and also give some information about the history of symplectic reduction and about some crucial examples.

\(^6\)By the way, this Hamiltonian is not invariant under boosts. But as I said in (iii) of Section 1.2, I restrict myself to time-independent transformations; the treatment of symmetries that "represent the relativity of motion" needs separate discussion.
(1): Generalizing from Noether's theorem; Poisson manifolds:

Noether's theorem tells us that a continuous symmetry, i.e. a one-parameter group of symmetries, determines a first integral (i.e. a constant of the motion). So a larger group of symmetries, i.e. a group with several parameters, implies several first integrals. The phase flow is therefore confined to the intersection of the level surfaces of these integrals: an intersection which is in general a manifold. In other words: the simultaneous level manifold of these integrals is an invariant manifold of the phase flow.

It turns out that, in many useful cases, this manifold is also invariant under an appropriately chosen subgroup of the group of symmetries; and that the quotient space, i.e. the set of orbits under the action of this subgroup, is a manifold with a natural structure induced by the original Hamiltonian system that is sufficient to do mechanics in Hamiltonian style. The quotient space is therefore called the 'reduced phase space'.

But in some cases, this natural structure is not a symplectic form, but a (mild) generalization in which the the form is allowed to be degenerate; i.e. like eq. 3 rather than eq. 4. A manifold equipped with such a structure need not be a quotient manifold. It can instead be defined in terms of a generalization of the usual Poisson bracket, as defined in terms of the symplectic form by eq. 18.

The key idea is to postulate a bracket, acting on the scalar functions $F : M \to \mathbb{R}$ on any manifold M, and possessing four properties enjoyed by the usual Poisson bracket. One of the properties is anti-symmetry, emphasised in Section 2.1.3's proof of Noether's theorem. The other three are that the postulated bracket, again written $\{,\}$, is: to be bilinear; to obey the Jacobi identity for any real functions F, G, H on M, i.e.

\[
(23) \quad \{\{F, H\}, G\} + \{\{G, F\}, H\} + \{\{H, G\}, F\} = 0 ;
\]

and to obey Leibniz' rule for products, i.e.

\[
(24) \quad \{F, H \cdot G\} = \{F, H\} \cdot G + H \cdot \{F, G\} .
\]

We will see in Section 5 that such a bracket, again called 'Poisson bracket', provides a sufficient framework for mechanics in Hamiltonian style. In particular, it induces an anti-symmetric bilinear form that may be degenerate, as in eq. 3. A manifold M equipped with such a bracket is called a Poisson manifold.

The allowance of degeneracy means that a Poisson manifold can have odd dimension; while we saw in Section 2.1.1 that any symplectic manifold is even-dimensional. On the other hand, this generalized Hamiltonian mechanics will have clear connections with the usual formulation of Section 2.1. The main connection will be the result that any Poisson manifold M is a disjoint union of even-dimensional manifolds, on which M's degenerate antisymmetric bilinear form restricts to be non-degenerate.\(^7\)

\[\text{\(^7\)Because of these clear connections, it is natural to still call the more general framework 'Hamiltonian'; as is usually done. But of course this is just a verbal matter.}\]
(2): Historical roots:

The theory of symplectic reduction has deep historical roots in the work of classical mechanics' monumental figures. In part, this is no surprise. As mentioned in (i) of Section 1.2, cyclic coordinates underpin the role of symmetry in mechanics, and in particular Noether's theorem. And Newton's solution of the Kepler problem provides an example: witness textbooks' expositions of the transition to centre-of-mass coordinates, and of polar coordinates with the angle being cyclic (yielding angular momentum as the conserved quantity). So it is unsurprising that various results and ideas of symplectic reduction can be seen in the work of such masters as Euler, Lagrange, Hamilton, Jacobi, Lie and Poincaré; for example (as we will see), in Euler's theory of the rigid body.

But the history also holds a surprise. It turns out that Lie's epoch-making work on Lie groups already contained a detailed development of much of the general, modern theory.\(^8\) The sad irony is that most of Lie's insights were not taken up — and were then repeatedly re-discovered. So this is yet another example (of which the history of mathematics has so many!) of the saying that he who does not learn from history is doomed to repeat it. The consolation is of course that it is often easier, and more fun, to re-discover something than to learn it from another...

Thus it was only from the mid-1960s that the theory, in essentially the form Lie had, was recovered and cast in the geometric language adopted by modern mechanics; namely, by contemporary masters such as Arnold, Kostant, Marsden, Meyer, Smale, Souriau and Weinstein; (cf. this Chapter's first motto). Happily, several of these modern authors are scholars of the history, and even their textbooks give some historical details: cf. [Marsden and Ratiu, 1999, pp. 336–8; 369–370; 430–432], and the notes to each Chapter of Olver [2000, especially p. 427–428]. (Hawkins [2000] is a full history of Lie groups from 1869 to 1926; for Lie, cf. especially its Sections 1.3, 2.5 and Chapter 3, especially 3.2.)

In any case, setting history aside: symplectic reduction has continued since the 1970s to be an active research area in contemporary mechanics, and allied fields such as symplectic geometry. So it has now taken its rightful place as a major part of the contemporary renaissance of classical mechanics: as shown by ...

(3): Two examples: the rigid body and the ideal fluid:

Two examples illustrate vividly how symplectic reduction can give new physical understanding, even of time-honoured examples: the rigid body and the ideal fluid — as attested by this Chapter's mottoes. (Section 2.3 will develop a third example, more closely related to philosophy.)

As to the rigid body: we will see (especially in Section 5) that symplectic reduction considerably clarifies the elementary theory of the rigid body (Euler's equations, Euler angles etc.): which, notoriously, can be all too confusing! For simplicity, I shall take the rigid body to be pivotless, so as to set aside translational

\(^8\)The main source is his [1890]. Besides, Arnold [1989, 456] reports that the prototype example of a Poisson manifold, viz. the dual of a finite-dimensional Lie algebra, was already understood by Jacobi.
motion. This will mean that the group of symmetries defining the quotienting procedure will be the rotation group. It will also mean that the rigid body’s configuration space is given by the rotation group, since any configuration can be labelled by the rotation that obtains it from some reference-configuration. So in this application of symplectic reduction, the symmetry group (viz. the rotation group) will act on itself as the configuration space. This example will also give us our prototype example of a Poisson manifold.

As to the ideal fluid, i.e. a fluid that is incompressible and inviscid (with zero viscosity): this is of course an infinite-dimensional system, and so (as I announced in Section 1.2) outside the scope of this Chapter. So I will not go into any details, but just report the main idea.

The equations of motion of an ideal fluid, Euler’s equations, are usually derived either by applying Newton’s second law \(\mathbf{F} = m \mathbf{a} \) to a small fluid element; or by a heuristic use of the Lagrangian or Hamiltonian approach (as in heuristic classical field theories). But in the mid-1960s, Arnold showed how the latter derivations could be understood in terms of a striking, even beautiful, analogy with the above treatment of the rigid body. Namely, the analogy shows that the configuration space of the fluid is an infinite-dimensional group; as follows. The configuration of an ideal fluid confined to some container occupying a volume \(V \subset \mathbb{R}^3 \) is an assignment to each spatial position \(x \in V \) of an infinitesimal fluid element. Given such an assignment as a reference-configuration, any other configuration can be labelled by the volume-preserving diffeomorphism \(d \) from \(V \) to \(V \) that carries the reference-configuration to the given one, by dragging each fluid element along by \(d \). So given a choice of reference-configuration, the fluid’s configuration space is given by the infinite-dimensional group \(\mathcal{D} \) of diffeomorphisms \(d : V \to V \): just as the rotation group is the configuration space of a (pivoted) rigid body. \(\mathcal{D} \) then forms the basis for rigorous Lagrangian and Hamiltonian theories of an ideal fluid.

These theories turn out to have considerable analogies with the Lagrangian and Hamiltonian theories of the rigid body, thanks to the fact that in both cases the symmetry group forms the configuration space. In particular, Euler’s equations for ideal fluids are the analogues of Euler’s equations for a rigid body. Besides, these rigorous theories of fluids (and symplectic reduction applied to them) are scientifically important: they have yielded various general theorems, and solved previously intractable problems. (For more details, cf. Abraham and Marsden (1978: Sections 4.4 and 4.6 for the rigid body, and 5.5.8 for the ideal fluid), Arnold (1989: Appendix 2:C to 2:F for the rigid body, and 2:G to 2:L for the ideal fluid), and Marsden and Ratiu (1999: Chapters 1.4 and 15 for the rigid body, and 1.5, p. 266, for the ideal fluid).)

(4): Philosophical importance:
Symplectic reduction is also, I submit, philosophically important; in at least two ways. The first way is specific: it illustrates some methodological morals about how classical mechanics analyses problems. I develop this theme in (Butterfield 2005). The second way is more general: the theory, or rather various applications
of it, is directly relevant to disputes in the philosophy of space and time, and of mechanics. This relevance is recognized in contemporary philosophy of physics. So far as I know, the authors who develop these connections in most detail are Belot and Earman. They discuss symplectic reduction in connection with such topics as:

(i) the treatment of symmetries, including gauge symmetries;

(ii) the dispute between absolute and relationist conceptions of space and time; and

(iii) the interpretation of classical general relativity (a topic which connects (i) and (ii), and bears on heuristics for quantum gravity).

Thus Belot [1999; 2000; 2001; 2003; 2003a] and Earman [2003] discuss mainly (i) and-or (ii); Belot and Earman (2001) discusses (iii). For (i) and (ii), I also recommend Wallace [2003].

But these papers have a demanding pre-requisite: they invoke, but do not expound, the theory of symplectic reduction. They also discuss infinite-dimensional systems (especially classical electromagnetism and general relativity), without developing finite-dimensional examples like the rigid body. Indeed, there is, so far as I know, no article-length exposition of the theory which is not unduly forbidding for philosophers. So I aim to give such an exposition, to help readers of papers such as those cited.\(^9\)

As an appetizer for this exposition, I will first (in Section 2.3) follow Belot in presenting the general features of a finite-dimensional symplectic reduction which has vivid philosophical connections, viz. to the absolute vs. relationist debate. This example concerns a system of point-particles in Euclidean space, either moving freely or interacting by a force such as Newtonian gravity. (The symmetries defining the quotienting procedure are given by the Euclidean group of translations and rotations.) For philosophers, this will be a good appetizer for symplectic reduction, since it sheds considerable light on relationism about space of the sort advocated by Leibniz and Mach.

2.3 Appetizer: Belot on relationist mechanics

2.3.1 Comparing two quotienting procedures

In several papers, Belot discusses how symplectic reduction bears on the absolute-vs.-relational debate about space. I shall pick out one main theme of his discussions: the comparison of a relational classical mechanical theory with what one

\(^9\)As I said in Section 1.2, my material is drawn from the books by Abraham and Marsden, Arnold, Marsden and Ratiu, and Olver. More precisely, I will mostly draw on: Abraham and Marsden [1978, Sections 3.1–3.3, 4.1–4.3], Arnold [1989: Appendices 2, 5 and 14], Marsden and Ratiu [1999, Chapters 9–13] and Olver [2000, Chapter 6]. And much of what follows — in spirit, and even in letter — is already in Lie [1890]! As a (non-philosophical) introduction to symplectic reduction, I also recommend Singer (2001). It is at a yet more elementary level than what follows; e.g. it omits Poisson manifolds and co-adjoint representations.
gets by quotienting the orthodox absolutist (also called a ‘substantivalist’) classical mechanics, by an appropriate symmetry group. His main contention — which I endorse — is that this comparison sheds considerable light on relationism: on both its motivation, and its advantages and disadvantages.10

Belot’s overall idea is as follows. Where the relationist admits one possible configuration, as (roughly) a specification of all the distances (and thereby angles) between all the parts of matter, the absolutist (or substantivalist) sees an infinity of possibilities: one for each way the relationist’s configuration (a relative configuration) can be embedded in the absolute space. This makes it natural to take the relationist to be envisaging a mechanics which is some sort of “quotient” of the absolutist’s mechanics.

In particular, on the traditional conception of space as Euclidean (modelled by \mathbb{R}^3), each of the relationist’s relative configurations corresponds to an equivalence class of absolutist configurations (i.e. embeddings of arrangements of matter into \mathbb{R}^3), with the members of the class related by spatial translations and rotations, i.e. elements of the Euclidean group. In the jargon of group actions, to be developed in Section 4: the Euclidean group acts on the set of all absolutist configurations, and a relative configuration corresponds to an orbit of this action. So it is natural to take the relationist to be envisaging a mechanics which quotients this action of the Euclidean group, to get a relative configuration space. A relationist mechanics, of Lagrangian or Hamiltonian type, is then to be built up on this space of relative configurations.

But as Belot emphasises, one can instead consider quotienting the absolutist’s state-space — i.e. in a Hamiltonian framework, the phase space — rather than their configuration space. Indeed, this is exactly what one does in symplectic reduction. In particular, the Euclidean group’s action on the absolutist’s configuration space, Q say, can be lifted to give an action on the cotangent bundle T^*Q; which is accordingly called the ‘cotangent lift’. One can then take the quotient, i.e. consider the orbits into which T^*Q is partitioned by the cotangent lift.

We thus have two kinds of theories to compare: (i) the relationist theories, built up from the relative configuration space; which for the sake of comparison with symplectic reduction we take to be Hamiltonian, rather than Lagrangian; (ii) theories obtained by quotienting “later”, i.e. quotienting the absolutist’s cotangent bundle.

I will now spell out this comparison. But I will not try to summarize Belot’s more detailed conclusions, about what such a comparison reveals about the advantages and disadvantages of relationism. They are admirably subtle, and so defy summary: they can mainly be found at his [2000, p. 573–574, 582; 2001, Sections VIII to X]. (Rovelli (this volume) also discusses relationism.)

As befits an appetizer, I will also (like Belot) concentrate on as simple a case as possible: a mechanics of N point-particles, which is to assume a Euclidean

10The main references are Belot [1999; 2001; 2003, Sections 3.5, 5]. Cf. also his [2000, Sections 4 to 5.3; 2003a, Section 6]. Though I recommend all these papers, the closest template for what follows is [2001, Section VI et seq.].
spatial geometry. Of course, the absolutist make this assumption by postulating a Euclidean space; but for the relationist, the assumption is encoded in constraints relating the various inter-particle distances. The main current example of a relationist mechanics of such a system is due to Barbour and Bertotti (1982), though they develop it in the Lagrangian framework; (to be precise, in terms of Jacobi’s principle). Belot also discusses other relational theories, including field theories, i.e. theories of infinite systems; some of them also due to Barbour, and in a Lagrangian framework. But in this Section I only consider N point-particles.

Also, I will also not discuss boosts, though of course the relationist traditionally proposes to identify any two absolutist states of motion related by a boost. In terms of group actions, this means I will consider quotienting by an action of the euclidean group, but not the Galilei group. (Cf. how I set aside time-dependent transformations already in (iii) of Section 1.2.) I will also postpone to later Sections technical details, even when our previous discussion makes them accessible.

Finally, a warning to avoid later disappointment! The later Sections will not include a full analysis of the euclidean group’s actions on configuration space and phase space, and their quotients. That would involve technicalities going beyond an appetizer. Instead (as mentioned at the end of Section 1.2), the material in later Sections is chosen so as to lead up to Section 7’s theorem, the Lie-Poisson reduction theorem, about quotienting the phase space of a system whose configuration space is a Lie group. Further reasons for presenting the material for this theorem will be given in Section 5.1.

2.3.2 The spaces and group actions introduced

Let us begin by formulating the orthodox absolutist mechanics of N point-particles interacting by Newtonian gravity, together with the action of the Euclidean group.

Each point-particle occupies a point of \mathbb{R}^3, so that the configuration space Q is \mathbb{R}^{3N}: $\dim(Q) = 3N$. So the phase space for Hamiltonian mechanics will be the cotangent bundle $T^*Q \ni (q,p)$: $\dim(T^*Q) = 6N$.

The Hamiltonian is a sum of kinetic and potential terms, K and V. K depends only on the ps, and V only on the qs. In Cartesian coordinates, with i now labelling particles $i = 1, \ldots, N$ rather than degrees of freedom, we have the familiar expressions:

\[(25) \quad H(q,p) = K(p) + V(q) \quad \text{with} \quad K = \sum_i \frac{p_i^2}{2m_i}, \quad V(q) = G \sum_{i < j} \frac{m_i m_j}{\| q_i - q_j \|} \]

where m_i are the masses and G is the gravitational constant.\footnote{From the broader philosophical perspective, the most significant feature of eq. 25 is no doubt the fact that the potential is a sum of all the two-body potential energies for the configuration $q \in Q$: there are no many-body interactions.}

\footnote{Incidental remark. In fact, the kinetic energy can be represented by a metric g on the configuration space. For Hamiltonian mechanics, this means that the kinetic energy scalar K on the cotangent bundle T^*Q can be defined by applying Q’s metric g to the projections of the momenta p, where at each point $(q,p) \in T^*Q$ the projection is made with the preferred
The euclidean group E (aka: $E(3)$) is the group (under composition) of translations, rotations and reflections on \mathbb{R}^3. But since we will be interested in continuous symmetries, we will ignore reflections, and so consider the subgroup of orientation-preserving translations and rotations; i.e. the component of the group connected to the identity transformation (which I will also write as E). This is a Lie group, i.e. a group which is also a manifold, with the group operations smooth with respect to the manifold structure. Section 3 will give formal details. Here we just note that we need three real numbers to specify a translation $\mathbf{x} = (x, y, z)$, and three to specify a rotation (two for an axis, and one for the angle through which to rotate); and accordingly, it is unsurprising that as a manifold, the dimension of E is 6: $\dim(E) = 6$.

E acts in the obvious sense on \mathbb{R}^3. For example, if $g \in E$ is translation by $\mathbf{x} \in \mathbb{R}^3$, g induces the map $\mathbf{q} \in \mathbb{R}^3 \mapsto \mathbf{q} + \mathbf{x}$. Similarly for a rotation induces: again, Section 3 will give a formal definition.

Now let E act in this way on each of the N factor spaces \mathbb{R}^3 of our system’s configuration manifold $Q = \mathbb{R}^{3N}$. This defines an action Φ on Q: i.e. for all $g \in E$, there is a map $\Phi_g : Q \rightarrow Q$. For example, for g = a translation by $\mathbf{x} \in \mathbb{R}^3$, we have

$$\Phi_g : (q_j) = (q_1, ..., q_N) \in Q \mapsto (q_1 + x, ..., q_N + x) \in Q ;$$

and similarly for rotations. Since the potential function $V : Q \rightarrow \mathbb{R}$ of eq. 25 depends only on inter-particle distances, each map $\Phi_g : Q \rightarrow Q$ is a symmetry of the potential; i.e. we have $V(\Phi_g(q)) = V(q)$.

The action Φ (i.e. the assignment $g \in E \mapsto \Phi_g$) induces an action of E on $T^*Q = T^*\mathbb{R}^{3N}$, called the cotangent lift of Φ to T^*Q, and usually written as Φ^*; so that we have for each $g \in E$ a lifted map $\Phi_g^* : T^*Q \rightarrow T^*Q$. Again, the details can wait till later (Section 4). But the idea is that each map Φ_g on Q is smooth, and so maps curves to curves, and so vectors to vectors, and so covectors to covectors, and so on.

Unsurprisingly, each of the lifted maps $\Phi_g^* : T^*Q \rightarrow T^*Q$ leaves the potential V, now considered as a scalar on T^*Q, invariant: i.e. we have $V(\Phi_g^*(q, p)) = V(q, p) \equiv V(q)$. But furthermore, each of the lifted maps Φ_g^* is a symmetry of the Hamiltonian system, in our previous sense (Section 2.1.3). That is: Φ_g^* preserves the Hamiltonian (indeed the kinetic and potential terms are separately invariant); and it preserves the symplectic structure. This means the dynamics is invariant under the action of all $g \in G$: the dynamical histories of the system through (q, p) and through $\Phi_g^*(q, p)$ match exactly at each time. They are qualitatively indistinguishable: in contemporary metaphysical jargon, they are duplicates.

At this point, of course, we meet the absolute-vs.-relational debate about space. The absolutist asserts, and the relationist denies, that there being two such isomorphism $\omega^\sharp : T^*_q \rightarrow T_q$; (cf. eq. 12). That is:

$$K : (q, p) \in T^*Q \mapsto g_q(\omega^\sharp(p), \omega^\sharp(p)) .$$
distinguishable possibilities makes sense. So the relationist, presented with the theory above, says we should cut down the space of possibilities. As I said in Section 2.3.1, it is natural to make this precise in terms of quotienting the action of the euclidean group: a set of absolutist possibilities related one to another by elements of the euclidean group form an equivalence class (an orbit) which is to represent one relationist possibility.

But here we need to distinguish two different quotienting procedures. I will call them Relationism and Reductionism (with capital R's), since the former is close to both traditional and contemporary relationist proposals, and the latter is an example of the orthodox idea of symplectic reduction. As I said in Section 2.3.1, the main difference will be that:

(i) Relationism performs the quotient on E's action on the configuration space Q; the set of orbits form a relative configuration space, on which the relationist proposes to build a dynamics, whether Lagrangian or Hamiltonian — yielding in the latter case, a relative phase space; whereas

(ii) Reductionism performs the quotient on E's action on the usual phase space T^*Q, the set of orbits forming a reduced phase space.

Since our discussion adopts the Hamiltonian framework, it will not matter for what follows, that Relationism, as defined, can adopt the Lagrangian framework, while Reductionism is committed to the Hamiltonian one. What will matter is that (i) and (ii) make for phase spaces of different dimensions; the reduced phase space has six more dimensions than the relative phase space. The "dimension gap" is six.

We will see that four of the six variables that describe these dimensions are constants of the motion; the other two vary with time. And for certain choices of values of the constants of the motion (roughly: no rotation), the time-varying variables drop out, and the dynamics according to the Reductionist theory simplifies so as to coincide with that of the Relationist theory. In other words: if we impose no rotation, then the heterodox Relationist dynamics matches the conventional Reduced dynamics.

2.3.3 The Relationist procedure

The Relationist seeks a mechanics based on the relative configuration space (RCS). An element of the RCS is to be a pattern of inter-particle distances and angles that is geometrically possible, i.e. compatible with the N particles being embedded in

13The locus classicus for this debate is of course the Leibniz-Clarke correspondence, though the protagonists' argumentation is of course sometimes theological. Clarke the absolutist maintains that there are many possible arrangements of bits of matter in space consistent with a specification of all relative distances, saying 'if [the mere will of God] could in no case act without a pre-determining cause ... this would tend to take away all power of choosing, and to introduce fatality.' Leibniz claims there is only one such arrangement: 'those two states ... would not at all differ from one another. Their difference therefore is only to be found in our chimerial supposition of the reality of space in itself.'
\mathbb{R}^3. So, roughly speaking, an element of the RCS is a euclidean configuration, modulo isometries; and the RCS will be the set of orbits \mathbb{R}^{3N}/E.

Even before giving a more precise statement, we can state the "punchline" about dimensions, as follows. Since $\dim(E) = 6$, quotienting by E subtracts six dimensions: that is, the dimension of the RCS will be $3N-6$.

But we need to be more precise about the RCS. For the orbits and quotient spaces to be manifolds, and for dimensions to add or subtract in this simple way, we need to excise two classes of "special" points from \mathbb{R}^{3N}, before we quotient. (But I postpone till Section 4 the technical rationale for these excisions.)

Let $\delta_Q \subset \mathbb{R}^{3N}$ be the set of configurations which are symmetric: i.e. each is fixed by some element of E (other than the identity element!). Any configuration in which all the point-particles are collinear provides an example: the configuration is fixed by any rotation about the line as axis. Let Δ_Q be the set of collision configurations; i.e. configurations in which two or more particles are coincident in the usual configuration space \mathbb{R}^{3N}. (The Q subscripts will later serve as a reminder that these sets are sets of configurations.) δ_Q and Δ_Q are both of measure zero in \mathbb{R}^{3N}. Excise both of them, and call the resulting space, which is again of dimension $3N$: $Q := \mathbb{R}^{3N} - (\delta_Q \cup \Delta_Q)$.

δ_Q and Δ_Q are each closed under the action of E. That is, each is a union of orbits: a euclidean transformation of a symmetric (collision) configuration is also symmetric (collision). So E acts on Q. Now quotient Q by E. Q/E is the Relationist's RCS. Since $\dim(E) = 6$, we have: $\dim(Q/E) = 3N-6$.

These $3N - 6$ variables encode all of a (relative) configuration's particle-pair relative distances, $r_{ij} \in \mathbb{R}$ (with i,j labelling particles). Note that there are $N(N-1)/2$ such relative distances; and for $N > 4$, this is greater than $3N - 6$: (for $N > 4$, it is much greater). So the relative distances, though physically intuitive, give an over-complete set of coordinates on Q/E. (So they cannot be freely chosen: there are constraints between them.)

So the Relationist seeks a mechanics that uses this RCS. Newton's second law being second-order in time means that she will also need quantities like velocities (in a Lagrangian framework) or like momenta (in a Hamiltonian framework). For the latter, she will naturally consider the $N(N-1)/2$ relative velocities $\dot{r}_{ij} := \frac{d}{dt}r_{ij}$; and for the latter, the corresponding momenta $p_{ij} := \frac{\partial L}{\partial \dot{r}_{ij}}$ once again, she must beware of constraints. The tangent and cotangent bundles built on her RCS Q/E will each have dimension $2(3N-6) = 6N - 12$. So again, for $N > 4$, the number $N(N-1)/2$ of relative velocities \dot{r}_{ij}, or of relative momenta p_{ij}, is greater than the number of degrees of freedom concerned; and for $N >> 4$, it is much greater. So again, the relative velocities or relative momenta are over-complete: there are constraints.

On the other hand, if the Relationist uses only these relative quantities, r_{ij} and either \dot{r}_{ij} or p_{ij} (or "equivalent" coordinates on $T(Q/E)$ or $T^*(Q/E)$ that are not over-complete), she faces a traditional problem — whatever the other details of her theory. At least, she faces a problem if she hopes for a deterministic theory which is empirically equivalent to the orthodox absolutist theory. I will follow tradition
and state the problem in terms of relative velocities rather than momenta.

The problem concerns rotation; (and herein lies the strength of Newton’s and Clarke’s position in the debate against Leibniz). For according to the absolutist theory two systems of point-particles could match with respect to all relative distances and relative velocities, and yet have different future evolutions; so that a theory allowing the same possibilities as the absolutist one, yet using only these relative quantities (or “equivalent” variables) would have to be indeterministic.

The simplest example is an analogue for point-particles of Newton’s two globes thought-experiment. Thus the systems could each consist of just two point-particles with zero relative velocity. One system could be non-rotating, so that the point-particles fall towards each other under gravity; while the other system could be rotating about an axis normal to the line between the particles, and rotating at just such a rate as to balance the attractive force of gravity.

The Relationist has traditionally replied that they do not hope for a theory empirically equivalent to the absolutist one. Rather, they envisage a mechanics in which, of the two systems mentioned, only the non-rotating evolution is possible: more generally, a mechanics in which the universe as a whole must have zero angular momentum. Originally, in authors like Leibniz and Mach, this reply was a promissory note. But modern Relationist theories such as Barbour and Bertotti’s [1982] have made good the promise; and they have been extended well beyond point-particles interacting by Newtonian gravity. Besides, since the universe seems in fact to be non-rotating, these theories can even claim to be empirically adequate, at least as regards this principal difference from absolutist theories.\footnote{An advocate of the absolutist theory might say that it is odd to make what seems a contingent feature of the universe, non-rotation, a principle of mechanics; and the Relationist might reply that their view has the merit of predicting that the universe does not rotate! I fear there are no clear criteria for settling this methodological dispute; anyway, I will not pursue it.}

But it is not my brief to go into these theories’ details, except by way of comparison with a quotiented version of the absolutist theory: cf. Section 2.3.4.

2.3.4 The Reductionist procedure

The Reductionist’s main idea is to quotient only after passing to the orthodox phase space for N point-particles, i.e. the cotangent bundle $T^*\mathbb{R}^{3N}$ of \mathbb{R}^{3N}. So the idea is to consider $(T^*\mathbb{R}^{3N})/E$, i.e. the quotient of $T^*\mathbb{R}^{3N}$ by the cotangent-lifted action Φ^* of the euclidean group E.

More precisely, we again proceed by first excising special points that would give technical trouble. But now the points to be excised are in the cotangent bundle $T^*\mathbb{R}^{3N}$, not in \mathbb{R}^{3N}. So let $\delta \subset T^*\mathbb{R}^{3N}$ be the set of phase space states whose configurations are symmetric (in the sense of Section 2.3.3’s δ_Q). Let $\Delta \subset T^*\mathbb{R}^{3N}$ be the set of collision points; i.e. states in which two or more particles are coincident in the configuration space \mathbb{R}^{3N}. Both δ and Δ are of measure zero. Excise both of them, and call the resulting phase space, which is again of dimension $6N$: $M := T^*\mathbb{R}^{3N} - (\delta \cup \Delta)$.
\(\delta \) and \(\Delta \) are each closed under the cotangent-lifted action of \(E \) on \(T^*\mathbb{R}^{3N} \). That is, each is a union of orbits: the cotangent lift of a euclidean transformation acting on a phase space state with a symmetric (collision) configuration yields a state which also has a symmetric (collision) configuration. So \(E \) acts on \(\tilde{M} \). Now quotient \(M \) by \(E \), getting \(\tilde{M} := M/E \). This is called reduced phase space. We have: \(\dim(\tilde{M}) = \dim(M) - \dim(E) = 6N - 6 \).

As emphasised at the end of Section 2.3.2, \(\tilde{M} \) has six more dimensions than the corresponding Relationist phase space (whether the velocity phase space (tangent bundle) or the momentum phase space (cotangent bundle)). The dimension of those phase spaces is \(2(3N - 6) = 6N - 12 \). Indeed, we can better understand both the reduced phase space \(\tilde{M} \) and Relationist phase spaces by considering this “dimension gap”. There are two extended comments to make.

(1): Obtaining the Relationist phase space:
We can obtain the Relationist momentum phase space from our original phase space \(M \). Thus let \(M_0 \) be the subspace of \(M \) in which the system has total linear momentum and total angular momentum both equal to zero. Since these are constants of the motion, \(M_0 \) is dynamically closed and so supports a Hamiltonian dynamics given just by restriction of the original dynamics. With linear and angular momentum each contributing three real numbers, \(\dim(M_0) = \dim(M) - 6 = 6N - 6 \). Furthermore, \(M_0 \) is closed under (is a union of orbits under) the cotangent-lifted action of \(E \). So let us quotient \(M_0 \) by this action of \(E \), and write \(\tilde{M}_0 := M_0/E \). Then \(\dim(\tilde{M}_0) = 6N - 6 - 6 = 6N - 12 \).

Now recall that this is the dimension of the phase space of the envisaged Relationist theory built on the RCS \(Q/E \). And indeed, as one would hope: \(\tilde{M}_0 \) is the Hamiltonian version of Barbour and Bertotti’s 1982 Relational theory; (recall that they work in a Lagrangian framework).

That is: \(M_0 \) is a symplectic manifold, and points in \(\tilde{M}_0 \) are parametrized by all the particle-to-particle relative distances and relative velocities. There is a deterministic dynamics which matches that of the original absolutist theory, once the original dynamics is projected down to Section 2.3.3’s relative configuration space \(Q/E \).

In short: the vanishing total linear and angular momenta mean that an initial state comprising only relative quantities is sufficient to determine all future relative quantities.

(2): Decomposing the Reductionist reduced phase space:
Let us return to the reduced phase space \(\tilde{M} \). The first point to make is that since the Hamiltonian \(H \) on \(M \), or indeed on \(T^*\mathbb{R}^{3N} \), is invariant under the cotangent-lifted action of \(E \), the usual dynamics on \(M \) projects down to \(\tilde{M} = M/E \). That is: the reduced phase space dynamics captures all the \(E \)-invariant features of the usual dynamics.

In fact, \(\tilde{M} \) is a Poisson manifold. So it is our first example of the more general framework for Hamiltonian mechanics announced in (1) of Section 2.2. Again, I postpone technical detail till later (especially Sections 5.1 and 5.2.4). But the idea
is that a Poisson manifold has a \textit{degenerate} antisymmetric bilinear map, which implies that the manifold is a disjoint union of symplectic manifolds. Each symplectic manifold is called a \textit{leaf} of the Poisson manifold. The leaves' symplectic structures "mesh" with one another; and within each leaf there is a conventional Hamiltonian dynamics.

Even without a precise definition of a Poisson manifold, we can describe how M is decomposed into symplectic manifolds, each with a Hamiltonian dynamics. Recall that we have: $\dim(M) = \dim(M) - \dim(E) = 6N - 6$. This breaks down as:

\begin{equation}
6N - 6 = (6N - 12) + 3 + 3 = 2(3N - 6) + 3 + 3 =: \alpha + \beta + \gamma
\end{equation}

where the right hand side defines α, β, γ respectively as $2(3N - 6), 3$ and 3. In terms of \bar{M}, this means the following.

(i) α corresponds to (1)'s \bar{M}_0, i.e. to $T^*(Q/E)$. As discussed, $3N - 6$ variables encode all the particle-pair relative distances; and the other $3N - 6$ variables encode all the particle-pair relative momenta.

The six extra variables additional to these $6N-12$ relative quantities consist of: four constants of the motion, and two other variables which are dynamical, i.e. change in time.

(ii) β stands for three of the four constants of the motion: viz. the three variables that encode the total linear momentum of the system, i.e. the momentum of the centre of mass. These constants of the motion are "just parameters" in the sense that: (a) not only does specifying a value for all three of them fix a surface, i.e. a $(6N - 9)$-dimensional hypersurface in \bar{M}, on which there is a Hamiltonian dynamics; also (b) this Hamiltonian and symplectic structure is independent of the values we specify.15

(iii) γ stands for the three variables that encode the total angular momentum of the system. One of these is a fourth constant of the motion, viz. the magnitude L of the total angular momentum. The other two time-varying quantities fix a point on a sphere (2-sphere) of radius L, encoding the direction of the angular momentum of the system \textit{in a frame rotating with it}. The situation is as in the elementary theory of the rigid body: though the total angular momentum relative to coordinates fixed in space is a constant of the motion (three constant real numbers), the total angular momentum relative to the body is constant only in magnitude (one real number L), not in direction. This will be clearer in Section 5 onwards, when we describe the Poisson manifold structure in the theory of the rigid body. For the moment,

15As mentioned at the end of Section 2.3.1, the relationist traditionally proposes to identify absolutist states of motion that differ just by the value of the total momentum. And indeed, the proposal can be implemented by considering an action of the Galilean group on the absolutist phase space M, and identifying points related by Galilean boosts. For discussion and references, cf. Belot [2000, Section 5.3].
there are two main comments, (a) and (b), to make about the \(N \) particle system:

(a) If we specify \(L \), in addition to the momentum of the centre of mass of the system, we get a \((6N-10)\)-dimensional hypersurface in \(\mathcal{M} \), on which (as in (ii)) there is a Hamiltonian dynamics. So we can think of \(\mathcal{M} \) as consisting of the four real-parameter family of these hypersurfaces, with each point of each hypersurface being equipped with a sphere of radius \(L \); (subject to a qualification in (b) below).

Note that here 'each point being equipped' does not mean that the sphere gives the extra dimensions that would constitute \(\mathcal{M} \) as a fibre bundle; (there would be two dimensions lacking). Rather: in the point's representation by \(6N - 10 \) real numbers, two of the numbers can be taken to represent a point on a sphere.

(b) But unlike the situation for \(\beta \) in (ii) above, the Hamiltonian dynamics on such a hypersurface depends on the value of \(L \). In particular, if \(L = 0 \) the sphere representing the body angular momentum is degenerate: it is of radius zero, and the other two time-varying quantities drop out. A point in the hypersurface is represented by \(6N - 12 \) real numbers; i.e. the hypersurface is \(6N - 12 \)-dimensional.

Now recall from Section 2.3.3 or (1) above that \(6N - 12 \) is the dimension of the phase space of the envisaged Relationist theory built on the RCS \(Q/E \). And indeed, just as one would hope: the hypersurface with \(L = 0 \) and also with vanishing linear momentum, with its dynamics, is the symplectic manifold and dynamics that is the Hamiltonian version of Barbour and Bertotti's 1982 Relational theory of \(N \) point-particles. In terms of (1)'s notation, this hypersurface is \(\mathcal{M}_0 \).

We can sum up this comparison as follows. On this hypersurface \(\mathcal{M}_0 \), the dynamics in the reduced phase space coincides with the dynamics one obtains for the relative variables, if one arbitrarily embeds their initial values in the usual absolutist phase space \(T^*\mathbb{R}^{3N} \), subject to the constraint that the total angular and linear momenta vanish, and then reads off (just by projection) their evolution from the usual evolution in \(T^*\mathbb{R}^{3N} \).

2.3.5 Comparing the Relationist and Reductionist procedures

In comparing the Relationist and Reductionist procedures, I shall just make just two extended comments, and refer to Belot for further discussion. The gist of both comments is that Reductionism suffices: Relationism is not needed. The first is a commonplace point; the second is due to Belot.

2.3.5.1 Reductionism allows for rotation The first comment reiterates the Reductionist's ability, and the Relationist's inability, to endorse Newton's globes (or bucket) thought-experiment. The Reductionist can work in either
(i) the \((6N - 6)\)-dimensional phase space \(\tilde{M} = M/E\); or

(ii) the \((6N - 9)\)-dimensional hypersurface got from (i) by specifying the centre of mass' linear momentum; or

(iii) the \((6N - 10)\)-dimensional hypersurface got from (ii) by also specifying a non-zero value of \(L\).

In all three cases, the Reductionist can describe rotation in a way that the Relationalist with their \((6N - 12)\)-dimensional space cannot. For she has to hand the three extra non-relative variables \((L\) and two others\) that describe the rotation of the system as a whole. (Incidentally: that they describe the system as a whole is suggested by there being just three of them, whatever the value of \(N\).) In particular, she can distinguish states of rotation and non-rotation \((L = 0)\), in the sense of endorsing the distinctions advocated by the globes and bucket thought-experiments.

The Reductionist can also satisfy a traditional motivation for relationism, which concerns general philosophy, rather than the theory of motion. It is especially associated with Leibniz: namely, our theory (or our metaphysics) should not admit distinct but utterly indiscernible possibilities. One might well ask why we should endorse this "principle of the identity of indiscernibles" for possibilities rather than objects. For Leibniz himself, the answer lies (as Belot's [2001] brings out) in his principle of sufficient reason, and ultimately in theology.

But in any case the Reductionist can satisfy the requirement. Agreed, the usual absolutist theory, cast in \(T^*\mathbb{R}^{3N}\) (or if you prefer, \(M = T^*\mathbb{R}^{3N} - (\delta \cup \Delta)\)) has nine variables that describe (i) the position of the centre of mass, (ii) the orientation of the system about its centre of mass, and (iii) the system's total linear momentum: i.e. three variables, a vector in \(\mathbb{R}^3\), for each of (i)-(iii). So the usual absolutist theory has a nine-dimensional "profiliacy" of distinct but indiscernible possibilities. But as we have seen, the Reductionist quotients by the action of the euclidean group \(E\), and so works in \(\tilde{M} = M/E\): which removes the profiliacy about (i) and (ii).

As to (iii), I agree that for all I have said, a job remains to be done. The foliation of \(\tilde{M}\) by a three real-parameter family of \((6N - 9)\)-dimensional hypersurfaces, labelled by the system's total linear momentum, codifies the profiliacy — but does not eliminate it. But as I mentioned above (cf. footnote 15), the Reductionist can in fact quotient further, by considering the action of Galilean boosts and identifying phase space points that differ by a boost; i.e. defining orbits transverse to these hypersurfaces.

2.3.5.2 Analogous reductions in other theories I close my philosophers' appetizer for symplectic reduction by summarizing some general remarks of Belot's [2001, Sections VIII–IX]; cf. also his [2003a, Sections 12, 13]. They are about how our discussion of relational mechanics is typical of many cases; and how symplectic reduction can be physically important. I label them (1)–(3).
(1): A general contrast: when to quotient:
The example of N point-particles interacting by Newtonian gravity is typical of a large class of cases (infinite-dimensional, as well as finite-dimensional). There is a configuration space Q, acted on by a continuous group G of symmetries, which lifts to the cotangent bundle T^*Q, with the cotangent lift leaving invariant the Hamiltonian, and so the dynamics. So we can quotient T^*Q by G to give a reduced theory. (There is a Lagrangian analogue; but as above, we set it aside.) But there is also some motivation for quotienting G’s action on Q, irrespective of how we then go on the construct dynamics. Let us adopt ‘relationism’ as a mnemonic label for whatever motivates quotienting the configuration space. Then with suitable technical conditions assumed (recall our excision of δ and Δ), we will have:

(i) for the reduced Hamiltonian theory: $\dim((T^*Q)/G) = 2 \dim Q - \dim G$;

(ii) for the relationist theory, in a Lagrangian or Hamiltonian framework:
$$\dim(T(Q/G)) = \dim(T^*(Q/G)) = 2(\dim Q - \dim G)$$

So we have in the reduced theory, $\dim G$ variables that do not occur in the relationist theory: let us call them ‘non-relational variables’.

(2): The non-relational variables:
Typically, these non-relational variables represent global, i.e. collective, properties of the system. That is unsurprising since the number, $\dim G$, of these variables is independent of the number of degrees of freedom of the system ($\dim Q$, or $2\dim Q$ if you count rate of change degrees of freedom separately).

Some of these variables are conserved quantities, which arise (by Noether’s theorem) from the symmetries. Furthermore, there can be specific values of the conserved quantities, like the vanishing angular momentum of Section 2.3.4, for which the reduced theory collapses into the relationist theory. That is, not only are the relevant state spaces of equal dimension; but also their dynamics agree.

(3): The reduced theory:
Typically, the topology and geometry of the reduced phase space $T^*Q)/G$, and the Hamiltonian function on it, $\tilde{H} : (T^*Q)/G \to \mathbb{R}$ say, are more complex than the corresponding features of the unreduced theory on T^*Q. In particular, the reduced Hamiltonian \tilde{H} typically has potential energy terms corresponding to forces that are absent from the unreduced theory. But this should not be taken as necessarily a defect, for two reasons.

First, there are famous cases in which the reduced theory has a distinctive motivation. One example is Hertz’ programme in mechanics, viz. to “explain away” the apparent forces of our macroscopic experience (e.g. gravity) as arising from reduction of a theory that has suitable symmetries. (The programme envisaged cyclic variables for microscopic degrees of freedom that were unknown to us; cf. Lutzen [1995; 2005].) Another famous example is the Kaluza-Klein treatment of the force exerted on a charged particle by the electromagnetic field. That is: the
familiar Lorentz force-law describing a charged particle’s motion in four space-time dimensions can be shown to arise by symplectic reduction from a theory postulating a spacetime with a fifth (tiny and closed) spatial dimension, in which the particle undergoes straight-line motion. Remarkably, the relevant conserved quantity, viz. momentum along the fifth dimension, can be identified with electric charge; so that the theory can claim to explain the conservation of electric charge. (This example generalizes to other fields: for details and references, cf. Marsden and Ratiu [1999, Section 7.6].)

Second, the reduced theory need not be so complicated as to be impossible to work with. Indeed, these two examples prove this point, since in them the reduced theory is entirely tractable: for it is the familiar theory — that one might resist abandoning for the sake of the postulated unreduced theory. Besides, Belot describes how, even when the reduced theory seems complicated (and not just because it is unfamiliar!), the general theory of symplectic reduction, as developed over the last forty years, has shown that one can often “do physics” in the reduced phase space: and that, as in the Kaluza-Klein example, the physics in the reduced phase space can be heuristically, as well as interpretatively, valuable.

3 SOME GEOMETRIC TOOLS

So much by way of an appetizer. The rest of the Chapter, comprising this Section and the next four, is the five-course banquet! This Section expounds some modern differential geometry, especially about Lie algebras and Lie groups. Section 4 takes up actions by Lie groups. Then Section 5 describes Poisson manifolds as a generalized framework for Hamiltonian mechanics. As I mentioned in (2) of Section 2.2, Lie himself developed this framework; so in effect, he knew everything in these two Sections — so it is a true (though painful!) pun to say that these three Sections give us the “Lie of the land”. In any case, these two Sections will prepare us for Section 6’s description of symmetry and conservation in terms of momentum maps. Finally, Section 7 will present one of the main theorems about symplectic reduction. It concerns the case where the natural configuration space for a system is itself a Lie group G; (cf. (3) of Section 2.2). Quotienting the natural phase space (the cotangent bundle on G) will give a Poisson manifold that “is” the dual of G’s Lie algebra.

In this Section, I first sketch some notions of differential geometry, and fix notation (Section 3.1). Then I introduce Lie algebras and Lie brackets of vector fields (Section 3.2). Though most of this Section (indeed this Chapter!) is about differential rather than integral notions, I will later need Frobenius’ theorem, which I present in Section 3.3. Then I give some basic information about Lie groups and their Lie algebras (Section 3.4).

\(^{16}\) And here one should resist being prejudiced because of familiarity. Why not have Newtonian gravity arise from a microscopic cyclic degree of freedom? Why not have the Lorentz force law arise from geodesic motion in a five-dimensional spacetime with the fifth dimension wrapped up, so that conservation of charge is explained, in Noether’s theorem fashion, by a symmetry?
3.1 Vector fields on manifolds

3.1.1 Manifolds, vectors, curves and derivatives

By way of fixing ideas and notation, I begin by giving details about some ideas in differential geometry (some already used in Section 2.1), and introducing some new notation for them.

A manifold M will be finite-dimensional, except for obvious and explicit exceptions such as the infinite-dimensional group of diffeomorphisms of a (as usual: finite-dimensional!) manifold. I will not be concerned about the degree of differentiability in the definition of a manifold, or of any associated geometric objects: ‘smooth’ can be taken throughout what follows to mean C^∞. I will often not be concerned with global, as against local, structures and results; (though the reduction results we are driving towards are global in nature). For example, I will not be concerned about whether curves are inextendible, or flows are complete.

I shall in general write a vector at a point $x \in M$ as X; or in terms of local coordinates x^i, as $X = X^i \frac{\partial}{\partial x^i}$ (summation convention). From now on, I shall write the tangent space at a point $x \in M$ as T_xM (rather than just T_x), thus explicitly indicating the manifold M to which it is tangent. As before, I write the tangent bundle, consisting of the “meshing collection” of these tangent spaces, as TM. Similarly, I write a 1-form (covector) at a point $x \in M$ as α; and so the cotangent space at $x \in M$ as T^*_xM; and as before, the cotangent bundle as T^*M.

A smooth map $f : M \to N$ between manifolds M and N (maybe $N = M$) maps smooth curves to smooth curves, and so tangent vectors to tangent vectors; and so on for 1-forms and higher tensors. It is convenient to write Tf, called the derivative or tangent of f (also written as f_* or df or Df), for the induced map on the tangent bundle.

In more detail: let us take a curve c in M to be a smooth map from an interval $I \subset \mathbb{R}$ to M, and a tangent vector at $x \in M$, $X \in T_xM$, to be an equivalence class $[c]_x$ of curves through x. (The equivalence relation is that the curves be tangent at x, with respect to every local chart at x; but I omit the details of this.) Then we define $Tf : TM \to TN$ (also written $f_* : TM \to TN$) by

(29) \[f_*([c]_x) \equiv Tf([c]_x) := [f \circ c]_{f(x)}, \quad \text{for all} \quad x \in M. \]

We sometimes write T_xf for the restriction of Tf to just the tangent space T_xM at x; i.e.

(30) \[T_xf : [c]_x \in T_xM \mapsto [f \circ c]_{f(x)} \in T_{f(x)}N. \]

In Section 3.1.2.2, we will discuss how one can instead define tangent vectors to be differential operators on the set of all scalar functions defined in some neighbourhood of the point in question, rather than equivalence classes of curves. One can then define the tangent map $f_* \equiv Tf$ in a way provably equivalent to that above.
3.1.2 Vector fields, integral curves and flows

We will be especially concerned with vector fields defined on M, i.e. $X : x \in M \mapsto X(x) \in T_x M$, or on a subset $U \subset M$. So suppose that X is a vector field on M and $f : M \to N$ is a smooth map, so that $T_\ast f : T_x M \to T_{f(x)} N$.

3.1.2.1 Push-forwards and pullbacks It is important to note $(T_\ast f)(X(x))$ does not in general define a vector field on N. For $f(M)$ may not be all of N, so that for $y \in (N - \text{ran}(f))$ $(T_\ast f)(X(x))$ assigns no element of $T_y N$. And f may not be injective, so that we could have $x, x' \in M$ and $f(x) = f(x')$ with $(T_\ast f)(X(x)) \neq (T_\ast f)(X(x'))$. Thus we say that vector fields do not push forward.

On the other hand, suppose that $f : M \to N$ is a diffeomorphism onto N: that is, the smooth map f is a bijection, and its inverse f^{-1} is also smooth. Then for any vector field X on M, $Tf(X)$ is a vector field on N. So in this case, the vector field does push forward. Accordingly, $Tf(X)$ is called the push-forward of X; it is often written as $f_\ast(X)$. So for any $x \in M$, the pushed forward vector field at the image point $f(x)$ is given by

$$ (31) \quad (f_\ast(X))(f(x)) := T_\ast f \cdot X(x). $$

(Note the previous use of the asterisk-subscript for the derivative of f, in eq. 29.)

This prompts three more general comments.

1. More generally: we say that two vector fields, X on M and Y on N, are f-related on M (respectively: on $S \subset M$) if $(Tf)(X) = Y$ at all $x \in M$ (respectively: $x \in S$).

2. We can generalize the idea that a diffeomorphism implies that a vector field can be pushed forward, in two ways. First, the diffeomorphism need only be defined locally, on some neighbourhood of the point $x \in M$ of interest. Second, a diffeomorphism establishes a one-one correspondence, not just between vector fields defined on its domain and codomain, but also between all differential geometric objects defined on its domain and codomain: in particular, 1-form fields, and higher rank tensors.

3. (This continues comment (2).) Though vector fields do not in general push forward, 1-form fields do in general pull back. This is written with an asterisk-superscript. That is: for any smooth $f : M \to N$, not necessarily a diffeomorphism (even locally), and any 1-form field (differential 1-form) α on N, we define the pullback $f^\ast(\alpha)$ to be the 1-form on M whose action, for each $x \in M$, and each $X \in T_x M$, is given by:

$$ (32) \quad (f^\ast(\alpha))(X) := \alpha \mid_{f(x)} (Tf(X)). $$

Similarly, of course if the map f is defined only locally on a subset of M: a 1-form defined on the range of f pulls back to a 1-form on the domain of f.
3.1.2.2 The correspondence between vector fields and flows The leading idea about vector fields is that, for any manifold, the theorems on the local existence, uniqueness and differentiability of solutions of systems of ordinary differential equations (e.g. [Arnold, 1973, 48–49, 77–78, 249–250; Olver, 2000, Prop 1.29]) secure a one–one correspondence between four notions:

(i) Vector fields X on a subset $U \subset M$, on which they are non-zero; $X : x \in U \mapsto X(x) \in T_x M, X(x) \neq 0$;

(ii) Non-zero directional derivatives at each point $x \in U$, in the direction of the vector $X(x)$. In terms of coordinates $x = x^1, ..., x^n$, these are first-order linear differential operators $X^1(x) \frac{\partial}{\partial x^1} + \cdots + X^n(x) \frac{\partial}{\partial x^n}$, with $X^i(x)$ the i-component in this coordinate system of the vector $X(x)$. Such an operator is often introduced abstractly as a \textit{derivation}: a map on the set of smooth real-valued functions defined on a neighbourhood of x, that is linear and obeys the Leibniz rule.

(iii) Integral curves (aka: solution curves) of the fields X in U; i.e. smooth maps $\phi : I \to M$ from a real open interval $I \subset \mathbb{R}$ to U, with $0 \in I$, $\phi(0) = x \in U$, and whose tangent vector at each $\phi(\tau), \tau \in I$ is $X(\phi(\tau))$.

(iv) Flows X^τ mapping, for each field X and each $x \in U$, some appropriate subset of U to another: $X^\tau : U \to M$. This flow is guaranteed to exist only in some neighbourhood of a given point x, and for τ in some neighbourhood of $0 \in \mathbb{R}$; but this will be enough for us. Such a flow is a one-parameter subgroup of the \textit{"{i}nfinite-dimensional group} of all local diffeomorphisms.

I spell out this correspondence in a bit more detail: In local coordinates $x^1, ..., x^n$, any smooth curve $\phi : I \to M$ is given by n smooth functions $\phi(\tau) = (\phi^1(\tau), ..., \phi^n(\tau))$, and the tangent vector to ϕ at $\phi(\tau) \in M$ is

$$\dot{\phi}(\tau) = \dot{\phi}^1(\tau) \frac{\partial}{\partial x^1} + \cdots + \dot{\phi}^n(\tau) \frac{\partial}{\partial x^n}.$$

So for ϕ to be an integral curve of X requires that for all $i = 1, ..., n$ and all $\tau \in I$

$$\dot{\phi}^i(\tau) = X^i(\tau).$$

The local existence and uniqueness, for a given vector field X and $x \in M$, of the integral curve $\phi_{X,x}$ through x (with $\phi(0) = x$) then ensures that the flow, written either as X^τ or as $\phi_X(\tau)$

$$X^\tau : x \in M \mapsto X^\tau(x) = \phi_{X,x}(\tau) \in M,$$

is (at least locally) well-defined. The flow is a one-parameter group of transformations of M, and X is called its \textit{infinitesimal generator}.

The exponential notation

$$\exp(\tau X)(x) := X^\tau(x) = \phi_{X,x}(\tau)$$
is suggestive. For example, the group operation in the flow, i.e.

\[(37) \quad X^{\tau + \sigma}(x) = X^\tau (X^\sigma(x)) \]

is written in the suggestive notation

\[(38) \quad \exp((\tau + \sigma)X)(x) = \exp(\tau X)(\exp(\sigma X)(x)) \]

So computing the flow for a given \(X\) (i.e. solving a system of \(n\) first-order differential equations!) is called exponentiation of the vector field \(X\).

Remark: The above correspondence can be related to our discussion of diffeomorphisms and pushing forward vector fields. In particular: if two vector fields, \(X\) on \(M\) and \(Y\) on \(N\), are \(f\)-related by \(f : M \to N\), so that \((Tf)(X(x)) = Y(f(x))\), then \(f\) induces a map from integral curves of \(X\) to integral curves of \(Y\). We can express this in terms of exponentiation of \(X\) and \(Y = (Tf)(X)\):

\[(39) \quad f(\exp(\tau X)x) = \exp(\tau(Tf)(X))(f(x)) \]

Remark: I emphasise that the above correspondence between (i), (ii), (iii) and (iv) is not true at a single point. More precisely:

(a) On the one hand: the correspondence between (i) and (ii) holds at a point; and also holds for zero vectors. That is: a single vector \(X \in T_x M\) corresponds to a directional derivative operator (derivation) at \(x\); and \(X = 0\) corresponds to the zero derivative operator mapping all local scalars to 0. (Indeed, as I mentioned: vectors are often defined as such operators/derivations). But:

(b) On the other hand: the correspondence between (i) and (iii), or between (i) and (iv), requires a neighbourhood. For a single vector \(X \in T_x M\) corresponds to a whole class of curves (and so: of flows) through \(x\), not to a single curve. Namely, it corresponds to all the curves (flows) with \(X\) as their tangent vector.

However, we shall see (starting in Section 3.4) that for a manifold with suitable extra structure, a single vector does determine a curve. (And we will again talk of exponentiation.)

We need to generalize one aspect of the above correspondence (i)–(iv), namely the (i)–(ii) correspondence between vectors and directional derivatives. This generalization is the Lie derivative.

3.1.3 The Lie derivative

Some previous Sections have briefly used the Lie derivative. Since we will use it a lot in the sequel, we now introduce it more thoroughly.

We have seen that given a vector field \(X\) on a manifold \(M\), a point \(x \in M\), and any scalar function \(f\) defined on a neighbourhood of \(x\), there is a naturally defined
rate of change of f along X at x: the directional derivative $X(x)(f)$.

Now we will define the Lie derivative along X as an operator \mathcal{L}_X that defines a rate of change along X: not only for locally defined functions (for which the definition will agree with our previous notion, i.e. we will have $\mathcal{L}_X(f) = X(f)$); but also for vector fields and differential 1-forms.\footnote{Indeed, the definition can be extended to all higher rank tensors. But I will not develop those details, since —apart from Section 2.1.3’s mention of the Lie derivative of the symplectic form $\mathcal{L}_X\omega$ (viz. the requirement that if X is a symmetry, $\mathcal{L}_X\omega = 0$)—we shall not need them.} We proceed in three stages.

1. We first define the Lie derivative as an operator on scalar functions, in terms of the vector field X on M. We define the Lie derivative along the field X (aka: the derivative in the direction of X), \mathcal{L}_X, as the operator on scalar functions $f: M \to \mathbb{R}$ defined by:

\begin{equation}
\mathcal{L}_X : f \mapsto \mathcal{L}_X f : M \to \mathbb{R} \quad \text{with} \quad \forall x \in M : \quad (\mathcal{L}_X f)(x) := \left. \frac{d}{dt} \right|_{t=0} f(X^\tau(x)) \equiv X(x)(f).
\end{equation}

Though this definition assumes that both X and f are defined globally, i.e. on all of M, it can of course be restricted to a neighbourhood. Thus defined, \mathcal{L}_X is linear and obeys the Leibniz rule, i.e.

\begin{equation}
\mathcal{L}_X(fg) = f \mathcal{L}_X(g) + g \mathcal{L}_X(f);
\end{equation}

In coordinates $x = x^1, \ldots, x^n$, $\mathcal{L}_X f$ is given by

\begin{equation}
\mathcal{L}_X f = X^1(x) \frac{\partial f}{\partial x^1} + \cdots + X^n(x) \frac{\partial f}{\partial x^n},
\end{equation}

with $X^i(x)$ the i-component of the vector $X(x)$. Eq. 42 means that despite eq. 40’s mention of the flow X^τ, the Lie derivative of a scalar agrees with our previous notion of directional derivative: that is, for all f, $\mathcal{L}_X(f) = X(f)$.

2. In (1), the vector field X determined the operator \mathcal{L}_X: in terms of Section 3.1.2.2’s correspondence, we moved from (i) to (ii). But we can conversely define a vector field in terms of its Lie derivative; and in Section 3.2.2’s discussion of the Lie bracket, we shall do exactly this.

In a bit more detail: — We note that the set $\mathcal{F}(M)$ of all scalar fields on M, $f : M \to \mathbb{R}$ forms an (infinite-dimensional) real vector space under pointwise addition. So also does the set $\mathcal{X}(M)$ of all vector fields on M, $X : x \in M \mapsto X(x) \in T_x M$. Furthermore, $\mathcal{X}(M)$ is isomorphic as a real vector space, and as an module over the scalar fields, to the collection of operators \mathcal{L}_X. The isomorphism is given by the map $\theta : X \mapsto \mathcal{L}_X$ defined in (1).

3. We now extend the definition of \mathcal{L}_X so as to define it on vector fields Y and 1-forms α. We can temporarily use θ as notation for either a vector field Y or a differential 1-form α. Given a vector field X and flow $X^\tau \equiv \phi_X(\tau)$,
we need to compare θ at the point $x \in M$ with θ at the nearby point $X^\tau(x) \equiv \phi_{X,x}(\tau)$, in the limit as τ tends to zero. But the value of θ at $X^\tau(x)$ is in the tangent space, or cotangent space, at $X^\tau(x)$: $T_{X^\tau(x)}M$ or $T_{X^\tau(x)}^*M$. So to make the comparison, we need to somehow transport back this value to T_xM or T_x^*M.

Fortunately, the vector field X provides a natural way to define such a transport. For the vector field Y, we use the differential (i.e. push-forward) of the inverse flow, to “get back” from $X^\tau(x)$ to x. Using $\phi^*(\tau)$ for this “pullback” of $\phi_{X,x}(\tau)$, we define

$$ (43) \quad \phi^*(\tau) := T(\exp(-\tau X)) \equiv d\exp(-\tau X) : T_{X^\tau(x)}M \equiv T_{\exp(\tau X)(x)}M \rightarrow T_xM ~. $$

For the 1-form α, we define the transport by the pullback, already defined by eq. 32:

$$ (44) \quad \phi^*(\tau) := (\exp(-\tau X))^* : T_{X^\tau(x)}^*M \equiv T_{\exp(\tau X)(x)}^*M \rightarrow T_x^*M ~. $$

With these definitions of $\phi^*(\tau)$, we now define the Lie derivative $\mathcal{L}_X\theta$, where θ is a vector field Y or a differential 1-form α, as the vector field or differential 1-form respectively, with value at x given by

$$ (45) \quad \lim_{\tau \rightarrow 0} \frac{\phi^*(\tau)(\theta \mid_{X^\tau(x)}) - \theta \mid_x}{\tau} = \frac{d}{d\tau} \bigg|_{\tau=0} \phi^*(\tau)(\theta \mid_{X^\tau(x)}) ~. $$

Finally, an incidental result to illustrate this Chapter’s “story so far”. It connects Noether’s theorem, from Section 2.1.3, to this Section’s details about the Lie derivative, and to the theorem stating the local existence and uniqueness of solutions of ordinary differential equations (cf. the start of Section 3.1.2.2). This latter theorem implies that on any manifold any vector field X can be “straightened out”, in the sense that around any point at which X is non-zero, there is a local coordinate system in which X has all but one component vanish and the last component equal to 1. Using this theorem, it is straightforward to show that on any even-dimensional manifold any vector field X is locally Hamiltonian, with respect to some symplectic form, around a point where X is non-zero. One just defines the symplectic form by Lie-dragging from a surface transverse to X’s integral curves.

3.2 Lie algebras and brackets

I now introduce Lie algebras and the Lie bracket of two vector fields.

3.2.1 Lie algebras

A Lie algebra is a vector space V equipped with a bilinear anti-symmetric operation, usually denoted by square brackets (and called ‘bracket’ or ‘commutator’), $[\cdot, \cdot] : V \times V \rightarrow V$, that satisfies the Jacobi identity, i.e.

$$ (46) \quad [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0 ~. $$
3.2.1.1 Examples; rotations introduced Here are three examples.

(i) $n \times n$ matrices equipped with the usual commutator, i.e. $[X, Y] := XY - YX$. (So the matrix multiplication "contributes" to the bracket, but not to the underlying vector space structure.)

(ii) 3×3 anti-symmetric matrices, equipped with the usual commutator.

(iii) \mathbb{R}^3 equipped with vector multiplication.

In fact, example (iii) is essentially the same as example (ii); and this example will recur in what follows, in connection with rotations and the rigid body. (We will also see that example (ii) is in a sense more fundamental.)

To explain this, we first recall that every anti-symmetric operator A on a three-dimensional oriented euclidean space is the operator of vector multiplication by a fixed vector, ω say. That is: for all $q, Aq = [\omega, q] \equiv \omega \wedge q$. (Proof: the anti-symmetric operators on \mathbb{R}^3 for a 3-dimensional vector space, since an anti-symmetric 3×3 matrix has three independent components. Vector multiplication by a vector ω is a linear and anti-symmetric operator; varying ω we get a subspace of the space of all anti-symmetric operators on \mathbb{R}^3; but this subspace has dimension 3; so it coincides with the space of all anti-symmetric operators.)

With this result in hand, the following three points are all readily verified.

1. The matrix representation of A in cartesian coordinates is then

$$A = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}.$$ \hspace{1cm} (47)

We can write

$$A \leftrightarrow \omega \text{ or } A_{ij} = -\epsilon_{ijk}\omega_k \text{ or } \omega_i = -\frac{1}{2}\epsilon_{ijk}A_{jk}. \hspace{1cm} (48)$$

2. The plane Π of vectors perpendicular to ω is an invariant subspace for A, i.e. $A(\Pi) = \Pi$. And ω is an eigenvector for A with eigenvalue 0. This suggest a familiar elementary interpretation, which will be confirmed later (Section 3.4): viz. that any 3×3 anti-symmetric matrix A represents an infinitesimal rotation, and ω represents instantaneous angular velocity. That is, we will have, for all $q \in \mathbb{R}^3$: $q = Aq = [\omega, q]$.

3. The commutator of any two 3×3 anti-symmetric matrices A, B, i.e. $[A, B] := AB - BA$, corresponds by eq. 48 to vector multiplication of the axes of rotation. That is: writing eq. 48’s bijection from vectors to matrices as $\Theta : A \leftrightarrow \Theta(A)$, we have for vectors q, r, s

$$\Theta(q)\Theta(r) - \Theta(r)\Theta(q)s = [\Theta(q)[r, s] - [\Theta(r)[q, s]]$$

$$= [q, [r, s]] - [r, [q, s]]$$

$$= [[q, r], s] = \Theta([q, r]) \cdot s. \hspace{1cm} (49)$$

$$\Theta(q)\Theta(r) - \Theta(r)\Theta(q)s = \Theta(q)[r, s] - \Theta(r)[q, s]$$

$$= [q, [r, s]] - [r, [q, s]]$$

$$= [[q, r], s] = \Theta([q, r]) \cdot s. \hspace{1cm} (50)$$

$$= [q, [r, s]] - [r, [q, s]]$$

$$= [[q, r], s] = \Theta([q, r]) \cdot s. \hspace{1cm} (51)$$
where the $[,]$ represents vector multiplication, i.e. $[q, r] \equiv q \wedge r$.

Eq. 51 means that Θ gives a Lie algebra isomorphism; and so our example (iii) is essentially the same as example (ii).

Besides, we can already glimpse why example (ii) is in a sense more fundamental. For this correspondence between anti-symmetric operators (or matrices) and vectors, eq. 48, is specific to three dimensions. In n dimensions, the number of independent components of an anti-symmetric matrix is $n(n-1)/2$: only for $n = 3$ is this equal to n. Yet we will see later (Section 3.4.4) that rotations on euclidean space \mathbb{R}^n of any dimension n are generated, in a precise sense, by the Lie algebra of $n \times n$ anti-symmetric matrices. So only for $n = 3$ is there a corresponding representation of rotations by vectors in \mathbb{R}^n.

In the next two Subsections, we shall see other examples of Lie algebras: whose vectors are vector fields (Section 3.2.2), or tangent vectors at the identity element of a Lie group (Section 3.4). The first example will be an infinite-dimensional Lie algebra; the second finite-dimensional (since we will only consider finite-dimensional Lie groups). Besides, the above examples (i) and (ii) (equivalently: (i) and (iii)) will recur: each will be the vector space of tangent vectors at the identity element of a Lie group.

3.2.1.2 Structure constants A finite-dimensional Lie algebra is characterized, relative to a basis, by a set of numbers, called structure constants that specify the bracket operation. Thus if $\{v_1, ..., v_n\}$ is a basis of a Lie algebra V, we define the structure constants $c^k_{ij}, (i, j, k = 1, ..., n)$ by expanding, in terms of this basis, the bracket of any two basis elements

$$[v_i, v_j] = \Sigma_k c^k_{ij} v_k.$$

The bilinearity of the bracket implies that eq. 52 determines the bracket of all pairs of vectors $v, w \in V$. And the bracket's obeying anti-symmetry and the Jacobi identity implies that, for any basis, the structure constants obey

$$c^k_{ij} = -c^k_{ji} \; ; \; \Sigma_k (c^k_{ij} c^m_{kl} + c^k_{il} c^m_{kj} + c^k_{jl} c^m_{ki}) = 0.$$

Conversely, any set of constants c^k_{ij} obeying eq. 53 are the structure constants of an n-dimensional Lie algebra.

3.2.2 The Lie bracket of two vector fields

Given two vector fields X, Y on a manifold M, the corresponding flows do not in general commute: $X^t Y^s \neq Y^s X^t$. The non-commutativity is measured by the commutator of the Lie derivatives of X and of Y, i.e. $\mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X$. (Cf. eq. 40 and 45 for a definition of the Lie derivative.) Here, 'measured' can be made precise by considering Taylor expansions; but I shall not go into detail about this.

What matters for us is that this commutator, which is at first glance seems to be a second-order operator, is in fact a first-order operator. This is verified by
calculating in a coordinate system, and seeing that the second derivatives occur twice with opposite signs:

\[
(54) (\mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X) f = \sum_i X^i \frac{\partial}{\partial x^i} \left(\sum_j Y^j \frac{\partial f}{\partial x^j} \right) - \sum_j Y^j \frac{\partial}{\partial x^j} \left(\sum_i X^i \frac{\partial f}{\partial x^i} \right)
\]

\[
= \ldots = \sum_{i,j} \left(X^i \frac{\partial Y^j}{\partial x^i} - Y^i \frac{\partial X^j}{\partial x^i} \right) \frac{\partial f}{\partial x^j}.
\]

So \(\mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X \) corresponds to a vector field: (recall (2) of Section 3.1.3, about defining a vector field from its Lie derivative). We call this field \(Z \) the Lie bracket (also known as: Poisson bracket, commutator, and Jacobi-Lie bracket!) of the fields \(X \) and \(Y \), and write it as \([X,Y]\). It is also written as \(\mathcal{L}_X Y \) and called the Lie derivative of \(Y \) with respect to \(X \). (Beware: some books use an opposite sign convention.)

Thus \(Z \equiv [X,Y] \equiv \mathcal{L}_X Y \) is defined to be the vector field such that

\[
(56) \mathcal{L}_Z \equiv \mathcal{L}_{[X,Y]} = \mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X.
\]

It follows that \(Z \equiv [X,Y] \)'s components in a coordinate system are given by eq. 55. This formula can be remembered by writing it (with summation convention, i.e. omitting the \(\Sigma \)) as

\[
(57) \left[\frac{X^i}{\partial x^i}, \frac{Y^j}{\partial x^j} \right] = \frac{X^i}{\partial x^i} \frac{\partial}{\partial x^j} - \frac{Y^j}{\partial x^j} \frac{\partial}{\partial x^i}.
\]

Another way to write eq. 55 is as:

\[
(58) [X,Y]^j = (X \cdot \nabla) Y^j - (Y \cdot \nabla) X^j;
\]

or without coordinates, writing \(D \) for the derivative map given by the Jacobian matrix, as

\[
(59) [X,Y] = D Y \cdot X - D X \cdot Y.
\]

Again, the vector field \(Z \equiv [X,Y] \) measures the non-commutation of the flows \(X^t \) and \(Y^s \): in particular, these flows commute iff \([X,Y] = 0\).

We will need three results about the Lie bracket. They concern, respectively, the relation to Lie algebras, to Poisson brackets, and to Frobenius' theorem.

(1) The Lie bracket is obviously a bilinear and anti-symmetric operation on the (infinite-dimensional) vector space \(\mathcal{X}(M) \) of all vector fields on \(M \): \([,] : \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)\). One readily checks that it satisfied the Jacobi identity. (Expand \(\mathcal{L}_{[X,Y],z} = \mathcal{L}_{[X,Y]} \mathcal{L}_z - \mathcal{L}_z \mathcal{L}_{[X,Y]} \) etc.) So: \(\mathcal{X}(M) \) is an (infinite-dimensional) Lie algebra.

(2) Returning to Hamiltonian mechanics (Section 2.1): there is a simple and fundamental relation between the Lie bracket and the Poisson bracket, via the notion of Hamiltonian vector fields (Section 2.1.3). Namely: the Hamiltonian vector field of the Poisson bracket of two scalar functions \(f, g \) on the symplectic manifold \(M \) is, up to a sign, the Lie bracket of the Hamiltonian vector fields, \(X_f \) and \(X_g \), of \(f \) and \(g \):
\[X_{\{f,g\}} = -[X_f, X_g] = [X_g, X_f]. \]

Proof: apply the rhs to an arbitrary scalar \(h : M \to \mathbb{R} \). One easily obtains \(X_{\{f,g\}}(h) \), by using:

(i) the definition of a Hamiltonian vector field;
(ii) the Lie derivative of a function equals its elementary directional derivative \eqref{eq:40}; and
(iii) the Poisson bracket is antisymmetric and obeys the Jacobi identity.

This result means that the Hamiltonian vector fields on a symplectic manifold \(M \), equipped with the Poisson bracket, form an (infinite-dimensional) Lie subalgebra of the Lie algebra \(\mathfrak{X}(M) \) of all vector fields on the symplectic manifold \(M \). Later, it will be important that this result extends from symplectic manifolds to Poisson manifolds; (details in Section 5.2.2).

(3) For Frobenius' theorem (Section 3.3), we need to relate the Lie bracket to Section 3.1.2.2's idea of vector fields being \(f \)-related by a map \(f : M \to N \) between manifolds \(M \) and \(N \). In short: if two pairs of vector fields are \(f \)-related, so is their Lie bracket. More explicitly: if \(X, Y \) are vector fields on \(M \), and \(f : M \to N \) is a map such that \((Tf)(X), (Tf)(Y) \) are well-defined vector fields on \(N \), then \(Tf \) commutes with the Lie bracket:

\[(Tf)[X, Y] = [(Tf)X, (Tf)Y]. \]

3.3 Submanifolds and Frobenius' theorem

This Subsection differs from the preceding ones in three ways. First, it emphasises integral, rather than differential, notions.

Second: Section 3.1.2.2 have emphasised that the integral curves of a vector field correspond to integrating a system of ordinary differential equations. Since such curves are one-dimensional submanifolds of the given manifold, our present topic, viz. higher-dimensional submanifolds, naturally suggests partial differential equations. For their integration involves finding, given an assignment to each point \(x \) of a manifold \(M \) of a subspace \(S_x \) (with dimension greater than one) of the tangent space \(T_x M \), an integral surface, i.e. a submanifold \(S \) of \(M \) whose tangent space at each of its points is \(S_x \).

However, we will not be concerned with partial differential equations. For us, submanifolds of dimension higher than one arise when the span \(S_x \) of the tangent vectors at \(x \) to a set of vector fields fit together to form a submanifold. Thus Frobenius' theorem states, roughly speaking, that a finite set of vector fields is integrable in this sense iff the vector fields are in involution. That is: iff their

\[^{18} \text{Beware: there is no analogue for partial differential equations of the local existence and uniqueness theorem for ordinary differential equations. Even a field of two-dimensional planes in three-dimensional space is in general not integrable, e.g. the field of planes given by the equation } dx = ydz. \text{ So integrable fields of planes, or other tangent subspaces on a manifold, are an exception; and accordingly, the integration theory for partial differential equations is less unified, and more complicated, than that for ordinary differential equations.} \]
pairwise Lie brackets are expandable in terms of the fields; i.e. the vector fields
form a Lie subalgebra of the entire Lie algebra of vector fields. We will not need
to prove this theorem. But we need to state it and use it—in particular, for the
foliation of Poisson manifolds.

Third: a warning is in order. The intuitive idea of a subset \(S \subset M \) that is
a smooth manifold "in its own right" can be made precise in different ways. So
there are subtleties about the definition of 'submanifold', and terminology varies
between expositions—in a way it does not for the material in previous Sections.
I will adopt what seems to be a widespread, if not majority, terminology.\(^\text{19}\)

3.3.1 Submanifolds

The fundamental definition is:

Given a manifold \(M \) (\(\dim(M) = n \)), a submanifold of \(M \) of dimension \(k \) is a subset \(N \subset M \) such that for every \(y \in N \) there is an admissible local chart (i.e. a
chart in \(M \)'s maximal atlas) \((U, \phi) \) with \(y \in U \) and with the submanifold property,
viz.

\[
(62) \quad (\text{SM}). \phi: U \to \mathbb{R}^k \times \mathbb{R}^{n-k} \text{ and } \phi(U \cap N) = \phi(U) \cap (\mathbb{R}^k \times \{0\}).
\]

The set \(N \) becomes a manifold, generated by the atlas of all charts of the form
\((U \cap N, \phi \mid (U \cap N))\), where \((U, \phi)\) is a chart of \(M \) having the submanifold property.
(This makes the topology of \(N \) the relative topology.)

We need to take note of two ways in which submanifolds can be specified in
terms of smooth functions between manifolds.

(1) A submanifold can be specified as the set on which a smooth function \(f: M \to P \) between manifolds takes a certain value. In effect, this will be a
generalization of eq. 62's requirement that \(n - k \) coordinate-components of
a chart \(\phi \) take the value zero. This will involve the idea that the tangent
map \(Tf \) is surjective, in which case \(f \) will be called a submersion. We will
need this approach for quotients of actions of Lie groups.

(2) A submanifold can be specified parametrically, as the set of values of a
local parametrization: i.e. as the range of a smooth function \(f \) with \(M \) as
codomain. This will involve the idea that the tangent map \(Tf \) is injective,
in which case \(f \) will be called an immersion. We will need this approach for
Frobenius' theorem.

\(^{19}\)My treatment is based on [Marsden and Ratiu, 1999, p. 124–127, 140] for Section 3.3.1, and
'submanifold' to be what we will call an immersed submanifold; (which latter, for us, does not
have to be a submanifold, since the immersion need not be an embedding). Bishop and Goldberg
[1980, p. 40–41] provide a similar example. For a detailed introduction to the different notions
of submanifold, cf. Darling [1994, Chapters 3 and 5]. Note that I will also omit some details, in
particular about Frobenius' theorem providing regular immersions.
(1): Submersions:
If \(f : M \to P \) is a smooth map between manifolds, a point \(x \in M \) is called a regular point if the tangent map \(T_x f \) is surjective; otherwise \(x \) is a critical point of \(f \). If \(C \subset M \) is the set of critical points of \(M \), we say \(f(C) \) is the set of critical values of \(f \), and \(P - f(C) \) is the set of regular values of \(f \). So if \(p \in P \) is a regular value of \(f \), then at every \(x \in M \) with \(f(x) = p \), \(T_x f \) is surjective.

The submersion theorem states that if \(p \in P \) is a regular value of \(f \), then:

(i) \(f^{-1}(p) \) is a submanifold of \(M \) of dimension \(\dim(M) - \dim(P) \); and

(ii) the tangent space of this submanifold at any point \(x \in f^{-1}(p) \) is the kernel of \(f \)'s tangent map:

\[
T_x (f^{-1}(p)) = \ker T_x f.
\]

If \(T_x f \) is surjective for every \(x \in M \), \(f \) is called a submersion.

(2): Immersions:
A smooth map between manifolds \(f : M \to P \) is called an immersion if \(T_x f \) is injective at every \(x \in M \). The immersion theorem states that \(T_x f \) is injective iff there is a neighbourhood \(U \) of \(x \) in \(M \) such that \(f(U) \) is a submanifold of \(P \) and \(f \mid_U : U \to f(U) \) is a diffeomorphism.

NB: This does not say that \(f(M) \) is a submanifold of \(P \). For \(f \) may not be injective (so that \(f(M) \) has self-intersections). And even if \(f \) is injective, \(f \) can fail to be a homeomorphism between \(M \) and \(f(M) \), equipped with the relative topology induced from \(P \). A standard simple example is an injection of an open interval of \(\mathbb{R} \) into an “almost-closed” figure-of-eight in \(\mathbb{R}^2 \).

Nevertheless, when \(f : M \to P \) is an immersion, and is also injective, we call \(f(M) \) an injectively immersed submanifold (or shorter: an immersed submanifold): though \(f(M) \) might not be a submanifold.

We also define an embedding to be an immersion that is also a homeomorphism (and so injective) between \(M \) and \(f(M) \) (where the latter has the relative topology induced from \(P \)). If \(f \) is an embedding, \(f(M) \) is a submanifold of \(N \) and \(f \) is a diffeomorphism \(f : M \to f(M) \).

In fact, Frobenius’ theorem will provide injectively immersed submanifolds that need not be embedded, and so need not be submanifolds. (They must also obey another condition, called ‘regularity’, that I will not go into.)

3.3.2 The theorem

We saw at the end of Section 3.2.2 that if two pairs of vector fields are \(f \)-related, so is their Lie bracket: cf. eq. 61. This result immediately yields a necessary condition for two vector fields to be tangent to an embedded submanifold: namely

If \(X_1, X_2 \) are vector fields on \(M \) that are tangent to an embedded submanifold \(S \) (i.e. at each \(x \in S \), \(X_i(x) \in T_x S < T_x M \)), then their Lie bracket \([X_1, X_2]\) is also tangent to \(S \).
This follows by considering the diffeomorphism \(f : \tilde{S} \rightarrow S \) that gives an embedding of \(S \) in \(M \). One then uses the fact that \(Tf \) commutes with the Lie bracket, eq. 61. That is: the Lie bracket of the \(f \)-related vector fields \(\tilde{X}_1, \tilde{X}_2 \) on \(\tilde{S} \), which is of course tangent to \(\tilde{S} \), is carried by \(Tf \) to the Lie bracket \([X_1, X_2]\) of \(X_1 \) and \(X_2 \). So \([X_1, X_2]\) is tangent to \(S \).

The idea of Frobenius' theorem will be that this necessary condition of two vector fields being tangent to a submanifold is also sufficient. To be more precise, we need the following definitions.

A distribution \(D \) on a manifold \(M \) is a subset of the tangent bundle \(TM \) such that at each \(x \in M \), \(D_x := D \cap T_x M \) is a vector space. The dimension of \(D_x \) is the rank of \(D \) at \(x \). If the rank of \(D \) is constant on \(M \), we say the distribution is regular.

A distribution is smooth if for every \(x \in M \), and every \(X_0 \in D_x \), there is a neighbourhood \(U \subset M \) of \(x \), and a smooth vector field \(X \) on \(U \) such that (i) \(X(x) = X_0 \), (ii) for all \(y \in U \), \(X(y) \in D_y \). Such a vector field \(X \) is called a local section of \(D \). Example: a set of \(r \) vector fields, \(X_1, ..., X_r \) each defined on \(M \), together define a smooth distribution of rank at most \(r \).

A distribution is involutive if for any pair \(X_1, X_2 \) of local sections, the Lie bracket \([X_1, X_2](y) \in D_y \) in the two sections' common domain of definition.

We similarly say that a set of \(r \) smooth vector fields, \(X_1, ..., X_r \), on a manifold \(M \) is in involution if everywhere in \(M \) they span their Lie brackets. That is: there are smooth real functions \(h_{ij}^k : M \rightarrow R, i, j, k = 1, ..., r \) such that at each \(x \in M \)

\[
[X_i, X_j](x) = \sum_k h_{ij}^k(x)X_k(x).
\]

(Beware: involution is used in a different sense in connection with Liouville's theorem, viz. a set of real functions on phase space is said to be in involution when all their pairwise Poisson brackets vanish.)

A distribution \(D \) on \(M \) is integrable if for each \(x \in M \) there is a local submanifold \(N(x) \) of \(M \) whose tangent bundle equals the restriction of \(D \) to \(N(x) \). If \(D \) is integrable, the various \(N(x) \) can be extended to get, through each \(x \in M \), a unique maximal connected set whose tangent space at each of its elements \(y \) is \(D_y \). Such a set is called a (maximal) integral manifold.

NB: In general, each integral manifold is injectively immersed in \(M \), but not embedded in it; and so, by the discussion in (2) of Section 3.3.1, an integral manifold might not be a submanifold of \(M \). But (like most treatments), I shall ignore this point, and talk of them as submanifolds, integral submanifolds.

If the rank of \(D \) is constant on \(M \), all the integral submanifolds have a common dimension: the rank of \(D \). But in general the rank of \(D \) varies across \(M \), and so does the dimension of the integral submanifolds.

We similarly say that a set of \(r \) vector fields, \(X_1, ..., X_r \), is integrable; viz. if through every \(x \in M \) there passes a local submanifold \(N(x) \) of \(M \) whose tangent space at each of its points is spanned by \(X_1, ..., X_r \). (Again: we allow that at some \(x \), \(X_1(x), ..., X_r(x) \) may be linearly dependent, so that the dimension of the submanifolds varies.)
We say (both for distributions and sets of vector fields) that the collection of integral manifolds is a foliation of M, and its elements are leaves. Again: if the dimension of the leaves is constant on M, we say the foliation is regular.

With these definitions in hand, we can now state Frobenius' theorem: both in its usual form, which concerns the case of constant rank, i.e. regular distributions and vector fields that are everywhere linearly independent; and in a generalized form. The usual form is:

Frobenius' theorem (usual form) A smooth regular distribution is integrable iff it is involutive.

Or in terms of vector fields: a set of r smooth vector fields, X_1, \ldots, X_r, on a manifold M, that are everywhere linearly independent, is integrable iff it is in involution.

The generalization comes in two stages. The first stage concerns varying rank, but assumes a finite set of vector fields. It is straightforward: this very same statement holds. That is: a set of r smooth vector fields, X_1, \ldots, X_r, on a manifold M (perhaps not everywhere linearly independent) is integrable iff it is in involution.

But for the foliation of Poisson manifolds (Section 5.3.3), we need to consider an infinite set of vector fields, perhaps with varying rank; and for such a set, this statement fails. Fortunately, there is a useful generalization; as follows.

Let \mathcal{X} be a set of vector fields on a manifold M, that forms a vector space. So in the above discussion of r vector fields, \mathcal{X} can be taken as all the linear combinations $\sum_{i=1}^{r} f_i(x) X_i(x), x \in M$, where the f_i are arbitrary smooth functions $f : M \rightarrow \mathbb{R}$. Such an \mathcal{X} is called finitely generated.

For any \mathcal{X} forming a vector space, we say (as before) that \mathcal{X} is in involution if $[X, Y] \in \mathcal{X}$ whenever $X, Y \in \mathcal{X}$. Let \mathcal{X}_x be the subspace of $T_x M$ spanned by the $X(x)$ for all $X \in \mathcal{X}$. As before, we define: an integral manifold of \mathcal{X} is a submanifold $N \subset M$ such that for all $y \in N$, $T_y N = \mathcal{X}_y$; and \mathcal{X} is called integrable iff through each $x \in M$ there passes an integral manifold.

As before: if \mathcal{X} is integrable, it is in involution. But the converse fails. A further condition is needed, as follows.

We say that \mathcal{X} is rank-invariant if for any vector field $X \in \mathcal{X}$, the dimension of the subspace $\mathcal{X}_{\exp(\tau X)(x)}$ along the flow generated by X is a constant, independent of τ. (But it can depend on the point x.)

Since the integral curve $\exp(\tau X)(x)$ through x should be contained in any integral submanifold, rank-invariance is certainly a necessary condition of integrability. (It also follows from \mathcal{X} being finitely generated.) In fact we have:

Frobenius' theorem (generalized form) A system \mathcal{X} of vector fields on M is integrable iff it is rank-invariant and in involution.

The idea of the proof is to directly construct the integral submanifolds. The submanifold through x is obtained as

$$\exp(X_1) \exp(X_2) \ldots \exp(X_p)(x) : p \geq 1, X_i \in \mathcal{X}.$$

The rank-invariance secures that for any $y \in N$, \mathcal{X}_y has dimension $\dim(N)$.

$$N = \{ \exp(X_1) \exp(X_2) \ldots \exp(X_p)(x) : p \geq 1, X_i \in \mathcal{X} \}.$$
3.4 Lie groups, and their Lie algebras

I introduce Lie groups and their Lie algebras. By the last two Subsections (Sections 3.4.3 and 3.4.4), we will have enough theory to compute efficiently the Lie algebra of a fundamentally important Lie group, the rotation group.

3.4.1 Lie groups and matrix Lie groups

A Lie group is a group G which is also a manifold, and for which the product and inverse operations $G \times G \rightarrow G$ and $G \rightarrow G$ are smooth.

Examples:

(i) \mathbb{R}^n under addition.

(ii) The group of linear isomorphisms of \mathbb{R}^n to \mathbb{R}^n, denoted $GL(n, \mathbb{R})$ and called the general linear group; represented by the real invertible $n \times n$ matrices. This is an open subset of \mathbb{R}^{n^2}, and so a manifold of dimension n^2; and the formulas for the product and inverse of matrices are smooth in the matrix components.

(iii) The group of rotations about the origin of \mathbb{R}^3, represented by 3×3 orthogonal matrices of determinant 1; denoted $SO(3)$, where S stands for ‘special’ (i.e. determinant 1), and O for ‘orthogonal’.

In fact, all three examples can be regarded as Lie groups of matrices, with matrix multiplication as the operation. In example (i), consider the isomorphism θ between \mathbb{R}^n under addition and $(n + 1) \times (n + 1)$ matrices with diagonal entries all equal to 1, other rightmost column entries equal to the given vector in \mathbb{R}^n, and all other entries zero. Thus consider, for the case $n = 3$:

$$
\theta : \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}.
$$

This suggests that we define a matrix Lie group to be any set of invertible real matrices, under matrix multiplication, that is closed under multiplication, inversion and taking of limits. That a matrix Lie group is a Lie group will then follow from $GL(n, \mathbb{R})$ being a Lie group, and the theorem below (in Section 3.4.3) that any closed subgroup of a Lie group is itself a Lie group.

For matrix Lie groups, some of the theory below simplifies. For example, the definition of exponentiation of an element of the group’s Lie algebra reduces to exponentiation of a matrix. But we will develop some of the general theory, since (as always!) it is enlightening and powerful.
3.4.2 The Lie algebra of a Lie group

The main result in this Subsection is that for any Lie group G, the tangent space T_eG at the identity $e \in G$ has a natural Lie algebra structure that is induced by certain natural vector fields on G; as follows.

3.4.2.1 Left-invariant vector fields define the Lie algebra:

Let G be a Lie group. Each $g \in G$ defines a diffeomorphism of G onto itself by left translation, and similarly by right translation:

$$L_g : h \in G \mapsto gh \in G \quad ; \quad R_g : h \in G \mapsto hg \in G.$$

Remark: In Section 4 we will describe this in the language of group actions, saying that in eq. 67 G acts on itself by left and right translation.

Now consider the induced maps on the tangent spaces, i.e. the tangent (aka: derivative) maps; cf. eqs 29, 30. They are $(L_g)_* =: L_g^*, (R_g)_* =: R_g^*$ where for each $h \in G$:

$$L_g^* : T_hG \to T_{gh}G \quad \text{and} \quad R_g^* : T_hG \to T_{hg}G.$$

In particular: the derivative $(R_g)_*$ at $e \in G$ maps T_eG to T_gG. This implies that every vector $\xi \in T_eG$ defines a vector field on G: its value at any $g \in G$ is the image $(R_g)_* \xi$ of ξ under $(R_g)_*$. Such a vector field is called a right-invariant vector field: it is uniquely defined by (applying the derivative of right translation to) its value at the identity $e \in G$.

In more detail, and now defining left-invariant vector fields: —

A vector field X on G is called left-invariant if for every $g \in G$, $(L_g)_* X = X$. More explicitly, let us write T_hL_g for the tangent or derivative of L_g at h, i.e. for $L_g^* : T_hG \to T_{gh}G$. Then left-invariance requires that

$$T_hL_gX(h) = X(gh) \quad \text{for every} \quad g, h \in G.$$

Thus every vector $\xi \in T_eG$ defines a left-invariant vector field, written X_ξ, on G: X_ξ’s value at any $g \in G$ is the image $(L_g)_* \xi$ of ξ under $(L_g)_*$. In other words: $X_\xi(g) := (T_eL_g)\xi$.

Not only is a left-invariant vector field uniquely defined by its value at the identity $e \in G$. Also, the set $\mathcal{X}_L(G)$ of left-invariant vector fields on G is isomorphic as a vector space to the tangent space T_eG at the identity e. For the linear maps α, β defined by

$$\alpha : X \in \mathcal{X}_L(G) \mapsto X(e) \in T_eG \quad ; \quad \beta : \xi \in T_eG \mapsto \{ g \mapsto X_\xi(g) := (T_eL_g)\xi \} \in \mathcal{X}_L(G)$$

compose to give the identity maps:

$$\beta \circ \alpha = id_{\mathcal{X}_L(G)} \quad ; \quad \alpha \circ \beta = id_{T_eG}.$$
$\mathcal{X}_L(G)$ is a Lie subalgebra of the Lie algebra of all vector fields on G, because it is closed under the Lie bracket. That is: the Lie bracket of left-invariant vector fields X and Y is itself left-invariant, since one can check that for every $g \in G$ we have (with L meaning 'left' not 'Lie')

\[(72) \quad L_g[X, Y] = [L_g X, L_g Y] = [X, Y].\]

If we now define a bracket on $T_e G$ by

\[(73) \quad [\xi, \eta] := [X_\xi, X_\eta](e)\]

then $T_e G$ becomes a Lie algebra. It is called the Lie algebra of G, written \mathfrak{g} (or, to avoid ambiguity about which Lie group is in question: $\mathfrak{g}(G)$). It follows from eq. 72 that

\[(74) \quad [X_\xi, X_\eta] = X_{[\xi, \eta]} ;\]

that is to say, the maps α, β are Lie algebra isomorphisms.

This result, that $T_e G$ has a natural Lie algebra structure, is very important. For, as we shall see in the rest of Section 3.4: the structure of a Lie group is very largely determined by the structure of this Lie algebra. Accordingly, as we shall see in Sections 4 and 5 et seq.: this Lie algebra underpins most of the constructions made with the Lie group, e.g. in Lie group actions. Thus Olver writes that this result 'is the cornerstone of Lie group theory ... almost the entire range of applications of Lie groups to differential equations ultimately rests on this one construction!' [Olver, 2000, 42].

Before turning in the next Subsection to examples, and the topic of subgroups and subalgebras, I end with four results, (1)-(4), which will be needed later; and a remark.

3.4.2.2 Four results

1. Lie group structure determines Lie algebra structure in the following sense. If G, H are Lie groups, and $f : G \to H$ is a smooth homomorphism, then the derivative of f at the identity $T_e f : \mathfrak{g}(G) \to \mathfrak{g}(H)$ is a Lie algebra homomorphism. In particular, for all $\xi, \eta \in \mathfrak{g}(G)$, $(T_e f)[\xi, \eta] = [T_e f(\xi), T_e f(\eta)]$. (Cf. eq. 61.)

2. **Exponentiation again: a correspondence between left-invariant vector fields and one-dimensional subgroups:**

Recall from Section 3.1, especially eq. 36, that each vector field X on the manifold G determines an integral curve ϕ_X in G passing through the identity e (with $\phi_X(0) = e$). We now write the points in (the image of) this curve as g_τ (X and e being understood):

\[(75) \quad \exp(\tau X)(e) = X^\tau(e) = \phi_{X,e}(\tau) =: g_\tau.\]
It is straightforward to show that if X is left-invariant, this (image of a) curve is a one-parameter subgroup of G: i.e. not just as eq. 35 et seq., a one-parameter subgroup of the group of diffeomorphisms of the manifold G. In fact:

$$g_{\tau + \sigma} = g_{\tau} g_{\sigma} \quad g_0 = e \quad g_{-\tau}^{-1} = g_{-\tau}.$$

Besides, the group is defined for all $\tau \in \mathbb{R}$; and is isomorphic to either \mathbb{R} or the circle group $SO(2)$. Conversely, any connected one-parameter subgroup of G is generated by a left-invariant vector field in this way.

Accordingly, we define exponentiation of elements ξ of \mathfrak{g} by reference to the isomorphisms eq. 70 and 71. It is also convenient to define this as a map taking values in G. Thus for $\xi \in \mathfrak{g}$ and its corresponding left-invariant vector field X_ξ that takes as value at $g \in G$, $X_\xi(g) := (T_e L_g)(\xi)$, we write the integral curve of X_ξ that passes through e (with value e for argument $\tau = 0$) as

$$\phi_\xi : \tau \in \mathbb{R} \mapsto \exp(\tau X_\xi)(e) \in G.$$

Then we define the exponential map of \mathfrak{g} into G to be the map

$$\exp : \xi \in \mathfrak{g} \mapsto \phi_\xi(1) \in G.$$

Using the linearity of β as defined by eq. 70, these two equations, eq. 77 and 78, are related very simply:

$$\exp(\tau \xi) := \phi_{\tau \xi}(1) := \exp(1.X_{\tau \xi})(e) = \exp(\tau X_\xi).$$

We write \exp_G rather than \exp when the context could suggest a Lie group other than G.

The map \exp is a local diffeomorphism of a neighbourhood of $0 \in \mathfrak{g}$ to a neighbourhood of $e \in G$; but not in general a global diffeomorphism onto G. In modern terms, this result follows by applying the inverse function theorem to the discussion above. (It also represents an interesting example of the history of subject; cf. [Hawkins, 2000, 82–83] for Lie's version of this result, without explicit mention of its local nature.)

The map \exp also has the basic property, adding to result (1) above, that ...

(3) **Homomorphisms respect exponentiation:**
If $f : G \to H$ is a smooth homomorphism of Lie groups, then for all $\xi \in \mathfrak{g}$,

$$f(\exp_G(\xi)) = \exp_H((T_e f)(\xi)).$$

(4) **Right-invariant vector fields as an alternative approach:**
We have followed the usual practice of defining \mathfrak{g} in terms of left-invariant vector fields. One can instead use right-invariant vector fields. This produces some changes in signs, and in whether certain defined operations respect or
reverse the order of two elements used in their definition. I will not go into
many details about this. But some will be needed when we consider:

(i) Lie group actions, and especially their infinitesimal generators (Section
4.4 and 4.5);

(ii) reduction on the cotangent bundle of a Lie group —as occurs in the
theory of the rigid body (Section 6.5 and 7.3.3).

For the moment we just note two basic results, (A) and (B); postponing
others to Section 4.4 et seq.

(A) Corresponding to the vector space isomorphism between \mathfrak{g} and the left-
invariant vector fields, as in eq. 70. viz.

$$ (81) \quad \xi \in T_e G \mapsto X_\xi \in \mathfrak{X}_L(G) \quad \text{with} \quad X_\xi(g) := (T_e L_g)\xi, $$

there is a vector space isomorphism to the set of right-invariant vector fields

$$ (82) \quad \xi \in T_e G \mapsto Y_\xi \in \mathfrak{X}_R(G) \quad \text{with} \quad Y_\xi(g) := (T_e R_g)\xi. $$

Besides, the Lie bracket of right-invariant vector fields is itself right-invariant.
So corresponding to our previous definition, eq. 73, of a Lie bracket on $T_e G$,
and its corollary eq. 74, i.e. $[X_\xi, X_\eta] = X_{[\xi, \eta]}$, that makes $T_e G \cong \mathfrak{X}_L(G)$ a
Lie algebra isomorphism: we can also define a Lie bracket on $T_e G$ by

$$ (83) \quad [\xi, \eta]_R := [Y_\xi, Y_\eta](e), $$

and get a Lie algebra isomorphism $T_e G \cong \mathfrak{X}_R(G)$.

(B) But the two Lie brackets, eq. 73 and 83, on $T_e G$ are different. In fact one
can show that:

(i): X_ξ and Y_ξ are related by

$$ (84) \quad I_* X_\xi = -Y_\xi $$

where $I : G \to G$ is the inversion map $I(g) := g^{-1}$, and I_* is the push-forward
on vector fields induced by I, cf. eq. 31, i.e.

$$ (85) \quad (I_* X_\xi)(g) := (TI \circ X_\xi \circ I^{-1})(g). $$

Besides, since I is a diffeomorphism, eq. 84 makes I_* a vector space isomor-
phism.

(ii): It follows from eq. 84 that

$$ (86) \quad [X_\xi, X_\eta](e) = -[Y_\xi, Y_\eta](e); \quad \text{so} \quad [\xi, \eta] = -[\xi, \eta]_R. $$
Finally, a remark about physics. In applications to physics, G is usually the group of symmetries of a physical system, and so a vector field on G is the infinitesimal generator of a one-parameter group of symmetries. For mechanics, we saw this repeatedly in Section 2, especially as regards the group of translations and rotations about the origin, in physical space \mathbb{R}^3. This Subsection's isomorphism between the Lie algebra \mathfrak{g} and left-invariant vector fields on G means that we can think of \mathfrak{g} also as consisting of infinitesimal symmetries of the system. (The $\xi \in \mathfrak{g}$ are also called generators of the group G.)

3.4.3 Examples, subgroups and subalgebras

I begin with the first two of Section 3.4.1’s three examples. That will prompt a little more theory, which will enable us to deal efficiently in the next Subsection with the third example, viz. the rotation group.

(1): Examples

(i) $G := \mathbb{R}^n$ under addition. G is abelian so that left and right translation coincide. The invariant vector fields are just the constant vector fields, so that $\mathcal{X}_L(G) \equiv \mathcal{X}_R(G) \cong \mathbb{R}^n$. So the tangent space at the identity T_eG, i.e. the Lie algebra \mathfrak{g}, is itself \mathbb{R}^n. The bracket structure is wholly degenerate: for all invariant vector fields X, Y, $[X, Y] = 0$; and for all $\xi, \eta \in \mathfrak{g}$, $[\xi, \eta] = 0$.

(ii) $G := GL(n, \mathbb{R})$, the general linear group. Since G is open in $\text{End}(\mathbb{R}^n, \mathbb{R}^n)$, the vector space of all linear maps on \mathbb{R}^n ("End" for "endomorphism"), G's Lie algebra, as a vector space, is $\text{End}(\mathbb{R}^n, \mathbb{R}^n)$; (cf. example (i)). To compute what the Lie bracket is, we first note that any $\xi \in \text{End}(\mathbb{R}^n, \mathbb{R}^n)$ defines a corresponding vector field on $GL(n, \mathbb{R})$ by

$$ X_\xi : A \in GL(n, \mathbb{R}) \mapsto A\xi \in \text{End}(\mathbb{R}^n, \mathbb{R}^n) . $$

Besides, X_ξ is left-invariant, since for every $B \in GL(n, \mathbb{R})$, the left translation

$$ L_B : A \in GL(n, \mathbb{R}) \mapsto BA \in GL(n, \mathbb{R}) $$

is linear, and so

$$ X_\xi(L_BA) = B\xi = T_A L_B X_\xi(A) . $$

Applying now eq. 59 at the identity $I \in GL(n, \mathbb{R})$ to the definition of the bracket in the Lie algebra, eq. 73, we have:

$$ [\xi, \eta] := [X_\xi, X_\eta](I) = DX_\eta(I) \cdot X_\xi(I) - DX_\xi(I) \cdot X_\eta(I) . $$

But $X_\eta A = A\eta$ is linear in A, so $DX_\eta(I) \cdot B = B\eta$. This means that

$$ DX_\eta(I) \cdot X_\xi(I) = \xi\eta ; $$
and similarly

\[(92) \quad DX_\xi(I) \cdot X_\eta(I) = \eta \xi.\]

So the Lie algebra End(\(\mathbb{R}^n\), \(\mathbb{R}^n\)) has the usual matrix commutator as its bracket: \([\xi, \eta] = \xi \eta - \eta \xi\). This Lie algebra is often written gl(\(n, \mathbb{R}\)).

Let us apply to this example, result (2) from Section 3.4.2.2. In short, the result said that left-invariant vector fields correspond (by exponentiation through \(e \in G\)) to connected one-parameter subgroups of \(G\). To find the one-parameter subgroup \(\exp(\tau X_\xi)(e)\) of \(GL(n, \mathbb{R})\), we take the matrix entries \(x_{ij}, (i, j = 1, \ldots, n)\) as the \(n^2\) coordinates on \(GL(n, \mathbb{R})\), so that the tangent space at the identity matrix \(I\) is the set of vectors

\[(93) \quad \sum_{ij} \xi_{ij} \frac{\partial}{\partial x_{ij}} | I \]

with \(\xi = (\xi_{ij})\) an arbitrary matrix. For given \(\xi\), \(\exp(\tau X_\xi)e\) is found by integrating the \(n^2\) ordinary differential equations

\[(94) \quad \frac{dx_{ij}}{d\tau} = \sum_k \xi_{ik} x_{kj} \quad ; \quad x_{ij}(0) = \delta_{ij}.\]

The solution is just the matrix exponential:

\[(95) \quad X(\tau) = \exp(\tau \xi).\]

More generally, let us return to Section 3.4.1's idea of a matrix Lie group. For a matrix Lie group \(G\), the definition of its Lie algebra can be given as:

\[(96) \quad g = \{ \text{the set of matrices } \xi = \phi'(0) : \phi \text{ a differentiable map } \mathbb{R} \to G, \phi(0) = e_G \}.\]

The deduction of the structure of the Lie algebra then proceeds straightforwardly. In particular, we get the result that the one-parameter subgroup generated by \(\xi \in g\) is given by matrix exponentials, as in eq. 95: the group is \(\{\exp(\tau \xi) : \tau \in \mathbb{R}\}\).

This result will help us compute our third example: finding the Lie algebra of the rotation group. But for that example, it is worth first developing a little the result (2) from Section 3.4.2.2: i.e. the correspondence between left-invariant vector fields and connected one-parameter subgroups of \(G\).

(2): More theory:
First, a warning remark. We will later need to take notice of the fact that a subgroup, even a one-parameter subgroup, of a Lie group \(G\) need not be a submanifold of \(G\). Here we recall Section 3.3.1's definitions of immersion and embedding. Accordingly, we now define a subgroup \(H\) of a Lie group \(G\) to be a Lie subgroup of \(G\) if the inclusion map \(i : H \to G\) is an injective immersion.

Just as we saw in Section 3.3.1 that not every injective immersion is an embedding, so also there are examples of Lie subgroups that are not submanifolds.
Example: the torus \mathbb{T}^2 can be made into a Lie group in a natural way (exercise: do this!); the one-parameter subgroups on the torus \mathbb{T}^2 that wind densely on the torus are Lie subgroups that are not submanifolds. (For more details about this example, cf. [Arnold, 1973, 160–167] or Arnold [1989, 72–74] or Butterfield [2004a, Section 2.1.3.B].)

But it turns out that being closed is a sufficient, and necessary, further condition. That is:

If H is a closed subgroup of a Lie group G, then H is a submanifold of G and in particular a Lie subgroup. And conversely, if H is a Lie subgroup that is also a submanifold, then H is closed.

Result (2) from Section 3.4.2.2, i.e. the correspondence between one-dimensional subgroups of G and one-dimensional subspaces (and so subalgebras) of \mathfrak{g}, generalizes to higher-dimensional subgroups and subalgebras. That is to say:

If $H \subseteq G$ is a Lie subgroup of G, then its Lie algebra $\mathfrak{h} := \mathfrak{g}(H)$ is a subalgebra of $\mathfrak{g} = \mathfrak{g}(G)$. In fact

$$\{ \xi \in \mathfrak{g} : \exp(\tau X_\xi) \in H, \text{ for all } \tau \in \mathbb{R} \}.$$

And conversely, if \mathfrak{h} is any m-dimensional subalgebra of \mathfrak{g}, then there is a unique connected m-dimensional Lie subgroup H of G with Lie algebra \mathfrak{h}.

The proof of the first two statements uses result (1) of Section 3.4.2.2. For the third, i.e. converse, statement, the main idea is that \mathfrak{h} defines m vector fields on G that are linearly independent and in involution, so that one can apply Frobenius’ theorem to infer an integral submanifold. One then has to prove that H is a Lie subgroup: Olver [2000, Theorem 1.51] and Marsden and Ratiu [1999, 279–280] give details and references. (Historical note: to see that this result, sometimes called Lie’s ‘third fundamental theorem’, is close to what Lie himself called the main theorem of his theory of groups, cf. [Hawkins, 2000, 83].)

This general correspondence between Lie subgroups and Lie subalgebras prompts the question whether every finite-dimensional Lie algebra \mathfrak{g} is the Lie algebra of a Lie group. The answer is Yes. Besides, the question reduces to the case of a matrix Lie group (i.e. a Lie subgroup of $GL(n, \mathbb{R})$), in the sense that: every finite-dimensional Lie algebra \mathfrak{g} is isomorphic to a subalgebra of $\mathfrak{gl}(n, \mathbb{R})$, for some n. But be warned: this does not imply (and it is not true) that every Lie group is realizable as a matrix Lie group, i.e. that every Lie group is isomorphic to a Lie subgroup of $GL(n, \mathbb{R})$.

This general correspondence also simplifies greatly the computation of the Lie algebras of Lie groups, for example $H := SO(3)$, that are Lie subgroups of $GL(n, \mathbb{R})$. We only need to combine it with example (ii) above, that $\mathfrak{gl}(n, \mathbb{R})$ is $\text{End}(\mathbb{R}^n, \mathbb{R}^n)$ with the usual matrix commutator as its bracket: $[\xi, \eta] = \xi_\eta - \eta_\xi$.

Thus we infer that the Lie algebra of $SO(3)$, written $\mathfrak{so}(3)$, is a subalgebra
of $\text{End}(\mathbb{R}^n, \mathbb{R}^n)$ with the matrix commutator as bracket. Besides, we can identify $\mathfrak{so}(3)$ by looking at all the one-dimensional subgroups of G contained in it. Combining eq. 95 and 97, we have

\[(98) \quad \mathfrak{so}(3) = \{\xi \in \mathfrak{gl}(n, \mathbb{R}) : \text{the matrix exponential } \exp(\tau \xi) \in SO(3), \forall \tau \in \mathbb{R}\}.\]

With this result in hand, we can now compute $\mathfrak{so}(3)$.

3.4.4 The Lie algebra of the rotation group

Our first aim is to calculate the Lie algebra $\mathfrak{so}(3)$ (also written: $so(3)$) of $H := SO(3)$, the rotation group. This will lead us back to Section 3.2.1.1 correspondence between anti-symmetric matrices and vectors in \mathbb{R}^3.

$SO(3)$ is represented by 3×3 orthogonal matrices of determinant 1. So the requirement in eq. 98 becomes, now writing e, not \exp:

\[(99) \quad (e^{\tau \xi})(e^{\tau \xi})^T = I \quad \text{and} \quad \det(e^{\tau \xi}) = 1.\]

Differentiating the first equation with respect to τ and setting $\tau = 0$ yields

\[(100) \quad \xi + \xi^T = 0.\]

So ξ must be anti-symmetric, i.e. represented by an anti-symmetric matrix. Conversely, for any such anti-symmetric matrix ξ, we can show that $\det(e^{\tau \xi}) = 1$. So, indeed:

\[(101) \quad \mathfrak{so}(3) = \{3 \times 3 \text{ antisymmetric matrices}\}.\]

Notice that the argument is independent of choosing $n = 3$. It similarly computes $\mathfrak{so}(n)$ for any integer n:

\[(102) \quad \mathfrak{so}(n) = \{n \times n \text{ antisymmetric matrices}\}.\]

Thus the rotations on euclidean space \mathbb{R}^n of any dimension n are generated by the Lie algebra of $n \times n$ anti-symmetric matrices.

This justifies our assertion at the end of Section 3.2.1.1 that the rotation group in three dimensions is special in being representable by vectors in the space on which it acts, i.e. \mathbb{R}^3. For as we have just seen, in general the infinitesimal generators of rotations are anti-symmetric matrices, which in n dimensions have $n(n-1)/2$ independent components. But only for $n = 3$ does this equal n.

Remark: An informal computation of $\mathfrak{so}(3)$, based on the idea that higher-order terms in $e^{\tau \xi}$ can be neglected (cf. the physical idea that ξ represents an infinitesimal rotation), goes as follows.

For $(I + \tau \xi)$ to be a rotation requires that

\[(103) \quad (I + \tau \xi)(I + \tau \xi)^T = I \quad \text{and} \quad \det(I + \xi \tau) = 1.\]

Dropping higher-order terms, the first equation yields

\[(104) \quad I + \tau(\xi + \xi^T) = I \quad \text{i.e.} \quad \xi + \xi^T = 0.\]
Besides, the second equation in eq. 103 yields no further constraint, since for any anti-symmetric matrix ξ written as (cf. eq. 47)

$$(105) \quad \xi = \begin{pmatrix} 0 & -\xi_3 & \xi_2 \\ \xi_3 & 0 & -\xi_1 \\ -\xi_2 & \xi_1 & 0 \end{pmatrix},$$

we immediately compute that $\det(I + \xi \tau) = 1 + \tau^2 (\xi_1^2 + \xi_2^2 + \xi_3^2)$. So, dropping higher-order terms, $\det(I + \xi \tau) = 1$. In short, we again conclude that

$$(106) \quad \mathfrak{so}(3) = \{3 \times 3 \text{ antisymmetric matrices}\}.$$

For later use (e.g. Sections 4.4 and 4.5.1), we note that the three matrices

$$(107) \quad A^x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad A^y = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad A^z = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

span $\mathfrak{so}(3)$, and generate the one-parameter subgroups

$$(108) \quad R^x_\theta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}, \quad R^y_\theta = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}, \quad R^z_\theta = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

representing anticlockwise rotation around the respective coordinate axes in the physical space \mathbb{R}^3.

Having computed $\mathfrak{so}(3)$ to consist of antisymmetric matrices, we can use Section 3.2.1.1's correspondence between these and vectors in \mathbb{R}^3 so as to realize $\mathfrak{so}(3)$ as vectors with the Lie bracket as vector multiplication. With these realizations in hand, we can readily obtain several further results about rotations. We will not need any. But a good example, which uses eq. 48's isomorphism Θ from vectors $\omega \in \mathbb{R}^3$ to matrices $A \in \mathfrak{so}(3)$, is as follows: —

$\exp(\tau \Theta(\omega))$ is a rotation about the axis ω by the angle $\tau \| \omega \|$. We can now begin to see the point of this Chapter's second motto (from Arnold), that the elementary theory of the rigid body confuses six conceptually different three-dimensional spaces. For our discussion has already distinguished three of the six spaces which Arnold lists (in a different notation). Namely, we have just distinguished:

(i) \mathbb{R}^3, especially when taken as physical space; from (ii) $\mathfrak{so}(3) \equiv T_e(SO(3))$, the generators of rotations; though they are isomorphic as Lie algebras, by eq. 48's bijection Θ from vectors $\omega \in \mathbb{R}^3$ to matrices $A \in \mathfrak{so}(3)$;
(ii) $\mathfrak{so}(3) \equiv T_e(SO(3))$ from its isomorphic copy under the derivative of left translation by g (i.e. under $(L_g)_*$), viz. $T_g(SO(3))$: cf. eq. 69. (In the motto, Arnold writes g for $\mathfrak{so}(3)$ and G for $SO(3)$.)

In Section 5.2.4 we will grasp (even without developing the theory of the rigid body!) the rest of the motto. That is, we will see why Arnold also mentions the three corresponding dual spaces, $\mathbb{R}^{3*}, \mathfrak{so}(3)^*$ and $T^*_g(SO(3))$. But we can already say more about the two tangent spaces $\mathfrak{so}(3) = T_e(SO(3))$ and $T_g(SO(3))$, in connection with the idea that for a pivoted rigid body, the configuration space can be taken as $SO(3)$; (cf. (3) of Section 2.2). We will show that there are two isomorphisms from $T_g(SO(3))$ to $T_e(SO(3))$ that are natural, not only in the mathematical sense of being basis-independent but also in the sense of having a physical interpretation. Namely, they represent the computation of the angular velocity from the Lagrangian generalized velocity, i.e. \dot{q}. In effect, one isomorphism computes the angular velocity’s components with respect to an orthonormal frame fixed in space (called spatial coordinates); and the other computes it with respect to a frame fixed in the rigid body (body coordinates). In fact, these isomorphisms are the derivatives of right and left translation, respectively; (cf. eq. 67 and 68).

So suppose a pivoted rigid body has a right-handed orthonormal frame $\{a, b, c\}$ fixed in it. We can think of the three unit vectors a, b, c as column vectors in \mathbb{R}^3. Arranging them in a 3×3 matrix $g := (a \ b \ c) \in GL(3, \mathbb{R})$, we get a matrix that maps the unit x-vector e_1 to a, the unit y-vector e_2 to b, etc. That is: g maps the standard frame e_1, e_2, e_3 to a, b, c, and g is an orthogonal matrix: $g \in SO(3) = \{g \in GL(3, \mathbb{R}) \mid \tilde{g}g = I \}$. Thus g represents the configuration of the body, and the configuration space is $SO(3)$.

By differentiating the condition $\tilde{g}g = I$, we deduce that the tangent space at a specific g, $T_g(SO(3))$, i.e. the space of velocities \dot{g}, is the 3-dimensional vector subspace of $GL(3, \mathbb{R})$:

\[
T_g(SO(3)) = \{ \dot{g} \in GL(3, \mathbb{R}) \mid \tilde{\dot{g}}g + \tilde{g}\dot{g} = 0 \}
\]

Now recall examples (ii) and (iii) of Section 3.2.1.1. We saw there that though the angular velocity of the body is usually taken to be the vector ω such that, with our “body-vectors” a, b, c,

\[
\dot{a} = \omega \wedge a, \quad \dot{b} = \omega \wedge b, \quad \dot{c} = \omega \wedge c :
\]

we can instead encode the angular velocity by the antisymmetric matrix $A := \Theta(\omega) \in g \equiv T_e(SO(3))$. As we saw, eq. 110 then becomes

\[
\dot{a} = \Theta(\omega)a, \quad \dot{b} = \Theta(\omega)b, \quad \dot{c} = \Theta(\omega)c :
\]

or equivalently the matrix equation for the configuration $g = (a \ b \ c)$,

\[
\dot{g} \equiv (\dot{a} \dot{b} \dot{c}) = \Theta(\omega)g ; \quad \text{i.e. } \Theta(\omega) = \dot{g}g^{-1} .
\]

Thus we see that the map from $T_g(SO(3))$ to $g = T_e(SO(3))$
maps the generalized velocity \(\dot{g} \) to the angular velocity \(\Theta(\omega) \). This is the angular velocity represented in the usual elementary way, with respect to coordinates fixed in space. One immediately checks that it is an isomorphism (exercise!).

On the other hand, let us consider \(\Theta(\omega) \) as a linear transformation \(\Theta(\omega) : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \), and express it in the body coordinates \(a, b, c \). This gives \(g^{-1} \Theta(\omega) g \equiv g^{-1} \dot{g} \). Thus the map

\[
\begin{align*}
\dot{g} \in T_g(SO(3)) & \mapsto g^{-1} \dot{g} \equiv \tilde{\dot{g}} g \\
\end{align*}
\]

maps the generalized velocity \(\dot{g} \) to the angular velocity expressed in body coordinates. It also is clearly an isomorphism.

Summing up: we have two natural isomorphisms that compute the angular velocity, in spatial and body coordinates respectively, from the generalized velocity \(\dot{g} \).

Incidentally, one can verify directly that the images \(\tilde{\dot{g}} \) and \(\dot{g} \) of the isomorphisms eq. 113 and 114 lie in \(g \), i.e. are antisymmetric matrices. Thus with \(\cdot \) for the elementary dot-product, we have:

\[
\begin{align*}
g^{-1} \dot{g} & \equiv \tilde{\dot{g}} = \begin{pmatrix}
\dot{a} \\
\dot{b} \\
\dot{c}
\end{pmatrix} \begin{pmatrix}
a \cdot \dot{b} & a \cdot \dot{c} \\
b \cdot \dot{a} & 0 & b \cdot \dot{c} \\
c \cdot \dot{a} & c \cdot \dot{b} & 0
\end{pmatrix}.
\end{align*}
\]

This is an antisymmetric matrix, since differentiating \(a \cdot b = b \cdot c = a \cdot c = 0 \) with respect to time gives \(a \cdot \dot{b} + \dot{a} \cdot b = 0 \) etc. Finally, we deduce that \(\tilde{\dot{g}} \) is antisymmetric from the facts that \(\tilde{\dot{g}} g = g(g^{-1} \dot{g}) g^{-1} \) and antisymmetry is preserved by conjugation by \(g \).

We end this Subsection with two incidental remarks; (they will not be used in what follows).

1. In Section 2.1.1, we could have specialized the discussion from a symplectic manifold to a symplectic vector space, i.e. a (real, finite-dimensional) vector space equipped with a non-degenerate anti-symmetric bilinear form \(\omega : Z \times Z \rightarrow \mathbb{R} \). It follows that \(Z \) is of even dimension. The question then arises which linear maps \(A : Z \rightarrow Z \) preserve the normal form of \(\omega \) given by eq. 4. It is straightforward to show that this is equivalent to \(A \) preserving the form of Hamilton’s equations (for any Hamiltonian); so that these maps \(A \) are called symplectic (or canonical, or Poisson). The set of all such maps form a Lie group, the symplectic group, written \(\text{Sp}(Z, \omega) \). But since this Chapter will not need the theory of canonical transformations, I leave the study of \(\text{Sp}(Z, \omega) \)'s structure as an exercise! (For details, cf. e.g. Abraham and Marsden [1978, 167–174], Marsden and Ratiu [1999, 69–72, 293–299].)

2. Finally, a glimpse of the infinite-dimensional manifolds that this Chapter has forewarned. Consider the infinite-dimensional Lie group \(\text{Diff}(M) \) of all diffeomorphisms on \(M \). An element of its Lie algebra, i.e. a vector \(A \in T_e(\text{Diff}(M)) \), is a vector field, or equivalently a flow, on \(M \). Besides, the
Lie bracket in this Lie algebra $T_e(\text{Diff}(M))$, as defined by eq. 73 turns out to be the usual Lie bracket of the vector fields on M, as defined in Section 3.2.2.

4 ACTIONS OF LIE GROUPS

We turn to actions of Lie groups on manifolds. The notions, results and examples in this Section will be crucial from Section 5.4 onwards. Fortunately, the foregoing provides several examples of the notions and results we need. Section 4.1 will give basic material, including the crucial notion of cotangent lifts. Sections 4.2 and 4.3 describe conditions for orbits and quotient spaces to be manifolds. Section 4.4 describes actions infinitesimally, i.e. in terms of their infinitesimal generators. Section 4.5 presents two important representations of a Lie group, its adjoint and co-adjoint representations, on its Lie algebra \mathfrak{g} and on the dual \mathfrak{g}^* respectively. Finally, Section 4.6 gathers some threads concerning our central, recurring example, viz. the rotation group.

4.1 Basic definitions and examples

A left action of a Lie group G on a manifold M is a smooth map $\Phi : G \times M \to M$ such that:

(i) $\Phi(e, x) = x$ for all $x \in M$

(ii) $\Phi(g, \Phi(h, x)) = \Phi(gh, x)$ for all $g, h \in G$ and all $x \in M$.

We sometimes write $g \cdot x$ for $\Phi(g, x)$.

Similarly, a right action of a Lie group G on a manifold M is a smooth map $\Psi : M \times G \to M$ satisfying (i) $\Psi(x, e) = x$ and (ii) $\Psi(\Psi(x, g), h) = \Psi(x, gh)$. We sometimes write $x \cdot g$ for $\Psi(x, g)$.

It is convenient to also have a subscript notation. For every $g \in G$, we define

(116) $\Phi_g : M \to M : x \mapsto \Phi(g, x)$.

In this notation, (i) becomes $\Phi_e = \text{id}_M$ and (ii) becomes $\Phi_{gh} = \Phi_g \circ \Phi_h$. For right actions, (ii) becomes $\Psi_{gh} = \Psi_h \circ \Psi_g$.

One immediately verifies that any left action Φ of G on a manifold M, $g \mapsto \Phi_g : M \to M$, defines a right action Ψ by

(117) $g \mapsto \Psi_g := \Phi_{g^{-1}} : M \to M$; i.e. $\Psi : (x, g) \in M \times G \mapsto \Phi(g^{-1}, x) \in M$.

(Use the fact that in G, $(gh)^{-1} = h^{-1}g^{-1}$.) Similarly, a right action defines a left action, by taking the inverse in G. We will occasionally make use of this left-right "flip".

The definition of left action is equivalent to saying that the map $g \mapsto \Phi_g$ is a homomorphism of G into Diff(M), the group of diffeomorphisms of M. In the
special case where M is a Banach space V and each $\Phi_g : V \to V$ is a continuous linear transformation, the action of G on V is called a representation of G on V.

The orbit of $x \in M$ (under the action Φ) is the set

$$(118) \quad \text{Orb}(x) = \{ \Phi_g(x) : g \in G \} \subset M.$$

The action is called transitive if there is just one orbit, i.e. for all $x, y \in M$, there is a $g \in G$ such that $g \cdot x = y$. It is called effective (or faithful) if $\Phi_g = \text{id}_M$ implies $g = e$, i.e. if $g \mapsto \Phi_g$ is one-to-one. It is called free if it has no fixed points for any $g \neq e$: that is, $\Phi_g(x) = x$ implies $g = e$. In other words, it is free if for each $x \in M$, $g \mapsto \Phi_g(x)$ is one-to-one. (So: every free action is faithful.)

4.1.0.1 Examples; cotangent lifts We begin with geometric examples; and then return to mechanics, giving first some general theory, followed by some examples.

(2): Geometric examples:

(i) $SO(3)$ acts on \mathbb{R}^3 by $(A, x) \mapsto Ax$. The action is faithful. But it is neither free (each rotation fixes the points on its axis) nor transitive (the orbits are the spheres centred at the origin).

(ii) $GL(n, \mathbb{R})$ acts on \mathbb{R}^n by $(A, x) \mapsto Ax$. The action is faithful, not free, and "almost transitive": the zero subspace $\{0\}$ is an orbit, and so is $\mathbb{R}^n - \{0\}$.

(iii) Suppose X is a vector field on M which is complete in the sense that the flow $\phi_X(\tau)$ of eq. 35 is defined for all $\tau \in \mathbb{R}$. Then this flow defines an action of \mathbb{R} on M.

We turn to two examples which will be central, and recurring, in our discussion of symplectic reduction.

(iv) Left translation by each $g \in G$, $L_g : h \in G \mapsto gh \in G$ (cf. eq. 67), defines a left action of G on itself. Since G is a group, it is transitive and free (and so faithful). Similarly, right translation, $g \mapsto R_g$ with $R_g : h \in G \mapsto hg \in G$, defines a right action. And $g \mapsto R_{g^{-1}}$ defines a left action; cf. eq. 117.

One readily proves that left translation lifts to the tangent bundle TG as a left action. That is: one verifies by the chain rule that

$$(119) \quad \Phi_g : TG \to TG : \quad v \equiv v_h \in T_hG \mapsto (T_hL_g)(v) \in T_{gh}G$$

defines a left action on TG. Similarly, right translation lifts to a right action on TG. But our interest in Hamiltonian mechanics of course makes us more interested in cotangent lifts. See (2) below for the general definitions, and example (viii) in (3) below for the cotangent lift of left translation.

(v) G acts on itself by conjugation (inner automorphism): $g \mapsto K_g := R_{g^{-1}} \circ L_g$. That is: $K_g : h \in G \mapsto ghg^{-1} \in G$. Each K_g is an isomorphism of G. The
orbits are conjugacy classes. Section 4.5 will introduce two "differentiated versions" of action by conjugation, viz, the adjoint and co-adjoint actions, which will be important in symplectic reduction.

(2): Hamiltonian symmetries and cotangent lifts:

We turn to Hamiltonian mechanics. Following the discussion in Section 2.1.3, we say: given a Hamilton system \((M, \omega, H)\) with \((M, \omega)\) a symplectic manifold and \(H : M \rightarrow \mathbb{R}\), a Hamiltonian group of symmetries is a Lie group \(G\) acting on \(M\) such that each \(\Phi_g : M \rightarrow M\) preserves both \(\omega\) and \(H\). Then the simplest possible examples are spatial translations and-or rotations acting on the free particle. The details of these examples, (vi) and (vii) below, will be clearer if we first develop some general theory.

This theory will illustrate the interaction between the left-right contrast for actions, and the tangent-cotangent contrast for bundles. Besides, both the general theory and the examples' details will carry over straightforwardly, i.e. component by component, to the case of \(N\) particles interacting by Newtonian gravity, discussed in Section 2.3.2: the action defined on a single particle is just repeated for each of the \(N\) particles.

So we will take \(M := (\mathbb{R}^3) \times (\mathbb{R}^3)^*\), \(\omega := dq^i \wedge dp^i\), \(H := p^2 / 2m\). In the first place, both translations (by \(x \in \mathbb{R}^3\)) and rotations (by \(A \in SO(3)\)) act on the configuration space \(Q = \mathbb{R}^3\). We have actions of \(\mathbb{R}^3\) and \(SO(3)\) on \(\mathbb{R}^3\) by

\[
\Phi_x(q) = q + x \quad ; \quad \Phi_A(q) = Aq .
\]

But these actions lift to the cotangent bundle \(T^*Q = (\mathbb{R}^3) \times (\mathbb{R}^3)^* \cong \mathbb{R}^6\); (as mentioned in Section 2.3.2). The lift of these actions is defined using a result that does not use the notion of an action. Namely:

Any diffeomorphism \(f : Q_1 \rightarrow Q_2\) induces a cotangent lift \(T^*f : T^*Q_2 \rightarrow T^*Q_1\) (i.e. in the opposite direction) which is symplectic, i.e. maps the canonical one-form, and so symplectic form, on \(T^*Q_2\) to that of \(T^*Q_1\).

To define the lift of an action, it is worth going into detail about the definition of \(T^*f\). (But I will not prove the result just stated; for details, cf. [Marsden and Ratiu, 1999, Section 6.3].)

The idea is that \(T^*f\) is to be the "pointwise adjoint" of the tangent map \(Tf : TQ_1 \rightarrow TQ_2\) (eq. 29). That is: we define \(T^*f\) in terms of the contraction of its value, for an arbitrary argument \(\alpha \in T^*_qQ_2\), with an arbitrary tangent vector \(v \in T_{f^{-1}(q_2)}Q_1\). (Here it will be harmless to (follow many presentations and) conflate a point in \(T^*Q_2\), i.e. strictly speaking a pair \((q_2, \alpha), q_2 \in Q_2, \alpha \in T^*_qQ_2\), with its form \(\alpha\). And similarly it will be harmless to conflate a point \((q_1, v)\) in \(TQ_1\), with its vector \(v \in T_qQ_1\).)

We recall that any finite-dimensional vector space is naturally, i.e. basis-independently, isomorphic to its double dual: \((V^*)^* \cong V\); and we will use angle brackets \(< ; >\) for the natural pairing between \(V\) and \(V^*\). So we define \(T^*f : T^*Q_2 \rightarrow T^*Q_1\) by requiring:
(121) \(< (T^*f)(\alpha); v > := < \alpha; (Tf)(v) >, \ \forall \ \alpha \in T^*_{q_2}Q_2, \ v \in T_{f^{-1}(q_2)}Q_1. \)

NB: Because \(T^*f \) "goes in the opposite direction", the composition of lift with function-composition involves a reversal of the order. That is: if \(Q_1 = Q_2 \equiv Q \) and \(f, g \) are two diffeomorphisms of \(Q \), then

(122) \(T^*(f \circ g) = T^*g \circ T^*f. \)

With this definition of \(T^*f \), a left action \(\Phi \) of \(G \) on the manifold \(Q \) induces for each \(g \in G \) the cotangent lift of \(\Phi_g : Q \rightarrow Q \). That is: we have the map

(123) \(T^*\Phi_g \equiv T^*(\Phi_g) : T^*Q \rightarrow T^*Q, \ \text{with} \ \alpha \in T^*_qQ \rightarrow (T^*\Phi_g)(\alpha) \in T_{g^{-1}q}^*Q. \)

Now consider the map assigning to each \(g \in G, T^*\Phi_g: \)

(124) \(g \in G \mapsto T^*\Phi_g : T^*Q \rightarrow T^*Q. \)

To check that this is indeed an action of \(G \) on \(T^*Q \), we first check that since \(\Phi_e = id_Q, T\Phi_e : TQ \rightarrow TQ \) is \(id_{TQ} \) and \(T^*(\Phi_e) \) is \(id_{T^*Q} \). But beware: eq. 122 yields

(125) \(T^*\Phi_{gh} = T^*(\Phi_g \circ \Phi_h) = T^*\Phi_h \circ T^*\Phi_g, \)

so that eq. 124 defines a right action.

But here we recall that any left action defines a right action by using the inverse; cf. eq. 117. Combining this with the idea of the cotangent lift of an action on \(Q \), we get:

The left action \(\Phi \) on \(Q \) defines, not only the right action eq. 124 on \(T^*Q \), but also a left action on \(T^*Q \), viz. by

(126) \(g \in G \mapsto \Psi_g := T^*(\Phi_{g^{-1}}) : T^*Q \rightarrow T^*Q. \)

For since \((gh)^{-1} = h^{-1}g^{-1}, \)

(127) \(\Psi_{gh} = T^*(\Phi_{(gh)^{-1}}) = T^*(\Phi_{h^{-1}g^{-1}}) = T^*(\Phi_{h^{-1}} \circ \Phi_{g^{-1}}) = T^*\Phi_{g^{-1}} \circ T^*\Phi_{h^{-1}} \equiv \Psi_g \circ \Psi_h. \)

In short, the two reversals of order cancel out. This sort of left-right flip will recur in some important contexts in the following, in particular in Sections 6.5 and 7.

(3): Mechanical examples:

So much by way of generalities. Now we apply them to translations and rotations of a free particle, to rotations of a pivoted rigid body, and to \(N \) point-particles.

(vi): Let the translation group \(G = (\mathbb{R}^3, +) \) act on the free particle's configuration space \(Q = \mathbb{R}^3 \) by

(128) \(\Phi_x(q) = q + x. \)
Since G is abelian, the distinction between left and right actions of G collapses. (And if we identify G with Q, this is left=right translation by \mathbb{R}^3 on itself, i.e. example (iv) again: and so transitive and free.) But of course the lifted actions we have defined, “with g” and “with g^{-1}”, eq. 124 and 126 respectively, remain distinct actions.

Then, writing $\alpha = (q, p) \in T_q^*Q$, and using the fact that $T\Phi_x(q - x, \dot{q}) = (q, \dot{q})$, we see that eq. 121 implies that: first,

\begin{equation}
T^*(\Phi_x)(q, p) \in T_{q-x}^*Q;
\end{equation}

and second, that for all $\dot{q} \in T_{q-x}Q$,

\begin{equation}
< T^*(\Phi_x)(q, p); (q - x, \dot{q}) > = < (q, p); (q, \dot{q}) > \equiv p(\dot{q}).
\end{equation}

For eq. 130 to hold for all $\dot{q} \in T_{q-x}Q$ requires that $T^*(\Phi_x)(q, p)$ does not affect p, i.e.

\begin{equation}
T^*(\Phi_x)(q, p) = (q - x, p).
\end{equation}

So this is the lifted action “with g”, corresponding to eq. 124. Similarly, the lifted action “with g^{-1}”, corresponding to eq. 126, is: $\Psi_x(q, p) := T^*(\Phi_{-x})(q, p) = (q + x, p)$.

One readily checks that these lifted actions preserve both $\omega = dq^i \wedge dp^i$ (an exercise in manipulating the exterior derivative) and $H := p^2/2m$. So we have a Hamiltonian symmetry group. The action is not transitive: the orbits are labelled by their values of $p \in (\mathbb{R}^3)^*$. But it is free.

(vii): Let $SO(3)$ act on the left on $Q = \mathbb{R}^3$ by

\begin{equation}
\Phi_A(q) = Aq.
\end{equation}

(This is example (i) again.) Let us lift this action “with g”, i.e. eq. 124, so as to get a right action on T^*Q.

As in example (vi), we write $\alpha = (q, p) \in T_q^*Q$. Using the fact that $T\Phi_A(q, \dot{q}) = (Aq, A\dot{q})$, eq. 121 then implies that: first,

\begin{equation}
T^*(\Phi_A)(q, p) \in T_{A^{-1}q}^*Q;
\end{equation}

and second, that for all $\dot{q} \in T_{A^{-1}q}Q$,

\begin{equation}
< T^*(\Phi_A)(q, p); (A^{-1}q, \dot{q}) > = < (q, p); (q, A\dot{q}) > \equiv p(A\dot{q}) \equiv p_1 A^i_j q^j.
\end{equation}

For eq. 134 to hold for all $\dot{q} \in T_{A^{-1}q}Q$ requires that

\begin{equation}
T^*(\Phi_A)(q, p) = (A^{-1}q, pA),
\end{equation}

where pA is a row-vector. Or if one thinks of the p components as a column vector, it requires:
(136) \(T^*(\Phi_A)(q,p) = (A^{-1}q, \tilde{A}p) = (A^{-1}q, A^{-1}p) \),

where \(\tilde{\cdot} \) represents the transpose of a matrix, and the last equation holds because \(A \) is an orthogonal matrix.

So this is the lifted action "with \(q \)", corresponding to eq. 124. Similarly, the lifted action "with \(g^{-1} \)" corresponding to eq. 126, is: \(\Psi_A(q,p) := T^*(\Phi_{A^{-1}})(q,p) = (AQq, \tilde{A}p) \).

Again, one readily checks that these lifted actions preserve both \(\omega = dq^i \wedge dp^i \) (another exercise in manipulating the exterior derivative!) and \(H := p^2 / 2m \). So \(SO(3) \) is a Hamiltonian symmetry group.

Like the original action of \(SO(3) \) on \(Q \), these actions are faithful. But they are not transitive: the orbits are labelled by the radii of two spheres centred at the origins of \(\mathbb{R}^3 \) and \((\mathbb{R}^3)^* \). And they are not free: suppose \(q \) and \(p \) are parallel and on the axis of rotation of \(A \).

(viii): Now we consider the pivoted rigid body. But unlike examples (vi) and (vii), we will consider only kinematics, not dynamics: even for a free body. That is, we will say nothing about the definitions of, and invariance of, \(\omega \) and \(H \); for details of these, cf. e.g. [Abraham and Marsden, 1978, Sections 4.4 and 4.6] and the other references given in (3) of Section 2.2. We will in any case consider the dynamics of this example in more general terms (using momentum maps) in Sections 6.5.3 and 7.

We recall from the discussion at the end of Section 3.4.4 that the configuration space of the pivoted rigid body is \(SO(3) =: G \). We also saw there that the space and body representations of the angular velocity \(v = \dot{g} \in T_g G \) are given by right and left translation. Thus eq. 113 and 114 give:

\[
(137) \quad v^S \equiv \dot{g}^S := T_g R_{g^{-1}}(\dot{g}) \quad \text{and} \quad v^B \equiv \dot{g}^B := T_g L_{g^{-1}}(\dot{g}) .
\]

But we are now concerned with the cotangent lift of left (or right) translation. So let \(SO(3) \) act on itself by left translation: \(\Phi_g h = L_g h = gh \). Let us lift this action "with \(g \)”, i.e. eq. 124, to get a right action on \(T^*G \). So let \(\alpha \in T^*_z G \) and \((TL_g)(h, \dot{h}) = (gh, g\dot{h}) \). Then eq. 121 implies that: first

\[
(138) \quad (T^*L_g)(\alpha) \in T^*_{g^{-1}h}G,
\]

and second that for all \(v \in T_{g^{-1}h}G \)

\[
(139) \quad < T^*(L_g)(\alpha); v > = < \alpha; gv > .
\]

In other words, on analogy with eq. 131 and 135: for eq. 139 to hold for all \(v \in T_{g^{-1}h}G \) requires that with \(gv \in T_h G \):

\[
(140) \quad T^*(L_g)(\alpha) : v \in T_{g^{-1}h}G \mapsto \alpha(gv) .
\]

Similarly, the lifted action "with \(g^{-1} \)" corresponding to eq. 126, i.e. the left action on \(T^*G \), is
\begin{equation}
< T^*(L_{g^{-1}})(\alpha); v > = < \alpha; g^{-1}v > , \forall \alpha \in T^*_h G, v \in T_{gh} G
\end{equation}

We will continue this example in Section 4.6, after developing more of the theory of Lie group actions.

Finally, let us sketch another mechanical example: the case of \(N \) particles with configuration space \(Q := \mathbb{R}^{3N} \) interacting by Newtonian gravity — discussed in Section 2.3.2. This will combine and generalize examples (vi) and (vii); and lead on to the next Sections’ discussions of orbits and quotients.

(ix): As I mentioned above (before eq. 120), the cotangent-lifted actions of translations and rotations on a single particle carry over straightforwardly to the case of \(N \) particles: the action defined on a single particle is just repeated, component by component, for each of the \(N \) particles to give an action on \(T^*Q \cong \mathbb{R}^{3N} \times (\mathbb{R}^{3N})^* \).

Furthermore, the groups of translations and rotations are subgroups of a single group, the Euclidean group \(E \). I shall not define \(E \) exactly. Here, let it suffice to say that:

(a) \(E \)'s component-wise action on the configuration space \(Q := \mathbb{R}^{3N} \) has a cotangent lift, which is of course also component by component.

(b) \(E \)'s cotangent-lifted action is not transitive, nor free; but it is faithful.

(c) If we take as the Hamiltonian function the \(H \) of eq. 25, describing the particles as interacting by Newtonian gravity, then \(E \) is a Hamiltonian symmetry group. In fact, the kinetic and potential energies are separately invariant, essentially because the particles’ interaction depends only on the inter-particle distances, not on their positions or orientations; cf. the discussion in Section 2.3.2.

A final comment about example (ix), which points towards the following Sections:

Recall that in Sections 2.3.3 and 2.3.4, we used this example as a springboard to discussing Relationist and Reductionist procedures, which quotiented the configuration space or phase space. But in order for the quotient spaces (and orbits) to be manifolds, and in particular for dimensions to add or subtract in a simple way, we needed to excise two classes of “special” points, before quotienting. These were: the class of symmetric configurations or states (i.e. those fixed by some element of \(E \)), and the class of collision configurations or states. For the quotienting of phase space advocated by Reductionism, the classes of states were \(\delta \subset T^*\mathbb{R}^{3N} \) and \(\Delta \subset T^*\mathbb{R}^{3N} \); (cf. Section 2.3.4 for definitions.)

With examples (vi) to (ix) in hand, we can now see that:

(a) \(\delta \) and \(\Delta \) are each closed under the cotangent-lifted action of \(E \) on \(T^*\mathbb{R}^{3N} \); i.e., each is a union of orbits. So \(E \) acts on \(M := T^*\mathbb{R}^{3N} - (\delta \cup \Delta) \).
(b) \(E \) acts freely on \(M \).

We will see in the sequel (especially in Sections 4.3.B and 5.5) that an action being free is one half (one conjunct) of an important sufficient condition for orbits and quotient spaces to be manifolds. The other conjunct will be the notion of an action being \textit{proper}: which we will define in Section 4.3.

4.2 Quotient structures from group actions

In finite dimensions, any orbit \(\text{Orb}(x) \) is an immersed submanifold of \(M \). This can be proved directly (Abraham and Marsden [1978; Ex. 1.6F(b), p. 51, and 4.1.22 p. 265]). But for our purposes, this is best seen as a corollary of some conditions under which quotient structures are manifolds; as follows.

The relation, \(x \cong y \) if there is a \(g \in G \) such that \(g \cdot x = y \), is an equivalence relation, with the orbits as equivalence classes. We denote the quotient space, i.e. the set of orbits, by \(M/G \) (sometimes called the \textit{orbit space}). We write the canonical projection as

\[(142) \quad \pi : M \to M/G, \quad x \mapsto \text{Orb}(x);\]

and we give \(M/G \) the quotient topology by defining \(U \subset M/G \) to be open iff \(\pi^{-1}(U) \) is open in \(M \).

Simple examples (e.g. (ii) of Section 4.1.0.1) show that this quotient topology need not be Hausdorff. However, it is easy to show that if the set

\[(143) \quad R := \{(x, \Phi_g x) \in M \times M : (g, x) \in G \times M\}\]

is a closed subset of \(M \times M \), then the quotient topology on \(M/G \) is Hausdorff.

But to ensure that \(M/G \) has a manifold structure, further conditions are required. The main one (and a much harder theorem) is:

\[R \text{ is a closed submanifold of } M \times M \text{ iff } M/G \text{ is a manifold with } \pi : M \to M/G \text{ a submersion.} \]

This theorem has two Corollaries which are important for us.

1. A map \(h : M/G \to N \), from the manifold \(M/G \), for which \(\pi : M \to M/G \) is a submersion, to the manifold \(N \), is smooth iff \(h \circ \pi : M \to N \) is smooth.

This corollary has a useful implication, called \textit{passage to the quotients}, about the notion of \textit{equivariance}—which will be important in symplectic reduction.

A smooth map \(f : M \to N \) is called \textit{equivariant} if it respects the action of a Lie group \(G \) on the manifolds. That is: Let \(G \) act on \(M \) and \(N \) by \(\Phi_g : M \to M \) and \(\Psi_g : N \to N \) respectively. \(f : M \to N \) is called equivariant with respect to these actions if for all \(g \in G \)

\[(144) \quad f \circ \Phi_g = \Psi_g \circ f. \]
That is, \(f \) is equivariant iff for all \(g \), the following diagram commutes:

\[
\begin{array}{c}
M \\
\downarrow \phi_g \quad \downarrow \psi_g \\
\stackrel{f}{\longrightarrow} \quad \stackrel{f}{\longrightarrow} \\
N
\end{array}
\]

Equivariance immediately implies that \(f \) naturally induces a map, \(\hat{f} \) say, on the quotients. That is: the map

\[
\hat{f} : \text{Orb}(x) \in M/G \mapsto \text{Orb}(f(x)) \in N/G
\]

is well-defined, i.e. independent of the chosen representative \(x \) for the orbit.

Applying the corollary we have: If \(f : M \to N \) is equivariant, and the quotients \(M/G \) and \(M/N \) are manifolds with the canonical projections both submersions, then \(f \) being smooth implies that \(\hat{f} \) is smooth. This is called passage to the quotients.

(2) Let \(H \) be a closed subgroup of the Lie group \(G \). (By (2) of Section 3.4.3, this is equivalent to \(H \) being a subgroup that is a submanifold of \(G \).) Let \(H \) act on \(G \) by left translation: \((h, g) \in H \times G \mapsto hg \in G\), so that the orbits are the right cosets \(Hg \). Then \(G/H \) is a manifold and \(\pi : G \to G/H \) is a submersion.

4.3 Proper actions

By adding to Section 4.2's main theorem (i.e., \(R \) is a closed submanifold of \(M \times M \) iff \(M/G \) is a manifold with \(\pi : M \to M/G \) a submersion), the notion of a proper action we can give useful sufficient conditions for:

(A): orbits to be submanifolds;
(B): \(M/G \) to be a manifold.

An action \(\Phi : G \times M \to M \) is called proper if the map

\[
\hat{\Phi} : (g, x) \in G \times M \mapsto (x, \Phi(g, x)) \in M \times M
\]

is proper. By this we mean that if \(\{x_n\} \) is a convergent sequence in \(M \), and \(\{\Phi_{g_n}(x_n)\} \) is a convergent sequence in \(M \), then \(\{g_n\} \) has a convergent subsequence in \(G \). In finite dimensions, this means that compact sets have compact inverse images; i.e. if \(K \subset M \times M \) is compact, then \(\hat{\Phi}^{-1}(K) \) is compact.

If \(G \) is compact, this condition is automatically satisfied. Also, the action of a group on itself by left (or by right) translation (Example (iv) of Section 4.1.0.1) is always proper. Furthermore, the cotangent lift of left (or right) translation ((2) and Example (viii) of Section 4.1.0.1) is always proper. We shall not prove this, but it will be important in the sequel.
4.3.0.1 Isotropy groups; orbits as manifolds For \(x \in M \) the isotropy (or stabilizer or symmetry) group of \(\Phi \) at \(x \) is

\[
(148) \quad G_x := \{ g \in G : \Phi_g(x) = \Phi(g, x) = x \} \subset G.
\]

(\text{So an action is free iff for all } x \in M, \ G_x = \{e\}.)

So if we define

\[
(149) \quad \Phi^x : G \to M : \Phi^x(g) := \Phi(g, x)
\]

we have: \(G_x = (\Phi^x)^{-1}(x) \). (The notation \(\Phi^x \) is a "cousin" of the notation \(\Phi_g \) defined in eq. 116.)

So since \(\Phi^x \) is continuous, \(G_x \) is a closed subgroup of \(G \). So, by the result in (2) of Section 3.4.3 (i.e. the result before eq. 97), \(G_x \) is a submanifold (as well as Lie subgroup) of \(G \). And if the action is proper, \(G_x \) is compact.

Furthermore, the fact that for all \(h \in G_x \) we have \(\Phi^x(gh) = \Phi_g \circ \Phi_h(x) = \Phi_g(x) \), implies that \(\Phi^x \) naturally induces a map

\[
(150) \quad \tilde{\Phi}^x : [g] = gG_x \in G/G_x \mapsto \Phi_g x \in \text{Orb}(x) \subset M.
\]

That is, this map is well-defined. \(\tilde{\Phi}^x \) is injective because if \(\Phi_g x = \Phi_h x \) then \(g^{-1}h \in G_x \), so that \(gG_x = hG_x \).

It follows from Section 4.2's main theorem (i.e., \(R \) is a closed submanifold of \(M \times M \) iff \(M/G \) is a manifold with \(\pi : M \to M/G \) a submersion) that:

(a) If \(\Phi : G \times M \to M \) is an action and \(x \in M \), then \(\tilde{\Phi}^x \) defined by eq. 150 is an injective immersion.

Here we recall from Section 3.3.1 that injective immersions need not be embeddings. But:

(b) If also \(\Phi \) is proper, the orbit \(\text{Orb}(x) \) is a closed submanifold of \(M \) and \(\tilde{\Phi}^x \) is a diffeomorphism. In other words: the manifold structure of \(\text{Orb}(x) \) is given by the bijective map \([g] \in G/G_x \mapsto g \cdot x \in \text{Orb}(x)\) being a diffeomorphism.

Examples:
(We use the numbering of corresponding examples in Section 4.1.0.1):

(i) \(G = SO(3) \) acts on \(M = \mathbb{R}^3 \) by \((A, x) \mapsto Ax \). Since \(\text{Orb}(x) \) is a sphere centred at the origin of radius \(\|x\|, M/G \cong \mathbb{R}^+ \) which is not a manifold. But results (a) and (b) are illustrated: the isotropy group \(G_x \) at \(x \) is the group of rotations with \(x \) on the axis; the action is proper (for \(G \) is compact); the orbit \(\text{Orb}(x) \) is a closed manifold of \(M \); and the isotropy group’s cosets \([g] \in G/G_x \) are mapped diffeomorphically by \(\tilde{\Phi}^x \) to points on the sphere \(\text{Orb}(x) \).

(iii) Let \(X \) be the constant vector field \(\partial_x \) on \(M = \mathbb{R}^3 \). \(X \) is complete. The action of \(\mathbb{R} \) on \(M \) has as orbit through the point \(x = (x, y, z) \in \mathbb{R}^3 \), the line \(y = \text{constant}, z = \text{constant} \). The action is free, and therefore faithful and
the isotropy groups are trivial. So \(G/G_x \cong G\). The action is proper. Again results (a) and (b) are illustrated: the orbits \(\text{Orb}(x)\) are closed submanifolds of \(M\), viz. copies of the real line \(\mathbb{R} = G \equiv G/G_x\) that are diffeomorphic to \(\mathbb{R}\) by \(\Phi^x\).

4.3.0.2 A sufficient condition for the orbit space \(M/G\) to be a manifold

With result (b) from the end of Section 4.3.0.1, we can prove that:

If \(\Phi : G \times M \to M\) is a proper free action, then the orbit space \(M/G\) is a manifold with \(\pi : M \to M/G\) a submersion.

Examples: (again using the numbering in Section 4.1.0.1):

(i) \(G = SO(3)\) acts on \(M = \mathbb{R}^3\) by \((A, x) \mapsto Ax\). Since \(\text{Orb}(x)\) is a sphere centred at the origin of radius \(\| x \|\), \(M/G \cong \mathbb{R}^+\): which is not a manifold, and indeed the action is not free.

(iii) Let \(X\) be the constant vector field \(\partial_x\) on \(M = \mathbb{R}^3\). \(X\) is complete, and the action of \(\mathbb{R}\) on \(M\) has as orbits the lines \(y = \text{constant}, z = \text{constant}\). The action is faithful, free and proper, so that the orbit space \(M/G\) is a manifold: \(M/G \cong \mathbb{R}^2\).

(iv) Left (or right) translation is obviously a free action of a group \(G\) on itself, and we noted above that it is proper. But since it is transitive, the orbit space \(G/G\) is the trivial 0-dimensional manifold (the singleton set of \(G\)).

(viii) The cotangent lift of left (or right) translation by \(SO(3)\), or more generally, by a Lie group \(G\). This action is proper (noted after eq. 147), and obviously free.

(ix) The Euclidean group \(E\) acts freely on \(M := T^*\mathbb{R}^N - (\delta \cup \Delta)\). This action is also proper: a (harder!) exercise for the reader.

4.4 Infinitesimal generators of actions

We now connect this Subsection's topic, group actions, with the Lie algebra of the Lie group concerned, i.e. with the topic of Section 3.4, especially 3.4.2.

Let \(\Phi : G \times M \to M\) be a (left) action by the Lie group \(G\) on a manifold \(M\). Then each \(\xi \in \mathfrak{g}\) defines an action of \(\mathbb{R}\) on \(M\), which we write as \(\Phi^\xi\), in the following way.

We can think either in terms of exponentiation of \(\xi\)'s corresponding left-invariant vector field \(X_\xi\) (cf. eq. 36 and 75); or in terms of of exponentiating \(\xi\) itself (cf. eq. 78 and 79):

\[(151) \quad \Phi^\xi : \mathbb{R} \times M \to M : \Phi^\xi(\tau, x) := \Phi(\exp(\tau X_\xi), x) \equiv \Phi(\exp(\tau \xi), x)\]
That is, in terms of our subscript notation for the original action Φ (cf. eq. 116):
$\Phi_{\exp(\tau X_\xi)} \equiv \Phi_{\exp(\tau \xi)} : M \to M$ is a flow on M.

That the flow is complete, i.e. that an action of all of \mathbb{R} is defined, follows from (2) Exponentiation again of Section 3.4.2, especially after eq. 76. Cf. also example (iii) of Section 4.1.

We say that the corresponding vector field on M, written ξ_M, i.e. the vector field defined at $x \in M$ by

\begin{equation}
(152) \quad \xi_M(x) := \frac{d}{d\tau} \big|_{\tau=0} \Phi_{\exp(\tau X_\xi)}(x) \equiv \frac{d}{d\tau} \big|_{\tau=0} \Phi_{\exp(\tau \xi)}(x)
\end{equation}

is the infinitesimal generator of the action corresponding to ξ.

In terms of the map Φ^x defined in eq. 149, we have that for all $\xi \in g$

\begin{equation}
(153) \quad \xi_M(x) = (T_e \Phi^x)(\xi).
\end{equation}

So NB: the words ‘infinitesimal generator’ are used in different, though related, ways. In Remark (2) at the end of Section 3.4.2, a vector field on the group G, or an element $\xi \in g$, was called an ‘infinitesimal generator’. Here the infinitesimal generator is a vector field on the action-space M. Similarly, beware the notation: ξ_M is a vector field on M, while X_ξ is a vector field on G.

As an example, we again take the rotation group $SO(3)$ acting on \mathbb{R}^3: $(A, x) \in SO(3) \times \mathbb{R} \mapsto Ax$. One readily checks that with $\omega \in \mathbb{R}^3$, so that $\Theta(\omega) \in so(3)$, the infinitesimal generator of the action corresponding to $\xi \equiv \Theta(\omega)$ is the vector field on \mathbb{R}^3

\begin{equation}
(154) \quad \xi_{\mathbb{R}^3}(x) \equiv (\Theta(\omega))_{\mathbb{R}^3}(x) = \omega \wedge x.
\end{equation}

In particular, the vector field on \mathbb{R}^3 representing infinitesimal anti-clockwise rotation about the x-axis is $e_1 := y \partial_z - z \partial_y$ (cf. eq. 107). Similarly, the infinitesimal generators of the action of rotating about the y axis and about the z-axis are, respectively: $e_2 := z \partial_x - x \partial_z$ and $e_3 := x \partial_y - y \partial_x$. The Lie brackets are given by:

\begin{equation}
(155) \quad [e_1, e_2] = -e_3 \quad [e_3, e_1] = -e_2 \quad [e_2, e_3] = -e_1.
\end{equation}

The minus signs here are a general feature of the transition $\xi \in g \mapsto \xi_M \in \mathcal{X}(M)$; cf. result (4) below.

As another example, we take the infinitesimal generator of left and right translation on the group G. (We will need this example for our theorems about symplectic reduction; cf. Sections 6.5.3, 7.2 and 7.3.3.) NB: There will be a “left-right flip” here, which continues the discussion in (4) of Section 3.4.2.2, comparing using left-invariant vs. right-invariant vector fields to define the Lie algebra of a Lie group.

For left translation $\Phi(g, h) \equiv L_g h := gh$, we have for all $\xi \in g$

\begin{equation}
(156) \quad \Phi^\xi(\tau, h) = (\exp \tau \xi) h = R_h(\exp \tau \xi);
\end{equation}

so that the infinitesimal generator is

\begin{equation}
(157) \quad \xi_G(g) = (T_e R_g)\xi.
\end{equation}
So ξ_G is a right-invariant vector field; and unless G is abelian, it is not equal to the left-invariant vector field $g \mapsto X_\xi(g) := (T_eL_g)\xi$; cf. eq. 68 and 70.

Similarly, for right translation (which is a right action, cf. (1) (iv) in Section 4.1.0.1), the infinitesimal generator is the left-invariant vector field

$$\text{(158)} \quad g \mapsto X_\xi(g) := (T_eL_g)\xi.$$

Three straightforward results connect the notion of an infinitesimal generator with previous ideas. I will not give proofs, but will present them in the order of the previous ideas.

1. Recall the correspondence between Lie subgroups and Lie subalgebras, at the end of Section 3.4.3; eq. 97. This implies that the Lie algebra of the isotropy group $G_x, x \in M$ (called the isotropy algebra), is

$$\text{(159)} \quad g_x = \{\xi \in g : \xi_M(x) = 0\}.$$

2. Infinitesimal generators ξ_M give a differential version of the notion of equivariance, discussed in (1) of Section 4.2: a version called infinitesimal equivariance.

In eq. 144, we set $g = \exp(\tau\xi)$ and differentiate with respect to τ at $\tau = 0$. This gives $Tf \circ \xi_M = \xi_N \circ f$. That is: ξ_M and ξ_N are f-related. In terms of the pullback f^* of f, we have: $f^*\xi_N = \xi_M$.

3. Suppose the action Φ is proper, so that by result (b) at the end of Section 4.3.0.1: the orbit $\text{Orb}(x)$ of any point $x \in M$ is a (closed) submanifold of M. Then the tangent space to $\text{Orb}(x)$ at a point y in $\text{Orb}(x)$ is

$$\text{(160)} \quad T\text{Orb}(x)_y = \{\xi_M(y) : \xi \in g\}.$$

Finally, there is a fourth result relating infinitesimal generators ξ_M to previous ideas; as follows. (But it is less straightforward than the previous (1)–(3): its proof requires the notion of the adjoint representation, described in the next Section.)

4. The infinitesimal generator map $\xi \mapsto \xi_M$ establishes a Lie algebra antihomomorphism between g and the Lie algebra \mathcal{X}_M of all vector fields on M. (Contrast the Lie algebra isomorphism between g and the set $\mathcal{X}_L(G)$ of left-invariant vector fields on the group G; Section 3.4.2 especially eq. 70.) That is:

$$\text{(161)} \quad (a\xi + b\eta)_M = a\xi_M + b\eta_M \quad ; \quad [\xi_M, \eta_M] = -[\xi, \eta]_M \quad \forall \xi, \eta \in g, \text{ and } a, b \in \mathbb{R}.$$

Incidentally, returning to (4) of Section 3.4.2.2, which considered defining the Lie algebra of a Lie group in terms of right-invariant vector fields, instead of left-invariant vector fields: had we done so, the corresponding map $\xi \mapsto \xi_M$ would have been a Lie algebra homomorphism.
4.5 The adjoint and co-adjoint representations

A leading idea of later Sections (especially Sections 5.4, 6.4 and 7) will be that there is a natural symplectic structure in the orbits of a certain natural representation of any Lie group: namely a representation of the group on the dual of its own Lie algebra, called the co-adjoint representation. Here we introduce this representation. But we lead up to it by first describing the adjoint representation of a Lie group on its own Lie algebra. Even apart from symplectic structure (and so applications in mechanics), both representations illustrate the ideas of previous Subsections. I will again use $SO(3)$ and $\mathfrak{so}(3)$ as examples.

4.5.1 The adjoint representation

We proceed in four stages. We first define the representation, then discuss infinitesimal generators, then discuss matrix Lie groups, and finally discuss the rotation group.

(1): The representation defined:

Let G be a Lie group and \mathfrak{g} its Lie algebra, i.e. the tangent space to the group at the identity $e \in G$, equipped with the commutator bracket operation $[,]$.

Recall (e.g. from the beginning of Section 3.4.2) that G acts on itself by left and right translation: each $g \in G$ defines diffeomorphisms of G onto itself by

\[(162) \quad L_g : h \in G \mapsto gh \in G \quad ; \quad R_g : h \in G \mapsto hg \in G.\]

The induced maps of the tangent spaces are, for each $h \in G$:

\[(163) \quad L_{g*} : TG_h \to TG_{gh} \quad \text{and} \quad R_{g*} : TG_h \to TG_{hg}.\]

The diffeomorphism $K_g := R_{g^{-1}} \circ L_g$ (i.e. conjugation by g, $K_g : h \mapsto ghg^{-1}$) is an inner automorphism of G. (Cf. example (v) at the end of Section 4.1.) Its derivative at the identity $e \in G$ is a linear map from the Lie algebra \mathfrak{g} to itself, which is denoted:

\[(164) \quad A_d_g := (R_{g^{-1}} \circ L_g)_{*e} : \mathfrak{g} \to \mathfrak{g}.\]

So letting g vary through G, the map $A_d : g \mapsto A_d_g$ assigns to each g a member of $\text{End}(\mathfrak{g})$, the space of linear maps on (endomorphisms of) \mathfrak{g}. The chain rule implies that $A_d_{gh} = A_d_g A_d_h$. So

\[(165) \quad A_d : g \mapsto A_d_g\]

is a left action, a representation, of G on \mathfrak{g}: $G \times \mathfrak{g} \to \mathfrak{g}$. It is called the adjoint representation.

Three useful results about A_d follow from our results (1) and (3) in Section 3.4.2.2 (cf. eq. 80: Homomorphisms respect exponentiation):

[1] If $\xi \in \mathfrak{g}$ generates the one-parameter subgroup $H = \{\exp(\tau X_\xi) : \tau \in \mathbb{R}\}$, then $A_d(\xi)$ generates the conjugate subgroup $K_g(H) = gHg^{-1}$.

\[\exp(\operatorname{Ad}_g(\xi)) = K_g(\exp\xi) := g(\exp\xi)g^{-1}. \]

Incidentally, eq. 166 has a many-parameter generalization. Let \(H \) and \(H' \) be two connected \(r \)-dimensional Lie subgroups of the Lie group \(G \), with corresponding Lie subalgebras \(\mathfrak{h} \) and \(\mathfrak{h}' \) of the Lie algebra \(\mathfrak{g} = \mathfrak{g}(G) \). Then \(H \) and \(H' \) are conjugate subgroups, \(H' = gHg^{-1} \), iff \(\mathfrak{h} \) and \(\mathfrak{h}' \) are corresponding conjugate subalgebras, i.e. \(\mathfrak{h}' = \operatorname{Ad}_g(\mathfrak{h}) \).

[2] Eq. 166 also implies another result which will be needed for a crucial result about symplectic reduction, in Section 6.5.2. (The many-parameter generalization just mentioned will not be needed.) It relates \(\operatorname{Ad} \) to the pullback of an arbitrary action \(\Phi \).

Thus let \(\Phi \) be a left action of \(G \) on \(M \). Then for every \(g \in G \) and \(\xi \in \mathfrak{g} \)

\[(\operatorname{Ad}_g\xi)_M = \Phi^{*}_{g^{-1}}\xi_M, \]

where \(\Phi^{*} \) indicates pullback of the vector field. For we have:

\[(\operatorname{Ad}_g\xi)_M(x) := \frac{d}{dt} \big|_{t=0} \Phi(\exp(\tau\operatorname{Ad}_g\xi), x) \]

\[= \frac{d}{dt} \big|_{t=0} \Phi(g(\exp \tau\xi)g^{-1}, x) \quad \text{by eq. 166} \]

\[= \frac{d}{dt} \big|_{t=0} (\Phi \circ \Phi_{\exp \tau \xi} \circ \Phi_{g^{-1}}(x)) \]

\[= (\Phi^{*}_{g^{-1}}\xi_M)(x) \quad \text{by the chain rule and eq. 152} \]

\[= (\Phi^{*}_{g^{-1}}\xi_M)(x) \quad \text{by the definition of pullback.} \]

Not only is this result needed later. Also, incidentally: it is the main part of the proof of result (4) at the end of Section 4.4, that \(\xi \mapsto \xi_M \) is a Lie algebra anti-homomorphism.

[3] \(\operatorname{Ad}_g \) is an algebra homomorphism, i.e.

\[\operatorname{Ad}_g[\xi, \eta] = [\operatorname{Ad}_g\xi, \operatorname{Ad}_g\eta], \quad \xi, \eta \in \mathfrak{g}. \]

(2): Infinitesimal generators: the map \(\operatorname{ad} \):

The map \(\operatorname{Ad} \) is differentiable. Its derivative at \(e \in G \) is a linear map from the Lie algebra \(\mathfrak{g} \) to the space of linear maps on \(\mathfrak{g} \). This map is called \(\operatorname{ad} \), and its value for argument \(\xi \in \mathfrak{g} \) is written \(\operatorname{ad}_\xi \). That is:

\[\operatorname{ad} := \operatorname{Ad}_{*e} : \mathfrak{g} \to \operatorname{End}\mathfrak{g} \quad \text{;} \quad \operatorname{ad}_\xi = \frac{d}{dt} \big|_{t=0} \operatorname{Ad}_{\exp(\tau\xi)} \]

where \(\exp(\tau\xi) \) is the one-parameter subgroup with tangent vector \(\xi \) at the identity. But if we apply the definition eq. 152 of the infinitesimal generator of an action, to the adjoint action \(\operatorname{Ad} \), we get that for each \(\xi \in \mathfrak{g} \), the generator \(\xi_g \), i.e. a vector field on \(\mathfrak{g} \), is
\[(175) \quad \xi_g : \eta \in g \mapsto \xi_g(\eta) \in g \quad \text{with} \quad \xi_g(\eta) := \left. \frac{d}{d\tau} \right|_{\tau=0} A_{\exp(\tau \xi)}(\eta). \]

Comparing eq. 174, we see that \(ad_\xi \) is just the infinitesimal generator \(\xi_g \) of the adjoint action corresponding to \(\xi \):

\[(176) \quad ad_\xi = \xi_g. \]

We now compute the infinitesimal generators of the adjoint action. It will be crucial to later developments (especially Section 5.4) that these are given by the Lie bracket in \(g \).

We begin by considering the function \(A_{\exp(\tau \xi)}(\eta) \) to be differentiated. By eq. 164, we have

\[(177) \quad A_{\exp(\tau \xi)}(\eta) = T_e(R_{\exp(-\tau \xi)} \circ L_{\exp(\tau \xi)})(\eta) \]
\[= (T_{\exp(\tau \xi)}(R_{\exp(-\tau \xi)}) \circ T_e \circ L_{\exp(\tau \xi)})(\eta) \]
\[= (T_{\exp(\tau \xi)}(R_{\exp(-\tau \xi)}) \cdot X_\eta(\exp(\tau \xi))) \]

where the second line follows by the chain rule, and the third by definition of left-invariant vector field. Writing the flow of \(X_\xi \) as \(\phi_\tau(g) = g \exp \tau \xi = R_{\exp(\tau \xi)}g \), and applying the definition of the Lie derivative (eq. 45), we then have

\[(178) \quad \xi_g(\eta) := \left. \frac{d}{d\tau} \right|_{\tau=0} A_{\exp(\tau \xi)}(\eta) = \left. \frac{d}{d\tau} \left[T_{\phi_\tau(e)} \phi_\tau^{-1} \cdot X_\eta(\phi_\tau(e)) \right] \right|_{\tau=0} \]
\[= [X_\xi, X_\eta](e) = [\xi, \eta]. \]

where the final equation is the definition eq. 73 of the Lie bracket in the Lie algebra.

So for the adjoint action, the infinitesimal generator corresponding to \(\xi \) is taking the Lie bracket: \(\eta \mapsto [\xi, \eta] \). To sum up: eq. 174 and 175 now become

\[(179) \quad ad = Ad_* : g \to \text{End} g ; \quad ad_\xi = \left. \frac{d}{d\tau} \right|_{\tau=0} A_{\exp(\tau \xi)} = \xi_g : \eta \in g \mapsto [\xi, \eta] \in g. \]

(3): Example: matrix Lie groups:

In the case where \(G \subset GL(n, \mathbb{R}) \) is a matrix Lie group with Lie algebra \(\mathfrak{g} \subset \mathfrak{gl}(n) \), these results are easy to verify. Writing \(n \times n \) matrices as \(A, B \in G \), conjugation is \(K_A(B) = ABA^{-1} \), and the adjoint map \(Ad \) is also given by conjugation

\[(180) \quad A_{\text{Ad}}(X) = AXA^{-1}, \quad A \in G, X \in \mathfrak{g}. \]

So with \(A(\tau) = \exp(\tau X) \), so that \(A(0) = I \) and \(A'(0) = X \), we have with \(Y \in \mathfrak{g} \)

\[(181) \quad \left. \frac{d}{d\tau} \right|_{\tau=0} A_{\exp(\tau X)} Y = \left. \frac{d}{d\tau} \right|_{\tau=0} [A(\tau)YA(\tau)^{-1}] \]
\[= A'(0)YA^{-1}(0) + A(0)YA^{-1'}(0). \]

But differentiating \(A(\tau)A^{-1}(\tau) = I \) yields
\begin{equation}
\frac{d}{d\tau}(A^{-1}(\tau)) = -A^{-1}(\tau)A'(\tau)A^{-1}(\tau), \quad \text{and so } A^{-1'}(0) = -A'(0) = -X
\end{equation}
so that indeed we have
\begin{equation}
\frac{d}{d\tau}|_{\tau=0} \text{Ad}_{\exp \tau X} Y = XY - YX = [X, Y].
\end{equation}

(4): Example: the rotation group:

It is worth giving details for the case of \(G = SO(3), g = so(3) \). We saw in Section 3.4.4 (eq. 107) that the three matrices
\begin{equation}
A^x = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{pmatrix}, \quad A^y = \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix}, \quad A^z = \begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\end{equation}
span \(so(3) \), and generate the one-parameter subgroups
\begin{equation}
R^x_\theta = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{pmatrix}, \quad R^y_\theta = \begin{pmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{pmatrix},
\end{equation}
\begin{equation}
R^z_\theta = \begin{pmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\end{equation}
representing anticlockwise rotation around the respective coordinate axes in the physical space \(\mathbb{R}^3 \). To calculate the adjoint action of \(R^z_\theta \) on the generator \(A^y \), we differentiate the product \(R^z_\theta R^y_\tau R^z_{-\theta} \) with respect to \(\tau \) and set \(\tau = 0 \). That is, we find
\begin{equation}
\text{Ad}_{R^z_\theta}(A^y) = R^z_\theta(A^y)R^z_{-\theta} = \begin{pmatrix}
0 & -\sin \theta & \cos \theta \\
\sin \theta & 0 & 0 \\
-\cos \theta & 0 & 0
\end{pmatrix} = \cos \theta \cdot A^y + \sin \theta \cdot A^x.
\end{equation}

We similarly find
\begin{equation}
\text{Ad}_{R^z_\theta}(A^x) = A^x, \quad \text{Ad}_{R^z_\theta}(A^z) = -\sin \theta \cdot A^y + \cos \theta \cdot A^z.
\end{equation}

So the adjoint action of the subgroup \(R^z_\theta \) representing rotations around the \(x \)-axis of physical space is given by rotations around the \(A^x \)-axis in the Lie algebra space \(so(3) \). Similarly for the other subgroups representing rotations around the \(y \) or \(z \)-axis. And so for any rotation matrix \(R \in SO(3) \), relative to given axes \(x, y, z \) for \(\mathbb{R}^3 \), its adjoint map \(\text{Ad}_R \) acting on \(so(3) \cong \mathbb{R}^3 \) has the same matrix representation relative to the induced basis \(\{ A^x, A^y, A^z \} \) of \(so(3) \). (NB: This agreement between \(SO(3) \)'s adjoint representation and its natural physical interpretation is special to \(SO(3) \): it does not hold for other matrix Lie groups.)

Finally, the infinitesimal generators of the adjoint action are given by differentiation. For example, using eq. 108, we find that
\begin{equation}
ad_{A^z}(A^y) := \frac{d}{d\theta}|_{\theta=0} \text{Ad}_{R^z_\theta} A^y = A^z;
\end{equation}
which agrees with the commutator: \(A^z = [A^x, A^y] \).
4.5.2 The co-adjoint representation

Again we proceed in stages. We first define the representation, then discuss infinitesimal generators, and then take the rotation group as an example.

(1): The representation defined:

We recall that a linear map $A : V \rightarrow W$ induces (basis-independently) a transpose (dual) map, written $A^* (or ~ \bar{A} ~ or ~ A^T)$, $A^* : W^* \rightarrow V^*$ on the dual spaces, $V^* := \{ \alpha : V \rightarrow \mathbb{R} | \alpha \text{ linear } \}$ and similarly for W^*; by

$$\forall \alpha \in W^*, \forall v \in V : \quad A^*(\alpha)(v) \equiv <A^*(\alpha), v> := \alpha(A(v)) \equiv (\alpha \circ A)(v).$$

So any representation, \mathcal{R} say, of a group G on a vector space V, $\mathcal{R} : G \rightarrow \text{End}(V)$, induces a representation \mathcal{R}^* of G on the dual space V^*, by taking the transpose. We shall call \mathcal{R}^* the dual or transpose of \mathcal{R}; it is also sometimes called a 'contra-gradient representation'. That is: for $\mathcal{R}(g) : V \rightarrow V$, we define $\mathcal{R}^*(g) : V^* \rightarrow V^*$ by

$$\mathcal{R}^*(g) : \alpha \in V^* \mapsto \mathcal{R}^*(g)(\alpha) := \alpha(\mathcal{R}(g)) \in V^*.$$

Thus the adjoint representation of G on \mathfrak{g} induces a co-adjoint representation of G on the dual \mathfrak{g}^* of its Lie algebra \mathfrak{g}, i.e. on the cotangent space to the group G at the identity, $\mathfrak{g}^* = T_e^* G$. The co-adjoint representation will play a central role in symplectic reduction (starting in Section 5.4).

So let $Ad_g^* : \mathfrak{g}^* \rightarrow \mathfrak{g}^*$ be the dual (aka: transpose) of Ad_g, defined by

$$\forall \alpha \in \mathfrak{g}^*, \xi \in \mathfrak{g} : \quad <Ad_g^*\alpha; \xi> := <\alpha; Ad_g\xi>.$$

Since $Ad : g \mapsto Ad_g$ is a left action ($Ad_{gh} = Ad_g Ad_h$), the assignment $g \mapsto Ad_g^*$ is a right action. So to define a left action, we use the inverse g^{-1}; cf. eq. 117 and 126. Namely, we define the left action

$$\quad (g, \alpha) \in \mathcal{G} \times \mathfrak{g}^* \mapsto Ad_{g^{-1}}^* \alpha \in \mathfrak{g}^*;$$

called the co-adjoint action of G on \mathfrak{g}^*. And the corresponding co-adjoint representation of G on \mathfrak{g}^* is denoted by

$$Ad^*_g : \mathcal{G} \rightarrow \text{End}(\mathfrak{g}^*), \quad Ad^*_{g^{-1}} = (T_e(R_g \circ L_{g^{-1}}))^*.$$

(2): The map ad^*; infinitesimal generators:

The map Ad^* is differentiable. Its derivative at $e \in \mathcal{G}$ is a linear map from the Lie algebra \mathfrak{g} to the space of linear maps on \mathfrak{g}^*. This map is called ad^*, and its value for argument $\xi \in \mathfrak{g}$ is written ad^*_ξ. Thus ad^*_ξ is an endomorphism of \mathfrak{g}^*, and we have

$$ad^* = Ad^*_e : \xi \in \mathfrak{g} \rightarrow ad^*_\xi \in \text{End} \mathfrak{g}^*.$$

Now recall our deduction from eq. 174 and 175 that $ad_\xi = \xi_\mathfrak{g}$, i.e. eq. 176. In the same way we here deduce an equality to the infinitesimal generator of the co-adjoint action:
(195) \(\text{ad}_{\xi}^* = \xi_g^* \).

In fact, \(\text{ad}_{\xi}^* \) is, modulo a minus sign, the adjoint of \(\text{ad}_{\xi} \), in the usual sense of the natural pairing of a vector space with its dual: as we now show. (So the notation \(\text{ad}^* \) is justified, modulo a minus sign.)

Let us compute for this action, the value of the infinitesimal generator \(\xi_{g^*} \) (a vector field on \(g^* \), induced by \(\xi \in g \)) at the point \(\alpha \in g^* \). That is, we will compute the value \(\xi_{g^*}(\alpha) \). As usual, we identify the tangent space \((Tg^*)_\alpha \) in which this value lives, with \(g^* \) itself; and similarly for \(g \). So, with \(\xi_{g^*} \) acting on \(\eta \in g \), we compute:

\[
(196) \quad < \text{ad}_{\xi}^*(\alpha); \eta > \equiv < \xi_{g^*}(\alpha); \eta > = \left(\frac{d}{d\tau} \big|_{\tau=0} A_{\text{exp} - \tau \xi}(\alpha); \eta \right)
\]

\[
(197) \quad = \frac{d}{d\tau} \big|_{\tau=0} \left< A_{\text{exp} - \tau \xi}(\alpha); \eta \right> = \frac{d}{d\tau} \big|_{\tau=0} \left< \alpha; A_{\text{exp} - \tau \xi} \eta \right>
\]

\[
(198) \quad = \left< \alpha; \frac{d}{d\tau} \big|_{\tau=0} A_{\text{exp} - \tau \xi} \eta \right> = < \alpha; -[\xi, \eta] > = - < \alpha; \text{ad}_{\xi}(\eta) > .
\]

So \(\text{ad}_{\xi}^* \), defined as the derivative of \(\text{Ad}^* \) is, up to a sign, the adjoint of \(\text{ad}_{\xi} \).

(3): Example: the rotation group:

Let us now write the elementary vector product in \(\mathbb{R}^3 \) as \(\wedge \), and identify \(\mathfrak{so}(3) \cong (\mathbb{R}^3, \wedge) \) and \(\mathfrak{so}(3)^* \cong \mathbb{R}^3^* \). And let us have the natural pairing given by the elementary euclidean inner product \(\cdot \). Then the result just obtained (now with \(\cdot \) marking the argument-place)

\[
(199) \quad < \xi_{g^*}(\alpha); \bullet > = - < \alpha; [\xi, \bullet] >
\]

becomes for \(\alpha \in \mathfrak{so}(3)^* \) and \(\xi \in \mathfrak{so}(3) \)

\[
(200) \quad \xi_{\mathfrak{so}(3)^*}(\alpha) \cdot \bullet = -\alpha \cdot (\xi \wedge \bullet).
\]

So for \(\eta \in \mathfrak{so}(3) \), we have

\[
(201) \quad < \xi_{\mathfrak{so}(3)^*}(\alpha); \eta > = \xi_{\mathfrak{so}(3)^*}(\alpha) \cdot \eta = -\alpha \cdot (\xi \wedge \eta) = -(\alpha \wedge \xi) \cdot \eta = - < \alpha \wedge \xi; \eta > .
\]

In short:

\[
(202) \quad \xi_{\mathfrak{so}(3)^*}(\alpha) = -\alpha \wedge \xi = \xi \wedge \alpha.
\]

Now since \(SO(3) \) is compact, we know that the co-adjoint action is proper; so \(\text{Orb}(\alpha) \) is a closed submanifold of \(\mathfrak{so}(3)^* \), and eq. 160 of Section 4.4 applies. So if we fix \(\alpha \), and let \(\xi \) vary through \(\mathfrak{so}(3) \cong \mathbb{R}^3 \), we get all of the tangent space \(T_\alpha \text{Orb}(\alpha) \) to the orbit passing through \(\alpha \). Then eq. 202 implies that the tangent space is the plane normal to \(\alpha \), and passing through \(\alpha \)'s end-point. Letting \(\alpha \) vary through \(\mathfrak{so}(3)^* \), we conclude that the co-adjoint orbits are the spheres centred on the origin.

In the following Sections, we will see that the orbits of the co-adjoint representation of any Lie group \(G \) have a natural symplectic structure. So the orbits are
always even-dimensional; and by considering all Lie groups and all possible orbits, we can get a series of examples of symplectic manifolds.

Besides, this fact will play a central role in our generalized formulation of Hamiltonian mechanics, and in symplectic reduction. And we will (mercifully!) get a good understanding of that role, already in Section 5.1. To prepare for that, it is worth gathering some threads about our recurrent example, \(SO(3)\); and generalizing them to other Lie groups ...

4.6 Kinematics on Lie groups

To summarize some aspects of this Section, and to make our later discussion of reduction clearer, it is worth collecting and generalizing some of our results about \(SO(3)\) and the description it provides of the rigid body. More precisely, we will now combine:

(i) the description of space and body coordinates in terms of left and right translation, at the end of Section 3.4.4;

(ii) the cotangent lift of translation (example (viii) of Section 4.1.0.1);

(iii) the adjoint and co-adjoint representations of \(SO(3)\) (as in (4) of Section 4.5.1, and (3) of Section 4.5.2.

We will also generalize: namely, we will consider (i) to (iii) for an arbitrary Lie group \(G\), not just for \(SO(3)\). (The point of doing so will become clear in (3) of Section 5.1.) This will occur already in Section 4.6.1. Then in Section 4.6.2, we will show how this material yields natural diffeomorphisms

\[
(203) \quad TG \to G \times g \quad \text{and} \quad T^*G \to G \times g^* ;
\]

(so if \(\dim G = n\), then all four manifolds are \(2n\)-dimensional). We will also see that by applying Section 4.2's notion of equivariance, we can “pass to the quotients”, and get from eq. 203, the natural diffeomorphisms

\[
(204) \quad TG/G \to g \quad \text{and} \quad T^*G/G \to g^* ;
\]

where the quotients on the left hand sides (the domains) is by the action of left translation; (to be precise: by the action of its derivative for \(TG\), and its cotangent lift for \(T^*G\)).

4.6.1 Space and body coordinates generalized to \(G\)

So let a (finite-dimensional) Lie group \(G\) act on itself by left and right translation, \(L_g\) and \(R_g\). For any \(g \in G\), we define

\[
(205) \quad \lambda_g : T_g G \to g \quad \text{by} \quad v \in T_g G \mapsto (T_e L_g)^{-1}(v) \equiv (T_g L_{g^{-1}})(v) \in g .
\]

We similarly define
\(\rho_g : v \in T_g G \mapsto (T_e R_g)^{-1}(v) \equiv (T_g R_{g^{-1}})(v) \in \mathfrak{g} \).

On analogy with the case of the pivoted rigid body (cf. eq. 113 and 114, or eq. 137), we say that \(\lambda_g \) represents \(v \in T_g G \) in body coordinates, and \(\rho_g \) represents \(v \) in space coordinates. We also speak of body and space representations. The transition from body to space coordinates is then an isomorphism of \(\mathfrak{g} \); viz. by eq. 164

\(\forall \xi \in \mathfrak{g}, \ (\rho_g \circ \lambda_g^{-1})(\xi) = \rho_g(T_e L_g(\xi)) \equiv Ad_g \xi. \)

So we can combine the \(S \) and \(B \) superscript notation of eq. 137 with Section 4.5.1's notion of the adjoint representation, and write

\(v^S = Ad_g v^B. \)

In a similar way, the cotangent lifts of left and right translation provide isomorphisms between the dual spaces \(T^*_g G, g \in G \) and \(\mathfrak{g}^* \). Thus for any \(g \in G \), we define

\(\tilde{\lambda}_g : T^*_g G \to \mathfrak{g}^* \) by \(\alpha \in T^*_g G \mapsto \alpha \circ T_e L_g \equiv (T_e L_g)^*(\alpha) \equiv (T_e^* L_g)(\alpha) \in \mathfrak{g}^*; \) and similarly

\(\tilde{\rho}_g : \alpha \in T^*_g G \mapsto \alpha \circ T_e R_g \equiv (T_e^* R_g)(\alpha) \in \mathfrak{g}^*. \)

And we again use the \(S \) and \(B \) superscript notation of eq. 137, and define for \(\alpha \in T^*_g G \)

\(\alpha^S := (T_e^* R_g)(\alpha) \equiv \tilde{\rho}_g(\alpha) \quad \text{and} \quad \alpha^B := (T_e^* L_g)(\alpha) \equiv \tilde{\lambda}_g(\alpha), \)

which are called the space (or 'spatial') and body representations, respectively, of \(\alpha \). The transition from body to space representations is now an isomorphism of \(\mathfrak{g}^* \); viz.

\(\forall \alpha \in \mathfrak{g}^*, \ (\tilde{\rho}_g \circ \tilde{\lambda}_g^{-1})(\alpha) = Ad^*_g(\alpha), \quad \text{i.e.} \quad \alpha^S = Ad^*_{g^{-1}}(\alpha^B). \)

\subsection*{4.6.2 Passage to the quotients}

For later purposes, we need to develop the details of how the element \(g \in G \) "carries along throughout" in eq. 205 to 212. More precisely, we have two isomorphisms:

\(TG \cong G \times \mathfrak{g} \) and \(T^* G \cong G \times \mathfrak{g}^*. \)

These are isomorphisms of vector bundles; but we shall not develop the language of fibre bundles. What matters for us is that once we exhibit these isomorphisms, we will see that we have equivariant maps relating two group actions, in the sense of eq. 144 and 145. And this will mean that we can pass to the quotients to infer that \(TG/G \) is diffeomorphic to \(\mathfrak{g} \), and correspondingly that \(T^* G/G \) is diffeomorphic to \(\mathfrak{g}^*. \)
This last diffeomorphism will form the first part of Section 7’s main theorem, the Lie-Poisson reduction theorem, which says that T^*G/G and g^* are isomorphic as Poisson manifolds. In Section 5 onwards, we will develop the notion of a Poisson manifold, and the significance of this isomorphism for the reduction of mechanical problems.

I should note here that there is a parallel story about the first diffeomorphism, i.e. about TG/G being diffeomorphic to g. It forms the first part of another reduction theorem, which is the Lagrangian analogue of Section 7’s Lie-Poisson theorem. But since this Chapter has adopted the Hamiltonian approach, I will not go into details. They can be found in Marsden and Ratiu [1999, Sections 1.2, 13.5, 13.6], under the title ‘Euler-Poincaré reduction’.

Thus corresponding to eq. 205, we define the isomorphism

$$(214) \quad \lambda : TG \to G \times g \quad \text{by} \quad \lambda(v) := (g, (T_eL_g)^{-1}(v)) \equiv (g, (T_gL_{g^{-1}})(v))$$

with $v \in T_gG$, i.e. $g = \pi_G(v)$ and $\pi_G : TG \to G$ the canonical projection. (As mentioned concerning eq. 121, it is harmless to (follow many presentations and) conflate a point in TG, i.e. strictly speaking a pair $(g,v), g \in G, v \in T_gG$, with its vector v.) And corresponding to eq. 206, we define the isomorphism

$$(215) \quad \rho : TG \to G \times g \quad \text{by} \quad \rho(v) := (g, (T_eR_g)^{-1}(v)) \equiv (g, (T_gR_{g^{-1}})(v)) .$$

The transition from body to space representations given by eq. 207 now implies

$$(216) \quad (\rho \circ \lambda^{-1})(g, \xi) = \rho(g, (T_eL_g)(\xi)) = (g, (T_eR_g)^{-1} \circ T_eL_g(\xi)) = (g, Ad_g \xi).$$

In a similar way, the cotangent bundle T^*G is isomorphic in two ways to $G \times g^*$: namely by

$$(217) \quad \bar{\lambda}(\alpha) := (g, \alpha \circ T_eL_g) \equiv (g, (T_e^*L_g)\alpha) \in G \times g^* ,$$

and by

$$(218) \quad \bar{\rho}(\alpha) := (g, \alpha \circ T_eR_g) \equiv (g, (T_e^*R_g)\alpha) \in G \times g^*$$

where $\alpha \in T^*_gG$, i.e. $g = \pi^*_G(\alpha)$ with $\pi^*_G : T^*G \to G$ the canonical projection. (Again, we harmlessly conflate a point (g, α) in T^*G with its form $\alpha \in T^*_gG$.)

Let us now compute in the body representation, the actions of: (i) the (derivative of the) left translation map, TL_g, and (ii) the corresponding cotangent lift T^*L_g. This will show that λ and $\bar{\lambda}$ are equivariant maps for certain group actions.

(i) We compute:

$$(219) \quad (\lambda \circ TL_g \circ \lambda^{-1})(h, \xi) = (\lambda \circ TL_g)(h, TL_h(\xi)) =$$

$$= \lambda(gh, (TL_g \circ TL_h)(\xi)) =$$

$$= (gh, ((TL_{gh})^{-1} \circ TL_{gh})(\xi)) = (gh, \xi).$$

So in the body representation, left translation does not act on the vector component. (That is intuitive, in that the vector ξ is “attached to the
body" and so should not vary relative to coordinates fixed in it.) Eq. 219 means that \(\lambda \) is an equivariant map relating left translation \(TL_g \) on \(TG \) to the \(G \)-action on \(G \times g \) given just by left translation on the first component:

\[
\Phi_g((h, \xi)) \equiv g \cdot (h, \xi) := (gh, \xi).
\]

Equivariance means that \(\lambda \) induces a map \(\hat{\lambda} \) on the quotients. That is: as in eq. 146, the map

\[
\hat{\lambda} : TG/G \rightarrow (G \times g)/G
\]

defined as mapping, for any \(g \), the orbit of any \(v \in T_gG \) to the orbit of \(\lambda(v) \), i.e.

\[
\hat{\lambda} : \text{Orb}(v) \equiv \{ u \in TG \mid T_gL_h(v) = u, \text{ some } h \in G \} \mapsto \text{Orb}(\lambda(v))
\]

\[
\equiv \{ (hg, (T_eL_g)^{-1}(v)) \mid \text{some } h \in G \}
\]

is well-defined, i.e. independent of the chosen representative \(v \) of the orbit.

Besides, since the canonical projections, \(v \in TG \mapsto \text{Orb}(v) \in TG/G \) and \((g, \xi) \mapsto \text{Orb}((g, \xi)) \in (G \times g)/G \), are submersions, we can apply result (1) of Section 4.2 and conclude that \(\hat{\lambda} \) is smooth.

Finally, we notice that since the action of left translation is transitive, we can identify each orbit of the \(\Phi \) of eq. 220 with its right component \(\xi \in g \); and so we can identify the set of orbits \((G \times g)/G \) with \(g \).

To sum up: we have shown that \(TG/G \) and \((G \times g)/G \), i.e. in effect \(g \), are diffeomorphic:

\[
\hat{\lambda} : TG/G \rightarrow (G \times g)/G \equiv g.
\]

(ii) The results for the cotangent bundle are similar to those in (i). On analogy with eq. 219, the action of the cotangent lift of left translation \(T^*L_g \) is given in body representation by applying eq. 217 to get

\[
(\tilde{\lambda} \circ (T^*L_g) \circ \tilde{\lambda}^{-1})(h, \alpha) = (g^{-1}h, \alpha);
\]

or equivalently, now taking the cotangent lift of left translation to define a left action (cf. eq. 126),

\[
(\tilde{\lambda} \circ (T^*L_{g^{-1}}) \circ \tilde{\lambda}^{-1})(h, \alpha) = (gh, \alpha).
\]

So in body representation, left translation does not act on the covector component; (again, an intuitive result in so far as \(\alpha \) is "attached to the body"). So eq. 225 means that \(\tilde{\lambda} \) is an equivariant map relating the cotangent lifted left action of left translation on \(T^*G \) to the \(G \)-action on \(G \times g^* \) given just by left translation on the first component:

\[
\Phi_g((h, \alpha)) \equiv g \cdot (h, \alpha) := (gh, \alpha).
\]
So, on analogy with eq. 221 and 222, we can pass to the quotients, defining a map

\[(227) \quad \hat{\lambda} : T^* G / G \to (G \times g^*) / G\]

by requiring that for \(\alpha \in T^*_g G \), so that \(T^*_L h^{-1} \alpha \in T^*_g G \):

\[(228) \quad \hat{\lambda} : \text{Orb}(\alpha) \equiv \{ \beta \in T^* G \mid \beta = T^*_L h^{-1} (\alpha) \}, \text{some } h \in G \} \mapsto \text{Orb}(\hat{\lambda}(\alpha)) \equiv \{ (h, (T^*_L L_g)(\alpha)) \mid \text{some } h \in G \} \equiv \{(h, (T^*_L L_g)\alpha) \mid \text{some } h \in G \} .\]

And finally, we identify the set of orbits \((G \times g^*) / G\) with \(g^*\), so that we conclude that \(T^* G / G\) and \(g^*\) are diffeomorphic. That is, we think of the diffeomorphism \(\hat{\lambda}\) as mapping \(T^* G / G\) to \(g^*\):

\[(229) \quad \hat{\lambda} : \text{Orb}(\alpha) \equiv \{ \beta \in T^* G \mid \beta = T^*_L h^{-1}(\alpha) \}, \text{some } h \in G \} \in T^* G / G \mapsto (T^*_L L_g)(\alpha) \in g^* .\]

As I said above, this diffeomorphism is the crucial first part of Section 7's main reduction theorem. But we will see its role there, already in (3) of Section 5.1.

Finally, a result which will not be needed later. To calculate the derivatives and cotangent lifts of left translation in space representation, we replace \(\lambda\) and \(\hat{\lambda}\) by \(\rho\) and \(\hat{\rho}\) as defined by eq. 215 and 218. We get as the analogues of eq. 219 and 224 respectively:

\[(230) \quad (\rho \circ TL_g \circ \rho^{-1})(h, \xi) = (gh, Ad_g(\xi)) ,\]

and

\[(231) \quad (\hat{\rho} \circ T^*_L L_g \circ \hat{\rho}^{-1})(h, \alpha) = (g^{-1} h, Ad^*_g(\alpha)) .\]

Though these results are not needed later, they are also analogues of some later results, eq. 399 and 400, which we will need. (Note that, in accordance with the discussion between eq. 191 and 192, eq. 231 involves right actions.)

5 POISSON MANIFOLDS

5.1 Preamble: three reasons for Poisson manifolds

Now that we are equipped with Sections 3 and 4's toolbox of modern geometry, we can develop, in this Section and the two to follow, the theory of symplectic reduction. This Section develops the general theory of Poisson manifolds, as a framework for a generalized Hamiltonian mechanics. Its main results concern the foliation, and quotiening, of Poisson manifolds. Then Section 6 returns us to symmetries and conserved quantities: topics which are familiar from Section 2.1.3, but which Section 6 will discuss in the generalized framework using the notion of a momentum map. Finally, in Section 7 all the pieces of our jigsaw puzzle will come together, in our symplectic reduction theorem.
We already glimpsed in (1) of Section 2.2 the idea of a Poisson manifold as a
generalization of a symplectic manifold, that provides the appropriate framework
for a generalized Hamiltonian mechanics. It is a manifold equipped with a bracket,
called a ‘Poisson bracket’, that has essentially the same formal defining properties
as in symplectic geometry except that it can be “degenerate”. In particular, the
dimension m of a Poisson manifold M can be even or odd. As we will see, Hamil-
tonian mechanics can be set up on Poisson manifolds, in a natural generalization
of the usual formalism: there are m first-order ordinary differential equations for
the time evolution of local coordinates x^1, \ldots, x^m, and the time-derivative of any
dynamical variable (scalar function on the Poisson manifold M) is given by its
Poisson bracket with the Hamiltonian. Besides, this generalization reduces to
the usual formalism in the following sense. Any Poisson manifold M is foliated
into symplectic manifolds, and any Hamiltonian mechanics of our generalized kind
defined on M restricts on each symplectic leaf to a conventional Hamiltonian me-
chanics using the induced symplectic form.

This last point, the invariance of the symplectic leaves under the dynamics,
prompts the question ‘why bother with the Poisson manifold, since the dynamics
can be written down on each leaf?’ There are three reasons. I will just mention
the first; the rest of Section 5 will develop the second; and the two subsequent
Sections will develop the third.

(1): Parameters and stability:
The first two reasons concern the fact that for many problems in Hamiltonian
mechanics, it is natural to consider an odd-dimensional state-space. One principal
way this happens is if the system is characterized by some odd number, say s
(maybe $s = 1$), of parameters that are constant in time. Then even though for a
fixed value of the parameter(s), there is a Hamiltonian mechanics on a symplectic
manifold, of dimension $2n$ say, it is useful to envisage the $2n + s$ dimensional
space in order to keep track of how the behaviour of systems depends on the
parameters. For example, this is very useful for analysing stability, especially if
one can somehow control the value of the parameters. Stability theory (and related
fields such as bifurcation theory) are crucially important, and vast, topics — which
I will not go into.\[20\]

(2): Odd-dimensional spaces: the rigid body again:
Secondly, even in the absence of such controllable parameters, there are mecha-
nical systems whose description leads naturally to an odd-dimensional state-space.
The paradigm elementary example is the rigid body pivoted at a point (mentioned
in (3) of Section 2.2). An elementary analysis, repeated in every textbook, leads
to a description of the body by the three components of the angular momentum
(relative to body coordinates, i.e. coordinates fixed in the body): these compo-

\[20\] Except to note a broad philosophical point. These parameters illustrate the modal or coun-
terfactual involvements of mechanics. The s dimensions of the state-space, and the mathematical
constructions built on them, show how rich and structured these involvement are. For a detailed
discussion of the modal involvements of mechanics, cf. [Butterfield, 2004].
ments evolve according to the three first-order Euler equations.

This situation prompts two foundational questions; (which of course most textbooks ignore!). First, we note that a configuration of the body is given by three real numbers: viz. to specify the rotation required to rotate the body into the given configuration, from a fiducial configuration. So a conventional Hamiltonian description of the rigid body would use six first-order equations. (Indeed, similarly for a Lagrangian description, if we treat the three \dot{q}_s as variables.) So how is the description by Euler's equations related to a six-dimensional Hamiltonian (or indeed Lagrangian) description?

Second, can the description by the Euler equations be somehow regarded as itself Hamiltonian, or Lagrangian?

This Chapter will not pursue these questions about the rigid body; for details, cf. the references at the end of (3) of Section 2.2. For us, the important point is that the theory of symplectic reduction shows that the answer to the second question is Yes. Indeed, a "resounding Yes". For we will see very soon (in Section 5.2.4.1) that the three-dimensional space of the components, in body coordinates, of the angular momentum is our prototype example of a Poisson manifold; and the evolution by Euler's equations is the Hamiltonian mechanics on each symplectic leaf of this manifold. In short: in our generalized framework, Euler's equations are already in Hamiltonian form.

Furthermore, this Poisson manifold is already familiar: it is $\mathfrak{so}(3)^*$, the dual of the Lie algebra of the rotation group. Here we connect with several previous discussions (and this Chapter's second motto).

First: we connect with the discussion of rotation in Relationist and Reductionist mechanics (Sections 2.3.3 to 2.3.5). In particular, cf. comment (iii) about γ, the three variables encoding the total angular momentum of the system, at the end of Section 2.3.4. (So as regards (1)'s idea of labelling the symplectic leaves by parameters constant in time: in this example, it is the magnitude L of the total body angular momentum which is the parameter.)

Second: we connect with Section 3.4.4's discussion of $\mathfrak{so}(3)$, with Section 4.5.2's discussion of the co-adjoint representation on $\mathfrak{so}(3)^*$, and with Section 4.6's discussion of kinematics on an arbitrary Lie group. As regards the rigid body, the main physical idea is that the action of $SO(3)$ on itself by left translation is interpreted in terms of the coordinate transformation, i.e. rotation, between the space and body coordinate systems.

But setting aside the rigid body: recall that in Section 4.5.2 we saw that for $\mathfrak{so}(3)^*$, the co-adjoint orbits are the spheres centred on the origin. I also announced that they have a natural symplectic structure — and that this was true for the orbits of the co-adjoint representation of any Lie group. Now that we have the notion of a Poisson manifold, we can say a bit more, though of course the proofs are yet to come: —

For any Lie group G, the dual of its Lie algebra \mathfrak{g}^* is a Poisson manifold; and G has on \mathfrak{g}^* a co-adjoint representation, whose orbits are the symplectic leaves of \mathfrak{g}^* as a Poisson manifold.
In particular, we remark that the theory of the rigid body just sketched is independent of the dimension of physical space being three: it carries over to \(\mathfrak{so}(n)^* \) for any \(n \). So we can readily do the Hamiltonian mechanics of the rigid body in arbitrary dimensions. That sounds somewhat academic! But it leads to a more general point, which is obviously of vast practical importance.

In engineering we often need to analyse or design bodies consisting of two or more rigid bodies jointed together, e.g. at a universal joint. Often the configuration space of such a jointed body can be given by a sequence of rotations (in particular about the joints) and/or translations from a fiducial configuration; so that we can take an appropriate Lie group \(G \) as the body's configuration space. If so, we can try to mimic our strategy for the rigid body, i.e. to apply the result just announced. And indeed, for such bodies, the action of left translation, and so the adjoint and co-adjoint representations of \(G \) on \(\mathfrak{g} \) and \(\mathfrak{g}^* \), can often be physically significant.

But leaving engineering aside, let us sum up this second reason for Poisson manifolds as follows. For some mechanical systems the natural state-space for a Hamiltonian mechanics is a Poisson manifold. And in the paradigm case of the rigid body, there is a striking interpretation of the Poisson manifold's leaves as the orbits of the co-adjoint representation of the rotation group \(\text{SO}(3) \).

(3): \textit{Reduction:}

My first two reasons have not mentioned reduction. But unsurprisingly, they have several connections with the notion. Here I shall state just one main connection, which links Section 4.6's kinematics on Lie groups to our main reduction theorem: this will be my third motivation for studying Poisson manifolds.

In short, the connection is that:

(i) For various systems, the configuration space is naturally taken to be a Lie group \(G \); (as we have just illustrated with the rigid body).

(ii) So it is natural to set up an orthodox Hamiltonian mechanics of the system on the cotangent bundle \(T^*G \). But (as in the Reductionist procedure of Section 2.3.4) it is also natural to quotient by the lift to the cotangent bundle of \(G \)'s action on itself by left translation.

(iii) When we do this, the resulting reduced phase space \(T^*G/G \) is a Poisson manifold. Indeed it is an isomorphic copy of \(\mathfrak{g}^* \). That is, we have an isomorphism of Poisson manifolds: \(\mathfrak{g}^* \cong T^*G/G \). This is the Lie-Poisson reduction theorem.

I shall give a bit more detail about each of (i)--(iii).

(i) For various systems, any configuration can be obtained by acting with an element of the Lie group \(G \) on some reference configuration which can itself be labelled by an element of \(G \), say the identity \(e \in G \). So we take the Lie group \(G \) to be the configuration space. As mentioned in (3) of Section 2.2, there is even an infinite-dimensional example of this: the ideal fluid.
(ii) So T^*G is the conventional Hamiltonian phase space of the system. But G acts on itself by left translation. We can then consider the quotient of T^*G by the cotangent lift of left translation. Intuitively, this is a matter of "rubbing out" the way that T^*G encodes (i)'s choice of reference configuration. By passing to the quotients as in Section 4.6, we infer that T^*G/G is a manifold. But of course it is in general not even-dimensional. For its dimension is $\frac{1}{2}\dim(T^*G) = \dim(G)$. So consider any odd-dimensional G: for example, our old friend, the three-dimensional rotation group $SO(3)$.

(iii) But T^*G/G is always a Poisson manifold. And it is always isomorphic as a Poisson manifold to g^*, with its symplectic leaves being the co-adjoint orbits of g^*: $g^* \cong T^*G/G$.

I end this third reason for studying Poisson manifolds with two remarks about examples.

The first remark echoes the end of Section 4.5.2, where I said that by considering all possible Lie groups and all the orbits of their co-adjoint representations, we get a series of examples of symplectic manifolds. We can now put this together with the notion of a Poisson manifold, and with the comment at the end of Section 3.4.3, that every (finite-dimensional) Lie algebra is the Lie algebra of a Lie group. In short: we get a series of examples of Poisson manifolds, in either of two equivalent ways: from the dual g^* of any (finite-dimensional) Lie algebra g; or from the quotient T^*G/G of the cotangent lift of left translation. In either case, the example is the co-adjoint representation.

The second remark is that there are yet other examples of Poisson manifolds and reductions. Indeed, we noted one in Section 2.3.4: viz. the Reductionist's reduced phase space $\bar{M} := M/E$, obtained by quotienting the phase space $M := T^*\mathbb{R}^{3N} - (\delta \cup \Delta)$ by the (cotangent lift) of the action of the euclidean group E on \mathbb{R}^{3N}. But I shall not go into further details about this example; (for which cf. the Belot papers listed in Section 2.3.1, and references therein). Here it suffices to note that this example is not of the above form: \mathbb{R}^{3N} is not E, and the action of E on \mathbb{R}^{3N} is not left translation. This of course echoes my remarks at the end of Section 1.2 that the theory of symplectic reduction is too large and intricate for this Chapter to be more than an "appetizer".

So much by way of motivating Poisson manifolds. The rest of this Section will cover reasons (1) and (2); but reason (3), about reduction, is postponed to Sections 6 and 7. We give some basics about Poisson manifolds, largely in coordinate-dependent language, in Section 5.2. In Section 5.3, we move to a more coordinate-independent language and show that Poisson manifolds are foliated into symplectic manifolds. In Section 5.4, we show that the leaves of the foliation of a finite-dimensional Lie algebra g^* are the orbits of the co-adjoint representation of G on g^*. Finally in Section 5.5, we prove a general theorem about quotienting a Poisson manifold by the action of Lie group, which will be important for Section 7's main theorem.
5.2 Basics

In Sections 5.2.1 to 5.2.3, we develop some basic definitions and results about
Poisson manifolds. This leads up to Section 5.2.4, where we see that the dual of
any finite-dimensional Lie algebra has a natural (i.e. basis-independent) Poisson
manifold structure. Throughout, there will be some obvious echoes of previous
discussions of anti-symmetric forms, Poisson brackets, Hamiltonian vector fields
and Lie brackets (Sections 2.1 and 3.2). But I will for the most part not articulate
these echoes.

5.2.1 Poisson brackets

A manifold M is called a Poisson manifold if it is equipped with a Poisson bracket
(also known as: Poisson structure). A Poisson bracket is an assignment to each
pair of smooth real-valued functions $F, H : M \to \mathbb{R}$, of another such function,
denoted by $\{F, H\}$, subject to the following four conditions:

(a) Bilinearity:

$$\{aF+bG, H\} = a\{F, H\} + b\{G, H\}; \quad \{F, aG+bH\} = a\{F, G\} + b\{F, H\} \quad \forall a, b \in \mathbb{R}.\tag{232}$$

(b) Anti-symmetry:

$$\{F, H\} = -\{H, F\}.\tag{233}$$

(c) Jacobi identity:

$$\{\{F, H\}, G\} + \{\{G, F\}, H\} + \{\{H, G\}, F\} = 0.\tag{234}$$

(d) Leibniz' rule:

$$\{F, H \cdot G\} = \{F, H\} \cdot G + H \cdot \{F, G\}.\tag{235}$$

In other words: M is a Poisson manifold iff both: (i) the set $\mathcal{F}(M)$ of smooth
scalar functions on M, equipped with the bracket $\{,\}$, is a Lie algebra; and (ii)
the bracket $\{,\}$ is a derivation in each factor.

Any symplectic manifold is a Poisson manifold. The Poisson bracket is defined
by the manifold's symplectic form; cf. eq. 18.

"Canonical" Example:

Let $M = \mathbb{R}^m, m = 2n + l$, with standard coordinates $(q, p, z) = (q^1, ..., q^n,
p^1, ..., p^n, z^1, ..., z^l)$. Define the Poisson bracket of any two functions $F(q, p, z)$,
$H(q, p, z)$ by

$$\{F, H\} := \sum_i^n \left(\frac{\partial F}{\partial q^i} \frac{\partial H}{\partial p^i} - \frac{\partial F}{\partial p^i} \frac{\partial H}{\partial q^i} \right).\tag{236}$$
Thus this bracket ignores the \(z \) coordinates; and if \(l \) were equal to zero, it would be the standard Poisson bracket for \(\mathbb{R}^{2n} \) as a symplectic manifold. We can immediately deduce the Poisson brackets for the coordinate functions. Those for the \(q^i \) and \(p^i \) are as for the usual symplectic case:

\[(237) \quad \{q^i, q^j\} = 0 \quad \{p^i, p^j\} = 0 \quad \{q^i, p^j\} = \delta_{ij}.\]

On the other hand, all those involving the \(z \)s vanish:

\[(238) \quad \{q^i, z^j\} = \{p^i, z^j\} = \{z^i, z^j\} \equiv 0.\]

Besides, any function \(F \) depending only on the \(z \)'s, \(F \equiv F(z) \) will have vanishing Poisson brackets with all functions \(H : \{F, H\} = 0.\)

This example seems special in that \(M \) is foliated into \(2n \)-dimensional symplectic manifolds, each labelled by \(l \) constant values of the \(z \)s. But Section 5.3.4 will give a generalization for Poisson manifolds of Darboux's theorem (mentioned at the end of Section 2.1.1): a generalization saying, roughly speaking, that every Poisson manifold "looks locally like this".

For any Poisson manifold, we say that a function \(F : M \to \mathbb{R} \) is \textit{distinguished} or \textit{Casimir} if its Poisson bracket with all smooth functions \(H : M \to \mathbb{R} \) vanishes identically: \(\{F, H\} = 0.\)

5.2.2 Hamiltonian vector fields

Given a smooth function \(H : M \to \mathbb{R} \), consider the map on smooth functions: \(F \mapsto \{F, H\} \). The fact that the Poisson bracket is bilinear and obeys Leibniz's rule implies that this map \(F \mapsto \{F, H\} \) is a derivation on the space of smooth functions, and so determines a vector field on \(M \); (cf. (ii) of Section 3.1.2.2). We call this vector field the \textit{Hamiltonian vector field} associated with (also known as: generated by) \(H \), and denote it by \(X_H \).

But independently of the Poisson structure, the action of any vector field \(X_H \) on a smooth function \(F \), \(X_H(F) \), also equals \(\mathcal{L}_{X_H}(F) \equiv dF(X_H) \); (cf. eq. 40). So we have for all smooth \(F \)

\[(239) \quad \mathcal{L}_{X_H}(F) \equiv dF(X_H) \equiv X_H(F) = \{F, H\}.\]

The equations describing the flow of \(X_H \) are called \textit{Hamilton's equations}, for the choice of \(H \) as "Hamiltonian".

In the previous example with \(M = \mathbb{R}^{2n+l} \), we have

\[(240) \quad X_H = \Sigma_i^n \left(\frac{\partial H}{\partial p^i} \frac{\partial}{\partial q^i} - \frac{\partial H}{\partial q^i} \frac{\partial}{\partial p^i} \right),\]

and the flow is given by the ordinary differential equations

\[(241) \quad \frac{dq^i}{dt} = \frac{\partial H}{\partial p^i}, \quad \frac{dp^i}{dt} = -\frac{\partial H}{\partial q^i}, \quad \frac{dz^j}{dt} = 0. \quad i = 1, \ldots, n; \quad j = 1, \ldots, l.\]
Again, the zs, and any function $F(z)$ solely of them, are distinguished and have a vanishing Hamiltonian vector field. On the other hand, the coordinate functions q^i and p^i generate the Hamiltonian vector fields $-\frac{\partial}{\partial p^i}$ and $\frac{\partial}{\partial q^i}$ respectively.

Two further remarks about eq. 239:

(1) It follows that a function H is distinguished (i.e. has vanishing Poisson brackets with all functions) iff its Hamiltonian vector field X_H vanishes everywhere. And since the Poisson bracket is antisymmetric, this is so iff H is constant along the flow of all Hamiltonian vector fields.

(2) This equation is the beginning of the theory of constants of the motion (first integrals), and of Noether's theorem, for Poisson manifolds; just as the corresponding equation was the beginning for the symplectic case. This will be developed in Section 6.

Poisson brackets and Lie brackets:

With the definition eq. 239 in hand, we can readily establish our first important connection between Poisson manifolds and Section 3's Lie structures. Namely: result (2) at the end of Section 3.2.2, eq. 60, is also valid for Poisson manifolds.

That is: the Hamiltonian vector field of the Poisson bracket of scalars F, H on a Poisson manifold M is, up to a sign, the Lie bracket of the Hamiltonian vector fields, X_F and X_H, of F and H:

$$ (242) \quad X_{\{F, H\}} = -[X_F, X_H] = [X_H, X_F]. $$

The proof is exactly as for eq. 60.

So the Hamiltonian vector fields, with the Poisson bracket, form a Lie subalgebra of the Lie algebra \mathcal{X}_M of all vector fields on the Poisson manifold M. This result will be important in Section 5.3.3's proof that every Poisson manifold is a disjoint union of symplectic manifolds.

5.2.3 Structure functions

We show that to compute the Poisson bracket of any two functions given in some local coordinates $x = x^1, ..., x^m$, it suffices to know the Poisson brackets of the coordinates. For any function $H : M \rightarrow \mathbb{R}$, let the components of its Hamiltonian vector field in the coordinate system x be written as $h^i(x)$. So $X_H = \sum_i h^i(x) \frac{\partial}{\partial x^i}$. Then for any other function F, we have

$$ (243) \quad \{F, H\} = X_H(F) = \sum_i h^i(x) \frac{\partial F}{\partial x^i}. $$

Taking x^i as the function F, we get: $\{x^i, H\} = X_H(x^i) = h^i(x)$. So eq. 243 becomes

$$ (244) \quad \{F, H\} = \sum_i \{x^i, H\} \frac{\partial F}{\partial x^i}. $$
If we now put \(x^i \) for \(H \) and \(H \) for \(F \) in eq. 244, we get
\[
(245) \quad \{x^i, H\} = -\{H, x^i\} = -X_{x^i}(H) = -\Sigma_j x^j \frac{\partial H}{\partial x^j}.
\]
Combining eq.s 244 and 245, we get the basic formula for the Poisson bracket of any two functions in terms of the Poisson bracket of local coordinates:
\[
(246) \quad \{F, H\} = \Sigma_i \Sigma_j \{x^i, x^j\} \frac{\partial F}{\partial x^i} \frac{\partial H}{\partial x^j}.
\]
We assemble these basic brackets, which we call the structure functions of the Poisson manifold,
\[
(247) \quad J^{ij}(x) := \{x^i, x^j\} \quad i, j = 1, ..., m
\]
into a \(m \times m \) anti-symmetric matrix of functions, \(J(x) \), called the structure matrix of \(M \). More precisely, it is the structure matrix for \(M \) relative to our coordinate system \(x \). Of course, the transformation of \(J \) under a coordinate change \(x'^i := x'^i(x^1, ..., x^m) \) is determined by setting \(F := x'^i, H := x'^j \) in the basic formula eq. 246.

Then, writing \(\nabla H \) for the (column) gradient vector of \(H \), eq. 246 becomes
\[
(248) \quad \{F, H\} = \nabla F \cdot J \nabla H.
\]
For example, the canonical bracket on \(\mathbb{R}^{2n+1} \), eq.236, written in the \((q, p, z)\) coordinates, has the simple form
\[
(249) \quad J = \begin{pmatrix}
0 & I & 0 \\
-I & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
where \(I \) is the \(n \times n \) identity matrix.

We can write the Hamiltonian vector field, and the Hamilton’s equations, associated with the function \(H \) in terms of \(J \). Since
\[
(250) \quad \{x^i, H\} = \Sigma_j x^j \frac{\partial H}{\partial x^j}
\]
we get:
\[
(251) \quad X_H = \Sigma_i \left(\Sigma_j J^{ij}(x) \frac{\partial H}{\partial x^j} \frac{\partial}{\partial x^i} \right),
\]
or in matrix notation: \(X_H = (J \nabla H) \cdot \partial_x \). Similarly, Hamilton’s equations
\[
(252) \quad \frac{dx^i}{dt} = \{x^i, H\}
\]
get the matrix form
\[
(253) \quad \frac{dx}{dt} = J(x) \nabla H(x) \quad \text{i.e.} \quad \frac{dx^i}{dt} = \Sigma_j J^{ij}(x) \frac{\partial H}{\partial x^j}.
\]
To summarize how we have generalized from the usual form of Hamilton's equations: compare eq. 253, 248 and 249 respectively with eq. 12, 18 and 3.

Note that not every \(m \times m \) anti-symmetric matrix of functions on an \(m \)-dimensional manifold (or even: on an open subset of \(\mathbb{R}^m \)) is the structure matrix of a Poisson manifold: for the Jacobi identity constrains the functions. In fact it is readily shown that the Jacobi identity corresponds to the following \(m^3 \) partial differential equations governing the \(J^{ij}(x) \), which are in general non-linear. Writing as usual \(\partial_i \) for \(\partial/\partial x^i \):

\[
(254) \quad \Sigma_{i=1}^{m} (J^{il}_i \partial_i J^{jk}_l + J^{kl}_i \partial_i J^{ij}_l + J^{ij}_l \partial_i J^{kl}_l) = 0 \quad i, j, k, = 1, \ldots, m; \forall x \in M.
\]

In particular, any constant anti-symmetric matrix \(J \) defines a Poisson structure.

5.2.4 The Poisson structure on \(g^* \)

We can now show that any \(m \)-dimensional Lie algebra \(g \) defines a Poisson structure, often called the Lie-Poisson bracket, on any \(m \)-dimensional vector space \(V \). We proceed in two stages.

1. We first present the definition in a way that seems to depend on a choice of bases, both in \(g \) (where the definition makes a choice of structure constants) and in the space \(V \).

2. Then we will see that choosing \(V \) to be \(g^* \), the definition is in fact basis-independent.

This Poisson structure on \(g^* \) will be of central importance from now on. As Marsden and Ratiu write: 'Besides the Poisson structure on a symplectic manifold, the Lie-Poisson bracket on \(g^* \), the dual of a Lie algebra, is perhaps the most fundamental example of a Poisson structure' (1999: 415). Here we return to our motivating discussion of Poisson manifolds, especially reasons (2) and (3) of Section 5.1: which concerned the rigid body and reduction, respectively. Indeed, we will see already in the Example at the end of this Subsection (Section 5.2.4.1) how the Lie-Poisson bracket on the special case \(g^* := \mathfrak{so}(3)^* \) clarifies the theory of the rigid body. And we will see in Sections 7.2 and 7.3.3 how for any \(g \), the Lie-Poisson bracket on \(g^* \) is induced by reduction, from the canonical Poisson (viz. symplectic) structure on the cotangent bundle \(T^*G \). This will be our reduction theorem, that \(T^*G/G \cong g^* \).

After (2), we will see that the Lie-Poisson bracket on \(g^* \) implies that Hamilton's equations on \(g^* \) can be expressed using \(ad^* \): a form that will be needed later. This will be (3) below. Then we will turn in Section 5.2.4.1 to the example \(g^* := \mathfrak{so}(3)^* \).

(1): A Poisson bracket on any vector space \(V \):

Take a basis, say \(e_1, \ldots, e_m \), in \(g \), and so structure constants \(c^{k}_{ij} \) (cf. eq. 52). Consider the space \(V \) as a manifold, and coordinatize it by taking a basis, \(e_1, \ldots, e_m \) say, determining coordinates \(x^1, \ldots, x^m \). We now define the Poisson bracket (in
this case, often called the *Lie-Poisson bracket* between two smooth functions $F, H : V \to \mathbb{R}$ to be

$$\{F, H\} := \Sigma_{i,j,k=1}^{m} c_{ij}^{k} x^{k} \frac{\partial F}{\partial x^{i}} \frac{\partial H}{\partial x^{j}}.$$

(255) \hspace{1cm}

This takes the form of eq. 246, with linear structure functions $J^{ij}(x) = \Sigma_{k}^{m} c_{ij}^{k} x^{k}$. One easily checks that anti-symmetry, and the Jacobi identity, for the structure constants, eq. 53, implies that these J^{ij} are anti-symmetric and obey their Jacobi identity eq. 254. So eq. 255 defines a Poisson bracket on V.

In particular, the associated Hamiltonian equations, eq.s 252 and 253, take the form

$$\frac{dx^{i}}{dt} = \Sigma_{j,k=1}^{m} c_{ij}^{k} x^{k} \frac{\partial H}{\partial x^{j}}.$$

(256) \hspace{1cm}

(2): *The Lie-Poisson bracket on g^*:*

To give a basis-independent characterization of the Lie-Poisson bracket, we first recall that:

(i) the gradient $\nabla F(x)$ of $F : V \to \mathbb{R}$ at any point $x \in V$ is in the dual space V^* of (continuous) linear functionals on V;

(ii) any finite-dimensional vector space is canonically, i.e. basis-independently, isomorphic to its double dual: $(V^*)^* \cong V$.

Then writing $< ; >$ for the natural pairing between V and V^*, we have, for any $y \in V$

$$\frac{d}{dt} \langle F(x) ; y \rangle := \lim_{\tau \to 0} \frac{F(x + \tau y) - F(x)}{\tau}.$$

(257) \hspace{1cm}

Now let us take V in our definition of the Lie-Poisson bracket to be g^*. So we will show that g makes g^* a Poisson manifold, in a basis-independent way. And let the basis e_1, \ldots, e_m be dual to the basis e_1, \ldots, e_m of g. If $F : g^* \to \mathbb{R}$ is any smooth function, its gradient $\nabla F(x)$ at any point $x \in g^*$ is an element of $(g^*)^* \cong g$. One now checks that the Lie-Poisson bracket defined by eq. 255 has the basis-independent expression

$$\{F, H\}(x) = < x ; [\nabla F(x), \nabla H(x)] > , \ x \in g^*$$

(258) \hspace{1cm}

where $[,]$ is the ordinary Lie bracket on the Lie algebra g itself.

(3): *Hamilton's equations on g^*:*

We can also give a basis-independent expression of the Hamilton’s equations eq. 256: viz. by expressing the Lie bracket in eq. 258 in terms of ad, as indicated by eq. 179.

Thus let $F \in \mathcal{F}(g^*)$ be an arbitrary smooth scalar function on g^*. By the chain rule
(259) \[\frac{dF}{dt} = DF(x) \cdot \dot{x} = \langle \dot{x}; \nabla F(x) \rangle. \]

But applying eqs. 179 and 198 to eq. 258 implies:

(260) \[
\{F, H\}(x) = \langle x; [\nabla F(x), \nabla H(x)] \rangle = -\langle x; ad_{\nabla H(x)}(\nabla F(x)) \rangle = \langle ad^*_{\nabla H(x)}(x); \nabla F(x) \rangle.
\]

Since \(F \) is arbitrary and the pairing is non-degenerate, we deduce that Hamilton’s equations take the form

(261) \[\frac{dx}{dt} = ad^*_{\nabla H(x)}(x). \]

5.2.4.1 Example: \(so(3) \) and \(so(3)^* \) As an example of the dual of a Lie algebra as a Poisson manifold, let us consider again our standard example \(so(3)^* \). We will thereby make good our promise in (2) of Section 5.1, to show that Euler’s equations for a rigid body are already in Hamiltonian form — in our generalized sense. We will also see why in the Chapter’s second motto, Arnold mentions the three dual spaces, \(\mathbb{R}^3, so(3)^* \) and \(T^*(SO(3))_g \); (cf. the discussion at the end of Section 3.4.4).

The Lie algebra \(so(3) \) of \(SO(3) \) has a basis \(e_1, e_2, e_3 \) representing infinitesimal rotations around the \(x-, y- \) and \(z- \)axes of \(\mathbb{R}^3 \). As we have seen, we can think of these basis elements: as vectors in \(\mathbb{R}^3 \) with \([,]\) as elementary vector multiplication; or as anti-symmetric matrices with \([,]\) as the matrix commutator; or as left-invariant vector fields on \(SO(3) \) with \([,]\) as the vector field commutator (i.e., Lie bracket).

Let \(e_1, e_2, e_3 \) be a dual basis for \(so(3)^* \), with \(x = x^1e_1 + x^2e_2 + x^3e_3 \) a typical point therein. If \(F : so(3)^* \rightarrow \mathbb{R} \), its gradient at \(x \) is the vector

(262) \[\nabla F = \frac{\partial F}{\partial x^1}e_1 + \frac{\partial F}{\partial x^2}e_2 + \frac{\partial F}{\partial x^3}e_3 \in so(3). \]

Then eq. 258 tells us that, if we write \(so(3) \) as \(\mathbb{R}^3 \) with \(\times \) for elementary vector multiplication, the Lie-Poisson bracket on \(so(3)^* \) is

(263) \[
\{F, H\}(x) = x^1 \left(\frac{\partial F}{\partial x^3} \frac{\partial H}{\partial x^2} - \frac{\partial F}{\partial x^2} \frac{\partial H}{\partial x^3} \right) + ... + x^3 \left(\frac{\partial F}{\partial x^1} \frac{\partial H}{\partial x^2} - \frac{\partial F}{\partial x^2} \frac{\partial H}{\partial x^1} \right)
= -x \cdot (\nabla F \times \nabla H).
\]

So the structure matrix \(J(x) \) is

(265) \[J(x) = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}, \quad x \in so(3)^*. \]

Hamilton’s equations corresponding to the Hamiltonian function \(H(x) \) are therefore

(266) \[\frac{dx}{dt} = x \times \nabla H(x). \]
Now consider the Hamiltonian representing the kinetic energy of a free pivoted rigid body

\[(267) \quad H(x) = \frac{1}{2} \left(\frac{(x^1)^2}{I_1} + \frac{(x^2)^2}{I_2} + \frac{(x^3)^2}{I_2} \right), \]

in which the \(I_i \) are the moments of inertia about the three coordinate axes, and the \(x^i \) are the corresponding components of the body angular momentum. For this Hamiltonian, Hamilton’s equations eq. 266 become

\[(268) \quad \frac{dx^1}{dt} = \frac{I_2 - I_3}{I_2 I_3} x^2 x^3, \quad \frac{dx^2}{dt} = \frac{I_3 - I_1}{I_3 I_1} x^3 x^1, \quad \frac{dx^3}{dt} = \frac{I_1 - I_2}{I_1 I_2} x^1 x^2, \]

Indeed, these are the Euler equations for a free pivoted rigid body. I shall not go into details about the rigid body. I only note that:

(i) In the elementary theory of such a body, the magnitude \(L \) of the angular momentum is conserved, and eq. 268 describes the motion of the \(x^i \) on a sphere of radius \(L \) centred at the origin.

(ii) In Section 5.4, we will return to seeing these spheres as the orbits of the co-adjoint representation of \(SO(3) \) on \(\mathfrak{so}(3)^* \) (cf. Section 4.5.2).

(iii) Let us sum up this theme by saying, with Marsden and Ratiu (1999, p.11) that here we see: ‘a simple and beautiful Hamiltonian structure for the rigid body equations’.

5.3 The symplectic foliation of Poisson manifolds

We first reformulate some ideas of Section 5.2 in more coordinate-independent language, starting with Section 5.2.3’s idea of the structure matrix \(J(x) \) (Section 5.3.1). Then we discuss canonical transformations on a Poisson manifold (Section 5.3.2). This will lead up to showing that any Poisson manifold is foliated by symplectic leaves (Section 5.3.3). Finally, we state a generalization of Darboux’s theorem; and again take \(\mathfrak{so}(3) \) as an example (Section 5.3.4).

5.3.1 The Poisson structure and its rank

We now pass from the structure matrix \(J \), eq. 247, to a coordinate-independent object, the Poisson structure (also known as: co-symplectic structure), written \(B \). Whereas \(J \) multiplied naive gradient vectors, as in eq. 248 and 253, \(B \) is to map the 1-form \(dH \) into its Hamiltonian vector field; as follows.

At each point \(x \) in a Poisson manifold \(M \), there is a unique linear map \(B_x \), which we will also write as \(B \)

\[(269) \quad B \equiv B_x : T_x^* M \to T_x M \]

such that
(270) \(B_x(dH(x)) = X_H(x) \).

For the requirement eq. 270 implies, by eq. 251, that for each \(j = 1, \ldots, m \)

\[
(271) \quad B_x(dx^j) = \sum_i J^{ij}(x) \frac{\partial}{\partial x^i} \bigg|_x
\]

Since the differentials \(dx^i \) span \(T_x^* M \), this fixes \(B_x \), by linearity. \(B_x \)'s action on any one-form \(\alpha = \sum a_j dx^j \) is:

\[
(272) \quad B_x(\alpha) = \sum_{i,j} J^{ij}(x) a_j \frac{\partial}{\partial x^i} \bigg|_x
\]

so that \(B_x \) is essentially matrix multiplication by \(J(x) \). Here, compare again eq. 252 and 253.

Here we recall that any linear map between (real finite-dimensional) vector spaces, \(B : V \to W^* \), has an associated bilinear form \(B^\sharp \) on \(V \times W^{**} \cong V \times W \) given by

\[
(273) \quad B^\sharp(v, w) := \langle B(v), w \rangle.
\]

Accordingly, some authors introduce the Poisson structure as a bilinear form \(B^\sharp_x : T_x^* M \times T_x^* M \to \mathbb{R} \), often called the *Poisson tensor*. Thus eq. 273 gives, for \(\alpha, \beta \in T_x^* M \)

\[
(274) \quad B^\sharp_x(\alpha, \beta) := \langle B(\alpha), \beta \rangle.
\]

\(B^\sharp_x \) is antisymmetric, since the matrix \(J(x) \) is. So, if we now let \(x \) vary over \(M \), we can sum up in the traditional terminology of tensor analysis: \(B^\sharp \) is an antisymmetric contravariant two-tensor field.

Example: Consider our first example, \(M = \mathbb{R}^{2n+1} \) with the "usual bracket" eq. 236, from the start of Section 5.2.1. For any one-form

\[
(275) \quad \alpha = \sum_{i=1}^n (a_i dq^i + b_i dp^i) + \sum_{j=1}^l c_j dz^j
\]

we have

\[
(276) \quad B(\alpha) = \sum_{i=1}^n \left(b_i \frac{\partial}{\partial q^i} - a_i \frac{\partial}{\partial p^i} \right).
\]

In this example the form of \(B \) is the same from point to point. In particular, the kernel of \(B \) has everywhere the same dimension, viz. \(l \), the number of distinguished coordinates.

We now define the *rank* at \(x \) of a Poisson manifold \(M \) to be the rank of its Poisson structure \(B \) at \(x \), i.e. the dimension of the range of \(B_x \). This range is also the span of all the Hamiltonian vector fields on \(M \) at \(x \):

\[
(277) \quad \text{ran}(B_x) := \{ X \in T_x M : X = B_x(\alpha), \text{ some } \alpha \in T_x^* M \} = \{ X_H(x) : H : M \to \mathbb{R} \text{ smooth} \}.
\]
So the rank of M at x is also equal to the dimension of \mathcal{B}_x's domain, i.e. $\dim(T^*_x M) = \dim(M)$, minus the dimension of the kernel, $\dim(\mathcal{B}_x)$.

Since in local coordinates, \mathcal{B}_x is given by multiplication by the structure matrix $J(x)$, the rank of M at x is the rank (the same in any coordinates) of the matrix $J(x)$. That $J(x)$ is anti-symmetric implies that the rank of M is even: cf. again the normal form of antisymmetric bilinear forms, eq. 2 and 3.

The manifold M being symplectic corresponds, of course, to the rank of \mathcal{B} being everywhere maximal, i.e. equal to $\dim(M)$.

In this case, the kernel of \mathcal{B} is trivial, and any distinguished function H is constant on M. For H is distinguished iff $X_H = 0$; and if the rank is maximal, then $dH = 0$, so that H is constant.

Besides, each of the Poisson structure and symplectic form on M determine the other. In particular, the Poisson tensor \mathcal{B} of eq. 274 is, up to a sign, the "contravariant cousin" of M’s symplectic form ω. For recall: (i) the relation between a symplectic manifold’s Poisson bracket and its form, eq. 18, viz.

\[(278) \ \{F, H\} = dF(X_H) = \omega(X_F, X_H) ; \]

and (ii) eq. 239 for Hamiltonian vector fields on a Poisson manifold, viz.

\[(279) \ X_H(F) = \{F, H\} . \]

Applying these equations yields, if we start from eq. 274 and eq. 270:

\[(280) \ \mathcal{B}(dH, dF) := <B(dH), dF> = dF(X_H) = X_H(F) = \{F, H\} = \omega(X_F, X_H) . \]

We have also seen examples where the Poisson structure \mathcal{B} is of non-maximal rank:

(i) In our opening “canonical” example, the Poisson bracket eq. 236 on $M = \mathbb{R}^{2n+1}$ has rank $2n$ everywhere.

(ii) In the Lie-Poisson structure on $\mathfrak{so}(3)^*$, the rank varies across the manifold: it is 2 everywhere, except at the origin $x = 0$ where it is 0. (Cf. the rank of the matrix J in eq. 265.)

\[5.3.2 \ \text{Poisson maps}\]

Already at the beginning of our development of Poisson manifolds, we saw that a scalar function $H : M \rightarrow \mathbb{R}$ defines equations of motion, with H as “Hamiltonian”, for all other functions $F : M \rightarrow \mathbb{R}$, of the familiar Poisson bracket type:

\[(281) \ \hat{F} = \{F, H\} . \]

(Cf. Section 5.2.2, especially the remarks around eq. 239.) We now develop the generalization for Poisson manifolds of some related notions and results.

We say that a smooth map $f : M_1 \rightarrow M_2$ between Poisson manifolds $(M_1, \{,\}_1)$ and $(M_2, \{,\}_2)$ is Poisson or canonical iff it preserves the Poisson bracket. To be
precise: we first need the idea of the pullback of a function; cf. Section 3.1.2.1. In
this context, the pullback f^* of a function $F : M_2 \to \mathbb{R}$ is given by

$$(282) \quad f^*F := F \circ f; \quad \text{i.e.} \quad f^*F : x \in M_1 \mapsto F(f(x)) \in \mathbb{R}. $$

Then we say that $f : M_1 \to M_2$ is Poisson iff for all smooth functions $F, G : M_2 \to \mathbb{R}$ ($F, G \in \mathcal{F}(M_2)$)

$$(283) \quad f^*\{F, G\}_2 = \{f^*F, f^*G\}_1;$$

where by the definition eq. 282, the lhs $\equiv \{F, G\}_2 \circ f$, and the rhs $\equiv \{F \circ f, G \circ g\}_1$.

We note the special case where $M_1 = M_2 =: M$ and M is symplectic; i.e. the
Poisson bracket is of maximal rank, and so defines a symplectic form on M, as
in eq. 280. In this case, we return to the equivalence in Section 2.1.3’s usual
formulation of Hamiltonian mechanics, between preserving the Poisson bracket
and preserving the symplectic form. That is: a map $f : M \to M$ on a symplectic
manifold M is Poisson iff it is symplectic.

Besides, we already have for symplectic manifolds an infinitesimal version of
the idea of a Poisson or symplectic map: viz. the idea of a locally Hamiltonian
vector field; cf. Section 2.1.3. Similarly for Poisson manifolds, we will need the
 corresponding infinitesimal version of a Poisson map; but not till Section 6.1.1.

One can show (using in particular the Jacobi identity) that the flows of a Hamil-
tonian vector field are Poisson. (Here of course, $(M_1, \{,\}_1) = (M_2, \{,\}_2)$.) That
is: if ϕ_τ is the flow of X_H (i.e. $\phi_\tau = \exp(\tau X_H)$), then

$$(284) \quad \phi_\tau^*\{F, G\} = \{\phi_\tau^*F, \phi_\tau^*G\} \quad \text{i.e.} \quad \{F, G\} \circ \phi_\tau = \{F \circ \phi_\tau, G \circ \phi_\tau\}. $$

Similarly, one can readily show the equivalent proposition, that along the flow of
a Hamiltonian vector field the Lie derivative of the Poisson tensor B^\sharp vanishes.
That is: for any smooth function $H : M \to \mathbb{R}$, we have:

$$(285) \quad \mathcal{L}_{X_H} B^\sharp = 0. $$

Since preserving the Poisson bracket implies in particular preserving its rank,
 it follows from eq. 284 (or from eq. 285) that:

If X_H is a Hamiltonian vector field on a Poisson manifold M, then for any
$\tau \in \mathbb{R}$ and $x \in M$, the rank of M at $\exp(\tau X_H)(x)$ is the same as the rank at x.
In other words: Hamiltonian vector fields are rank-invariant in the sense used in
the general form of Frobenius’ theorem (Section 3.3.2).

This result will be important for the foliation theorem for Poisson manifolds.

We will also need the result (also readily shown) that Poisson maps push Hamil-
tonian flows forward to Hamiltonian flows. More precisely: let $f : M_1 \to M_2$ be a
Poisson map; so that at each $x \in M_1$, we have the derivative map on the tangent
space, $Tf : (TM_1)_x \to (TM_2)_{f(x)}$. And let $H : M_2 \to \mathbb{R}$ be a smooth function. If
ϕ_τ is the flow of X_H and ψ_τ is the flow (on M_1) of $X_{H \circ f}$, then:

$$(286) \quad \phi_\tau \circ f = f \circ \psi_\tau \quad \text{and} \quad Tf \circ X_{H \circ f} = X_H \circ f. $$
In particular, this square commutes:

\[
\begin{array}{ccc}
M_1 & \xrightarrow{f} & M_2 \\
\uparrow \psi \tau & & \uparrow \phi \tau \\
M_1 & \xrightarrow{f} & M_2
\end{array}
\]

5.3.3 Poisson submanifolds: the foliation theorem

To state the foliation theorem for Poisson manifolds, we need the idea of a Poisson immersion, which leads to the closely related idea of a Poisson submanifold. In effect, these ideas combine the idea of a Poisson map with the ideas about injective immersions in (2) of Section 3.3.1. We recall from that discussion that for an injective immersion, \(f : N \to M \), the range \(f(N) \) is not necessarily a submanifold of \(M \): but \(f(N) \) is nevertheless called an 'injectively immersed submanifold' of \(M \). (But as mentioned in Section 3.3.2, many treatments ignore this point: they in effect assume that an injective immersion \(f \) is also an embedding, i.e. a homeomorphism between \(N \) and \(f(N) \), so that \(f(N) \) is indeed a submanifold of \(M \) and \(f \) is a diffeomorphism.)

An injective immersion \(f : N \to M \), with \(M \) a Poisson manifold, is called a Poisson immersion if any Hamiltonian vector field defined on an open subset of \(M \) containing \(f(N) \) is in the range of the derivative map of \(f \) at \(y \in N \), i.e. \(\text{ran}(T_yf) \), at all points \(f(y) \) for \(y \in N \).

Being a Poisson immersion is equivalent to the following rather technical condition.

Characterization of Poisson immersions An injective immersion \(f : N \to M \), with \(M \) a Poisson manifold, is a Poisson immersion iff:

if \(F, G : V \subset N \to \mathbb{R} \), where \(V \) is open in \(N \), and if \(\tilde{F}, \tilde{G} : U \to \mathbb{R} \) are extensions of \(F \circ f^{-1}, G \circ f^{-1} : f(V) \to \mathbb{R} \) to an open neighbourhood \(U \) of \(f(V) \) in \(M \), then \(\{ \tilde{F}, \tilde{G} \} |_{f(V)} \) is well-defined and independent of the extensions.

The main point of this equivalence is that it ensures that if \(f : N \to M \) is a Poisson immersion, then \(N \) has a Poisson structure, and \(f : N \to M \) is a Poisson map. It is worth seeing how this comes about — by proving the equivalence.

Proof. Let \(f : N \to M \) be a Poisson immersion, and let \(F, G : V \subset N \to \mathbb{R} \) and let \(\tilde{F}, \tilde{G} : U \supset f(V) \to \mathbb{R} \) be extensions of \(F \circ f^{-1}, G \circ f^{-1} : f(V) \to \mathbb{R} \). Then for \(y \in V \), there is a unique vector \(v \in TN_y \) such that

\[
(288) \quad X_G(f(y)) = (T_y f)(v) .
\]

So evaluating the Poisson bracket of \(\tilde{F} \) and \(\tilde{G} \) at \(f(y) \) yields, by eq. 239,

\[
(289) \quad \{ \tilde{F}, \tilde{G} \}(f(y)) = d\tilde{F}(f(y)) \cdot X_G(f(y)) = d\tilde{F}(f(y)) \cdot (T_y f)(v) = d(F \circ f)(y) \cdot v \equiv dF(y) \cdot v .
\]
So \(\{ \bar{F}, \bar{G} \}(f(y)) \) is independent of the extension \(\bar{F} \) of \(F \circ f^{-1} \). Since the Poisson bracket is antisymmetric, it is also independent of the extension \(\bar{G} \) of \(G \circ f^{-1} \). So we can define a Poisson structure on \(N \) by defining for any \(y \) in an open \(V \subset N \)

\[
(290) \quad \{ F, G \}_N(y) := \{ \bar{F}, \bar{G} \}_M(f(y)) .
\]

This makes \(f : N \to M \) a Poisson map, since for any \(\bar{F}, \bar{G} \) on \(M \) and any \(y \in N \), we have that

\[
(291) \quad [f^* \{ \bar{F}, \bar{G} \}_M](y) = [(\bar{F}, \bar{G} \circ f)(y) = \{ F, G \}_N(y) = \{ f^* \bar{F}, f^* \bar{G} \}_N(y) ;
\]

where the middle equality uses eq. 290.

For the converse implication, assume that eq. 289 holds, and let \(H : U \to \mathbb{R} \) be a Hamiltonian defined on an open subset \(U \) of \(M \) that intersects \(f(N) \). Then as we have just seen, \(N \) is a Poisson manifold and \(f : N \to M \) is a Poisson map. Because \(f \) is Poisson, it pushes \(X_{H \circ f} \) to \(X_H \). That is: eq. 286 implies that if \(y \in N \) is such that \(f(y) \in U \), then

\[
(292) \quad X_H(f(y)) = (T_y f)(X_{H \circ f}(y)) .
\]

So \(X_H(f(y)) \) is in the range of \(T_y f \); so \(f : N \to M \) is a Poisson immersion.

Now suppose that the inclusion \(\text{id} : N \to M \) is a Poisson immersion. Then we call \(N \) a Poisson submanifold of \(M \). We emphasise, in line with the warning we recalled from (2) of Section 3.3.1, that \(N \) need not be a submanifold of \(M \); but it is nevertheless called an ‘injectively immersed submanifold’ of \(M \).

From the definition of a Poisson immersion, it follows that any Hamiltonian vector field must be tangent to a Poisson submanifold. In other words: writing \(\mathcal{X} \) for the system of Hamiltonian vector fields on \(M \), and \(\mathcal{X} \vert_x \) for their values at \(x \in M \), we have: if \(N \) is a Poisson submanifold of \(M \), and \(x \in N \), \(\mathcal{X} \vert_x \subset TN_x \).

For the special case where \(M \) is a symplectic manifold, we have \(\mathcal{X} \vert_x = T_x M \), and the only Poisson submanifolds of \(M \) are its open sets.

Finally, we define the following equivalence relation on a Poisson manifold \(M \). Two points \(x_1, x_2 \in M \) are on the same symplectic leaf if there is a piecewise smooth curve in \(M \) joining them, each segment of which is an integral curve of a locally defined Hamiltonian vector field. An equivalence class of this equivalence relation is a symplectic leaf.

We can now state and prove that Poisson manifolds are foliated.

5.3.3.1 Foliation theorem for Poisson manifolds

The result is:

A Poisson manifold \(M \) is the disjoint union of its symplectic leaves. Each symplectic leaf is an injectively immersed Poisson submanifold, and the induced Poisson structure on the leaf is symplectic. The leaf through the point \(x \), \(N_x \) say, has dimension equal to the rank of the Poisson structure at \(x \); and the tangent space to the leaf at \(x \) equals
\[(293) \quad TN_x = \text{ran}(B_x) := \{ X \in T_x M : X = B_x(\alpha), \text{ some } \alpha \in T^*_x M \} = \{ X_H(x) : H \in \mathcal{F}(U), \text{ } U \text{ open in } M \} \]

Proof. We apply the general form of Frobenius’ theorem (Section 3.3.2) to the system \(\mathcal{X} \) of Hamiltonian vector fields on \(M \). We know from eq. 242 (Section 5.2.2) that \(\mathcal{X} \) is involutive, and from eq. 284 above that it is rank-invariant. So by Frobenius’ theorem, \(\mathcal{X} \) is integrable. The integral submanifolds are by definition given by the rhs of eq. 293.

One also readily shows that:

(i) One can evaluate the Poisson bracket of \(F, G : M \to \mathbb{R} \) at \(x \in M \) by restricting \(F \) and \(G \) to the symplectic leaf \(N_x \) through \(x \), and evaluating the Poisson bracket that is defined by the symplectic form on the leaf \(N_x \); (i.e. the Poisson bracket defined in eq. 18).

(ii) A distinguished function is constant on any symplectic leaf \(N_x \) of \(M \).

We end with two remarks. The first is a mathematical warning; the second concerns physical interpretation.

(1) Recall our warning that symplectic leaves need not be submanifolds. This also means that all the distinguished functions being constants does not imply that the Poisson structure is non-degenerate. Indeed, one can readily construct an example in which the symplectic leaves are not manifolds, all distinguished functions are constants, and the Poisson structure is degenerate. Namely, one adapts an example mentioned before, in Section 3.4.3: the flows on the torus \(\mathbb{T}^2 \) that wind densely around it. (For more details about this example, cf. [Arnold, 1973, 160-167; 1989, 72-74] or [Butterfield, 2004a, Section 2.1.3.B]; for how to adapt it, cf. [Marsden and Ratiu, 1999, 347].

(2) As we have seen, any integral curve of any Hamiltonian vector field \(X_H \) is confined to one of the symplectic leaves. So if we are interested only in the behaviour of a single solution through a point \(x \in M \), we can restrict our attention to the symplectic leaf \(N_x \) through \(x \): for the solution will always remain in \(N_x \). But as stressed in Section 5.1, there are at least three good reasons not to ignore the more general Poisson structure!

5.3.4 Darboux’s theorem

At the end of Section 2.1.1, we mentioned Darboux’s theorem: it said that any symplectic manifold “looks locally like” a cotangent bundle. The generalization for Poisson manifolds says that any Poisson manifold “looks locally like” our canonical example on \(\mathbb{R}^m, m = 2n + l \), given at the start of Section 5.2.1. More precisely, we have:
Let M be an m-dimensional Poisson manifold, and let $x \in M$ be a point with an open neighbourhood $U \subset M$ throughout which the rank is a constant $2n \leq m$. Then defining $l := m-2n$, there is a possibly smaller neighbourhood $U' \subset U$ of x, on which there exist local coordinates $(q,p,z) = (q^1, \ldots, q^n, p^1, \ldots, p^l, z^1, \ldots, z^l)$, for which the Poisson bracket takes the form

$$\{F, H\} := \sum^n_i \left(\frac{\partial F}{\partial q^i} \frac{\partial H}{\partial p^i} - \frac{\partial F}{\partial p^i} \frac{\partial H}{\partial q^i} \right).$$

(So the Poisson brackets for the coordinate functions take the now-familiar form given by eq. 237 and 238.) The symplectic leaves of M intersect the coordinate chart in the slices $\{z^1 = c_1, \ldots, z^l = c_l\}$ given by constant values of the distinguished coordinates z.

We shall not give the proof. Suffice it to say that:

(i) Like Darboux's theorem for symplectic manifolds: it proceeds by induction on the "half-rank" n; and it begins by taking any function F as the "momentum" p^1 and constructing the canonically conjugate coordinate q^1 such that $\{q^1, p^1\} = 1$.

(ii) The induction step invokes a version of Frobenius' theorem in which the fact that the rank $2n$ is constant throughout U secures a coordinate system in which the $2n$-dimensional integral manifolds are given by slices defined by constant values of the remaining l coordinates. The Poisson structure then secures that these remaining coordinates are distinguished.

5.3.4.1 Example: $\mathfrak{so}(3)^*$ yet again We illustrate (1) the foliation theorem and (2) Darboux's theorem, with $\mathfrak{so}(3)^*$; whose Lie-Poisson structure we described in Section 5.2.4.1.

(1) At $x \in \mathfrak{so}(3)^*$, the subspace $\mathcal{X}_x := \{X_H(x) : H \in \mathcal{F}(U), \ U \text{ open in } M \}$ of values of locally Hamiltonian vector fields is spanned by $e_1 := y\partial_x - z\partial_y$ representing infinitesimal rotation about the x-axis (cf. eqns. 48, 107 and 154); $e_2 := z\partial_x - x\partial_z$ for rotation about the y-axis; and $e_3 := x\partial_y - y\partial_x$ for rotation about the z-axis. If $x \neq 0$, these vectors span a two-dimensional subspace of $T_x\mathfrak{so}(3)^*$: viz. the tangent plane to the sphere $S|_x$ of radius $|x|$ centred at the origin. So the foliation theorem implies that $\mathfrak{so}(3)^*$'s symplectic leaves are these spheres; and the origin.

We can compute the Poisson bracket of $F, G : S|_x \to \mathbb{R}$ by extending F and G to a neighbourhood of $S|_x$; cf. eq. 290. That is: we can consider extensions $\tilde{F}, \tilde{G} : U \supset S|_x \to \mathbb{R}$, and calculate the Poisson bracket in $\mathfrak{so}(3)^*$, whose Poisson structure we already computed in eq. 264.

Adopting spherical polar coordinates with $r = |x|$, i.e. $x^1 = r\cos \theta \sin \phi, x^2 = r\sin \theta \sin \phi, x^3 = r\cos \phi$, we can define \tilde{F}, \tilde{G} merely by $\tilde{F}(r, \theta, \phi) := F(\theta, \phi)$,
\(\tilde{G}(r, \theta, \phi) := G(\theta, \phi) \); so that the partial derivatives with respect to the spherical angles \(\theta, \phi \) are equal, i.e. \(\tilde{F}_\theta = F_\theta, \tilde{F}_\phi = F_\phi, \tilde{G}_\theta = G_\theta, \tilde{G}_\phi = G_\phi \). Besides, eq. 246 implies that we need only calculate the Poisson bracket in \(\mathfrak{so}(3)^* \) of the spherical angles \(\theta \) and \(\phi \). So eq. 264 gives

\[
(295) \quad \{\theta, \phi\} = -x \cdot (\nabla \theta \times \nabla \phi) = \frac{-1}{r \sin \phi};
\]

and eq. 290 and 246 give

\[
(296) \quad \{F, G\} = \{\tilde{F}, \tilde{G}\} = \frac{-1}{r \sin \phi} (F_\theta G_\phi - F_\phi G_\theta).
\]

(2) \(z := x^3 \) defines the Hamiltonian vector field \(X_z = x^2 \partial_{x^1} - x^1 \partial_{x^2} \) that generates clockwise rotation about the \(z \equiv x^3 \)-axis. So away from the origin the polar angle \(\theta := \arctan(x^2/x^1) \) has a Poisson bracket with \(z \) equal to: \(\{\theta, z\} = X_z(\theta) = -1 \). Expressing \(F, H : \mathfrak{so}(3)^* \rightarrow \mathbb{R} \) in terms of the coordinates \(z, \theta \) and \(r := |x| \), we find that the Lie-Poisson bracket is: \(\{F, H\} = F_z H_\theta - F_\theta H_z \). So \((z, \theta, r) \) are canonical coordinates.

5.4 The symplectic structure of the co-adjoint representation

Section 5.2.4 described how the dual \(\mathfrak{g}^* \) of a finite-dimensional Lie algebra of a Lie group \(G \) has the structure of a Poisson manifold. In this case, the foliation established in the previous Subsection has an especially neat interpretation. Namely: the leaves are the orbits of the co-adjoint representation of \(G \) on \(\mathfrak{g}^* \).

This symplectic structure in the co-adjoint representation sums up themes from Sections 4.5 (especially 4.5.2), and 5.2.4 and 5.3. In particular, it connects two properties of the Lie bracket in \(\mathfrak{g} \), which we have already seen: viz.

(i) The Lie bracket in \(\mathfrak{g} \) gives the infinitesimal generators of the adjoint action; cf. eq. 179.

(ii) The Lie bracket in \(\mathfrak{g} \) defines (in a basis-independent way) a Lie-Poisson bracket on \(\mathfrak{g}^* \), thus making \(\mathfrak{g}^* \) a Poisson manifold. (Cf. the definition in eq. 255, shown to be basis-independent by eq. 258.)

In fact, there is a wealth of instructive results and examples about the structure of the co-adjoint representation: we will only scratch the surface — as in other Sections! We will give a proof, under a simplifying assumption, of one main result; and then make a few remarks about other results.

The result is:

The orbits of the co-adjoint representation are \(\mathfrak{g}^* \)'s leaves

Let \(G \) be a Lie group, with its co-adjoint representation \(Ad^* \) on \(\mathfrak{g}^* \). That is, recalling eq. 193, we have:

\[
(297) \quad Ad^* : G \rightarrow \text{End}(\mathfrak{g}^*), \quad Ad^*_{g^{-1}} = (T_e(R_g \circ L_{g^{-1}}))^*.
\]
The orbits of this representation are the symplectic leaves of \(g^* \), taken as equipped with its natural Poisson structure, i.e. the Lie-Poisson bracket eq. 258.

Proof. We shall prove this under the simplifying assumption that the co-adjoint action of \(G \) on \(g^* \) is proper. (We recall from the definition of proper actions, eq. 147, that for any compact Lie group, such as \(SO(3) \), this condition is automatically satisfied.) Then we know from result (3) and eq. 160, at the end of Section 4.4, that this implies that the co-adjoint orbit \(\text{Orb}(\alpha) \) of any \(\alpha \in g^* \) is a closed submanifold of \(g^* \), and that the tangent space to \(\text{Orb}(\alpha) \) at a point \(\beta \in \text{Orb}(\alpha) \) is

\[
(298) \quad T\text{Orb}(\alpha)_\beta = \{ \xi_{g^*}(\beta) : \xi \in g \}.
\]

We will see shortly how this assumption implies that \(g^* \)'s symplectic leaves are submanifolds.\(^{21}\)

We now argue as follows. For \(\xi \in g \), consider the scalar function on \(g^* \), \(K_\xi : \alpha \in g^* \mapsto K_\xi(\alpha) := <\alpha; \xi > \in \mathbb{R} \); and its Hamiltonian vector field \(X_{K_\xi} \). At each \(\alpha \in g^* \), the gradient \(\nabla K_\xi(\alpha) \equiv dK_\xi(\alpha) \), considered as an element of \((T^*g^*)_\alpha \cong g \), is just \(\xi \) itself. Now we will compute \(X_{K_\xi}(F)(\alpha) \) for any \(F : g^* \to \mathbb{R} \) and any \(\alpha \in g^* \), using in order:

(i) the intrinsic definition of the Lie-Poisson bracket on \(g^* \), eq. 258;

(ii) the fact that the infinitesimal generator of the adjoint action is the Lie bracket in \(g \), eq. 179;

(iii) the fact that the derivative \(ad^* \) of the co-adjoint action \(Ad^* \) is, up to a sign, the adjoint of \(ad_\xi \); eq. 198.

Thus we get, for all \(F : g^* \to \mathbb{R} \) and \(\alpha \in g^* \):

\[
(299) \quad X_{K_\xi}(F)(\alpha) \equiv \{F; K_\xi\}(\alpha) = <\alpha ; [\nabla F(\alpha), \nabla K_\xi(\alpha)] >
\]

\[
(300) \quad = <\alpha ; [\nabla F(\alpha), \xi] > = - <\alpha ; [\xi, \nabla F(\alpha)] >
\]

\[
(301) \quad = - <\alpha ; ad_\xi(\nabla F(\alpha)) >
\]

\[
(302) \quad = < ad^*_\xi(\alpha) ; \nabla F(\alpha) >.
\]

But on the other hand, the vector field \(X_{K_\xi} \) is uniquely determined by its action on all such functions \(F \) at all \(\alpha \in g^* \):

\[
(303) \quad X_{K_\xi}(F)(\alpha) \equiv < X_{K_\xi}(\alpha) ; \nabla F(\alpha) >.
\]

So we conclude that at each \(\alpha \in g^* \):

\[
(304) \quad X_{K_\xi} = ad^*_\xi.
\]

\(^{21}\)To verify that our condition is indeed simplifying — i.e. that in general the co-adjoint orbits in \(g^* \) are not submanifolds — consider the example in Marsden and Ratiu (1999: 14.1.(f), p. 449); taken from Kirillov (1976: 293).
But the subspace $\mathcal{X}|_\alpha$ of values at α of Hamiltonian vector fields is spanned by the $X_{K_\xi}(\alpha)$, with ξ varying through \mathfrak{g}. And as ξ varies through \mathfrak{g}, $ad_\xi^*(\alpha)$ is the tangent space $T\text{Orb}(\alpha)_\alpha$ to the co-adjoint orbit $\text{Orb}(\alpha)$ of G through α. So

$$\text{(305)} \quad \mathcal{X}|_\alpha = T\text{Orb}(\alpha)_\alpha.$$

So the integral submanifolds of the system \mathcal{X} of Hamiltonian vector fields, which are the symplectic leaves of \mathfrak{g}^* by Section 5.3.3.1's foliation theorem, are the co-adjoint orbits.

For the illustration of this theorem by our standard example, $\mathfrak{so}(3)^*$, cf. our previous discussions of it: in Section 4.5.2 for its co-adjoint structure; in Section 5.2.4.1 for its Lie-Poisson structure; and in Section 5.3.4.1 for its symplectic leaf structure.

We end this Subsection by stating two other results. They are not needed later, but they are enticing hints of how rich is the theory of co-adjoint orbits.

1. For each $g \in G$, the co-adjoint map $Ad_g^* : \mathfrak{g}^* \rightarrow \mathfrak{g}^*$ is a Poisson map that preserves the symplectic leaves of \mathfrak{g}^*.

2. A close cousin of the theorem just proven is that the Lie bracket on \mathfrak{g} defines (via its definition of the Lie-Poisson bracket on \mathfrak{g}^*, eq. 258) a symplectic form, i.e. a non-degenerate closed two-form, on each co-adjoint orbit, by:

$$\text{(306)} \quad \omega(\alpha)(ad_\xi^*(\alpha), ad_\eta^*(\alpha)) := <\alpha; [\xi, \eta]_\mathfrak{g}>, \quad \forall \alpha \in \mathfrak{g}^*, \forall \xi, \eta \in \mathfrak{g}.$$

This theorem is proven in detail (without our simplifying assumption that G's action is proper) by Marsden and Ratiu [1999, Thm 14.3.1, pp. 453–456]; and much more briefly by Arnold [1989, 321, 376–377, 457]; and rather differently (even without using the notion of a Poisson manifold!) in [Abraham and Marsden, 1978, 302–303].

5.5 Quotients of Poisson manifolds

We now end Section 5 with the simplest general theorem about quotienting a Lie group action on a Poisson manifold, so as to get a quotient space (set of orbits) that is itself a Poisson manifold. So this theorem combines themes from Sections 4 — in particular, the idea from Section 4.3.0.2 that for a free and proper group action, the orbits and quotient space are manifolds — with material about Poisson manifolds from Section 5.2. (The material in Sections 5.3 and 5.4 will not be needed.) This theorem will be important in Section 7. We call this result the

Poisson reduction theorem: Suppose the Lie group G acts on Poisson manifold M is such a way that each $\Phi_g : M \rightarrow M$ is a Poisson map. Suppose also that the quotient space M/G is a manifold and the projection $\pi : M \rightarrow M/G$ is a smooth submersion (say because G's action on M is free and proper, cf. Section 4.3.0.3). Then there is a unique Poisson structure on M/G such that π is a Poisson map. The Poisson bracket on M/G is called the reduced Poisson bracket.
Proof. Let us first assume that M/G is a Poisson manifold and that π is a Poisson map; and show uniqueness. We first note that for any $f : M/G \rightarrow \mathbb{R}$, the function $\bar{f} := f \circ \pi : M \rightarrow \mathbb{R}$ is obviously the unique G-invariant function on M that projects by π to f. That is: if $[x] \equiv \text{Orb}(x) \equiv G \cdot x$ is the orbit of $x \in M$, then \bar{f} assigns the same value $f([x])$ to all elements of the orbit $[x]$. Besides, in terms of pullbacks (eq. 282), $\bar{f} = \pi^* f$.

Then the condition that π be Poisson, eq. 283, is that for any two smooth scalars $f, h : M/G \rightarrow \mathbb{R}$, we have an equation of smooth scalars on M:

$$ (307) \quad \{f, h\}_{M/G} \circ \pi = \{f \circ \pi, h \circ \pi\}_M = \{\bar{f}, \bar{h}\}_M $$

where the subscripts indicate on which space the Poisson bracket is defined. Since π is surjective, eq. 307 determines the value $\{f, h\}_{M/G}$ uniquely.

But eq. 307 also defines $\{f, h\}_{M/G}$ as a Poisson bracket; in two stages. (1): The facts that Φ_g is Poisson, and \bar{f} and \bar{h} are constant on orbits imply that

$$ (308) \quad \{\bar{f}, \bar{h}\}(g \cdot x) = (\{\bar{f}, \bar{h}\} \circ \Phi_g)(x) = \{\bar{f} \circ \Phi_g, \bar{h} \circ \Phi_g\}(x) = \{\bar{f}, \bar{h}\}(x). $$

That is: $\{\bar{f}, \bar{h}\}$ is also constant on orbits, and so defines $\{f, h\}$ uniquely.

(2): We show that $\{f, h\}$, as thus defined, is a Poisson structure on M/G, by checking that the required properties, such as the Jacobi identity, follow from the Poisson structure $\{., .\}_M$ on M.

This theorem is a "prototype" for material to come. We spell this out in two brief remarks, which look forward to the following two Sections.

(1): Other theorems:

This theorem is one of many that yield new Poisson manifolds and symplectic manifolds from old ones by quotienting. In particular, as we will see in detail in Section 7, this theorem is exemplified by the case where $M = T^* G$ (so here M is symplectic, since it is a cotangent bundle), and G acts on itself by left translations, and so acts on $T^* G$ by a cotangent lift. In this case, we will have $M/G \cong g^*$; and the reduced Poisson bracket just defined, by eq. 307, will be the Lie-Poisson bracket we have already met in Section 5.2.4.

(2): Reduction of dynamics:

Using this theorem, we can already fill out a little what is involved in reduced dynamics; which we only glimpsed in our introductory discussions, in Section 2.3 and 5.1. We can make two basic points, as follows.

(A) If H is a G-invariant Hamiltonian function on M, it defines a corresponding function h on M/G by $H = h \circ \pi$. The fact that Poisson maps push Hamiltonian flows forward to Hamiltonian flows (eq. 286) implies, since π is Poisson, that π transforms X_H on M to X_h on M/G. That is:

$$ (309) \quad T\pi \circ X_H = X_h \circ \pi ; $$
i.e. X_H and X_h are π-related. Accordingly, we say that the Hamiltonian system X_H on M reduces to that on M/G.

(B) We shall see in Section 6.2 that G-invariance of H is associated with a family of conserved quantities (constants of the motion, first integrals), viz. a constant of the motion $J(\xi) : M \to \mathbb{R}$ for each $\xi \in \mathfrak{g}$. Here, J being conserved means $\{J, H\} = 0$; just as in our discussion of Noether's theorem in ordinary Hamiltonian mechanics (Section 2.1.3). Besides, if J is also G-invariant, then the corresponding function j on M/G is conserved by X_h since

$$\{j, h\} \circ \pi = \{J, H\} = 0 \implies \{j, h\} = 0.$$

6 SYMMETRY AND CONSERVATION REVISITED: MOMENTUM MAPS

We now develop the topics of symmetry and conserved quantities (and so Noether's theorem) in the context of Poisson manifolds. At the centre of these topics lies the idea of a momentum map of a Lie group action on a Poisson manifold; which we introduce in Section 6.1. This is the modern geometric generalization of a conserved quantity, such as linear or angular momentum for the Euclidean group — hence the name. Formally, it will be a map \mathbf{J} from the Poisson manifold M to the dual \mathfrak{g}^* of the Lie algebra of the symmetry group G. Since its values lie in a vector space, it has components. So our description of conserved quantities will no longer be "one-dimensional", i.e. focussed on a single vector field in the state space, as it was in Section 2.1.3. The map \mathbf{J} will be associated with a linear map J from \mathfrak{g} to $\mathcal{F}(M)$, the scalar functions on the manifold M. That is: for each $\xi \in \mathfrak{g}$, $J(\xi)$ will be a conserved quantity if the Hamiltonian H is invariant under the infinitesimal generator ξ_M, i.e. if $\xi_M(H) = 0$.

The conservation of momentum maps will be expressed by the Poisson manifold version of Noether's theorem (Section 6.2), and illustrated by the familiar examples of linear and angular momentum (Section 6.3). Then we discuss the equivariance of momentum maps, with respect to the co-adjoint representation of G on \mathfrak{g}^*; Section 6.4. Finally in Section 6.5, we discuss the crucial special case of momentum maps on cotangent bundles, again with examples.

6.1 Canonical actions and momentum maps

We first apply the definition of Poisson maps (from Section 5.3.2) to group actions (Section 6.1.1). This will lead to the idea of the momentum map (Section 6.1.2).

6.1.1 Canonical actions and infinitesimal generators

Let G be a Lie group acting on a Poisson manifold M by a smooth left action $\Phi : G \times M \to M$; so that as usual we write $\Phi_g : x \in M \mapsto \Phi_g(x) := g \cdot x \in M$. As in the definition of a Poisson map (eq. 283), we say the action is canonical if
(311) \(\Phi^*_g\{F_1, F_2\} = \{\Phi^*_g F_1, \Phi^*_g F_2\} \)

for any \(F_1, F_2 \in \mathcal{F}(M) \) and any \(g \in G \). If \(M \) is symplectic with symplectic form \(\omega \), then the action is canonical iff it is symplectic, i.e. \(\Phi^*_g \omega = \omega \) for all \(g \in G \).

We will be especially interested in the infinitesimal version of this notion; and so with infinitesimal generators of actions. We recall from eq. 152 that the infinitesimal generator of the action corresponding to a Lie algebra element \(\xi \in g \) is the vector field \(\xi_M \) on \(M \) obtained by differentiating the action with respect to \(g \) at the identity in the direction \(\xi \):

(312) \(\xi_M(x) = \frac{d}{d\tau}[\exp(\tau\xi) \cdot x] \big|_{\tau=0} \).

So we differentiate eq. 311 with respect to \(g \) in the direction \(\xi \), to give:

(313) \(\xi_M(\{F_1, F_2\}) = \{\xi_M(F_1), F_2\} + \{F_1, \xi_M(F_2)\} \).

Such a vector field \(\xi_M \) is called an infinitesimal Poisson automorphism.

Side-remark: We will shortly see that it is the universal quantification over \(g \in G \) in eq. 311, and correspondingly in eq. 313 and 315 below, that means our description of conserved quantities is no longer focussed on a single vector field; and in particular, that a momentum map representing a conserved quantity has components.

In the symplectic case, differentiating \(\Phi^*_g \omega = \omega \) implies that the Lie derivative \(\mathcal{L}_{\xi_M} \omega \) of \(\omega \) with respect to \(\xi \) vanishes: \(\mathcal{L}_{\xi_M} \omega = 0 \). We saw in Section 2.1.3 that this is equivalent to \(\xi_M \) being locally Hamiltonian, i.e. there being a local scalar \(J : U \subset M \to \mathbb{R} \) such that \(\xi_M = X_J \). This was how Section 2.1.3 vindicated eq. 19's "one-liner" approach to Noether's theorem: because the vector field \(X_f \) is locally Hamiltonian, it preserves the symplectic structure, i.e. Lie-derives the symplectic form \(\mathcal{L}_{X_J} \omega = 0 \) — as a symmetry should.

We also saw in result (2) at the end of Section 3.2.2 that the "meshing", up to a sign, of the Poisson bracket on scalars with the Lie bracket on vector fields implied that the locally Hamiltonian vector fields form a Lie subalgebra of the Lie algebra \(\mathcal{X}(M) \) of all vector fields.

Turning to the context of Poisson manifolds, we need to note two points. The first is a similarity with the symplectic case; the second is a contrast.

1. One readily checks, just by applying eq. 313, that the infinitesimal Poisson automorphisms are closed under the Lie bracket. So we write the Lie algebra of these vector fields as \(\mathcal{P}(M) : \mathcal{P}(M) \subset \mathcal{X}(M) \).

2. On the other hand, Section 2.1.3's equivalence between a vector field being locally Hamiltonian and preserving the geometric structure of the state-space breaks down.

Agreed, the first implies the second: a locally Hamiltonian vector field preserves the Poisson bracket. We noted this already in Section 5.3.2. The differential
statement was that such a field X_H Lie-derives the Poisson tensor: $\mathcal{L}_{X_H}B^i = 0$ (eq. 285). The finite statement was that the flows of such a field are Poisson maps: $\phi^*_t\{F,G\} = \{\phi^*_t F, \phi^*_t G\}$ (eq. 284).

But the converse implication fails: an infinitesimal Poisson automorphism on a Poisson manifold need not be locally Hamiltonian. For example, make \mathbb{R}^2 a Poisson manifold by defining the Poisson structure

$$ (314) \quad \{F, H\} = x \left(\frac{\partial F}{\partial x} \frac{\partial H}{\partial y} - \frac{\partial H}{\partial x} \frac{\partial F}{\partial y} \right); $$

then the vector field $X = \partial/\partial y$ in a neighbourhood of a point on the y-axis is a non-Hamiltonian infinitesimal Poisson automorphism.

This point will affect the formulation of Noether's theorem for Poisson manifolds, in Section 6.2.

Nevertheless, we shall from now on be interested in cases where for all ξ, ξ_M is globally Hamiltonian. This means there is a map $J : g \to \mathcal{F}(M)$ such that

$$ (315) \quad X_{J(\xi)} = \xi_M $$

for all $\xi \in g$. There are three points we need to note about this condition.

(1) Since the right hand side of eq. 315 is linear in ξ, we can require such a J to be a linear map. For given any J obeying eq. 315, we can take a basis e_1, \ldots, e_m of g and define a new linear \tilde{J} by setting, for any $\xi = \xi^i e_i$, $\tilde{J}(\xi) := \xi^i \tilde{J}(e_i)$.

(2) Eq. 315 does not determine $J(\xi)$. For by the linearity of the map $B : dJ(\xi) \mapsto X_{J(\xi)}$, we can add to such a $J(\xi)$ any distinguished function, i.e. an $F : M \to \mathbb{R}$ such that $X_F = 0$. That is: $X_{J(\xi)+F} \equiv X_{J(\xi)}$. (Of course, in the symplectic case, the only distinguished functions are constants.)

(3) It is worth expressing eq. 315 in terms of Poisson brackets. Recalling that for any $F, H \in \mathcal{F}(M)$, we have $X_H(F) = \{F, H\}$, this equation becomes

$$ (316) \quad \{F, J(\xi)\} = \xi_M(F), \quad \forall F \in \mathcal{F}(M), \quad \forall \xi \in g. $$

We will also need the following result:

$$ (317) \quad X_{J(\xi, \eta)} = X_{\{J(\xi), J(\eta)\}}. $$

To prove this, we just apply two previous results, each giving a Lie algebra anti-homomorphism.

(i) Result (4) at the end of Section 4.4: for any left action of Lie group G on any manifold M, the map $\xi \mapsto \xi_M$ is a Lie algebra anti-homomorphism between g and the Lie algebra \mathcal{X}_M of all vector fields on M:

$$ (318) \quad (a\xi + b\eta)_M = a\xi_M + b\eta_M ; \quad [\xi_M, \eta_M] = -[\xi, \eta]_M, \quad \forall \xi, \eta \in g, \quad \text{and} \quad a, b \in \mathbb{R}. $$
(ii) The “meshing” up to a sign, just as in the symplectic case, of the Poisson bracket on scalars with the Lie bracket on vector fields, as in eq. 242 at the end of Section 5.2.2:

\[(319) \quad X_{\{F,H\}} = -[X_F, X_H] = [X_H, X_F].\]

So for a Poisson manifold \(M\), the map \(F \in \mathcal{F}(M) \mapsto X_F \in \mathcal{X}(M)\) is a Lie algebra anti-homomorphism.

Applying (i) and (ii), we deduce eq. 317 by:

\[(320) \quad X_J(\{\xi, \eta\})_M = [\xi, \eta]_M = -[\xi_M, \eta_M] = -[X_J(\xi), X_J(\eta)] = X_{\{J(\xi), J(\eta)\}}_M.\]

6.1.2 Momentum maps introduced

So suppose that there is a canonical left action of \(G\) on a Poisson manifold \(M\). And suppose there is a linear map \(J : g \rightarrow \mathcal{F}(M)\) such that

\[(321) \quad X_{J(\xi)} = \xi_M\]

for all \(\xi \in g\).

The two requirements — that the action be infinitesimally canonical (i.e. each \(\xi_M \in \mathcal{P}(M)\)) and that each \(\xi_M\) be globally Hamiltonian — can be expressed as requiring that there be a \(J : g \rightarrow \mathcal{F}(M)\) such that there is a commutative diagram. Namely, the map \(\xi \in g \mapsto \xi_M \in \mathcal{P}(M)\) is to equal the composed map:

\[(322) \quad g \xrightarrow{J} \mathcal{F}(M) \xrightarrow{F \mapsto X_F} \mathcal{P}(M).\]

Then the map \(J : M \rightarrow g^*\) defined by

\[(323) \quad < J(x) ; \xi > := J(\xi)(x)\]

for all \(\xi \in g\) and \(x \in M\), is called the momentum map of the action.

Another way to state this definition is as follows. Any smooth function \(J : M \rightarrow g^*\) defines at each \(\xi \in g\) a scalar \(J(\xi) : x \in M \mapsto (J(x))(\xi) \in \mathbb{R}\). By taking \(J(\xi)\) as a Hamiltonian function, one defines a Hamiltonian vector field \(X_{J(\xi)}\). But since \(G\) acts on \(M\), each \(\xi \in g\) defines a vector field on \(M\), viz. \(\xi_M\). So we say that \(J\) is a momentum map for the action if for each \(\xi \in g\), these two vector fields are identical: \(X_{J(\xi)} = \xi_M\).

Three further remarks by way of illustrating this definition:

1. **An isomorphism:**

 One readily checks that eq. 323 defines an isomorphism between the space of smooth maps \(J\) from \(M\) to \(g^*\), and the space of linear maps \(J\) from \(g\) to scalar functions \(\mathcal{F}(M)\). We can take \(J\) to define \(J\) by saying that at each \(x \in M\), \(J(x) : \xi \in g \mapsto J(x)(\xi) \in \mathbb{R}\) is to be given by the composed map

\[(324) \quad g \xrightarrow{J} \mathcal{F}(M) \xrightarrow{z} \mathbb{R},\]
where $|_x$ means evaluation at $x \in M$. Or we can take J to define J by saying that at each $\xi \in \mathfrak{g}$, $J(\xi): x \in M \mapsto J(\xi)(x) \in \mathbb{R}$ is to be given by the composed map

$$(325) \quad M \xrightarrow{J} \mathfrak{g}^* \xrightarrow{|_\xi} \mathbb{R},$$

where $|_\xi$ means evaluation at $\xi \in \mathfrak{g}$.

(2): Differential equations for the momentum map:

Using Hamilton's equations, we can readily express the definition of momentum map as a set of differential equations. Recall that on a Poisson manifold, Hamilton's equations are determined by eq. 270, which was that at each $x \in M$

$$(326) \quad B_x(dH(x)) = X_H(x);$$

or in local coordinates $x^i, i = 1, \ldots, m \equiv \dim(M)$, with $J^{ij}(x) \equiv \{x^i, x^j\}$ the structure matrix,

$$(327) \quad B_x(\frac{\partial H}{\partial x^j}dx^j) = \Sigma_{i,j} J^{ij}(x) \frac{\partial H}{\partial x^j} \frac{\partial}{\partial x^j}|_x;$$

(cf. eq. 272). So in local coordinates, Hamilton's equations are given by eq. 253, which was:

$$(328) \quad \frac{dx^i}{dt} = \Sigma_j^m J^{ij}(x) \frac{\partial H}{\partial x^j}.$$

So the condition for a momentum map $X_{J(\xi)} = \xi_M$ is that for all $\xi \in \mathfrak{g}$ and all $x \in M$

$$(329) \quad B_x(d(J(\xi))(x)) = \xi_M(x).$$

In coordinates, this is the requirement that for all $i = 1, \ldots, m$

$$(330) \quad \Sigma_j^m J^{ij}(x) \frac{\partial J(\xi)}{\partial x^j} = (\xi_M)^i(x),$$

where — apologies! — the two Js on the left hand side have very different meanings.

In the symplectic case, $\dim(M) \equiv m = 2n$ and we have Hamilton's equations as eq. 15, viz.

$$(331) \quad i_{X_H}\omega := \omega(X_H, \cdot) = dH(\cdot).$$

So the condition for a momentum map is that for all ξ

$$(332) \quad \omega(\xi_M, \cdot) = d(J(\xi))(\cdot).$$

In Hamiltonian mechanics, it is common to write the $2n$ local coordinates q, p as ξ, i.e. to write

$$(333) \quad \xi^\alpha := q^\alpha, \alpha = 1, \ldots, n; \quad \xi^\alpha := p_{\alpha-n}, \alpha = n + 1, \ldots, 2n.$$
So in order to express eq. 332 in local coordinates, let us temporarily write \(\eta \) for the arbitrary element of \(g \). Then writing \(\eta_M = (\eta_M)^\alpha \frac{\partial}{\partial \xi^\alpha} \) and \(\omega_{\alpha \beta} := \omega(\frac{\partial}{\partial \xi^\alpha}, \frac{\partial}{\partial \xi^\beta}) \), eq. 332 becomes

\[
(334) \quad \omega_{\alpha \beta}(\eta_M)^\alpha = \frac{\partial J(\eta)}{\partial \xi^\beta}.
\]

(3): Components: an example:
As discussed after eq. 313, we think of the collection of functions \(J(\xi) \), as \(\xi \) varies through \(g \), as the components of \(J \).

To take our standard example: the angular momentum of a particle in Euclidean space, in a state \(x = (q, p) \) is \(J(x) := q \wedge p \). Identifying \(\mathfrak{so}(3)^* \) with \(\mathbb{R}^3 \) so that the natural pairing is given by the dot product (cf. (3) at the end of Section 4.5.2), we get that the component of \(J(x) \) around the axis \(\xi \in \mathbb{R}^3 \) is \(\langle J(x); \xi \rangle = \xi \cdot (q \wedge p) \). The Hamiltonian vector field determined by this Hamiltonian function \(x = (q, p) \mapsto \xi \cdot (q \wedge p) \) is of course the infinitesimal generator of rotations about the \(\xi \)-axis. In Section 6.3, we will see more examples of momentum maps.

6.2 Conservation of momentum maps: Noether's theorem

In ordinary Hamiltonian mechanics, we saw that Noether's theorem had a simple expression as a "one-liner" based on the antisymmetry of the Poisson bracket: namely, in eq. 19, which was that for any scalar functions \(F, H \)

\[
(335) \quad X_F(H) = \{H, F\} = 0 \quad \text{iff} \quad 0 = \{F, H\} = X_H(F).
\]

In words: the Hamiltonian \(H \) is constant under the flow induced by \(F \) iff \(F \) is a constant of the motion under the dynamical flow \(X_H \).

More precisely, Section 2.1.3 vindicated this one-liner as expressing Noether's theorem. For the one-liner respected the requirement that a symmetry should preserve the symplectic form (equivalently, the Poisson bracket), and not just (as in the left hand side of eq. 335) the Hamiltonian function \(H \); for, by Cartan's magic formula, a vector field's preserving the symplectic form was equivalent to its being locally Hamiltonian.

For Poisson manifolds, the equivalence corresponding to this last statement fails. That is, as we noted in (2) of Section 6.1.1: an infinitesimal Poisson automorphism need not be locally Hamiltonian.

Nevertheless, most of the "one-liner" approach to Noether's theorem carries over to the framework of Poisson manifolds. In effect, we just restrict discussion to cases where the relevant Hamiltonian vector fields exist: recall our saying after (2) of Section 6.1.1 that we would concentrate on cases where all the \(\xi_M \) are globally Hamiltonian.

Thus, it is straightforward to show that for a Poisson manifold \(M \), just as for symplectic manifolds: if \(F, H \in \mathcal{F}(M) \), \(H \) is constant along the integral curves of \(X_F \) iff \(\{H, F\} = 0 \) iff \(F \) is constant along the integral curves of \(X_H \). (We could
have proved this already in Section 5.2.2; but postponed it till now, when it will be used.)

With this result as a lemma, one immediately gets

Noether's theorem for Poisson manifolds Suppose that \(G \) acts canonically on a Poisson manifold \(M \) and has a momentum map \(J : M \to g^* \); and that \(H \) is invariant under \(\xi_M \) for all \(\xi \in g \), i.e. \(\{H, J(\xi)\} = \xi_M(H) = 0, \forall \xi \in g \); (cf. eq. 316). Then \(J \) is a constant of the motion determined by \(H \). That is:

\[(336)\quad J \circ \phi_t = J\]

where \(\phi_t \) is the flow of \(X_H \).

Proof. By the lemma, the fact that \(\{H, J(\xi)\} = \xi_M(H) = 0 \) implies that \(J(\xi) \) is constant along the flow of \(X_H \). So by the definition of momentum map, eq. 323, the corresponding \(g^* \)-valued map \(J \) is also a constant of the motion. ■

It follows immediately that \(H \) itself, and any distinguished function, is a constant of the motion. Besides, as remarked in (2) at the end of Section 6.1.1: a constant of the motion \(J(\xi) \) is determined only up to an arbitrary choice of a distinguished function. Indeed, though this Chapter has set aside (ever since (iii) of Section 1.2) time-dependent functions: if one considers them, then there is here an arbitrary choice of a time-dependent distinguished function.

6.3 Examples

We give two familiar examples; and then, as a glimpse of the general power of the theory, two abstract examples (which will not be needed later on).

(1): **Total linear momentum of \(N \) particles:**

In (3) at the end of Section 4.1.0.1, we showed that the left cotangent lift of the action of the translation group \(\mathbb{R}^3 \) on \(Q = \mathbb{R}^{3N} \) to \(M = T^*\mathbb{R}^{3N} \), i.e. the left action corresponding to eq. 126, is

\[(337)\quad \Psi_x(q_i, p^i) := T^*(\Phi_{-x})(q_i, p^i) = (q_i + x, p^i), \quad i = 1, ..., N.\]

(Here we combine the discussions of examples (vi) and (ix) in Section 4.1.0.1)

To find the momentum map, we: (a) compute the infinitesimal generator \(\xi_M \) for an arbitrary element \(\xi \) of \(g = \mathbb{R}^3 \); and then (b) solve eq. 332, or in coordinates eq. 334.

(a) We differentiate eq. 337 with respect to \(x \) in the direction \(\xi \), getting

\[(338)\quad \xi_M(q_i, p^i) = (\xi, ..., \xi, 0, ..., 0).\]

(b) Any function \(J(\xi) \) has Hamiltonian vector field
(339) \[X_{J(\xi)}(q_i, p^i) = \left(\frac{\partial J(\xi)}{\partial p^i}, -\frac{\partial J(\xi)}{\partial q_i} \right) \];

so that the desired \(J(\xi) \) with \(X_{J(\xi)} = \xi_M \) solves

(340) \[\frac{\partial J(\xi)}{\partial p^i} = \xi \quad \text{and} \quad \frac{\partial J(\xi)}{\partial q_i} = 0, \ 1 \leq i \leq N. \]

Choosing constants so that \(J \) is linear, the solution is

(341) \[J(\xi)(q_i, p^i) = \left(\sum_{i=1}^{N} p^i \right) \cdot \xi, \quad \text{i.e.} \quad J(q_i, p^i) = \sum_{i=1}^{N} p^i; \]

i.e. the familiar total linear momentum.

(2): Angular momentum of a single particle:

\(SO(3) \) acts on \(Q = \mathbb{R}^3 \) by \(\Phi_A(q) = Aq \). So the tangent (derivative) map is

(342) \[T_q \Phi_A : (q, v) \in T\mathbb{R}^3_q \rightarrow (Aq, Av) \in T\mathbb{R}^3_{Aq}. \]

As we saw in example (vii) of Section 4.1.0.1, the left cotangent lift of the action to \(M = T^*\mathbb{R}^3 \) (the lifted action "with \(g^{-1} \)", corresponding to eq. 126) is:

(343) \[T^*_{Aq}(\Phi_{A^{-1}})(q, p) = (Aq, Ap). \]

To find the momentum map, we proceed in two stages, (a) and (b), as in example (1).

(a) We differentiate eq. 343 with respect to \(A \) in the direction \(\xi = \Theta(\omega) \in so(3) \), where \(\omega \in \mathbb{R}^3 \) and \(\Theta \) is as in eq. 48 and 51. We get

(344) \[\xi_M(q, p) = (\xi q, \xi p) = (\omega \wedge q, \omega \wedge v). \]

(b) So the desired \(J(\xi) \) is the solution linear in \(\xi \) to the Hamilton's equations

(345) \[\frac{\partial J(\xi)}{\partial p} = \xi q \quad \text{and} \quad \frac{\partial J(\xi)}{\partial q} = -\xi p. \]

So a solution is given by

(346) \[J(\xi)(q, p) = (\xi q) \cdot p = (\omega \wedge q) \cdot p = (q \wedge p) \cdot \omega, \]

so that

(347) \[J(q, p) = q \wedge p, \]

i.e. the familiar angular momentum.
(3): Dual of a Lie algebra homomorphism:

We begin by stating a Lemma, which we will not prove; for details cf. Marsden and Ratiu [1999, 10.7.2, 372]. Namely: let G, H be Lie groups and let $\alpha : \mathfrak{g} \rightarrow \mathfrak{h}$ be a linear map between their Lie algebras. Then α is a Lie algebra homomorphism iff its dual $\alpha^* : \mathfrak{h}^* \rightarrow \mathfrak{g}^*$ is a (linear) Poisson map (where $\mathfrak{h}^*, \mathfrak{g}^*$ are equipped with their natural Lie-Poisson brackets as in Section 5.2.4).

Now let G, H be Lie groups, let $A : H \rightarrow G$ be a Lie group homomorphism, and let $\alpha : \mathfrak{h} \rightarrow \mathfrak{g}$ be the induced Lie algebra homomorphism; so that by the Lemma, $\alpha^* : \mathfrak{g}^* \rightarrow \mathfrak{h}^*$ is a Poisson map. We will prove that α^* is also a momentum map for the action of H on \mathfrak{g}^* given by, with $h \in H, x \in \mathfrak{g}^*$:

(348) $\Phi(h, x) \equiv h \cdot x := \text{Ad}_{A(h)^{-1}}^* x$.

Proof. We first recall the adjoint and co-adjoint actions $\text{Ad}_g : \mathfrak{g} \rightarrow \mathfrak{g}$ and $\text{Ad}_g^* : \mathfrak{g}^* \rightarrow \mathfrak{g}^*$; in particular, eq. 191. So the action in eq. 348 is:

(349) $\forall x \in \mathfrak{g}^*, \forall \xi \in \mathfrak{g} : < h \cdot x; \xi > = < x; \text{Ad}_{A(h)^{-1}}\xi >$.

As usual, we compute for $\eta \in \mathfrak{h}$, the infinitesimal generator η_{α^*} at $x \in \mathfrak{g}^*$ by differentiating eq. 349 with respect to h at e in the direction $\eta \in \mathfrak{h}$. We get (cf. eq. 198):

(350) $< \eta_{\alpha^*}(x); \xi > = -< x; \text{ad}_{\alpha(\eta)}\xi > = < \text{ad}_{\alpha(\eta)}^*(x); \xi >$.

We define $J(x) := \alpha^*(x)$: that is,

(351) $J(\eta)(x) \equiv < J(x); \eta > := < \alpha^*(x); \eta > \equiv < x; \alpha(\eta) >$;

which implies

(352) $\nabla_x J(\eta) = \alpha(\eta)$.

Now we recall that Hamilton’s equations for $J(\eta)$ as the Hamiltonian are (cf. eq. 261)

(353) $\dot{x} \equiv X_{J(\eta)}(x) = \text{ad}_{\nabla_x J(\eta)}^*(x)$.

Combining eq. 350 to eq. 353, we get:

(354) $X_{J(\eta)}(x) = \text{ad}_{\alpha(\eta)}^*(x) = \eta_{\alpha^*}(x)$;

proving that $J(x) := \alpha^*(x)$ is a momentum map.

(4): Momentum maps for subgroups:

Assume that $J : M \rightarrow \mathfrak{g}^*$ is a momentum map for a canonical left action of G on M; and let $H < G$ be a subgroup of G. Then H also acts canonically on M, and this action has as a momentum map the restriction of J’s values to $\mathfrak{h} \subset \mathfrak{g}$. That is: the map

(355) $J_H : M \rightarrow \mathfrak{h}^*$ given by $J_H(x) := J(x) |_{\mathfrak{h}}$.

For the canonical action of G ensures that if $\eta \in \mathfrak{h} \subset \mathfrak{g}$, then $\eta_M = X_{J(\eta)}$. Then $J_H(\eta) := J(\eta) \forall \eta \in \mathfrak{h}$ defines a momentum map for H’s action. That is

(356) $\forall x \in M, \forall \eta \in \mathfrak{h} : < J_H(x); \eta > = < J(x); \eta >$.

6.4 Equivariance of momentum maps

In (1) of Section 4.2, we defined the general notion of an equivariant map \(f : M \to N \) between manifolds as one that respects the actions of a group \(G \) on \(M \) and on \(N \); eq. 144. We now develop an especially important case of this notion: the equivariance of momentum maps \(J : M \to \mathfrak{g}^* \), where the action on \(\mathfrak{g}^* \) is the co-adjoint action, eq. 192.

For us, this notion will have two main significances:

(i) many momentum maps that occur in examples are equivariant in this sense;

(ii) equivariance has various theoretical consequences: in particular, momentum maps for cotangent lifted actions are always equivariant (Section 6.5), and equivariance is crucial in theorems about reduction (Section 7).

In this Section, we will glimpse these points by:

(i) defining the notion, and remarking on a weakened differential version of the notion (Section 6.4.1);

(ii) proving that equivariant momentum maps are Poisson (Section 6.4.2).

6.4.1 Equivariance and infinitesimal equivariance

Let \(\Phi \) be a canonical left action of \(G \) on \(M \), and let \(J : M \to \mathfrak{g}^* \) be a momentum map for it. We say \(J \) is equivariant if for all \(g \in G \)

\[
(357) \quad J \circ \Phi_g = Ad^*_g \circ J ;
\]

cf. eq. 144 and the definition of co-adjoint action, eq. 193:

\[
(358) \quad \begin{array}{ccc}
M & \xrightarrow{J} & \mathfrak{g}^* \\
\Phi_g & \downarrow & \downarrow Ad^*_g \\
M & \xrightarrow{J} & \mathfrak{g}^*
\end{array}
\]

An equivalent formulation arises by considering that we can add to the commutative square in eq. 358 the two commutative triangles:

\[
(359) \quad \begin{array}{ccc}
M & \xrightarrow{J(\xi)} & \mathfrak{g}^* \\
\xrightarrow{\mathbb{I}} & \xrightarrow{\iota} & \mathbb{R} \\
\end{array}
\]

representing the fact that \(J(\xi)(x) = J(x)(\xi) \); and

\[
(360) \quad \begin{array}{ccc}
\mathfrak{g}^* & \xrightarrow{\mathbb{I}} & \mathbb{R} \\
\xrightarrow{\iota} & \xrightarrow{\mathbb{I}} & \mathbb{R} \\
\end{array}
\]

representing the fact that for all \(\eta \in \mathfrak{g}^* \)

\[
(361) \quad < Ad^*_{g^{-1}}(\eta); Ad_g(\xi) > = < \eta; Ad_g Ad^*_{g^{-1}}(\xi) > \equiv < \eta; \xi > .
\]

Eqs. 359 and 360 imply that an equivalent formulation of equivariance is that for all \(x \in M, g \in G \) and \(\xi \in \mathfrak{g} \) (and with \(g \cdot x \equiv \Phi_g(x) \))
On Symplectic Reduction in Classical Mechanics

\[(362) \quad J(g \cdot x)(Ad_g \xi) = J(Ad_g \xi)(g \cdot x) = J(\xi)(x) \equiv J(x)(\xi).\]

In (2) of Section 4.4, we differentiated the general notion of an equivariant map, and got the weaker differential notion that the infinitesimal generators ξ_M and ξ_N of the actions of G on M and on N are f-related.

Here also we can differentiate equivariance, and get the notion of \textit{infinitesimal equivariance}. But I will not go into details since:

(i) we will not need the notion, not least because (as mentioned above), many momentum maps are equivariant;

(ii) under certain common conditions (e.g. the group G is compact, or is connected) an infinitesimally equivariant momentum map can always be replaced by an equivariant one.

So let it suffice to say that infinitesimal equivariance is theoretically important. In particular, the result eq. 317, viz.

\[(363) \quad X_J([\xi, \eta]) = X_{\{J(\xi),J(\eta)\}_M}\]

implies that

\[(364) \quad \Sigma(\xi, \eta) := J([\xi, \eta]) - \{J(\xi),J(\eta)\}_M\]

is a distinguished function on the Poisson manifold M, and so constant on every symplectic leaf.

This makes it natural to ask when $\Sigma \equiv 0$. After all, cf. eq. 322. Both $\xi \mapsto \xi_M$ and $F \mapsto X_F$ are Lie algebra anti-homomorphisms. So it is natural to ask whether J is a Lie algebra homomorphism, i.e. whether $\Sigma = 0$. And it turns out that infinitesimal equivariance is equivalent to $\Sigma = 0$.

\[6.4.2 \quad \text{Equivariant momentum maps are Poisson}\]

The following result is important, both as a general method of finding canonical maps between Poisson manifolds, and for the Lie-Poisson reduction theorem of Section 7.

\textbf{Equivariant momentum maps are Poisson} Let $J : M \to g^*$ be an equivariant momentum map for a canonical left action of G on a Poisson manifold M. Then J is a Poisson map: for all $F_1, F_2 \in \mathcal{F}(g^*)$,

\[(365) \quad J^*\{F_1, F_2\}_g^* = \{J^*F_1, J^*F_2\}_M; \text{ i.e. } \{F_1, F_2\}_g^* \circ J = \{F_1 \circ J, F_2 \circ J\}_M.\]

\textbf{Proof.} We will relate (i) the left hand side, then (ii) the right hand side of eq. 365 to J; and finally we will use the fact that the Poisson bracket on M depends only on the values of the first derivatives.
(i) Let \(x \in M, \alpha = J(x) \in g^* \); and let \(\xi = \nabla F_1 \) and \(\eta = \nabla F_2 \) evaluated at \(\alpha \), so that \(\xi, \eta \in g^{**} = g \). Then

\[
(366) \quad \{F_1, F_2\}_\xi^\eta(J(x)) = \cdot \xi; [\nabla F_1, \nabla F_2] > = \cdot \xi; [\xi, \eta] > = J([\xi, \eta])(x) = \{J(\xi), J(\eta)\}(x);
\]

where the third equation just applies the definition of \(J \), eq. 323, and the fourth equation uses (infinitesimal) equivariance.

(ii) We show that \((F_1 \circ J)(x) \) and \(J(\xi)(x) \) have equal \(x \)-derivatives. For any \(x \in M \) and \(v_x \in T_x M \)

\[
(367) \quad d(F_1 \circ J)(x) \cdot v_x = dF_1(\alpha) \cdot T_x J(v_x) = T_x J(v_x) ; \nabla F_1 > = dJ(\xi)(x) \cdot v_x;
\]

where the first equation uses the chain rule, and the last uses the definition of \(J \), eq. 323 and the fact that \(\xi = \nabla F_1 \).

Finally, since the Poisson bracket on \(M \) depends only on the values of the first derivatives, we infer from eq. 367 that

\[
(368) \quad \{F_1 \circ J, F_2 \circ J\}(x) = \{J(\xi), J(\eta)\}(x).
\]

Combining this with (i), the result follows.

\[\square\]

6.5 Momentum maps on cotangent bundles

Let a Lie group \(G \) act on a manifold ("configuration space") \(Q \). We saw in Section 4.1.0.1 that this action can be lifted to the cotangent bundle \(T^*Q \); cf. eqs 121, 124 and 126. In this Section, we focus on momentum maps for such cotangent lift actions. We shall see that any such action has an equivariant momentum map, for which there is an explicit general formula. The general theory (Sections 6.5.1, 6.5.2) will need just one main new notion, the momentum function. We end with some examples (Section 6.5.3).

6.5.1 Momentum functions

Given a manifold \(Q \) and its vector fields \(\mathcal{X}(Q) \), we define the map

\[
(369) \quad \mathcal{P} : \mathcal{X}(Q) \to \mathcal{F}(T^*Q) \quad \text{by} \quad (\mathcal{P}(X))(\alpha_q) := \cdot \alpha_q; X(q) >
\]

for \(q \in Q, X \in \mathcal{X}(Q) \) and \(\alpha_q \in T^*_q Q \). Here, \(\alpha_q \) is, strictly speaking, a point in the cotangent bundle above the base-point \(q \in Q \); so \(\alpha_q \) can be written as \((q, \alpha) \) with \(\alpha \) a covector at \(q \), i.e. \(\alpha \in T^*_q Q \). But as we mentioned just before defining cotangent lifts (eq. 121): it is harmless to (follow many presentations and) conflate a point in \(T^*Q \), i.e. a pair \((q, \alpha), q \in Q, \alpha \in T^*_q Q \), with its form \(\alpha \), provided we keep track of the \(q \) by writing the form as \(\alpha_q \).

\(\mathcal{P}(X) \), as defined by eq. 369, is called the momentum function of \(X \). In coordinates, \(\mathcal{P}(X) \) is given by
(370) $\mathcal{P}(X)(q^i, p_i) = X^j(q^i)p_j$

where we sum on $j = 1, \ldots, n := \dim Q$. (So NB: This \mathcal{P} is different from that in $\mathcal{P}(M)$, the infinitesimal Poisson automorphisms of M, discussed in Section 6.1.1.)

We also denote by $\mathcal{L}(T^*Q)$ the space of smooth functions $F : T^*Q \to \mathbb{R}$ that are linear on fibres of T^*Q: i.e. writing the bundle points $\alpha_q, \beta_q \in T^*_qQ$ as (q, α) and (q, β), we have for $\lambda, \mu \in \mathbb{R}$.

(371) $F(q,(\lambda \alpha + \mu \beta)) = \lambda F((q, \alpha)) + \mu F((q, \beta))$.

So functions F, H that are in $\mathcal{L}(T^*Q)$ can be written in coordinates as (summing on $i = 1, \ldots, n$)

(372) $F(q, p) = X^i(q)p_i$ and $H(q, p) = Y^i(q)p_i$

for functions X^i and Y^i; and so any momentum function $\mathcal{P}(X)$ is in $\mathcal{L}(T^*Q)$.

One readily checks that the standard Poisson bracket (from T^*Q's symplectic structure, Section 2.1.1) of such an F and H is also linear on the fibres of T^*Q. In fact, eq. 372 implies

(373) $\{F, H\}(q, p) := \frac{\partial F}{\partial q^i} \frac{\partial H}{\partial p_j} - \frac{\partial H}{\partial q^i} \frac{\partial F}{\partial p_j} = \left(\frac{\partial X^i}{\partial q^j} Y^j - \frac{\partial Y^i}{\partial q^j} X^j\right)$.

So $\mathcal{L}(T^*Q)$ is a Lie subalgebra of $\mathcal{F}(T^*Q)$.

The next result summarizes how momentum functions relate $\mathcal{X}(Q)$ and Hamiltonian vector fields on T^*Q to $\mathcal{L}(T^*Q)$.

Three (anti)-isomorphic Lie algebras The two Lie algebras

(i) $(\mathcal{X}(Q), [\cdot, \cdot])$ of vector fields on Q;
(ii) Hamiltonian vector fields X_F on T^*Q with $F \in \mathcal{L}(T^*Q)$

are isomorphic. And each is anti-isomorphic to

(iii) $(\mathcal{L}(T^*Q), \{\cdot, \cdot\})$.

In particular, the map \mathcal{P} is an anti-isomorphism from (i) to (iii), so that we have

(374) $\{\mathcal{P}(X), \mathcal{P}(Y)\}_{T^*Q} = -\mathcal{P}([X, Y])$.

Proof. Since $\mathcal{P}(X) : T^*Q \to \mathbb{R}$ is linear on fibres, \mathcal{P} maps $\mathcal{X}(Q)$ into $\mathcal{L}(T^*Q)$. \mathcal{P} is also onto $\mathcal{L}(T^*Q)$: given $F \in \mathcal{L}(T^*Q)$, we can define $X(F) \in \mathcal{X}(Q)$ by

(375) $< \alpha_q; X(F)(q) > := F(\alpha_q)$ \hspace{0.5cm} $\forall \alpha_q \in T^*_qQ$

so that $\mathcal{P}(X(F)) = F$. \mathcal{P} is linear and $\mathcal{P}(X) = 0$ implies that $X = 0$. Also, eq. 374 follows immediately by comparing eq. 373 with the Lie bracket of $X, Y \in \mathcal{X}(Q)$; cf. eq. 55. So \mathcal{P} is an anti-isomorphism from $(\mathcal{X}Q, [,])$ to $(\mathcal{L}(T^*Q), \{\cdot, \cdot\})$.

The map
\[(376) \quad F \in (\mathcal{L}(T^*Q), \{,\}) \mapsto X_F \in (\{X_F \mid F \in \mathcal{L}(T^*Q)\}, [,])\]

is surjective by definition. It is a Lie algebra anti-homomorphism, by eq. 60 (i.e. result (2) in Section 3.2.2). And if \(X_F = 0\), then \(F\) is constant on \(T^*Q\); and hence \(F \equiv 0\) since \(F\) is linear on the fibres (cf. eq. 371).

\[\square\]

6.5.2 Momentum maps for cotangent lifted actions

We begin this Subsection with a result relating the Hamiltonian flow on \(T^*Q\) induced by the momentum function \(\mathcal{P}(X)\) to the Hamiltonian flow on \(X\) induced by \(X\). From this result, our main result — the guarantee of an equivariant momentum map for a cotangent lifted action, and an explicit formula for it — will follow directly.

The Hamiltonian flow of a momentum function Let \(X \in \mathcal{X}(Q)\) have flow \(\phi_\tau\) on \(Q\); cf. Section 3.1.2.2. Then the flow of \(X_{\mathcal{P}(X)}\) on \(T^*Q\) is \(T^*\phi_{-\tau}\). That is: the flow of \(X_{\mathcal{P}(X)}\) is the cotangent lift (Section 4.1.0.1) of \(\phi_{-\tau}\), as given by the diagram, with \(\pi_Q\) the canonical projection:

\[\begin{array}{ccc}
Q & \xrightarrow{\phi_\tau} & Q \\
\downarrow{\pi_Q} & & \downarrow{\pi_Q} \\
T^*Q & \xrightarrow{T^*\phi_{-\tau}} & T^*Q
\end{array}\]

Proof. We differentiate the relation in eq. 377, i.e.

\[(378) \quad \pi_Q \circ T^*\phi_{-\tau} = \phi_\tau \circ \pi_Q\]

at \(\tau = 0\) to get

\[(379) \quad T\pi_Q \circ Y = X \circ \pi_Q \quad \text{with} \quad \forall \alpha_q \in T^*_q Q, \quad Y(\alpha_q) = \frac{d}{d\tau} |_{\tau=0} T^*\phi_{-\tau}(\alpha_q);\]

i.e. \(T^*\phi_{-\tau}\) is the flow of \(Y\).

Now we will show that \(Y = X_{\mathcal{P}(X)}\), using eq. 379 and the geometrical formulation of Hamiltonian mechanics of Section 2.1, especially Cartan's magic formula, eq. 20, applied to the canonical one-form \(\theta \equiv \theta_H\) (defined by eq. 8 and 9).

We reported (at the start of (2) of Section 4.1.0.1) that the cotangent lift \(T^*\phi_{-\tau}\) preserves \(\theta \equiv \theta_H\) on \(T^*Q\). So \(\mathcal{L}_Y \theta = 0\). Then the definition of \(\omega\) as the negative exterior derivative of \(\theta\), and Cartan's magic formula, eq. 20, yields

\[(380) \quad i_Y \omega = -i_Y d\theta = d i_Y \theta.\]

On the other hand, we also have

\[(381) \quad i_Y \theta(\alpha_q) = \Theta(\alpha_q); Y(\alpha_q) = \Theta(\alpha_q); T\pi_Q(Y(\alpha_q)) = \Theta(\alpha_q); X(q) = \mathcal{P}(X)(\alpha_q)\]
where the second equation applies the definition of the canonical one-form (eq. 8), the third applies eq. 379, and the fourth applies the definition eq. 369 of momentum functions.

Combining eq. 380 and 381, we have:

$$i_Y \omega = d \mathcal{P}(X)$$

which is Hamilton’s equations (eq. 15) telling us that $Y = X_{\mathcal{P}(X)}$.

Accordingly the Hamiltonian vector field $X_{\mathcal{P}(X)}$ on T^*Q is called the cotangent lift of $X \in \mathcal{Q}$ to T^*Q. In local coordinates, we can write, by combining eq. 15 and 370

$$X_{\mathcal{P}(X)} = \frac{\partial \mathcal{P}(X)}{\partial p_i} \frac{\partial}{\partial q^i} - \frac{\partial \mathcal{P}(X)}{\partial q^i} \frac{\partial}{\partial p_i} = X^i \frac{\partial}{\partial q^i} - \frac{\partial X^i}{\partial q^j} p_j \frac{\partial}{\partial p_i}.$$

Note in particular that, combining the usual sign-change between Lie algebras and Poisson brackets (eq. 60) with the sign-change for momentum functions (eq. 374), we have

$$[X_{\mathcal{P}(X)}, X_{\mathcal{P}(Y)}] = -X_{\{\mathcal{P}(X), \mathcal{P}(Y)\}} = -X_{-\mathcal{P}([X,Y])} = X_{\mathcal{P}([X,Y])}.$$

We can now readily prove our main result guaranteeing, and giving a formula for, equivariant momentum maps.

Equivariant momentum maps Let G act on the left on Q and so by cotangent lift on T^*Q. The cotangent lifted action has an equivariant momentum map $J : T^*Q \to g^*$ given by

$$\langle J(\alpha_q) ; \xi \rangle = \langle \alpha_q ; \xi_Q(q) \rangle \equiv \mathcal{P}(\xi_Q)(\alpha_q).$$

In coordinates q^i, p_i on T^*Q and ξ^a on g, and with $\xi^i_Q = \xi^a A^i_a$ the components of ξ_Q, this reads

$$J_a \xi^a = p_i \xi^i_Q = p_i A^i_a \xi^a$$

so that $J_a(q,p) = p_i A^i_a(q)$.

Proof. The preceding result tells us that for any $\xi \in g$, the infinitesimal generator of the cotangent lifted action on T^*Q is $\xi_{T^*Q} = X_{\mathcal{P}(\xi_Q)}$. So a momentum map for this action is given by

$$J(\xi) = \mathcal{P}(\xi_Q).$$

This gives eq. 385, just by applying the definitions of the momentum map J (eq. 323) and of momentum function (eq. 369).

To prove equivariance, we argue as follows:

$$\langle J(g \cdot \alpha_q) ; \xi \rangle = \langle (g \cdot \alpha_q) ; \xi_Q(g \cdot q) \rangle$$

$$\langle \alpha_q ; (T_{\Phi_{g^{-1}}} \xi_Q(g \cdot q) \rangle \equiv \langle \alpha_q ; (T_{g^{-1}} \Phi \circ \Phi_g(q).$$

$$\langle \mathcal{P}(\Phi) \xi_Q(q) \rangle \equiv \langle \alpha_q ; \Phi(\xi_Q)(q) \rangle$$

$$\langle \mathcal{P}(\Phi) \xi_Q(q) \rangle \equiv \langle \alpha_q ; (Ad_{g^{-1}} \xi_Q(q) \rangle$$

$$\langle J(\alpha_q) ; Ad_{g^{-1}} \xi \rangle = \langle Ad_{g^{-1}} J(\alpha_q) ; \xi \rangle.$$
Here we have applied in succession: (i) eq. 385; (ii) the fact that \(g \cdot \alpha_q \) is short for \(T^* (\Phi_{g^{-1}})(\alpha_q) \), cf. eq. 126 and 121; (iii) the definition of pullback, cf. eq. 172; (iv) result [2], eq. 167, of Section 4.5.1; (v) eq. 385 again; and finally, (vi) the fact that \(Ad^* \) is the adjoint of \(Ad \), cf. eq. 191.

6.5.3 Examples

We discuss first our familiar examples, linear and angular momentum i.e. (1) and (2) from Section 6.3; and then the cotangent lift of left and right translations on \(G \) — an example motivated by Section 4.6's description of kinematics on a Lie group \(G \).

(1): Total linear momentum of \(N \) particles:
Since the translation group \(\mathbb{R}^3 \) acts on \(Q := \mathbb{R}^{3N} \) by \(\Phi(x, (q_i)) = (q_i + x) \), the infinitesimal generator on \(Q \) is

\[
(393) \quad \xi_{\mathbb{R}^{3N}}(q_i) = (\xi_1, \ldots, \xi_N) \quad (\xi \text{ N times})
\]

Applying eq. 385, the equivariant momentum map is given by

\[
(394) \quad J(\xi)(q_i, p^i) = (\Sigma_{i=1}^N p^i) \cdot \xi, \quad \text{i.e.} \quad J(q_i, p^i) = \Sigma_{i=1}^N p^i;
\]
agreeing with our previous solution, eq. 341, based on the differential equation eq. 334.

(2): Angular momentum of a single particle:
\(SO(3) \) acts on \(\mathbb{R}^3 \) by \(\Phi(A, q) = Aq \). Writing \(\xi \in so(3) \) as \(\xi = \Theta \omega \) (cf. eq. 47, 51 and 105), the infinitesimal generator is

\[
(395) \quad \xi_{\mathbb{R}^3}(q) = \xi q = \omega \land q .
\]

So applying eq. 385, the equivariant momentum map \(J : T^* \mathbb{R}^3 \to so(3) \cong \mathbb{R}^3 \) is given by

\[
(396) \quad < J(q, p); \omega >=< p; \omega \land q >= p \cdot (\omega \land q) = \omega \cdot (q \land p), \quad \text{i.e.} \quad J(q, p) = q \land p ;
\]
agreeing with our previous solution, eq. 347, based on the differential equation eq. 334.

(3): The cotangent lift of left and right translations on \(G \):
Recalling eq. 157, viz. that the infinitesimal generator of left translation is

\[
(397) \quad \xi_G(g) = (T_e R_g) \xi ,
\]
a right-invariant vector field, and applying eq. 385, we see that the momentum map \(J_L : T^*G \to g^* \) for the cotangent lift of left translation is given by

\[
(398) \quad < J_L(\alpha_g); \xi >= < \alpha_g; \xi_G(g) >= < \alpha_g; (T_e R_g) \xi >= < (T_e^* R_g)(\alpha_g); \xi >
\]
where the last equation applies the definition of the cotangent lift eq. 121. That is: the equivariant momentum map is
(399) \(J_L(\alpha_g) = T^*_c R_g(\alpha_g) \).

In words: the momentum map \(J_L \) of the cotangent lift of left translation is the cotangent lift of right translation.

In a similar way, we could consider right translation: \(R_g : h \mapsto hg \). Right translation defines a right action on \(G \), has \(\xi_G(g) = (T_c L_g) \xi \) as its infinitesimal generator, and so has

\[
\text{(400)} \quad J_R : T^*G \to g^* \ ; \quad J_R(\alpha_g) := T^*_c L_g(\alpha_g)
\]

as the momentum map of its cotangent lift. Note that this momentum map is equivariant with respect to \(\text{Ad}^*_g \): which, as discussed after eq. 191, is a right action.

7 REDUCTION

7.1 Preamble

In this final Section, the themes of Section 2 onwards come together — at last! As announced in Section 5.1, we will concentrate on proving what is nowadays called the Lie-Poisson reduction theorem: that is, the isomorphism of Poisson manifolds

\[
\text{(401)} \quad T^*G/G \cong g^*.
\]

Here the quotient of \(T^*G \) is by the cotangent lift of \(G \)'s action on itself by left translation.

As it happens, this Chapter's main sources (i.e. [Abraham and Marsden, 1978; Arnold, 1989; Olver, 2000; Marsden and Ratiu, 1999]) do not contain what is surely the most direct proof of this result. So we give it in Section 7.2. The result will follow directly from four previous main results, one from Section 5 and three from Section 6.

'Directly', but for one wrinkle! This relates to "flipping" between left and right translation, and their various lifts. In short: the four previous results show that \(T^*G/G \) is isomorphic as a Poisson manifold, not to \(g^* \) with the Lie-Poisson bracket familiar since eq. 255 and 258, but instead to \(g^* \) equipped with this bracket's negative, i.e. equipped with

\[
\text{(402)} \quad \{F, H\}_-(x) := - < x; [\nabla F(x), \nabla H(x)] > , \ x \in g^*.
\]

But we shall (mercifully!) not reproduce, with minus signs appropriately added, our entire discussion of the Lie-Poisson bracket that ensued after eq. 255; (exercise for the reader!).

To avoid ambiguity, we shall sometimes write \(g^*_+ \) for \(g^* \) equipped with the positive Lie-Poisson bracket of eq. 258; and \(g^*_- \) for \(g^* \) equipped with the negative Lie-Poisson bracket of eq. 402.

In fact, it will be clearest from now on, to treat right actions on a par with left actions; despite our previous emphasis on the latter. This will mean that we will
also treat right-invariant vector fields (and another notion of right-invariance defined in Section 7.3.1) on a par with left-invariant vector fields (and Section 7.3.1’s corresponding new notion of left-invariance). Indeed, we have already glimpsed this would be necessary in:

(i) Section 4.4’s result that the infinitesimal generator of left translation is a right-invariant vector field, and vice versa (eq. 157, 158); and its corollaries in Example (3) of Section 6.5.3, that

(ii) the momentum map J_L of the cotangent lift of left translation is the cotangent lift of right translation; (eq. 399); and

(iii) the momentum map J_R of the cotangent lift of right translation is the cotangent lift of left translation; (eq. 400).

So by the end of Section 7.2, we will have a short proof of the Lie-Poisson reduction theorem. But (as often happens), the most direct proof does not give very much information about the situation. So in Section 7.3 we give more information (following Marsden and Ratiu (1999)). Then in Section 7.4, we discuss the reduction of dynamics (as against Poisson structure) from T^*G to g^*.

Finally, in Section 7.5 we state another reduction theorem, which is cast in terms of symplectic, not Poisson, manifolds — but which uses several notions from Section 3, such as free and proper actions, and isotropy groups. But we do not prove this theorem: we include it mostly in order to emphasize our previous remark, that (despite its length!) this Chapter just scratches the surface of the subject. We also discuss the relation between it and the Lie-Poisson reduction theorem.

7.2 The Lie-Poisson Reduction Theorem

First we recall from the end of Section 4.6.2 (eq. 225) that $\lambda : T^*G \to G \times g^*$ is an equivariant map relating the cotangent lifted left action of left translation on T^*G to the G-action on $G \times g^*$ given just by left translation on the first component. So we passed to the quotients, and defined $\hat{\lambda} : T^*G/G \to (G \times g^*)/G$ by eq. 228, viz.

\[(403) \hat{\lambda} : \text{Orb}(\alpha) \equiv \{\beta \in T^*G \mid \beta = T^*L_{h^{-1}}(\alpha), \text{ some } h \in G\} \mapsto \text{Orb}(\lambda(\alpha)) \equiv \{(hg, (T^*_g L_g)(\alpha)) \mid \text{ some } h \in G\} = \{(h, (T^*_e L_g)\alpha) \mid \text{ some } h \in G\}\]

where $\alpha \in T^*_g G$, so that $T^*L_{h^{-1}} \alpha \in T^*_g G$. Finally, we identified $(G \times g^*)/G$ with g^*, so that the diffeomorphism $\hat{\lambda}$ maps T^*G/G to g^*, as in eq. 229:

\[(404) \hat{\lambda} : \text{Orb}(\alpha) \equiv \{\beta \in T^*G \mid \beta = T^*L_{h^{-1}}(\alpha), \text{ some } h \in G\} \in T^*G/G \mapsto (T^*_e L_g)(\alpha) \in g^*.

So now, we are to show that the diffeomorphism $\hat{\lambda} : T^*G/G \to g^*$ is a Poisson map, in the sense of eq. 283 (Section 5.3.2). So we need to show:
(i) T^*G/G is a Poisson manifold;

(ii) $\hat{\lambda}$ maps (i)'s Poisson structure on T^*G/G to that of \mathfrak{g}^*. In fact, as announced in Section 7.1, $\hat{\lambda}$ maps on to the Poisson structure of \mathfrak{g}^*, i.e. as given by eq. 402.

Prima facie, there could be a judicious choice to be made about (i), i.e. about how to define the Poisson structure on T^*G/G, so as to secure (ii), i.e. so that $\hat{\lambda}$ respects the Poisson structure. But in fact our previous work gives a pre-eminently obvious choice — which works. Namely: we use the Poisson structure induced on T^*G/G by the Poisson reduction theorem of Section 5.5. The result follows directly by combining with this theorem, three results from Section 6:

(i) that equivariant momentum maps are Poisson; eq. 365 in Section 6.4.2;

(ii) that a cotangent lifted left action has an equivariant momentum map; eq. 385 in Section 6.5.2;

(iii) that the momentum maps of the cotangent lifts of left and right translation on G are $J_L = T_e^* R_g$ and $J_R = T_e^* L_g$; eq. 399 and 400 in Section 6.5.3.

In particular, combining (i)-(iii): one deduces (exercise!) that $J_R = T_e^* L_g$ is equivariant with respect to Ad_g^*, and so Poisson with respect to the negative Lie-Poisson bracket (eq. 402's bracket) on \mathfrak{g}^*. That is: it is Poisson with the codomain \mathfrak{g}^*.

Thus we have the

Lie-Poisson reduction theorem The diffeomorphism $\hat{\lambda} : T^*G/G \to \mathfrak{g}^*$:

$$
\hat{\lambda} : \text{Orb}(\alpha) \equiv \{ \beta \in T^*G \mid \beta = T^* L_{h^{-1}}(\alpha), \text{ some } h \in G \} \in T^*G/G \mapsto (T_e^* L_g)(\alpha) \in \mathfrak{g}^*
$$

is Poisson.

Proof. First, eq. 405 means we have a commutative triangle. For with $\pi : T^*G \to T^*G/G$ the canonical projection, the momentum map $J_R : T^*G \to \mathfrak{g}^*, \alpha_g \mapsto (T_e^* L_g)\alpha_g$ is equal to $\hat{\lambda} \circ \pi$:

$$
T^*G \xrightarrow{\pi} T^*G/G \xrightarrow{\hat{\lambda}} \mathfrak{g}^*.
$$

Since left translation is a diffeomorphism of G, and the cotangent lift of any diffeomorphism of a manifold to its cotangent bundle is symplectic (cf. after eq. 120 in Section 4.1.0.1), the Poisson reduction theorem of Section 5.5 applies. That is, there is a unique Poisson structure on T^*G/G such that π is Poisson. We also know from eq. 385, 365 and 400 that $J_R = T_e^* L_g$ is Poisson with respect to eq. 402's bracket on \mathfrak{g}^*.

We can now deduce that $\hat{\lambda}$ is Poisson, i.e. that for all $x \in T^*G/G$ and all $F, H \in \mathcal{F}(\mathfrak{g}^*)$
\[(407) \quad \{\{F, H\}_{\mathfrak{g}_-^*} \circ \hat{\lambda}\}(x) = \{F \circ \hat{\lambda}, H \circ \hat{\lambda}\}_{T^*G/G}(x).\]

We just use (in order) the facts that:

(i) \(\pi\) is surjective, so that for all \(x \in T^*G/G\) there is an \(\alpha_g \in T^*G\) with \(x = \pi(\alpha_g) \equiv \text{Orb}(\alpha_g);\)

(ii) \(J_R = \hat{\lambda} \circ \pi;\)

(iii) \(J_R\) is Poisson; and

(iv) \(\pi\) is Poisson:

\[
(408) \quad \{\{F, H\}_{\mathfrak{g}_-^*} \circ \hat{\lambda}\}(x) = \{F, H\}_{\mathfrak{g}_-^*} \circ (\hat{\lambda} \circ \pi)(\alpha_g)
\]

\[
(409) \quad = \{F, H\}_{\mathfrak{g}_-^*} \circ J_R(\alpha_g) = \{F \circ J_R, H \circ J_R\}_{T^*G}(\alpha_g)
\]

\[
(410) \quad = \{F \circ \hat{\lambda}, H \circ \hat{\lambda}\}_{T^*G/G}(\pi(\alpha_g)) \equiv \{F \circ \hat{\lambda}, H \circ \hat{\lambda}\}_{T^*G/G}(x).
\]

\[\blacksquare\]

7.3 Meshing with the symplectic structure on \(T^*G\): invariant functions

We turn to giving more information about the situation described by the Lie-Poisson reduction theorem. The general idea will be that the Lie-Poisson bracket on \(\mathfrak{g}^*\) meshes with the canonical symplectic structure on \(T^*G\). This will be made precise in two ways: the first is discussed in the first two Subsections, the second is discussed in the third Subsection.

The first discussion will have three stages:

(i) we show that scalars on \(\mathfrak{g}^*, F \in \mathcal{F}(\mathfrak{g}^*),\) are in one-one correspondence with scalars on \(T^*G\) that are constant on the orbits of the cotangent lift of left translation, which will be called left-invariant functions; and similarly, for the cotangent lift of right translation (a correspondence with right-invariant functions);

(ii) we take the usual canonical Poisson bracket in \(T^*G\) of these left-invariant or right-invariant scalars; and restrict this bracket to \(\mathfrak{g}^*\) regarded as the cotangent space \(T_{\mathfrak{g}_e^*}G\) at the identity \(e \in G\); and then

(iii) we show that this restriction is the Lie-Poisson bracket on \(\mathfrak{g}^*\): the familiar positive one for right-invariant functions, and the new negative one of eq. 402 for the left-invariant functions.
We do stages (i) and (ii) in Section 7.3.1. These stages will not involve the choice between the positive and negative Lie-Poisson brackets. But stage (iii), in Section 7.3.2, will involve this choice. It will be a one-liner corollary of Section 6.4.2’s result that equivariant momentum maps are Poisson maps, eq. 365; (unsurprisingly, in that we also used this result in Section 7.2’s proof of the reduction theorem).

In the third Subsection, we use invariant functions to show a different sense in which the Lie-Poisson bracket on \mathfrak{g}^* meshes with the symplectic structure on T^*G. Namely, we derive the Lie-Poisson bracket on \mathfrak{g}^* from the Poisson reduction theorem of Section 5.5, by using the ideas of invariant functions and momentum functions.

7.3.1 Left-invariant and right-invariant functions on T^*G

We say that a function $F : T^*G \to \mathbb{R}$ is left-invariant if for all $g \in G$, and all $\alpha_g \in T^*_gG$

$$ (411) \quad (F \circ T^*L_g)(\alpha_g) = F(\alpha_g) $$

where T^*L_g is the cotangent lift of $L_g : G \to G$. Similarly, $F : T^*G \to \mathbb{R}$ is called right-invariant if for all $g \in G$

$$ (412) \quad (F \circ T^*R_g) = F \, . $$

So if $F : T^*G \to \mathbb{R}$ is left-invariant or right-invariant, it is determined by its values for arguments in $T^*_eG = \mathfrak{g}^*$.

Since any $\alpha \in \mathfrak{g}^*$ is mapped by $T^*L_{g^{-1}} \equiv (T^*L_g)^{-1}$ to an element of T^*_gG, a function is left-invariant if it is constant on the orbits of the various T^*L_g for $g \in G$, i.e. constant on the orbits of the cotangent lift of left translation. Similarly, a function is right-invariant iff it is constant on the orbits of the cotangent lift of right translation.

So left-invariant functions induce well-defined functions on the quotient space T^*G/G; and so, by Section 7.2, on its diffeomorphic (indeed Poisson manifold) copy \mathfrak{g}^*. Similarly for right-invariant functions.

But let us for the moment consider the smooth left-invariant (or right-invariant) functions on T^*G, rather than the induced maps on the quotient space. We will denote the space of all smooth left-invariant functions on T^*G by $\mathcal{F}_L(T^*G)$, and similarly the space of smooth right-invariant functions by $\mathcal{F}_R(T^*G)$.

Recalling (from the discussion after eq. 120) that cotangent lifts are symplectic maps, i.e. T^*L_g and T^*R_g are symplectic maps on T^*G, it follows immediately that $\mathcal{F}_L(T^*G)$ and $\mathcal{F}_R(T^*G)$ are each closed under the canonical Poisson bracket on T^*G. So they are each a Lie algebra with this bracket.

Now we can use the momentum maps J_L and J_R of Example (3) of Section 6.5.3 to extend any scalar $F : \mathfrak{g}^* \to \mathbb{R}$, i.e. $F \in \mathcal{F}(\mathfrak{g}^*)$, to a left-invariant, or right-invariant, scalar on T^*G.

Thus, given $F : \mathfrak{g}^* \to \mathbb{R}$ and $\alpha_g \in T^*_gG$, we define $F_L \in \mathcal{F}_L(T^*G)$ by

$$ (413) \quad F_L(\alpha_g) := (F \circ J_R)(\alpha_g) \equiv (F \circ T^*_eL_g)(\alpha_g) \, . $$
So F_L is by construction left-invariant, and is called the left-invariant extension of F from \mathfrak{g}^* to T^*G.

One similarly defines the right-invariant extension $F_R \in \mathcal{F}_R(T^*G)$ of any $F \in \mathcal{F}(\mathfrak{g}^*)$ by

\[(414) \quad F_R(\alpha_g) := (F \circ J_L)(\alpha_g) \equiv (F \circ T^*_e R_g)(\alpha_g).\]

Then the maps

\[(415) \quad F \in \mathcal{F}(\mathfrak{g}^*) \mapsto F_L \in \mathcal{F}_L(T^*G) \quad \text{and} \quad F \in \mathcal{F}(\mathfrak{g}^*) \mapsto F_R \in \mathcal{F}_R(T^*G)\]

are vector space isomorphisms (exercise for the reader!) whose inverse is just restriction to the fiber $T^*_e G = \mathfrak{g}^*$.

This completes what we called 'stages (i) and (ii)': describing a correspondence between scalars on \mathfrak{g}^* and scalars on T^*G that are constant on the orbits of the cotangent lifts of left and right translation; and considering the canonical Poisson bracket (on T^*G) of these scalars, i.e. the Lie algebras $\mathcal{F}_L(T^*G)$ and $\mathcal{F}_R(T^*G)$.

7.3.2 Recovering the Lie-Poisson bracket

We now do stage (iii): we show that the restriction of the canonical Poisson bracket on T^*G of the right/left invariant functions, to \mathfrak{g}^* regarded as the cotangent space $T^*_e G$ at the identity $e \in G$, is the positive/negative Lie-Poisson bracket.

Since the inverses of the maps eq. 415 are just restriction to the fiber $T^*_e G = \mathfrak{g}^*$, it suffices to show that the maps eq. 415 are Lie algebra isomorphisms. More precisely:

Recovery of the Lie-Poisson bracket Using the positive Lie-Poisson bracket on \mathfrak{g}^* (we write \mathfrak{g}^*_+): $F \mapsto F_R$ is a Lie algebra isomorphism.

Similarly: using the negative Lie-Poisson bracket on \mathfrak{g}^* (we write \mathfrak{g}^*_-): $F \mapsto F_L$ is a Lie algebra isomorphism.

That is: for all $F, H \in \mathcal{F}(\mathfrak{g}^*)$

\[(416) \quad \{F, H\}_+ = \{F_R, H_R\}_{T^*G} \mid_{\mathfrak{g}^*} ; \quad \{F, H\}_- = \{F_L, H_L\}_{T^*G} \mid_{\mathfrak{g}^*}.\]

Proof. Consider $J_L : T^*G \to \mathfrak{g}^* \equiv \mathfrak{g}^*_+$. $J_L = T^*_e R_g$. J_L is an equivariant momentum map. So, by the result eq. 365 of Section 6.4.2, it is Poisson. That is:

\[(417) \quad \{F, H\}_+ \circ J_L = \{F \circ J_L, H \circ J_L\}_{T^*G} = \{F_R, H_R\}_{T^*G}.\]

Restricting eq. 417 to \mathfrak{g}^* gives the first equation of eq. 416.

Similarly, one proves the second equation by using the fact that $J_R : T^*G \to \mathfrak{g}^* \equiv \mathfrak{g}^*_-$, $J_R = T^*_e L_g$ is an equivariant momentum map and so is Poisson. That is:

\[(418) \quad \{F, H\}_- \circ J_R = \{F \circ J_R, H \circ J_R\}_{T^*G} = \{F_L, H_L\}_{T^*G}.\]

We then restrict eq. 418 to \mathfrak{g}^*. \[\blacksquare\]
7.3.3 Deriving the Lie-Poisson bracket

Our discussion so far, in both Section 7.2 and the two previous Subsections, has taken the Lie-Poisson bracket (whether positive or negative) as given. We now show, using invariant functions and Section 6.5.1’s idea of momentum functions, how to derive the Lie-Poisson bracket on g^*.

So this derivation will amount to another, more “constructive”, proof of the Lie-Poisson reduction theorem. As in Section 7.2’s proof, two main ingredients will be:

(a) the diffeomorphism $\hat{\lambda}$ between T^*G/G and g^* (eq. 229 or 404 or 405), and

(b) the Poisson reduction theorem of Section 5.5, applied to G’s action on T^*G.

But instead of Section 7.2’s proof’s using the facts that (i) the momentum maps $J_R \equiv T^*_e L_g$ and $J_L \equiv T^*_e R_g$ are equivariant and (ii) equivariant momentum maps are Poisson, we will now use the ideas of invariant functions and momentum functions.

We begin by recalling that (since left translation is a diffeomorphism of G, and the cotangent lift of any diffeomorphism of a manifold to its cotangent bundle is symplectic), the Poisson reduction theorem implies that there is a unique Poisson structure on T^*G/G such that $\pi : T^*G \rightarrow T^*G/G$ is Poisson. We now use the diffeomorphism $\hat{\lambda} : T^*G/G \rightarrow g^*$ to transfer this Poisson structure to g^*. Let us call the result $\{,\}_\pi$. Though this is not to be read (yet!) as the negative Lie-Poisson bracket, our aim now is to calculate that it is in fact this bracket.

Notice first that since the momentum map $J_R : T^*G \rightarrow g^*, \alpha_g \mapsto (T^*_e L_g)\alpha_g$ is equal to $\hat{\lambda} \circ \pi$ (eq. 406), we know that J_R is Poisson with respect to this induced bracket on g^*. That is

\[\{F, H\}_\pi \circ J_R (\alpha_g) = \{F \circ J_R, H \circ J_R\}_{T^*G} (\alpha_g) = \{F_L, H_L\}_{T^*G} (\alpha_g). \]

To calculate the right hand side, we will apply the ideas of invariant functions and momentum functions to each argument of the bracket; in particular to the first:

\[F_L(\alpha_g) = F(T^*_e L_g \cdot \alpha_g). \]

We observe that since a Poisson bracket depends only on the values of first derivatives, we can replace $F \in \mathcal{F}(g^*)$ by its linearization. That is, we can assume F is linear, so that at any point $\alpha \in g^*$, $F(\alpha) = \langle \alpha; \nabla F \rangle$, where ∇F is a constant in $g \equiv g^{**}$. Applying this, and the definition of a momentum function eq. 369, to eq. 420, we get:

\[F(T^*_e L_g \cdot \alpha_g) = \langle T^*_e L_g \cdot \alpha_g; \nabla F \rangle = \langle \alpha_g; T^*_e L_g \cdot \nabla F \rangle = \mathcal{P}(X_{\nabla F})(\alpha_g), \]

where the last equation applies the definition of a momentum function to the left-invariant vector field on $G, X_\xi(g) \equiv T^*_e L_g(\xi)$, for the case $\xi = \nabla F$.
Now we apply to eq. 421, in order: eq. 374, the definition of the Lie algebra bracket (cf. eq. 74), eq. 369 again, and the definition of left-invariant vector fields. We get:

\[(422) \quad \{F_L, H_L\}_{T^*G}(\alpha_g) = \{\mathcal{P}(X_{\nabla F}), \mathcal{P}(X_{\nabla H})\}_{T^*G}(\alpha_g) = -\mathcal{P}([X_{\nabla F}, X_{\nabla H}])(\alpha_g)\]

\[(423) = -\mathcal{P}(X_{[\nabla F, \nabla H]})(\alpha_g) = -\langle\alpha_g; X_{[\nabla F, \nabla H]} \rangle \quad (424) = -\langle\alpha_g; T^*_eL_g([\nabla F, \nabla H]) \rangle = -\langle T^*_eL_g(\alpha_g); [\nabla F, \nabla H] \rangle .\]

Combining eq. 419 and eq. 424, and writing $\alpha \in g^*$ for $(T^*_eL_g)\alpha_g \equiv \mathbf{J}_R(\alpha_g)$, we have our result:

\[(425) \quad \{F, H\} -(\alpha) = -\langle \alpha; [\nabla F, \nabla H] \rangle .\]

One similarly derives the positive Lie-Poisson bracket by considering right-invariant extensions of linear functions. The minus sign coming from eq. 374 is cancelled by the sign reversal in the Lie bracket of right-invariant vector fields. That is, it is cancelled by a minus sign coming from eq. 86.

7.4 Reduction of dynamics

We end our account of the Lie-Poisson reduction theorem by discussing the reduction of dynamics from T^*G to g^*.

We can be brief since we have already stated the main idea, when discussing the Poisson reduction theorem; cf. (2)(A) in Section 5.5. Thus recall that (under the conditions of the theorem) a G-invariant Hamiltonian function on a Poisson manifold M, $H : M \rightarrow \mathbb{R}$, defines a corresponding function h on M/G by $H = h \circ \pi$, where π is the projection $\pi : M \rightarrow M/G$; and since π is Poisson, and so pushes Hamiltonian flows forward to Hamiltonian flows, π pushes X_H on M to X_h on M/G:

\[(426) \quad T\pi \circ X_H = X_h \circ \pi .\]

Applying this, in particular eq. 426, to the Lie-Poisson reduction theorem, we get

Reduction of dynamics Let $H : T^*G \rightarrow \mathbb{R}$ be left-invariant. That is: the function $H^- := H |_{g^*}$ on g^* satisfies

\[(427) \quad H(\alpha_g) = H^-(\mathbf{J}_R(\alpha_g)) \equiv H^-(T^*_eL_g \cdot \alpha_g) , \quad \alpha_g \in T^*_g G .\]

Then \mathbf{J}_R pushes X_H forward to X_{H^-}. Or in terms of the flows $\phi(t)$ and $\phi^-(t)$ of X_H and X_{H^-} respectively:

\[(428) \quad \mathbf{J}_R(\phi(t)(\alpha_g)) = \phi^-(t)(\mathbf{J}_R(\alpha_g)) .\]

Similar statements hold for a right-invariant function $H : T^*G \rightarrow \mathbb{R}$, its restriction $H^+ := H |_{g^*}$ and $\mathbf{J}_L \equiv T^*_eR_g$.
Besides, we already know the vector field of H^- on \mathfrak{g}^*. For eq. 261 in (3) of Section 5.2.4 gave a basis-independent expression of Hamilton's equations on \mathfrak{g}^* in terms of ad^*. We just need to note that since we are now using the negative Lie-Poisson bracket on \mathfrak{g}^*, all terms in the deduction (eq. 261) apart from the left-hand side, get a minus sign. So writing $\alpha \in \mathfrak{g}^*$, eq. 261 for the vector field X_{H^-} becomes:

\[
\frac{d\alpha}{dt} = - ad^*_{\nabla H^-} (\alpha) .
\]

On the other hand, we can go in the other direction, reconstructing the dynamics on T^*G from eq. 429 on \mathfrak{g}^*. The statement of the main result, below, is intuitive, in that the "reconstruction equation" for $g(t) \in T^*G$ is

\[
g^{-1} \dot{g} = \nabla H^- .
\]

This is intuitive since it returns us to the basic idea of mechanics on \mathfrak{g} and \mathfrak{g}^*, viz. that the map

\[
\lambda_g : \dot{g} \in T_g G \mapsto \lambda_g (\dot{g}) := (T_g L_{g^{-1}}) \dot{g} \in \mathfrak{g}
\]

maps the generalized velocity to its body representation; cf. eq. 205. However, the proof of this result is involved [Marsden and Ratiu, 1999, theorems 13.4.3, 13.4.4, p. 423-426]; so we only state the result. It is: —

Reconstruction of dynamics Suppose given a Lie group G, a left-invariant $H : T^*G \to \mathbb{R}$, its restriction $H^- := H|_{\mathfrak{g}^*}$, and an integral curve $\alpha(t)$ of the Lie-Poisson Hamilton's equations eq. 429 on \mathfrak{g}^*, with the initial condition $\alpha(0) = T^*_c L_{g_0} (\alpha_{g_0})$. Then the integral curve in T^*G of X_{H} is given by

\[
T^*_g (t) L_{g(t)^{-1}} (\alpha(t)) ;
\]

where $g(t)$ is the solution of the reconstruction equation

\[
g^{-1} \dot{g} = \nabla H^-
\]

with initial condition $g(0) = g_0$.

7.5 *Envoi: the Marsden-Weinstein-Meyer theorem*

I emphasize that our discussion of reduction has only scratched the surface: after all this Section has been relatively short! But now that the reader is armed with the long and leisurely exposition from Section 3 onwards, they are well placed to pursue the topic of reduction; e.g. through this Chapter's main sources, [Abraham and Marsden, 1978; Arnold, 1989; Olver, 2000; Marsden and Ratiu, 1999].

In particular, the reader can now relate the Lie-Poisson reduction theorem to another main theorem about symplectic reduction, usually called the Marsden–Weinstein–Meyer or Marsden–Weinstein theorem (after these authors' papers in

This theorem concerns a symplectic action of a Lie group \(G \) on a symplectic manifold \((M, \omega)\). For the sake of completeness, and to orient the reader to Landsman's discussion of this theorem (this vol., ch. 5, especially Section 4.5), it is worth stating it (as usual, for the finite-dimensional case only), together with the lemma used to prove it, and the ensuing reduction of dynamics. These statements will also round off our discussion by illustrating how some notions expounded from Section 3 onwards, but not used in this Section, are nevertheless useful — e.g. in stating the hypotheses of this theorem.

So suppose the Lie group \(G \) acts symplectically (eq. 311) on the symplectic manifold \((M, \omega)\); and that \(J : M \to g^* \) is an \(\text{Ad}^* \)-equivariant momentum map for this action (eq. 357 and 362). Assume also that \(\alpha \in g^* \) is a regular value of \(J \), i.e. that at every point \(x \in J^{-1}(\alpha) \), \(T_xJ \) is surjective. So the submersion theorem of (1) of Section 3.3.1 applies; in particular, \(J^{-1}(\alpha) \) is a sub-manifold of \(M \) with dimension \(\dim(M) - \dim(g^*) = \dim(M) - \dim(G) \).

Let \(G_\alpha \) be the isotropy group (eq. 148) of \(\alpha \) under the co-adjoint action, i.e.

\[
G_\alpha := \{ g \in G \mid \text{Ad}_{g^{-1}}^* \alpha = \alpha \}.
\]

So since \(J \) is \(\text{Ad}^* \)-equivariant under \(G_\alpha \), the quotient space \(M_\alpha := J^{-1}(\alpha)/G_\alpha \) is well-defined.

Now assume that \(G_\alpha \) acts freely and properly on \(J^{-1}(\alpha) \), so that (Section 4.3.0.2) the quotient space \(M_\alpha = J^{-1}(\alpha)/G_\alpha \) is a manifold. \(M_\alpha \) is the reduced phase space (corresponding to the momentum value \(\alpha \)).

Now we assert:

Marsden-Weinstein-Meyer theorem \(M_\alpha \) has a natural symplectic form \(\omega_\alpha \) induced from \((M, \omega)\) as follows. Let \(u, v \) be two vectors tangent to \(M_\alpha \) at some point \(p \in M_\alpha \); so \(p \) is an orbit of \(G_\alpha \)'s action on \(J^{-1}(\alpha) \), and \(u, v \in T_pM_\alpha \). Then \(u \) and \(v \) are obtained, respectively, from some vectors \(u' \) and \(v' \) tangent to \(J^{-1}(\alpha) \) at some point \(x \in J^{-1}(\alpha) \) of the orbit \(p \), by the projection \(\pi_\alpha : J^{-1}(\alpha) \to M_\alpha \). That is:

\[
(435) \quad T\pi_\alpha(u') = u \ ; \ T\pi_\alpha(v') = v .
\]

It turns out that the value assigned by \(M \)'s symplectic form \(\omega \) is the same whatever choice of \(x, u', v' \) is made. So we define the symplectic form \(\omega_\alpha \) on \(M_\alpha \) as assigning this value. In other words: writing \(\pi_\alpha \) for the projection, \(i_\alpha : J^{-1}(\alpha) \to M \) for the inclusion, and \(* \) for pullback:

\[
(436) \quad \pi_\alpha^*\omega_\alpha = i_\alpha^*\omega .
\]

The proof of this theorem uses the following Lemma. Let us write \(G \cdot x \) for the orbit \(\text{Orb}(x) \) of \(x \) under the action of all of \(G \), and similarly \(G_\alpha \cdot x \) for the orbit under \(G_\alpha \), i.e. \(\{ \Phi(g, x) \mid g \in G_\alpha \} \). Then the Lemma states:
For any \(x \in J^{-1}(\alpha) \):

(i): \(T_x(G_\alpha \cdot x) = T_x(G \cdot x) \cap T_x(J^{-1}(\alpha)) \); and

(ii): \(T_x(G \cdot x) \) and \(T_x(J^{-1}(\alpha)) \) are \(\omega \)-orthogonal complements of one another in \(TM \). That is: for all \(u' \in T_xM \):

\[u' \in T_x(J^{-1}(\alpha)) \iff \omega(u', v') = 0 \text{ for all } v' \in T_x(G \cdot x). \]

Both the Lemma and the theorem are each proven in some dozen lines. For details, cf. [Abraham and Marsden, 1978, Theorems 4.3.1–2, pp. 299–300; Arnold, 1989, Appendix 5.B, pp. 374–376].

Two final remarks. (1): The reduction of dynamics secured by the Marsden-Weinstein-Meyer theorem is similar to what we have seen before, for both the Poisson reduction theorem ((2) of Section 5.5), and the Lie-Poisson reduction theorem (Section 7.4). One proves, again in a few lines [Abraham and Marsden, 1978, Theorems 4.3.5, p. 304]:

Marsden-Weinstein-Meyer reduction of dynamics Let \(H : M \to \mathbb{R} \) be invariant under the action of \(G \) on \(M \), so that by Noether’s theorem for momentum maps (Section 6.2) \(J \) is conserved, i.e. \(J^{-1}(\alpha) \) is invariant under the flow \(\phi(t) \) of \(X_H \) on \(M \). Then \(\phi(t) \) commutes with the action of \(G_\alpha \) on \(J^{-1}(\alpha) \) (i.e. \(\phi(t) \circ \Phi_g = \Phi_g \circ \phi(t) \) for \(g \in G_\alpha \)), and so defines a flow \(\dot{\phi}(t) \) on \(M_\alpha \) such that \(\pi_\alpha \circ \phi(t) = \dot{\phi}(t) \circ \pi_\alpha \), i.e.

\[
\begin{align*}
J^{-1}(\alpha) & \xrightarrow{\pi_\alpha} M_\alpha \\
J^{-1}(\alpha) & \xrightarrow{\pi_\alpha} M_\alpha
\end{align*}
\]

The flow \(\dot{\phi}(t) \) is Hamiltonian with the Hamiltonian \(H_\alpha \) defined by \(H_\alpha \circ \pi_\alpha = H \circ \iota_\alpha \).

(2): I said at the start of this Subsection that the reader can now relate the Lie-Poisson reduction theorem to the Marsden-Weinstein-Meyer theorem. It is not hard to show that the former is an example of the latter. As the symplectic manifold \(M \) one takes \(T^*G \), acted on symplectically by the cotangent lift of left translation. So we know (from (3) of Section 6.5.3) that \(J_L := T^*_g R_g \) is an \(Ad^* \)-equivariant momentum map ... and so on: I leave this as an exercise for the reader! The answer is supplied at Arnold [1989, 377, 321] and Abraham and Marsden [1978, 302]. (Abraham and Marsden call it the ‘Kirillov-Kostant-Souriau theorem’.)

Suffice it to say here that this exercise gives another illustration of one of our central themes, that \(\mathfrak{g}^* \)'s symplectic leaves are the orbits of the co-adjoint representation. For the reduced phase space \(M_\alpha \) is naturally identifiable with the co-adjoint orbit \(\text{Orb}(\alpha) \) of \(\alpha \in \mathfrak{g}^* \), with the symplectic forms also naturally identified; (cf. also result (2) at the end of Section 5.4).
ACKNOWLEDGEMENTS

I am grateful to audiences in Irvine, Oxford, Princeton and Santa Barbara; to several colleagues for encouragement; and to Gordon Belot, Klaas Landsman, Barrie Tonkinson, David Wallace, and especially Graeme Segal, for helpful, and patient!, conversations, correspondence and corrections.

BIBLIOGRAPHY

Landsman, 2006] N. Landsman (this volume), Between Classical and Quantum.

Rovelli, 2006] C. Rovelli (this volume), Quantum Gravity.

This page intentionally left blank
THE REPRESENTATION OF TIME AND CHANGE IN MECHANICS

Gordon Belot

If time is objective the physicist must have discovered that fact, if there is Becoming the physicist must know it; but if time is merely subjective and Being is timeless, the physicist must have been able to ignore time in his construction of reality and describe the world without the help of time. . . . If there is a solution to the philosophical problem of time, it is written down in the equations of mathematical physics.

Perhaps it would be better to say that the solution is to be read between the lines of the physicist’s writings. Physical equations formulate specific laws . . . but philosophical analysis is concerned with statements about the equations rather than with the content of the equations themselves.

— Reichenbach.1

For many years I have been tormented by the certainty that the most extraordinary discoveries await us in the sphere of Time. We know less about time than about anything else.

— Tarkovsky.2

1 INTRODUCTION

This chapter is concerned with the representation of time and change in classical (i.e., non-quantum) physical theories. One of the main goals of the chapter is to attempt to clarify the nature and scope of the so-called problem of time: a knot of technical and interpretative problems that appear to stand in the way of attempts to quantize general relativity, and which have their roots in the general covariance of that theory.

The most natural approach to these questions is via consideration of more clear cases. So much of the chapter is given over to a discussion of the representation of time and change in other, better understood theories, starting with the most straightforward cases and proceeding through a consideration of cases that prepare one, in one sense or another, for the features of general relativity that are responsible for the problem of time.

1[Reichenbach, 1991, 16 f].
2[Tarkovsky, 1991, 53].
Let me begin by saying a bit about what sort of thing I have in mind in speaking of the representation of time and change in physical theories, grounding the discussion in the most tractable case of all, Newtonian physics.

As a perfectly general matter, many questions and claims about the content of a physical theory admit of two construals — as questions about structural features of solutions to the equations of motion of the theory, or as questions about structural features of these equations. For instance, on the one hand time appears as an aspect of the spacetimes in which physics unfolds — that is, as an aspect of the background in which the solutions to the equations of the theory are set. On the other, time is represented via its role in the laws of physics — in particular, in its role in the differential equations encoding these laws. So questions and claims about the nature of time in physical theories will admit of two sorts of reading.

Consider, for instance, the claim that time is homogeneous in Newtonian physics (or, as Newton would put it, that time flows equably). There are two sorts of fact that we might look to as grounding this claim.

1. There is a sense in which time is a separable aspect of the spacetime of Newtonian physics and there is a sense in which time, so considered, is homogenous.³

2. The laws of the fundamental-looking theories of classical mechanics (e.g., Newton's theory of gravity) are time translation invariant — the differential equations of these theories do not change their form when the origin of the temporal coordinate is changed — so the laws of such theories are indifferent to the identity of the instants of time.

In the Newtonian setting, these two sorts of considerations mesh nicely and provide mutual support: there is a consilience between the symmetries of the laws and the symmetries of spacetime. But in principle, the two sorts of consideration need not lead to the same sort of answer: one might consider a system in Newtonian spacetime that is subject to time-dependent forces; or one could set the Newtonian n-body problem in a spacetime which featured a preferred instant, but otherwise had the structure of Newtonian spacetime. And as one moves away from the familiar setting of Newtonian physics, it becomes even more important to distinguish the two approaches: in general relativity, the laws have an enormous (indeed, infinite-dimensional) group of symmetries while generic solutions have no symmetries whatsoever.

In discussing the representation of time and change, this chapter will focus on structural features of the laws of physical theories rather than on features of particular solutions. To emphasize this point, I will say that I am interested in the structure of this or that theory as a dynamical theory.

³(Neo)Newtonian spacetime is partitioned in a natural way by instants of absolute simultaneity, and time can be identified with the structure that the set of these instants inherits from the structure of spacetime: time then has the structure of an affine space modelled on the real numbers — so for any two instants, there is a temporal symmetry which maps one to the other.
I will approach my topics via the Lagrangian and Hamiltonian approaches to classical theories, two great over-arching — and intimately related — frameworks in which such topics are naturally addressed. Roughly speaking, in each of these approaches the content of the equations of a theory is encoded in certain structures on a space of possibilities associated with the theory. In the Lagrangian approach the featured space is the space of solutions to the equations of the theory, which for heuristic purposes we can identify with the space of possible worlds allowed by the theory. On the Hamiltonian side, the featured space is the space of initial data for the equations of the theory, which we can in the same spirit identify with the space of possible instantaneous states allowed by the theory.

In Newtonian mechanics, the reflection within the Lagrangian framework of the time translation invariance of the laws is that the space of solutions is itself invariant under time translations: given a set of particle trajectories in spacetime obeying Newton's laws of motion, we can construct the set of particle trajectories that result if all events are translated in time by amount \(t \); the latter set is a solution (i.e., is permitted by the laws of motion) if and only if the former set is; furthermore, the map that carries us from a solution to its time translate preserves the structure on the space of solutions that encodes the dynamics of the theory. Within the Hamiltonian framework, on the other hand, the time translation invariance of the laws is reflected by the existence of a map that sends an initial data set to the state it will evolve into in \(t \) units of time; again, this map leaves invariant the structure on the space that encodes the dynamics of the theory. So the temporal symmetry of the dynamics of the theory is reflected on the Lagrangian side by a notion of time translation and on the Hamiltonian side by a notion of time evolution.

The representation of change in Newtonian physics also takes different (but closely related) forms within the Lagrangian and Hamiltonian frameworks. Change consists in a system having different and incompatible properties at different times. We want to say, for instance, that there is a change in the observable properties of a two-body system if and only if the relative distance between the particles is different at different times.

4Why pursue our question within the realm of Lagrangian and Hamiltonian mechanics rather than working directly with the differential equations of theories? Because the benefits are large: these overarching approaches provide powerful mathematical frameworks in which to compare theories. And because the costs are minimal: almost every theory of interest can be put into Lagrangian or Hamiltonian form, without any obvious change of content. And because it leads us where we want to go: current attempts to understand the content of classical physical theories are necessarily shaped by efforts to construct or understand deeper, quantum theories; and it appears that a classical theory must be placed in Lagrangian or Hamiltonian form in order to be quantized.

5See remark 2 for the sense in which talk of possibilis is intended here.

6In the context of ordinary classical mechanics, one often thinks of Lagrangian mechanics as set in the velocity phase space — and thus as more closely associated with a space of initial data rather than with a space of solutions. However, this familiar approach presupposes an absolute notion of simultaneity, and for this reason it is usually dropped in favour of a spacetime covariant Lagrangian approach (in which the space of initial data plays no role) when one turns to relativistic theories. This is the point of view adopted below.
Hamiltonian Approach. Specifying the instantaneous dynamical state of such a system suffices to specify the instantaneous relative distance between the particles. So there is a function on the space of initial data corresponding to this quantity. A history of the system is a trajectory through the space of initial data. In our simple example, observable change occurs during a given history if and only if the function corresponding to the relative distance between the particles takes on different values at different points on the trajectory in question. More generally, in any Newtonian system, any quantity of physical interest (observable or not) is represented by a function on the space of initial data, and a trajectory in this space represents such quantities as changing if the corresponding functions take on different values at different points on the trajectory.

Lagrangian Approach. Clearly, no function on the space of solutions can represent a changeable quantity in the same direct way that functions on the space of initial data can. But for each t, there is a function on the space of solutions of our two-body problem that assigns to each solution the relative distance between the particles at time t according to that solution. Letting t vary, we construct a one-parameter family of functions on the space of solutions. A solution to the equations of motion represents the relative distance between the particles as changing if and only if different members of this one-parameter family of functions take on different values when evaluated on the given solution. And so on more generally: any changeable physical quantity corresponds to such a one-parameter family of functions on the space of solutions, and change is understood as in the simple two-body example.

So much for the sort of thing I have in mind in speaking of the representation of time and change in a physical theory. Before sketching the path that this chapter takes in discussing these topics, it will perhaps be helpful to say a bit about its ultimate goal — the clarification of the nature of the so-called problem of time. Discussions of the problem of time typically focus on Hamiltonian versions of general relativity, in which the focus is on the space of possible instantaneous geometries (metrics and second fundamental forms on Cauchy surfaces). This is somewhat unfortunate, since such approaches require from the start a division of spacetime into a family of spacelike hypersurfaces — which appears to be against the spirit of the usual understanding of the general covariance of the theory. In light of this fact, there is room for worry that some aspects of the problem of time as usually presented are consequences of this rather awkward way of proceeding. I take a somewhat different path, always anchoring my discussion in the Lagrangian approach, which takes as fundamental complete histories of systems rather than instantaneous states.

The view developed below is that, roughly speaking, the core of the problem of time is that in general relativity, when understood dynamically, there is no way to view time evolution or time translation as symmetries of the theory and, relatedly, there is no natural way to model change via functions on the spaces arising within.
the Lagrangian and Hamiltonian approaches. This marks a respect in which general relativity, so conceived, is very different from preceding fundamental-looking theories.

The problem of time may sound — not very pressing. To be sure, there are puzzles here. Why should general relativity differ in this way from its predecessors? In predecessors to general relativity, the representation of time and the representation of change are tied together in a very neat package — what does the general relativistic replacement for this package look like? These are interesting questions. But then of course no one should expect time to be represented in general relativity as in its predecessors — that it presents an utterly new picture of time and space is one of the glories of the theory. And one might also think: since the structure of spacetime varies from solution to solution in general relativity, it is surely more appropriate to look at the representation of time in this or that physically realistic solution, rather than in the equations of the theory, if we want to understand what the theory is telling us about the nature of time in our world.

The problem of time assumes a more pressing aspect, however, when one considers the quantization of general relativity (or of any other theory that is generally covariant in the relevant sense). The project of constructing successor theories naturally focuses our attention on structural features of the theories at hand — in constructing successors, one is in the business of laying bets as to which such features of current theories will live on (perhaps in a new form), and which ones will be left behind. And known techniques of quantization require as input not just differential equations, but theories cast in Hamiltonian or Lagrangian form. So for those interested in quantizing general relativity, questions about the structure of the theory qua dynamical theory naturally loom large. And lacking solutions to the puzzles mentioned above, one expects conceptual difficulties in formulating (or extracting predictions from) any quantization of general relativity. So from this perspective, the problem of time is in fact quite pressing.

This chapter takes long route to the problem of time. I begin in section 2 with the briefest of introductions to Hamiltonian and Lagrangian mechanics, by way of motivating some of what follows. In section 3, I sketch some important concepts and results of symplectic geometry, the field of mathematics that underlies classical

7This formulation above only gives us a first approximation, for several reasons (each of which will be discussed more fully in following sections). (i) The problem of time only arises in those versions of general relativity most appropriate to the cosmological setting; in other applications of the theory, time is represented in a fashion very similar to that in which it is represented in special relativistic physics. (ii) In the treatment of ordinary time-dependent systems, time evolution and time translation are not symmetries of the theory — but this does not lead to any real problem in representing time and change in such theories, because one still has group actions that implement time evolution and time translation, even though they are not symmetries of the laws, and these suffice to erect an account of change very similar to that occurring in ordinary time-independent theories. (iii) In theories in which solutions are not defined globally in time, time evolution and time translation will not be implemented by group actions, but merely by local flows (these can be thought of as infinitesimal surrogates for group actions); these suffice for the construction of the familiar picture of change in such theories; but even these are absent in general relativity.
mechanics. The concepts introduced here are crucial for what follows: for well-behaved theories, the space of solutions (on the Lagrangian side) and the space of initial data (on the Hamiltonian side) both have symplectic structures. And we will see that various symplectic (or nearly symplectic) spaces arise even when one strays away from the ideal case. In section 4, I sketch the very powerful framework of modern Lagrangian mechanics, with its apparatus of local conservation laws.

In section 5, I sketch the Lagrangian and Hamiltonian pictures for ideally well-behaved theories satisfying the following conditions: (i) the background spacetime geometry admits a group of time translations and the Lagrangian of the theory is invariant (in a suitable sense) under the action of this group; (ii) specifying initial data for the equations of the theory suffices to determine a single maximal solution; (iii) this maximal solution is defined for all values of the time parameter. When these conditions hold, we find that there is a group of time translation symmetries operating on the space of solutions on the Lagrangian side, while on the Hamiltonian side there is a group implementing time evolution on the space of initial data. These two spaces are isomorphic, and the two group actions intertwine in a satisfying fashion. One is able to give a straightforward and appealing account of the way in which change is represented on either of these two fundamental spaces.

In section 6, I turn to the complications that must be introduced into the picture when one drops any one of the conditions (i)–(iii) of the preceding paragraph. Finally in section 7, I address the representation of time and change in general relativity. This leads directly to the problem of time.

As this outline makes clear, much of the chapter is given over to exposition of technical material. In order to keep the length reasonable, I have had to presume that the reader comes to this chapter with quite a bit of technical background. I have tried to write for an ideal reader who has previously studied general relativity or gauge theory, and hence feels comfortable with the basic concepts, results, and constructions of differential geometry (although at a few strategic points I have included discussion meant to jog the memory of such readers).

This chapter is founded upon the modern geometrical approach to Lagrangian mechanics that is presented in the barest sketch in section 4. This approach, developed relatively recently by mathematicians, provides a highly abstract framework for thinking about physical theories rather than a fully rigorous treatment of any given theory. It exists at the formal, differential-geometric level: the focus is on the geometric structure of various spaces and on the geometric content of equations and constructions; functional analytic details are held in abeyance. Much of the material sketched in other sections functions at this same level.

In content, this chapter overlaps somewhat with [Malament, this volume], [Rovelli, this volume], and [Brading and Castellani, this volume]. But it is most closely related to [Butterfield, this volume]. Butterfield’s chapter provides a philosophical introduction to modern geometric approaches to mechanics; the present chapter is meant as an example of the application of this approach to a philosophical problem. The present chapter is, however, meant to be self-contained. And there is in
fact a considerable difference in emphasis between this chapter and Butterfield's: the latter is restricted to finite-dimensional systems, and focuses on the Hamiltonian side of things; the present chapter is primarily concerned with field theories, and focuses to a much greater extent on the Lagrangian approach.

REMARK 1 (Notation and Terminology). Elements of and structures on the space of solutions of a field theory are always indicated by capital letters (Greek or Latin) while elements of and structures on the space initial data of a field theory are always indicated by lower case letters (Greek or Latin). Boldface indicates three-vectors or three-vector-valued functions. In this chapter, a curve is officially a map from intervals of real numbers into a space that is a manifold or a mild generalization of a manifold — sometimes for emphasis I redundantly call a curve a parameterized curve. An affinely parameterized curve is a equivalence class of such curves, where two curves count as equivalent if they have the same image and their parameterization agrees up to a choice of origin. A unparameterized curve is an equivalence class of curves, under the equivalence relation where curves count as equivalent if they have the same image. I sometimes conflate a curve and its image.

REMARK 2 (Possible Worlds Talk). Below, especially in section 7, I sometimes speak of points of the space of solutions (initial data) as representing possible worlds (possible instantaneous states) permitted by the theory, even though I do not pretend to be involved in fine-grained matters of interpretation here. This sort of thing is meant only in a rough and heuristic way. The idea is that in trying to understand a theory, we are in part engaged in a search for a perspicuous formulation of the theory; and it is reasonable to hope that if a formulation is perspicuous, then there will exist a prima facie attractive interpretation of the theory according to which there is a bijection between the space of solutions (initial data) and the space of possible worlds (possible instantaneous states) admitted by the theory under that interpretation. This is not to deny that there may be reasons for ultimately rejecting such interpretations: a Leibnizean might settle on a standard formulation of classical mechanics, even though that means viewing the representation relation between solutions and possible worlds as many-to-one in virtue of the fact that solutions related by a time translation must be seen as corresponding to the same possible world.

2 HAMILTONIAN AND LAGRANGIAN MECHANICS

This section contains a very brief sketch of the Hamiltonian and Lagrangian approaches to the Newtonian n-body problem. The intended purpose is to motivate

8That is, an affinely parameterized curve is an equivalence class of curves under the equivalence relation according to which curves \(\gamma_1: [a, b] \to M \) and \(\gamma_1: [a, b] \to M \) are equivalent if and only if there exists \(s \in \mathbb{R} \) such that \(\gamma_1(t) = \gamma_2(t + s) \) for all \(t \in [a, b] \).

9For textbooks approaching classical mechanics in a variety of styles, see, e.g., [Goldstein, 1953], [Lanczos, 1986], [Singer, 2001], [Marsden and Ratiu, 1994], [Arnold, 1989], [Arnold et al.,
some of what follows in later sections.

2.1 The n-Body Problem

We consider \(n \) gravitating point-particles. Let the mass of the \(i \)th particle be \(m_i \). Working relative to a fixed inertial frame we write: \(q := (q_1, \ldots, q_n) = (q_1, \ldots, q_{3n}) \) for the positions of the particles, \(\dot{q} := (\dot{q}_1, \ldots, \dot{q}_n) = (\dot{q}_1, \ldots, \dot{q}_{3n}) \) for their velocities, and \(\ddot{q} := (\ddot{q}_1, \ldots, \ddot{q}_n) = (\ddot{q}_1, \ldots, \ddot{q}_{3n}) \) for their accelerations (in this chapter, boldface always indicates a three-vector). The gravitational force exerted on the \(i \)th particle by the \(j \)th particle is

\[
F_{ij} = \frac{m_i m_j}{r_{ij}^2} u_{ij},
\]

where \(r_{ij} \) is the distance between the \(i \)th and \(j \)th particles, \(u_{ij} \) is the unit vector pointing from the \(i \)th to the \(j \)th particle, and units have been chosen so that Newton's constant is unity. Of course, equation 1 is not well-defined for \(r_{ij} = 0 \). So from now on we assume that \(q \in Q := \mathbb{R}^{3n}/\Delta \), where \(\Delta \) is the collision set \(\{q \in \mathbb{R}^{3n} : q_i = q_j \text{ for some } i \neq j \} \).

The net force acting on the \(i \)th particle is

\[
F_i = \sum_{j \neq i} F_{ij}.
\]

So the equations of motion for our theory are: \(F_i = m_i \ddot{q}_i \).\(^{10}\) Resolving each force and acceleration vector into its components, we have \(3n \) second-order differential equations. Roughly speaking, these equations have a well-posed initial value problem: specifying \(3n \) values for the initial positions of our particles and \(3n \) values for their initial velocities (momenta) determines a unique analytic solution to the equations of motion, which tells us what the positions and velocities (momenta) of the particles are at all other times at which these quantities are defined.\(^{11}\)

2.2 The Hamiltonian Approach

The basic variables of the Hamiltonian approach are the positions of the particles and the corresponding momenta, \(p := (m_1 \dot{q}_1, \ldots, m_n \dot{q}_n) = (m_1 q_1, \ldots, m_n q_{3n}) \). A state of the system, \((q, p) \), is specified by specifying the position and momentum of each particle. To each state we can assign a kinetic energy

\[
T(q, p) := \sum_{i=1}^{n} \frac{1}{2m_i} |p_i|^2
\]

\(^{10}\)This should be read as a differential equation constraining the allowed trajectories \(q(t) \).

\(^{11}\)Similarly for the other differential equations appearing in this section.

Note that some solutions fail to be defined for all values of \(t \); see example 33 below for discussion.
and a potential energy,
\[V(q, p) := \sum_{i<j} \frac{m_i m_j}{r_{ij}}. \]

Note that \(F_i = -\nabla_i V(q) \), where \(\nabla_i \) is the gradient operator \((\partial_{q_{3i-2}}, \partial_{q_{3i-1}}, \partial_{q_{3i}})\) corresponding to the configuration variables of the \(i \)th particle. So the potential energy encodes information about gravitational forces, while the kinetic energy can be thought of as encoding information about the inertial structure of Newtonian spacetime. So one might hope that together these quantities encode all of the physics of the \(n \)-body problem. This is indeed the case.

We introduce the space of initial data for the theory, \(\mathcal{I} := \{(q, p) : q \in Q\} \) and the Hamiltonian \(H : \mathcal{I} \to \mathbb{R}, H(q, p) := T(q, p) + V(q) \). The Hamiltonian is thus just the total energy.

The original equation of motion \(m_i \ddot{q}_i = F_i \) can be rewritten as \(\dot{p}_i = -\nabla_i V(q) \); or, since \(\nabla_i \mathcal{I} = \mathbb{R} \), as \(\dot{p}_i = -\nabla_i H \). In another notation, this becomes \(\dot{p}_i = -\frac{\partial H}{\partial q_i} \).

Furthermore, since the only term in \(H \) depending on \(p_i \) is of the form \(\frac{1}{2m_i} p_i^2 \), we find that \(\frac{\partial H}{\partial p_i} = \dot{q}_i \).

In this way, we move from the original Newtonian equations to Hamilton’s equations:
\[\ddot{q}_i = \frac{\partial H}{\partial p_i} \quad \text{and} \quad \dot{p}_i = -\frac{\partial H}{\partial q_i} \quad (i = 1, \ldots, 3n). \]

In fact, the ordinary Newtonian equations are equivalent to Hamilton’s equations. So we see that the function \(H = T + V \) encodes all of the dynamical content of the \(n \)-body problem.

Our present interest is in the geometry implicit in Hamilton’s equations. Hamilton’s equations gives us values for \(\dot{q}_i(q, p) \) and \(\dot{p}_i(q, p) \) at each point \((q, p) \in \mathcal{I} \). That is, Hamilton’s equations give us a component expression for a tangent vector \(X_H(q, p) \) at each point \((q, p) \in \mathcal{I} \). The vector field \(X_H \) on \(\mathcal{I} \) encodes the dynamics of our theory: through each point \((q_0, p_0) \in \mathcal{I}\) there is exactly one curve \((q(t), p(t)) : \mathbb{R} \to \mathcal{I}\) such that: (i) \((q(0), p(0)) = (q_0, p_0)\); and (ii) for each \(s \), the tangent vector to the curve \((q(t), p(t)) \) at \(t = s \) is given by \(X_H(q(s), p(s)) \). This curve tells us that if the system is in state \((q_0, p_0)\) at time \(t = 0 \), then it is in state \((q(s), p(s))\) at time \(t = s \).

We can rewrite Hamilton’s equations as:
\[(\dot{q}_1, \ldots, \dot{q}_{3n}, \dot{p}_1, \ldots, \dot{p}_{3n}) \begin{vmatrix} 0 & I \\ -I & 0 \end{vmatrix} = \left(\frac{\partial H}{\partial q_1}, \ldots, \frac{\partial H}{\partial q_{3n}}, \frac{\partial H}{\partial p_1}, \ldots, \frac{\partial H}{\partial p_{3n}} \right), \]

where \(I \) is the \(3n \times 3n \) identity matrix. On the left-hand side we have a vector multiplied by a matrix; on the right-hand side another vector. Thinking of \(\mathcal{I} \) as a manifold, we can recognize the coordinate-independent objects standing behind this equation: on the left we have the tangent vector field \(X_H \) contracted with a
two-form; on the right, the differential dH (i.e., the exterior derivative of H). So we can re-write Hamilton’s equations in a coordinate-independent form as:
\[\omega(X_H, \cdot) = dH, \]
where ω is the two-form on \mathcal{I} that assumes the form $\sum_i dq_i \wedge dp_i$ in our coordinates.

ω is a symplectic form on \mathcal{I}: a closed, nondegenerate two-form.\(^{12}\) ω can be thought of as being somewhat like an anti-symmetric metric on \mathcal{I} (e.g., both sorts of object establish a preferred isomorphism between vector fields and one-forms). But that analogy cannot be taken too seriously in light of the following striking differences between the two sorts of objects:

1. The isometry group of a finite-dimensional Riemannian manifold is always finite-dimensional. But our symplectic form is invariant under an infinite-dimensional family of diffeomorphisms from \mathcal{I} to itself. We can see this as follows. Let us think of \mathcal{I} as the cotangent bundle of Q; that is, we think of a point (q, p) as consisting of a point $q \in Q$ and a covector $p \in T_q^*Q$.\(^{13}\) A cotangent coordinate system on $\mathcal{I} = T^*Q$ arises as follows: choose arbitrary coordinates $\{q_i\}$ on Q and write $p \in T_q^*Q$ as $p = \sum p_i dq^i$; so that $\{q_i, p_j\}$ forms a set of coordinates on T^*Q. In any cotangent coordinate system,
\[\omega = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}. \tag{2} \]
So ω is invariant under the transformation that carries us from one set of cotangent coordinates on \mathcal{I} to another. And the set of such transformations is infinite-dimensional, since any diffeomorphism $d : Q \to Q$ generates such a transformation.

2. One does not expect any manifold or bundle to carry a natural Riemannian metric. But if M is any finite-dimensional manifold, the cotangent bundle T^*M carries a canonical symplectic form, ω, that takes the form $\omega = \sum_i dq_i \wedge dp_i$ relative to any set of local cotangent coordinates on M.\(^{14}\)

3. If (M, g) and (M', g') are n-dimensional Riemannian manifolds, then for any $x \in M$ and $x' \in M'$, we know that g and g' endow the tangent spaces T_xM and $T_{x'}M'$ with the same geometry; but in general we expect that no diffeomorphism $d : M \to M'$ will give an isometry between a neighbourhood of x and a neighbourhood of x'. But the Darboux theorem tells us that if (M, ω) is a finite-dimensional manifold equipped with a symplectic form,

\(^{12}\)See section 3.2 below for further discussion and for an unpacking of this definition.

\(^{13}\)Why regard p as a covector rather than a tangent vector? Because in general the momentum p of a system with Lagrangian L is defined as $\frac{\delta L}{\delta q}$, which transforms as a covariant quantity under change of coordinates on Q.

\(^{14}\)Where as above, a set of local coordinates on M induces a natural set of cotangent coordinates on T^*M. In example 7 below we will see a coordinate-free version of this construction that carries over to the infinite-dimensional case.
then \((M, \omega)\) is locally isomorphic to some \(T^*\mathbb{R}^n\) equipped with its canonical cotangent bundle symplectic form. An immediate corollary is that every finite-dimensional symplectic manifold is even-dimensional.

Of course, for present purposes, the interest in identifying the symplectic structure lying behind the Hamiltonian version of the \(n\)-body problem lies in generalization. (1) Note that if we are interested in \(n\) particles interacting via forces that arise from a potential energy function \(V\), as above, then we can construct a Hamiltonian treatment equivalent to the usual Newtonian one by again taking \(\mathcal{I}\) as the space of initial data, equipping it with the symplectic form \(\omega\) as above, defining a Hamiltonian \(H : \mathcal{I} \to \mathbb{R}\) as the sum of the kinetic and potential energies, and taking as our dynamical trajectories the integral curves of the vector field \(X_H\) on \(\mathcal{I}\) that solves \(\omega(X_H, \cdot) = dH\). (2) More generally, we can model a vast number of classical mechanical systems as follows: let the space of initial states be a symplectic manifold \((M, \omega)\) (not necessarily a cotangent bundle) and let a Hamiltonian \(H : M \to \mathbb{R}\) be given; then let the dynamics be given by the vector field \(X_H\) solving \(\omega(X_H, \cdot) = dH\).

2.3 The Lagrangian Approach

It is helpful to approach the Lagrangian version of the \(n\)-body problem somewhat indirectly.\(^{15}\)

Critical Points in Calculus

For \(f : \mathbb{R}^n \to \mathbb{R}\), the differential of \(f\) is given by \(df = (\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n})\). We say that \(f\) has a critical point at \(x_0 \in \mathbb{R}^n\) if \(df(x_0) = 0\); i.e., \(f\) has a critical point at \(x_0\) if \(df(x_0) \cdot e = 0\) for each \(e \in \mathbb{R}^n\) (since \(\mathbb{R}^n\) is a linear space, we can identify \(T_{x_0}\mathbb{R}^n\) with \(\mathbb{R}^n\) itself and let \(e \in \mathbb{R}^n\) here). There are a number of helpful ways of thinking of \(df(x_0) \cdot e\): (i) this quantity coincides with the directional derivative of \(f\) at \(x_0\) in direction \(e\),

\[
df(x_0) \cdot e = \lim_{t \to 0} \frac{f(x_0 + te) - f(x_0)}{t};
\]

(ii) if we have a curve \(\gamma : \mathbb{R} \to \mathbb{R}^n\) with \(\gamma(0) = x_0\) and \(\dot{\gamma}(0) = e\), then \(df(x_0) \cdot e = \frac{d}{dt} f(\gamma(t)) \mid_{t=0}\).

The Calculus of Variations and the Euler–Lagrange Equations

We now consider an infinite-dimensional analog: we look for critical points of a function defined on a space of curves in Euclidean space. This is the foundation of the Lagrangian approach to particle mechanics.

\(^{15}\) For introductions to the Lagrangian approach via the calculus of variations, see [Dubrovin et al., 1992, Chapter 6], [Lanczos, 1986, Chapters II and V], and [van Brunt, 2004]. For some of the rigorous underpinnings of the calculus of variations see, e.g., [Choquet-Bruhat et al., 1977, §§II.A and II.B] and [Choquet-Bruhat and DeWitt-Morette, 1989, §II.3].
Let \(Q = \mathbb{R}^n \), let \([a, b] \subset \mathbb{R}\) be a closed interval, and let \(x, y \in Q\). Let \(\Gamma(a, b; x, y) \) be the set of \(C^2 \) curves \(\gamma : [a, b] \to Q \) with \(\gamma(a) = x \) and \(\gamma(b) = y \). And let \(\Gamma(a, b; 0, 0) \) be the space of \(C^2 \) curves \(\gamma : [a, b] \to Q = \mathbb{R}^n \) with \(\gamma(a) = (0, \ldots, 0) \) and \(\gamma(b) = (0, \ldots, 0) \). Both \(\Gamma(a, b; x, y) \) and \(\Gamma(a, b; 0, 0) \) are well-behaved infinite-dimensional spaces.\(^{16}\) For \(\gamma \in \Gamma(a, b; x, y) \) we can think of \(\Gamma(a, b; 0, 0) \) as \(T \gamma \Gamma(a, b; x, y) \) (think of \(h \in \Gamma(a, b; 0, 0) \)) as describing a vector field along \(\gamma \).\(^{17}\)

The tangent bundle of \(Q \) is \(TQ = \mathbb{R}^{2n} \). Let \(L : TQ \to \mathbb{R} \) be a smooth function. This allows us to define a function \(I_{a,b} : \Gamma(a, b; x, y) \to \mathbb{R} \) by \(I_{a,b}(\gamma) := \int_a^b L(\gamma(t), \dot{\gamma}(t)) \, dt \). We are interested in finding the critical points of \(I_{a,b} \): these will be points in \(\Gamma(a, b; x, y) \) (that is, curves \(\gamma : [a, b] \to Q \)) of special interest. Like any function on a well-behaved space, \(I_{a,b} \) has a differential, which we denote \(\delta I_{a,b} \); this can be thought of as one-form on \(\Gamma(a, b; x, y) \).

DEFINITION 3 (Stationary Curves). We say that \(\gamma : [a, b] \to Q \) is stationary for \(L \) over \([a, b]\) if \(\delta I_{a,b}(\gamma) = 0 \). We say that \(\gamma : \mathbb{R} \to Q \) is stationary for \(L \) if its restriction to \([a, b]\) is stationary over \([a, b]\) for all closed intervals \([a, b]\).

As in the case of an ordinary function on \(\mathbb{R}^n \), \(\delta I_{a,b}(\gamma) = 0 \) if and only if \(\delta I_{a,b}(\gamma) \cdot h = 0 \) for all \(h \in T \gamma \Gamma(a, b; x, y) = \Gamma(a, b; 0, 0) \). We can then calculate \(\delta I_{a,b}(\gamma) \cdot h \) by finding \(\frac{d}{de} I_{a,b}(\gamma[\varepsilon]) \mid_{\varepsilon=0} \) for a curve \(\gamma[\varepsilon] : \varepsilon \in \mathbb{R} \mapsto \gamma[\varepsilon] \in \Gamma(a, b; 0, 0) \) with \(\gamma[0] = \gamma \) and \(h = \frac{d}{de} \gamma[\varepsilon] \mid_{\varepsilon=0} \).

Let us calculate. Fix \(L \) and \([a, b]\). Let \(\gamma \in \Gamma(a, b; x, y) \) and \(h \in \Gamma(a, b; 0, 0) \). For each \(\varepsilon \) in some sufficiently small neighbourhood of zero, we define a curve \(\gamma[\varepsilon] : \mathbb{R} \to Q \) by \(\gamma[\varepsilon](t) := \gamma(t) + \varepsilon h(t) \). So \(\gamma[\varepsilon] \) is a curve in \(\Gamma(a, b; x, y) \) with \(\gamma[0] = \gamma \) and with tangent \(h = \frac{d}{de} \gamma[\varepsilon] \mid_{\varepsilon=0} \). Then:

\[
\delta I_{a,b}(\gamma) \cdot h = \frac{d}{de} I_{a,b}(\gamma[\varepsilon]) \mid_{\varepsilon=0} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_a^b [L(\gamma[\varepsilon](t), \dot{\gamma}[\varepsilon](t)) - L(\gamma(t), \dot{\gamma}(t))] \, dt = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(\int_a^b \varepsilon \frac{\partial L}{\partial x}(\gamma(t), \dot{\gamma}(t) \cdot h(\gamma(t)) \right)
\]

\(^{16}\)Let \(\Gamma(a, b) \) be the space of \(C^2 \) curves \(\gamma : [a, b] \to Q \). This is a linear space under pointwise addition (i.e., \((\gamma + \gamma')(x) = \gamma(x) + \gamma'(x) \)) that can be made into a Banach space in a number of ways. \(\Gamma(a, b; 0, 0) \) is a linear subspace of \(\Gamma(a, b) \) while \(\Gamma(a, b; x, y) \) is an affine subspace modelled on \(\Gamma(a, b; 0, 0) \).

\(^{17}\)We can think of \(T \gamma \Gamma(a, b; x, y) \) as being built as follows: one considers one-parameter family \(\gamma[\varepsilon] : \varepsilon \in \mathbb{R} \mapsto \gamma[\varepsilon] \in \Gamma(a, b; x, y) \) of curves with \(\gamma[0] = \gamma \), and declares such one-parameter families, \(\gamma[\varepsilon] \) and \(\gamma'[\varepsilon] \), to be equivalent if \(\frac{d}{d\varepsilon} \gamma[\varepsilon] \mid_{\varepsilon=0} = \frac{d}{d\varepsilon} \gamma'[\varepsilon] \mid_{\varepsilon=0} ; T \gamma \Gamma(a, b; x, y) \) is the resulting space of equivalence classes. We construct a bijection between \(\Gamma(a, b; 0, 0) \) and \(T \gamma \Gamma(a, b; x, y) \) thought of as the space of such equivalence classes by associating with \(h \in \Gamma(a, b; 0, 0) \) the equivalence class containing \(\gamma[\varepsilon] : \varepsilon \mapsto \gamma + \varepsilon \cdot h \).
\[+ \frac{\partial L}{\partial \dot{x}} \langle \gamma(t), \dot{\gamma}(t) \cdot h(\gamma(t)) \rangle + O(\varepsilon^2) \, dt \]

\[= \int_a^b \frac{\partial L}{\partial x} \cdot h \, dt - \int_a^b \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) \cdot h \, dt + \left(h \frac{\partial L}{\partial \dot{x}} \right) \bigg|_a^b. \]

The first equality follows from a basic fact about the differential of a function; the second follows by definition; the third via Taylor’s theorem; the fourth via an integration by parts. We now note that since \(h \) vanishes at \(\gamma(a) = x \) and \(\gamma(b) = y \) the third term in the final line vanishes. So

\[\delta I_{a,b}(\gamma_0) \cdot h = \int_a^b \left[\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) \right] h \, dt. \]

To say that \(\gamma : [a,b] \to Q \) is stationary over \([a,b]\) is to say that this expression vanishes for each \(h \). So the condition that \(\gamma \) is stationary for \(L \) over \([a,b]\) is that the Euler–Lagrange equation

\[\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = 0 \]

holds along \(\gamma(t) \) for \(t \in [a,b] \). And the condition that \(\gamma : [a,b] \to \mathbb{R} \) is stationary for \(L \) is just that the equation 3 is satisfied all along \(\gamma \).

REMARK 4 (Parsing the Euler–Lagrange Equations). Here is how to unpack equation 3.\(^{18}\) Rewrite the expression for \(L \), replacing \(\dot{x} \) everywhere by \(\xi \). Then interpret equation 3 as a differential equation for admissible trajectories \(x(t) \), understanding \(\frac{\partial L}{\partial \dot{x}} \) to mean \(\frac{\partial L(x,\xi)}{\partial \dot{x}_i} \big|_{\xi = \dot{x}(t)} \) and \(\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} \) to mean

\[\left(\frac{\partial^2 L}{\partial \xi_i \partial \xi_j} \ddot{x}_j + \frac{\partial^2 L}{\partial \xi_i \partial x_j} \dot{x}_j \right) \bigg|_{\xi = \dot{x}(t)}. \]

Hamilton’s Principle

Consider a physical system with configuration space \(Q \) (i.e., consider a system whose possible spatial positions are parameterized by \(Q \)). Let the kinetic energy be a function \(T : TQ \to \mathbb{R} \) that arises from a Riemannian metric \(g \) on \(Q \) via \(T(x,v) := g_x(v,v) \) and let \(V : Q \to \mathbb{R} \) be a potential for a force depending on the configuration degrees of freedom alone. Then the Lagrangian for the system is \(L(x,v) := T(x,v) - V(x) \). Hamilton’s principle states that the stationary curves for \(L \) are the physically possible trajectories. Many physically interesting systems can be cast in this form — e.g., the \(n \)-body problem considered above. For such systems that Euler–Lagrange equations derived from Hamilton’s principle are equivalent to the usual Newtonian equations of motion.

\(^{18}\)For this, see, e.g., [Dubrovin et al., 1992, 318].
Symplectic Structure of the Space of Solutions of the Euler–Lagrange Equations

Let \(Q \) be a manifold and \(TQ \) its tangent bundle. Let \(L : TQ \to \mathbb{R} \) be a smooth function. The space, \(S \), of stationaries of \(L \) has a natural manifold structure: for those \(\gamma \in S \) defined at \(t = 0 \), we can take the values of \(x = \gamma(0) \) and \(v = \gamma(0) \) relative to coordinates \(\{ x_i \} \) on \(Q \) as coordinates on \(S \); doing this for each value of \(t \) gives us a differentiable atlas for \(S \). It follows that \(\dim S = \dim TQ \). We can also endow \(S \) with a geometric structure: consider the boundary term, \(h \frac{\partial L}{\partial \dot{x}} \), discarded above in deriving the Euler–Lagrange equations; since \(h \) is to be thought of as a tangent vector to the space \(\Gamma(a, b; x, y) \), we must view \(\alpha = \frac{\partial L}{\partial \dot{x}} \) as a one-form on that space; taking its exterior derivative gives us a two-form, \(\omega := \delta \alpha \), on \(\Gamma(a, b; x, y) \); the restriction of this form to \(S \) is the structure we seek. In the coordinates we have introduced on \(S \), \(\omega \) takes the form:

\[
\omega = \frac{\partial^2 L}{\partial x^a \partial v^b} dx^a \land dx^b + \frac{\partial^2 L}{\partial v^a \partial v^b} dv^a \land dv^b.
\]

For any \(L \), this is a closed two-form. It is nondegenerate, and hence symplectic, so long as \(\det \left[\frac{\partial^2 L}{\partial v^a \partial v^b} \right] \neq 0 \).\(^{19}\) For Lagrangians of the form considered above this always holds — and we then find that \((S, \omega) \) is (locally) symplectically isomorphic to the corresponding space of initial data that arises from a Hamiltonian treatment of the theory.\(^{20}\)

3 SYMPLECTIC MATTERS

Throughout the chapter, we are going to be investigating the representation of time and change in physical theories by asking about their representation in Lagrangian and Hamiltonian formulations of these theories. On the Lagrangian side, the focus is always on the space of solutions of the equations of our theory, while on the Hamiltonian side the focus is always on the space of initial data for those equations. It is a fact of primary importance that for well-behaved theories the space of initial data and the space of solutions share a common geometric structure — these spaces are isomorphic as symplectic manifolds. Thus the notion of a symplectic manifold and its generalizations will play a central role in our investigations.

It will be helpful to begin with a general discussion of the nature of symplectic manifolds: subsection 3.1 deals with some preliminary matters; subsection 3.2 offers a sketch of some of the basic concepts, constructions, and results of symplectic geometry as it figures in mechanics; subsection 3.3 offers the same sort of treatment of presymplectic geometry (a generalization of symplectic geometry that will play an important role in sections 6.2 and 7 below); subsection 3.4 discusses the sense in which a symplectic structure is the sine non qua of quantization.

\(^{19}\) The symplectic structure of the space of solutions for Lagrangian theories is discussed in [Woodhouse, 1991, §§2.3 and 2.4].

\(^{20}\) This follows from the fact that Lagrangians arising from kinetic and potential terms of the sort considered above are always hyperregular; see, e.g., [Abraham and Marsden, 1978, 226].
3.1 Preliminaries

The spaces that we will come across below will be generalizations of ordinary n-dimensional manifolds in three respects. (i) They are allowed to be non-Hausdorff.\footnote{Recall that a topological space X is Hausdorff if for any distinct $x, y \in X$, there exist disjoint open sets U and V with $x \in U$ and $y \in V$. While most textbooks require manifolds to be Hausdorff, all of the basic constructions and results go through without this assumption — see [Lang, 1999]. As we will see in examples 32 and 33 below, the solution spaces of even the simplest physical systems can be non-Hausdorff.} (ii) They are allowed to be infinite-dimensional: a manifold is locally modelled on a vector space; we allow ours to be modelled on \mathbb{R}^n or on an infinite-dimensional Banach space.\footnote{[Abraham et al., 1988] and [Lang, 1999] provide introductions to differential geometry that cover the case of infinite-dimensional Banach manifolds. See [Milnor, 1984, §2–4] for an introduction to a more general approach, under which manifolds are modelled on locally convex topological vector spaces. Note that the inverse function theorem and the existence and uniqueness theorem for ordinary differential equations fail under this more general approach.} (iii) They are allowed to have mild singularities — roughly speaking, our spaces will be composed out of manifolds in the way that an ordinary cone is composed out of its apex (a zero-dimensional manifold) and mantle (a two-dimensional manifold) — but our spaces still have smooth structures and support tensors in much the same way that manifolds do.\footnote{The spaces under consideration are Whitney stratified spaces. As suggested in the text, each such space admits a canonical decomposition into manifolds. This decomposition allows us to treat each point in such a space as lying in a manifold, which allows us to construct a space of tangent vectors and cotangent vectors at each point, and hence to construct tensors in the usual way. The dimensions of the manifold pieces (and of the tangent and cotangent spaces) will in general vary from point to point within the stratified space. See [Pflaum, 2001] or [Ortega and Ratiu, 2004, §§1.5–1.7] for a treatment of such spaces in the finite-dimensional case. The picture appears to be very similar in the infinite-dimensional examples that arise in physics: for general relativity, see [Andersson, 1989] and [Marsden, 1981, Lecture 10]; for Yang–Mills theories, see [Arms, 1981] and [Kondracki and Rogulski, 1986].}

In order to avoid becoming bogged down in technicalities, I will present my sketch of the required notions and constructions of symplectic and presymplectic geometry in the context of manifolds; but when in following sections I speak of ‘spaces’ rather than manifolds, it should be understood that I am allowing the spaces in question to have mild singularities of the sort mentioned above.

Below we will often be interested in the actions of Lie groups on manifolds, and in vector fields as the infinitesimal generators of such actions. Let me end this discussion of preliminary matters by reviewing some pertinent definitions and constructions.

Recall that a Lie group is a manifold which is also a group, with the operations of group multiplication, $(g, h) \in G \times G \mapsto g \cdot h \in G$, and the taking of inverses, $g \in G \mapsto g^{-1} \in G$, as smooth maps. An action of a Lie group G on a manifold M is a smooth map $\Phi : G \times M \to M$ such that: (i) $\Phi(e, x) = x$ for e the identity element of G and for all $x \in M$; (ii) $\Phi(g, \Phi(h, x)) = \Phi(gh, x)$ for all $g, h \in G$ and $x \in M$. One often writes $g \cdot x$ or $\Phi_g(x)$ for $\Phi(g, x)$.\footnote{Equivalently, an action of G on M is a group homomorphism $g \mapsto \phi_g$ from G to $\mathcal{D}(M)$ (the group of diffeomorphisms from M to itself) such that the map $(g, x) \in G \times M \mapsto \phi_g(x) \in M$ is} The orbit through $x \in M$ of
the action is the set \([x] := \{g \cdot x : g \in G\}\). The action of a Lie group partitions a manifold into orbits.

While other Lie groups will figure below, we will most often be interested in the simplest of all Lie groups: the additive group \(\mathbb{R}\). A flow on a manifold \(M\) is a one-parameter group of diffeomorphisms from \(M\) to \(M\). So if \(\{\Phi_t\}_{t \in \mathbb{R}}\) is a flow on \(M\), then \(\Phi_0(x) = x\) and \(\Phi_t \circ \Phi_s(x) = \Phi_{t+s}(x)\) for all \(x \in M\) and \(s, t \in \mathbb{R}\). A flow \(\{\Phi_t\}\) on \(M\) and an action \(\Phi : \mathbb{R} \times M \to M\) of \(\mathbb{R}\) on \(M\) are more or less the same thing: given an \(\mathbb{R}\)-action \(\Phi : \mathbb{R} \times M \to M\), one defines a flow \(\{\Phi_t\}\) via \(\Phi_t(x) = \Phi(t, x)\) for all \(t \in \mathbb{R}\) and \(x \in M\); likewise if one is given a flow and wants to define an \(\mathbb{R}\)-action.

Any \(\mathbb{R}\)-action on \(M\) induces a vector field \(X\) on \(M\). Let \(x \in M\) and consider the curve \(\gamma_x(t) : \mathbb{R} \to M\) defined by \(\gamma_x : t \mapsto \Phi_t(x)\). The image of \(\gamma_x\) in \(M\) is just the orbit \([x]\). Now suppose that \(y \in [x]\) — i.e., there is \(t \in \mathbb{R}\) such that \(y = \Phi_t(x)\). Some facts follow immediately from the group property of \(\{\Phi_t\}\). We find that the image of \(\gamma_y\) is also \([x]\) — so \([x] = [y]\). We find, in fact, that \(\gamma_y(s) = \gamma_x(s+t)\) for all \(s \in \mathbb{R}\); that is, each of the curves \(\gamma_y\) corresponding to points \(y \in [x]\) agree up to choice of origin for their parameterization. So each orbit \([x]\) of our \(\mathbb{R}\)-action arises as the shared image of a (maximal) family of curves agreeing in their parameterization up to a choice of origin. As a convenient shorthand, we will speak of such a family of curves as an *affinely parameterized curve*, which we will think of as a curve with its parameterization fixed only up to a choice of origin. We can now construct a vector field \(X\) on \(M\) as follows: for \(x \in M\) we define \(X(x) = \dot{\gamma}_x(0)\) (the above discussion shows that \(X\) is a smooth vector field on \(M\)).

Now suppose that we are given a vector field \(X\) on a manifold \(M\), and let us see whether we can think of \(X\) as generating an \(\mathbb{R}\)-action on \(M\). Given \(x \in M\), there is a unique curve \(\gamma_x\) passing through \(x\) at time \(t = 0\) and such that for each value of \(t\) at which the curve is defined, its tangent vector at the point \(\gamma(t) \in M\) is given by the value of \(X\) at that point. Call this curve the *integral curve based at \(x\)*. We find that if \(y\) lies in the image of integral curve based at \(x\), then the integral curves based at \(x\) and \(y\) have the same image and agree up to a choice of origin in their parameterization. So we might just as well replace these curves by the corresponding affinely parameterized curve, which we will call the *integral curve through \(x\) (or \(y\)).* So the vector field \(X\) allows us to define a family of integral curves on \(M\), with each point in \(M\) lying on exactly one such curve. For \(x \in M\) and \(t \in \mathbb{R}\), let us agree that \(\Phi(t, x)\) is the point that we reach by tracing \(t\) units along the integral curve through \(x\), when this instruction is well-defined (recall that the integral curve based at \(x\) may only be defined on a subinterval of \(\mathbb{R}\)). This \(\Phi\) will be an \(\mathbb{R}\)-action if and only if the domain of definition of each integral curve is all of \(\mathbb{R}\). In this case, we call \(X\) a *complete* vector field, and call \(\Phi\) the *\(\mathbb{R}\)-action generated by \(X\)*.

\[\text{smooth.}\]
\[\text{This is just a statement of the existence and uniqueness theorem for first-order ordinary differential equations.}\]
The picture is as follows: an \mathbb{R}-action Φ induces a vector field X on M, and X generates Φ. We think of the group $\{\Phi_t\}$ as consisting of the finite transformations generated by the infinitesimal transformations X (here and below, "infinitesimal" always means "living in the tangent space"). When X is incomplete, $\Phi(t, x)$ is not defined for all pairs (t, x). In this case, Φ is known as a \textit{local flow}. For many purposes, local flows are nearly as nice as flows, and it is still helpful to think of them as having vector fields as their infinitesimal generators.

3.2 Symplectic Manifolds

DEFINITION 5 (Symplectic Manifold). Let M be a manifold. A \textit{symplectic form} on M is a closed nondegenerate two-form, ω. Here nondegeneracy means that at each $x \in M$ the map $\omega^b(x) : v \in T_x M \mapsto \omega(v, \cdot) \in T_x^* M$ is injective.\(^{26}\) The pair (M, ω) is called a \textit{symplectic manifold}.\(^{27}\)

DEFINITION 6 (Symplectic Symmetry). Let (M, ω) be a symplectic manifold. A \textit{symplectic symmetry} of (M, ω) is a diffeomorphism $\Phi : M \to M$ that preserves ω in the sense that $\Phi^* \omega = \omega$ (i.e., the pullback of ω by Φ is just ω).

EXAMPLE 7 (Cotangent Bundle Symplectic Structure). Let Q be a finite- or infinite-dimensional manifold and let $T^* Q$ be its cotangent bundle. We define a canonical symplectic form on $T^* Q$ as follows. Let $\pi : T^* Q \to Q$ be the canonical projection $(q, p) \mapsto q$, and let $T \pi$ be the corresponding tangent map. There is a unique one-form θ on $T^* Q$ such that $\theta(q, p) \cdot w = p(T \pi \cdot w)$ for all $(q, p) \in T^* Q$ and all $w \in T_{(q, p)} T^* Q$. We can then define the desired symplectic form as $\omega := -d\theta$, where d is the exterior derivative on $T^* Q$.\(^{28}\)

Let (M, ω) be a symplectic manifold, and let $C^\infty(M)$ be the set of smooth functions on M. For present purposes, the fundamental role of ω is to allow us to associate with each $f \in C^\infty(M)$ a smooth vector field X_f on M: X_f is implicitly defined by the equation $\omega(X_f, \cdot) = df$, where df is the exterior derivative of f (the nondegeneracy of ω guarantees that there is a unique solution to this equation).\(^{29}\)

We say that f \textit{generates} X_f or that X_f is \textit{generated by} f.

This basic construction has two fruits of the first importance:

\(^{26}\)Of course, for finite-dimensional M, $\omega^b(x)$ is surjective if and only if injective.

\(^{28}\)In the finite-dimensional case and relative to a set of cotangent coordinates, ω is given by equation 2 above.

\(^{29}\)In the infinite-dimensional case, X_f may not be defined on all of M. For well-behaved f, we can deal with this by replacing M by the subspace on which X_f is defined. Below I will suppose that this has been done. For discussion, examples, and references see [Marsden, 1981, 11 ff.] and [Marsden and Ratiu, 1994, 106].
1. Via the map $f \mapsto X_f$, ω allows us to define a new algebraic operation on $C^\infty(M)$: the Poisson bracket bracket between $f, g \in C^\infty(M)$ is \(\{f, g\} := \omega(X_f, X_g) \).\(^{30}\) This plays a crucial role in the theory of quantization — see section 3.4 below.

2. Via the map $f \mapsto X_f$, ω often allows us to associate smooth functions on M with one-parameter groups of symmetries of (M, ω), and vice versa. (i) Let $f \in C^\infty(M)$ and let X_f be the vector field generated by f (via ω), and suppose that X_f is complete so that we are able to construct a corresponding flow, $\xi = \{\Phi_t\}_{t \in \mathbb{R}}$. Then each Φ_t preserves ω, in the sense that $\Phi_t^* \omega = \omega$.\(^{31}\) Furthermore: f itself is invariant under each Φ_t.\(^{32}\) (ii) Let $\xi = \{\Phi_t\}_{t \in \mathbb{R}}$ be a one-parameter group of symplectic symmetries of (M, ω) and let X be the vector field on M that is the infinitesimal generator of ξ. It is natural to ask whether we can find an $f \in C^\infty(M)$ that generates X. There are cases in which this is not possible.\(^{33}\) But in the examples that arise in physics, this can typically be done. And by (i) above, when we can find such an f, we find that it is preserved by the flow ξ.\(^{34}\)

It is perhaps easier to grasp the function of a symplectic structure if one keeps in mind the Hamiltonian application of this framework.

DEFINITION 8 (Hamiltonian System). A Hamiltonian system, (M, ω, h), consists of a symplectic manifold, (M, ω), called the phase space, and a function $h : M \to \mathbb{R}$, called the Hamiltonian.

\(^{30}\)The Poisson bracket is a Lie bracket that obeys Leibniz’s rule, $\{fg, h\} = f\{g, h\} + g\{f, h\}$.

\(^{31}\)Indeed, we can further note that the Lie derivative of ω along X_f vanishes — and this holds even when X_f is incomplete. This provides a sense in which the local flow generated by an incomplete vector field preserves ω.

\(^{32}\)Indeed, the Lie derivative of f along X_f vanishes. This also holds when X_f is incomplete — so there is a sense in which the local flow generated by such an incomplete vector field preserves f.

\(^{33}\)See [Ortega and Ratiu, 2004, §4.5.16] for an example. See [Butterfield, this volume, §2.1.3] for further discussion.

\(^{34}\)More ambitiously, let G be a Lie group acting on M via symplectic symmetries, with $\dim G > 1$. Such a group will contain many one-parameter subgroups — as the group of isometries of Euclidean space contains a one-parameter group of translations corresponding to each direction in Euclidean space and a one-parameter group of rotations corresponding to each axis in Euclidean space. In this case, we can hope that for each one-parameter subgroup of G it is possible to find a function on M that generates that subgroup. If all goes very well — as it does in many examples that arise in physics — we can hope that the algebra of Poisson brackets between these generators will mirror the algebra of the group (i.e., there will be a Lie algebra isomorphism here).

In this case, we speak of the existence of a momentum map (warning: terminology varies — many authors call these *infinitesimally equivariant momentum maps*). If f and g are functions on M such that their Poisson bracket vanishes, then we find that f is invariant under each symplectic symmetry in the one-parameter group generated by g. In particular, if G is a group of symplectic symmetries of (M, ω) and f a function on M such that the Poisson bracket of f with any function generating a one-parameter subgroup of G vanishes, then each of these generators is invariant under the one-parameter group of symmetries generated by f. [Woodhouse, 1991, §3.4] provides a useful guide to situations under which momentum maps are or are not available. See [Butterfield, this volume, §6] for further discussion.
We think of \((M, \omega)\) as the phase space of some physical system — such as the space of particle positions and momenta — and of \(h\) as assigning to each state of the system the total energy of that state. Together \(h\) and \(\omega\) determine a flow \(\{\Phi_t\}_{t \in \mathbb{R}}\) on \(M\): each \(\Phi_t\) maps each state to the state that dynamically follows from it after \(t\) units of time. \(h\) will be preserved under this group — this corresponds to the conservation of energy.\(^{35}\)

3.3 Presymplectic Manifolds

In sections 6.2 and 7 below we will be concerned with theories whose space of solutions and space of initial data are not symplectic.

Definition 9 (Presymplectic Manifold). Let \(M\) be a manifold. A *presymplectic structure* on \(M\) is a closed degenerate two-form, \(\omega\); we call \((M, \omega)\) a *presymplectic manifold*.\(^{36}\) Here degeneracy means: at each point \(x\) there is a nontrivial nullspace \(N_x \subset T_x M\) consisting of tangent vectors \(v\) such that \(\omega_x (v, \cdot) = 0\).

A presymplectic structure \(\omega\) on a manifold \(M\) induces a partition of \(M\) by submanifolds, \(\{M_\alpha\}\) as follows. We define an equivalence relation on \(M\) by declaring \(x, y \in M\) to be equivalent if they can be joined by a curve \(\gamma : \mathbb{R} \to M\) each of whose tangent vectors is null — i.e., \(\dot{\gamma}(t) \in N_{\gamma(t)}\) for each \(t \in \mathbb{R}\). The equivalence classes, \(M_\alpha\), of this relation are called *gauge orbits*. For \(x \in M\) we also denote the gauge orbit containing \(x\) by \([x]\). Each gauge orbit is a submanifold of \(M\).\(^ {37}\) We call a function \(f \in C^\infty(M)\) *gauge-invariant* if \(f(x) = f(y)\) whenever \(x\) and \(y\) belong to the same gauge orbit of \(M\) (i.e., a function is gauge-invariant if and only if it is constant on gauge orbits).

We call a diffeomorphism from \(M\) to itself which preserves a presymplectic form \(\omega\) a *presymplectic symmetry* of \((M, \omega)\). We say that two presymplectic symmetries, \(\Phi\) and \(\Phi'\), *agree up to gauge* if for each \(x \in M\), \([\Phi(x)] = [\Phi'(x)]\) (i.e., for each \(x \in M\), \(\Phi\) and \(\Phi'\) map \(x\) to the same gauge orbit); we call the set of presymplectic symmetries that agree with \(\Phi\) up to gauge the *gauge equivalence class* of \(\Phi\). Similarly, we will say that two one-parameter groups, \(\xi = \{\Phi_t\}\) and \(\xi' = \{\Phi'_t\}\), of presymplectic symmetries agree up to gauge if \(\Phi_t\) and \(\Phi'_t\) agree up to gauge for each \(t\); the *gauge equivalence class* of \(\xi = \{\Phi_t\}\) comprises all \(\xi'\) that agree with it up to gauge in this sense.

\(^{35}\)Often it will be possible to identify a larger group \(G\) of symplectic symmetries of \((M, \omega)\) that leaves \(h\) invariant (such as the group of Euclidean symmetries acting in the obvious way in Newtonian particle mechanics). Then a momentum map (see preceding footnote) would allow one to construct \(\dim G\) independent quantities, whose algebra would mirror that of \(G\), and that would be conserved under the dynamics generated by \(h\).

\(^{36}\)Terminology varies: often (but not here) symplectic forms count as special cases of presymplectic forms; sometimes (but not here) presymplectic forms are required to have constant rank or to have well-behaved spaces of gauge orbits. On presymplectic geometry, see, e.g., [Gotay and Nester, 1980].

\(^{37}\)If \(X\) and \(Y\) are null vector fields on \(M\) (i.e., \(X(x), Y(x) \in N_x\) for each \(x \in M\)) then, \([X, Y]\) is also a null vector field. It follows (by Frobenius' theorem) that the \(N_x\) form an integrable distribution, with the \(M_\alpha\) as the integral manifolds.
If a presymplectic symmetry $\Phi : M \to M$ fixes each M_α (i.e., Φ maps points in M_α to points in M_α), then we call Φ a gauge transformation. Note that a gauge transformation agrees up to gauge with the identity map on M.

In the symplectic case: when all goes well, the equation $\omega(X_f, \cdot) = df$ allows one to associate each smooth function on a symplectic manifold (M, ω) with a one-parameter group of symplectic symmetries of (M, ω) — and vice versa.

In the presymplectic case: when all goes well, the equation $\omega(X_f, \cdot) = df$ allows one to associate each smooth gauge-invariant function on a presymplectic manifold (M, ω) with a gauge equivalence class of one-parameter groups of presymplectic symmetries of (M, ω) — and vice versa. So in the presymplectic case: if f generates the one-parameter group $\xi = \{\Phi_t\}$ of presymplectic symmetries via the equation $\omega(X_f, \cdot) = df$, then it also generates each $\xi' = \{\Phi'_t\}$ in the gauge equivalence class of ξ.

Note an interesting special case: any solution X_f of the equation $\omega(X_f, \cdot) = df$ for f a constant function is a vector field on M consisting of null vectors; so the corresponding one-dimensional group of presymplectic symmetries of (M, ω) consists of gauge transformations. Conversely: if $\xi = \{\Phi_t\}$ is a one-parameter group of gauge transformations of (M, ω), then any function that generates ξ (via ω) is a constant function.

Given a presymplectic manifold (M, ω), we can construct M' the space of gauge orbits of M. M' inherits a topological structure from M.\(^{38}\) We will call the process of passing from M to M' reduction, and call M' the reduced space. In general, M' need not be a manifold, nor anything nearly so well-behaved as the spaces we want to consider below.\(^{39}\) But when all goes well (as it usually does in the sort of cases considered below) M' will inherit from M a smooth structure (so it will be a space with at most mild singularities). And so long as some further technical conditions on ω hold, M' inherits from (M, ω) a two-form ω' that is nondegenerate as well as closed.\(^{40}\) So, in this case, (M', ω') is a symplectic space. Note that each gauge-invariant $f \in C^\infty(M)$ corresponds to a unique $f' \in C^\infty(M')$. While f generates an equivalence class of one-parameter groups of presymplectic transformations of (M, ω), f' generates a single one-parameter group of symplectic transformations of (M', ω').\(^{41}\)

\(^{38}\)We equip M' with the quotient topology, according to which a set $U' \subset M'$ is open if and only if $\pi^{-1}(U')$ is open in M (here π is the projection $x \in M \mapsto [x] \in M'$).

\(^{39}\)If (M, ω, H) is a Hamiltonian system in the sense of definition 8 above, then the restriction of ω to a surface, E, of constant energy is presymplectic — with the gauge orbits of $(E, \omega |_E)$ being the dynamical trajectories of the Hamiltonian system. If the dynamics are ergodic, then generic trajectories come arbitrarily close to each $x \in E$. It follows that the quotient space E' has the trivial topology, according to which the only open sets are the empty set and the space itself.

\(^{40}\)See [Marsden, 1981, 6] and [Ortega and Ratiu, 2004, §6.1.5].

\(^{41}\)Each presymplectic symmetry of (M, ω) corresponds to a symplectic symmetry of (M', ω'), with two presymplectic symmetries correspond to the same symplectic symmetry if and only if they agree up to gauge. Thus each gauge equivalence class of presymplectic symmetries corresponds to a single symplectic symmetry. And each gauge equivalence class of one-parameter groups of presymplectic symmetries corresponds to a single one-parameter group of symplectic
3.4 Symplectic Structures and Quantization

Quantization is the process of constructing a quantum counterpart to a given classical theory.42 As it is presently understood, it is a process which takes as its starting point a theory in Hamiltonian or Lagrangian form (or the discrete-time analog of such a theory). One does not know how to quantize a theory \textit{qua} differential equations directly, without passing first to a Hamiltonian or Lagrangian recasting of the theory.43

The following observations lend some plausibility to the idea that a symplectic structure is the \textit{sine qua non} of quantization.

1. The core notion of quantization involves the following steps. One begins with a symplectic space (the space of classical solutions or initial data) and selects a set of functions on this space (classical physical quantities) that is closed under addition and the Poisson bracket induced by the symplectic structure. One then looks for a set of operators (quantum observables) acting on a space of quantum states, such that the algebra of these operators mirrors (or approximately mirrors, with increasingly better match as one approaches the classical limit) the algebra (under addition and the Poisson bracket) of the chosen classical quantities. One may then also need to take the further step of adding a Hamiltonian operator that implements the quantum dynamics.

2. Some classical theories have the unfortunate feature that when cast in Lagrangian or Hamiltonian form, they come to us with a space of solutions or initial data that is merely presymplectic. Typically, it is known that there is a symplectic space in the offing via reduction, as outlined above in section 3.3. But it may be difficult to construct this space, or it may happen, for one reason or another, that it seems easier to work with the presymplectic version of the theory. So a number of strategies have been developed for quantizing theories in presymplectic form: gauge fixing, Dirac constraint quantization, BRST quantization, etc. But it is very natural to think of each of these techniques as offering an indirect approach to the quantization of the underlying symplectic space.44

However, there exist approaches to quantization that do not appear to employ the symmetries of the reduced space.

42For overviews of the literature on quantization, see [Landsman, this volume] and [Ali and Engl\ss, 2005].

43For an attempt to show that in order for a theory to be quantizable, it must be derivable from a Lagrangian, see [Hojman and Shepley, 1991].

44(i) Gauge fixing just amounts to finding a submanifold of the presymplectic space that is symplectically isomorphic to the reduced space; see, e.g., [Henneaux and Teitelboim, 1992, §1.4]. (ii) For Dirac's approach, see [Dirac, 2001] or [Henneaux and Teitelboim, 1992]. It is felt Dirac's algorithm should be amended when its output differs from the result of directly quantizing the reduced theory; see, e.g., [Duval \textit{et al.}, 1990]. (iii) In the case of finite-dimensional systems, it can be shown that application of the BRST algorithm leads to a quantization of the reduced theory; see, e.g., [Loll, 1992] or [Tuynman, 1992]. (iv) On the relation between the BRST approach and the suggested amendment of the Dirac approach, see [Guillemin and Sternberg, 1990, §12].
symplectic structure of the classical spaces at all — for example Mackey quantization (which has a somewhat limited range of application) and path integral quantization (which has very wide application, but murky foundations in its application to field theories). As emphasized in [Landsman, this volume], the relation between the classical and the quantum is far from completely understood.

4 LAGRANGIAN FIELD THEORY

Differential equations are normally given to us in the following way. We are given a set of independent variables and a set of dependent variables, and a space of functions, \mathcal{K}, consisting of functions, u, that map values of the independent variables to values of the dependent variables. A differential equation Δ can be thought of as a condition on a function and its derivatives that is satisfied by only some $u \in \mathcal{K}$. We call the u that satisfy Δ the solutions to Δ and denote the space of such solutions by S.

In physical applications, the independent variables typically parameterize space, time, or spacetime while the dependent variables parameterize the possible values of some quantity of interest. We can think of the functions $u \in \mathcal{K}$ as describing situations that are in some sense possible and of solutions $u \in S$ as describing situations that are genuinely physically possible according to the theory whose laws are encoded in Δ. Although the terminology is not wholly perspicuous, I will speak of elements of \mathcal{K} as corresponding to kinematical possibilities and of elements of S as corresponding to dynamical possibilities.

EXAMPLE 10 (Mechanics of a Particle). Consider the theory of a particle a particle in Euclidean space subject to a position-dependent force. The independent variable parameterizes time and the dependent variables parameterize the possible positions of the particle; an arbitrary continuous functions $x(t)$ of the form $t \in \mathbb{R} \mapsto x(t) \in \mathbb{R}^3$ describes a kinematically possible pattern of behaviour of the particle; $\dot{x}(t)$ describes a dynamically possible behaviour if it satisfies the Newtonian equation $\ddot{x}(t) = F(x(t))$.

EXAMPLE 11 (The Klein–Gordon Field). The usual theory of a scalar field has the following ingredients: as independent variables we take inertial coordinates $\{t, x, y, z\}$ on Minkowski spacetime, V; the theory has a single dependent variable, parameterizing the real numbers; so the kinematically possible fields are given by (suitably smooth) real-valued functions on Minkowski spacetime; the dynamically possible fields are those $\Phi : V \to \mathbb{R}$ satisfying the Klein–Gordon equation,

$$\frac{\partial^2 \Phi}{\partial t^2} - \frac{\partial^2 \Phi}{\partial x^2} - \frac{\partial^2 \Phi}{\partial y^2} - \frac{\partial^2 \Phi}{\partial z^2} - m^2 \Phi = 0.$$

Our primary concern below is with field theories — those physical theories whose laws are encoded in differential equations whose independent variables parameter-
ize spacetime.\footnote{Prima facie, the ontology of such a classical field theory satisfies Lewis's Humean supervenience—"the doctrine that all there is to the world is a vast mosaic of local matters of particular fact, just one little thing after another. \ldots\ We have geometry: as system of external relations of spatiotemporal distance between points. \ldots\ And at those points we have local qualities: perfectly natural intrinsic properties which need nothing bigger than a point at which to be instantiated. \ldots\ And that is all" [1986, ix f]. Indeed, Lewis says that the picture was "inspired by classical physics" [1999, 226]. See [Butterfield, Unpublished] for doubts about the fit between Humean supervenience and classical physics.} We think of such a field theory as consisting of the following components: a spacetime V; a space W in which the fields take their values, a space, \mathcal{K}, of kinematically possible fields (i.e., of functions from V to W satisfying suitable smoothness and boundary conditions); and a set of differential equations Δ.

This section has the following structure. In the first subsection below I discuss the Lagrangian approach, in which one singles out the set of dynamical possibilities within the space of kinematical possibilities via a variational problem for a Lagrangian rather than via the direct imposition of a differential equation. In the second subsection, I discuss a very important advantage of the Lagrangian approach over the direct approach: the former but not the latter allows one to equip the space of dynamical possibilities with a (pre)symplectic form. In the third subsection, I discuss the celebrated relation between conserved quantities and symmetries in the Lagrangian approach, first discerned by Noether. The discussion of these subsections is based upon [Zuckerman, 1987] and [Deligne and Freed, 1999, Chapters 1 and 2]; see also [Woodhouse, 1991, Chapters 2 and 7].

Before beginning it will be helpful to make some more specific assumptions about the theories we will be discussing. These assumptions will be in force throughout the remainder of the chapter.

Spacetime. Our spacetime V will always be an n-dimensional Hausdorff manifold V, with the topology $M \times \mathbb{R}$ for some $(n-1)$-manifold M. We will always think of time as having the topology of \mathbb{R}, so we will say that a spacetime with topology $M \times \mathbb{R}$ has *spatial topology* M. In particular, we will say that V is *spatially compact* if M is compact.

In most theories, the geometry of spacetime is fixed from solution to solution. So we typically think of V as carrying a solution-independent geometrical structure (I will be lazy, and sometimes use V to denote the manifold, sometimes the manifold and the geometry together).\footnote{We could also allow V to carry non-geometrical solution-independent structures, corresponding to external fields etc.} Without worrying about precision, I will stipulate now that we will only be interested in spacetimes that are well-behaved. Examples: Newtonian spacetime, neoNewtonian spacetime, Minkowski spacetime, or other globally hyperbolic general relativistic spacetimes.

The spacetime geometries that we consider single out a distinguished class of hypersurfaces in V that correspond to instants of time.\footnote{The crucial point is this: one needs to choose boundary conditions and a notion of instant}
spacetimes the instants are just the hypersurfaces of absolute simultaneity. Typically, in relativistic spacetimes the instants are just the Cauchy surfaces. Occasionally in highly symmetric relativistic spacetimes, one requires instants to be Cauchy surfaces with nice symmetries — thus one might in some contexts require instants in Minkowski spacetime to arise as hypersurfaces of simultaneity relative to an inertial observer. Furthermore, in spacetimes carrying geometrical structures, it often makes sense to speak of certain curves in \(V \) as possible worldlines of point-particles. In prerelativistic spacetime, a curve counts as a possible worldline of a point-particle if it is transverse to the hypersurfaces of simultaneity; in relativistic spacetime such possible worldlines are given by timelike curves.

In addition to considering field theories set in fixed general relativistic background spacetimes, we also want to consider general relativity itself as a Lagrangian field theory. In that context the spacetime metric \(g \) is itself dynamical and varies from solution to solution. With this example in mind, we will allow a bare manifold of topology \(M \times \mathbb{R} \) unequipped with any geometry to count as a spacetime for present purposes, so that general relativity can be developed alongside theories set in a fixed geometrical background. Note that even in a theory like general relativity in which the spatiotemporal geometry is dynamical we can still speak of a hypersurface as being an instant relative to a solution \(g \).

Field Values. We will take \(W \), the space of field values, to be a finite-dimensional vector space. However, we could afford to be more general, at the price of complicating some of the notation below. Our \(\mathcal{K} \) is a space of sections of a trivial vector bundle over \(V \); it follows that for \(\Phi \in \mathcal{K} \) a tangent vector \(\delta \Phi \in T_\Phi \mathcal{K} \) is also a map from \(V \) to \(W \). We could have allowed \(\mathcal{K} \) to be a space of sections of an arbitrary fibre bundle \(E \rightarrow V \). The chief complication that this would introduce is that a tangent vector \(\delta \Phi \in T_\Phi \mathcal{K} \) would then be a section of the bundle \(\Phi^*T(E/V) \).

Kinematically Possible Fields. In setting up a rigourous classical field theory, care must be taken in selecting differentiability and boundary conditions to impose on the kinematically possible fields. We can here afford to neglect such details, and just say that for each theory considered below, \(\mathcal{K} \) is taken to be a space of well-behaved functions \(\Phi : V \rightarrow W \), required to satisfy appropriate conditions of differentiability and behaviour at infinity, but otherwise arbitrary. Note that while \(\mathcal{K} \) will be a manifold (often even an affine

\(^{48} \)Of course, in a theory in which the spacetime geometry is a solution-independent matter, \(\Sigma \subset V \) is an instant relative to a solution \(\Phi \) if and only if it is an instant according to the geometry of \(V \).

In such a way that for certain \((n - 1) \)-forms, \(\omega \), for any instant \(\Sigma \subset V \), \(\int_\Sigma \omega \) converges, and is independent of the instant chosen (cf. fnn. 61 and 73 below). In the standard cases, the obvious notions of instant suffice.
or linear space), in general \mathcal{S} will be a nonlinear subspace of \mathcal{K} with mild
singularities.

Differential Equations. The Lagrangian framework sketched below is very gen-
eral and does not require a restriction on the order of the differential equa-
tions. However, because in later sections we will often be interested in compar-
ing Hamiltonian and Lagrangian versions of the same theory, and because
the Hamiltonian framework takes second-order equations as its point of de-
parture, we will restrict attention to such equations beginning in section 5
below.

REMARK 12 (Finite-Dimensional Theories as Field Theories). In a classical the-
ory of a system with finitely many degrees of freedom (finite systems of particles,
rigid bodies, etc.) the configuration space Q is a manifold parameterizing the
possible dispositions of the system in physical space. A history of the system is a
curve $x : t \in \mathbb{R} \mapsto x(t) \in Q$. We can fit such theories into the present framework,
by taking $W = Q$ and $V = \mathbb{R}$ (so the only independent variable is time). No
harm comes of treating such a theory as a degenerate case of a field theory, so
long as one does not forget that in this case the "spacetime" V parameterized by
the independent variables of the theory is distinct from the spacetime in which the
system is located.

REMARK 13 (Notation). Because a choice of V and W is implicit in a choice of
\mathcal{K}, we can denote a field theory by (\mathcal{K}, Δ).

4.1 The Lagrangian Approach

The role of the differential equations Δ of a theory is to cut down the space
of kinematical possibilities \mathcal{K} to the space of dynamical possibilities \mathcal{S}.\footnote{The text of this section is informal. More precise statements are given in the footnotes. The following terminology and results will be helpful.}

The space $V \times \mathcal{K}$ is a manifold, and so carries differential forms and an exterior derivative operator. For $0 \leq p \leq n$ and $q \geq 0$ let $\Omega^{p,q}(V \times \mathcal{K})$ be the space of q-forms on \mathcal{K} that take their values in the space of p-forms on V : thus if $K \in \Omega^{p,q}(V \times \mathcal{K})$, $\Phi \in \mathcal{K}$, and $\delta \Phi_1, \ldots, \delta \Phi_q \in T_\Phi \mathcal{K}$
then $K(\Phi, \delta \Phi_1, \ldots, \delta \Phi_q)$ is a p-form on our spacetime V. Each differential form on $V \times \mathcal{K}$ belongs to some $\Omega^{p,q}(V \times \mathcal{K})$. Furthermore, we can write the exterior derivative, d, on $V \times \mathcal{K}$ as $d = D + \theta$, where D is the exterior derivative on V, mapping elements of $\Omega^{p,q}(V \times \mathcal{K})$ to elements
of $\Omega^{p+1,q}(V \times \mathcal{K})$ (for $0 \leq p < n$), and θ is the exterior derivative on \mathcal{K}, mapping elements of $\Omega^{p,q}(V \times \mathcal{K})$ to elements of $\Omega^{p,q+1}(V \times \mathcal{K})$. We have $\partial D = -D \theta$.

Note that if $\Phi \in \mathcal{K}$ then a tangent vector $\delta \Phi \in T_\Phi \mathcal{K}$ is itself a map from V to W. So for each admissible p and q we can consider the subspace $\Omega^{p,q}(V \times \mathcal{K}) \subset \Omega^{p,q}(V \times \mathcal{K})$ of local forms consisting of those K such that for any $\Phi \in \mathcal{K}$ and $\delta \Phi_1, \ldots, \delta \Phi_q \in T_\Phi \mathcal{K}$, the value of the p-form
$K(\Phi, \delta \Phi_1, \ldots, \delta \Phi_q)$ at spacetime point $x \in V$ depends only on the values at x of $\Phi, \delta \Phi_1, \ldots, \delta \Phi_q$, and finitely many of their derivatives.

\footnote{For discussion of the scope of the Lagrangian approach, see [Bluman, 2005, §2.1].}
DEFINITION 14 (Lagrangian). Let \(\mathcal{K} \) be a space of kinematically possible fields. A Lagrangian, \(L \), on \(\mathcal{K} \) is a local map from \(\mathcal{K} \) to the space of \(n \)-forms on \(V \) (to say that \(L \) is local is to say that the value of \(L(\Phi) \) at a point \(x \in V \) depends only on the values at \(x \) of \(\Phi \) and finitely many of its derivatives).\(^{51}\)

Given a Lagrangian \(L \), one can proceed, as in the treatment of the \(n \)-body problem sketched in section 2.3 above, to look for those kinematically possible \(\Phi \) with the special property that infinitesimal perturbations at \(\Phi \) make no difference to the value of \(\int L(\Phi) \).

DEFINITION 15 (Variational Problem). Note that for each compact \(U \subset V \), \(S_U : \Phi \mapsto \int_U L(\Phi) \) is a real-valued function on \(\mathcal{K} \). Let us call the assignment \(U \mapsto S_U \) the variational problem of \(L \).

DEFINITION 16 (Stationary Fields). We call \(\Phi \in \mathcal{K} \) stationary for \(L \) if for each compact \(U \subset V \) the effect of infinitesimally perturbing \(\Phi \) inside \(U \) has no effect on the value of \(S_U \).\(^{52}\)

DEFINITION 17 (Lagrangian Admitted by \(\Delta \)). We call \(L \) a Lagrangian for \((\mathcal{K}, \Delta) \) if the set of \(\Phi \) stationary for \(L \) coincides with the space \(\mathcal{S} \) of solutions of \(\Delta \). In this case we also say that \(\Delta \) admits the Lagrangian \(L \), and speak of \(\mathcal{S} \) as the space of solutions of \((\mathcal{K}, L) \).

REMARK 18 (Euler–Lagrange Equations). Given a Lagrangian, one can always find a set of equations \(\Delta \) (the Euler–Lagrange equations for \(L \)) so that \(L \) is a Lagrangian for \(\Delta \). That is: a kinematically possible field \(\Phi : V \to W \) is stationary for a Lagrangian \(L \) if and only if the Euler–Lagrange equations for \(L \) are satisfied. For Lagrangians depending only on the fields and their first-order derivatives, these equations require that

\[
\frac{\partial L}{\partial \Phi^\alpha}(x_a) - \sum_{a=1}^n \frac{\partial}{\partial x^a} \left(\frac{\partial L}{\partial \Phi^\alpha}(x_a) \right) = 0
\]

(4)

hold at each point \(x \in V \) (here \(a \) indexes coordinates on \(V \), \(\alpha \) indexes coordinates on \(W \), and \(\Phi^\alpha_a \) stands for \(\frac{\partial}{\partial x^a} \Phi^\alpha \)).\(^{53}\)

\(^{51}\)That is, \(L \in \Omega^{n,0}_{\text{loc}}(V \times \mathcal{K}) \).

\(^{52}\)That is, \(\Phi \) is stationary for \(L \) if for each compact \(U \subset V \) and for each \(\delta \Phi \in T_\Phi \mathcal{K} \) whose support is contained in \(U \) we find that \(\partial S_U(\delta \Phi) = \int_U \partial L(\Phi, \delta \Phi) \) vanishes. We can think of this as follows: fixing \(\Phi, U, \) and \(\delta \Phi \), we find a curve \(\Phi[e] : [-1, 1] \to \mathcal{K} \) such that \(\Phi[0] = \Phi \) and \(\frac{d}{de} \Phi[e]\)|\(_{e=0} = \delta \Phi \); the requirement that \(\partial S_U(\delta \Phi) = 0 \) amounts to \(\frac{d}{de} \int_U L(\Phi[e]) \big|_{e=0} = 0 \).

\(^{53}\)Of course, there is a coordinate-independent description of this. It is possible to show that \(\partial L = E + DM \), where \(E \in \Omega^{n,1}_{\text{loc}}(V \times \mathcal{K}) \) and \(M \in \Omega^{n-1,1}_{\text{loc}}(V \times \mathcal{K}) \), with \(E \) determined uniquely by \(L \) and \(M \) determined up to the addition of an exact form \(DN \), with \(N \in \Omega^{n-2,1}_{\text{loc}}(V \times \mathcal{K}) \). The condition that \(\partial S_U(\delta \Phi) = 0 \) becomes \(\int_U E(\Phi, \delta \Phi) + DM(\Phi, \delta \Phi) = 0 \) for all \(\delta \Phi \) whose support is contained in \(U \). Since \(\delta \Phi \) vanishes along the boundary of \(U \), Stokes's theorem tells us that the second integrand makes no contribution. So \(\Phi \) is stationary if and only if \(\int_U E(\Phi, \delta \Phi) = 0 \) for all such \(U \) and admissible \(\delta \Phi \) — which is equivalent to saying that \(E(\Phi, \delta \Phi) = 0 \) for all such \(\delta \Phi \).
REMARK 19 (Trivially Differing Lagrangians). Let us say that Lagrangians L and L' differ trivially if L' is of the form $L'(\Phi) = L(\Phi) + \alpha_\Phi$ for each $\Phi \in \mathcal{K}$ with α_Φ an exact Φ-dependent n-form on V. Let us say that if L and L' are Lagrangians, their variational problems $U \mapsto S_U$ and $U \mapsto S'_U$ are equivalent if for each compact $U \subset V$ and field $\Phi \in \mathcal{K}$, we have that any infinitesimal perturbation of Φ leaves the value of S_U unchanged if and only if it leaves the value of S'_U unchanged. It follows that trivially differing Lagrangians have the same space of solutions — indeed, they have the same Euler–Lagrange equations.

REMARK 20 (Uniqueness of Lagrangians). The previous remark shows that if Δ does admit a Lagrangian, it will admit infinitely many that differ trivially. Some Δ also admit multiple Lagrangians that do not differ trivially — e.g., the Newtonian equations for a particle moving in a spherical potential in three-dimensional Euclidean space.

REMARK 21 (Existence of Lagrangians). Not every set of equations Δ admits a Lagrangian. A charged particle moving in the electromagnetic field of a magnetic monopole is an example of a system that does not admit a Lagrangian treatment.

54L.e., $L' = L + DK$ where $K \in \Omega^{n-1,0}_{\text{loc}}(V \times K)$.

55That is: the variational problems $U \mapsto S_U$ and $U \mapsto S'_U$ for Lagrangians L and L' are equivalent if for every compact $U \subset V$, every field $\Phi \in \mathcal{K}$, and every tangent vector $\delta \Phi \in T_{\Phi} \mathcal{K}$ with support contained in U, we have that $\partial S_U(\Phi)(\delta \Phi) = 0$ if and only if $\partial S'_U(\Phi)(\delta \Phi) = 0$.

56Let $L' = L + DK$ with $K \in \Omega^{n-1,0}_{\text{loc}}(V \times K)$. Then for any compact $U \subset V$, $\Phi \in \mathcal{K}$, and $\delta \Phi \in T_{\Phi} \mathcal{K}$ with support contained in U, we have $\partial S_U(\Phi)(\delta \Phi) - \partial S'_U(\Phi)(\delta \Phi) = \int_U \partial DK(\Phi)(\delta \Phi)$. But $\partial D = -D \partial$, so the right hand side is $-\int_U D \partial K(\Phi)(\delta \Phi)$, which vanishes (by Stokes’s theorem and the fact that $\delta \Phi$ vanishes on the boundary of U).

57That is, if Lagrangians L and L' differ by a term of the form DK, then they share the same Euler–Lagrange operator E.

58See [Crampin and Prince, 1988] and [Henneaux and Shepley, 1982] for this example. For field-theoretic examples, see [Nutku and Pavlov, 2002]. For a topological condition on $V \times W$ sufficient to ensure that Δ does not admit nontrivially differing Lagrangians, see [Anderson and Duchamp, 1980, Theorem 4.3.ii].

59The problem of determining whether a given set of differential equations admits a Lagrangian is known as the inverse problem of the calculus of variations among mathematicians and as Helmholtz’s problem among physicists. [Prince, 2000] is a helpful survey of results concerning finite-dimensional systems. [Anderson and Duchamp, 1980, §5] includes examples of field theories that do not admit Lagrangian formulations.

60See [Anderson and Thompson, 1992, 4 f.]. For other examples, see [Prince, 2000].
4.2 The Structure of the Space of Solutions

The choice of a Lagrangian \(L \) allows us to equip \(S \) with a closed two-form, \(\Omega \).\(^{61}\) So when \(\Omega \) is nondegenerate, \((S, \Omega) \) is a symplectic space; otherwise, it is presymplectic.\(^{62}\) Roughly speaking, one expects that \(\Omega \) is nondegenerate if and only if the equations, \(\Delta \), of our theory have the property that specifying initial data determines a unique inextendible solution.\(^{63}\)

The choice of a Lagrangian brings into view the sort of structure required for the construction of a quantum theory. A set of differential equations \(\Delta \) alone does not appear to determine such structure, and it is not known how to quantize a differential equation directly, without the introduction of a Lagrangian or a Hamiltonian. If \(\Delta \) admits a Lagrangian \(L \), then it also admits the whole class of Lagrangians that differ trivially from \(L \) (see remark 20 above). Unsurprisingly, trivially differing Lagrangians induces the same \(\Omega \) on \(S \).\(^{64}\) But when \(\Delta \) admits Lagrangians \(L \) and \(L' \) that differ nontrivially, these Lagrangians can induce distinct geometric structures on \(S \); and one expects that these distinct (pre)symplectic structures will lead to distinct quantizations of the given classical theory.\(^{65}\) In the case mentioned above of a particle moving in a spherical potential, each of these elements is present: multiple nontrivially differing Lagrangians lead to distinct symplectic structures on the space of solutions, which lead in turn to physically distinct quantizations.\(^{66}\)

\(^{61}\)Recall from footnote 53 above that we have the decomposition \(\partial L = E + DM \), with \(E \) unique and \(M \) unique up to the addition of a \(D \)-exact form. We now define \(Z := \partial M \). \(Z \in \Omega^{n-1,2}_{loc}(V \times K) \) and is uniquely determined by \(L \) up to the addition of a term of the form \(DY \), with \(Y \in \Omega^{n-2,2}_{loc}(V \times K) \).

Let \(\Phi \in S \) be a solution, let \(\delta \Phi_1, \delta \Phi_2 \in T_\Phi S \), and let \(\Sigma \subset V \) be an instant relative to \(\Phi \). Then we define \(\Omega_\Sigma(\Phi, \delta \Phi_1, \delta \Phi_2) := \int_\Sigma Z(\Phi, \delta \Phi_1, \delta \Phi_2) \). We assume nice boundary conditions at infinity, so that \(\Omega_\Sigma \) is well-defined, and so that replacing \(Z \) by \(Z + DY \) makes no difference to \(\Omega_\Sigma \). We find that the value of \(\Omega_\Sigma \) is independent of the instant chosen — because \(Z(\Phi, \delta \Phi_1, \delta \Phi_2) \) is closed as an \((n-1)\)-form on \(V \) and we have been careful in our choice of notion of instant (see fn. 47). So we drop the subscript, and think of \(\Omega \) as a two-form on \(S \), closed because \(Z \) is \(\partial \)-exact.

\(^{62}\)Lagrange appears to have been the first to equip the space of solutions to a dynamical problem with this symplectic structure; see [Weinstein, 1981, §2], [Souriau, 1986], or [Iglesias, 1998].

\(^{63}\)As we will see below in 6.2, if the equations of motion admit gauge symmetries (so that uniqueness fails in a certain dramatic way), then \(\Omega \) is presymplectic. I believe it is widely thought that this is the only way that \(\Omega \) can fail to be symplectic — at least for the sort of examples that arise in physics.

\(^{64}\)Replacing \(L \) by \(L + DK \) alters \(Z \) a term of the form \(DY \), \(Y \in \Omega^{n-2,2}_{loc}(V \times K) \). But because it is \(D \)-exact, this new term will not contribute to the integral over space that defines \(\Omega \) (by Stokes's theorem and boundary conditions).

\(^{65}\)When (as in the Newtonian case) the equations of motion are second-order and the space of solutions is finite-dimensional, Lagrangians \(L \) and \(L' \) induce the same two-form on the space of solutions if and only if they differ trivially; see [Crampon and Prince, 1988, §III]. Presumably this in fact holds for a much wider range of cases.

\(^{66}\)See [Henneaux and Shepley, 1982].
4.3 Symmetries and Conserved Quantities

Given a set of equations Δ and a Lagrangian L admitted by Δ, there are three distinct notions of symmetry we might consider.\footnote{See [Olver, 1993, Chapters 2, 4, and 5] for the relevant notions. Warning: terminology varies — sometimes my Lagrangian symmetries are called variational symmetries, sometimes my variational symmetries are called divergence symmetries, etc.} Roughly speaking, a symmetry of Δ is a map from \mathcal{K} to itself that fixes S as a set and that is generated by an object local in the fields and their derivatives.\footnote{See [Olver, 1993, §5.1] for details.} We can then consider the subset of variational symmetries, which also leave the variational problem of L invariant, or the subset of Lagrangian symmetries that leave L itself invariant. The three notions are distinct: every Lagrangian symmetry is a variational symmetry, but some theories have variational symmetries that are not Lagrangian symmetries; similarly, every variational symmetry is a symmetry of the associated equations of motion, but some equations that admit Lagrangians have symmetries that are not variational symmetries of any Lagrangian for the theory.\footnote{The wave equation in (2+1) dimensions has a dilational symmetry that is not a variational symmetry and inversion symmetries that are variational but not Lagrangian; see [Olver, 1993, Examples 2.43, 4.15, 4.36, and 5.63]. Example 4.35 of the same work shows that Galilean boosts are variational symmetries for the n-body problem but are not Lagrangian symmetries. Indeed, no Lagrangian for Newtonian particles subject to forces derived from a potential can be invariant under the full group of symmetries of neoNewtonian spacetime; see [Souriau, 1997, Remark 12.136].}

For present purposes, it is natural to focus on variational symmetries of physical theories. For, on the one hand, the class of Lagrangian symmetries excludes some physically important symmetries — and in any case, within the Lagrangian approach it is not clear that it is more natural to focus on symmetries of the Lagrangian than on symmetries of the variational problem. On the other hand, the class of symmetries of equations that are not variational symmetries does not appear to include any symmetries of absolutely central physical interest — and it is at the level of variational symmetries (rather than symmetries of equations) that the powerful results of Noether, cementing a connection between certain special types of one-parameter groups of variational symmetries and certain special types of conserved quantities in classical field theories, are naturally situated.\footnote{Note, however, that there do exist results establishing links between symmetries of equations with conserved quantities, without detouring through the Lagrangian framework; see, e.g., [Bluman, 2005].}

Here is a statement of the central result. Let us call a one-parameter group, $\xi = \{g_t\}$, of diffeomorphisms from \mathcal{K} to itself a Noether group for L if its infinitesimal generator leaves invariant the variational problem of L and is local in the appropriate sense.\footnote{More precisely, let ξ be a one-parameter group of diffeomorphisms from \mathcal{K} to itself and let X be the corresponding vector field on \mathcal{K} (i.e., X is the vector field whose flow is ξ). ξ is a Noether group if the following two conditions hold: (i) X is an infinitesimal variational symmetry of L: there exists an $R \in \Omega^{n-1,0}$ $(V \times \mathcal{K})$ such that $\partial L(\Phi, (X(\Phi))) = DR(\Phi)$ for all $\Phi \in S$. (ii) X is local: for any $\Phi \in \mathcal{K}$, $X(\Phi) \in T_0 \mathcal{K}$ is local on V, in the sense that at any point $x \in V$, we find that $X(\Phi)(x)$ depends only on the value at x of Φ and finitely many of its derivatives (recall that} Given a Noether group $\xi = \{g_t\}$ for (\mathcal{K}, L), there is
a map J_ξ, called the Noether current associated with ξ, that maps solutions to $(n-1)$-forms on V.

Given an arbitrary solution, $\Phi \in S$, and an instant $\Sigma \subseteq V$ we integrate $J_\xi(\Phi)$ over Σ to give the Noether charge, $Q_{\xi,\Sigma}(\Phi) := \int_{\Sigma} J_\xi(\Phi)$. We note that $Q_{\xi,\Sigma}(\Phi)$ is independent of the Σ chosen (so long as the integral is well-defined!). That is: $Q_{\xi,\Sigma}(\Phi)$ is a quantity that is constant in time within the solution (V, Φ). Thus we might as well denote it simply $Q_\xi(\Phi)$, and think of the Noether charge, Q_ξ, associated with ξ as a function on S.

Remark 22 (Noether Charges Generate Symmetries). Since Ω is a closed two-form, (S, Ω) is a symplectic or presymplectic space: so the results of sections 3.2 and 3.3 above apply. As one would expect, Q_ξ is in fact the symplectic/a presymplectic generator of the one-parameter group ξ (thought of now as acting on S). The beauty of Noether’s result is that it shows how to construct the generator of ξ via the integration of local objects on spacetime.

Remark 23 (Trivial Conservation Laws). So far, nothing we have said guarantees that Q_ξ is an interesting function on S — it might, for instance be a the zero function, if $J_\xi(\Phi)$ is exact as an $(n-1)$-form on V. Such trivial Noether charges do in fact occur when Ω is presymplectic and ξ is a group of gauge transformations. We will see examples of this in section 6.2 below.

5 TIME AND CHANGE IN WELL-BEHAVED FIELD THEORIES

Turn we now to the representation of time and change in physical theories. In the remaining sections Hamiltonian formulations of theories will play an important role. So we henceforth restrict attention to theories with second-order equations of motion.

In this section, we discuss ideally well-behaved theories. We impose three further assumptions, which are in effect jointly for this section only: (a) global existence of solutions; (b) uniqueness of solutions; (c) our spacetime admits a time translation symmetry under which the variational problem of our Lagrangian is invariant.

We will see that in this context, we have three \mathbb{R}-actions: a notion of time translation on spacetime; a notion of time translation on the space of solutions of the theory; and a notion of time evolution on the space of initial data of the theory. We also find that the space of solutions and the space of initial data are isomorphic as symplectic spaces, and that there is a natural intertwining of the notion of time

72 The Noether current associated to L and ξ is the element of $J_\xi \in \Omega_\text{loc}^{n-1,0}(V \times \mathcal{K})$ given by $J_\xi(\Phi) := R(\Phi) - M(\Phi, X(\Phi))$, where X is the infinitesimal generator of ξ, R is the object introduced in the preceding footnote, and M is the object introduced in footnote 53.

73 Because $J_\xi(\Phi)$ is closed as an $(n-1)$-form on V and because we have been careful in our choice of notion of instant (see fn. 47). Note, in fact, that so long as $\Sigma, \Sigma' \subseteq V$ are compact $(n-1)$-manifolds that determine the same homology class in V, we will have $\int_\Sigma J_\xi(\Phi) = \int_{\Sigma'} J_\xi(\Phi)$ (see, e.g., [Lee, 2003, 431] and [Lee, 2000, 300 f.] for relevant notions and results). Hence we get a sort of conservation law even if, e.g., Σ and Σ' are not spacelike according to the geometry of V. See [Torre, Unpublished] for an introduction to such conservation laws.
translation on the space of solutions with the notion to time evolution on the space of initial data. So in this domain one can say simply (if awkwardly) that time is represented as a symmetry of the laws — and leave it open whether one means time translation or time evolution, since in the end the two come to much the same thing.

This section has five subsections. The first is devoted to the Lagrangian picture, the second to the Hamiltonian, the third to the relation between these pictures, the fourth to a discussion of the representation of time and change. The final subsection offers an overview.

5.1 The Lagrangian Picture

Let us be more precise about the special assumptions in play in this section. We impose the following conditions on our spacetime V, equations of motion Δ, and Lagrangian L.

Global Existence of Solutions. We assume that each admissible set of initial data for Δ is consistent with a solution defined on all of V.74

Uniqueness of Solutions. If Φ and Φ' are solutions that agree in the initial data that they induce on an instant $\Sigma \subset V$, then they agree at any point $x \in V$ at which they are both defined.

Time Translation Invariance of the Lagrangian. We require our spacetime V to have a nontrivial geometrical structure, strong enough to single out a class of $(n-1)$-dimensional submanifolds that count as instants and a class of one-dimensional submanifolds that count as possible worldlines of point-particles. Let $\bar{\xi} = \{\bar{g}_t\}$ be a one-parameter group of spacetime symmetries of V, and consider the orbits of $\bar{\xi}$ in V (the orbit $[x]$ of $\bar{\xi}$ through $x \in V$ is the image of the curve $x(t) := \bar{g}_t \cdot x$). We call $\bar{\xi}$ a time translation group for V if the orbits of $\bar{\xi}$ are possible worldlines of point-particles according to the geometry of V; in this case, we call these orbits worldlines adapted to $\bar{\xi}$. We will typically denote time translation groups as $\bar{\tau}$.

Let \bar{G} be a group of spacetime symmetries of V. Given $\bar{g} \in G$ we can define a diffeomorphism $g : K \to K$ via $g(\Phi(x)) = \Phi(\bar{g}^{-1} \cdot x)$. In decent Lagrangian theories, one expects that if $\bar{\xi} = \{\bar{g}_t\}$ is a one-parameter group of spacetime symmetries, then $\xi = \{g_t\}$ is a Noether group for L. In this situation, ξ will map solutions to solutions; so that each $g_t \in \xi$ restricts to a map from S to itself; these maps are symplectic automorphisms of (S, Ω) (I won’t bother introducing notation to distinguish between the action of ξ on K and the restriction of this action to S). In this section we assume that each time

74Since we are restricting attention to theories with second-order equations of motion, specifying initial data involves specifying the field values and their time-rate of change at some initial instant.
translation group, τ, of V gives rise in this way to a Noether group, τ, of L. I will call such a τ a dynamical time translation group.

Within the class of theories that arise in physics, it appears to be an immediate consequence of the uniqueness assumption that the form Ω induced by L on the space of solutions in nondegenerate, and hence symplectic. We denote by H the corresponding conserved quantity guaranteed by Noether’s theorem (in physically realistic theories, H arises by integrating the stress-energy of the field over an arbitrary instant).75 Of course, H generates, via Ω, the action of τ on S.

EXAMPLE 24 (Field Theory in Newtonian Spacetime). In Newtonian spacetime, each symmetry can be written as the product of a time translation with an isometry of absolute space. In coordinates adapted to the privileged absolute frame, we can write points of spacetime as (t, \mathbf{x}). Then the (orientation-preserving) symmetries of V are of the form $(t, \mathbf{x}) \mapsto (t + s, R(\mathbf{x}) + \mathbf{c})$, where $s \in \mathbb{R}$ implements a time translation, R is a matrix implementing a rotation in absolute space, and $\mathbf{c} \in \mathbb{R}^3$ implements a spatial translation. Up to a choice of temporal unit, there is a unique time translation group, $\bar{\tau} : (t, \mathbf{x}) \mapsto (t + s, \mathbf{x})$; the worldlines of the points of absolute space are adapted to this group. We are supposing that the corresponding group τ acting on the space of solutions is a dynamical time translation group. The Noether charge associated with $\tau, H : S \to \mathbb{R}$, assigns to each solution the total energy of the system at any instant (since we are considering a theory invariant under time translations, the value of the total energy along a slice is a constant).76

EXAMPLE 25 (Field Theory in Minkowski Spacetime). The symmetry group of Minkowski spacetime is the Poincaré group. Each inertial frame picks out a notion of simultaneity, and a time translation group, $\overline{\tau}$; the worldlines of observers at rest in the chosen frame will be adapted to this group. (Equivalently, such group is determined by the choice of a timelike vector in spacetime.) In Poincaré-invariant field theories we can choose inertial coordinates (t, x_1, x_2, x_3) such that our chosen $\overline{\tau}$ acts via $(t, x_1, x_2, x_3) \mapsto (t + s, x_1, x_2, x_3)$. In such coordinates, the Noether current is just the component T^{00} of the stress-energy tensor of the field — the Noether charge being given, as always, by the integral of the Noether current over any instant.77

75For the stress-energy tensor and its role in the examples below, see [Choquet-Bruhat and DeWitt-Morette, 1989, §II.7] and [Deligne and Freed, 1999, §2.9].

76The Noether charge generating spatial translation (rotation) in a given direction (about a given axis) assigns to a solution the corresponding component of the linear (angular) momentum of the system at an instant. In fact, we get a momentum map (see fn. 34) for the action of the group of symmetries of Newtonian spacetime — the Poisson bracket algebra of the Noether charges mirrors the Lie bracket relations between the infinitesimal generators of the corresponding one-parameter groups. It is impossible, however, to construct a momentum map for the symmetry group of neo-Newtonian spacetime; see [Woodhouse, 1991, §3.4] for this and other examples in which the construction of a momentum map is impossible.

77One can again construct a momentum map (see fn. 34) — with spacelike translations generated by the components of linear momentum, etc., in the familiar way.
EXAMPLE 26 (Field Theories in a Curved Spacetime). While a generic general relativistic spacetime admits no non-trivial symmetries, a solution in which, intuitively, the geometry of space is constant in time admits a time translation group. Let V be a globally hyperbolic and time-oriented general relativistic spacetime that possess such a τ. Let X_α be the vector field tangent to the orbits of τ (so X is a timelike Killing field). Let $T^{ab}(\Phi)$ be the stress-energy tensor of the field Φ and suppose that $\nabla_a T^{ab} = 0$ (this typically holds in cases of physical interest). Let $\Sigma \subset V$ be an instant (i.e., a Cauchy surface) and let n_α be the field of unit future-pointing normal vectors along Σ. We can define the energy-momentum vector of T^{ab} relative to X_α as $P^b := X_\alpha T^{ab}$ and define the energy along Σ as $\int_\Sigma P^a n_\alpha dx$. This last quantity is in fact the Noether charge, and is independent of Σ.

5.2 The Hamiltonian Picture

The basic idea behind the Hamiltonian approach is to work with the space of initial data of the equations of the theory rather than with the space of solutions to the equations — roughly and heuristically speaking, this means working with the space of instantaneous states of the theory rather than with its space of possible worlds.

Deterministic equations of motion tell us what the state of the system must be at earlier and later times if it is in a given initial state. So, at least for well-behaved equations of motion, the dynamical content of the equations of motion ought to be encodable in a flow on the space of initial data, with the integral curves of this flow being the dynamically possible trajectories through the space of instantaneous states.

The special assumptions in play in this section (global existence and uniqueness of solutions and the presence of a dynamical time translation group) imply (at least for the sort of the theories that arise in physics) that the space of initial data carries a symplectic structure that generates the dynamics of the theory when supplemented by the function that assigns to an initial data set the total energy of a system in that state. The dynamics can be thought of as encoded in an \mathbb{R}-action on the space of initial data that implements time evolution. As we will see, these structures on the space of initial data — symplectic structure, Hamiltonian, and group action — are all closely related to the corresponding objects on the space of solutions that arise on the Lagrangian side.

Intuitively speaking, an instantaneous state of the field is a specification at each point of space of the value of the field and its time rate of change; and in giving a sequence of such instantaneous states, we describe how the values of these variables evolve through time at each point of space. So in order to construct a Hamiltonian formulation of a theory in which the total history of a system is described via a trajectory through the space of initial data, we need to effect some sort of notion decomposition of spacetime into space and time.\(^{78}\)

\(^{78}\)Note that we did not require any such decomposition in setting up the Lagrangian formalism in section 4 above. It is, of course, crucial to distinguish the symplectic space of solutions that arises in this formalism from the symplectic velocity phase space that arises in some Lagrangian
Informally, we can picture what is required as being a preferred family of observers together with a notion of simultaneity. Spacetime is partitioned by the worldlines of these observers (these need not be at rest relative to one another, but we do require that the worldlines involved be possible worldlines of point-particles according to the geometry of V). Each observer carries a clock; and we suppose that the set of points at which these clocks read \(t = 0 \) forms an instant in V. We call such a set of observers equipped with such a notion of simultaneity a *frame*. We say that a frame is *adapted to* the time translation group \(\bar{\tau} \) when the following two conditions obtain. (i) The worldline of each observer is an orbit of the group \(\bar{\tau} \) acting on V. (ii) Up to a choice of origin and a choice of unit of measurement, \(\bar{\tau} \) gives us a parameterization of the set of instants of V, which allows us to determine ratios of temporal intervals; we require that the clock readings respect these determinations.

Still speaking informally, we can say that relative to a choice of frame, the state of the field at time t is an assignment of field value and momentum to each observer (i.e., the values of the field and its time rate of change at the spacetime point the observer occupies at the given instant), and that a history of the field is an assignment of these quantities along the worldline of each observer. So we can take an initial data set to be a pair of functions (corresponding to the field value and its time rate of change) defined on the space of observers of our frame — this space acts as a sort of abstract instant, with the same topological and geometrical structure as the concrete instants that arise as subsets of V.

We can make this more precise as follows.

DEFINITION 27 (Slicing). Let V be a spacetime with geometry and let \(S \) be an \((n-1)\)-dimensional manifold (possibly carrying a Riemannian metric). Then an \(S \)-*slicing* of V is a diffeomorphism \(\sigma : \mathbb{R} \times S \rightarrow V \) such that: (i) each \(\Sigma_t := \sigma(\{t\} \times S) \), \(t \in \mathbb{R} \), is an instant in V (with \(\sigma \) providing an isomorphism between the geometry of \(\Sigma_t \) and the geometry of \(S \), if any); (ii) each \(X_x := \sigma(\mathbb{R} \times \{x\}) \), \(x \in S \), is a possible worldline of a point-particle according to the geometry of V. We call \(S \) the *abstract instant* of \(\sigma \) and each \(\Sigma_t \) an *instant in the slicing*. When V admits a time translation group \(\bar{\tau} \), we call a slicing \(\sigma \) of V *adapted to* \(\bar{\tau} \) if the following conditions are met: (a) each \(X_x \) is an orbit of \(\bar{\tau} \); (b) any two instants of the slicing are related by a time translation in \(\bar{\tau} \); (c) up to a choice unit and origin, the parameterizations of each \(X_x \) given by \(\sigma \) and by \(\bar{\tau} \) agree.

EXAMPLE 28 (Newtonian Slicings). In Newtonian spacetime there is of course a unique partition of spacetime by instants and (up to a choice of unit) a unique time translation group \(\bar{\tau} \). Furthermore, in this setting it is possible to take \(S \) to be the space of worldlines of the points of absolute space.\(^{79}\) So the only freedom in constructing a slicing adapted to \(\bar{\tau} \) is in choosing an origin and a unit for the

\(^{79}\)This space comes equipped with a natural Euclidean structure — since the distance between points of absolute space is constant in time, we can define the distance between two worldlines of such points to be the distance between the points.
parameterization of the instants by the reals.

EXAMPLE 29 (Flat Minkowski Slicings). In the setting of Minkowski spacetime it is sometimes natural to restrict attention to instants which arise as surfaces of simultaneity for inertial observers. In this case, our abstract instant \(S \) will again have the structure of Euclidean space. In order to construct a slicing, we must choose an instant \(\Sigma_0 \subset V \) corresponding to \(t = 0 \), an isometry from \(S \) to \(\Sigma_0 \), a unit of temporal measurement, and a notion of time translation associated to an inertial observer.

EXAMPLE 30 (Generic Minkowski Slicings). More generally, in the Minkowski spacetime setting it is possible to allow arbitrary Cauchy surfaces to count as instants — in this case, one will choose \(S \) to have some non-trivial Riemannian geometry. Now there is a truly vast — indeed, infinite-dimensional — family of instants to choose from (as we allow the geometry of \(S \) to vary). On the bright side, a generic instant admits no nontrivial isometries — so having chosen \(S \) and \(\Sigma \) there will be no freedom in constructing an isometry from one to the other.

Let us consider a Lagrangian theory satisfying all of the present conditions, and fix a slicing of \(V \) adapted to a notion of time translation, \(\tau \), that gives rise to a dynamical time translation group \(\tau \). We can then construct a Hamiltonian version in the following steps.

1. Given an instant and a solution, construct the instantaneous field configuration and momentum. Let \(\Sigma \) be an instant contained in the given slicing and let \(\Phi : V \to W \) be a solution. We define \(\phi \) by \(\phi := \Phi |_\Sigma \). And we define \(\dot{\phi} : \Sigma \to W \), the field velocity on \(\Sigma \), as follows: at each \(x \in \Sigma \), \(\dot{\phi}(x) \) is the rate of change at \(x \) of the field values along the orbit of \(\tau \) through \(x \).\(^{80}\) In order to construct the instantaneous momentum of the field, we apply the usual recipe for constructing canonical momentum variables, defining \(\pi := \frac{\partial L}{\partial \dot{\phi}} \) (\(\pi \) is a map from \(\Sigma \) to \(W^* \), the vector space dual to \(W \)).

2. Given the instantaneous field configuration and momentum, construct the corresponding initial data. This is just a matter of using \(\sigma \) to pull back \(\phi \) and \(\pi \), so that we can regard them as functions on \(S \) rather than \(\Sigma \). Sloppily, I will use the same names for initial data defined on \(S \) and the corresponding functions defined on \(\Sigma \subset V \).

3. Construct the space of initial data, \(\mathcal{I} \). Let \(Q \) be the space of all \(\phi : S \to W \) that can arise via the previous two steps as we allow \(\Phi \) to vary in \(\mathcal{S} \).\(^{81}\) The set of all pairs \((\phi, \pi) \) that can arise via these steps is just cotangent bundle, \(T^*Q \). This space is the space, \(\mathcal{I} \), of initial data for our theory. It carries a canonical symplectic structure, \(\omega \) (see example 7 above).

\(^{80}\)That is, let \(x_0 \in \Sigma \) and find \(y_0 \in S \), \(t_0 \in \mathbb{R} \) such that \(\sigma(t_0, y_0) = x_0 \) and define the curve \(x : \mathbb{R} \to V \) by \(x(t) := \sigma(t, y_0) \); then let \(\dot{\phi}(x) := \lim_{h \to 0} \frac{1}{h} (\phi(x(t_0 + h)) - \phi(x_0)) \).

\(^{81}\)Allowing \(\Sigma \) and the slicing to vary as well would make no difference in the present case, so long as \(S \) and its geometry are held fixed.
4. *Construct a Hamiltonian.* We define \(h : \mathcal{I} \to \mathbb{R} \), the Hamiltonian on the space of initial data, as follows. Let \((\phi, \pi) \in \mathcal{I}\) be initial data and let \(\Sigma \subset V\) be an instant (not necessarily one in our slicing). Let \(\Phi\) be the solution that induces \((\phi, \pi)\) on \(\Sigma\) and define
\[
h(\phi, \pi) := \int_\Sigma \pi(x) \dot{\phi}(x) - L(\Phi)(x)dx
\]
(in the present context, the result does not depend on the instant \(\Sigma\) chosen).\(^{82}\)

5. *Construct the Dynamics.* Together \(h\) and \(\omega\) determine a vector field \(\chi\) on \(\mathcal{I}\) that encodes the dynamics of our theory. The integral curves of \(\chi\) are the possible dynamical trajectories — if the state is \((\phi_0, \pi_0)\) at time \(t = 0\), then the state \(t\) units of time later can be found by tracing \(t\) units of time along the integral curve passing through \((\phi_0, \pi_0)\). This gives us a flow on \(\mathcal{I}\), which preserves both \(\omega\) and \(h\) (the flow is global rather than local because we are assuming that solutions are defined for all values of \(t\)).

5.3 *Relation between the Lagrangian and Hamiltonian Pictures*

For each instant \(\Sigma_t := \sigma(\{t\} \times S)\) in our slicing \(\sigma\), we define \(T_{\Sigma_t} : S \to \mathcal{I}\) to be the map that sends a solution \(\Phi\) to the initial data set \((\phi, \pi) \in \mathcal{I}\) that results when the slicing \(\sigma\) is used to pullback to \(S\) the initial data induced by \(\Phi\) on \(\Sigma_t\). Because we are assuming global existence and uniqueness for solutions given initial data, \(T_{\Sigma_t}\) is in fact a bijection. Indeed, it is a diffeomorphism. Furthermore, \(T_{\Sigma_t}^* \omega = \Omega\), so each \(T_{\Sigma_t}\) is in fact a symplectic isomorphism between \((S, \Omega)\) and \((\mathcal{I}, \omega)\).

Note that in typical theories distinct instants in the slicing lead to distinct isomorphisms. If \(\Sigma_t\) and \(\Sigma_{t'}\) are instants in our slicing and \(T_{\Sigma_t} = T_{\Sigma_{t'}}\), then for each solution \(\Phi, \Phi\) induces the same initial data on \(\Sigma_t\) and \(\Sigma_{t'}\) — i.e., each solution is periodic with period \(|t - t'|\). So if \(T_{\Sigma_t} = T_{\Sigma_{t'}}\) for each \(\Sigma_t\) and \(\Sigma_{t'}\), then every solution would have to be a constant function on \(V\).

The maps \(T_{\Sigma_t} : S \to \mathcal{I}\) establish a simple relationship between our Hamiltonians \(H : S \to \mathbb{R}\) and \(h : \mathcal{I} \to \mathbb{R} : h = H \circ T_{\Sigma_t}^{-1}\) (we could have taken this as our definition of \(h\)).

Together \(\Omega\) and \(H\) determine the flow on \(S\) that implements time translation at the level of solutions while together \(\omega\) and \(h\) determine the flow on \(\mathcal{I}\) that implements time evolution of initial data. Since any \(T_{\Sigma}\) relates \(\Omega\) and \(\omega\) on the one hand, and \(H\) and \(h\) on the other, one would hope that it would also intertwine the group actions corresponding to these flows. This is indeed the case. Let us write \(t \cdot S \Phi\) for the solution that results when we time-translate the solution \(\Phi\) by \(t\) units and let us write \(t \cdot \mathcal{I} (\phi, \pi)\) for the state that initial data set \((\phi, \pi)\) evolves into after \(t\) units of time. Then we find that \(t \cdot \mathcal{I} T_{\Sigma}(\Phi) = T_{\Sigma}(t \cdot S \Phi)^{83}\).

Relative to a slicing, each solution \(\Phi\) on \(V\) corresponds to a curve \((\phi(t), \pi(t))\) in the space of initial data, with \((\phi(t), \pi(t)) := T_{\Sigma_t}(\Phi)\). And a curve of this form

\(^{82}\) Here we use the fact that \(\pi\) takes values in \(W^*\) while \(\phi\) takes values in \(W\); and we rely on the natural measure induced by the geometry of \(V\) to allow us to treat \(L(\Phi)\) as a function rather than an \(n\)-form.

\(^{83}\) That is, each \(T_{\Sigma}\) is equivariant for the \(\mathbb{R}\)-actions \(\cdot S\) and \(\cdot \mathcal{I}\).
is always a dynamical trajectory in \mathcal{I} (i.e., an integral curve of the flow generating time evolution on \mathcal{I}). Conversely, a dynamical trajectory $(\phi(t), \pi(t))$ in \mathcal{I} determines a unique solution $\Phi := T_{\Sigma_0}^{-1}(\phi(0), \pi(0))$ — and this solution can be viewed as the result of laying down the instantaneous field configurations $\phi(t)$ on the instants Σ_t in the slicing.

5.4 Time and Change

Change consists in a single object having a given property at a given time and a distinct and incompatible property at a different time. Within the Lagrangian approach, it is easy enough to draw a distinction between those solutions that represent change and those that do not: the changeless solutions are those which are invariant under the action of a group of time translations. Correspondingly, we will say that a dynamical trajectory in the space of initial data represents a changeless reality when the corresponding solution on V is invariant under some time translation group.\footnote{Naively, one might think that a dynamical trajectory in the space of initial data should count as representing a changeless reality only if it is constant — that is, if the system is represented as being in the same instantaneous state at each instant of time. But this would be a mistake. Consider a well-behaved theory set in Minkowski spacetime, and let Φ be solution invariant under the notion of time translation associated with inertial frame A but not invariant under that corresponding to inertial frame B. Surely this counts as changeless — and ought to whether we pass to the Hamiltonian picture via a slicing adapted to frame A (which leads to a dynamical trajectory according to which the state of the system is constant) or via a slicing adapted to frame B (which leads to a picture in which the state undergoes nontrivial evolution).}

This much is entirely straightforward. But it is worth pausing and thinking about how change is represented at the level at which physical quantities are represented by functions on S and \mathcal{I}. In the case of quantities defined on the space of initial data, the story is straightforward. Let $f \in C^\infty(\mathcal{I})$ correspond to some determinable physical property of instantaneous states. Then if (ϕ_0, π_0) evolves into (ϕ_1, π_1) and $f(\phi_0, \pi_0) \neq f(\phi_1, \pi_1)$ then the solution including these states manifests change with respect to the property represented by f.\footnote{Even if Φ represents a state of affairs in Minkowski spacetime, changeless in virtue of being invariant under the notion of time translation associated with inertial frame A, it may still represent some physical quantities as undergoing change — such as the location of the centre of mass of a system relative to inertial frame B.} And we can of course go on to ask, e.g., about the rate of change of f along a dynamical trajectory.

But how should we phrase this in terms of functions defined on the space of solutions?

Suppose that we are interested in the quantity that measures the volume of the spatial region on which a given field takes on non-zero values. While such a quantity is represented within the Hamiltonian framework by a function $f : \mathcal{I} \to \mathbb{R}$, there is no function on the space of solutions that can be identified with this quantity — for such functions assign values to entire physically possible histories, and thus cannot represent quantities that take on different values at different
instants within a history (or rather, they cannot do so in the same direct way that functions on the space of initial data can).

However: intuitively, for each instant \(\Sigma \subset V \) there is a function \(f_\Sigma : S \to \mathbb{R} \) such that \(f_\Sigma(\Phi) \) is the volume of the support of our field on \(\Sigma \) in the solution \(\Phi \). So it is tempting to say that our chosen quantity is represented as exhibiting change in a solution \(\Phi \) if \(f_\Sigma(\Phi) \neq f_{\Sigma'}(\Phi) \) for instants \(\Sigma, \Sigma' \subset V \), and that in order to speak of the rate of change of our quantity we need to consider a parameterized family \(\Sigma_t \) of instants, and calculate \(\frac{d}{dt} f_{\Sigma_t}(\Phi) \).\(^{86}\)

Of course, in the present context, it makes sense to employ our preferred slicing in setting up this framework.\(^{87}\) For each instant \(\Sigma_t \) in our slicing we have a symplectic isomorphism \(T\Sigma_t : S \to I \). If \(f : I \to \mathbb{R} \) is the function on the space of initial data that represents the quantity of interest, then \(f_t := f \circ T\Sigma_t \) is the desired function on the space of solutions that assigns to a solution \(\Phi \) the value of \(f \) on the initial data that \(\Phi \) induces on \(\Sigma_t \). So each slicing \(\sigma \) determines a one-parameter family of functions on \(S \) that encodes the instantaneous values of our chosen physical quantity relative to the instants in \(\sigma \). So relative to a choice of slicing, it makes sense to ask whether this quantity undergoes change, what the rate of change is, and so on.

REMARK 31 (An Alternative Approach to Constructing \(\{f_t\} \)). In the present setting, rather than relying on our entire one-parameter family of isomorphisms, \(\{T\Sigma_t\} \), to set up our one-parameter family of functions \(\{f_t\} \), we could have used \(\Sigma_0 \) to construct \(f_0 \) then used our dynamical time translation group to define

\[
f_{-t}(\Phi) := f_0(t \cdot S \Phi).
\]

5.5 Overview

We have seen that if we put in place a number of very strong assumptions, we get in return a very clear picture of the representation of time and change. The assumptions are: that our equations of motion, \(\Delta \), are second-order; that these equations have ideal existence and uniqueness properties and they derive from a Lagrangian, \(L \), that has a dynamical symmetry group, \(\tau \), that arises from time translation group, \(\tau \), on our spacetime, \(V \); and that we have chosen a slicing \(\sigma \) of \(V \) that is adapted to \(\tau \).

Lagrangian Picture. The space of solutions, \((S, \Omega)\), is a symplectic space. The function, \(H : S \to \mathbb{R} \), that assigns to each solution the total instantaneous

\(\footnotesize{\text{86}}\) For this suggestion, see, e.g., [Rovelli, 1991].

\(\footnotesize{\text{87}}\) Otherwise we can run into trouble. Consider a \(\Phi \) defined on Minkowski spacetime such that for each inertial observer the spatial volume of the region in which the field is nonzero is constant in time. Because of length contraction, relatively moving inertial observers will assign different values to this volume. So if we choose \(\Sigma \) and \(\Sigma' \) belonging to slicings corresponding to distinct inertial frames, then we find that \(f_\Sigma(\Phi) \neq f_{\Sigma'}(\Phi) \) even though \(\Phi \) is changeless according to each inertial observer.
energy relative to \bar{T} is the symplectic generator of τ (and also the Noether conserved quantity associated with it).

Hamiltonian Picture. We are able to construct a Hamiltonian version of our theory: a symplectic space of initial data (I, ω) equipped with a Hamiltonian $h : I \to \mathbb{R}$ that generates the dynamics of the theory. The dynamics is encoded in an \mathbb{R}-action on I that implements time evolution.

Relation between the Pictures. To each instant Σ in our slicing corresponds the symplectic isomorphism $T_\Sigma : \mathcal{S} \to \mathcal{I}$, that maps a solution Φ to the initial data that it induces on Σ. Each such T_Σ relates H and h on the one hand and Ω and ω on the other — and intertwines the action of the group implementing time translation on \mathcal{S} with the action of the group implementing time evolution on \mathcal{I}.

Time. Time, in one of its facets, is represented in this scheme by three \mathbb{R}-actions: the action via symmetries on V that implements time translation, the symplectic action implementing time translation on \mathcal{S}, and the symplectic action implementing time evolution on \mathcal{I}. Note: in some spacetimes there will only be one notion of time translation, in others there will be many.

Change. In the Lagrangian picture, changelessness is represented in a straightforward way — some solutions are invariant under a time translation group of their underlying spacetime. So change can be characterized as the absence of changelessness and the definition can then be translated into the language of the Hamiltonian approach. When it comes to representing change of given physical quantities via the behaviour of functions on the space of initial data and the space of solutions, things become a bit more interesting. Here it is the Hamiltonian picture that underwrites a straightforward approach: one finds the function on the space of initial data corresponding to the quantity of interest, and examines its behaviour as the state evolves. On the Lagrangian side, things are more complicated. No function on the space of solutions can directly represent a changeable quantity. But by employing the slicing-dependent correspondence between the two pictures one can find a one-parameter family of functions on the space of solutions, each of which describes the value of the quantity along a distinct instant from the slicing. One can use this one-parameter family to define the rate of change of the quantity; and so on.

6 COMPLICATIONS

The account of the previous section was underwritten by several very strong assumptions. I now want to consider the effect on the picture developed above if one or another of these assumptions is dropped. My strategy is to leave untouched the assumptions that we need to in order construct a Hamiltonian picture of the sort
developed above — that the equations of motion be second-order and that space-time have enough geometrical structure to support slicings — and to consider the effect of dropping the assumptions: (i) that solutions are defined globally in time; (ii) that there is a unique maximal solution consistent with any initial data set; (iii) that the Lagrangian admits a dynamical time translation group that arises from a time translation group on spacetime. I will in this section consider only the effect of dropping one of (i)–(iii) at a time — in the next section I will turn to general relativity, which is a theory in which (i)–(iii) fail, as does the assumption that spacetime has enough solution-independent geometry to support slicings.

In briefest sketch, we find that:

1. If we drop the assumption that solutions exist globally in time, then time evolution is no longer implemented by an \(\mathbb{R} \)-action on \(\mathcal{I} \), and \(\mathcal{S} \) and \(\mathcal{I} \) are no longer symplectically isomorphic. But time evolution is implemented by a sort of local and infinitesimal counterpart of an \(\mathbb{R} \)-action and \(\mathcal{S} \) and \(\mathcal{I} \) are \emph{locally} symplectically isomorphic. Overall, only small changes are required in the picture of the representation of time and change developed above.

2. If we drop the assumption that specifying initial data suffices to determine a unique solution, even locally in time, by considering the (broad and important) class of theories whose Lagrangian and Hamiltonian versions exhibit gauge freedom, then the space of solutions and the space of initial data are presymplectic spaces that are not isomorphic (even locally). Furthermore, time evolution will no longer be implemented by a one-parameter group, but by a gauge equivalence class of such groups. Difficulties also appear on the Lagrangian side. The problem appears to be that theories of this type feature nonphysical variables. The remedy is reduction — the reduced space of solutions and the reduced space of initial data are symplectic and isomorphic. Much of the picture of the representation of time and change reappears at the reduced level.

3. If we drop the assumption that our Lagrangian is time-translation invariant, then we have to make do with time-dependent Lagrangian and Hamiltonian theories. Here the space of solutions and the space of initial data will be symplectic spaces, and will be isomorphic. But we no longer have time translation of solutions as a symmetry on the Lagrangian side, nor time evolution as a symmetry on the Hamiltonian side. Still, we are able to construct in the usual way a slicing-dependent one-parameter family of isomorphisms between the space of solutions and the space of initial data, and this allows us to reconstruct much of the familiar picture of the representation of time and change.

6.1 \textit{Singular Dynamics}

Let us suppose that the condition of global existence of solutions fails for our equations of motion — there exist initial data sets that cannot be extended to
solutions defined on all of V. But let us continue to suppose that our theory is otherwise well-behaved: our spacetime V has enough structure to support slicings; our equations Δ are second-order and have unique solutions; and our Lagrangian, L, admits a dynamical time translation group, τ, induced by a time translation group τ on V. Then, at least for the sorts of cases that arise in physics, we can expect to find the following.

Lagrangian Picture. The space of solutions, (\mathcal{S}, ω), is a symplectic manifold. The dynamical time translation group, τ, acts on \mathcal{S} in the usual way: each element of the group time-translates each solution by some given amount.\(^{88}\) τ is generated, via Ω, by the Hamiltonian function, $H : \mathcal{S} \to \mathbb{R}$ that assigns to a solution the instantaneous energy of that solution.

Hamiltonian Picture. We can construct a Hamiltonian picture as above: given a time translation group τ, an adapted slicing σ, a solution Φ, and an instant Σ, we can construct the initial data that Φ induces on Σ relative to σ, and use σ to pull this back to our abstract instant S. We can then construct the space of initial data, \mathcal{I}, with its canonical symplectic form ω, use our Lagrangian to define a Hamiltonian, $h : \mathcal{I} \to \mathbb{R}$, and study the resulting dynamics. The essential novelty is that because some solutions have limited temporal domains of definition, one finds that the vector field on (\mathcal{I}, ω) generated by the h is incomplete — it has integral curves that are defined only on a subset of \mathbb{R}. So time evolution is not represented by an \mathbb{R}-action on \mathcal{I}: in general it does not make sense to ask of a given point in the space of initial data what state it will evolve to at arbitrarily late times. However, the vector field generated by the Hamiltonian, which as usual encodes the dynamics, can be thought of as a sort infinitesimal generator of a locally defined action of \mathbb{R} on the space of initial data — in particular, if it makes sense to speak of data set x evolving into data set y after t units of time, then we find that the map that sends a state to the state t units of time later is a symplectic (and Hamiltonian-preserving) map between sufficiently small neighbourhoods of x and sufficiently small neighbourhoods of y.

Relation between the Pictures. As above, for each instant, Σ, in our slicing we can define $T_{\Sigma}(\Phi)$ to be the pullback to the abstract instant S of the initial data that the solution Φ induces on Σ. But now each each T_{Σ} is only partially defined as a function from \mathcal{S} to \mathcal{I} (since the value of $T_{\Sigma}(\Phi)$ is undefined when Φ is not defined on Σ). Nonetheless, each such T_{Σ} is a symplectic isomorphism between its domain of definition in \mathcal{S} and \mathcal{I}.\(^{89}\) As usual, we get a distinct such map for each instant we choose.

\(^{88}\)Of course, if a solution is not defined for all time, then its domain of definition will differ from that of its time-translate in the obvious way.

\(^{89}\)So, intuitively, the space of solutions is bigger than the space of initial data — we can find natural isomorphisms between the space of initial data and subspaces of the space of solutions.
Time. The representation of time becomes a bit more complicated in the present context: to each notion of time translation on spacetime corresponds a nice symmetry on the space of solutions — and a merely infinitesimal symmetry on the space of initial data.

Change. We can still represent changeable properties by functions on \(\mathcal{I} \), and determine whether a given dynamical trajectory represents a change of such properties by studying the behaviour of the corresponding function along the trajectory. Despite the failure of global isomorphism between the space of solutions and the space of initial data, we find that a choice of slicing yields a one-parameter family of local isomorphisms, \(\{ T_{\Sigma_t} \} \), between \(\mathcal{I} \) and subspaces of \(\mathcal{S} \). Given a function \(f \) on the space of initial data corresponding to a quantity of interest, the family \(\{ T_{\Sigma_t} \} \) can be used to construct a one-parameter family of partially-defined functions \(\{ f_t \} \) on \(\mathcal{S} \) that correspond to the given changeable physical quantity. So the representation of change in this case is much the same as in the case in which we have global existence of solutions.

The real novelty here is the lack of a global isomorphism between the space of solutions and the space of initial data. The phenomenon can be is well-illustrated by simple classical mechanical examples.

EXAMPLE 32 (The Kepler Problem). Consider a point-particle of mass \(m \) moving in the \(x-y \) plane subject to the gravitational influence of a point-particle of unit mass fixed at the origin.\(^{90}\) Here our spacetime \(V \) will be \(\mathbb{R} \) and the space \(W \) of field values will be the space \(Q = \{ (x, y) \} \) of possible positions of the moving particle. The Lagrangian is \(L = \frac{1}{2}(\dot{x}^2 + \dot{y}^2) + \frac{m}{r^2} \), where \(r^2 := x^2 + y^2 \); the corresponding Hamiltonian is \(H = \frac{1}{2}(\dot{x}^2 + \dot{y}^2) - \frac{1}{r} \). In order for \(L \) and \(H \) to be well-defined, we have to limit the location of the body to points in \(Q := \mathbb{R}^2/(0, 0) \). We restrict attention to the case where \(H < 0 \). This is the case of orbits bounded in space — so, in particular, we rule out parabolic and hyperbolic motions.

We find that there are two types of solutions. (i) Regular solutions, in which the particle has non-zero angular momentum, are periodic and defined for all values of \(t \); they represent the particle as moving along an ellipse that has the origin as a focus. (ii) Singular solutions, in which the particle has vanishing angular momentum, are defined only for \(t_0 < t < h_0 + 2\varepsilon \); they represent the particle as being ejected from the origin at time \(t_0 \) (i.e., \(|r(t)| \to 0 \) as \(t \to t_0 \) from above), travelling outward along a ray from the origin with decreasing speed until reaching to a stop at time \(t_0 + \varepsilon \), then falling back into the origin along the same ray, with \(|r(t)| \to 0 \) as \(t \to t_0 + 2\varepsilon \) from below.

The space of solutions is topologically pathological. Let \(\Phi(t) \) be a singular solution defined for \(t \in (t_0, t_0 + 2\varepsilon) \). Let \(\Lambda \subset Q \) be the line segment along which the particle moves according to \(\Phi \). It is possible to construct a sequence \(\{ \Phi_k \} \) of

\(^{90}\)For the structure of the space of solutions of the Kepler problem, see [Woodhouse, 1991, §2.3] and [Marco, 1990b].
regular solutions with the following features: each Φ_k has the same energy as Φ — it follows that each Φ_k represents the particle as moving periodically along an ellipse E_k with period 2ε; for each k, E_k is oriented so that the segment joining its foci is included in Λ; as $k \to \infty$, the eccentricity of E_k goes to infinity — so that $E_k \to \Lambda$ as $k \to \infty$. It follows that Φ is a limit of the sequence $\{\Phi_k\}$. But now consider the solution $\Phi'(t) := \Phi(t + 2\varepsilon)$. This is a singular solution, defined for $t \in (t_0 - 2\varepsilon, t_0)$, that represents the particle as being emitted at time $t_0 - 2\varepsilon$, moving along Λ, and then being absorbed at time t_0. Φ' is equally a limit of $\{\Phi_k\}$. Indeed, we can generate an infinite number of limits of $\{\Phi_k\}$ by temporally translating Φ by multiples of 2ε.

Since we can find a sequence in S that converges to more than one limit point, S is not Hausdorff. But, of course, the space of initial data for the Kepler problem is just T^*Q — which is Hausdorff. So the spaces are certainly not isomorphic!

Non-Hausdorff manifolds can be quite wild. But there are also relatively tame examples, such as the following. Let X be the result of excising the origin from the real line and adding in its place two new objects, a and b; a subset of X is an open ball if it coincides with an open interval in \mathbb{R} that does not contain the origin, or if it arises when one takes an open interval of real numbers containing 0 and replaces 0 by one of $\{a, b\}$. We endow X with a topology by declaring that any union of open balls in X is an open set. X is a manifold according to our present standards. But it is not Hausdorff, since every neighbourhood of a overlaps with a neighbourhood of b — and, of course, a sequence like $\{\frac{1}{k}\}$ converges to both a and b.

More generally, we can construct a non-Hausdorff manifold $X_{j,m}^{n,m}$ by taking m copies of \mathbb{R}^n and identifying them everywhere except on a given j-dimensional hyperplane through the origin ($1 \leq m \leq \infty$, $1 \leq n < \infty$, and $0 \leq j < n$). The space of solutions corresponding to any fixed negative value of energy in the planar Kepler problem is assembled out of copies of $X_{1,\infty}^{3,\infty}$.

EXAMPLE 33 (Singularities of the n-Body Problem). For n particles in \mathbb{R}^3 the space of possible particle configurations is \mathbb{R}^{3n}. But this space includes collisions — and the potential energy for the n-body problem is singular at such points. So, as before, we let $\Delta := \{q \in \mathbb{R}^{3n} : q_i = q_j$ for some $i \neq j\}$ and let Q be \mathbb{R}^{3n}/Δ then take as our space of initial data $T^*Q = \{(q, p) \in T^*\mathbb{R}^{3n} : q \notin \Delta\}$.

We pose the initial data (q, p) at time $t = 0$. We know that this determines a maximal dynamical trajectory $t \mapsto (q(t), p(t))$, defined on an interval $[0, t^*)$, with $0 < t^* \leq \infty$ (the corresponding story for negative times is, of course, the same).

91 The topology on the space of solutions can be constructed as follows. For each $t \in \mathbb{R}$, take the position and velocity of the particle at a given time as coordinates on the space of solutions, and construct the set of open balls relative to these coordinates. Now take the union of these sets as t varies. The result is a basis for the topology we seek.

92 Recall that a topological space X is Hausdorff if for any $x, y \in X$ it is possible to find disjoint open $U, V \subset X$ with $x \in U$ and $y \in V$. A sequence in a Hausdorff space has at most one limit.

93 The example of the preceding paragraph is $X_0^{1,2}$.
Clearly it is possible to choose \((q, p)\) so that \(t^*\) is finite — if we let \(p = 0\) for \(n > 1\), for instance, the system is going to collapse and a collision will occur. Let us call our dynamical trajectory singular if \(t^* < \infty\). It can be proved that if \(t^* < \infty\), then as \(t \to t^*\), \(q(t) \to \Delta\), in the sense that \(\lim_{t \to t^*} \min_{1 \leq i < j \leq n} r_{ij} = 0\). Let us say that a singular trajectory ends in a collision if there is a point \(q_0 \in \Delta\) such that \(\lim_{t \to t^*} q(t) = q_0\); otherwise, we say that it ends in a pseudocollision.

Consider the following cases.\(^{94}\)

\(n = 1\). This is the case of a single free particle. The dynamics is non-singular.

\(n = 2\). This is the Kepler problem.\(^{95}\) The only singularities are collision singularities. These occur if and only if the angular momentum of the system vanishes.

Famously, these singularities can be regularized.\(^{96}\)

This is clear enough physically: one simply imposes the condition that any collisions that occur are elastic. This allows one to sew together a solution which ends with a collision at time \(t_0\) with one, that, intuitively begins at time \(t_0\) with the particles having interchanged their velocities. Continuing in this way, one constructs continuous and piecewise analytic solutions of eternal temporal extent. Because collision solutions are now infinite in temporal extent, the space of solutions, in this new sense, is isomorphic to the extended space of initial data that includes the collision states that lie in \(T^*\Delta\) (let us interpret such states as representing the velocity that the particles will have when next emitted).

Mathematically, there are a number of underpinnings that can be given to this procedure.\(^{97}\) An older one proceeds in terms of analytic continuation — thinking of the original collision solution as a complex function, one asks whether there is any analytic continuation of this function past the time of collision. Under a more modern approach, one looks for a way of continuing singular solutions that preserves the continuous dependence of evolution on initial data.\(^{98}\) In the case of the two-body problem, either approach vindi-

\(^{94}\)For surveys of the singularities of the \(n\)-body problem, see [Diacu, 1992] and [Diacu, 2002]; for a popular treatment, [Diacu and Holmes, 1996, Chapter 3].

\(^{95}\)Begin with the two-body problem. Restrict attention to the plane of motion of the particles; choose a frame in which the centre of mass of the two-body system is at rest at the origin and denote the positions of the bodies as \(q_1\) and \(q_2\). Obviously if we know \(r = q_2 - q_1\) then we know the positions of both particles (since we know their masses and the location of their centre of mass). Now note that the equation of motion for \(r\) is that for a single particle moving in a gravitational potential around the origin, if we take the origin to have unit mass, and the moving particle to have mass \(m = \frac{m_1 + m_2}{m_1 + m_2}\).

\(^{96}\)For various approaches to the regularization of two-body collisions, see [Souriau, 1982], [Marco, 1990a] and [Cushman and Bates, 1997, §II.3].

\(^{97}\)See [McGehee, 1975] for these.

\(^{98}\)More precisely, one excludes from \(T^*\mathbb{R}^n\) an open set with compact closure that contains a collision; the boundary of this set falls into two pieces, corresponding to initial data of trajectories entering the set and initial data of trajectories leaving the set; evolution gives a diffeomorphism
icates extension of singular solutions by elastic collisions as the unique tenable method of extension.

\textbf{n = 3.} Singular trajectories end in collisions. Collisions involving only two bodies can be regularized as elastic collisions. But some three-body collisions are non-regularizable (according to any of several criteria).99 Such three-body collisions are complex, and presumably make it difficult to determine the topology of the space of solutions — so in this case, unlike the \(n = 2 \) case, one does not have a clear picture of the relation between the global structure of the space of solutions and the structure of the space of initial data.

\textbf{n \geq 4.} For \(n \geq 4 \), as usual, singular trajectories can end in collisions: two-body collisions are regularizable; but at least some collisions involving larger numbers of particles are not. Furthermore, for \(n > 4 \) it is known that pseudocollisions can also occur — so it would appear to be more difficult then ever to determine the topology of the space of solutions.100

REMARK 34 (Quantization of Singular Systems). When the space of solutions and the space of initial data are isomorphic, it is, of course, a matter of indifference which space one takes as the starting point for quantization. When dynamics is singular and these spaces are no longer isomorphic one faces a real choice. And the choice is not entirely pleasant — one has to choose between the space of initial data, on which the dynamics is implemented by an incomplete vector field, and the space of solutions, which one expects to have a complicated and pathological topology. Presumably there is no guarantee that the two approaches always lead to the same quantizations in the domain of singular dynamics.101

6.2 Gauge Freedom

We next want to consider what happens when we drop the assumption that specifying initial data suffices to determine a unique maximal solution to our equations of motion. To this end, we are going to assume that our equations of motion under-determine the behaviour of the field, in the radical sense that for given

99See [McGehee, 1975].

100See [Saari and Xia, 1995]. The question is open for \(n = 4 \); but see [Gerver, 2003] for a possible example. Pseudocollisions require that the positions of at least some of the particles become unbounded as \(t \to t^* \) — by exploiting arbitrarily great conversions of potential energy into kinetic energy, these particles escape to infinity in a finite time. As emphasized by Earman ([1986, Chapter III] and [this volume]), this means that pseudocollisions involve a rather radical and surprising failure of determinism — which is most dramatic when one considers the time reverse of such a process, in which particles not originally present anywhere in space suddenly swoop in from infinity.

101For approaches to the quantization of systems with singular dynamics see, e.g., [Gotay and Demaret, 1983] and [Landsman, 1998].
initial data the general solution consistent with that data contains at least one arbitrary function of the full set of independent variables.102 There is a wide class of physical theories whose equations exhibit this \textit{prima facie} pathological behaviour — including, most importantly, Maxwell’s theory of electromagnetism, general relativity, and their generalizations.

In this subsection I will first sketch a little bit of the theory of Lagrangian treatments of such theories without making any special assumptions about time translation invariance, the global existence of solutions, or the structure of spacetime. These further assumptions will later be brought into play, and will underwrite a consideration of the Hamiltonian form of a theory that is well-behaved except in possessing under-determined dynamics, and of the representation of time and change in such theories. This discussion will be followed by three examples.

Let us begin by introducing the notion of a family of gauge symmetries of a Lagrangian theory. Recall that a group, G, acting on the space, K, of kinematically possible fields is a group of variational symmetries of a Lagrangian, L, defined on K if the action of G is appropriately local and leaves the variational problem of L invariant.103 We call a group, G, of variational symmetries of (K, L) a group of \textit{gauge symmetries} if it can be parameterized in a natural way by a family of arbitrary functions on spacetime.104 Roughly speaking, each function on spacetime generates a Noether group of symmetries of (K, L) — a one-parameter group of (suitably local) symmetries of the variational problem of L.105 Since the set of functions on spacetime is infinite-dimensional, any group of local symmetries of a theory is infinite-dimensional.

Most familiar groups of symmetries of physical theories — the group of isometries of a spacetime with non-trivial geometry, the group that acts by changing the phase of the one-particle wavefunction by the same factor at each spacetime point, etc. — are finite-dimensional, and hence not do not count as groups of gauge symmetries in the present sense.

It is easy to see that the equations of motion of a Lagrangian theory admitting such a group of gauge symmetries under-determine solutions to the theory. Let

102On the relevant notion of under-determined equations of motion, see, e.g., [Olver, 1993, 170–172, 175, 342–346, and 377].

103For a more precise definition, see [Zuckerman, 1987, 274].

104Let us be more precise. First, let Y be a vector space, and let Γ be a space of functions from V to Y (more generally, let Γ be a space of sections of some vector bundle $E \to V$). We assume that Γ includes all smooth, compactly supported maps from V to W, but leave open the precise boundary conditions, smoothness conditions, etc., required to characterize Γ. (Special care regarding boundary conditions is required when Γ contains elements with noncompact support).

Now we define a group of \textit{gauge symmetries} parameterized by Γ as a pair of linear and local maps, $\varepsilon \mapsto X_{\varepsilon}$ and $\varepsilon \mapsto R_{\varepsilon}$ sending elements ε of Γ to local vector fields on S and to elements of $\Omega_{\text{loc}}^{-1}(V \times K)$, respectively, such that $\delta L(\Phi, X_{\varepsilon}(\Phi)) = DR_{\varepsilon}(\Phi)$ for all $\Phi \in S$ and $\varepsilon \in \Gamma$. So each $\varepsilon \in \Gamma$ is associated with an infinitesimal generator of a Noether group for L (cf. fn. 71 above).

105A bit more precisely: the discussion of the previous footnote shows that the map $\varepsilon \mapsto (X_{\varepsilon}, R_{\varepsilon})$ is a map from Γ to the set of generators of Noether groups of (K, L); in fact, the image of this map will be infinite-dimensional in nontrivial examples, although it may have a nontrivial kernel (in example 38 below, constant functions all generate the same (trivial) Noether group).
\(\varepsilon\) be a function on spacetime that vanishes everywhere but on some compact set \(U \subset V\); if we allow the corresponding Noether group \(\xi = \{g_t\}\) to act on a solution \(\Phi\), then for \(t \neq 0\) the resulting solutions \(\Phi_t = g_t \cdot \Phi\) will agree with \(\Phi\) outside of \(U\), but in general disagree with \(\Phi\) inside \(U\). Thus if we choose an instant \(\Sigma \subset V\) which does not intersect \(U\), we find that \(\Phi\) and \(\Phi_t\) induce the same initial data on \(\Sigma\), but differ globally — so uniqueness fails for the equations of motion of the theory.

Recall from section 3.3 that a presymplectic form is a degenerate closed two-form, and that the imposition of such a form on a space serves to partition the space by submanifolds called gauge orbits. An argument very similar to that of the previous paragraph shows that if \(L\) admits a group of gauge symmetries, then the form \(\Omega\) that \(L\) induces on the space of solutions is presymplectic, and that the corresponding gauge orbits are such that two solutions belong to the same gauge orbit if and only if they are related by an element of the group of gauge symmetries of \(L\).\(^{106}\) So gauge symmetries of \(L\) are gauge transformations of \((S, \Omega)\), in the sense stipulated in section 3.3 above — they preserve the gauge orbits of the space of solutions.

It follows from general facts about presymplectic forms that if a function on \(S\) generates a one-parameter group of gauge symmetries, then that function is a constant function. In particular: the Noether conserved quantity, \(Q_\xi : S \to \mathbb{R}\), associated with a one-parameter group of gauge symmetries, \(\xi\), must be a constant function.\(^{107}\) Such conserved quantities are trivial, in the sense that they do not provide any means to distinguish between physically distinct solutions.

So much we can say about any Lagrangian theory admitting a group of gauge symmetries. Let us now specialize to the case where our equations of motion, \(\Delta\), are second-order, our spacetime, \(V\), has enough geometrical structure to admit slicings, solutions exist globally in time, and our Lagrangian, \(L\), admits a dynamical time translation group, \(\tau\). With these further assumptions in place, we can investigate the implications that giving up on local uniqueness of solutions has for the picture of time and change developed in section 5 above. We find the following.

Lagrangian Picture. We are assuming that we have a notion of time translation arising out of the structure of our background spacetime \(V\). This notion gives rise, in the usual way, to a dynamical time translation group, \(\tau\). The corresponding conserved quantity is the usual Hamiltonian, \(H\), which assigns to each solution its instantaneous energy. So far so good. But now recall from the discussion of section 3.3 above that in the setting of a presymplectic space, if a function generates a given one-parameter family of transformations of the space, then it also generates all one-parameter families of trans-

\(^{106}\)Recall that in fn. 61 above, \(\Omega\) was defined as the integral of a certain object over an arbitrary instant \(\Sigma \subset V\). If we consider an infinitesimal local symmetry \(X_\varepsilon\) which has no effect on solutions along \(\Sigma\), then \(\Omega\) will not see \(X_\varepsilon\) — i.e., \(X_\varepsilon(\Phi)\) will be a null vector at each \(\Phi \in S\). See [Deligne and Freed, 1999, §2.5] and [Woodhouse, 1991, 145].

\(^{107}\)In fact, it will be the zero function, because the Noether current \(J_\xi\) will be exact as an \((n - 1)\)-form on \(V\). See [Zuckerman, 1987, 274].
formation gauge equivalent to the given one. In the present case, this means that in addition to the dynamical time translation group, τ, H generates all one-parameter groups of transformation of (S, Ω) that agree up to gauge with τ.

Hamiltonian Picture. Having fixed a notion of time translation in spacetime and an associated slicing of spacetime into instants, we can proceed as usual to construct the space of initial data that arise when the configuration and momentum variables of the field are restricted to an arbitrary instant in our slicing.108 As in the well-behaved case, given an instant $\Sigma \subset V$ of our slicing and a solution Φ, we can construct a corresponding initial data set (ϕ, π) on our abstract instant S, by pulling back to S the initial data that Φ induces on Σ. In the well-behaved case, we found that the space of initial data had the structure T^*Q, where Q was the space of all ϕ that arise as instantaneous field configurations by restricting solutions to instants. In the present case we find that the (ϕ, π) that arise as initial data sets form a subspace of T^*Q (where Q is again the space of all ϕ that arise as restrictions of solutions to instants).109 In addition, we may also find that in order to construct consistent dynamics, we need to further restrict admissible initial data. The upshot is that we take as our space of initial data a subspace $I \subset T^*Q$. I comes equipped with a natural geometric structure: the cotangent bundle T^*Q comes equipped with its canonical symplectic form (see example 7 above); the restriction of this form to I yields a presymplectic form ω. When all goes well, the gauge orbits determined by ω have the following structure: initial data sets (ϕ, π) and (ϕ', π') arising as the initial data induced on a given instant $\Sigma \subset V$ by solutions Φ and Φ' belong to the same gauge orbit in (I, ω) if and only if Φ and Φ' belong to the same gauge orbit in (S, Ω).110 One can go on to define a Hamiltonian function, h, on (I, ω) in the usual way. Of course, since (I, ω) is a merely presymplectic space, h generates a whole gauge equivalence class of notions of dynamics (i.e., one-parameter groups of symmetries of (I, ω)). Suppose that according to one such notion of dynamics, initial state x_0 evolves into state $x(t)$ at time t. Then although other notions of time evolution generated by h will in general disagree about what state x_0 evolves into at time t, they will all agree that the state at t lies in $[x(t)]$, the gauge orbit of $x(t)$.111

108On constructing the constrained Hamiltonian system corresponding to a given Lagrangian theory admitting gauge symmetries, see [Dirac, 2001], [Gotay et al., 1978], and [Henneaux and Teitelboim, 1992]. For philosophical discussion, see [Earman, 2003] and [Wallace, 2003].

109This is because so-called *first-class constraints* arise: it follows from the definition of the momenta, $p_i := \frac{\partial L}{\partial \dot{q}_i}$, that some components of the momenta are required to vanish identically.

110*Warning:* it is not difficult to construct (unphysical) examples in which this nice picture fails — see example 36 below.

111In fact, for each point $y \in [x(t)]$, there is a notion of time evolution generated by h according to which x_0 evolves into y at time t.

Relation between the Pictures. As usual, for each instant Σ in our slicing we can define $T_\Sigma : S \to \mathcal{I}$, the map that sends a solution to the (pullback to S of the) initial data that it induces on Σ. In the setting of section 5, these maps gave us isomorphisms between the space of solutions and the space of initial data. But in the presence of gauge symmetries, these maps are not isomorphisms — since the existence of gauge symmetries implies that many solutions induce the same initial data on any given Σ. The situation is most dramatic when we consider a theory with only finitely many degrees of freedom which admits gauge symmetries: for then the space of solutions will be infinite-dimensional while the space of initial data will be finite-dimensional (see example 37 below).112 When all goes well, we get the following picture of the relation between solutions and dynamical trajectories in the space of initial data (holding fixed a notion of time translation and a slicing adapted to it).

1. Let Φ be a solution and let $x(t) = (\phi(t), \pi(t))$ be the curve in \mathcal{I} that arises by letting $\Phi(t)$ be the initial data set that Φ induces on the instant $\Sigma_t \subset V$. Then $x(t)$ is a dynamical trajectory of the Hamiltonian version of the theory.

2. Given a dynamical trajectory, $x(t)$, of the Hamiltonian version of the theory we find that there is a unique solution $\Phi \in S$ such that the curve in \mathcal{I} that corresponds to Φ in the sense of the preceding clause is just $x(t)$.

3. If $\Phi, \Phi' \in S$ belong to the same gauge orbit in the space of solutions, then the corresponding dynamical trajectories, $x(t)$ and $x'(t)$ in \mathcal{I} agree up to gauge (in the sense that for each t, $x(t)$ and $x'(t)$ belong to the same gauge orbit in \mathcal{I}).

4. If dynamical trajectories $x(t)$ and $x'(t)$ in \mathcal{I} agree up to gauge, then the solutions $\Phi, \Phi' \in S$ to which they correspond belong to the same gauge orbit in S.

Time. Our notion of time translation lifts in a nice way from our spacetime V to the space of solutions, S, where we get the usual representation of time via an \mathbb{R}-action. Even here there is an oddity: the Hamiltonian that generates this action also generates each \mathbb{R}-action gauge-equivalent to it. The situation is messier still in the space of initial data: given a notion of time translation on spacetime and a slicing adapted to that notion, we can construct a Hamiltonian picture; but in the presence of gauge symmetries, we find that there are many dynamical trajectories through each point in the space of initial data. In effect, our single notion of time translation in spacetime splits into a multitude of \mathbb{R}-actions on the space of initial data, each with equal claim to be implementing the dynamics of the theory.

112So in this case we see that no map from (S, Ω) to (\mathcal{I}, ω) is an isomorphism; intuitively this is true for any theory admitting local symmetries.
Change. The evolution of arbitrary quantities under the dynamics defined on the space of initial data is indeterministic: if $x_0 = (\phi_0, \pi_0)$ is an initial data set, there will be distinct dynamical trajectories $x(t)$ and $x'(t)$ passing through x_0 at time $t = 0$; for an arbitrary function $f : I \to \mathbb{R}$, we have no reason to expect that $f(x(t)) = f(x'(t))$ for $t \neq 0$; so fixing the state at time $t = 0$ does not suffice to determine the past and future values of the quantity represented by f. But since in this situation $x(t)$ and $x'(t)$ will agree about which gauge orbit the state lies in at each time, we find that the evolution of gauge-invariant quantities (those represented by functions on the space of initial data that are constant along gauge orbits) is fully deterministic — given the initial state, one can predict the value of such a quantity at all times. Furthermore, our slicing allows us to associate with each gauge-invariant function, f, on the space of initial data a one-parameter family $\{f_t\}$ of gauge-invariant functions on the space of solutions: let $f_t(\Phi)$ be the value that f takes on the initial data set that Φ induces on Σ_t. In this way we can represent change of gauge-invariant quantities via functions on the space of initial data or the space of solutions in the usual way.

This last point, especially, ought to arouse the suspicion that our theory, in the form currently under consideration, contains surplus structure. For while the theory has some quite disappointing features — ill-posed initial value problem, trivial conservation laws, a merely presymplectic geometric structure, failure of even local isomorphism between the space of solutions and the space of initial data — one finds that there is a large subset of physical quantities that behave just as the quantities of a well-behaved theory do. One naturally wonders whether there might be a well-behaved theory governing the behaviour of these quantities lurking somewhere in the background.

This sort of suspicion motivates the application to (\mathcal{S}, Ω) and (\mathcal{I}, ω) of the reduction procedure discussed in section 3.3 above. When all goes well, the following picture emerges: the reduced space of solutions (i.e., the space of gauge orbits of the space of solutions) and the reduced space of initial data (i.e., the space of gauge orbits of the space of initial data) are both symplectic spaces — and these reduced spaces are isomorphic.113 The Hamiltonian functions corresponding to time translation on the original space of solutions and time evolution on the original space of initial data project down to the reduced spaces. The resulting reduced Hamiltonians generates time translation and time evolution on their respective spaces.

In typical examples that arise in physics, one sees that the original theory's invariance under a group of gauge symmetries was in fact a sign that physically otiose variables had been included in the theory. Indeed: the fact that the original space of initial data is presymplectic with a symplectic reduced space indicates that within the original Hamiltonian formulation of the theory one can partition the set of variables parameterizing the original space of initial data into two classes, that we will call the class of \textit{physically relevant variables} and the class of \textit{physically

113Example 36 below is an (unphysical) case where this isomorphism fails.
otiose variables; specifying the initial values of all variables suffices to determine the values for all times of the physically relevant variables while leaving wholly arbitrary the evolution of the physically otiose variables.114 At least locally the physically relevant variables can be taken to parameterize the reduced space of initial data. This provides a strong reason to think that the Hamiltonian theory defined on the reduced space of initial data gives a perspicuous representation of the physics under investigation, involving as it does exactly those quantities whose evolution is determined by the original theory. And this in turn provides good reason to think of the reduced space of solutions as representing possible histories of the system whose possible instantaneous states are represented by points in the space of initial data.115

REMARK 35 (Reduction and Determinism). Suppose that one is presented with a \textit{prima facie} indeterministic theory, in which many future sequences of states are consistent with a given initial state. Then one could always construct a deterministic theory by simply identifying all of the futures consistent with a given state. As noted by Maudlin, it would be foolish to apply this strategy whenever one encountered an indeterministic theory: (i) general application of this strategy would render determinism true by fiat; and (ii) one would often end up embracing trivial or silly theories.116 For example: in Newtonian physics, the initial state in which space is empty of particles is consistent with a future in which space remains empty, and also with a future in which particles swoop in from infinity, then interact gravitationally for all future time (see fn. 100 above); to identify these futures — to view them as mere re-descriptions of a single physical possibility — would be absurd.

Now, reduction is a special case of the general strategy that Maudlin objects to. But since just about any wise course of action is a special case of a strategy that is in general foolish, this is not in itself an objection to reduction. We ought to check whether the complaints that Maudlin quite rightly register against the general strategy redound to the discredit of the special case. I claim that they do not. (i) It is true that reducing theories with gauge symmetries converts \textit{prima facie} indeterministic theories into deterministic ones. But this is unobjectionable: the sort of indeterminism that is a \textit{prima facie} feature of a theory with gauge symmetries (namely, the existence of quantities whose evolution is wholly unconstrained by the initial state of the system) appears to be unphysical. (ii) For the

114In a presymplectic manifold satisfying suitable technical conditions, every point has a neighbourhood admitting a chart whose coordinates fall into two classes — those that parameterize gauge orbits and those that parameterize the directions transverse to the gauge orbits; see [Abraham and Marsden, 1978, Theorem 5.1.3]. In the space of initial data, it is natural to take the variables of the first type to be physically otiose and those of the second type to be physically relevant.

115Since this space arises by identifying solutions related by elements of the group of gauge symmetries of the theory, while the reduced space of initial data arises by identifying initial data that are induced on a given instant by solutions related by elements of the group of gauge symmetries of the theory.

116See [Maudlin, 2002, 6–8].
sort of theories that arise in physics, one does not have to fear that reduction will lead to a trivial or absurd result — in known cases, reduction carries one to a well-behaved symplectic space that is a suitable setting for a physical theory. Indeed, in such cases, it is (almost unanimously) agreed that the resulting symplectic space parameterizes the true degrees of freedom and provides the correct setting for the dynamics of the original theory.\footnote{General relativity provides the sole instance in which there is any dissent from the consensus view; see \cite{Kuchar1986} and \cite{Kuchar1993}. This is also the case that Maudlin is concerned with — he, like Kuchař, worries that unreflective application of reduction to general relativity leads to absurd conclusions about time and has hampered conceptual progress in quantum gravity. Part of the burden of section 7 below is to show that no absurdities follow from the application of reduction in that case.}

EXAMPLE 36 (A Pathological example). Before proceeding, it is important to emphasize that it is not hard to cook up simple (but unphysical) examples that do not follow the pattern sketched above for theories with gauge symmetries.\footnote{For the following example, see \cite[§1.2.2]{Henneaux1992}. For further discussion of such examples, see \cite{Gotay1983}.} Consider a particle moving in the \(x\)-\(y\) plane with Lagrangian \(L = \frac{1}{2}e^y \dot{x}^2\). The corresponding Euler–Lagrange equations tell us that \(x\) is constant in time while the evolution of \(y\) is wholly arbitrary. So the space of solutions consists of pairs \((x_0, y(t))\) where \(x_0 \in \mathbb{R}\) and \(y(t) : \mathbb{R} \to \mathbb{R}\) an arbitrary smooth function; two solutions \((x_0, y(t))\) and \((x'_0, y'(t))\) belong to the same gauge orbit if and only if \(x_0 = x'_0\). So the reduced space of solutions is just \(\mathbb{R}\) — which, having an odd number of dimensions, cannot carry a symplectic structure. On the Hamiltonian side one finds that the momentum conjugate to \(x\) and the momentum conjugate to \(y\) both have to vanish — which means that the space of initial data is \(\mathbb{R}^2 = \{(x, y)\}\), with every point being gauge equivalent to every other.\footnote{This is an example where one constraint arises directly from the definition of the momenta while the other is required in order to formulate consistent dynamics.} So the reduced space of initial data is a single point — which is not isomorphic to the reduced space of solutions.

EXAMPLE 37 (Particles on a Line). We consider two gravitating point-particles moving on a line. For simplicity, we choose units so that Newton's constant is unity, assume that the particles have unit mass, and set aside worries about collisions and their regularization. We consider three theories of this system.

The Newtonian Theory. We denote the positions of the particles as \(q_1\) and \(q_2\) with \(q_2 > q_1\). We interpret these as giving the positions of the particles relative to a frame at rest in absolute space. The Lagrangian for this system is \(L = T - V\) where the kinetic energy is \(T := \frac{1}{2}(\dot{q}_1^2 + \dot{q}_2^2)\) and the potential energy is \(V = -\frac{1}{q_2 - q_1}\). The usual Newtonian equations of motion follow. It is helpful to consider a variant formulation of this theory. We define new configuration variables, \(r_0 := \frac{1}{2}(q_1 + q_2)\) and \(r_1 := q_2 - r_0 = \frac{1}{2}(q_2 - q_1)\) (so \(r_0\) is the position of the centre of mass of the system, and \(r_1\) is half the relative distance between the particles). In terms of these variables, our Lagrangian
is \(L(r_0, r_1, \dot{r}_0, \dot{r}_1) = \frac{1}{2} \dot{r}_0^2 + \frac{1}{2r_1} \). The equations of motion tell us that \(r_0 \) is a linear function of time (since the centre of mass of an isolated system moves inertially) while \(r_1(t) \) solves \(\ddot{r}_1 = -\frac{1}{2r_1^2} \), and so describes the relative motion between the particles as they interact gravitationally.

The Leibnizian Theory. In this theory, space and motion are relative, and so the relative distance, \(r_1 \), between the particles is the only configuration variable (or rather, \(r_1 \) is half the relative distance). The Lagrangian for the Leibnizian theory is \(L'(r_1, \dot{r}_1) := \frac{1}{2} \dot{r}_1^2 + \frac{1}{2r_1} \). The equation of motion is \(\ddot{r}_1 = -\frac{1}{2r_1^2} \). So the Leibnizian theory gives the same dynamics for the relative distances between the particles as the Newtonian theory.

The Semi-Leibnizian Theory. We take both \(r_0 \) and \(r_1 \) as configuration variables, and take as our Lagrangian \(L''(r_0, r_1, \dot{r}_0, \dot{r}_1) := \frac{1}{2} \dot{r}_0^2 + \frac{1}{2r_1} \) (so \(L'' \) is a function of \(r_0, r_1, \dot{r}_0, \) and \(\dot{r}_1 \) which happens to depend only on \(r_1 \) and \(\dot{r}_1 \)). We apply the variational algorithm: as always, it leads to the conclusion that a curve \(x(t) := (r_0(t), r_1(t)) \) is a solution to the equations of motion if and only if \(\frac{\partial L''}{\partial r_i} - \frac{d}{dt} \frac{\partial L''}{\partial \dot{r}_i} = 0 \) is satisfied at each point on the curve for \(i = 0, 1 \).
For \(i = 1 \), we again find that \(\ddot{r}_1 = -\frac{1}{2r_1^2} \), so we get the same dynamics for the evolution of the relative distances as in the Newtonian and Leibnizian cases. But for \(i = 0 \), our condition on curves is empty, since \(L'' \) does not depend on either \(r_0 \) or \(\dot{r}_0 \). It follows that a curve \(x(t) := (r_0(t), r_1(t)) \) counts as a solution to our equations of motion if \(r_1(t) \) describes a motion permitted by the Newtonian or Leibnizian theory and \(r_0 \) is any (continuous and appropriately differentiable) function whatsoever.

Let us contrast the structure of these three theories.

Symmetries. The group of variational symmetries of the Newtonian theory is three-dimensional, consisting of Galilean boosts and spatial and temporal translations. The group of variational symmetries of the Leibnizian theory is one-dimensional, consisting of time translations. But the variational symmetry group of the semi-Leibnizian theory is infinite-dimensional: in addition to temporal translations, it includes time-dependent spatial translations of the centre of mass as a group of gauge symmetries. If \(r_0(t) \) and \(r_1(t) \) are continuous functions, then \(x(t) = (r_0(t), r_1(t)) \) is a kinematical possibility. Let \(\Lambda(t) \) be any other continuous function from \(\mathbb{R} \) to itself. Then \(x'(t) := (r_0(t) + \Lambda(t), r_1(t)) \) is also a kinematical possibility and \(L''(x(t)) = L''(x'(t)) \) for all \(t \) (since \(L'' \) doesn’t care at all about \(r_0 \)). That is, the map \(\Phi_{\Lambda} : (r_0(t), r_1(t)) \mapsto (r_0(t) + \Lambda(t), r_1(t)) \) from the space of kinematical possibilities to itself preserves the Lagrangian, and hence is a variational symmetry. Indeed, for each such \(\Lambda \) we get a distinct variational symmetry of \(L'' \). So the space of continuous \(\Lambda : \mathbb{R} \to \mathbb{R} \) parameterizes a group of gauge symmetries of \(L'' \).
Gauge Symmetries and the Initial Value Problem. We can exploit these symmetries to show how drastically ill-posed the initial value problem for the semi-Leibnizean theory is. Suppose that at $t = 0$ we fix values for $r_0, r_1, \dot{r}_0,$ and \dot{r}_1. Let $x(t) = (r_0(t), r_1(t))$ be a solution satisfying those initial data. Now select $\Lambda : \mathbb{R} \to \mathbb{R}$ such that $\Lambda(0) = 0$ and $\dot{\Lambda}(0) = 0$. Since Φ_Λ is a Lagrangian symmetry, $\Phi_\Lambda(x(t)) = (r_0(t) + \Lambda(t), r_1(t))$ is also a solution — which, of course, satisfies the specified initial data at time $t = 0$. In this way, we can construct an infinite-dimensional family of solutions for each specified set of initial data.

Structure of the Space of Solutions. The spaces of solutions for the Newtonian and Leibnizean theories are symplectic spaces, of dimension four and two, respectively. As we have seen the space of solutions of the semi-Leibnizean theory is infinite-dimensional. And the form that L'' induces on this space is degenerate — the space is not symplectic. The associated gauge orbits have the following structure: $x(t) = (r_0(t), r_1(t))$ and $x'(t) = (r_0'(t), r_1'(t))$ lie in the same gauge orbit if and only if $r_1(t) = r_1'(t)$ for all t (i.e., solutions lie in the same gauge orbit if and only if they agree about the relative distances between the particles — what they say about the motion of the centre of mass is irrelevant).

Hamiltonian Picture. Writing $p_i = \dot{r}_i$, we find that the spaces of initial data for our theories are as follows.

1. For the Newtonian theory, the space of initial data is $T^*\mathbb{R}^2 = \{(r_0, r_1, p_0, p_1) : r_i, p_i \in \mathbb{R}\}$ carrying its canonical symplectic structure $\omega = \sum_{i=0,1} dr_i \wedge dp_i$. The Hamiltonian is $H(r_0, r_1, p_0, p_1) = \frac{1}{2}(p_0^2 + p_1^2) - \frac{1}{2r_1}$. The equations of motion are the usual deterministic Newtonian equations.

2. For the Leibnizean theory, the space of initial data is $T^*\mathbb{R} = \{(r_1, p_1) : r_1, p_1 \in \mathbb{R}\}$ carrying its canonical symplectic structure $\omega = dr_1 \wedge dp_1$. The Hamiltonian is $H'(r_1, p_1) := \frac{1}{2}p_1^2 - \frac{1}{2r_1}$. The equations of motion are the usual deterministic Leibnizean equations.

3. Recall that in constructing the Hamiltonian system corresponding to a given Lagrangian system, we must first construct the momentum variables corresponding to the position variables of the Lagrangian system. The semi-Leibnizean theory has two position variables, r_0 and r_1. Our recipe tells us that the corresponding momentum variables are $p_i := \frac{\partial L''}{\partial \dot{r}_i}$, for L'' the semi-Leibnizean Lagrangian. As usual, $p_1 := \dot{r}_1$. But because L'' is independent of \dot{r}_0, we find that $p_0 \equiv 0$. It follows that the space of initial data for this theory is the space $\Gamma = \{(r_0, r_1, p_1) : r_0, r_1, p_1 \in \mathbb{R}\}$ that arises when we restrict attention to those states in the space of initial data for the Newtonian theory in which $p_0 = 0$; restricting the symplectic structure of the Newtonian theory to Γ yields a presymplectic structure (the vectors pointing in
the \(r_0 \) direction are the null vectors). The gauge orbits have the following structure: \(x = (r_0, r_1, p_1) \) and \(x' = (r'_0, r'_1, p'_1) \) lie in the same gauge orbit if and only if \(r_1 = r'_1 \) and \(p_1 = p'_1 \). The Hamiltonian for this theory is \(H''(r_0, r_1, p_1) := \frac{1}{2}p_1^2 - \frac{1}{2r_1} \), which determines the usual Newtonian/Leibnizean behaviour for \(r_1 \) and \(p_1 \) while leaving the evolution of \(r_0 \) wholly unconstrained. That is, if \(x(t) \) and \(x'(t) \) are curves in the space of initial data corresponding to solutions of this Hamiltonian problem, then one finds that in general \(x(t) \neq x'(t) \) for \(t \neq 0 \), but \([x(t)] = [x'(t)] \) for all \(t \). Note that each such curve \(x(t) \) corresponds to a point in the space of solutions, and that the condition \([x(t)] = [x'(t)] \) for all \(t \) just says that for the points in the space of solutions that correspond to the curves \(x \) and \(x' \), themselves lie in the same gauge orbit.

Reduction. As one would expect, the reduced space of initial data of the semi-Leibnizean theory is isomorphic to the space of initial data of the Leibnizean theory, and the reduced space of solutions of semi-Leibnizean theory is isomorphic to the space of solutions of the Leibnizean theory — in both cases, this is because identifying points in the relevant gauge orbits amounts to dropping \(r_0 \) as a dynamical variable. So reduction implements our physical intuition that \(r_0 \) is an extraneous variable that ought to be excised and eliminates the pathologies of the semi-Leibnizean theory. Furthermore, the reduced space of initial data (reduced space of solutions) inherits from the original theory a Hamiltonian (Lagrangian) that is really that of the Leibnizean theory — so these reduced spaces carry dynamical theories with the correct dynamics and symmetry groups.

Of course, this is a toy example — one of the simplest possible. And it has been set up here so that it is clear from the beginning that the variables of the semi-Leibnizean theory can be segregated into the physically relevant \(r_1 \), which plays a role in the Lagrangian and whose dynamics is deterministic, and the physically otiose \(r_0 \), which plays no role in the Lagrangian, and whose evolution is completely unconstrained by the dynamics. So it has been clear from the beginning that \(r_0 \) ought to be excised from the theory — there has been no temptation to keep it on board and to conclude that we have an indeterministic theory on our hands.

But note that if we had stuck with our original Newtonian variables, \(q_1 \) and \(q_2 \) (with \(q_1 < q_2 \)), and had written \(L'' := \frac{1}{2}(\dot{q}_2 - \dot{q}_1)^2 - \frac{1}{2(q_2 - q_1)} \) then things would not have been quite so clear: the equations of evolution for \(q_1 \) and \(q_2 \) would have mixed together physically relevant information and physically otiose information and it would have taken a little bit of work to see what was going on.

When we are faced with Lagrangian theories admitting groups of local symmetries, we know (unless they exhibit the sort of pathological behaviour we saw in example 36 above) that there is some way of separating the variables into the physically relevant and the physically otiose (it is easiest to see this on the Hamiltonian side). But it is not always easy to find such a separation. This is one of
several reasons why we end up working with such theories rather than with the more attractive reduced theories that stand behind them.

EXAMPLE 38 (Maxwell’s Theory). We consider the electromagnetic field. Let V be Minkowski spacetime, and fix an inertial frame and an associated set of coordinates (x_0, x_1, x_2, x_3). We choose as the target space for our field $W = \mathbb{R}^4$. So the kinematically possible fields are of the form $A : V \rightarrow \mathbb{R}^4$ (subject to some unspecified differentiability and boundary conditions). A is the usual four-potential.

We define $F_{\nu\mu} := \frac{\partial A_\nu}{\partial x_\mu} - \frac{\partial A_\mu}{\partial x_\nu} \ (\nu, \mu = 0, \ldots, 3)$. So a kinematically possible field $A(x)$ determines a matrix-valued function, F. We label the component functions making up F according to the following scheme, thus identifying components of the F with components of the electric and magnetic fields, $E(x) = (E^1(x), E^2(x), E^3(x))$ and $B(x) = (B^1(x), B^2(x), B^3(x))$:

$$
F_{\mu\nu}(x) = \begin{pmatrix}
0 & -E^1(x) & -E^2(x) & -E^3(x) \\
E^1(x) & 0 & B^3(x) & -B^2(x) \\
E^2(x) & -B^3(x) & 0 & B^1(x) \\
E^3(x) & B^2(x) & -B^1(x) & 0
\end{pmatrix}
$$

We take as the Lagrangian for our theory $L := \frac{1}{2} \left(|B(x)|^2 + |E(x)|^2 \right)$. Writing $A(x) = (A_0(x), A_1(x), A_2(x), A_3(x))$ and $A(x) := (A_1(x), A_2(x), A_3(x))$, we find that the equations of motion for our Lagrangian are:

$$\nabla^2 A_0 + \frac{\partial}{\partial x_0} (\nabla \cdot A) = 0$$

$$\nabla^2 A - \frac{\partial^2 A}{\partial x_0^2} = 0$$

(here $\nabla := (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3})$ is the ordinary three-dimensional gradient operator). These equations are equivalent to the usual vacuum Maxwell equations for the electric and magnetic fields: $\dot{B} = -\nabla \times E$, $\nabla \cdot B = 0$, $\dot{E} = \nabla \times B$, and $\nabla \cdot E = 0$.

Let $\Lambda : V \rightarrow \mathbb{R}$ be a continuous function (appropriately differentiable and satisfying appropriate boundary conditions). Then the map $\Phi_\Lambda : A \mapsto A' := A + d\Lambda$ is a map from the space of kinematically possible fields to itself. If one calculates the matrices F' and F corresponding to A and A', one finds $F' = F$. So E and B are invariant under our gauge transformation $A \mapsto A'$. It follows that $L(\Phi_\Lambda(A)) = L(A) = 0$, so Φ_Λ is a Lagrangian symmetry — in particular, A' is a solution if and only if A is. Since Λ was arbitrary, and since Λ and Λ' lead to distinct symmetries so long as $d\Lambda \neq d\Lambda'$, we have in fact found a huge family of symmetries of our theory. Indeed, the Φ_Λ form a group of gauge symmetries of our theory in the official sense introduced above.

Of course, it follows that the initial value problem for A is ill-posed: let $A(x)$ be a solution for initial data posed on the instant $x_0 = 0$ and let Λ be a nonconstant function that vanishes on a neighbourhood of the hypersurface $x_0 = 0$; then A and $A' = A + d\Lambda$ are solutions that agree on $x_0 = 0$ but do not agree globally.
And, of course, the form that our Lagrangian induces on the space of solutions is degenerate. The corresponding gauge orbits have the following form: solutions \(A \) and \(A' \) belong to the same gauge orbit if and only if there is a \(\Lambda : V \rightarrow \mathbb{R} \) such that \(A' = A + d\Lambda \). An equivalent condition is that \(A \) and \(A' \) lie in the same gauge orbit if and only if they lead to the same \(E \) and \(B \) — which is just to say that the reduced space of solutions is the space of solutions to the field equations for \(E \) and \(B \) (remember, we are working in a fixed coordinate system, so these are well-defined). This reduced space is a symplectic manifold.

We can construct the Hamiltonian theory corresponding to our Lagrangian theory (our chosen inertial coordinates give us a slicing). For convenience, we take the configuration variables for our Lagrangian theory to be \(A_0(x) \) and \(A(x) \). Let \(\mathcal{Q} \) be the space of possible \((A_0, A)\) and \(T^* \mathcal{Q} \) be the corresponding cotangent bundle, carrying its canonical symplectic structure. A point in \(T^* \mathcal{Q} \) consists of a quadruple \((A_0(x), A(x), \tau_0(x), \pi(x))\) of fields on spacetime, with \(A_0 \) and \(\tau_0 \) taking values in \(\mathbb{R} \) and \(A \) and \(\pi \) taking values in \(\mathbb{R}^3 \). Our usual procedure tells us that the momentum \(\tau_0 \) corresponding to \(A_0 \) is identically zero (our Lagrangian does not depend on \(A_0 \)); the momentum \(\pi \) corresponding to \(A \) is \(\pi(x) = -E(x) \).

So the space \(\Gamma \) of initial data for our theory is the subspace \(T^* \mathcal{Q} \) of points of the form \((A_0(x), A(x), 0, \pi(x))\) — so we can take points in \(\Gamma \) to be triples of the form \((A_0, A, \pi)\). The presymplectic form that \(\Gamma \) inherits from its embedding in \(T^* \mathcal{Q} \) yields gauge orbits of the following form: \((A_0, A, \pi)\) and \((A'_0, A', \pi')\) belong to the same gauge orbit if and only if \(\pi = \pi' \) and \(\nabla \times A = \nabla \times A' \). Since \(\pi = -E \) and \(B = \nabla \times A \), this tells us that two points in the space of initial data lie in the same gauge orbit if and only if they correspond to the same electric and magnetic fields. If follows that the reduced space of initial data is just the space of instantaneous states of the electric and magnetic fields. We again find that the space of reduced space of initial data is symplectically isomorphic to the reduced space of solutions.

In present case, as in the semi-Leibnizean example above, we can view the given Lagrangian theory as containing surplus unphysical variables, whose evolution is undetermined by the dynamics, alongside physically sensible variables whose evolution is fully determined by the dynamics. In the present case, however, it is a bit harder to make this division explicit: clearly the good variables are the electric and magnetic fields and the bad ones are those that encode additional information in \(A \) — all we care about is which gauge orbit \(A \) lies in, so a specification of \(A \) gives us surplus information. Reduction allows us to avoid ever mentioning this sort of surplus information.

We can formulate a Hamiltonian version of Maxwell’s theory in the setting of the reduced space of initial data: points in this space specify the values of the electric and magnetic fields at points of space at a given time; this space is symplectic; and it is possible to find a Hamiltonian on this space that drives the dynamical evolution encoded in Maxwell’s equations for \(E \) and \(B \).\(^{120}\)

It is natural to wonder whether the reduced space of solutions also supports a

\(^{120}\)See, e.g., [Marsden and Weinstein, 1982].
Lagrangian version of Maxwell’s theory. That is, is there a Lagrangian in terms of E, B, and their derivatives whose variational problem has as its Euler–Lagrange equations the Maxwell’s equations for E and B?

At first sight, it might seem that we could just employ our original Lagrangian,

$$L := -\frac{1}{2} \left(|B|^2 + |E|^2 \right),$$

for this purpose. But this leads to the wrong equations of motion. And there is reason to worry that E and B are ill-suited to the variational approach, since their six components are not independent — they can be derived from the three-component vector potential — and so cannot be varied independently.\(^\text{121}\) So it is not obvious that the reduced space of solutions does support a Lagrangian version of Maxwell’s theory.

Whether or not this problem is insuperable in the case of Maxwell’s theory in Minkowski spacetime, other problems lie ahead. Suppose that we construct our spacetime, V, by rolling up one of the spatial dimensions of Minkowski spacetime: V is locally Minkowskian but has the global structure of $\mathbb{R}^3 \times S^1$. This makes a surprising difference to our theory. It is still true that the gauge orbits in the space of solutions are of the following form: $[A] := \{A + d\Lambda\}$ for all appropriate Λ. And it is still true that specifying a gauge orbit $[A]$ determines the behaviour of the electric and magnetic fields on spacetime. But it is no longer quite true that we can go in the other direction: in order to specify a gauge orbit $[A]$, one has to specify in addition to E and B also a single complex number, which we will call the holonomy. Intuitively, the holonomy measures the phase change that results when an electron is transported along a given loop that wraps once around the closed dimension of space. Thus a point in the reduced space of solutions can be viewed as consisting of a specification of E and B plus the holonomy. This extra number ruins everything: for while E and B are appropriately local objects, assigning a property to each point of spacetime, the holonomy is a nonlocal item. This becomes even more clear if we look for a way of describing the reduced space of solutions that does not have the strange feature of including two very different sorts of variable: the best way to proceed appears to be to describe a point in the reduced space of solutions as an certain sort of (highly constrained) assignment of a complex number to each closed curve in spacetime. So in such a topologically nontrivial spacetime, in order to specify a gauge orbit $[A]$ we need to specify nonlocal information. The present framework requires that a Lagrangian field theory involve an assignment of a property of each point of spacetime, and so cannot accommodate this example.\(^\text{122}\)

REMARK 39 (Lagrangians and the Reduced Space of Solutions). In the very simple particle theory considered in example 37 we saw a case in which the reduced

\(^{121}\)See [Goldstein, 1953, 366] for this point. See [Sudbery, 1986] for a way around this worry — which, however, requires a slight generalization of the present notion of a Lagrangian theory.

\(^{122}\)That is, we seem to be talking about properties that require something bigger than a point to be instantiated, in violation of Humean supervenience (see fn. 45 above).
space of solutions of a theory admitting gauge symmetries inherited from the original theory a Lagrangian that encoded the gauge-invariant aspects of the original dynamics. But in the more interesting case of Maxwell's theory, considered in example 38, it seems less likely that there is any sense in which the reduced space of solutions arises directly from a local Lagrangian, without passing through a formulation admitting gauge symmetries. And this seems very unlikely indeed if we choose our spacetime to be topologically nontrivial, because in this case the Maxwell field appears to involve a non-local degrees of freedom.

Note that things become even worse in non-Abelian Yang–Mills theories. In these theories, the space of fields is the space of connection one-forms on a suitable principal bundle \(P \to V \) over spacetime, the Lagrangian is a direct generalization of the Lagrangian of Maxwell's theory, and the group of gauge symmetries is the group of vertical automorphisms of \(P \). The reduced space of solutions is the space of connections modulo vertical automorphisms of \(P \). Even when \(V \) is Minkowski spacetime, the best parameterization of the reduced space of solutions would appear to be one that deals with holonomies around closed curves in spacetime.\(^{123}\) So it would again appear difficult (perhaps impossible) to capture this reduced space of solutions via the variational problem of a local Lagrangian.\(^{124}\) Indeed, it seems plausible the prevalence of gauge freedom in physical theories is grounded in the fact that by including nonphysical variables one is sometimes able to cast an intrinsically nonlocal theory in to a local form.\(^{125}\)

6.3 Time-Dependent Systems

Let us assume that our spacetime, \(V \), admits a slicing, and that our equations of motion, \(\Delta \), are second-order and exhibit good existence and uniqueness properties.\(^{126}\) But we now assume that our Lagrangian \(L \) is time-dependent, in the sense that it does not admit a dynamical time translation group, \(\tau \), arising from a time translation group, \(\tilde{\tau} \), on \(V \).

The time-dependent Lagrangian theories that arise in physics fall under the two following cases.

\(^{123}\) There is, however, considerable controversy among philosophers regarding the best interpretation of classical non-Abelian Yang–Mills theories. See [Healey, Unpublished], [Maudlin, Unpublished], and [Belot, 2003, §12].

\(^{124}\) Under a usage distinct from the present one, any Hamiltonian theory on a velocity phase space (i.e., a tangent bundle) counts as a Lagrangian theory; see, e.g., [Abraham et al., 1988, Chapter 8]. Under this alternative use, Lagrangians are not required to be local and a variational principle plays no necessary role. It may well be that there are treatments of theories that are Lagrangian in this sense, but not in the sense that I am concerned with in the text.

\(^{125}\) On this point, see, e.g., [Belot, 2003, §13]. For further speculation about the importance of gauge freedom, see [Redhead, 2003].

\(^{126}\) Recall from section 5.2 above that a slicing of a spacetime is a decomposition into space and time; not every slicing satisfies the stronger condition that this decomposition meshes with a time translation group on \(V \). Only spacetimes with geometries strong enough to determine a family of instants and a family of possible point-particle worldlines admit slicings.
Case (A): V admits a time translation group τ, but this group does not correspond to a symmetry of the equations of motion. Example: A system of particles in Newtonian spacetime, subject to forces arising from a time-dependent potential.

Case (B): V does not admit a time translation group. For example, let (V, g) be a curved general relativistic spacetime without temporal symmetries and take the Klein–Gordon equation for a scalar field on (V, g), $\nabla^a \nabla_a \Phi - m^2 \Phi = 0$, as the equation of motion (note that the metric on V plays a role in defining the derivative operators); the corresponding Lagrangian is $L = \frac{1}{2} \sqrt{-g} \nabla_a \nabla^a \Phi + m^2 \Phi^2$.

We will also need the notion of a time-dependent Hamiltonian system.

DEFINITION 40 (Time-Dependent Hamiltonian Systems). A time-dependent Hamiltonian system (M, ω, h) consists of a symplectic manifold (M, ω), called the phase space, together with a smooth function $h : \mathbb{R} \times M \to \mathbb{R}$, called the Hamiltonian. We often write $h(t)$ for $h(t, \cdot) : M \to \mathbb{R}$.

Ordinary Hamiltonian systems (see definition 8 above) are special cases of time-dependent Hamiltonian systems in which $h(t)$ is the same function on M for each value of t; we will also call such systems time-independent Hamiltonian systems. In a time-independent system, the dynamical trajectories could be thought of as curves in the phase space, parameterized up to a choice of origin, with exactly one such curve passing through each point of the space. In the time-dependent case, the situation is more complicated. For each value of t, we can solve $\omega(X_{h(t)}, \cdot) = dh(t)$ for the vector field $X_{h(t)}$ generated by $h(t)$. We can then declare that a curve $\gamma : \mathbb{R} \to I$ is a dynamical trajectory of (I, ω, h) if for each $t \in \mathbb{R}$, $\dot{\gamma}(t) = X_{h(t)}(\gamma(t))$ — that is, for each t, the tangent vector to γ at $x = \gamma(t)$ is given by the value of the vector field $X_{h(t)}$ at x. Notice that while in the case of a time-independent Hamiltonian system, there is a single dynamical trajectory through each point of the phase space, in the present case there will in general be many such trajectories through each point (since which states come immediately after $x \in I$ depends on the tangent to the dynamical trajectory through x; and in the time-dependent case, this tangent will vary as we consider posing initial data x at different possible instants).

Given the set of assumptions that we have in play, we expect to to find the following when we investigate a time-dependent Lagrangian theory.

Lagrangian Picture. One can apply the usual variational procedure to pass from a Lagrangian to a set of equations of motion. We can also follow the usual procedure in order to equip the corresponding space of solutions, S, with a two-form, Ω — and, as usual, one presumes that for the sort of examples that arise in physics, uniqueness of solutions to the equations of motion implies that Ω is symplectic.\footnote{For a discussion of the construction of (S, Ω) in the time-dependent case, see [Woodhouse, 1991, §2.4].} Note, however, that in time-dependent the-
ories of the types under consideration, \(S \) does not carry a one-parameter group implementing time translations: in theories falling under Case (A) above, such a group acts on the space of kinematically possible fields, but (in general) maps solutions to non-solutions; in theories falling under Case (B), there is no available notion of time translation. We can as usual use the stress-energy tensor of the field to define the energy of the field along any given instant — but the result is no longer independent of the instant chosen.

Hamiltonian Picture. A choice of slicing for our spacetime \(V \) leads to a Hamiltonian picture which is in many ways similar to that which emerges in the time-independent case. Let \(S \) be a manifold homeomorphic to an arbitrary instant \(\Sigma \subset V \) (and with the geometry, if any, shared by such instants) and let \(\sigma \) be a slicing of \(V \) employing \(S \) as an abstract instant: it is helpful to think of the choice of \(\sigma \) as the choice of a preferred family of observers equipped with a notion of simultaneity. Then we can set about constructing a Hamiltonian version of our theory, following in so far as possible the recipe from the time-independent case.

1. Given an instant \(\Sigma \) in our slicing and a solution \(\Phi \), we define: \(\phi \), the restriction of the field to \(\Sigma \); \(\dot{\phi} \) the time rate of change of \(\Phi \) along \(\Sigma \) relative to the observers and clocks that define \(\sigma \); and \(\pi := \frac{\partial L}{\partial \dot{\phi}} \), the field momentum along \(\Sigma \) relative to the slicing \(\sigma \).

2. Given a solution \(\Phi \) and instant \(\Sigma \) in our slicing, we use \(\sigma \) to pull back to \(S \) the initial data \((\phi, \pi)\) induced by \(\Phi \) on \(\Sigma \), and henceforth think of \(\phi \) and \(\pi \) as functions defined on \(S \), when convenient.

3. Let \(Q \) be the space of all \(\phi : S \to W \) that arise in this way; then \(T^* Q \) is the space of all pairs \((\phi, \pi)\) that arise in this way. This is our space of initial data, \(\mathcal{I} \). It carries a canonical symplectic form, \(\omega \) (see example 7 above).

4. The construction of the Hamiltonian is the first stage at which we run into any novelty.\(^{128}\) Let \(\Sigma_t \) be an instant in our slicing, and define \(h(t) : \mathcal{I} \to \mathbb{R} \) (\(t \) fixed, for now) as \(h(t)(\phi, \pi) := \int_{\Sigma_t} \pi \dot{\phi} - L(\Phi)dx \), where \(\Phi \) is the solution that induces \((\phi, \pi)\) on \(\Sigma_t \), and \(\dot{\phi} \) is the field velocity that \(\Phi \) induces on \(\Sigma_t \). In general, this construction yields a different real-valued function on \(\mathcal{I} \) for each value of \(t \). One expects that \(h(t)(\phi, \pi) \) gives the total instantaneous energy when initial data \((\phi, \pi)\) are posed on instant \(\Sigma_t \). But imposing the same initial data at distinct times in general leads to states with different total energies (since, roughly speaking, we are dealing with systems subject to time-dependent potentials).

5. Now considering \(t \) as a variable, we see that we have defined a smooth \(h : \mathbb{R} \times \mathcal{I} \to \mathbb{R} \). So \((\mathcal{I}, \omega, h)\) is a time-dependent Hamiltonian system.

\(^{128}\)For this construction see, e.g., [Kay, 1980, §1].
in the sense of definition 40 above. The resulting dynamics can be thought of as follows. Suppose that we are interested in the dynamics that results when we pose our initial data on a fixed instant \(\Sigma_{t_0} \) in our slicing. Then, for each \(s \in \mathbb{R} \) we can ask what state \(x \in \mathcal{I} \), posed on \(\Sigma_{t_0} \), evolves into after \(s \) units of time; we call the result \(g^t_{s_0}(x) \). This gives us a map \(g^t_{s_0} : \mathcal{I} \to \mathcal{I} \) for each \(s \); and the set \{ \(g^t_{s_0} \) \} \(s \in \mathbb{R} \) forms a one-parameter group; each of \(g^t_{s_0} \) is a symplectic automorphism of \(\mathcal{I} \) but does not leave \(\hbar \) invariant. So here we have the dynamics implemented by symmetries of \((\mathcal{I}, \omega) \) that are not symmetries of \((\mathcal{I}, \omega, \hbar) \). Letting \(t_0 \) vary gives us a one-parameter family of such one-parameter dynamics-implementing groups.

Relation between the Pictures. As in the time-independent setting, for each \(\Sigma \) in our slicing, we can define the map \(T_\Sigma : \mathcal{S} \to \mathcal{I} \) that sends a solution to the initial data it induces on \(\Sigma \). Because we are assuming global existence and uniqueness for solutions to our equations of motion, each such map is a bijection. Furthermore, as in the time-independent case, each such \(T_\Sigma \) is in fact a symplectic isomorphism between \(\mathcal{S} \) and \(\mathcal{I} \). We can use these maps to show that the time-dependent Hamiltonian system constructed above encodes the correct dynamics for our equations of motion: let \(\Phi \) be a solution and let \(x_0 \) be the initial data induced by \(\Phi \) on the instant \(\Sigma_0 \), and let \(x_0(t) \) be the corresponding dynamical trajectory in the space of initial data; then for each \(t \in \mathbb{R} \), \(x_0(t) \) is the initial data that \(\Phi \) induces on \(\Sigma_t \).

In the time-independent case, we also found that the maps \(T_\Sigma \) intertwined the actions of the group implementing time translation on the space of solutions and time evolution on the space of initial data. In the present case, we have, so far, nothing corresponding to time translation on the space of solutions, while on the space of initial data, we have a whole family of notions of time evolution (indexed by a choice of instant upon which initial data are to be posed). Now note that for each instant \(\Sigma_t \) in our slicing and each \(s \in \mathbb{R} \) we can define \(\hat{g}^t_s := T^{-1}_{\Sigma_t} \circ g^t_s \circ T_{\Sigma_t} \); the family \{ \(\hat{g}^t_s \) \} \(s \in \mathbb{R} \) is a one-parameter group of symplectic automorphisms of \((\mathcal{S}, \Omega) \) which is not a group of variational symmetries of our Lagrangian. The result of applying \(\hat{g}^t_s \) to a solution \(\Phi \) is the solution that would result if the initial data induced by \(\Phi \) on \(\Sigma_t \) had been posed instead on the instant \(\Sigma_{t-s} \).\(^{129}\)

Time. In the present context, time translation may or may not be a symmetry of our spacetime. But even if it is, there is no corresponding symmetry of the dynamics. And so our picture is hobbled — we do not get nice actions of the real numbers on the space of solutions and on the space of initial data that implement time translation and time evolution. On the space of initial

\(^{129}\)Of course, in the time-independent case, this reduces to time translation of solutions — so we can regard the transformations \(\hat{g}^t_s \) as generalizing the ordinary notion of time translation of solutions.
data, for each instant at which we might choose to pose initial data, we get a one-parameter group implementing time evolution — but this is not a symmetry of the Hamiltonian. On the space of solutions, we have no natural group action corresponding to time-translation. If we choose a slicing and an instant, then we can get an \mathbb{R}-action that gives us information not about time translation of solutions, but about what solution results if we take the initial data that a given solution induces on that given instant and re-pose it on another instant.

Change. Some physical quantities will be represented by functions on the space of initial data: for example, in a theory of two Newtonian particles subject to time-dependent external forces, relative distance between the particles will be encoded in a function on the space of initial data. But some quantities will be represented by one-parameter families of functions on the space of initial data: energy will be an example of such a quantity in any time-dependent system.\(^{130}\) As we have done above with the Hamiltonian, let us use the symbol $f(t)$ to denote such a one-parameter-family family — we can think of an ordinary function as being a degenerate case, where $f(t)$ is the same function on \mathcal{I} for each $t \in \mathbb{R}$. Let $x(t)$ be a dynamical trajectory in \mathcal{I}. Then $x(t)$ represents the quantity modelled by $f(t)$ as changing if and only if $\exists t_1, t_2 \in \mathbb{R}$ such that $f(t_1)(x(t_1)) \neq f(t_2)(x(t_2))$.

On the space of solutions, we expect that, once we have chosen a slicing, each quantity of interest will be represented as usual by a one-parameter family of functions — as usual, we denote such a family of functions on S by $\{f_t\}$. Suppose that a quantity of interest is represented by $f(t)$ on the space of initial data, and let Σ_{t_0} be an instant in our slicing. Then we define $f_{t_0} := f(t_0) \circ T_{\Sigma_{t_0}} : S \rightarrow \mathbb{R}$. Carrying this out for each $t \in \mathbb{R}$ gives us our desired $\{f_t\}$. As usual, we view a solution $\Phi \in S$ as representing our quantity as changing if $\exists t_1, t_2 \in \mathbb{R}$ such that $f_{t_1}(\Phi) \neq f_{t_2}(\Phi)$.

REMARK 41 (Artificially Time-Dependent Theories). If we have a time-independent Lagrangian theory but perversely choose a slicing that is not adapted to our notion of time translation, then we the result of following the above procedure would be a time-dependent Hamiltonian system.

REMARK 42 (Quantization of Time-Dependent Systems). There is no special difficulty in quantizing a time-dependent Hamiltonian treatment of a system with finitely many degrees of freedom. But it is not in general possible to construct a well-behaved quantum Hamiltonian for a time-dependent field theory.\(^{131}\) For

\(^{130}\)It is not hard to find other examples. In a field theory set in a nonstationary spacetime, the abstract instant will not carry a Riemannian metric (since the instants $\Sigma \subset \mathcal{V}$ do not share a Riemannian geometry). In this case, we find that an initial data set that represents the field as having two sharp peaks will correspond to instantaneous states in which the peaks are different distances apart, depending on the instant Σ_t in the slicing upon which the initial data are posed. So in this sort of example, even relative distance is represented by a family of functions on the space of initial data.

\(^{131}\)See, e.g., [Kay, 1980, §2.1].
this reason, the standard construction of free quantum field theories on curved spacetimes take as their starting point the space of solutions rather than the space of initial data.132

7 THE PROBLEM OF TIME IN GENERAL RELATIVITY

General relativity differs from the theories considered above in being generally covariant. It is widely accepted that this leads to certain characteristic technical and conceptual problems, grouped together under the rubric \textit{the problem of time}. This section forms an extended commentary on the problem of time in general relativity. The first subsection below is devoted to a discussion of the general covariance of general relativity and some of its direct consequences. The following subsection contains a discussion of the problem of time itself — essentially that change cannot be represented in the theory in the way familiar from the discussion of sections 5 and 6 above. The final subsection discusses a strategy for finding time and change in general relativity (this discussion is intended by way of further clarification of the problem of time, rather than as a suggested resolution).

It is important to emphasize that while the present discussion focuses on general relativity, the problems under discussion arise whenever one has a theory that is generally covariant in an appropriate sense.

7.1 The General Covariance of General Relativity

Let V be a spacetime manifold, with or without geometrical structure. Recall that a C^k ($0 < k \leq \infty$) diffeomorphism $d : V \rightarrow V$ is a C^k bijection with C^k inverse.133 Leaving the degree of differentiability unspecified, we will denote by $D(V)$ the group of diffeomorphisms from V to itself.134

132See [Wald, 1994, Chapter 4].

133A diffeomorphism $d : V \rightarrow V$ is called \textit{small} if it is homotopic to the identity, otherwise it is \textit{large}. For ease of exposition, I implicitly restrict attention to small diffeomorphisms below. I will often speak of the pullback of a tensor by a diffeomorphism. The most important case will be the pullback d^*g of a spacetime metric g by a diffeomorphism d. Intuitively (V, d^*g) is the spacetime geometry that results if we lift g off V, then use d to permute the identities of points of V, then lay g back down. (V, g) and (V, d^*g) share a set of spacetime points and have isomorphic geometries; they differ only as to which points in V play which geometric roles — unless d is a symmetry of the metric, in which case they do not differ even about this.

134Special care is required in dealing with groups of diffeomorphisms: on the one hand, the group of C^k diffeomorphisms from a compact manifold to itself has a nice differentiable structure — it is a Banach manifold — but is not a Banach Lie group because the operation of group multiplication is not smooth; on the other hand, the the group of C^∞ diffeomorphisms from a compact manifold to itself has a less desirable differentiable structure — it is a mere Fréchet manifold — but it is a Fréchet Lie group; see [Adams et al., 1985] and [Milnor, 1984] for details. The situation is even worse for groups of diffeomorphisms from a noncompact manifold V to itself: it appears that one needs to presuppose some geometrical structure on V in order to give the group a differentiable structure; see [Cantor, 1979] and [Eichhorn, 1993]. See [Isenberg and Marsden, 1982] for tactics for circumventing these difficulties.
Roughly speaking, we want to say that a theory is generally covariant when it has $\mathcal{D}(V)$ as a symmetry group.135 So for each of the several notions of symmetry of a theory, we have a corresponding notion of general covariance. Following [Earman, 2006], I will single out the following two as the most important for our purposes:

Weak General Covariance: $\mathcal{D}(V)$ is a group of symmetries of the equations Δ of the theory.

Strong General Covariance: $\mathcal{D}(V)$ is a group of gauge symmetries of the Lagrangian L of the theory.

Of course, Strong General Covariance implies Weak General Covariance (since every gauge symmetry is a variational symmetry, and therefore a symmetry of the equations of motion). But the converse is not true (a theory may be weakly generally covariant even if it does not admit a Lagrangian, and hence is not eligible to be strongly generally covariant).

We have been allowing V to carry a fixed geometrical background, encoded in some tensors that do not vary from solution to solution. We could have allowed V to carry further nongeometric solution-independent structure.136 On the other hand, in any nontrivial theory the fields governed by the equations of motion will of course vary from solution to solution. So we have have a distinction between theories in which V is equipped with nontrivial solution-independent structure and theories in which it is not.137

Intuitively, a theory is weakly generally covariant if and only if its solutions carry no solution-independent tensors (or spinors, or ...) — for it is precisely when we have some fixed background tensors painted on V that the equations of motion can "care" about the distinction between a solution Φ and its pullback $d^*\Phi$ by a diffeomorphism $d: V \to V$.

Of course, general relativity is weakly generally covariant — indeed, in the important vacuum sector of general relativity the spacetime metric is the only basic quantity of the theory, and it is solution-dependent.138

The question whether general relativity satisfies Strong General Covariance is a bit more subtle. Intuitively, it ought to: for at the formal level diffeomorphisms of V are variational symmetries of the Lagrangian of the theory, and the group

135See [Norton, 1995] for the tangled history of the notion of general covariance.

136For example, in studying the motion of charged matter in a strong external electromagnetic field, we might employ a theory in which the Maxwell field as well as the spacetime geometry was solution-independent and only the motion of the matter varied from solution to solution.

137Note that the distinction made here between solution-independent and solution-dependent structures does not coincide with the Anderson–Friedman distinction between absolute and dynamical objects (see [Friedman, 1983, §II.2]): solution-independent objects are required to be the same from solution to solution while absolute objects are only required to be the same from solution to solution up to diffeomorphism.

138In this regime, the Einstein Field equations just tell us that if metric g on V counts as a solution if and only if the Ricci curvature tensor of g vanishes. And clearly g is Ricci-flat if and only if d^*g is. So $\mathcal{D}(V)$ maps solutions to solutions.
of such diffeomorphisms is parameterized in a suitable sense by the set of vector fields on \(V \). But, as we will soon see, this is a point at which technicalities about boundary conditions cannot be ignored.

But we can block out such technicalities by restricting attention to the subset \(\mathcal{D}_c(V) \subset \mathcal{D}(V) \), consisting of compactly supported diffeomorphism from \(V \) to itself.\(^{139}\) \(\mathcal{D}_c(V) \) turns out to be a group of gauge symmetries of the Lagrangian of general relativity (\(\mathcal{D}_c(V) \) is parameterized by the family of compactly supported vector fields on \(V \)). So the counterpart of condition (2) above goes through when \(\mathcal{D}(V) \) is replaced by \(\mathcal{D}_c(V) \).

In order to say more, and to approach the question of the significance of general covariance for questions about time, we turn below to two special cases: (i) general relativity in the spatially compact domain; (ii) general relativity in the domain in which asymptotic flatness is imposed at spacelike infinity. The first case is central to cosmology: by requiring space to be compact, one eliminates worries about boundary conditions at spatial infinity; this permits one to investigate universes packed with matter while maintaining control over technical issues. The second case is of more strictly mathematical and conceptual interest (the asymptotic boundary conditions of greatest physical interest impose asymptotic flatness at null infinity rather than spatial infinity; these allow one to investigate gravitational radiation). After discussing these cases, I briefly turn to the question whether every theory can be given a generally covariant formulation.

General Relativity as a Cosmological Theory

We restrict attention to vacuum general relativity in which the spacetime metric, \(g \), is the only field. So we take as our space of kinematically possible fields the space of Lorentz signature metrics on some fixed \(n \)-dimensional spacetime manifold \(V \).\(^{140}\) The equation of motion for this theory is \(R_{ab} - \frac{1}{2} R g_{ab} = 0 \), where \(R_{ab} \) is the Ricci curvature of \(g \) and \(R \) is the scalar curvature of \(g \); here and throughout we require the cosmological constant to vanish.

Recall that a subset \(\Sigma \subset V \) is called a Cauchy surface of \((V, g) \) if every inextendible timelike curve in \((V, g) \) intersects \(\Sigma \) exactly once; it follows that a Cauchy surface is an \((n - 1) \)-dimensional spacelike submanifold of \(V \). We call \((V, g) \) globally hyperbolic if it possesses a Cauchy surface. If \((V, g) \) is globally hyperbolic, then it can be foliated by Cauchy surfaces, and all of its Cauchy surfaces are homeomorphic to one another. Indeed, if \((V, g) \) is globally hyperbolic, then \(V \) is homeomorphic to a manifold of the form \(S \times \mathbb{R} \) for some \((n - 1) \)-dimensional manifold \(S \), with all the Cauchy surfaces of \((V, g) \) homeomorphic to \(S \). For the purposes of this discussion of general relativity as a cosmological theory we restrict attention to solutions with compact and orientable Cauchy surfaces.\(^{141}\)

\(^{139}\)That is, a diffeomorphism \(d : V \rightarrow V \) is in \(\mathcal{D}_c(V) \) if and only if there exists a compact set \(U \subset V \) such that \(d \) acts as the identity on \(V/U \).

\(^{140}\)So a kinematically possible field is a section of the bundle of symmetric bilinear forms of Lorentz signature over \(V \).

\(^{141}\)The restriction to globally hyperbolic solutions is not required for construction of a La-
We can proceed to construct Lagrangian and Hamiltonian versions of our theory.

Lagrangian Picture. The Lagrangian for general relativity is the *Einstein–Hilbert Lagrangian*, \(L = \sqrt{-g} R \). The space of solutions is, of course, infinite-dimensional. Let us call a solution *well-behaved* if it admits a foliation by Cauchy surfaces with constant mean curvature.\(^{142}\) It is believed that the set of well-behaved solutions forms a large open subset of the full space of solutions; and it is known that within the space of well-behaved solutions the only singularities that occur are mild ones at metrics that admit Killing fields (these are vector fields that can be thought of as the infinitesimal generators of spacetime symmetries).\(^{143}\) The group \(\mathcal{D}(V) \) is a group of gauge symmetries of the Einstein–Hilbert Lagrangian: each one-parameter group of diffeomorphisms from \(V \) to itself is a group of variational symmetries of this Lagrangian, and the group \(\mathcal{D}(V) \) can be parameterized by arbitrary vector fields on \(V \).\(^{144}\) So, in accord with the theory of gauge theories developed in section 6.2 above, we find that the space, \(\mathcal{S} \), of well-behaved solutions carries a presymplectic form, \(\Omega \) (henceforth I drop the qualifier and speak of \(\mathcal{S} \) as the space of solutions).\(^{145}\) As usual, this presymplectic form induces a partition of the space of solutions by gauge orbits. Two metrics, \(g \) and \(g' \), belong to the same gauge orbit if and only if there exists a diffeomorphism \(d : V \to V \) such that \(g' = d^* g \). Of course, the conserved quantities associated with one-parameter groups of diffeomorphism are trivial — each is the zero function on \(\mathcal{S} \). Indeed, in this context, general relativity has no nontrivial Noether quantities — beyond diffeomorphisms, the only continuous, local symmetries of the laws are metric rescalings, which are not variational symmetries.\(^{146}\)

Reduced Space of Solutions. The space, \(\mathcal{S}' \), of gauge orbits of the space of solutions of general relativity is a symplectic space with mild singularities at points corresponding to solutions with Killing fields.\(^{147}\) Let us call a point \([g]\) in the reduced space of solutions a *geometry* — since distinct representatives of \([g]\) represent \(V \) as having the same spacetime geometry, but differ as to the distribution of geometrical roles to points of \(V \). So far as I know, it makes no sense to speak of this reduced space as the space of solutions arising from

\(^{142}\)*Mean curvature will be defined below on p. 201, in the course of the discussion of the space of initial data.*

\(^{143}\)*For the structure of the space of well-behaved solutions, see [Isenberg and Marsden, 1982].*

\(^{144}\)*See [Crnković and Witten, 1987] and [Woodhouse, 1991, 143–146]; the latter provides an argument that non-compactely supported diffeomorphisms belong in the group of gauge symmetries of the Lagrangian.*

\(^{145}\)*See also [Frauendiener and Sparling, 1992] for a construction of the presymplectic form on the space of solutions which does not proceed via the Lagrangian formalism.*

\(^{146}\)*See [Törre and Anderson, 1996, esp. p. 489].*

\(^{147}\)*See [Isenberg and Marsden, 1982].*
the variational problem for a local Lagrangian. Indeed, a geometry \([g]\) would not appear to assign any particular local property to any point \(x \in V\).

Hamiltonian Picture. The construction of the corresponding Hamiltonian picture requires a bit of care.\(^{148}\) We want to mimic as much of the procedure of section 5 above as we can, given that we do not have available a slicing (which requires that spacetime have a nontrivial solution-independent geometry). We proceed as follows.\(^ {149}\)

1. *Construct the space of initial data.* Up until now, we have been able to proceed as follows: (i) choose a slicing \(\sigma\) of \(V\) and an instant \(\Sigma \subset V\) in \(\sigma\), then construct the space of possible instantaneous field configurations, \(Q\), by looking at all the \(\phi : \Sigma \to W\) that arise by restricting solutions \(\Phi\) to \(\Sigma\); (ii) construct the space of initial data \(I \subseteq T^*Q\) by finding all pairs \((\phi, \pi)\) that are induced as initial data on \(\Sigma\) (where \(\pi\) is the instantaneous field momentum, defined via \(\pi := \frac{\partial L}{\partial \phi'}\) with \(\phi'\) is the time rate of change of the field according to the observers associated with the slicing \(\sigma\)). We found that \(I\) was a proper subset of \(T^*Q\) whenever the Lagrangian \(L\) of the theory admitted a group of gauge symmetries.

Without relying on a notion of slicing, we can construct a space of initial data via a procedure surprisingly close to the usual one.

If \(\Sigma \subset V\) is a hypersurface and \(g\) is a solution to the Einstein field equations, then \(q := g \mid \Sigma\) is a symmetric covariant tensor of rank two. But in the present setting, the restriction of a solution to an arbitrary hypersurface is not a good candidate for an instantaneous configuration of the field: intuitively, since the gravitational field of general relativity is a spacetime geometry, an instantaneous configuration of this field should be a spatial geometry. But, of course, \(q := g \mid \Sigma\) is a Riemannian metric on \(\Sigma\) if and only if \(\Sigma\) is spacelike according to \(g\). So \(q = g \mid \Sigma\) represents an instantaneous state of the field if and only if \(\Sigma\) is spacelike.\(^{150}\) So it seems reasonable to take as the space of possible instantaneous field configurations, \(Q\), the space of Riemannian metrics \(q\) that arise by restricting each solution to the hypersurfaces that it renders spacelike.\(^{151}\)

\(^{148}\) For the constructions that follow see [Wald, 1984, Appendix E.1] or [Beig, 1994].

\(^{149}\) The construction sketched here does not rely on the lapse and shift fields. Fixing the behaviour of these nonphysical fields allows one to pass from initial data on an abstract instant \(S\) to a solution on \(S \times I\) for some (possibly small) interval \(I\) of real numbers. As such they allow one to establish a bijection between the space of initial data and a set of solutions of limited temporal extent. I avoid the lapse and shift here because I want to concentrate on global results and on physical fields. For a very helpful introduction to the lapse and shift formalism, see [Marsden et al., 1972, §III].

\(^{150}\) In the spatially compact globally hyperbolic regime, a submanifold of \((V, g)\) with the topology of a Cauchy surface for \((V, g)\) is a Cauchy surface if and only if it is spacelike according to \(g\); see [Budic et al., 1978, Theorem 1].

\(^{151}\) The field \(q\) is taken to be defined on an abstract instant, \(S\), diffeomorphic to the Cauchy surfaces \(\Sigma \subset V\). In order to construct \(Q\) we choose an instant \(\Sigma\) relative to \((V, g)\) and a diffeo-
The definition of the instantaneous field momenta is more complicated. In the familiar case, the slicing σ plays an important role. But nothing like that is available in the present case: it is awkward to introduce a solution-independent notion of slicing in the context of general relativity, considered as a dynamical theory.152 There is, however, a way around this difficulty. Consider a solution g and a hypersurface $\Sigma \subset V$ that g represents as being spacelike. Relative to g we can choose a slicing of V in the usual sense (since relative to g we can single out the instants and possible worldlines of point-particles as submanifolds of V). We call such a slicing Gaussian for Σ if it corresponds to a set of freely falling observers whose clocks all read zero as they pass through Σ, and whose worldlines are all orthogonal to Σ. For sufficiently small t the hypersurfaces of constant t according to the Gaussian observers will be Cauchy surfaces carrying Riemannian metrics $q(t) := g |_{t=0}$. So given a Gaussian slicing for Σ, we can define $\dot{q}_{ab} := \frac{\partial q_{ab}(t)}{\partial t} |_{t=0}$, which is a symmetric covariant tensor of rank two on Σ. In fact, \dot{q}_{ab} is independent of the Gaussian slicing chosen, and can be viewed as telling us about the geometry of the embedding of Σ in (V, g). We can take a similar view of the extrinsic curvature of Σ in (V, g), $k_{ab} := \frac{1}{2} \dot{q}_{ab}$, and the mean curvature along Σ in (V, g), $k := q^{ab} k_{ab}$. Now: relative to our Gaussian slicing, the tensor $\dot{q}_{ab}(0)$ represents the velocity of the gravitational field, in the sense that it encodes information about the time rate of change of the field; as usual, we can define the corresponding momentum as $\pi^{ab} := \frac{\partial L}{\partial \dot{q}^a}$. For the Einstein-Hilbert Lagrangian we have $\pi^{ab} = \sqrt{q} k^{ab} - k q^{ab}$ (so the momentum is a symmetric contravariant tensor of rank two).153 We take as our space of initial data the space $\mathcal{I} \subset T^* Q$ of pairs (q, π) that arise as the field configuration and momentum induced by solutions on hypersurfaces they render spacelike (with q and π functions living on an abstract manifold S). As is to be expected in a theory with gauge symmetries, \mathcal{I} is a proper subspace of $T^* Q$ and the restriction of the canonical symplectic form on $T^* Q$ equips \mathcal{I} with a presymplectic form, ω. The gauge orbits of ω have the

152 Suppose that σ is a slicing relative to a metric g on V. Then the restriction of g to the instants Σ_t in σ will be reasonable instantaneous field configurations, and so relative to σ the solution g ought to correspond to a curve in the space of initial data of the theory. But what happens if we look at another solution g' relative to σ'? In general, the result of restricting this new solution to Σ_t will not be an instantaneous state of the field — so σ will not give us the means to associate with each spacetime solution g a trajectory in the space of initial data.

153 If we calculate \dot{q} relative to a non-Gaussian slicing of (V, g), then we will in general get an answer quite different from that generated by a Gaussian slicing. But if we use this new notion of the field velocity in our definition of the field momentum, we find that our new observers agree with our original Gaussian observers about the value of the field momentum at each point of Σ. So, rather surprisingly, in general relativity the field momentum depends on the instant chosen, but not on a slicing.
following structure: initial data sets \((q, \pi)\) and \((q', \pi')\) belong to the same gauge orbit if and only if they arise as initial data for the same solution \(g\).\(^{154}\)

2. **Construct a Hamiltonian.** Application of the usual rule for constructing a Hamiltonian given a Lagrangian leads to the Hamiltonian \(h \equiv 0\).

3. **Construct dynamics.** Imposing the usual dynamical equation, according to which the dynamical trajectories are generated by the vector field(s) \(X_h\) solving \(\omega(X_h, \cdot) = dh\), leads to the conclusion that dynamical trajectories are those curves generated by null vector fields. So a curve in \(\mathcal{I}\) is a dynamical trajectory if and only if it stays always in the same gauge orbit. This is, of course, physically useless — since normally we expect dynamical trajectories for a theory with gauge symmetries to encode physical information by passing from gauge orbit to gauge orbit. But in the present case, nothing else could have been hoped for. A non-zero Hamiltonian would have led to dynamical trajectories which passed from gauge orbit to gauge orbit — but this would have been physical nonsense (and worse than useless). For such dynamics would have carried us from an initial state that could be thought of as an instantaneous state for solution \(g\) to a later instantaneous state that could not be thought of as an instantaneous state for solution \(g\). In doing so, it would have turned out to encode dynamical information very different from that encoded in Einstein’s field equations.

Reduced Space of Initial Data. We can pass to, \(\mathcal{I}'\), the space of reduced initial data: a point in this space consists of a gauge equivalence class of points in the space of initial data. Like the reduced space of solutions, the reduced space of initial data is a symplectic space with mild singularities.\(^{155}\) Indeed, it is presumed that the two reduced spaces are canonically isomorphic as symplectic spaces, under the map that takes a gauge orbit of initial data to corresponding gauge orbit of solutions.\(^{156}\) \(\mathcal{I}'\) inherits from \(\mathcal{I}\) the trivial Hamiltonian \(h \equiv 0\); this induces the trivial dynamics on \(\mathcal{I}'\) according to which the dynamical trajectories are constant curves of the form \(x(t) = x_0\) for all values of \(t\).

Relation between the Pictures. The space of solutions and the space of initial data are not isomorphic — this is a general feature of theories with gauge symmetries. On the other hand, as we just noted, the reduced space of

\(^{154}\) More precisely: \((q_1, \pi_1)\) and \((q_2, \pi_2)\) belong to the same gauge orbit if and only if there is a solution \(g\), instants \(\Sigma_1, \Sigma_2 \subset (V, g)\), and diffeomorphisms \(d_1: S \rightarrow \Sigma_1\) and \(d_2: S \rightarrow \Sigma_2\) such that for \(i = 1, 2\) \((q_i, \pi_i)\) is the pull back to \(S\) by \(d_i\) of the initial data that \(g\) induces on \(\Sigma_i\). Note that if \(\Sigma_1 = \Sigma_2\) but \(d_1 \neq d_2\), then \((q_1, \pi_1)\) and \((q_2, \pi_2)\) will be distinct but gauge-equivalent descriptions of the geometry of a single Cauchy surface in \((V, g)\).

\(^{155}\) See [Fischer and Moncrief, 1996].

\(^{156}\) If \((q, \pi)\) is the geometry of a Cauchy surface in \(g\), then canonical isomorphism between \(\mathcal{I}'\) and \(\mathcal{S}'\) sends \([q, \pi]\) to \([g]\).
solutions and the reduced space of initial data are believed to be isomorphic. In the case of a theory on a fixed background spacetime, a slicing yields a one-parameter family of symplectic isomorphism between the space of solutions and the space of initial data that serves the dual purposes of intertwining the temporal symmetries of their respective spaces and allowing us to construct a representation of change on the space of solutions. In the present case we have only a single canonical isomorphism between the two spaces.

Time. On neither the space of solutions nor reduced space of solutions do we find an action of the real numbers implementing time translation. Nor do we find a non-trivial action implementing time evolution on the reduced space of initial data, since the Hamiltonian trajectories are all trivial there. On the space of initial data, we do have non-trivial Hamiltonian trajectories. But a dynamical trajectory on the space of initial data cannot in general be viewed as encoding time evolution: there is nothing, for instance, to prevent such a trajectory from being periodic, even when the solution corresponding to the gauge orbit the trajectory lives in is not periodic in any sense.

There is, however, a class of dynamical trajectories on the space of initial data that can be viewed as encoding dynamics — those trajectories that correspond to sequences of initial data that could be stacked to form sensible spacetime geometries (when this is possible, the result is always a solution of the field equations). Through each point of the space of initial data there are in fact many such trajectories. But, as is usual in theories with gauge symmetry, there is no privileged way of cutting down this multitude to a distinguished subset that encode time evolution via an \(\mathbb{R} \)-action.

Change. Let us take some changeable physical quantity like the instantaneous spatial volume of the universe. How would we represent such a quantity on the various spaces in play? On both the space of solutions and the reduced space of solutions, we face our usual problem: points in these spaces represent history timelessly, so no function on such a space can represent in a direct way a changeable physical quantity. In the past, we were able to get around this problem using one of the following strategies. (i) We could find a function on \(f \) on a space arising on the Hamiltonian side, then use a slicing-dependent one-parameter family of isomorphisms between this space and the (reduced) space of solutions to find a one-parameter family of functions on the latter space encoding the behaviour of the given quantity. (ii) Or we could find a function on the (reduced) space of solutions encoding the value of the quantity of interest at a given instant, then use a dynamical time translation group on the (reduced) space of solutions to generate a one-parameter family of such functions. Neither of these strategies will work this time: we do not have a one-parameter family of isomorphisms indexed by instants, nor a notion of time translation on the (reduced) space of solutions.

We are in fact no better off on the reduced space of initial data: there too points correspond to entire histories of the system, and individual functions
are ill-suited to represent changeable quantities. And on the space of initial data we face an unattractive dilemma: if we seek to represent changeable quantities via non-gauge invariant functions, then we face indeterminism; if we employ gauge-invariant functions, then we are faced with essentially the same situation we met in the reduced space of initial data.

General Relativity in the Asymptotically Flat Regime

It is illuminating to consider a second sector of general relativity, in which one requires solutions to be asymptotically flat at spatial infinity. This case is of marginal physical interest, but it helps us to clarify the source of the problems we ran into in the spatially compact case.

In this regime our spacetime is \mathbb{R}^4 and kinematically possible fields are assignments of Lorentz signature metrics to V that are required to be, in an appropriate sense, asymptotically flat at spatial infinity.\footnote{There are several notions of asymptotic flatness at spatial infinity. In this section, results are cited that are derived using three distinct but closely related approaches: (i) that of [Andersson, 1987]; (ii) that of [Ashtekar et al., 1991]; and that of [Beig and Ó Murchadha, 1987]. For ease of exposition, I gloss over the differences in these approaches in the text — I do not believe that the result is misleading. For the relations between approaches (i) and (iii), see [Andersson, 1987, Definitions 2.3 and 2.4] and [Andersson, 1989, 78]. Both of approaches (ii) and (iii) are situated by their protagonists with respect to that of [Beig and Schmidt, 1982]; see [Ashtekar and Romano, 1992, §7] and [Beig and Ó Murchadha, 1987, §§4 and 5].}

Instants are also required to satisfy asymptotic conditions.

In this setting it is natural to consider $\mathcal{D}^\infty(V)$, the group of diffeomorphisms that leave the boundary conditions invariant, rather than the full group of diffeomorphisms. We find that the subgroup, $\mathcal{D}_0^\infty(V)$, of $\mathcal{D}^\infty(V)$ consisting of diffeomorphisms asymptotic to the identity at infinity is the largest group of gauge symmetries of the Lagrangian formulation of the theory and that $\mathcal{D}^\infty(V)$ is the semi-direct product of $\mathcal{D}_0^\infty(V)$ with the Poincaré group (every element of $\mathcal{D}^\infty(V)$ can be thought of as a product of an element of $\mathcal{D}_0^\infty(V)$ and a Poincaré symmetry acting at infinity).\footnote{See [Andersson, 1987, Theorem 2.2] and [Ashtekar et al., 1991, §3.3].} The space of solutions of this theory carries a presymplectic form and breaks into gauge orbits, with two solutions in the same gauge orbit if and only if they differ by a diffeomorphism in $\mathcal{D}_0^\infty(V)$.\footnote{See [Ashtekar et al., 1991, §3].} Diffeomorphisms in $\mathcal{D}_0^\infty(V)$ fix the gauge orbits; those in $\mathcal{D}^\infty(V)$ but not $\mathcal{D}_0^\infty(V)$ permute them. The significance of this is most clear at the level of the reduced space of solutions: this is a symplectic space carrying a representation of the Poincaré group — and in particular, for each notion of time translation at spatial infinity, this space carries a non-zero Hamiltonian generating this notion.\footnote{See [Andersson, 1987].}

One can also give a Hamiltonian treatment of this sector of general relativity.\footnote{See [Beig and Ó Murchadha, 1987].} One constructs the space of initial data as in the spatially compact case, except that conditions must be imposed on the asymptotic behaviour of the instantaneous
field configuration and momentum. The resulting space carries a presymplectic form. Initial data sets \((q, \pi)\) and \((q', \pi')\) belong to the same gauge orbit if and only if there is a solution \(g\) and instantons \(\Sigma, \Sigma' \subset V\) such that \(\Sigma\) and \(\Sigma'\) are related by an element of \(\mathcal{D}_0(V)\) and \(g\) induces \((q, \pi)\) on \(\Sigma\) and \((q', \pi')\) on \(\Sigma'\). \(^{162}\) Just as on the space of solutions, we have a set of functions that can be viewed as the infinitesimal generators of the Poincaré group at infinity. Corresponding to a generator of time translations at infinity is a Hamiltonian on the space of initial data that generates a gauge equivalence class of notions of dynamics, each of which carries one from gauge orbit to gauge orbit (compare with the notion of dynamics on the space of initial data of an ordinary theory with gauge symmetries). So a generic dynamical trajectory, \(x(t)\), generated by such a Hamiltonian will represent a nontrivial trajectory through the space of initial data; the same Hamiltonian will generate many trajectories through each point in the space of initial data; but each of these trajectories will agree for each value of \(t\) about the gauge orbit in which the state of the system dwells at that time.

One expects that the reduced space of initial data should be a symplectic space isomorphic to the reduced space of solutions and carrying a representation of the Poincaré group. Choosing a notion of time translation at infinity should pick out a Hamiltonian on the reduced space of initial data whose dynamical trajectories encode the dynamics of the theory: fixing a notion of the time translation, the corresponding Hamiltonian, and an arbitrary point in the reduced space of initial data, we should find that the Hamiltonian trajectory through this point encodes a sequence of equivalence class of instantaneous data, and that any way of picking representatives of these classes that stack to form a sensible spacetime geometry encodes a solution of the theory.

So the situation in this case is very different from that we saw above in the spatially compact case. We have representations of the Poincaré group on the reduced space of solutions and on the reduced space of initial data, and we have these representations encoded in structures on the space of solutions and the space of initial data.

And we can represent changeable physical quantities in a quite familiar way, via smooth functions on the reduced space of initial data. Special cases aside, such functions change their values as the state moves along the dynamical trajectories in that space. And we can calculate the rate of change of such quantities, etc. The situation is more complicated if we seek to represent change via functions on the space of solutions — this requires some of the apparatus to be developed below in section 7.3. But at least at the intuitive level, it is clear what needs to be done: because for each point in the reduced space of solutions, there is, for each notion of time translation at infinity, a one-parameter family of points in this space that correspond to the time translates of the given point, it ought to be possible to find, for any function on the reduced space of initial data that corresponds to a

\(^{162}\) As in the spatially compact case, distinct points in the space of initial data can correspond to the same field configuration and momentum induced by \(g\) on \(\Sigma \subset V\), if we use distinct diffeomorphisms to pull back these tensors to the abstract instant \(S\).
changeable quantity, a one-parameter family of functions on the reduced space of solutions that encode the value of that quantity at different moments of time.

Is General Covariance Special?

Einstein believed that the general covariance of general relativity was a very special feature with momentous physical consequences. Motivated by the observation that in special relativity there is a tight connection between the fact that the laws assume the same form in every inertial frame and the fact that all inertial observers are equivalent (so that there is no notion of absolute velocity), Einstein hoped that because the laws of his theory of gravity held in arbitrary coordinates the theory would be one in which all observers were equivalent (so that there would no notion of absolute motion whatsoever).

But, notoriously, the means were inadequate to the end: in general relativity there is a perfectly cogent (and coordinate-independent) distinction between those observers who are accelerated and those who are unaccelerated, between those who are rotating and those who are not.¹⁶³

Einstein’s requirement that the laws of his theory should hold in arbitrary coordinate systems is just the translation into the language of coordinates of our first, weak, sense of general covariance. The preceding paragraph points out that this requirement does not have the powerful consequences that Einstein believed it to. Even worse, it was pointed out already by Kretschmann in 1917 that this weak sense of general covariance is not a very unusual feature: many pre-general relativistic theories can be given a weakly generally covariant formulation.¹⁶⁴ Indeed, there is a recipe that takes as input a Lagrangian field theory on a fixed background spacetime and gives as output a strongly generally covariant reformulation/relative of the given theory.¹⁶⁵

EXAMPLE 43 (Artificial General Covariance). Let T_0 be the theory of a massless Klein–Gordon scalar field, Ψ propagating on a fixed background spacetime, (V_0, g_0). The Lagrangian for T_0 is $L_0(\Psi) := \frac{1}{2} g_0^{ab} \nabla_a \Psi \nabla_b \Psi$ and the corresponding equation of motion is $\Box_0 \Psi = 0$, where \Box_0 is the d’Alembertian corresponding to g_0.¹⁶⁶ Given T_0 we can construct a strongly generally covariant theory T as follows.¹⁶⁷ Let V be a manifold diffeomorphic to V_0. The spacetime of T is the bare

¹⁶³Einstein’s line of thought founders on the following observation: in special relativity Lorentz transformations are symmetries of the spacetime metric that is used to determine the state of motion of an observer, in general relativity an arbitrary diffeomorphism is certainly not a symmetry of the spacetime geometry of a given solution — but this geometry again plays a role in determining the state of motion of an observer. See [Friedman, 1983, Chapters II and V].

¹⁶⁴On Kretschmann, see [Rynasiewicz, 1999].

¹⁶⁵It is not obvious how one should individuate theories in the present context. For discussion and suggestions, see [Sorkin, 2002, 698] and [Earman, 2006, §4].

¹⁶⁶The d’Alembertian corresponding to a Lorentz metric g is defined just as the Laplacian of a Riemannian metric g as $\text{div}_g \circ \text{grad}_g$, where div_g is the divergence operator of g and grad_g is the gradient operator of g.

¹⁶⁷See [Lee and Wald, 1990, 734] or [Torre, 1992, §II]. The same procedure will work for any scalar field with a first-order Lagrangian that features a non-derivative coupling of the field to
The representation of time and change in mechanics. T involves two fields, X and $\Phi : X$ takes values in V_0 while Φ takes values in \mathbb{R}. A pair (X, Φ) counts as kinematically possible only if $X : V \to V_0$ is a diffeomorphism.168 The Lagrangian L of T is constructed as follows: for any kinematically possible (X, Φ), the n-form $L(X, \Phi)$ on V is the pullback to V by X of the n-form $L_0(\Psi)$ on V_0, where $\Psi := \Phi \circ X^{-1}$. L admits $D(V)$ as a group of gauge symmetries — so T is strongly generally covariant. Note that a kinematically possible pair (X, Φ) is a solution of T if and only if $\Psi = \Phi \circ X^{-1}$ is a solution of T_0. This is equivalent to saying that a pair (X, Φ) is a solution if and only if Φ is a solution of the massless Klein–Gordon equation $\Box \Phi = 0$, with \Box the d’Alembertian corresponding to the metric $g := X^* g_0$ on V.

This shows that there are relatively ordinary theories, like the theory of Klein–Gordon field, that can be given strongly generally covariant formulations. So even strong general covariance fails to distinguish general relativity from perfectly pedestrian theories.

Nonetheless, it is difficult to shake the feeling that the special nature of general relativity among physical theories has something to do with its general covariance. Indeed, it would appear that at the present time the best that can be said is that what makes general relativity special is that its most natural and perspicuous formulations are generally covariant. But that is just to say that we do not yet understand the matter, I think.

In this connection, it is natural to ask whether the difficulties that we encounter in representing time and change in general relativity arise for the artificially strongly generally covariant theory of example 43.

Example 44 (Artificial General Covariance and the Problem of Time). Let us return to the theories T_0 and T of example 43, and let us assume for convenience that the spacetime, (V_0, g_0), of T_0 does not admit any isometries. Suppose that we were simply handed T. Would there be any way to represent changeable quantities via functions on a symplectic space associated with T?

Let S be the space of solutions of T, and let S' be the corresponding reduced space (i.e., the space of gauge orbits of S). As one would expect, two solutions (X, Φ) and (X', Φ') lie in the same gauge orbit of S if and only if there exists $d \in D(V)$ such that $X' = X \circ d$ and $\Phi' = \Phi \circ d$. The space S is, of course, presymplectic while the space S' is symplectic. But since solutions in the same gauge orbit will not agree about the value of Φ or X at any point of V, it is difficult to view a diffeomorphism equivalence class of solutions as assigning properties to points of V, and so it would appear to be impossible to think of S' as the space of solutions corresponding to some local Lagrangian. By following a procedure like that used in the discussion of general relativity above, we can construct the space of initial data, I, of T, and the corresponding reduced space, I'. The latter will be a symplectic space. But note that the Hamiltonians on I and I' vanish. So

168 Strictly speaking, this takes us outside of our official framework for Lagrangian field theories, since the value that X takes at distinct points of V are not independent of one another.
although we have been able to construct symplectic spaces, we do not have the nontrivial flows associated with time translation or time evolution that we require to set up our representation of change via functions on these spaces. So far, the present case looks very much like the case of spatially compact general relativity.

But now note that from knowledge of T alone we can reconstruct T_0. The field X has as its target space the manifold V_0. We take T_0 to be the theory of a scalar field Ψ on V_0 with Lagrangian L_0 given as follows: let Ψ be a kinematically possible field of T_0 and let $X : V \to V_0$ be an arbitrary diffeomorphism; then we define $L_0(\Psi)$ to be the n-form on V_0 that results when we use X^{-1} to pullback to V_0 the n-form $L(X, \Psi \circ X)$; the result is independent of the X chosen. The resulting equations of motion is $\Box_0 \Psi = 0$. Noting that \Box_0 arises as the d'Alembertian of a unique metric g_0 on V_0 and that field propagates causally relative to g_0, it is natural for us to view g_0 as the geometrical structure of V_0, and go on to consider slicings relative to g_0, etc.

With T_0 in hand, we can construct the space of solutions, S_0. Relative to a slicing of (V_0, g_0), we can represent any changeable quantity — e.g., the volume of the support of the scalar field — via functions on S_0 in the usual way.

Finally, note that S' is canonically symplectically isomorphic to S_0.169 So we can transfer our representation of change from the latter space to the former. So there is a way to avoid the problem of time in this case.170

There is, however, an obvious worry about this approach. Let \tilde{g}_0 be a metric on V distinct from g_0. Then \Box_0 is not the d'Alembertian of \tilde{g}_0; but presumably this operator is still definable in terms of \tilde{g}_0. So according to \tilde{g}_0 the Euler–Lagrange equations of L_0 on V_0 are not the Klein–Gordon equations, but some less famous equations. Now, the above strategy amounts to thinking of T as really the theory of a Klein–Gordon field on a spacetime isomorphic to (V_0, g_0). But it was no part of our data that T is a Klein–Gordon theory. So what is to stop us from thinking of T as really a theory of a field obeying some less famous equations on a spacetime isomorphic to (V_0, \tilde{g}_0)? In this case we would use slicings of (V_0, \tilde{g}_0) to set up our representation of change, etc.

Here are two things one might say in response to this worry. (1) We sought and found a natural way of representing change via functions on S'. It is no problem if there are others. (2) We normally demand that of a physically reasonable theory that its field propagate along the nullcones of the spacetime metric. This will be true of T_0 only for metrics \tilde{g}_0 conformally equivalent to g_0.171 Every slicing of (V_0, g_0) is also a slicing of (V_0, \tilde{g}_0) for each \tilde{g}_0 conformally related to g_0 (since

169 Via the map that sends an equivalence class, $[X, \Phi]$, of solutions T to the solution $\Psi = \Phi \circ X^{-1}$ of T_0. It is at this point that we require the assumption the g_0 does not admit isometries: in general, S' is isomorphic to the quotient of S_0 by the action of the isometry group of g_0.

170 Note that we must choose a slicing of (V_0, g_0) in order to get a family of functions on S' corresponding to a changeable physical quantity. Such functions tell us things like how large the volume of the support of the field is at the instant when the geometry of space assumes a given form.

171 Recall that metrics g_0 and g_1 on V are conformally related if there is a positive scalar $\Omega : V \to \mathbb{R}$ such that $g_1 = \Omega g_0$.}
conformally related methods agree about which lines are timelike and which hypersurfaces are spacelike). So relative to such a slicing we can consider a quantity that is conformally invariant in the sense that for each $\Sigma \subset V$ in our slicing, this quantity has the same value on Σ in $(V_0, \bar{g}_0, \bar{\Psi})$ for each \bar{g}_0 conformally related to g_0. Such a quantity is represented by the same one-parameter family of functions on the reduced space of solutions of T whether we view T as secretly a theory of a Klein–Gordon field on a spacetime isomorphic to (V_0, g_0) or as secretly a theory of some other sort of field on a spacetime isomorphic to (V_0, \bar{g}_0).

7.2 The Problem of Time

In each of the theories considered in sections 5 and 6 above, the dynamical content of the theory was encoded in a flow (possibly time-dependent, possible merely local) on a symplectic space of states within the Lagrangian or Hamiltonian formulation of the theory. That this fails in general relativity, conceived of as a theory of the universe as a whole, is what sets that theory apart. And, of course, this feature means that the standard strategies for representing change also fail for this theory: since one does not have a flow corresponding to time evolution on the reduced space of initial data, no function on that space can represent a changeable physical quantity; it follows that one does not have the apparatus required to represent changeable quantities via functions on the reduced space of solutions either.

This nexus is the problem of time: time is not represented in general relativity by a flow on a symplectic space and change is not represented by functions on a space of instantaneous or global states.172

Before proceeding to discuss the significance of this problem it is important to be clear about its nature and sources.

- If one approaches the problem of time via a focus on the transition from the space of initial data to the reduced space of initial data, the problem can appear especially urgent. For in passing from the space of initial data to the reduced space of initial data, one identifies initial data sets that correspond to distinct Cauchy surfaces within a single solution. \textit{Prima facie}, this involves treating the current state of the universe and its state just after the Big Bang as the \textit{same state}. Moral: according to general relativity, change is an illusion.

But this is too hasty. For of course the reduced space of initial data is canonically isomorphic to the reduced space of solutions.173 And in this latter space, some points represent worlds in which there is change (e.g., worlds which begin with a Big Bang) and some represent changeless worlds.

172 The canonical presentations of the problem of time are [Kuchar, 1992] and [Isham, 1993]. For philosophical discussions, see [Belot and Earman, 2001], [Butterfield and Isham, 2000], and [Earman, 2002]. For critical reactions to this literature, see [Maudlin, 2002] and [Healey, 2002].

173 Under the map that sends $[q, \pi]$ to $[g]$ if (q, g) describes the instantaneous state on some Cauchy surface of (V, g).

(e.g., world modelled by Einstein's static solution). So it is hard to see how general relativity teaches us the moral announced.

So I would like to disavow formulations of the problem of time that rely on this way of speaking. More constructively, I would like to suggest that it is helpful to concentrate on the reduced space of solutions rather than on the reduced space of initial data in setting up the problem of time. In the well-behaved theories of section 5 the space of initial data and the space of solutions are symplectically isomorphic, but we nonetheless think of these two spaces as having distinct representational functions — roughly and heuristically speaking, one is suited to represent possible instantaneous states while the other is suited to represent possible worlds. This distinction is grounded by the fact that relative to a slicing one finds that for each \(t \in \mathbb{R} \), the map \(T_{\Sigma_t} \) that sends a solution to the initial data that it induces on the instant \(\Sigma_t \subset V \) defines a distinct isomorphism between the space of solutions and the space of initial data. This makes it natural to think of points of the latter space as representing states (universals) that can occur at distinct times and to think of points in the space of solutions as representing possible worlds composed out of such states. The elements of this story survived more or less unscathed the introduction of various complicating factors in section 6. But in the case of cosmological general relativity we have only a single canonical isomorphism between the reduced space of initial data and the reduced space of solutions. In this context, it is difficult to deny that the reduced space of solutions and the reduced space of initial data are representationally equivalent. And it seems straightforward that we should interpret points in the reduced space of solutions as representing general relativistic worlds rather than instantaneous states — so we should say that same thing about points in the reduced space of initial data. Thus, we should resist any temptation to think of the reduction procedure as telling us to think of an early state of the universe and a late state of the universe as being the same instantaneous state.

- Since we have been focussing on the Lagrangian rather then the Hamiltonian picture, but have nonetheless run straight into the problem of time, we can conclude that this problem is not an artifact of the 3+1 decomposition involved in the Hamiltonian approach. Likewise, the problem of time is a feature of general relativity as a cosmological theory, but not of general relativity in the regime of asymptotic flatness at spatial infinity, nor of field theories on fixed relativistic backgrounds, nor, I think, of the artificial strongly generally covariant theory of examples 43 and 44 above. From this we can conclude that the following are not sufficient conditions for the problem of time: the lack of a preferred slicing; the jiggleness of admissible slicings; the invariance of the theory under a group of spacetime diffeomorphisms. It appears that the problem arises when we employ a diffeomorphism-invariant theory to model a situation in which we take geometry to be fully dynamical.
(i.e., we do not smuggle in any background structure, at spatial infinity or elsewhere).

For everything that I have said so far, the Problem of Time may sound like no more than a diverting puzzle. Granted, time does not appear as a symmetry in general relativity as it did in earlier theories (even in the infinitesimal sense involved in a local flow). But, of course, part of the allure of the theory is that it changes the nature of time in a fundamental way. And since successful applications of the theory involve the representation of changeable physical quantities (e.g., the perihelion of Mercury), it would seem that there must be some way of generalizing the picture of the previous sections to cover general relativity. And while it will be granted that a search for this generalization might turn out to be enlightening, it may well not seem a very pressing project.

This puzzle begins to look far more urgent when we turn our attention to quantization. The good news is that upon reduction, one ends up with a symplectic space representing the true degrees of freedom of general relativity. Without something along these lines, quantization would be impossible. But the vanishing of the Hamiltonian for cosmological general relativity means that two looming difficulties block the road to the successful quantization of general relativity.

1. What is one to do next? Normally a Hamiltonian or a Lagrangian plays a crucial role in quantization. One defines quantum dynamics via these objects. In the case of spatially compact general relativity the reduced space of initial data inherits from the original space of initial data a Hamiltonian — which vanishes, so that the corresponding dynamics is trivial. And it does not appear to make any sense to speak of a local Lagrangian field theory of the true degrees of freedom of the gravitational field. The way forward is unclear.

2. Furthermore, it is not clear how one would make sense of a quantization of general relativity. While in the classical theory one can find change in solutions even without being able to find it at the dynamical level (in terms of quantities on the space of solutions, etc.), it is not obvious how this could be done at the quantum level. Perhaps the best that one can hope for is to be able to speak of approximate time and change in a subset of quantum states that approximate classical solutions. That seems perfectly acceptable — what one should be aiming at, even, in a theory in which the geometry of space and time are themselves quantized. But the usual techniques of semi-classical approximation require a Hamiltonian.\footnote{Thus, the WKB method aims to construct approximate eigenstates for the quantum Hamiltonian. Analyses based upon decoherence, coherent states, etc., aim to show that the dynamics driven by the quantum Hamiltonian approximates that of the corresponding classical system, and so on. See [Landsman, this volume].}
7.3 Finding Time in General Relativity

This final section discusses what is probably the most obvious way around the problem of time. In the cases discussed in sections 5 and 6, we were able to represent change via functions on the (reduced) space of solutions of the theory because we had a slicing, \(\sigma : S \times \mathbb{R} \to V \), that decomposed spacetime into space and time, and thereby allowed us to identify functions on the (reduced) space of solutions that corresponded to the values of a given quantity at different instants. But the notion of a solution-independent decomposition of spacetime into space and time makes no sense in general relativity, since solutions differ as to which curves count as timelike and which hypersurfaces count as spacelike. Somewhat surprisingly, it turns out to be possible to construct a Hamiltonian version of general relativity without employing slicings. But — unsurprisingly — without some sort of decomposition of spacetime into instants, it makes no sense to ask which states follow a given state (so there is no real dynamics on the Hamiltonian side) nor to try to construct a one-parameter family of functions on the reduced space of solutions that corresponds to the instantaneous values of a quantity of interest. So it is natural to look for a surrogate of the notion of a slicing that applies to diffeomorphism equivalence classes of solutions, rather than to individual solutions — and to hope that this will lead to familiar-looking accounts of the representation of time and change.

Throughout this final subsection, unless otherwise noted, I restrict attention to spatially compact vacuum general relativity in four spacetime dimensions with vanishing cosmological constant.

Let me begin with some definitions.

Definition 45 (Geometry). A point in the reduced space of solutions of general relativity is called a geometry. A geometry is an orbit of the action on the space of solutions of the group \(\mathcal{D}(V) \) of diffeomorphisms from \(V \) to itself. We write \([g]\) for the geometry corresponding to a solution \(g \); we speak of a solution in \([g]\) as a solution with geometry \([g]\).

Definition 46 (Instantaneous Geometry). The group \(\mathcal{D}(S) \) of diffeomorphisms from the abstract instant \(S \) to itself acts on the space of initial data. We call an orbit of this action an instantaneous geometry. We denote the instantaneous geometry corresponding to an initial data point \((q, \pi)\) by \(\langle q, \pi \rangle\). We speak of initial data \((q, \pi)\) as having the geometry \(\langle q, \pi \rangle\).\(^{175}\)

Definition 47 (Time for a Solution). Let \((V, g)\) be a solution. A time for \((V, g)\) is a partition, \(\{\Sigma\}\), of \((V, g)\) by Cauchy surfaces, called the instants of the time. A parameterized time is a time together with a preferred parameterization of the set of instants. An affinely parameterized time is a time whose instants are

\(^{175}\)Note that a instantaneous geometry is not a point in the reduced space of initial data: initial data induced by a given solution on distinct Cauchy surfaces correspond to the same point in the reduced space of initial data, but (in general) to distinct points in the space of instantaneous geometries.
parameterized up to the choice of origin.\footnote{We can think of a time for (V, g) as an unparameterized curve in the space of Cauchy surfaces of (V, g); a parameterized time is a parameterized curve of this type; an affinely parameterized time is an affinely parameterized curve of this type.}

DEFINITION 48 (Absolute Time). Let g be a solution. A time $\{\Sigma\}$ for (V, g) is called **absolute** if every isometry of g maps instants in $\{\Sigma\}$ to instants in $\{\Sigma\}$. An affinely parameterized time for g is called **absolute** if each isometry of g satisfies the preceding condition and preserves the parameter difference between each pair of instants. A parameterized time for g is called **absolute** if each isometry of g maps each instant of the time to itself.

Every globally hyperbolic solution admits a parameterized time (since each globally hyperbolic solution can be foliated by Cauchy surfaces, which can be given an arbitrary parameterization). But it is not always possible to find absolute times for solutions with large isometry groups. Minkowski spacetime does not admit an absolute time.\footnote{A time invariant under the notion of time translation associated with a given frame will fail to be invariant under boosts relative to that frame. The same argument will work in de Sitter spacetime, or in other spacetimes admitting boost symmetries; see [Moncrief, 1992] for examples.} If a spacetime admits time translation or inversion as a symmetry, then it does not admit an absolute parameterized time.

DEFINITION 49 (Time for General Relativity). A (plain, affinely parameterized, or parameterized) time for general relativity is a map defined on a subset of the space of solutions that assigns to each solution in its domain a (plain, affine, or parameterized) time for that solution, and does so in an appropriately smooth manner.

DEFINITION 50 (Geometric Time for General Relativity). A (plain, affinely parameterized, or parameterized) time for general relativity is called **geometric** if it satisfies the following conditions. (i) Its domain of definition is closed under the action of $\mathcal{D}(V)$ on the space of solutions. (ii) If g and g' are in the domain of the time and $g' = d^*g$ for some diffeomorphism $d : V \to V$, then the foliation assigned to g' is the image under d^{-1} of the foliation assigned to g (if the time is affinely parameterized, then we require that such a d preserve the time difference between any two instants; if the time is parameterized, then we require that such a d map the instant labelled by t to the instant labelled by t). I will often shorten geometric time for general relativity to geometric time.

REMARK 51 (Geometric Times are Absolute). The (plain, affinely parameterized, or parameterized) time that a geometric time for general relativity assigns to a solution g is always absolute. For if $d : V \to V$ is an isometry of g, then condition (ii) in the preceding definition tells us that d preserves the time assigned to g, together with its parameterization properties, if any. It follows that Minkowski spacetime is not in the domain of definition of any geometric time for general relativity, and that no solution invariant under time translation or inversion is in the domain of definition of any parameterized geometric time for general relativity.

We can think of a (parameterized, affinely parameterized, or unparameterized)
geometric time for general relativity as a means of associating a geometry \([g]\) in the reduced space of solutions with a (parameterized, affinely parameterized, or unparameterized) curve \(\langle q(t), \pi(t) \rangle\) in the space of instantaneous geometries; we call such a curve a dynamical trajectory. The correspondence between geometries and dynamical trajectories is set up in the obvious way: let \(g\) be a solution in the domain of definition of a given geometric time, and let \(\langle q(t), \pi(t) \rangle\) be the (parameterized, affinely parameterized, or unparameterized) curve in the space of initial data that results when we look at the initial data induced by \(g\) on the instants in the time assigned to \(g\); \(\langle q(t), \pi(t) \rangle\) is the dynamical trajectory we seek.\(^{178}\) If \(g_1\) and \(g_2\) are solutions with the same geometry, then they are related by some diffeomorphism \(d : V \rightarrow V\). In this case \(d\) also relates the foliations assigned to them by our geometric time, so \(g_1\) and \(g_2\) will correspond to the same dynamical trajectory in the space of instantaneous geometries.

A number of interesting examples of geometric times are known. Most have very small domains of definition: (i) within the class of nonrotating dust solutions, a geometric time is given by foliating each solution by the unique family of hypersurfaces everywhere orthogonal to the dust worldlines; (ii) within the class of solutions whose isometry groups are three-dimensional with spacelike orbits, a geometric time is given by foliating each solution by the orbits of its isometry group.\(^{179}\) Examples of wider scope are harder to come by but do exist.

EXAMPLE 52 (CMC Time). Recall that if \(\Sigma \subset V\) is a Cauchy surface for \((V, g)\), then we can define tensors \(q^{ab}\) and \(k_{ab}\) on \(\Sigma\) with the following meaning: \(q^{ab} := g^{ab}|_\Sigma\) is the Riemannian metric that \(g\) induces on \(\Sigma\) and \(2k_{ab}\) is the rate of change of this metric according to freely falling observers whose worldlines intersect \(\Sigma\) orthogonally. Out of these tensors we can construct the mean curvature, \(k : \Sigma \rightarrow \mathbb{R}\), defined by \(k := q^{ab}k_{ab}\) (so \(k(x)\) is just the trace of the matrix that encodes information about \(k_{ab}\) at \(x\)). A Cauchy surface \(\Sigma \subset V\) for a solution \(g\) is called a surface of constant mean curvature, or simply a CMC surface, if \(k\) is a constant function on \(\Sigma\). Recall that unless otherwise noted, we restrict attention to \((3+1)\) spatially compact globally hyperbolic vacuum solutions with vanishing cosmological constant.

Applicability. It is widely believed that a large class of solutions to Einstein's field equations can be foliated by CMC surfaces.

1. It is known that the set of solutions containing a CMC slice is an open set in the space of solutions.\(^{180}\)

\(^{178}\)Strictly speaking, in order to construct the curve \(\langle q(t), \pi(t) \rangle\) in the space of initial data, we need to introduce a slicing of \((V, g)\) whose instants coincide with those of the given time, so that we can pullback states on concrete instants to states on our abstract instant \(S\); the arbitrariness involved in a choice of slicing washes out when we quotient the space of initial data by the action of \(\mathcal{D}(S)\) to reach the space of instantaneous states.

\(^{179}\)Scheme (i) generalizes Einstein's simultaneity convention to the context of dust cosmology; see [Sachs and Wu, 1977, §5.3]. Note that schemes (i) and (ii) need not coincide within their shared domain of definition; see [King and Ellis, 1973].

\(^{180}\)See, e.g., [Isenberg and Marsden, 1982, 195].
2. It was once conjectured that all solutions contain at least one CMC surface, but it is now known that this is not so.181

3. It is was once conjectured that all solutions admitting a CMC slice can be foliated by such slices.182 This is now believed to hold only for certain spatial topologies.183

4. It is believed that within the class of solutions foliated by CMC slices, all solutions of a given spatial topology will exhibit the same range of values of constant mean curvature, with the only exceptions being stationary solutions (recall that a solution is stationary if it admits a timelike Killing field — roughly speaking, the infinitesimal generator of a time translation group).184

Invariance Properties. CMC foliations behave superbly well under isometries.185 Let \((V, g)\) be a solution, \(\{\Sigma\}\) a set of CMC surfaces that foliates \(V\), and \(d: V \rightarrow V\) an isometry of \(g\). Then \(d\) leaves the foliation \(\{\Sigma\}\) invariant.186 If \((V, g)\) is non-stationary, then: (a) any symmetry \(d\) of \(g\) preserves each leaf in \(\{\Sigma\}\); and (b) for any real number \(\kappa\), there is at most one Cauchy surface with constant mean curvature \(\kappa\). If \((V, g)\) is stationary then: \(g\) is flat and any CMC surface in \((V, g)\) has vanishing mean curvature.187

CMC Time. Foliating each solution by its CMC slices, when possible, determines a geometric time within the class of solutions we are considering.

We can render this an affinely parameterized geometric time as follows: for non-stationary solutions, the parameter difference between slices of mean

181See [Bartnik and Isenberg, 2004, 32] or [Chruściel et al., 2005, Corollary 1.3]. The corresponding conjecture for spatially compact dust solutions is also false; see [Bartnik, 1988].

182For the original form of the conjecture, see, e.g., [Isenberg and Marsden, 1982, Conjecture 3.2]. This conjecture is known to be true for flat spacetimes ([Barbot, 2005, §12]) and the corresponding conjecture is known to be true in the \((2+1)\) case ([Andersson et al., 1997]). The counterpart of this conjecture is known to be false for spatially compact dust solutions ([Isenberg and Rendall, 1998]) and in the asymptotically flat vacuum case, where the Schwarzschild solution provides a counterexample ([Eardley and Smarr, 1979, §III]).

183For the current conjecture, see [Rendall, 1996, Conjectures 1 and 2]. It is now believed that for some spatial topologies, behaviour analogous to that of the Schwarzschild solution can occur; see [Rendall, 1996] and [Andersson, 2004, 81]. In the \((3+1)\) case, the revised conjecture is known to be true for some types of highly symmetric solutions, even when some forms of matter are allowed; see [Rendall, 1996, Theorems 1 and 2], [Andersson, 2004, 81 f. and 95], and the references therein.

184For this, see [Rendall, 1996, Conjectures 1 and 2]. For the situation in highly symmetric cases and in \((2+1)\) dimensions, see the references of the previous two footnotes.

185See [Isenberg and Marsden, 1982, §3].

186This would fail for spacetimes admitting boost symmetries, such as Minkowski spacetime and de Sitter spacetime. (Note that since we require vanishing cosmological constant, de Sitter spacetime does not count as a spatially compact vacuum solution for present purposes.) Note that in the asymptotically flat case, the question of the invariance of CMC slices is much more involved; see [Bartnik et al., 1990, §5].

187Of course, in general a timelike Killing vector does not guarantee flatness. But it does so within the class solutions presently under consideration.
curvature κ_1 and κ_2 is $|\kappa_2 - \kappa_1|$; for stationary solutions, the parameter difference between two slices is the proper time elapsed between those slices. If we restrict attention to non-stationary solutions, and assign to each slice the parameter value given by its mean curvature, then we arrive at a parameterized geometric time.

EXAMPLE 53 (Cosmological Time). Given a solution (V, g), the cosmological time function for g is the map $\tau : V \to \mathbb{R} \cup \{\infty\}$ that assigns to each $x \in V$ the supremum over the length of all past-directed causal curves starting at x. Obviously there are many well-behaved spacetimes in which $\tau(x)$ is badly behaved — e.g., in Minkowski spacetime, $\tau(x) = \infty$ for all events. We say that the cosmological time function of a solution is regular if: (a) $\tau(x) < \infty$ for all x and (b) $\tau \to 0$ along each past inextendible causal curve. If τ is a regular cosmological time function on (V, g) then: (i) (V, g) is globally hyperbolic; (ii) τ is a time function for the solution in the usual sense (i.e., it is continuous and strictly increasing along future-directed causal curves); and (iii) the level surfaces of τ are future Cauchy surfaces in (V, g) (i.e., these surfaces have empty future Cauchy horizons).\(^{188}\) In spatially compact vacuum $(2+1)$-dimensional general relativity, it is known: (a) that the cosmological time is regular for almost all spacetime topologies; and (b) that in one important class of solutions the cosmological time coincides with the CMC time.\(^{189}\) On the class of spacetimes with regular cosmological time functions whose level surfaces are Cauchy surfaces, we construct a geometric time for general relativity by foliating each solution by the surfaces of constant cosmological time; parameterizing these foliations by the value the cosmological time function takes on each leaf yields a parameterized geometric time for general relativity, so long as we exclude solutions with a time reflection symmetry.

A geometric time for general relativity is, in effect, a means of separating out from the infinite number of variables of the theory one relative to which the others are to be seen as evolving, by allowing us to pass from a point in the reduced space of solutions to a (possibly unparameterized) curve in the space instantaneous geometries. Instantaneous physical quantities such as the volume of the universe, or the number of stars, or the size of the solar system can be represented by real-valued functions on the space of instantaneous geometries. And so the choice of a geometric time allows us to talk about change in the familiar way: we can check to see whether a function on the space of instantaneous geometries that represents a quantity of interest takes on different values at points corresponding to the different instantaneous geometries that occur in a given spacetime geometry. If our geometric time for general relativity is affinely parameterized, we can calculate the rate of change of quantities of interest (since we then have an affinely parameterized curve through the space of instantaneous geometries corresponding to a

\(^{188}\)See [Andersson et al., 1998, Propositions 2.2 and 2.5 and Corollary 2.6].

\(^{189}\)See [Benedetti and Guadagnini, 2001]. In general, however, surfaces of constant cosmological time are less smooth than CMC surfaces, so the two notions of time do not coincide; see [Benedetti and Guadagnini, 2001, 331] or [Barbot and Zeghib, 2004, §5.4.1].
given spacetime geometry). If we have a parameterized geometric time for general
relativity, we can even mimic the construction we used in earlier sections to repre-
sent changeable quantities by one-parameter families of functions on the reduced
space of solutions of the theory: given the function \(f \) on the space of instantaneous
geometries that represents our quantity of interest, and a real number \(t \), we define
a partially defined function \(f_t \) on the reduced space of solutions by setting
\(f_t[g] \) equal to the value that \(f \) takes on the instantaneous geometry corre-
sponding to \(t \) in \([g]\).

As delineated above, the problem of time in general relativity had two major
aspects.

1. Time is not represented in spatially compact general relativity, as it was in
 earlier theories, via a flow on a symplectic space of states;

2. Change is not represented, as it was in earlier theories, via functions on sym-
 plectic spaces corresponding to the spaces of possible instantaneous states
 and worlds.

We now see that if we go as far as introducing a parameterized geometric time,
we can address the second of these worries by representing a changeable quantity
by a one-parameter family of functions on the reduced space of solutions, in the
usual way.

Does the introduction of a geometric time suffice to address the first worry? Any
geometric time singles out a subspace of the space of instantaneous geometries,
consisting of those \(\langle q, \pi \rangle \) that arise as instantaneous geometries of the Cauchy
surfaces picked out by that geometric time — e.g., only instantaneous geometries
portraying space as having constant mean curvature can arise according to the
CMC slicing scheme. If we introduce an affinely parameterized geometric time for
general relativity, then we do get a flow on the space of instantaneous geometries
that arise according to this geometric time (since this space is partitioned by the
affinely parameterized dynamical trajectories corresponding to geometries in the
domain of definition of the given geometric time). But one does not expect this
space to be symplectic nor to be isomorphic to the reduced space of solutions.\(^{190}\)

So a flow on the space of instantaneous geometries associated with our geometric
time is not a flow on a symplectic space. And since each dynamical trajectory on
the space of instantaneous geometries corresponds to a single point in the reduced
space of solutions, we have no means of carrying our flow on the former space over
to a nontrivial flow on the latter.

A natural strategy to set up a representation of time via a flow on a symplectic
manifold is to attempt to parlay a choice of geometric time for general relativity

\(^{190}\)Intuitively, the space of instantaneous geometries that arise according to a given geometric
time can be thought of as the product of the reduced space of solutions with the real line (since
each geometry corresponds to a one-parameter family of instantaneous geometries relative to the
geometric time). So the space of instantaneous geometries of the given geometric time is not
isomorphic to the space of solutions — nor can it be symplectic, since it is the product of a
symplectic space with an odd-dimensional space.
into a reformulation of of the theory as a nontrivial (but possibly time-dependent) Hamiltonian system. In one important case, it is known that this can achieved.

EXAMPLE 54 (CMC dynamics). We consider the CMC time introduced in example 52 above.\(^1\)\(^9\)\(^1\) We impose restrictions on the topology of our abstract instant \(S\).\(^2\)\(^9\)\(^2\) Let \(\mathcal{M}\) be the space of Riemannian metrics on \(S\) with constant scalar curvature \(-1\).\(^3\)\(^9\) The cotangent bundle \(T^*\mathcal{M}\) is a symplectic space; an element of \(T^*\mathcal{M}\) is of the form \((\gamma, p)\) where \(\gamma \in \mathcal{M}\) and \(p\) is a symmetric contravariant tensor density of rank two on \(S\) that is divergenceless and traceless according to \(\gamma\). We consider \((\gamma, p), (\gamma', p') \in T^*\mathcal{M}\) to be equivalent if there is a diffeomorphism \(d : S \to S\) such that \((\gamma', p') = (d^*\gamma, d^*p)\). The space \(\mathcal{I}^* := T^*\mathcal{M}/\mathcal{D}(S)\) that results when we quotient out by this equivalence relation inherits a symplectic structure from \(T^*\mathcal{M}\). We will call points in \(\mathcal{I}^*\) **conformal initial data**. For each \(t < 0\) there is a geometrically natural symplectic isomorphism between \(\mathcal{I}^*\) and the space of instantaneous geometries with constant mean curvature \(t\).\(^4\)\(^9\)\(^4\) And there is a natural symplectic isomorphism between the latter set and the reduced space of solutions of general relativity (under which an instantaneous state is sent to the unique geometry that it occurs in). So for each \(t < 0\) we have a symplectic isomorphism between the space of conformal initial data and the reduced space of solutions.

Conversely, given a geometry \([g]\) and a time \(t < 0\) we can look for the point in \(\mathcal{I}^*\) that corresponds to \([g]\) according to the isomorphism labelled by \(t\). Doing this for each \(t < 0\) gives us a curve in \(\mathcal{I}^*\) corresponding to \([g]\). A generic point in \(\mathcal{I}^*\) will lie on many such trajectories: in general if \(x \in \mathcal{I}^*\) and \(t_1 \neq t_2\) then the instantaneous geometry of constant mean curvature \(t_1\) corresponding to \((x, t_1)\) and the instantaneous geometry of constant mean curvature \(t_2\) corresponding to \((x, t_2)\) will reside in different spacetime geometries. If we look at the complete family of trajectories in \(\mathcal{I}^*\) corresponding to all of the geometries in the reduced space of solutions, then we find that these are generated by the symplectic structure of \(\mathcal{I}^*\) together with a time-dependent Hamiltonian \(h(t)\) that is a simple function of \(t\).

\(^{1}\)For an overview of the \((3+1)\) case, see [Fischer and Moncrief, Unpublished, §§2 and 3]; for details see [Fischer and Moncrief, 1996], [Fischer and Moncrief, 1997], and the references therein. For the \((2+1)\) case see [Moncrief, 1989] and [Andersson et al., 1997]. The construction described below is an example of deparameterization. For this notion and for finite-dimensional applications, see [Beig, 1994, §2].

\(^{2}\)We impose two conditions. (i) \(S\) must be of Yamabe type \(-1\), i.e., the only constant scalar curvature Riemannian metrics that \(S\) admits have negative scalar curvature. This is essential for the constructions employed in the papers cited. (ii) \(S\) must not admit any Riemannian metrics with isometry groups of positive dimension. This saves us from having to worry about singular quotient spaces.

\(^{3}\)Because \(S\) is of Yamabe type \(-1\), every Riemannian metric on \(S\) is conformally equivalent to a metric in \(\mathcal{M}\).

\(^{4}\)Let us ignore the \(\mathcal{D}(S)\) symmetry for a moment. Given a pair \((\gamma, p)\) and a time \(t < 0\) there is a unique positive scalar \(\phi\) on \(S\) solving the the Lichnerowicz equation for \((\gamma, p, t)\),

\[
\Delta_\gamma \phi - \frac{1}{8} \phi^3 + \frac{1}{12} t^2 \phi^5 + \frac{1}{8} (p \cdot p) \mu^{-2} \phi^{-7} = 0
\]

(here \(\Delta_\gamma\) is the Laplacian for \(\gamma\) and \(\mu\) is the volume form for \(\gamma\)). Our desired \((q, \pi)\) is given by \(q := \phi^4 \gamma\) and \(\pi := \phi^{-4} p + \frac{2}{3} t \phi^3 \gamma^{-1}\).
and of spatial volume.195

Taking this example as our model, we can introduce the notion of a Hamiltonianization of general relativity associated with a given parameterized geometric time for the theory. Suppose that we are given such a parameterized geometric time. Suppose further that we are able to construct a symplectic space I^* whose points are ($D(S)$-equivalence classes of) tensors on the abstract instant S, and that for each value of t we are able to construct a geometrically natural isomorphism between I^* and the set of instantaneous geometries corresponding to t according to our parameterized geometric time. Composing these isomorphisms with the canonical map from the space of instantaneous geometries to the reduced space of solutions gives us a one-parameter family of symplectic isomorphisms between I^* and S'.196 This allows us to associate each geometry $[g]$ with a curve $x(t)$ in I^*: for each t, $x(t)$ is the point in I^* that gets mapped to $[g]$ by the isomorphism labelled by t. We call $x(t)$ the dynamical trajectory associated with $[g]$. We now consider the class of dynamical trajectories on I^* that arise in this way, and ask whether there is a (possibly time-dependent) Hamiltonian on I^* that generates them in concert with the symplectic structure of I^*. If there is, then the resulting (possibly time-dependent) Hamiltonian system is a Hamiltonianization of general relativity based upon the given parameterized geometric time.

As we have seen, given a parameterized geometric time for general relativity we can represent changeable quantities in the familiar way via one-parameter families of functions on the reduced space of solutions. And if we go further and introduce an associated Hamiltonianization of the theory, then we can represent time in the familiar way via a (possibly time-dependent) Hamiltonian flow on the symplectic space I^*, whose points we can think of as initial data posable at different times. So these notions allow us to circumvent the problem of time by playing the same roles that a slicing played in sections 5 and 6 when we considered theories set in fixed background spacetimes.

Does the introduction of a geometric time or of an associated Hamiltonianization violate general covariance? In one sense there is no violation — for these notions are situated at the level of the reduced space of solutions, and so cannot, e.g., treat diffeomorphic solutions differently.

But it remains true that the introduction of a geometric time violates the spirit of general relativity, as the theory is generally understood today — most would like to think of special relativity as dissolving any privileged distinction between time and space and of general relativity as generalizing special relativity in a way that does nothing to reinstate such a distinction.197

195The spatial volume is itself a t-dependent function on I^*, since the same conformal data will lead to instantaneous geometries with different volumes when supplemented by different values of t.

196Strictly speaking, these isomorphisms will be merely local (as in section 6.1) if the range of values taken on by the time parameter varies from geometry to geometry.

197On the other hand, many early relativistic cosmologists were happy to take the natural foliation of nonrotating dust cosmologies by surfaces orthogonal to the dust worldlines as a sign that the distinction between space and time, banished in Einstein's account of electromagnetism,
Note, however, that this is really an objection to the privileging of one geometric time over others. It seems entirely in the spirit of general relativity to think of the content of the theory as being elucidated by each of its Hamiltonianizations and as being exhausted by the set of all Hamiltonianizations (that is, if we ignore spacetimes with time translation or reflection symmetries).

Still, it is natural to ask what sort of considerations could lead us to recognize a geometric time or associated Hamiltonianization as being the correct one.\(^{198}\)

Classical Considerations. In the CMC Hamiltonianization sketched in example 54 above general relativity is recast as a time-dependent system. This is a bit unsettling: we are used to thinking that time-dependent Hamiltonians only arise when an open system is subject to external forces. So it is surprising to encounter a time-dependent Hamiltonian system in a fundamental context. Perhaps this is something we have to learn to live with: we are here in effect singling out one of general relativity's infinitely many variables and treating it as time — and we expect there to be all sorts of complicated nonlinear interactions between the variables of general relativity. However, some interesting special cases are known of geometric times that lead to time-independent Hamiltonianizations of general relativity.\(^{199}\)

So we cannot rule out the possibility that there may be a geometric time of wide scope that that allows us to reformulate general relativity as a time-independent Hamiltonian theory with non-trivial dynamics.\(^{200}\) Clearly the construction of such a geometric time would be of the first interest: it might well seem that we had happened on the correct time, previously concealed from us by the un perspicuous formulations of the theory that we had been working with — much as it would have if classical mechanics had first been given a time-reparameterization invariant formulation, and it had then been discovered that a certain family of parameterizations allowed the equations to be rewritten in a much simpler form.

Quantum Considerations. The question whether to privilege one geometric time or to treat them all equally can be expected to have repercussions for quantization (which project provides the main motivation for looking for

\(^{198}\)Note that some approaches in the philosophy of time and some approaches to the interpretation of quantum mechanics would appear to require something like a preferred foliation of spacetime by instants of time.

\(^{199}\)This happens with the CMC time in the case where space has the topology of a two-torus; see [Moncrief, 1989, 2913]. It can also be achieved for general relativity coupled to a perfect fluid — in this case the conserved quantity that drives the dynamics is total baryon number; see [Moncrief, 1977] and [Moncrief and Demaret, 1980].

\(^{200}\)Note that given a non-trivial time-independent Hamiltonian on \(T^*\), we can use our \(t\)-dependent isomorphisms between \(T^*\) and \(S'\) to construct a corresponding (possibly time-dependent) Hamiltonian on \(S'\). Unless the latter function were constant, it would generate a nontrivial flow on the reduced space of solutions. Of course, this could not be interpreted as time translation, although generated by the counterpart of the time-independent Hamiltonian generating time evolution.
a Hamiltonian formulation of general relativity with nontrivial dynamics in the first place). For one certainly does not expect that distinct Hamiltonian formulations of general relativity corresponding to distinct choices of geometric time should have equivalent quantizations — at least not if equivalent quantizations are required to be unitarily equivalent.

So what can we hope for? For long shots like the following. (1) Perhaps only one geometric time will lead to an empirically adequate quantum theory of gravity. (2) Perhaps there will be a natural class of geometric times (e.g., the ones that lead to time-independent Hamiltonians) that can be seen as underwriting the equivalent quantum theories (perhaps in a liberalized sense of "equivalent").

Far more plausibly, the solution to the difficulties in quantizing general relativity will come from some other direction entirely. But hopefully it will in any case be worthwhile to be clear about the nature of the problem of time.

ACKNOWLEDGEMENTS

I would like to thank: the editors of this volume for their invitation, their sage advice, and their great patience; audiences in Montreal, New York, and Pittsburgh who sat through chaotic presentations of this material; Vincent Moncrief and Charles Torre for helpful correspondence; Richard Thomas for unhelpful correspondence; and Frank Arntzenius, Cian Dorr, Alexandre Guay, and Laura Ruetsche for helpful conversations.

BIBLIOGRAPHY

201 The Stone-von Neumann theorem guarantees that unless one of them does something odd, two people setting out to quantize a Hamiltonian theory with a linear, finite-dimensional phase space will end up with unitarily equivalent quantizations. But as soon as one considers infinite-dimensional or nonlinear phase spaces the situations changes radically — for example, what look like equivalent formalisms at the classical level lead to distinct quantum theories. See [Ruetsche, Unpublished] and [Gotay, 2000] for discussion, examples, and references. See [Gotay and Demaret, 1983] for a minisuperspace cosmological model that admits competing deparameterizations that lead to physically distinct quantizations.

The Representation of Time and Change in Mechanics

[Rovelli, this volume] C. Rovelli. Quantum gravity. Chapter 12, this volume.

This page intentionally left blank
CLASSICAL RELATIVITY THEORY

David B. Malament

1 INTRODUCTION

The essay that follows is divided into two parts. In the first, I give a brief account of the structure of classical relativity theory.1 In the second, I discuss three special topics.

My account in the first part (section 2) is limited in several respects. I do not discuss the historical development of classical relativity theory, nor the evidence we have for it. I do not treat "special relativity" as a theory in its own right that is superseded by "general relativity". And I do not describe known exact solutions to Einstein's equation. (This list could be continued at great length.2)

Instead, I limit myself to a few fundamental ideas, and present them as clearly and precisely as I can. The account presupposes a good understanding of basic differential geometry, and at least passing acquaintance with relativity theory itself.3

In section 3, I first consider the status of the relative simultaneity relation in the context of Minkowski spacetime. At issue is whether the standard relation, the one picked out by Einstein's "definition" of simultaneity, is conventional in character, or is rather in some significant sense forced on us. Then I describe the "geometrized" version of Newtonian gravitation theory (also known as Newton-Cartan theory). It is included here because it helps to clarify what is and is not distinctive about classical relativity theory. Finally, I consider to what extent the global geometric structure of spacetime can be recovered from its "causal structure".4

1I speak of "classical" relativity theory because considerations involving quantum mechanics will play no role. In particular, there will be no discussion of quantum field theory in curved spacetime, or of attempts to formulate a quantum theory of gravitation. (For the latter, see Rovelli (this volume, chapter 12).)

2Two important topics that I do not consider figure centrally in other contributions to this volume, namely the initial value formulation of relativity theory (Earman, chapter 15), and the Hamiltonian formulation of relativity theory (Belot, chapter 2).

3A review of the needed differential geometry (and "abstract-index notation" that I use) can be found, for example, in Wald [1984] and Malament [unpublished]. (Some topics are also reviewed in sections 3.1 and 3.2 of Butterfield (this volume, chapter 1).) In preparing part 1, I have drawn heavily on a number of sources. At the top of the list are Geroch [unpublished], Hawking and Ellis [1972], O'Neill [1983], Sachs and Wu [1977a; 1977b], and Wald [1984].

4Further discussion of the foundations of classical relativity theory, from a slightly different point of view, can be found in Rovelli (this volume, chapter 12).
2 THE STRUCTURE OF RELATIVITY THEORY

2.1 Relativistic Spacetimes

Relativity theory determines a class of geometric models for the spacetime structure of our universe (and subregions thereof such as, for example, our solar system). Each represents a possible world (or world-region) compatible with the constraints of the theory. It is convenient to describe these models in stages. We start by characterizing a broad class of "relativistic spacetimes", and discussing their interpretation. Later we introduce further restrictions involving global spacetime structure and Einstein’s equation.

We take a relativistic spacetime to be a pair \((M, g_{ab})\), where \(M\) is a smooth, connected, four-dimensional manifold, and \(g_{ab}\) is a smooth, semi-Riemannian metric on \(M\) of Lorentz signature \((1, 3)\).\(^5\)

We interpret \(M\) as the manifold of point “events” in the world.\(^6\) The interpretation of \(g_{ab}\) is given by a network of interconnected physical principles. We list three in this section that are relatively simple in character because they make reference only to point particles and light rays. (These objects alone suffice to determine the metric, at least up to a constant.) In the next section, we list a fourth that concerns the behavior of (ideal) clocks. Still other principles involving generic matter fields will come up later.

We begin by reviewing a few definitions. In what follows, let \((M, g_{ab})\) be a fixed relativistic spacetime, and let \(\nabla_a\) be the derivative operator on \(M\) determined by \(g_{ab}\), i.e., the unique (torsion-free) derivative operator on \(M\) satisfying the compatibility condition \(\nabla_a g_{bc} = 0\).

Given a point \(p\) in \(M\), and a vector \(\eta^a\) in the tangent space \(M_p\) at \(p\), we say \(\eta^a\) is:

- **timelike** if \(\eta^a \eta_a > 0\)
- **null (or lightlike)** if \(\eta^a \eta_a = 0\)
- **causal** if \(\eta^a \eta_a \geq 0\)
- **spacelike** if \(\eta^a \eta_a < 0\).

\(^5\)The stated signature condition is equivalent to the requirement that, at every point \(p\) in \(M\), the tangent space \(M_p\) have a basis \(\xi^1, \ldots, \xi^4\) such that, for all \(i\) and \(j\) in \(\{1, 2, 3, 4\}\), \(g_{ab} \xi^a \xi^b = 0\) if \(i \neq j\), and

\[
g_{ab} \xi^a \xi^b = \begin{cases}
+1 & \text{if } i = 1 \\
-1 & \text{if } i = 2, 3, 4.
\end{cases}
\]

(Here we are using the abstract-index notation. ‘\(a\)’ is an abstract index, while ‘\(i\)’ and ‘\(j\)’ are normal counting indices.) It follows that given any vectors \(\eta^a = \sum_{i=1}^4 k \xi^a\), and \(\rho^a = \sum_{j=1}^4 l \xi^a\) at \(p\),

\[
g_{ab} \eta^a \rho^b = \frac{1}{k} \frac{l}{k} \frac{2}{k} \frac{2}{k} \frac{3}{k} \frac{4}{k} \frac{4}{k} \frac{4}{k}.
\]

In what follows, we will often use the standard convention for lowering (abstract) indices with the metric \(g_{ab}\), and raising them with the inverse metric \(g^{ab}\). So, for example, we will write \(\eta_a \rho^a\) or \(\eta^a \rho_a\) instead of \(g_{ab} \eta^a \rho^b\).

\(^6\)We use ‘event’ as a neutral term here and intend no special significance. Some might prefer to speak of "equivalence classes of coincident point events", or "point event locations", or something along those lines.
In this way, g_{ab} determines a “null-cone structure” in the tangent space at every point of M. Null vectors form the boundary of the cone. Timelike vectors form its interior. Spacelike vectors fall outside the cone. Causal vectors are those that are either timelike or null. This classification extends naturally to curves. We take these to be smooth maps of the form $\gamma: I \to M$ where $I \subseteq \mathbb{R}$ is a (possibly infinite, not necessarily open) interval. γ qualifies as timelike (respectively null, causal, spacelike) if its tangent vector field $\dot{\gamma}$ is of this character at every point.

A curve $\gamma_2: I_2 \to M$ is called an (orientation preserving) reparametrization of the curve $\gamma_1: I_1 \to M$ if there is a smooth map $\tau: I_2 \to I_1$ of I_2 onto I_1, with positive derivative everywhere, such that $\gamma_2 = (\gamma_1 \circ \tau)$. The property of being timelike, null, etc. is preserved under reparametrization. So there is a clear sense in which our classification also extends to images of curves.

A curve $\gamma: I \to M$ is said to be a geodesic (with respect to g_{ab}) if its tangent field ξ^a satisfies the condition: $\xi^a \nabla_n \xi^a = 0$. The property of being a geodesic is not, in general, preserved under reparametrization. So it does not transfer to curve images. But, of course, the related property of being a geodesic up to reparametrization does carry over. (The latter holds of a curve if it can be reparametrized so as to be a geodesic.)

Now we can state the first three interpretive principles. For all curves $\gamma: I \to M$,

C1 γ is timelike iff its image $\gamma[I]$ could be the worldline of a massive point particle (i.e. a particle with positive mass);10

C2 γ can be reparametrized so as to be a null geodesic iff $\gamma[I]$ could be the trajectory of a light ray;11

P1 γ can be reparametrized so as to be a timelike geodesic iff $\gamma[I]$ could be the worldline of a free12 massive point particle.

In each case, a statement about geometric structure (on the left) is correlated with a statement about the behavior of particles or light rays (on the right).

Several comments and qualifications are called for. First, we are here working within the framework of relativity as traditionally understood, and ignoring speculations about

7If I is not an open set, we can understand smoothness to mean that there is an open interval $\overline{I} \subseteq \mathbb{R}$, with $I \subseteq \overline{I}$, and a smooth map $\overline{\gamma}: \overline{I} \to M$, such that $\overline{\gamma}(s) = \gamma(s)$ for all $s \in I$.

8This follows from the fact that, in the case just described, $\dot{\gamma}_2 = \frac{dx}{ds} \dot{\gamma}_1$, with $\frac{dx}{ds} > 0$.

9The difference between curves and curve images, i.e. between maps $\gamma: I \to M$ and sets $\gamma[I]$, matters. We take worldlines to be instances of the latter, i.e. construe them as point sets rather than parametrized point sets.

10We will later discuss the concept of mass in relativity theory. For the moment, we take it to be just a primitive attribute of particles.

11For certain purposes, even within classical relativity theory, it is useful to think of light as constituted by streams of “photons”, and take the right side condition here to be “$\gamma[I]$ could be the worldline of a photon”. The latter formulation makes C2 look more like C1 and P1, and draws attention to the fact that the distinction between massive particles and mass 0 particles (such as photons) has direct significance in terms of relativistic spacetime structure.

12“Free particles” here must be understood as ones that do not experience any forces (except “gravity”). It is one of the fundamental principles of relativity theory that gravity arises as a manifestation of spacetime curvature, not as an external force that deflects particles from their natural, straight (geodesic) trajectories. We will discuss this matter further in section 2.4.
the possibility of particles ("tachyons") that travel faster than light. (Their worldlines would come out as images of spacelike curves.) Second, we have built in the requirement that "curves" be smooth. So, depending on how one models collisions of point particles, one might want to restrict attention here to particles that do not experience collisions.

Third, the assertions require qualification because the status of "point particles" in relativity theory is a delicate matter. At issue is whether one treats a particle's own mass-energy as a source for the surrounding metric field g_{ab} — in addition to other sources that may happen to be present. (Here we anticipate our discussion of Einstein's equation.) If one does, then the curvature associated with g_{ab} may blow up as one approaches the particle's worldline. And in this case one cannot represent the worldline as the image of a curve in M, at least not without giving up the requirement that g_{ab} be a smooth field on M. For this reason, a more careful formulation of the principles would restrict attention to "test particles", i.e. ones whose own mass-energy is negligible and may be ignored for the purposes at hand.

Fourth, the modal character of the assertions (i.e. the reference to possibility) is essential. It is simply not true, to take the case of C1, that all timelike curve images are, in fact, the worldlines of massive particles. The claim is that, at least so far as the laws of relativity theory are concerned, they could be. Of course, judgments concerning what could be the case depend on what conditions are held fixed in the background. The claim that a particular curve image could be the worldline of a massive point particle must be understood to mean that it could so long as there are, for example, no barriers in the way. Similarly, in C2 there is an implicit qualification. We are considering what trajectories are available to light rays when no intervening material media are present, i.e. when we are dealing with light rays in vacua.

Though these four concerns are important and raise interesting questions about the role of idealization and modality in the formulation of physical theory, they have little to do with relativity theory as such. Similar difficulties arise when one attempts to formulate corresponding principles within the framework of Newtonian gravitation theory.

It follows from the cited interpretive principles that the metric g_{ab} is determined (up to a constant) by the behavior of point particles and light rays. We make this claim precise in a pair of propositions about "conformal structure" and "projective structure".

Let \bar{g}_{ab} be a second smooth metric of Lorentz signature on M. We say that \bar{g}_{ab} is conformally equivalent to g_{ab} if there is a smooth map $\Omega : M \rightarrow \mathbb{R}$ on M such that $\bar{g}_{ab} = \Omega^2 g_{ab}$. ($\Omega$ is called a conformal factor. It certainly need not be constant.) Clearly, if g_{ab} and \bar{g}_{ab} are conformally equivalent, then they agree in their classification of vectors and curves as timelike, null, etc.. The converse is true as well.\(^{13}\) Conformally equivalent metrics on M do not agree, in general, as to which curves on M qualify as geodesics or even just as geodesics up to reparametrization. But, it turns out, they do necessarily agree as to which null curves are geodesics up to reparametrization.\(^{14}\) And the converse is true,

\(^{13}\)If the two metrics agree as to which vectors and curves belong to any one of the three categories, then they must agree on all. And in that case, they must be conformally equivalent. See Hawking and Ellis [1972, p. 61].

\(^{14}\)This follows because the property of being the image of a null geodesic can be captured in terms of the existence or non-existence of (local) timelike and null curves connecting points in M. The relevant technical lemma can be formulated as follows.
once again.15

Putting the pieces together, we have the following proposition. Clauses (1) and (2) correspond to C1 and C2 respectively.

PROPOSITION 1. Let \bar{g}_{ab} be a second smooth metric of Lorentz signature on M. Then the following conditions are equivalent.

1. \bar{g}_{ab} and g_{ab} agree as to which curves on M are timelike.
2. \bar{g}_{ab} and g_{ab} agree as to which curves on M can be reparameterized so as to be null geodesics.
3. \bar{g}_{ab} and g_{ab} are conformally equivalent.

In this sense, the spacetime metric g_{ab} is determined up to a conformal factor, independently, by the set of possible worldlines of massive point particles, and by the set of possible trajectories of light rays.

Next we turn to projective structure. Let $\bar{\nabla}_a$ be a second derivative operator on M. We say that $\bar{\nabla}_a$ and ∇_a are *projectively equivalent* if they agree as to which curves are geodesics up to reparametrization (i.e. if, for all curves γ, γ can be reparametrized so as to be a geodesic with respect to $\bar{\nabla}_a$ iff it can be so reparametrized with respect to ∇_a). And if \bar{g}_{ab} is a second metric on M of Lorentz signature, we say that it is *projectively equivalent* to g_{ab} if its associated derivative operator $\bar{\nabla}_a$ is projectively equivalent to ∇_a.

It is a basic result, due to Hermann Weyl [1921], that if \bar{g}_{ab} and g_{ab} are conformally and projectively equivalent, then the conformal factor that relates them must be constant. It is convenient for our purposes, with interpretive principle P1 in mind, to cast it in a slightly altered form that makes reference only to timelike geodesics (rather than arbitrary geodesics).

PROPOSITION 2. Let \bar{g}_{ab} be a second smooth metric on M with $\bar{g}_{ab} = \Omega^2 g_{ab}$. If \bar{g}_{ab} and g_{ab} agree as to which timelike curves can be reparameterized so as to be geodesics, then Ω is constant.

The spacetime metric g_{ab}, we saw, is determined up to a conformal factor, independently, by the set of possible worldlines of massive point particles, and by the set of possible trajectories of light rays. The proposition now makes clear the sense in which it is fully determined (up to a constant) by those sets together with the set of possible worldlines of free massive particles.16

15For if the metrics agree as to which curves are null geodesics up to reparametrization, they must agree as to which vectors at arbitrary points are null, and this, we know, implies that the metrics are conformally equivalent.

16As Weyl put it [1950, p. 103],

... it can be shown that the metrical structure of the world is already fully determined by its inertial and causal structure, that therefore mensuration need not depend on clocks and rigid bodies but that light signals and mass points moving under the influence of inertia alone will

A curve $\gamma : I \rightarrow M$ can be reparameterized so as to be a null geodesic iff γ is null and for all $s \in I$, there is an open set $O \subseteq M$ containing $\gamma(s)$ such that, for all $s_1, s_2 \in I$, if $s_1 \leq s \leq s_2$, and if $\gamma([s_1, s_2]) \subseteq O$, then there is no timelike curve from $\gamma(s_1)$ to $\gamma(s_2)$ within O.

(Here $\gamma([s_1, s_2])$ is the image of γ as restricted to the interval $[s_1, s_2]$.) For a proof, see Hawking and Ellis [1972, p. 103].
Our characterization of relativistic spacetimes is extremely loose. Many further conditions might be imposed. For the moment, we consider just one.

\((M, g_{ab})\) is said to be **temporally orientable** if there exists a continuous timelike vector field \(\tau^a\) on \(M\). Suppose the condition is satisfied. Then two such fields \(\tau^a\) and \(\tilde{\tau}^a\) on \(M\) are said to be **co-oriented** if \(\tau^a \tilde{\tau}_a > 0\) everywhere, i.e. if \(\tau^a\) and \(\tilde{\tau}^a\) fall in the same lobe of the null-cone at every point of \(M\). Co-orientation is an equivalence relation (on the set of continuous timelike vector fields on \(M\)) with two equivalence classes. A **temporal orientation** of \((M, g_{ab})\) is a choice of one of those two equivalence classes to count as the "future" one. Thus, a non-zero causal vector \(\xi^a\) at a point of \(M\) is said to be **future directed** or **past directed** with respect to the temporal orientation \(T\) depending on whether \(\tau^a \xi_a > 0\) or \(\tau^a \xi_a < 0\) at the point, where \(\tau^a\) is any continuous timelike vector field in \(T\). Derivatively, a causal curve \(\gamma : I \to M\) is said to be **future directed** (resp. **past directed**) with respect to \(T\) if its tangent vectors at every point are.

In what follows, we assume that our background spacetime \((M, g_{ab})\) is temporally orientable, and that a particular temporal orientation has been specified. Also, given events \(p\) and \(q\) in \(M\), we write \(p \ll q\) (resp. \(p < q\)) if there is a future-directed timelike (resp. causal) curve that starts at \(p\) and ends at \(q\).\(^{17}\)

2.2 Proper Time

So far we have discussed relativistic spacetime structure without reference to either "time" or "space". We come to them in this section and the next.

Let \(\gamma : [s_1, s_2] \to M\) be a future-directed timelike curve in \(M\) with tangent field \(\xi^a\). We associate with it an elapsed **proper time** (relative to \(g_{ab}\)) given by

\[
|\gamma| = \int_{s_1}^{s_2} (g_{ab} \xi^a \xi^b)^{1/2} \, ds.
\]

This elapsed proper time is invariant under reparametrization of \(\gamma\), and is just what we would otherwise describe as the length of (the image of) \(\gamma\). The following is another basic principle of relativity theory.

P2 Clocks record the passage of elapsed proper time along their worldlines.

Again, a number of qualifications and comments are called for. Our formulation of C1, C2, and P1 was rough. The present formulation is that much more so. We have taken for granted that we know what "clocks" are. We have assumed that they have worldlines (rather than worldtubes). And we have overlooked the fact that ordinary clocks (e.g. the alarm clock on the nightstand) do not do well at all when subjected to extreme acceleration, tidal forces, and so forth. (Try smashing the alarm clock against the wall.) Again, suffice.

(For more on Weyl's "causal-inertial" method of determining the spacetime metric, see Coleman and Korté [2001, section 4.9].)

\(^{17}\)It follows immediately that if \(p \ll q\), then \(p < q\). The converse does not hold, in general. But the only way the second condition can be true, without the first being true as well, is if the only future-directed causal curves from \(p\) to \(q\) are null geodesics (or reparametrizations of null geodesics). See Hawking and Ellis [1972, p. 112].
these concerns are important and raise interesting questions about the role of idealization in the formulation of physical theory. (One might construe an "ideal clock" as a point-sized test object that perfectly records the passage of proper time along its worldline, and then take P2 to assert that real clocks are, under appropriate conditions, to varying degrees of accuracy, approximately ideal.) But as with our concerns about the status of point particles, they do not have much to do with relativity theory as such. Similar ones arise when one attempts to formulate corresponding principles about clock behavior within the framework of Newtonian theory.

Now suppose that one has determined the conformal structure of spacetime, say, by using light rays. Then one can use clocks, rather than free particles, to determine the conformal factor. One has the following simple result, which should be compared with proposition 2.\footnote{Here we not only determine the metric up to a constant, but determine the constant as well. The difference is that here, in effect, we have built in a choice of units for spacetime distance. We could obtain a more exact counterpart to proposition 2 if we worked, not with intervals of elapsed proper time, but rather with ratios of such intervals.}

PROPOSITION 3. Let \bar{g}_{ab} be a second smooth metric on M with $\bar{g}_{ab} = \Omega^2 g_{ab}$. Further suppose that the two metrics assign the same lengths to all timelike curves, i.e. $|\gamma|_{\bar{g}_{ab}} = |\gamma|_{g_{ab}}$ for all timelike curves $\gamma : I \rightarrow M$. Then $\Omega = 1$ everywhere. (Here $|\gamma|_{g_{ab}}$ is the length of γ relative to g_{ab}.)

P2 gives the whole story of relativistic clock behavior (modulo the concerns noted above). In particular, it implies the path dependence of clock readings. If two clocks start at an event p, and travel along different trajectories to an event q, then, in general, they will record different elapsed times for the trip. (E.g. one will record an elapsed time of 3,806 seconds, the other 649 seconds.) This is true no matter how similar the clocks are. (We may stipulate that they came off the same assembly line.) This is the case because, as P2 asserts, the elapsed time recorded by each of the clocks is just the length of the timelike curve it traverses in getting from p to q and, in general, those lengths will be different.

Suppose we consider all future-directed timelike curves from p to q. It is natural to ask if there are any that minimize or maximize the recorded elapsed time between the events. The answer to the first question is 'no'. Indeed, one has the following proposition.

PROPOSITION 4. Let p and q be events in M such that $p \ll q$. Then, for all $\varepsilon > 0$, there exists a future-directed timelike curve γ from p to q with $|\gamma| < \varepsilon$. (But there is no such curve with length 0, since all timelike curves have non-zero length.)

Though some work is required to give the proposition an honest proof (see O'Neill [1983, pp. 294-5]), it should seem intuitively plausible. If there is a timelike curve connecting p and q, there also exists a jointed, zig-zag null curve that connects them. It has length 0. But we can approximate the jointed null curve arbitrarily closely with smooth timelike curves that swing back and forth. So (by the continuity of the length function), we should expect that, for all $\varepsilon > 0$, there is an approximating timelike curve that has length less than ε. (See figure 1.)

The answer to the second question (Can one maximize recorded elapsed time between
Figure 1. A long timelike curve from p to q and a very short one that swings back-and-forth, and approximates a broken null curve.

p and q? is 'yes' if one restricts attention to local regions of spacetime. In the case of positive definite metrics, i.e. ones with signature of form $(n, 0)$, we know, geodesics are \textit{locally shortest} curves. The corresponding result for Lorentz metrics is that timelike geodesics are \textit{locally longest} curves.

\textbf{Proposition 5.} Let $\gamma : I \rightarrow M$ be a future-directed timelike curve. Then γ can be reparametrized so as to be a geodesic iff for all $s \in I$, there exists an open set O containing $\gamma(s)$ such that, for all $s_1, s_2 \in I$ with $s_1 \leq s \leq s_2$, if the image of $\gamma[s_1, s_2]$ is contained in O, then $\gamma[s_1, s_2]$ (and its reparametrizations) are longer than all other timelike curves in O from $\gamma(s_1)$ to $\gamma(s_2)$. (Here $\gamma[s_1, s_2]$ is the restriction of γ to the interval $[s_1, s_2]$.)

The proof of the proposition is very much the same as in the positive definite case. (See Hawking and Ellis [1972, p. 105].) Thus of all clocks passing locally from p to q, that one will record the greatest elapsed time that "falls freely" from p to q. To get a clock to read a smaller elapsed time than the maximal value one will have to accelerate the clock. Now acceleration requires fuel, and fuel is not free. So proposition 5 has the consequence that (locally) "saving time costs money". And proposition 4 may be taken to imply that (locally) "with enough money one can save as much time as one wants".

The restriction here to local regions of spacetime is essential. The connection described between clock behavior and acceleration does not, in general, hold on a global scale. In some relativistic spacetimes, one can find future-directed timelike geodesics connecting two events that have different lengths, and so clocks following the curves will record different elapsed times between the events even though both are in a state of free fall. Furthermore — this follows from the preceding claim by continuity considerations alone — it can be the case that of two clocks passing between the events, the one that undergoes acceleration during the trip records a greater elapsed time than the one that remains in a state of free fall.

The connection we have been considering between clock behavior and acceleration was once thought to be paradoxical. (I am thinking of the "clock (or twin) paradox").
Suppose two clocks, A and B, pass from one event to another in a suitably small region of spacetime. Further suppose A does so in a state of free fall, but B undergoes acceleration at some point along the way. Then, we know, A will record a greater elapsed time for the trip than B. This was thought paradoxical because it was believed that "relativity theory denies the possibility of distinguishing "absolutely" between free fall motion and accelerated motion". (If we are equally well entitled to think that it is clock B that is in a state of free fall, and A that undergoes acceleration, then, by parity of reasoning, it should be B that records the greater elapsed time.) The resolution of the paradox, if one can call it that, is that relativity theory makes no such denial. The situations of A and B here are not symmetric. The distinction between accelerated motion and free fall makes every bit as much sense in relativity theory as it does in Newtonian physics.

In what follows, unless indication is given to the contrary, a "timelike curve" should be understood to be a future-directed timelike curve, parametrized by elapsed proper time, i.e. by arc length. In that case, the tangent field ξ^a of the curve has unit length ($\xi^a \xi_a = 1$). And if a particle happens to have the image of the curve as its worldline, then, at any point, ξ^a is called the particle's four-velocity there.

2.3 Space/Time Decomposition at a Point and Particle Dynamics

Let γ be a timelike curve representing the particle O with four-velocity field ξ^a. Let p be a point on the image of γ, and let λ^a be a vector at p. There is a natural decomposition of λ^a into components parallel to, and orthogonal to, ξ^a:

\begin{align*}
(1) \quad & \lambda^a = (\lambda^b \xi_b) \xi^a + \left(\lambda^a - (\lambda^b \xi_b) \xi^a \right) \\
& \text{parallel to } \xi^a \quad \text{orthogonal to } \xi^a
\end{align*}

These are standardly interpreted, respectively, as the "temporal" and "spatial" components of λ^a (relative to ξ^a). In particular, the three-dimensional subspace of M_p consisting of vectors orthogonal to ξ^a is interpreted as the "infinitesimal" simultaneity slice of O at p.\(^\text{19}\)

If we introduce the tangent and orthogonal projection operators

\begin{align*}
(2) \quad & k_{ab} = \xi_a \xi_b \\
(3) \quad & h_{ab} = g_{ab} - \xi_a \xi_b
\end{align*}

then the decomposition can be expressed in the form

\begin{align*}
(4) \quad & \lambda^a = k^a_b \lambda^b + h^a_b \lambda^b.
\end{align*}

We can think of k_{ab} and h_{ab} as the relative temporal and spatial metrics determined by ξ^a. They are symmetric and satisfy

\begin{align*}
(5) \quad & k^a_b k^b_c = k^a_c \\
(6) \quad & h^a_b h^b_c = h^a_c.
\end{align*}

\(^{19}\)Here we simply take for granted the standard identification of "relative simultaneity" with orthogonality. We will return to consider its justification in section 3.1.
Many standard textbook assertions concerning the kinematics and dynamics of point particles can be recovered using these decomposition formulas. For example, suppose that the worldline of a second particle \bar{O} also passes through p and that its four-velocity at p is $\bar{\xi}^a$. (Since ξ^a and $\bar{\xi}^a$ are both future-directed, they are co-oriented, i.e. $(\xi^a \xi_a) > 0$.) We compute the speed of \bar{O} as determined by O. To do so, we take the spatial magnitude of $\bar{\xi}^a$ relative to O and divide by its temporal magnitude relative to O:

\begin{equation}
(7) \quad v = \text{speed of } \bar{O} \text{ relative to } O = \frac{||h^a_b \bar{\xi}^b||}{||k^a_b \bar{\xi}^b||}.
\end{equation}

(Given any vector μ^a, we understand $||\mu^a||$ to be $(\mu^a \mu_a)^{\frac{1}{2}}$ if μ^a is causal, and $(-\mu^a \mu_a)^{\frac{1}{2}}$ if it is spacelike.) From (2), (3), (5), and (6), we have

\begin{equation}
(8) \quad ||k^a_b \bar{\xi}^b|| = (k^a_b \bar{\xi}^b k_{ac} \bar{\xi}^c)^{\frac{1}{2}} = (k_{bc} \bar{\xi}^b \bar{\xi}^c)^{\frac{1}{2}} = (\bar{\xi}^b \xi_b)
\end{equation}

and

\begin{equation}
(9) \quad ||h^a_b \bar{\xi}^b|| = (-h^a_b \bar{\xi}^b h_{bc} \bar{\xi}^c)^{\frac{1}{2}} = (-h_{bc} \bar{\xi}^b \bar{\xi}^c)^{\frac{1}{2}} = ((\bar{\xi}^b \xi_b)^2 - 1)^{\frac{1}{2}}.
\end{equation}

So

\begin{equation}
(10) \quad v = \frac{((\bar{\xi}^b \xi_b)^2 - 1)^{\frac{1}{2}}}{(\bar{\xi}^b \xi_b)} < 1.
\end{equation}

Thus, as measured by O, no massive particle can ever attain the maximal speed 1. (A similar calculation would show that, as determined by O, light always travels with speed 1.) For future reference, we note that (10) implies:

\begin{equation}
(11) \quad (\bar{\xi}^b \xi_b) = \frac{1}{\sqrt{1 - v^2}}.
\end{equation}

It is a basic fact of relativistic life that there is associated with every point particle, at every event on its worldline, a four-momentum (or energy-momentum) vector P^a. In the case of a massive particle with four-velocity ξ^a, P^a is proportional to ξ^a, and the (positive) proportionality factor is just what we would otherwise call the mass (or rest mass) m of the particle. So we have $P^a = m \xi^a$. In the case of a "photon" (or other mass 0 particle), no such characterization is available because its worldline is the image of a null (rather than timelike) curve. But we can still understand its four-momentum vector at the event in question to be a future-directed null vector that is tangent to its worldline there. If we think of the four-momentum vector P^a as fundamental, then we can, in both cases, recover the mass of the particle as the length of P^a: $m = (P^a P_a)^{\frac{1}{2}}$. (It is strictly positive in the first case, and 0 in the second.)

Now suppose a massive particle O has four-velocity ξ^a at an event, and another particle, either a massive particle or a photon, has four-momentum P^a there. We can recover the usual expressions for the energy and three-momentum of the second particle relative to O if we decompose P^a in terms of ξ^a. By (4) and (2), we have

\begin{equation}
(12) \quad P^a = (P^b \xi_b) \xi^a + h^a_b P^b.
\end{equation}
The energy relative to O is the coefficient in the first term: $E = P^b \xi_b$. In the case of a massive particle where $P^a = m \xi^a$, this yields, by (11),

\[
E = m (\xi^b \xi_b) = \frac{m}{\sqrt{1 - v^2}}.
\]

(If we had not chosen units in which $c = 1$, the numerator in the final expression would have been mc^2 and the denominator $\sqrt{1 - \frac{v^2}{c^2}}$.) The three-momentum relative to O is the second term in the decomposition, i.e. the component of P^a orthogonal to ξ^a: $h^a_b P^b$. In the case of a massive particle, by (9) and (11), it has magnitude

\[
p = \|h^a_b m \xi^b\| = m ((\xi^b \xi_b)^2 - 1)^{\frac{1}{2}} = \frac{mv}{\sqrt{1 - v^2}}.
\]

Interpretive principle P1 asserts that free particles traverse the images of timelike geodesics. It can be thought of as the relativistic version of Newton’s first law of motion. Now we consider acceleration and the relativistic version of the second law. Let $\gamma : I \rightarrow M$ be a timelike curve whose image is the worldline of a massive particle O, and let ξ^a be the four-velocity field of O. Then the four-acceleration (or just acceleration) field of O is $\xi^a \nabla_n \xi^a$, i.e. the directional derivative of ξ^a in the direction ξ^a. The four-acceleration vector is orthogonal to ξ^a. (This is clear, since $\xi^a(\xi^n \nabla_n \xi_a) = \frac{1}{2} \xi^n \nabla_n (\xi^a \xi_a) = \frac{1}{2} \xi^n \nabla_n (1) = 0$.) The magnitude $\|\xi^n \nabla_n \xi^a\|$ of the four-acceleration vector at a point is just what we would otherwise describe as the Gaussian curvature of γ there. It is a measure of the degree to which γ curves away from a straight path. (And γ is a geodesic precisely if its curvature vanishes everywhere.)

The notion of spacetime acceleration requires attention. Consider an example. Suppose you decide to end it all and jump off the Empire State Building. What would your acceleration history be like during your final moments? One is accustomed in such cases to think in terms of acceleration relative to the earth. So one would say that you undergo acceleration between the time of your jump and your calamitous arrival. But on the present account, that description has things backwards. Between jump and arrival you are not accelerating. You are in a state of free fall and moving (approximately) along a spacetime geodesic. But before the jump, and after the arrival, you are accelerating. The floor of the observation desk, and then later the sidewalk, push you away from a geodesic path. The all-important idea here is that we are incorporating the “gravitational field” into the geometric structure of spacetime, and particles traverse geodesics if and only if they are acted upon by no forces “except gravity”.

The acceleration of any massive particle, i.e. its deviation from a geodesic trajectory, is determined by the forces acting on it (other than “gravity”). If the particle has mass $m > 0$, and the vector field F^a on $\gamma[I]$ represents the vector sum of the various (non-gravitational) forces acting on the particle, then the particle’s four-acceleration $\xi^n \nabla_n \xi^a$ satisfies:

\[
F^a = m \xi^n \nabla_n \xi^a.
\]

This is our version of Newton’s second law of motion.
Consider an example. Electromagnetic fields are represented by smooth, anti-symmetric fields F_{ab}. (Here “anti-symmetry” is the condition that $F_{ba} = -F_{ab}$.) If a particle with mass $m > 0$, charge q, and four-velocity field ξ^a is present, the force exerted by the field on the particle at a point is given by $q F^a_b \xi^b$. If we use this expression for the left side of (15), we arrive at the Lorentz law of motion for charged particles in the presence of an electromagnetic field:

(16) \[q F^a_b \xi^b = m \xi^b \nabla_b \xi^a. \]

2.4 Matter Fields

In classical relativity theory, one generally takes for granted that all that there is, and all that happens, can be described in terms of various matter fields, e.g. material fluids and electromagnetic fields. Each such field is represented by one or more smooth tensor (or spinor) fields on the spacetime manifold M. Each is assumed to satisfy field equations involving the fields that represent it and the spacetime metric g_{ab}.

For present purposes, the most important basic assumption about the matter fields is the following.

Associated with each matter field \mathcal{F} is a symmetric smooth tensor field T_{ab} characterized by the property that, for all points p in M, and all future-directed, unit timelike vectors ξ^a at p, $T^a_{\ b} \xi^b$ is the four-momentum density of \mathcal{F} at p as determined relative to ξ^a.

T_{ab} is called the energy-momentum field associated with \mathcal{F}. The four-momentum density vector $T^a_{\ b} \xi^b$ at p can be further decomposed into its temporal and spatial components relative to ξ^a, just as the four-momentum of a massive particle was decomposed in the preceding section. The coefficient of ξ^a in the first component, $T_{ab} \xi^a \xi^b$, is the energy density of \mathcal{F} at p as determined relative to ξ^a. The second component, $T_{nb} (g^{an} - \xi^a \xi^n) \xi^b$, is the three-momentum density of \mathcal{F} at p as determined relative to ξ^a.

Other assumptions about matter fields can be captured as constraints on the energy-momentum tensor fields with which they are associated. Examples are the following. (Suppose T_{ab} is associated with matter field \mathcal{F}.)

Weak Energy Condition: Given any future-directed unit timelike vector ξ^a at any point in M, $T_{ab} \xi^a \xi^b \geq 0$.

Dominant Energy Condition: Given any future-directed unit timelike vector ξ^a at any point in M, $T_{ab} \xi^a \xi^b \geq 0$ and $T^a_{\ b} \xi^b$ is timelike or null.

Conservation Condition: $\nabla_a T^{ab} = 0$ at all points in M.

The first asserts that the energy density of \mathcal{F}, as determined by any observer at any point, is non-negative. The second adds the requirement that the four-momentum density of \mathcal{F}, as determined by any observer at any point, is a future-directed causal (i.e. timelike

21 This being the case, the question arises how (or whether) one can adequately recover talk about “point particles” in terms of the matter fields. We will say just a bit about the question in this section.
or null) vector. The addition can be understood as the assertion that there is an upper bound to the speed with which energy-momentum can propagate (as determined by any observer). It captures something of the flavor of principle C1 in section 2.1, but avoids reference to "point particles".\footnote{This is the standard formulation of the dominant energy condition. The fit with C1 would be even closer if we strengthened the condition slightly so as to be appropriate, specifically, for massive matter fields: at any point p in M, if $T^{a}_{\gamma} \neq 0$ there, then $T^{a}_{\gamma} \xi^{b}$ is timelike for all future-directed unit timelike vectors ξ^{a} at p.}

The conservation condition, finally, asserts that the energy-momentum carried by \mathcal{F} is locally conserved. If two or more matter fields are present in the same region of spacetime, it need not be the case that each one individually satisfies the condition. Interaction may occur. But it is a fundamental assumption that the composite energy-momentum field formed by taking the sum of the individual ones satisfies it. Energy-momentum can be transferred from one matter field to another, but it cannot be created or destroyed.

The dominant energy and conservation conditions have a number of joint consequences that support the interpretations just given. We mention two. The first requires a preliminary definition.

Let (M, g_{ab}) be a fixed relativistic spacetime, and let S be an achronal subset of M (i.e. a subset in which there do not exist points p and q such that $p \ll q$). The domain of dependence $D(S)$ of S is the set of all points p in M with this property: given any smooth causal curve without (past or future) endpoint,\footnote{Let $\gamma: I \rightarrow M$ be a smooth curve. We say that a point p in M is a future-endpoint of γ if, for all open sets O containing p, there exists an s_{0} in I such that for all $s \in I$, if $s \geq s_{0}$, then $\gamma(s) \in O$, i.e. the image of γ eventually enters and remains in O. (Past-endpoints are defined similarly.)} if (its image) passes through p, then it necessarily intersects S. For all standard matter fields, at least, one can prove a theorem to the effect that "what happens on S fully determines what happens throughout $D(S)$". (See Earman (this volume, chapter 15).) Here we consider just a special case.

PROPOSITION 6. Let S be an achronal subset of M. Further let T_{ab} be a smooth symmetric field on M that satisfies both the dominant energy and conservation conditions. Finally, assume $T_{ab} = 0$ on S. Then $T_{ab} = 0$ on all of $D(S)$.

The intended interpretation of the proposition is clear. If energy-momentum cannot propagate (locally) outside the null-cone, and if it is conserved, and if it vanishes on S, then it must vanish throughout $D(S)$. After all, how could it "get to" any point in $D(S)$? Note that our formulation of the proposition does not presuppose any particular physical interpretation of the symmetric field T_{ab}. All that is required is that it satisfy the two stated conditions. (For a proof, see Hawking and Ellis [1972, p. 94].)

The next proposition (Geroch and Jang [1975]) shows that, in a sense, if one assumes the dominant energy condition and the conservation condition, then one can prove that free massive point particles traverse the images of timelike geodesics. (Recall principle P1 in section 2.3.) The trick is to find a way to talk about "point particles" in the language of extended matter fields.

PROPOSITION 7. Let $\gamma: I \rightarrow M$ be smooth curve. Suppose that given any open subset O of M containing $\gamma[I]$, there exists a smooth symmetric field T_{ab} on M such that:

1. T_{ab} satisfies the dominant energy condition;

2. T_{ab} satisfies the conservation condition;

22 This is the standard formulation of the dominant energy condition. The fit with C1 would be even closer if we strengthened the condition slightly so as to be appropriate, specifically, for massive matter fields: at any point p in M, if $T^{a}_{\gamma} \neq 0$ there, then $T^{a}_{\gamma} \xi^{b}$ is timelike for all future-directed unit timelike vectors ξ^{a} at p. 23 Let $\gamma: I \rightarrow M$ be a smooth curve. We say that a point p in M is a future-endpoint of γ if, for all open sets O containing p, there exists an s_{0} in I such that for all $s \in I$, if $s \geq s_{0}$, then $\gamma(s) \in O$, i.e. the image of γ eventually enters and remains in O. (Past-endpoints are defined similarly.)
(3) $T_{ab} = 0$ outside of O;
(4) $T_{ab} \neq 0$ at some point in O.
Then γ is timelike, and can be reparametrized so as to be a geodesic.

The proposition might be paraphrased this way. If a smooth curve in spacetime is such
that arbitrarily small free bodies could contain the image of the curve in their worldtubes,
then the curve must be a timelike geodesic (up to reparametrization). In effect, we are
trading in “point particles” in favor of nested convergent sequences of smaller and smaller
extended particles. (Bodies here are understood to be “free” if their internal energy-
momentum is conserved. If a body is acted upon by a field, it is only the composite
energy-momentum of the body and field together that is conserved.)

Note that our formulation of the proposition takes for granted that we can keep the
background spacetime structure (M, g_{ab}) fixed while altering the fields T_{ab} that live on
M. This is justifiable only to the extent that, in each case, T_{ab} is understood to represent
a test body whose effect on the background spacetime structure is negligible. Note also
that we do not have to assume at the outset that the curve γ is timelike. That follows from
the other assumptions.

We have here a precise proposition in the language of matter fields that, at least to
some degree, captures principle P1 (concerning the behavior of free massive point
particles). Similarly, it is possible to capture C2 (concerning the behavior of light) with a
proposition about the behavior of solutions to Maxwell’s equations in a limiting regime
(“the geometrical limit”) where wavelengths are small. It asserts, in effect, that when
one passes to this limit, packets of electromagnetic waves are constrained to move along
(images of) null geodesics. (See Wald [1984, p. 71].)

Now we consider an example. Perfect fluids are represented by three objects: a four-
velocity field η^a, an energy density field ρ, and an isotropic pressure field p (the latter two
as determined by a “co-moving” observer at rest in the fluid). In the special case where
the pressure p vanishes, one speaks of a dust field. Particular instances of perfect fluids
are characterized by “equations of state” that specify p as a function of ρ. (Specifically
excluded here are such complicating factors as anisotropic pressure, shear stress, and
viscosity.) Though ρ is generally assumed to be non-negative (see below), some perfect
fluids (e.g. to a good approximation, water) can exert negative pressure. The energy-
momentum tensor field associated with a perfect fluid is:

\begin{equation}
T_{ab} = \rho \eta_a \eta_b - p (g_{ab} - \eta_a \eta_b).
\end{equation}

Notice that the energy-momentum density vector of the fluid at any point, as determined
by a co-moving observer (i.e. as determined relative to η^a), is $T^a_b \eta^b = \rho \eta^a$. So we can
understand ρ, equivalently, as the energy density of the fluid relative to η^a, i.e. $T_{ab} \eta^a \eta^b$,
or as the (rest) mass density of the fluid, i.e. the length of $\rho \eta^a$. (Of course, the
situation here corresponds to that of a point particle with mass m and four-velocity η^a, as
considered in section 2.3.)

\footnote{Stronger theorems have been proved (see Ehlers and Geroch [2004]) in which it is not required that the
perturbative effect of the extended body disappear entirely at each stage of the limiting process, but only that, in
a certain sense, it disappear in the limit.}
In the case of a perfect fluid, the weak energy condition (WEC), dominant energy condition (DEC), and conservation condition (CC) come out as follows.

\[
\text{WEC } \iff \rho \geq 0 \quad \text{and} \quad p \geq -\rho
\]

\[
\text{DEC } \iff \rho \geq 0 \quad \text{and} \quad \rho \geq p \geq -\rho
\]

\[
\text{CC } \iff \begin{cases} (\rho + p) \eta^b \nabla_b \eta^a - (g^{ab} - \eta^a \eta^b) \nabla_b p = 0 \\
\eta^b \nabla_b \rho + (\rho + p)(\nabla_b \eta^b) = 0. \end{cases}
\]

Consider the two equations jointly equivalent to the conservation condition. The first is the equation of motion for a perfect fluid. We can think of it as a relativistic version of Euler's equation. The second is an equation of continuity (or conservation) in the sense familiar from classical fluid mechanics. It is easiest to think about the special case of a dust field \((p = 0)\). In that case, the equation of motion reduces to the geodesic equation: \(\eta^b \nabla_b \eta^a = 0\). That makes sense. In the absence of pressure, particles in the fluid are free particles. And the conservation equation reduces to: \(\eta^b \nabla_b \rho + \rho (\nabla_b \eta^b) = 0\). The first term gives the instantaneous rate of change of the fluid's energy density, as determined by a co-moving observer. The term \(\nabla_b \eta^b\) gives the instantaneous rate of change of its volume, per unit volume, as determined by that observer. In a more familiar notation, the equation might be written \(\frac{d\rho}{ds} + \rho \frac{dV}{Vs} = 0\) or, equivalently, \(\frac{d(\rho V)}{ds} = 0\). (Here we use \(s\) for elapsed proper time.) It asserts that (in the absence of pressure, as determined by a co-moving observer) the energy contained in an (infinitesimal) fluid blob remains constant, even as its volume changes.

In the general case, the situation is more complex because the pressure in the fluid contributes to its energy (as determined relative to particular observers), and hence to what might be called its "effective mass density". (If you compress a fluid blob, it gets heavier.) In this case, the WEC comes out as the requirement that \((\rho + p) \geq 0\) in addition to \(\rho \geq 0\). If we take \(h^{ab} = (g^{ab} - \eta^a \eta^b)\), the equation of motion can be expressed as:

\[
(\rho + p) \eta^b \nabla_b \eta^a = h^{ab} \nabla_b p.
\]

This is an instance of the "second law of motion" (15) as applied to an (infinitesimal) blob of fluid. On the left we have: "effective mass density \(\times\) acceleration". On the right, we have the force acting on the blob. We can think of it as minus\(^{25}\) the gradient of the pressure (as determined by a co-moving observer). Again, this makes sense. If the pressure on the left side of the blob is greater than that on the right, it will move to the right. The presence of the non-vanishing term \((p \nabla_b \eta^b)\) in the conservation equation is now required because the energy of the blob is not constant when its volume changes as a result of the pressure. The equation governs the contribution made to its energy by pressure.

2.5 Einstein's Equation

Once again, let \((M, g_{ab})\) be our background relativistic spacetime with a specified temporal orientation.

\(^{25}\)The minus sign comes in because of our sign conventions.
It is one of the fundamental ideas of relativity theory that spacetime structure is not a fixed backdrop against which the processes of physics unfold, but instead participates in that unfolding. It posits a dynamical interaction between the spacetime metric in any region and the matter fields there. The interaction is governed by Einstein’s field equation

\[R_{ab} - \frac{1}{2} R g_{ab} - \lambda g_{ab} = 8 \pi T_{ab}, \]

or, equivalently,

\[R_{ab} = 8 \pi \left(T_{ab} - \frac{1}{2} T g_{ab} \right) - \lambda g_{ab}. \]

Here \(\lambda \) is the cosmological constant, \(R_{ab} (= R^n_{abn}) \) is the Ricci tensor field, \(R (= R^a_a) \) is the Riemann scalar curvature field, and \(T \) is the contracted field \(T^a_a \). We start with four remarks about (18), and then consider an alternative formulation that provides a geometric interpretation of sorts.

1. It is sometimes taken to be a version of “Mach’s principle” that “the spacetime metric is uniquely determined by the distribution of matter”. And it is sometimes proposed that the principle can be captured in the requirement that “if one first specifies the energy-momentum distribution \(T_{ab} \) on the spacetime manifold \(M \), then there is exactly one (or at most one) Lorentzian metric \(g_{ab} \) on \(M \) that, together with \(T_{ab} \), satisfies (18)”.

2. But there is a serious problem with the proposal. In general, one cannot specify the energy-momentum distribution in the absence of a spacetime metric. (E.g. one cannot have a notion of energy-density unless one has a notion of volume.) Indeed, in typical cases the metric enters explicitly in the expression for \(T_{ab} \). (Recall the expression (17) for a perfect fluid.) Thus, in looking for solutions to (18), one must, in general, solve simultaneously for the metric and matter field distribution.

3. Given any smooth metric \(g_{ab} \) on \(M \), there certainly exists a smooth symmetric field \(T_{ab} \) on \(M \) that, together with \(g_{ab} \), is a solution to (18). It suffices to define \(T_{ab} \) by the left side of the equation. But the field \(T_{ab} \) so introduced will not, in general, be the energy-momentum field associated with any known matter field. It will not even satisfy the weak energy condition discussed in section 2.4. With the latter constraint on \(T_{ab} \) in place, Einstein’s equation is an entirely non-trivial restriction on spacetime structure.

Discussions of spacetime structure in classical relativity theory proceed on three levels according to the stringency of the constraints imposed on \(T_{ab} \). At the first level, one considers only “exact solutions”, i.e. solutions where \(T_{ab} \) is, in fact, the aggregate energy-momentum field associated with one or more known matter fields. So, for example, one might undertake to find all perfect fluid solutions exhibiting particular symmetries. At the second level, one considers the larger class of what might be called “generic solutions”, i.e. solutions where \(T_{ab} \) satisfies one or more generic constraints (of which the weak and dominant energy conditions are examples). It is at this level, for example, that the singularity theorems of Penrose and Hawking (Hawking and Ellis [1972]) are proved. Finally, at the third level, one drops all restrictions on \(T_{ab} \), and Einstein’s equation plays no role. Many results about global structure are proved at this level, e.g. the assertion

\[26 \] We use “geometrical units” in which the gravitational constant \(G \), as well as the speed of light \(c \), is 1.
that there exist closed timelike curves in any relativistic spacetime \((M, g_{ab})\) where \(M\) is compact.

(3) The role played by the cosmological constant in Einstein’s equation remains a matter of controversy. Einstein initially added the term \((-\lambda g_{ab})\) in 1917 to allow for the possibility of a static cosmological model (which, at the time, was believed necessary to properly represent the actual universe).\(^{27}\) But there were clear problems with doing so. In particular, one does not recover Poisson’s equation (the field equation of Newtonian gravitation theory) as a limiting form of Einstein’s equation unless \(\lambda = 0\). (See point (4) below.) Einstein was quick to revert to the original form of the equation after Hubble’s redshift observations gave convincing evidence that the universe is, in fact, expanding. (That the theory suggested the possibility of cosmic expansion before those observations must count as one of its great successes.) Since then the constant has often been reintroduced to help resolve discrepancies between theoretical prediction and observation, and then abandoned when the (apparent) discrepancies were resolved. The controversy continues. Recent observations indicating an accelerating rate of cosmic expansion have led many cosmologists to believe that our universe is characterized by a positive value for \(\lambda\). (See Earman [2001] for an overview.)

Claims about the value of the cosmological constant are sometimes cast as claims about the “energy-momentum content of the vacuum”. This involves bringing the term \((-\lambda g_{ab})\) from the left side of equation (18) to the right, and re-interpreting it as an energy-momentum field, i.e. taking Einstein’s equation in the form

\[
R_{ab} - \frac{1}{2} R g_{ab} = 8\pi (T_{ab} + T_{ab}^{VAC}),
\]

where \(T_{ab}^{VAC} = \frac{\lambda}{8\pi} g_{ab}\). Here \(T_{ab}\) is still understood to represent the aggregate energy-momentum of all normal matter fields. But \(T_{ab}^{VAC}\) is now understood to represent the residual energy-momentum associated with empty space. Given any unit timelike vector \(\xi^a\) at a point, \((T_{ab}^{VAC} \xi^a \xi^b)\) is \(\frac{\lambda}{8\pi}\). So, on this re-interpretation, \(\lambda\) comes out (up to the factor \(8\pi\)) as the energy-density of the vacuum as determined by any observer, at any point in spacetime.

It should be noted that there is a certain ambiguity involved in referring to \(\lambda\) as the cosmological constant (and a corresponding ambiguity as to what counts as a solution to Einstein’s equation). We can take \((M, g_{ab}, T_{ab})\) to qualify if it satisfies the equation for some value (or other) of \(\lambda\). Or, more stringently, one can take it to qualify if it satisfies the equation for some value of \(\lambda\) that is fixed, once and for all, i.e. the same for all models \((M, g_{ab}, T_{ab})\). In effect, we have here two versions of “relativity theory”. (See Earman [2003] for discussion of what is at stake in choosing between the two.)

(4) It is instructive to consider the relation of Einstein’s equation to Poisson’s equation, the field equation of Newtonian gravitation theory:

\[
\nabla^2 \phi = 4\pi \rho.
\]

\(^{27}\)He did so for other reasons as well (see Earman [2001]), but I will pass over them here.
Here ϕ is the Newtonian gravitational potential, and ρ is the Newtonian mass density function. In the "geometrized" formulation of the theory that we will consider in section 3.2, one trades in the potential ϕ in favor of a curved derivative operator, and Poisson's equation comes out as

\begin{equation}
R_{ab} = 4 \pi \rho t_{ab},
\end{equation}

where R_{ab} is the Ricci tensor field associated with the new curved derivative operator, and t_{ab} is the temporal metric.

The geometrized formulation of Newtonian gravitation was discovered after general relativity (in the 1920s). But now, after the fact, we can put ourselves in the position of a hypothetical investigator who is considering possible candidates for a relativistic field equation, and knows about the geometrized formulation of Newtonian theory. What could be more natural than the attempt to adopt or adapt (22)? In the empty space case ($\rho = 0$), this strategy suggests the equation $R_{ab} = 0$, which is, of course, Einstein's equation (19) for $T_{ab} = 0$ and $\lambda = 0$. This seems to me, by far, the best route to the latter equation. Start with the Newtonian empty space equation ($R_{ab} = 0$) and then simply leave it intact!

No such simple extrapolation is possible in the general case ($\rho \neq 0$). Indeed, I know of no heuristic argument for the full version of Einstein's equation (with or without cosmological constant) that is nearly so convincing. But one can try something like the following. The closest counterparts to (22) would seem to be ones of the form: $R_{ab} = 4 \pi K_{ab}$, where K_{ab} is a symmetric tensorial function of T_{ab} and g_{ab}. The possibilities for K_{ab} include T_{ab}, $g_{ab} T$, $T^{mn}_{a} T_{mb}$, $g_{ab} (T^{mn} T_{mn})$, ..., and linear combinations of these terms. All but the first two involve terms that are second order or higher in T_{ab}. So, for example, in the special case of a dust field with energy density ρ and four-velocity γ^{a}, they will contain occurrences of ρ^n with $n \geq 2$. (E.g. $g_{ab} (T^{mn} T_{mn})$ comes out as $\rho^2 g_{ab}$.) But, presumably, only terms first order in ρ should appear if the equation is to have a proper Newtonian limit. This suggests that we look for a field equation of the form

\begin{equation}
R_{ab} = 4 \pi [k T_{ab} + l g_{ab} T]
\end{equation}

or, equivalently,\(^{28}\)

\begin{equation}
R_{ab} - \frac{l}{(k + 4l)} R g_{ab} = 4 \pi k T_{ab},
\end{equation}

for some real numbers k and l. Let $G_{ab}(k, l)$ be the field on the left side of the equation. It follows from the conservation condition that the field on the right side is divergence free, i.e. $\nabla_a (4 \pi k T_{ab}) = 0$. So the conservation condition and (24) can hold jointly only if

$$\nabla_a G^{ab}(k, l) = 0.$$

But by the "Bianchi identity" (Wald [1984, pp. 39-40]),

\begin{equation}
\nabla_a (R_{ab} - \frac{1}{2} R g^{ab}) = 0.
\end{equation}

\(^{28}\) Contraction on 'a' and 'b' in (23) yields: $R = 4 \pi (k + 4l) T$. Solving for T, and substituting for T in (23) yields (24).
The latter two conditions imply
\[
\left[\frac{l}{(k + 4l)} - \frac{1}{2} \right] \nabla_a (Rg^{ab}) = 0.
\]

Now \(\nabla_a (Rg^{ab}) = 0\) is an unreasonable constraint. So the initial scalar term must be 0. Thus, we are left with the conclusion that the conservation condition and (24) can hold jointly only if \(k + 2l = 0\), in which case (23) reduces to
\[
(26) \quad R_{ab} = 4\pi k \left[T_{ab} - \frac{1}{2} g_{ab} T \right].
\]

It remains to argue that \(k\) must be 2 if (26) is to have a proper Newtonian limit. To do so, we consider, once again, the special case of a dust field with energy density \(\rho\) and four-velocity \(\eta^a\). Then, \(T_{ab} = \rho \eta_a \eta_b\), and \(T = \rho\). If we insert these values in (26) and contract with \(\eta^a \eta^b\), we arrive at
\[
(27) \quad R_{ab} \eta^a \eta^b = 2\pi k \rho.
\]

Now the counterpart to a four-velocity field in Newtonian theory is a vector field of unit temporal length, i.e. a field \(\eta^a\) where \(t_{ab} \eta^a \eta^b = 1\). If we contract the geometrized version of Poisson’s equation (22) with \(\eta^a \eta^b\), we arrive at: \(R_{ab} \eta^a \eta^b = 4\pi \rho\). Comparing this expression for \(R_{ab} \eta^a \eta^b\) with that in (27), we are led to the conclusion that \(k = 2\), in which case (26) is just Einstein’s equation (19) with \(\lambda = 0\).

Summarizing now, we have suggested that if one starts with the geometrized version of Poisson’s equation (22) and looks for a relativistic counterpart, one is plausibly led to Einstein’s equation with \(\lambda = 0\). It is worth noting that if we had started instead with a variant of (22) incorporating a “Newtonian cosmological constant”
\[
(28) \quad R_{ab} + \lambda t_{ab} = 4\pi \rho t_{ab},
\]

we would have been led instead to Einstein’s equation (19) without restriction on \(\lambda\). We can think of (28) as the geometrized version of
\[
(29) \quad \nabla^2 \phi + \lambda = 4\pi \rho.
\]

Let’s now put aside the question of how one might try to motivate Einstein’s equation. However one arrives at it, the equation — let’s now take it in the form (18) — can be understood to assert a dynamical connection between a certain tensorial measure of spacetime curvature (on the left side) and the energy-momentum tensor field (on the right side). It turns out that one can reformulate the connection in a way that makes reference only to scalar quantities, as determined relative to arbitrary observers. The reformulation provides a certain insight into the geometric significance of the equation.\(^{30}\)

\(^{29}\)It implies that \(R\) is constant and, hence, if (23) holds, that \(T\) is constant (since (23) implies \(R = 4\pi (k + 4l) T\)). But this, in turn, is an unreasonable constraint on the energy-momentum distribution \(T_{ab}\). E.g. in the case of a dust field with \(T_{ab} = \rho \eta^a \eta^b\), \(T = \rho\), and so the constraint implies that \(\rho\) is constant. This is unreasonable since it rules out any possibility of cosmic expansion. (Recall the discussion toward the close of section 2.4.)

\(^{30}\)Another approach to its geometrical significance proceeds via the equation of geodesic deviation. See, for example, Sachs and Wu [1977b, p. 114].
Let S be any smooth spacelike hypersurface in M. The background metric g_{ab} induces a (three-dimensional) metric $^{3}g_{ab}$ on S. In turn, this metric determines on S a derivative operator, an associated Riemann curvature tensor field $^{3}R^{a}_{bca}$, and a scalar curvature field $^{3}R = (^{3}R^{a}_{bca})(^{3}g^{bc})$. Our reformulation of Einstein's equation will direct attention to the values of ^{3}R at a point for a particular family of spacelike hypersurfaces passing through it.

Let p be any point in M and let ξ^{a} be any future-directed unit timelike vector at p. Consider the set of all geodesics through p that are orthogonal to ξ^{a} there. The (images of these) curves, at least when restricted to a sufficiently small open set containing p, sweep out a smooth spacelike hypersurface S. (See figure 2.) We will call it a geodesic hypersurface. (We cannot speak of the geodesic hypersurface through p orthogonal to ξ^{a} because we have left open how far the generating geodesics are extended. But given any two, their restrictions to a suitably small open set containing p coincide.)

Geodesic hypersurfaces are of interest in their own right, the present context aside, because they are natural candidates for a notion of "local simultaneity slice" (relative to a timelike vector at a point). What matters here, though, is that, by the first Gauss-Codazzi equation (Wald [1984, p. 258]), we have

$$^{30} \quad ^{3}R = R - 2 R_{ab} \xi^{a} \xi^{b}$$

at p. Here we have expressed the (three-dimensional) Riemann scalar curvature of S at

31 We can take this to mean that S is a smooth, imbedded, three-dimensional submanifold of M with the property that any curve $\gamma: I \rightarrow M$ with image in S is spacelike.

32 In the case of a surface in three-dimensional Euclidean space, the associated Riemann scalar curvature ^{2}R is (up to a constant) just ordinary Gaussian surface curvature. We can think of ^{3}R in the present context as a higher dimensional analogue that gives averaged values of Gaussian surface curvature. This can be made precise. See, for example, Laugwitz [1965, p. 127].

33 More precisely, let S_{p} be the spacelike hyperplane in M_{p} orthogonal to ξ^{a}. Then for any sufficiently small open set O in M_{p} containing p, the image of $(S_{p} \cap O)$ under the exponential map $\exp: O \rightarrow M$ is a smooth spacelike hypersurface. We can take it to be S. (See, for example, Hawking and Ellis [1972, p. 33].)

34 Let ξ^{a} — we use the same notation — be the extension of the original vector at p to a smooth future-directed unit timelike vector field on S that is everywhere orthogonal to S. Then the first Gauss-Codazzi equation asserts that at all points of S

$$^{3}R = R - 2 R_{ab} \xi^{a} \xi^{b} + \pi_{ab} h^{ab} + \pi_{ab} \pi^{ab},$$

where h_{ab} is the spatial projection field $(g_{ab} - \xi_{a} \xi_{b})$ on S, and π_{ab} is the extrinsic curvature field $\frac{1}{2} \mathcal{L}_{\xi} h_{ab}$ on S. But our construction guarantees that π_{ab} vanish at p.
p in terms of the (four-dimensional) Riemann scalar curvature of M at p and the Ricci tensor there. And so, if Einstein’s equation (18) holds, we have

\[3R = -16\pi (T_{ab} \xi^a \xi^b) - 2\lambda. \]

at p.

One can also easily work backwards to recover Einstein’s equation at p from the assumption that (31) holds for all unit timelike vectors ξ^a at p (and all geodesic hypersurfaces through p orthogonal to ξ^a). Thus, we have the following equivalence.

PROPOSITION 8. Let T_{ab} be a smooth symmetric field on M, and let p be a point in M. Then Einstein’s equation $R_{ab} - \frac{1}{2} R g_{ab} - \lambda g_{ab} = 8\pi T_{ab}$ holds at p if and only if for all future-directed unit timelike vectors ξ^a at p, and all geodesic hypersurfaces through p orthogonal to ξ^a, the scalar curvature $3R$ of S satisfies $3R = [-16\pi (T_{ab} \xi^a \xi^b) - 2\lambda]$ at p.

The result is particularly instructive in the case where $\lambda = 0$. Then (31) directly equates an intuitive scalar measure of spatial curvature (as determined relative to ξ^a) with energy density (as determined relative to ξ^a).

2.6 Congruences of Timelike Curves and “Public Space”

In this section, we consider congruences of timelike curves. (We understand these to be sets of timelike curves that “fill” a region of spacetime in the sense that exactly one curve (image) in the set passes through each point in the region.) We think of them as representing the worldlines of a dense swarm of particles or the elements of a fluid.

Each such congruence is generated by a future-directed, unit timelike vector field (that represents the four-velocity field of our particle swarm or fluid). We work directly with these generating fields in what follows.

Once again, let (M, g_{ab}) be our background relativistic spacetime (endowed with a temporal orientation). Let ξ^a be a smooth, future-directed, unit timelike vector field on M (or some open subset thereof). Finally, h_{ab} be the spatial projection field determined by ξ^a.

The rotation and expansion tensor fields associated with ξ^a are defined as follows:

\[\omega_{ab} = h_{(a}^m h_{b)}^n \nabla_m \xi_n \]
\[\theta_{ab} = h_{(a}^m h_{b)}^n \nabla_m \xi_n. \]

They are smooth fields, orthogonal to ξ^a in both indices, and satisfy

\[\nabla_a \xi_b = \omega_{ab} + \theta_{ab} + \xi_a (\xi^n \nabla_n \xi_b). \]

We can give the two fields ω_{ab} and θ_{ab} a geometric interpretation. Let η^a be a vector field on the worldline of a particle O that is “carried along by the flow of ξ^a”, i.e. $\mathcal{L}_\xi \eta^a = 0$, and is orthogonal to ξ^a at a point p. (Here \mathcal{L}_ξ is the Lie derivative of η^a with respect to ξ^a.) We can think of η^a at p as a spatial “connecting vector” that spans the distance from O to p.

\[\text{We drop the index on } \xi \text{ here to avoid giving the impression that } \mathcal{L}_\xi g_{ab} \text{ is a three index tensor field. Lie derivatives are always taken with respect to (contravariant) vector fields, so no ambiguity is introduced when the index is dropped.}\]
between \(O\) and a neighboring particle \(N\) that is "infinitesimally close". The instantaneous velocity of \(N\) relative to \(O\) at \(p\) is given by \(\xi^a \nabla_n \eta^a\). But \(\xi^n \nabla_n \eta^a = \eta^n \nabla_n \xi^a\) (since \(\mathcal{L}_\xi \eta^a = 0\)). So, by (34), and the orthogonality of \(\xi^a\) with \(\eta^a\) at \(p\), we have
\[
(35) \quad \xi^n \nabla_n \eta^a = (\omega_n^a + \theta^a_n) \eta^n.
\]
at the point. Here we have simply decomposed the relative velocity vector into two components. The first, \((\omega_n^a \eta^n)\), is orthogonal to \(\eta^a\) (since \(\omega_{ab}\) is anti-symmetric). It gives the instantaneous rotational velocity of \(N\) with respect to \(O\) at \(p\).

In support of this interpretation, consider the instantaneous rate of change of the squared length \((-\eta^a \eta_a)\) of \(\eta^a\) at \(p\). It follows from (35) that
\[
(36) \quad \xi^n \nabla_n (-\eta^a \eta_a) = -2 \theta_{na} \eta^n \eta^a.
\]
Thus the computed rate of change depends solely on \(\theta_{ab}\). Suppose \(\theta_{ab} = 0\). Then the instantaneous velocity of \(N\) with respect to \(O\) at \(p\) has vanishing radial component. If \(\omega_{ab} \neq 0\), \(N\) still exhibits a non-zero velocity with respect to \(O\). But it can only be a rotational velocity. The two conditions \((\theta_{ab} = 0\) and \(\omega_{ab} \neq 0)\) jointly characterize "rigid rotation".

The condition \(\omega_{ab} = 0\), by itself, characterizes irrotational flow. One gains considerable insight into the condition by considering a second, equivalent formulation. Let us say that the field \(\xi^a\) is hypersurface orthogonal if there exist smooth, real valued maps \(f\) and \(g\) (with the same domains of definition as \(\xi^a\)) such that, at all points, \(\xi_a = f \nabla_a g\). Note that if the condition is satisfied, then the hypersurfaces of constant \(g\) value are everywhere orthogonal to \(\xi^a\). Let us further say that \(\xi^a\) is locally hypersurface orthogonal if the restriction of \(\xi^a\) to every sufficiently small open set is hypersurface orthogonal.

PROPOSITION 9. Let \(\xi^a\) be a smooth, future-directed unit timelike vector field defined on \(M\) (or some open subset of \(M\)). Then the following conditions are equivalent.

1. \(\omega_{ab} = 0\) everywhere.
2. \(\xi^a\) is locally hypersurface orthogonal.

The implication from (2) to (1) is immediate.\(^{37}\) But the converse is non-trivial. It is a special case of Frobenius's theorem (Wald [1984, p. 436]). The qualification 'locally' can be dropped in (2) if the domain of \(\xi^a\) is, for example, simply connected.

There is a nice picture that goes with the proposition. Think about an ordinary rope. In its natural twisted state, the rope cannot be sliced by an infinite family of slices in such a way that each slice is orthogonal to all fibers. But if the rope is first untwisted, such a

\(^{36}\)For if \(\eta^a\) is a vector tangent to one of these hypersurfaces, \(\eta^a \nabla_n g = 0\). So \(\eta^a \xi_n = \eta^a (f \nabla_n g) = 0\).

\(^{37}\)Assume that \(\xi_a = f \nabla_a g\). Then
\[
\omega_{ab} = h_{[a}^m h_{b]}^n \nabla_m \xi_n = h_{[a}^m h_{b]}^n \nabla_m (f \nabla_n g) = f h_{[a}^m h_{b]}^n \nabla_m \nabla_n g + h_{[a}^m h_{b]}^n (\nabla_m f) (\nabla_n g) = f h_{[a}^m h_{b]}^n \nabla_{[m} \nabla_{n]} g + h_{[a}^m h_{b]}^n (\nabla_{[m} f) (\nabla_{n]} g).
\]
But \(\nabla_{[m} \nabla_{n]} g = 0\) since \(\nabla_a\) is torsion-free, and the second term in the final line vanishes as well since \(h_{b}^n \nabla_n g = f^{-1} h_{b}^n \xi_n = 0\). So \(\omega_{ab} = 0\).
slicing is possible. Thus orthogonal sliceability is equivalent to fiber untwistedness. The proposition extends this intuitive equivalence to the four-dimensional “spacetime ropes” (i.e. congruences of worldlines) encountered in relativity theory. It asserts that a congruence is irrotational (i.e. exhibits no twistedness) iff it is, at least locally, hypersurface orthogonal.

Suppose that our vector field ξ^a is irrotational and, to keep things simple, suppose that its domain of definition is simply connected. Then the hypersurfaces to which it is orthogonal are natural candidates for constituting “space” at a given “time” relative to ξ^a or, equivalently, relative to its associated set of integral curves. This is a notion of public space to be contrasted with private space, which is determined relative to individual timelike vectors or timelike curves.\(^{38}\) Perhaps the best candidates for the latter are the “geodesic hypersurfaces” we considered, in passing, in section 2.5. (Given a point p and a timelike vector ξ^a there, we took a “geodesic hypersurface through p orthogonal to ξ^a” to be a spacelike hypersurface generated by geodesics through p orthogonal to ξ^a.)

The distinction between public and private space is illustrated in Figure 3. There we consider a congruence of future-directed timelike half-geodesics in Minkowski spacetime starting at some particular point p. One line L in the congruence is picked out along with a point q on it. Private space relative to L at q is a spacelike hypersurface S_{private} that is flat, i.e. the metric induced on S_{private} has a Riemann curvature tensor field \mathcal{R}^{a}_{bcd} that vanishes everywhere. In contrast, public space at q relative to the congruence is a spacelike hypersurface S_{public} of constant negative curvature. If ξ^a is the future-directed unit timelike vector field everywhere tangent to the congruence, and $h_{ab} = (g_{ab} - \xi_a \xi_b)$ is its associated spatial projection field, then the curvature tensor field on S_{public} associated with h_{ab} has the form $\mathcal{R}_{abcd} = -\frac{1}{K^2}(h_{ac}h_{bd} - h_{ad}h_{bc})$, where K is the distance along L from p to q. (This is the characteristic form for a three-manifold of constant curvature $-\frac{1}{K^2}$.)

We have been considering “public space” as determined relative to an irrotational congruence of timelike curves. There is another sense in which one might want to use the term. Consider, for example, “geometry on the surface of a rigidly rotating disk” in Minkowski spacetime. (There is good evidence that Einstein’s realization that this ge-

\(^{38}\)The distinction between “public space” and “private space” is discussed in Rindler [1981] and Page [1983]. The terminology is due to E. A. Milne.
ometry is non-Euclidean played an important role in his development of relativity theory (Stachel [1980]). One needs to ask in what sense the surface of a rotating disk has a geometric structure.

We can certainly model the rigidly rotating disk as a congruence of timelike curves in Minkowski spacetime. (Since the disk is two-dimensional, the congruence will be confined to a three-dimensional, timelike submanifold M' of M.) But precisely because the disk is rotating, we cannot find hypersurfaces everywhere orthogonal to the curves and understand the geometry of the disk to be the geometry induced on them — or, strictly speaking, induced on the two-dimensional manifolds determined by the intersection of the putative hypersurfaces with M' — by the background spacetime metric g_{ab}.

The alternative is to think of “space” as constituted by the “manifold of trajectories”, i.e. take the individual timelike curves in the congruence to play the role of spatial points, and consider the metric induced on this manifold by the background spacetime metric. The construction will not work for an arbitrary congruence of timelike curves. It is essential that we are dealing here with a “stationary” system. (The metric induced on the manifold of trajectories (when the construction works) is fixed and frozen.) But it does work for these systems, at least. More precisely, anticipating the terminology of the following section, it works if the four-velocity field of the congruence in question is proportional to a Killing field. (The construction is presented in detail in Geroch [1971, Appendix].)

Thus we have two notions of “public space”. One is available if the four-velocity field of the congruence in question is irrotational; the other if it is proportional to a Killing field. Furthermore, if the four-velocity field is irrotational and proportional to Killing field, as is the case when we dealing with a “static” system, then the two notions of public space are essentially equivalent.

2.7 Killing Fields and Conserved Quantities

Let κ^a be a smooth vector field on M. We say it is a Killing field if $\mathcal{L}_\kappa g_{ab} = 0$, i.e. if the Lie derivative with respect to κ^a of the metric vanishes. This is equivalent to the requirement that the “flow maps” generated by κ^a are all isometries. (See Wald [1984, p. 441].) For this reason, Killing fields are sometimes called “infinitesimal generators of smooth one-parameter families of isometries” or “infinitesimal symmetries”. The defining condition can also be expressed as

$$\nabla (a \kappa b) = 0.$$

This is “Killing’s equation”.

Given any two smooth vector fields ξ^a and μ^a on M, the bracket or commutator field $[\xi, \mu]^a$ defined by $[\xi, \mu]^a = \mathcal{L}_\xi \mu^a$ is also smooth. The set of smooth vector fields on M

39 Once again, we drop the index on κ here to avoid giving the impression that $\mathcal{L}_\kappa g_{ab}$ is a three index tensor field. A similar remark applies to our bracket notation below.

40 This follows since $\mathcal{L}_\kappa g_{ab} = \kappa^c \nabla_c g_{ab} + g_{rb} \nabla_a \kappa^b + g_{an} \nabla_b \kappa^n$, and ∇_a is compatible with g_{ab}, i.e. $\nabla_n g_{ab} = 0$.

forms a Lie algebra with respect to this operation, i.e. the bracket operation is linear in each slot; it is anti-symmetric ([ξ, μ]α = −[μ, ξ]α); and it satisfies the Jacobi identity

\[[[\xi, \mu], \nu]^\alpha + [[\nu, \xi], \mu]^\alpha + [[\mu, \nu], \xi]^\alpha = 0 \]

for all smooth vector fields ξα, μα, and να on M. It turns out that the bracket field of two Killing fields is also a Killing field. So it follows, as well, that the set of Killing fields on M has a natural Lie algebra structure.

The discussion of smooth symmetries in spacetime, and their associated conserved quantities, is naturally cast in the language of Killing fields. For example, we can use the latter to capture precisely the following intuitive notions.

(1) \((M, g_{ab})\) is \textit{stationary} if it has a Killing field that is everywhere timelike.

(2) \((M, g_{ab})\) is \textit{static} if it has a Killing field that is everywhere timelike and locally hypersurface orthogonal.

(3) \((M, g_{ab})\) is \textit{homogeneous} if its Killing fields, at every point of M, span the tangent space.

(4) \((M, g_{ab})\) is \textit{spatially homogeneous} if it has a smooth unit timelike field ξα such that, at every point of M, its Killings fields span the three-dimensional space of vectors orthogonal to ξα.

(5) \((M, g_{ab})\) is \textit{axially symmetric} if it has a Killing field that (i) is everywhere spacelike, and (ii) has integral curve images that are closed. (The “axis” in this case is the set of points, possibly empty, where the Killing field vanishes.)

(6) \((M, g_{ab})\) is \textit{spherically symmetric} if it has three Killing fields 1σα, 2σα, 3σα that (i) are everywhere spacelike, (ii) are linearly dependent at every point, i.e. \(1\sigma^a 2\sigma^b 3\sigma^c = 0\), and (iii) exhibit the same commutation relations as do the generators of the rotation group in three dimensions:

\[[1\sigma, 2\sigma]^a = 3\sigma^a, \quad [2\sigma, 3\sigma]^a = 1\sigma^a, \quad [3\sigma, 1\sigma]^a = 2\sigma^a. \]

The distinction between stationary and static spacetimes should be clear from our discussion in the preceding section. (Recall proposition 9.) Roughly speaking, in a stationary spacetime there is a “timelike flow” that preserves all spacetime distances. But the flow can exhibit rotation. (Think of a perfect whirlpool.) It is the latter possibility that is ruled out when one passes to the definition of a static spacetime.

Now we consider, very briefly, two types of conserved quantity. One is an attribute of massive point particles, the other of extended bodies. Let \(\kappa^a\) be an arbitrary Killing field, and let \(\gamma : I \to M\) be a timelike curve, with unit tangent field ξα, whose image is the worldline of a point particle with mass \(m > 0\). Consider the quantity \(J = (P^a\kappa_a)\), where \(P^a = m \xi^a\) is the four-momentum of the particle. It certainly need not be constant on \(\gamma[I]\). But it will be if \(\gamma\) is a geodesic. For in that case, \(\xi^a \nabla_n \xi^a = 0\) and hence, by (37),

\[\xi^a \nabla_n J = m (\kappa_a \xi^a \nabla_n \xi^a + \xi^a \xi^a \nabla_n \kappa_a) = m \xi^a \xi^a \nabla_n (\kappa_a) = 0. \]
Thus, the value of J (construed as an attribute of massive point particles) is constant for free particles.

We refer to J as the conserved quantity associated with κ^a. If κ^a is timelike, and if the flow maps determined by κ^a have the character of translations41, then J is called the energy of the particle (associated with κ^a).42 If it is spacelike, and if the flow maps have the character of translations, then J is called the component of linear momentum of the particle (associated with κ^a). Finally, if κ^a is spacelike, and if the flow maps have the character of rotations, then it is called the component of angular momentum of the particle (associated with κ^a).

It is useful to keep in mind a certain picture that helps one to "see" why the angular momentum of free particles (to take that example) is conserved. It involves an analogue of angular momentum in Euclidean plane geometry. Figure 4 shows a rotational Killing field κ^a in the Euclidean plane, the image of a geodesic (i.e. a line L), and the tangent field ξ^a to the geodesic. Consider the quantity $J = \xi^a \kappa_a$, i.e. the inner product of ξ^a with κ^a, along L. Exactly the same proof as before (in equation (40)) shows that J is constant along L.43 But here we can better visualize the assertion.

Let us temporarily drop indices and write $\kappa \cdot \xi$ as one would in ordinary Euclidean vector calculus (rather than $\xi^a \kappa_a$). Let p be the point on L that is closest to the center point where κ vanishes. At that point, κ is parallel to ξ. As one moves away from p along L, in either direction, the length $||\kappa||$ of κ grows, but the angle $\angle(\kappa, \xi)$ between the vectors increases as well. It is at least plausible from the picture (and easy to check directly with an argument involving similar triangles) that the length of the projection of κ onto the line is constant. Equivalently, the inner product $\kappa \cdot \xi = \cos(\angle(\kappa, \xi)) ||\kappa|| ||\xi||$ is constant.

That is how to think about the conservation of angular momentum for free particles in relativity theory. It does not matter that in the latter context we are dealing with a Lorentzian metric and allowing for curvature. The claim is still that a certain inner product of vector fields remains constant along a geodesic, and we can still think of that constancy as arising from a compensatory balance of two factors.

Let us now turn to the second type of conserved quantity, the one that is an attribute of extended bodies. Let κ^a be an arbitrary Killing field, and let T_{ab} be the energy-momentum field associated with some matter field. Assume it satisfies the conservation condition. Then $(T^{ab} \kappa_b)$ is divergence free:

\begin{equation}
\nabla_a(T^{ab} \kappa_b) = \kappa_b \nabla_a T^{ab} + T^{ab} \nabla_a \kappa_b = T^{ab} \nabla_a (\kappa_b) = 0.
\end{equation}

41In Minkowski spacetime, one has an unambiguous classification of Killing fields as generators of translations, spatial rotations, boosts (and linear combinations of them). No such classification is available in general. Killing fields are just Killing fields. But sometimes a Killing field in a curved spacetime resembles a Killing field in Minkowski spacetime in certain respects, and then the terminology may carry over naturally. For example, in the case of asymptotically flat spacetimes, one can classify Killing fields by their asymptotic behavior.

42If κ^a is of unit length everywhere, this usage accords well with that in section 2.3. For there ascriptions of energy to point particles were made relative to unit timelike vectors, and the value of the energy at any point was taken to be the inner product of that unit timelike vector with the particle’s four-momentum vector. If κ^a is, at least, of constant length, then one can always rescale it so as to achieve agreement of usage. But, in general, Killing fields, timelike or otherwise, are not of constant length, and so the current usage must be regarded as a generalization of that earlier usage.

43The mass m played no special role.
Figure 4. κ^a is a rotational Killing field. (It is everywhere orthogonal to a circle radius, and proportional to it in length.) ξ^a is a tangent vector field of constant length on the line. The inner-product between them is constant. (Equivalently, the length of the projection of κ^a onto the line is constant.)

(The second equality follows from the conservation condition for T^{ab} (in section 2.4) and the symmetry of T^{ab}; the third from the fact that κ^a is a Killing field.) It is natural, then, to apply Stokes' theorem to the vector field $(T^{ab}\kappa_b)$.

Consider a bounded system with aggregate energy-momentum field T_{ab} in an otherwise empty universe. Then there exists a (possibly huge) timelike world tube such that T_{ab} vanishes outside the tube (and vanishes on its boundary). Let S_1 and S_2 be (non-intersecting) spacelike hypersurfaces that cut the tube as in figure 5, and let N be the segment of the tube falling between them (with boundaries included). By Stokes' theorem,

$$\int_{S_2} (T^{ab}\kappa_b) \, dS_a - \int_{S_1} (T^{ab}\kappa_b) \, dS_a$$

$$= \int_{S_2 \cap \partial N} (T^{ab}\kappa_b) \, dS_a - \int_{S_1 \cap \partial N} (T^{ab}\kappa_b) \, dS_a$$

$$= \int_{\partial N} (T^{ab}\kappa_b) \, dS_a = \int_N \nabla_a (T^{ab}\kappa_b) \, dV = 0.$$

Thus, the integral $\int_S (T^{ab}\kappa_b) \, dS_a$ is independent of the choice of spacelike hypersurface S intersecting the world tube, and is, in this sense, a conserved quantity (construed as an attribute of the system confined to the tube). An "early" intersection yields the same value as a "late" one. Again, the character of the background Killing field κ^a determines our description of the conserved quantity in question. If κ^a is timelike, we take $\int_S (T^{ab}\kappa_b) \, dS_a$ to be the aggregate energy of the system (associated with κ^a). And so forth.

For further discussion of symmetry and conservation principles in general relativity, see Brading and Castellani (this volume, chapter 13, sections 6 and 7).
Figure 5. The integrated energy (relative to a background timelike Killing field) over the intersection of the world tube with a spacelike hypersurface is independent of the choice of hypersurface.

3 SPECIAL TOPICS

3.1 Relative Simultaneity in Minkowski Spacetime

We noted in section 2.3, when discussing the decomposition of vectors at a point into their "temporal" and "spatial" components relative to a four-velocity vector there, that we were taking for granted the standard identification of relative simultaneity with orthogonality. Here we return to consider the justification of that identification.

Rather than continue to cast the discussion as one concerning the decomposition of the tangent space at a particular point, it is convenient to construe it instead as one about the structure of Minkowski spacetime, the regime of so-called "special relativity". Doing so will bring it closer to the framework in which traditional discussions of the status of the relative simultaneity relation have been conducted.

Minkowski spacetime is a relativistic spacetime \((M, g_{ab})\) characterized by three conditions: (i) \(M\) is the manifold \(\mathbb{R}^4\); (ii) \((M, g_{ab})\) is flat, i.e. \(g_{ab}\) has vanishing Riemann curvature everywhere; and (iii) \((M, g_{ab})\) is geodesically complete, i.e. every geodesic (with respect to \(g_{ab}\)) can be extended to arbitrarily large parameter values in both directions.

By virtue of these conditions, Minkowski spacetime can be identified with its tangent space at any point, and so it inherits the structure of a "metric affine space" in the following sense. Pick any point \(o\) in \(M\), and let \(V\) be the tangent space \(M_o\) at \(o\). Then there is a map \((p, q) \mapsto \bar{p} \bar{q}\) from \(M \times M\) to \(V\) with the following two properties.

1. For all \(p, q\) and \(r\) in \(M\), \(\bar{p} \bar{q} + \bar{q} \bar{r} = \bar{p} r\).

2. For all \(p\) in \(M\), the induced map \(q \mapsto \bar{p} \bar{q}\) from \(M\) to \(V\) is a bijection.\(^{44}\)

\(^{44}\)If \(exp\) is the exponential map from \(M_o\) to \(M\), we can take \(\bar{p} \bar{q}\) to be the vector \((\text{exp}^{-1}(q) - \text{exp}^{-1}(p))\)
The triple consisting of the point set M, the vector space V, and the map $(p, q) \mapsto \overrightarrow{pq}$ forms an affine space. If we add to this triple the inner product on V defined by g_{ab} it becomes a (Lorentzian) metric affine space. (For convenience we will temporarily drop the index notation and write $\langle v, w \rangle$ instead of $g_{ab}v^a w^b$ for v and w in V.) We take all this structure for granted in what follows, i.e. we work with Minkowski spacetime and construe it as a metric affine space in the sense described. This will simplify the presentation considerably.

We also use an obvious notation for orthogonality. Given four points p, q, r, s in M, we write $\overrightarrow{pq} \perp \overrightarrow{rs}$ if $\langle \overrightarrow{pq}, \overrightarrow{rs} \rangle = 0$. And given a line\(^{45}\) L in M, we write $\overrightarrow{pq} \perp L$ if $\overrightarrow{pq} \perp \overrightarrow{rs}$ for all points r and s on L.

Now consider a timelike line L in M. What pairs of points (p, q) in M should qualify as being "simultaneous relative to L"? That is the question we are considering. The standard answer is that they should do so precisely if $\overrightarrow{pq} \perp L$.

In traditional discussions of relative simultaneity, the standard answer is often cast in terms of "epsilon" values. The connection is easy to see. Let p be any point that is not on our timelike line L. Then there exist unique points r and s on L (distinct from one another) such that \overrightarrow{rp} and \overrightarrow{ps} are future-directed null vectors. (See figure 6.) Now let q

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure6.png}
\caption{The $\epsilon = \frac{1}{2}$ characterization of relative simultaneity: p and q are simultaneous relative to L iff q is midway between r and s.}
\end{figure}

be any point on L. (We think of it as a candidate for being judged simultaneous with p

\(^{45}\)In the present context we can characterize a line in more than one way. We can take it to be the image of a maximally extended geodesic that is non-trivial, i.e. not a point. Equivalently, we can take it to be a set of points of the form $\{ r : \overrightarrow{rp} = \epsilon \overrightarrow{pq} \text{ for some } \epsilon \text{ in } \mathbb{R} \}$ where p and q are any two (distinct) points in M.

in M. All other standard properties of affine spaces follow from these two. E.g. it follows that $\overrightarrow{pq} = 0 \iff p = q$, for all p and q in M. (Here 0 is the zero vector in V.)
relative to L.) Then $\overrightarrow{rq} = \epsilon \overrightarrow{rs}$ for some $\epsilon \in \mathbb{R}$. A simple computation46 shows that

\begin{equation}
\epsilon = \frac{1}{2} \iff \overrightarrow{pq} \perp \overrightarrow{rs}.
\end{equation}

So the standard (orthogonality) relation of relative simultaneity in special relativity may equally well be described as the "$\epsilon = \frac{1}{2}$" relation of relative simultaneity.

Yet another equivalent formulation involves the "one-way speed of light". Suppose a light ray travels from r to p with speed c_+ relative to L, and from p to s with speed c_- relative to L. We saw in section 2.3 that if one adopts the standard criterion of relative simultaneity, then it follows that $c_+ = c_-$. (Indeed, in that case, both c_+ and c_- turn out to be 1.) The converse is true as well. For if $c_+ = c_-$, then, as determined relative to L, it should take as much time for light to travel from r to p as from p to s. And in that case, a point q on L should be judged simultaneous with p relative to L precisely if it is midway between r and s. So we are led, once again, to the "$\epsilon = \frac{1}{2}$" relation of relative simultaneity.

Now is adoption of the standard relation a matter of convention, or is it in some significant sense forced on us?

There is, of course, a large literature devoted to this question.47 It is not my purpose to review it here, but I do want to draw attention to certain remarks of Howard Stein [1991, pp. 153-4] that seem to me particularly insightful. He makes the point that determinations of conventionality require a context.

There are really two distinct aspects to the issue of the "conventionality" of Einstein's concept of relative simultaneity. One may assume the position of Einstein himself at the outset of his investigation — that is, of one confronted by a problem, trying to find a theory that will deal with it satisfactorily; or one may assume the position of (for instance) Minkowski — that is, of one confronted with a theory already developed, trying to find its most adequate and instructive formulation.

The problem Einstein confronted was (in part) that of trying to account for our apparent inability to detect any motion of the earth with respect to the "aether". A crucial element of his solution was the proposal that we think about simultaneity a certain way (i.e. in terms of the "$\epsilon = \frac{1}{2}$ criterion"), and resolutely follow through on the consequences of doing so. Stein emphasizes just how different that proposal looks when we consider it,

46 First note that, since $\overrightarrow{p\delta}$ and $\overrightarrow{p\delta}$ are null,

\[0 = \langle \overrightarrow{p\delta}, \overrightarrow{p\delta} \rangle = \langle \overrightarrow{p\delta} + \overrightarrow{r\delta}, \overrightarrow{p\delta} + \overrightarrow{r\delta} \rangle = 2 \langle \overrightarrow{p\delta}, \overrightarrow{r\delta} \rangle + \langle \overrightarrow{r\delta}, \overrightarrow{r\delta} \rangle. \]

It follows that

\[\langle \overrightarrow{p\delta}, \overrightarrow{r\delta} \rangle = \langle \overrightarrow{p\delta} + \overrightarrow{r\delta}, \overrightarrow{r\delta} \rangle = \langle \overrightarrow{p\delta} + \epsilon \overrightarrow{r\delta}, \overrightarrow{r\delta} \rangle = \langle \overrightarrow{p\delta}, \overrightarrow{r\delta} \rangle + \epsilon \langle \overrightarrow{r\delta}, \overrightarrow{r\delta} \rangle = (\epsilon - \frac{1}{2}) \langle \overrightarrow{r\delta}, \overrightarrow{r\delta} \rangle, \]

which implies (42).

47 Classic statements of the conventionalist position can be found in Reichenbach [1958] and Grünbaum [1973]. Grünbaum has recently responded to criticism of his views in [forthcoming]. An overview of the debate with many references can be found in Janis [2002].
not from Einstein's initial position, but rather from the vantage point of the finished theory, i.e. relativity theory conceived as an account of invariant spacetime structure.

[For] Einstein, the question (much discussed since Reichenbach) whether the evidence really shows that that the speed of light must be regarded as the same in all directions and for all observers is not altogether appropriate. A person devising a theory does not have the responsibility, at the outset, of showing that the theory being developed is the only possible one given the evidence. [But] once Einstein's theory had been developed, and had proved successful in dealing with all relevant phenomena, the case was quite transformed; for we know that within this theory, there is only one "reasonable" concept of simultaneity (and in terms of that concept, the velocity of light is indeed as Einstein supposed); therefore an alternative will only present itself if someone succeeds in constructing, not simply a different empirical criterion of simultaneity, but an essentially different (and yet viable) theory of electrodynamics of systems in motion. No serious alternative theory is in fact known. (emphasis in original)

My goal in the remainder of this section is to formulate three elementary uniqueness results, closely related to one another, that capture the sense in which "there is only one 'reasonable' concept of (relative) simultaneity" within the framework of Minkowski spacetime.

It will help to first consider an analogy. In some formulations of Euclidean plane geometry, the relation of congruence between angles is taken as primitive along with that of congruence between line segments (and other relations suitable for formulating axioms about affine structure). But suppose we have a formulation in which it is not, and we undertake to define a notion of angle-congruence in terms of the other primitives. The standard angle-congruence relation can certainly be defined this way, and there is a clear sense in which it is the only reasonable candidate. Consider any two angles in the Euclidean plane. (Let's agree that an "angle" consists of two rays, i.e. half-lines, with a common initial point.) Whatever else is the case, presumably, it is only reasonable to count them as congruent, i.e. equal in "size", if there is an isometry of the Euclidean plane that maps one angle onto the other.⁴⁸ So though we have here a notion of angle-congruence that is introduced "by definition", there is no interesting sense in which it is conventional in character.

A situation very much like this arises if we think about "one-way light speeds" in terms of Minkowskian spacetime geometry. Indeed, the claim that the speed of light in vacuo is the same in all directions and for all inertial observers is naturally represented as a claim about angle congruence (for a special type of angle) in Minkowski spacetime.

Let us take a "light-speed angle" to be a triple of the form \((p, T, N)\), where \(p\) is a point in \(M\), \(T\) is a future-pointing timelike ray with initial point \(p\), and \(N\) is a future-pointing null ray with initial point \(p\). (See figure 7.)

⁴⁸In this context, a one-to-one map of the Euclidean plane onto itself is an "isometry" if it preserves the relation of congruence between line segments.
Then we can represent systematic attributions of one-way light speed as maps of the form: \((p, T, N) \mapsto v(p, T, N)\). (We understand \(v(p, T, N)\) to be the speed that an observer with (half) worldline \(T\) at \(p\) assigns to the light signal with (half) worldline \(N\).) So, for example, the principle that the speed of light is the same in all directions and for all inertial observers comes out as the condition that \(v(p, T, N) = v(p', T', N')\) for all light-speed angles \((p, T, N)\) and \((p', T', N')\).

Now it is natural to regard \(v(p, T, N)\) as a measure of the "size" of the angle \((p, T, N)\). If we do so, then, just as in the Euclidean case, we can look to the background metric to decide when two angles have the same size. That is, we can take them to be congruent iff there is an isometry of Minkowski spacetime that maps one to the other. But on this criterion, all light-speed angles are congruent (proposition 10). So we are led back to the principle that the (one-way) speed of light is the same in all directions and for all inertial observers and, hence, back to the standard relative simultaneity relation.

Proposition 10. Let \((p, T, N)\) and \((p', T', N')\) be any two light speed angles in Minkowski spacetime. Then there is an isometry \(\phi\) of Minkowski spacetime such that \(\varphi(p) = p', \varphi[T] = T',\) and \(\varphi[N] = N'\).

Once again, let \(L\) be a timelike line in \(M\), and let \(Sim_L\) be the standard relation of simultaneity relative to \(L\). (So \((p, q) \in Sim_L\) iff \(\vec{pq} \perp L\), for all \(p\) and \(q\) in \(M\).) Further, let \(\bar{S}\) be an arbitrary two-place relation on \(M\) that we regard as a candidate for the relation of "simultaneity relative to \(L\)". Our second uniqueness result assert that if \(\bar{S}\) satisfies three conditions, including an invariance condition, then \(\bar{S} = Sim_L\).

The first two conditions are straightforward.

(S1) \(S\) is an equivalence relation (i.e. \(S\) is reflexive, symmetric, and transitive).

(S2) For all points \(p \in M\), there is a unique point \(q \in L\) such that \((p, q) \in S\).

If \(S\) satisfies (S1), it has an associated family of equivalence classes. We can think of them as "simultaneity slices" (as determined relative to \(L\)). Then (S2) asserts that every

49 The required isometry can be realized in the form \(\varphi = \varphi_2 \circ \varphi_1 \circ \varphi_2\) where (i) \(\varphi_1\) is a translation that takes \(p\) to \(p'\), (ii) \(\varphi_2\) is a boost (based at \(p'\)) that maps \(\varphi_1[T]\) to \(T'\), and (iii) \(\varphi_3\) is a rotation about \(T'\) that maps \((\varphi_2 \circ \varphi_1)[N]\) to \(N'\).

50 Many propositions of this form can be found in the literature. (See Budden [1998] for a review.) Ours is intended only as an example. There are lots of possibilities here depending on exactly how one formulates the conditions that \(S\) must satisfy. The proofs are all very much the same.
simultaneity slice intersects \(L \) in exactly one point. Note that if \(S = \text{Sim}_L \), then (S1) and (S2) are satisfied. For in this case, the equivalence classes associated with \(S \) are hyperplanes orthogonal to \(L \), and these clearly intersect \(L \) in exactly one point.

The third, invariance condition is intended to capture the requirement that \(S \) is determined by, or definable in terms of, the background geometric structure of Minkowski spacetime and by \(L \) itself. The one subtle point here is whether temporal orientation is taken to count as part of that background geometric structure or not. Let’s assume for the moment that it does not.

Let \(\varphi : M \to M \) be an isometry of \((M, g_{ab})\). We say it is an \(L \)-isometry if, in addition, it preserves \(L \), i.e. if, for all points \(p \) in \(M \), \(p \in L \iff \varphi(p) \in L \). The set of \(L \)-isometries is generated by maps of the following three types: (a) translations ("up" and "down") in the direction of \(L \), (b) spatial rotations that leave fixed every point in \(L \), and (c) temporal reflections with respect to spacelike hyperplanes orthogonal to \(L \). We will say that our two-place relation \(S \) is \(L \)-invariant if it preserved under all \(L \)-isometries, i.e. if for all \(L \)-isometries \(\varphi : M \to M \), and all points \(p, q \in M \),

\[
(p, q) \in S \iff (\varphi(p), \varphi(q)) \in S.
\]

We can now formulate the second uniqueness result.

\[51\text{It is a close variant of one presented in Hogarth [1993].}\]

PROPOSITION 11. Let \(L \) be a timelike line, and let \(S \) be a two-place relation on \(M \) that satisfies conditions (S1) and (S2), and is \(L \)-invariant. Then \(S = \text{Sim}_L \).

As it turns out, the full strength of \(L \)-invariance in not needed here. If suffices to require that \(S \) is preserved under all \(L \)-isometries of type (c).

Suppose now that we do want to consider temporal orientation as part of the background structure that may play a role in the determination of \(S \). Then we need to recast the invariance condition. Let us say that an \(L \)-isometry \(\varphi : M \to M \) is an \((L, \uparrow)\)-isometry if it (also) preserves temporal orientation, i.e. if for all timelike vectors \(\vec{p} \), \(\varphi(p) \varphi(q) \) is co-oriented with \(\vec{pq} \). And let us say that \(S \) is \((L, \uparrow)\)-invariant if it is preserved under all \((L, \uparrow)\)-isometries. (So, to be \((L, \uparrow)\)-invariant, \(S \) must be preserved under all \(L \)-isometries of type (a) and (b), but need not be preserved under those of type (c).)

\((L, \uparrow)\)-invariance is a weaker condition than \(L \)-invariance and, in fact, is too weak to deliver the uniqueness result we want. It turns out there are many two-place relations \(S \) on \(M \) other than \(\text{Sim}_L \) that satisfy (S1), (S2), and are \((L, \uparrow)\)-invariant. Their associated "simultaneity slices" are "flat cones" that are preserved under \(L \)-isometries of type (a) and (b), but not (c). (See figure 8.)

But we can still get a uniqueness result if we change the set-up slightly, and think of simultaneity as determined, not relative to individual timelike lines, but, rather, relative to families of parallel timelike lines. Let us officially take a \textit{frame} in \(M \) to be a set of

\[52\text{The key step in the proof is the following. Let} \ p \ \text{be a point in} \ M. \ \text{By (S2), there is a unique point} \ q \ \text{on} \ \ L \ \text{such that} \ (p, q) \in S. \ \text{Let} \ \varphi : M \to M \ \text{be a reflection with respect to the hyperplane orthogonal to} \ L \ \text{that passes through} \ p. \ \text{Then} \ \varphi(p) = p, \ \varphi(q) \in L, \ \text{and} \ S \ \text{is invariant under} \ \varphi. \ \text{Hence} \ (p, \varphi(q)) = (\varphi(p), \varphi(q)) \in S. \ \text{Since} \ \varphi(q) \in L, \ \text{it follows by the uniqueness condition in (S2) that} \ \varphi(q) = q. \ \text{But the only points left fixed by} \ \varphi \ \text{are those on the hyperplane orthogonal to} \ L \ \text{that passes through} \ p. \ \text{So} \ p \ \text{and} \ q \ \text{are both on that hyperplane, and} \ \vec{pq} \ \text{is orthogonal to} \ L, \ \text{i.e.} \ (p, q) \in \text{Sim}_L.\]
parallel timelike lines \(L \) that is maximal in the sense that every point in \(M \) falls on one (and only one) of them. With hardly any work, we can recast our previous notions in terms of frames rather than lines.

In what follows, let \(L \) be some fixed frame. Given any two lines \(L \) and \(L' \) in \(L \), \(Sim_L = Sim_{L'} \). (Since \(L \) and \(L' \) are parallel, any vector orthogonal to one must be orthogonal to the other.) So we can, without ambiguity, make reference to \(Sim_L \) (the standard relation of simultaneity relative to \(L \)). Let \(\varphi : M \to M \) be an isometry of \((M, g_{ab}) \). We say it is an \(L \)-isometry if, for all \(L \) in \(L \), the line \(\varphi[L] \) is also in \(L \). And we say that it is an \((L, \uparrow) \)-isometry if, in addition, it preserves temporal orientation.

If \(L \) is a line in \(L \), then the set of \(L \)-isometries certainly includes all \(L \)-isometries of types (a), (b), and (c) above. But it includes, in addition, (d) translations taking \(L \) to some other line in \(L \), and (e) isometries that leave fixed the points on some line in \(L \) other than \(L \). If we restrict attention to \((L, \uparrow) \)-isometries, we lose maps of type (c), but we retain those of types (a), (b), (d), and (e). Invariance under this larger class is sufficient to drive a uniqueness result.

We say (of course) that \(S \) is \(L \)-invariant if it is preserved under all \(L \)-isometries, and \((L, \uparrow) \)-invariant if it is preserved under all \((L, \uparrow) \)-isometries. Our third uniqueness result comes out as follows.\(^5\)

PROPOSITION 12. Let \(L \) be a frame, and let \(S \) be a two-place on \(M \). Suppose \(S \) satisfies \((S1)\) and, for some \(L \) in \(L \), satisfies \((S2)\). Further, suppose \(S \) is \((L, \uparrow)\)-invariant. Then \(S = Sim_L \).

The move from proposition 11 to proposition 12 involves a trade-off. We drop the requirement that \(S \) be invariant under maps of type (c), but add the requirement that it be invariant under those of type (d) and (e). (It is a good exercise to check that one does not need the full strength of \((L, \uparrow)\)-invariance in proposition 12. It suffices to require that \(S \)

\(^5\)It is closely related to propositions in Spirtes [1981], Stein [1991], and Budden [1998].
be invariant under maps of type (a) and (e), or, alternatively, invariant under maps of type (b) and (d).

Once again, many variations of these results can be found in the literature. For example, if one subscribes to a "causal theory of time (or spacetime)", one will want to consider what candidate simultaneity relations are determined by the causal structure of Minkowski spacetime (in addition to the line \(L \)). Let \(\varphi: M \rightarrow \tilde{M} \) be a bijection. We say it is a causal isomorphism if it preserves the symmetric relation of causal connectibility, i.e. if, for all points \(p \) and \(q \) in \(M \), \(\ddot{p} \ddot{q} \) is a causal vector iff \(\varphi(p) \varphi(q) \) is one. We say it is \(L \)-causal isomorphism, an \((L, \uparrow) \)-causal isomorphism, and \(L \)-causal isomorphism, or an \((\mathcal{L}, \uparrow) \)-causal isomorphism if, in each case, it preserves the specified additional structure. Since isometries of Minkowskian spacetime automatically qualify as causal isomorphisms, we can replace the invariance condition in proposition 11 with the requirement that \(S \) be invariant under all \(L \)-causal isomorphisms; and we can replace the one in proposition 12 with the requirement that \(S \) be invariant under all \((\mathcal{L}, \uparrow) \)-causal isomorphisms.

3.2 Geometrized Newtonian Gravitation Theory

The "geometrized" formulation of Newtonian gravitation theory was first introduced by Cartan [1923; 1924], and Friedrichs [1927], and later developed by Trautman [1965], Künzle [1972; 1976], Ehlers [1981], and others.

It is significant for several reasons. (1) It shows that several features of relativity theory once thought to be uniquely characteristic of it do not distinguish it from (a suitably reformulated version of) Newtonian gravitation theory. The latter too can be cast as a "generally covariant" theory in which (a) gravity emerges as a manifestation of spacetime curvature, and (b) spacetime structure is "dynamical", i.e. participates in the unfolding of physics rather than being a fixed backdrop against which it unfolds.

(2) It helps one to see where Einstein's equation "comes from", at least in the empty-space case. (Recall the discussion in section 2.5.) It also allows one to make precise, in coordinate-free, geometric language, the standard claim that Newtonian gravitation theory (or, at least, a certain generalized version of it) is the "classical limit" of general relativity. (See Künzle [1976] and Ehlers [1981].)

(3) It clarifies the gauge status of the Newtonian gravitational potential. In the geometrized formulation of Newtonian theory, one works with a single curved derivative operator \(\nabla_\alpha \). It can be decomposed (in a sense) into two pieces — a flat derivative operator \(\nabla_\alpha \) and a gravitational potential \(\phi \) — to recover the standard formulation of the theory.\(^{54}\) But in the absence of special boundary conditions, the decomposition will not be unique. Physically, there is no unique way to divide into "inertial" and "gravitational" components the forces experienced by particles. Neither has any direct physical significance. Only their "sum" does. It is an attractive feature of the geometrized formulation that it trades in two gauge quantities for this sum.

(4) The clarification described in (3) also leads to a solution, or dissolution, of an old

\(^{54}\) As understood here, the "standard" formulation is not that found in textbooks, but rather a "generally covariant" theory of four-dimensional spacetime structure in which gravity is not geometrized.
conceptual problem about Newtonian gravitation theory, namely the apparent breakdown
of the theory when applied (in cosmology) to a hypothetically infinite, homogeneous mass
distribution. (See Malament [1995] and Norton [1995; 1999].)

In what follows, we give a brief overview of the geometrized formulation of Newtonian
gravitation theory, and say a bit more about points (1) and (3). We start by characterizing a
new class of geometrical models for the spacetime structure of our universe (or subregions
thereof) that is broad enough to include the models considered in both the standard and
geometrized versions of Newtonian theory. We take a classical spacetime to be a structure
\((M, t_{ab}, h^{ab}, \nabla_a)\) where (i) \(M\) is a smooth, connected, four-dimensional differentiable
manifold; (ii) \(t_{ab}\) is a smooth, symmetric, covariant tensor field on \(M\) of signature \((1, 0, 0, 0)\); \(^{55}\) (iii) \(h^{ab}\) is a smooth, symmetric, contravariant tensor field on \(M\) of signature
\((0, 1, 1, 1)\); (iv) \(\nabla_a\) is a smooth derivative operator on \(M\); and (v) the following two
conditions are met:

\[
\begin{align*}
(44) \quad h^{ab} t_{bc} &= 0 \\
(45) \quad \nabla_a t_{bc} &= 0 = \nabla_a h^{bc}.
\end{align*}
\]

We refer to them, respectively, as the "orthogonality" and "compatibility" conditions.

\(M\) is interpreted as the manifold of point events (as before); \(t_{ab}\) and \(h^{ab}\) are understood
to be temporal and spatial metrics on \(M\), respectively. Collectively, the objects \(t_{ab}, h^{ab}\),
and \(\nabla_a\) represent the spacetime structure presupposed by classical, Galilean relativistic
dynamics. We review, briefly, how they do so.

In what follows, let \((M, t_{ab}, h^{ab}, \nabla_a)\) be a fixed classical spacetime.

Consider, first, \(t_{ab}\). Given any vector \(\xi^a\) at a point, it assigns a "temporal length"
\((t_{ab} \xi^a \xi^b) ^{\frac{1}{2}} \geq 0\). The vector \(\xi^a\) is classified as timelike or spacelike depending on
whether its temporal length is positive or zero. It follows from the signature of \(t_{ab}\) that
the subspace of spacelike vectors at any point is three-dimensional. It also follows from
the signature that at every point there exists a covariant vector \(t_a\), unique up to sign, such
that \(t_{ab} = t_a t_b\). We say that the structure \((M, t_{ab}, h^{ab}, \nabla_a)\) is temporally orientable
if there is a continuous (globally defined) vector field \(t_a\) such that this decomposition
holds at every point. Each such field \(t_a\) (which, in fact, must be smooth because \(t_{ab}\) is)
determines a temporal orientation. A timelike vector \(\xi^a\) qualifies as future-directed
relative to \(t_a\) if \(t_a \xi^a > 0\); otherwise it is past-directed. Let us assume in what follows
that \((M, t_{ab}, h^{ab}, \nabla_a)\) is temporally orientable and that a temporal orientation \(t_a\) has been
selected.

\(^{55}\)The signature condition for \(t_{ab}\) is equivalent to the requirement that, at every point in \(M\), the tangent
cspace there have a basis \(\xi^1, ..., \xi^4\) such that, for all \(i\) and \(j\) in \(\{1, 2, 3, 4\}\), \(t_{ab} \xi^i \xi^j = 0\) if \(i \neq j\), and

\[
t_{ab} \xi^i \xi^j = \begin{cases}
1 & \text{if } i = 1 \\
0 & \text{if } i = 2, 3, 4.
\end{cases}
\]

Similarly, the signature condition for \(h^{ab}\) in (iii) requires that, at every point, the cotangent space there have a
basis \(\delta_a, ..., \delta_a\) such that, for all \(i\) and \(j\) in \(\{1, 2, 3, 4\}\), \(h^{ab} \delta_a \delta_b = 0\) if \(i \neq j\), and

\[
h^{ab} \delta_a \delta_b = \begin{cases}
0 & \text{if } i = 1 \\
1 & \text{if } i = 2, 3, 4.
\end{cases}
\]
From the compatibility condition, it follows that \(t_a \) is closed, i.e. \(\nabla_a t_b = 0 \). So, at least locally, it must be exact, i.e. of form \(t_a = \nabla_a t \) for some smooth function \(t \). We call any such function a *time function*. If \(M \) has a suitable global structure, e.g. if it is simply connected, then a globally defined time function \(t : M \to \mathbb{R} \) must exist. In this case, spacetime can be decomposed into a one-parameter family of global \((t = \text{constant})\) "time slices". One can speak of "space" at a given "time". A different choice of time function would result in a different zero-point for the time scale, but would induce the same time slices and the same elapsed intervals between them.

We say that a smooth curve is timelike (respectively spacelike) if its tangent field is timelike (respectively spacelike) at every point. In what follows, unless indication is given to the contrary, it should further be understood that a "timelike curve" is future-directed and parametrized by its \(t_{ab} \)-length. In this case, its tangent field \(\xi^a \) satisfies the normalization condition \(t_a \xi^a = 1 \). Also, in this case, if a particle happens to have the image of the curve as its worldline, then, at any point, \(\xi^a \) is called the particle's four-velocity, and \(\xi^a \nabla_n \xi^a \) its four-acceleration, there.\(^{56}\) If the particle has mass \(m \), then its four-acceleration field satisfies the equation of motion

\[
F^a = m \xi^a \nabla_n \xi^a,
\]

where \(F^a \) is a spacelike vector field (on the image of its worldline) that represents the net force acting on the particle. This is, once again, our version of Newton's second law of motion. Recall (15). Note that the equation makes geometric sense because four-acceleration vectors are necessarily spacelike.\(^{57}\)

Now consider \(h^{ab} \). It serves as a spatial metric, but just how it does so is a bit tricky. In Galilean relativistic mechanics, we have no notion of spatial length for timelike vectors, e.g. four-velocity vectors, since having one is tantamount to a notion of absolute rest. (We can take a particle to be at rest if its four-velocity has spatial length 0 everywhere.) But we *do* have a notion of spatial length for spacelike vectors, e.g. four-acceleration vectors. (We can, for example, use measuring rods to determine distances between simultaneous events.) \(h^{ab} \) serves to give us one without the other.

We cannot take the spatial length of a vector \(\sigma^a \) to be \((h_{ab} \sigma^a \sigma^b)^{1/2} \) because the latter is not well-defined. (Since \(h^{ab} \) has degenerate signature, it is not invertible, i.e. there does not exist a field \(h_{ab} \) satisfying \(h^{ab} h_{bc} = \delta^a_c \).) But if \(\sigma^a \) is spacelike, we can use \(h^{ab} \) to assign a spatial length to it indirectly. It turns out that: (i) a vector \(\sigma^a \) is spacelike iff it can be expressed in the form \(\sigma^a = h^{ab} \lambda_b \), and (ii) if it can be so expressed, the quantity \((h^{ab} \lambda_a \lambda_b) \) is independent of the choice of \(\lambda_a \). Furthermore, the signature of \(h^{ab} \) guarantees that \((h^{ab} \lambda_a \lambda_b) \geq 0 \). So if \(\sigma^a \) is spacelike, we can take its spatial length to be \((h^{ab} \lambda_a \lambda_b)^{1/2} \), for any choice of corresponding \(\lambda_a \).

\(^{56}\)Here we take for granted an interpretive principle that corresponds to C1: (i) a curve is timelike iff its image could be the worldline of a point particle. Other principles we can formulate at this stage correspond to P1 and P2: (ii) a timelike curve can be reparametrized so as to be a geodesic (with respect to \(\nabla_a \)) iff its image could be the worldline of a free particle; (iii) clocks record the passage of elapsed \(t_{ab} \)-length along their worldlines. (Here, in contrast to the relativistic setting, we have only massive particles to consider; and until we geometrize Newtonian gravity, we do not count a particle as "free" if it is subject to "gravitational force".)

\(^{57}\)By the compatibility condition, \(t_a \xi^a \nabla_n \xi^a = \xi^a \nabla_n (t_a \xi^a) = \xi^a \nabla_n (1) = 0 \).
One final preliminary remark about classical spacetimes is needed. It is crucial for our purposes, as will be clear, that the compatibility condition (45) does not determine a unique derivative operator. (It is a fundamental result that the compatibility condition $\nabla_a g_{bc} = 0$ determines a unique derivative operator if g_{ab} is a semi-Riemannian metric, i.e. a smooth, symmetric field that is invertible (i.e. non-degenerate). But neither t_{ab} nor h^{ab} is invertible.)

Because h^{ab} is not invertible, we cannot raise and lower indices with it. But we can, at least, raise indices with it, and it is sometimes convenient to do so. So, for example, if R^a_{bcd} is the Riemann curvature tensor field associated with ∇_a, we can understand R^a_{bcd} to be an abbreviation for $h^{bn}R^a_{ncd}$.

Let us now, finally, consider Newtonian gravitation theory. In the standard (non-geometrized) version, one works with a flat derivative operator ∇_a and a gravitational potential ϕ, the latter understood to be a smooth, real-valued function on M. The gravitational force on a point particle with mass m is given by $-m h^{ab} \nabla_b \phi$. (Notice that this is a spacelike vector by the orthogonality condition.) Using our convention for raising indices, we can also express the vector as: $-m \nabla^a \phi$. It follows that if the particle is subject to no forces except gravity, and if it has four-velocity ξ^a, it satisfies the equation of motion

\begin{equation}
-\nabla^a \phi = \xi^a \nabla_n \xi^a.
\end{equation}

(Here we have just used $-m \nabla^a \phi$ for the left side of (46).) It is also assumed that ϕ satisfies Poisson’s equation:

\begin{equation}
\nabla^a \nabla_a \phi = 4\pi \rho,
\end{equation}

where ρ is the Newtonian mass-density function (another smooth real-valued function on M). (The expression on the left side is an abbreviation for: $h^{ab} \nabla_b \nabla_a \phi$.)

In the geometrized formulation of the theory, gravitation is no longer conceived as a fundamental “force” in the world, but rather as a manifestation of spacetime curvature (just as in relativity theory). Rather than thinking of point particles as being deflected from their natural straight (i.e. geodesic) trajectories, one thinks of them as traversing geodesics in curved spacetime. So we have a geometry problem. Starting with the structure $(M, t_{ab}, h^{ab}, \nabla_a)$, can we find a new derivative operator $\bar{\nabla}_a$, also compatible with the metrics t_{ab} and h^{ab}, such that a timelike curve satisfies the equation of motion (47) with respect to the original derivative operator ∇_a iff it is a geodesic with respect to $\bar{\nabla}_a$? The following proposition (essentially due to Trautman [1965]) asserts that there is exactly one such $\bar{\nabla}_a$. It also records several facts about the Riemann curvature tensor field \bar{R}^a_{bcd} associated with $\bar{\nabla}_a$.

In formulating the proposition, we make use of the following basic fact about derivative operators. Given any two such operators ∇_a and ∇_a on M, there is a unique smooth tensor field C^a_{bc}, symmetric in its covariant indices, such that, for all smooth fields $\alpha^a\ldots^b_{c\ldots d}$
on M,
\[\nabla_{a}^{2} \alpha^{a...b}_{c...d} = \nabla_{a} \alpha^{a...b}_{c...d} + C_{nc}^{r} \alpha^{a...b}_{r...d} + \ldots + C_{rd}^{n} \alpha^{a...b}_{c...r} - C_{nr}^{a} \alpha^{a...b}_{c...d} - \ldots - C_{nr}^{b} \alpha^{a...r}_{c...d}. \]
(49)

In this case, we say that "the action of ∇_{a}^{2} relative to that of ∇_{a} is given by C_{bc}^{a}". \(^{58}\)

Conversely, given any one derivative operator ∇_{a} on M, and any smooth, symmetric field C_{bc}^{a} on M, (49) defines a new derivative operator ∇_{a}^{2} on M. (See Wald [1984, p. 331].)

PROPOSITION 13 (Geometrization Theorem). *Let $(M, t_{ab}, h^{ab}, \nabla_{a})$ be a classical spacetime with ∇_{a} flat ($R_{bcd}^{a} = 0$). Further, let ϕ and ρ be smooth real valued functions on M satisfying Poisson's equation: $\nabla^{a} \nabla_{a} \phi = 4 \pi \rho$. Finally, let ∇_{a} be the derivative operator on M whose action relative to that of ∇_{a} is given by $C_{bc}^{a} = -t_{bc} \nabla^{a} \phi$. Then all the following hold.*

\(\begin{align*}
(1) & \quad (M, t_{ab}, h^{ab}, \nabla_{a}) \text{ is a classical spacetime.} \\
(2) & \quad \nabla_{a} \text{ is the unique derivative operator on } M \text{ such that, for all timelike curves on } M \text{ with four-velocity fields } \xi^{a}, \\
(3) & \quad \xi^{n} \nabla_{n} \xi^{a} = 0 \iff -\nabla^{a} \phi = \xi^{n} \nabla_{n} \xi^{a}.
\end{align*}\) (50)

\(\begin{align*}
(3) & \quad \text{The curvature field } \nabla_{a} \nabla_{b} \text{ associated with } \nabla_{a} \text{ satisfies:}
& \quad \nabla_{bc}^{a} = 4 \pi \rho t_{bc} \quad (51) \\
& \quad \nabla_{ab}^{a} = 0 \quad (52) \\
& \quad \nabla_{[ab]}^{a} = 0. \quad (53)
\end{align*}\)

(51) is the geometrized version of Poisson's equation. The proof proceeds by more-or-less straightforward computation using (49). \(^{59}\)

\(^{58}\) Clearly, if the action of ∇_{a}^{2} relative to that of ∇_{a} is given by C_{bc}^{a}, then, conversely, the action of ∇_{a} relative to that of ∇_{a}^{2} is given by $-C_{bc}^{a}$. In the sum on the right side of (49), there is one term involving C_{bc}^{a} for each index in $\alpha^{a...b}_{c...d}$. In each case, the index in question is contracted with C_{bc}^{a}, and the term carries a coefficient of $+1$ or -1 depending on whether the index in question is in covariant (down) or contravariant (up) position. (The components of C_{bc}^{a} in a particular coordinate system are obtained by subtracting the Christoffel symbols associated with ∇_{a} (in that coordinate system) from those associated with ∇_{a}^{2}.)

\(^{59}\) Here is a sketch. By (49),

\[\nabla_{a} t_{bc} = \nabla_{a} t_{bc} + C_{ab}^{r} t_{rc} + C_{ac}^{r} t_{br} = \nabla_{a} t_{bc} + (-t_{ab} \nabla^{r} \phi) t_{rc} + (-t_{ac} \nabla^{r} \phi) t_{br}. \]

The first term in the far right sum vanishes by the compatibility condition (45); the second and third do so by the orthogonality condition (44) since, for example, $(\nabla^{r} \phi) t_{br} = (h^{rm} t_{br}) \nabla_{m} \phi$. So ∇_{a} is compatible with t_{bc}. Much the same argument shows that it is also compatible with h^{ab}. This give us (G1).
We can also work in the opposite direction. In geometrized Newtonian gravitation theory, one starts with a curved derivative operator $\overset{g}{\nabla}\alpha$ satisfying (51), (52), (53), and with the principle that point particles subject to no forces (except "gravity") traverse geodesics with respect to $\overset{g}{\nabla}\alpha$. (52) and (53) function as integrability conditions that ensure the possibility of working backwards to recover the standard formulation in terms of a gravitational potential and flat derivative operator. We have the following recovery, or degeometrization, theorem (also essentially due to Trautman [1965]).

PROPOSITION 14 (Recovery Theorem). Let $(M, t_{ab}, h^{ab}, \overset{g}{\nabla}\alpha)$ be a classical spacetime that, together with a smooth, real-valued function ρ on M, satisfies conditions (51), (52), (53). Then, at least locally (and globally if M is, for example, simply connected), there exists a smooth, real-valued function ϕ on M and a flat derivative operator $\nabla\alpha$ such that all the following hold.

(R1) $(M, t_{ab}, h^{ab}, \nabla\alpha)$ is a classical spacetime.

(R2) For all timelike curves on M with four-velocity fields ξ^a, the geometrization condition (50) is satisfied.

For (G2), let $\overset{g}{\nabla}_\alpha$ (temporarily) be an arbitrary derivative operator on M whose action relative to that $\nabla\alpha$ is given by some field $C_{\alpha\beta\gamma}$. Let p be an arbitrary point in M, and let ξ^a be the four-velocity field of an arbitrary timelike curve through p. Then, by (49),

$$\xi^a \overset{g}{\nabla}_\alpha \xi^a = \xi^a \nabla_\alpha \xi^a - C^\alpha_{\beta\gamma} \xi^\beta \xi^\gamma.$$

It follows that $\overset{g}{\nabla}_\alpha$ will satisfy (G2) iff $C^\alpha_{\beta\gamma} \xi^\beta \xi^\gamma = -\nabla^\alpha \phi$ or, equivalently,

$$[C^\alpha_{\beta\gamma} + (\nabla^\alpha \phi) \ t_{\beta\gamma}] \xi^\beta \xi^\gamma = 0,$$

for all future-directed unit timelike vectors ξ^a at all points p. But the space of future-directed unit timelike vectors at any p spans the tangent space M_p there, and the field in brackets is symmetric in its covariant indices. So, $\overset{g}{\nabla}_\alpha$ will satisfy (G2) iff $C^\alpha_{\beta\gamma} = - (\nabla^\alpha \phi) \ t_{\beta\gamma}$ everywhere.

Finally, for (G3) we use the fact that $\overset{g}{R}^{a}_{bcd}$ can be expressed as a sum of terms involving R^{a}_{bcd} and C^{a}_{bcd} (see Wald [1984, p. 184]), and then substitute for C^{a}_{bcd}:

$$\overset{g}{R}^{a}_{bcd} = R^{a}_{bcd} + 2 \nabla_{[c} C^{a}_{d]b} + 2 C^{a}_{b[c} C^{a}_{d]n} = R^{a}_{bcd} - 2 t_{b[d} \nabla_{c]} \nabla^{a} \phi = 0.$$

(Here $C^{a}_{b[c} C^{a}_{d]n}$ turns out to be 0 by the orthogonality condition, and $\nabla_{[c} C^{a}_{d]b}$ turns out to be $- t_{b[d} \nabla_{c]} \nabla^{a} \phi$ by the compatibility condition. For the final equality we use our assumption that $R^{a}_{bcd} = 0$.) (52) and (53) now follow from the orthogonality condition and (for (53)) from the fact that $\nabla^{a} \nabla^{a} \phi = 0$ for any smooth function ϕ. Contraction on 'a' and 'd' yields

$$\overset{g}{R}_{bc} = t_{bc} (\nabla_{a} \nabla^{a} \phi).$$

So (51) follows from our assumption that $\nabla^{a} \nabla_{a} \phi = 4 \pi \rho$ (and the fact that $\nabla_{a} \nabla^{a} \phi = \nabla^{a} \nabla_{a} \phi$).

I am deliberately passing over some subtleties here. Geometrized Newtonian gravitation theory comes in several variant formulations. (See Bain [2004] for a careful review of the differences.) The one presented here is essentially that of Trautman [1965]. In other weaker formulations (such as that in Künzle [1972]), condition (52) is dropped, and it is not possible to fully work back to the standard formulation (in terms of a gravitational potential and flat derivative operator) unless special global conditions on spacetime structure are satisfied.
$(R3)$ ∇_a satisfies Poisson's equation: $\nabla^a \nabla_a \phi = 4\pi \rho$.

The theorem is an existential assertion of this form: given ∇_a satisfying certain conditions, there exists (at least locally) a smooth function ϕ on M and a flat derivative operator ∇_a such that ∇_a arises as the "geometrization" of the pair (∇_a, ϕ). But, as claimed at the beginning of this section, we do not have uniqueness unless special boundary conditions are imposed on ϕ.

For suppose ∇_a is flat, and the pair (∇_a, ϕ) satisfies (R1), (R2), (R3). Let ψ be any smooth function (with the same domain as ϕ) such that $\nabla^a \nabla_b \psi$ vanishes everywhere, but $\nabla^b \psi$ does not. If we set $\hat{\phi} = \phi + \psi$, and take ∇_a to be the derivative operator relative to which the action of ∇_a is given by $\partial_a \nabla_a \phi = -t_{ab} \nabla^a \phi$, then ∇_a is flat and the pair $(\nabla_a, \hat{\phi})$ satisfies conditions (R1), (R2), (R3) as well.

But, because $\nabla^b \psi$ is non-vanishing (somewhere or other), the pairs (∇_a, ϕ) and $(\nabla_a, \hat{\phi})$ are distinct decompositions of ∇_a. Relative to the first, a point particle (with mass m and four-velocity ξ^a) has acceleration $\xi^n \nabla_n \xi^a$ and is subject to a gravitational force.

61 We can think of $\nabla^b \psi$ as the "spatial gradient" of ψ. The stated conditions impose the requirement that $\nabla^b \psi$ be constant on all spacelike submanifolds ("time slices"), but not vanish on all of them.

62 It follows directly from the way ∇_a was defined that the pair (∇_a, ϕ) satisfies conditions (R1) and (R2). (The argument is almost exactly the same as that used in an earlier note to prove (G1) and (G2) in the Geometrization Theorem.) What must be shown that is that ∇_a is flat, and that the pair $(\nabla_a, \hat{\phi})$ satisfies Poisson's equation: $\nabla^a \nabla_a \hat{\phi} = 4\pi \rho$. We do so by showing that (i) $\tilde{R}^a_{bcd} = R^a_{bcd}$, (ii) $\nabla^a \nabla_a \psi = 0$, and (iii) $\nabla^a \nabla_a \alpha = \nabla^a \nabla_a \alpha$, for all smooth scalar fields α on M. (It follow immediately from (ii) and (iii) that $\nabla^a \nabla_a \phi = \nabla^a \nabla_a \phi + \nabla^a \nabla_a \phi = \nabla^a \nabla_a \phi + \nabla^a \nabla_a \phi = 4\pi \rho$.)

We know from the uniqueness clause of (G2) in the Geometrization Theorem that the action of ∇_a with respect to ∇_a is given by the field $C^a_{bc} = -t_{bc} \nabla^a \phi$. It follows that the action of ∇_a relative to that of ∇_a is given by $\tilde{C}^a_{bc} = -\tilde{C}^a_{bc} + C^a_{bc} = -t_{bc} \nabla^a (-\phi + \hat{\phi}) + t_{bc} \nabla^a \psi$. So, arguing almost exactly as we did in the proof of (G3) in the Geometrization Theorem, we have

$$\nabla^a \nabla_b \nabla^c \nabla_d \nabla_c \nabla_d \nabla_a \psi = 0.$$ (54)

Now it follows from $\nabla^a \nabla_b \nabla^c \nabla_d \nabla_c \nabla_d \nabla_a \psi = 0$ that

$$\nabla_c \nabla_d \nabla^c \nabla_d \nabla_a \psi = t_c (\xi^n \nabla_n \nabla^c \nabla_d \nabla_a \psi),$$ (55)

where $t_{ab} = t_a t_b$, and ξ^n is any smooth future-directed unit timelike vector field on M. Hence, $t_{ab} (\xi^n \nabla_n \nabla^c \nabla_d \nabla_a \psi) = t_c (\xi^n \nabla_n \nabla^c \nabla_d \nabla_a \psi) = 0$. This, together with (54), gives us (i). And (ii) follows directly from (55). Finally, for (ii), notice that

$$\nabla_c \nabla_d \nabla^c \nabla_d \nabla_a \psi = t_c \left(\xi^n \nabla_n \nabla^c \nabla_d \nabla_a \psi \right).$$

The final equality follows from the orthogonality condition.
\(-m \nabla^a \phi\). Relative to the second, it has acceleration \(\xi^n \nabla_r \xi^a = \xi^n \nabla_n \xi^a - \nabla^a \psi\) and is subject to a gravitational force \(-m \nabla^a \phi = -m \nabla^a \phi - m \nabla^a \psi\). As suggested at the beginning of the section, we can take this non-uniqueness of recovery result to capture in precise mathematical language the standard claim that Newtonian gravitational force is a gauge quantity. By the argument just given, if we can take the force on a point particle with mass \(m\) to be \(-m \nabla^a \phi\), we can equally well take it to be \(-m \nabla^a (\phi + \psi)\), where \(\psi\) is any field satisfying \(\nabla^a \nabla^b \psi = 0\).

3.3 Recovering Global Geometric Structure from "Causal Structure"

There are many interesting and important issues concerning the global structure of relativistic spacetimes that might be considered here — the nature and significance of singularities, the cosmic censorship hypothesis, the possibility of "time travel", and others.\(^{63}\) But we limit ourselves to a few remarks about one rather special topic.

In our discussion of relativistic spacetime structure, we started with geometric models \((M, g_{ab})\) exhibiting several levels of geometric structure, and used the latter to define the (two-place) relations \(\ll\) and \(\prec\) on \(M\).\(^{64}\) The latter are naturally construed as relations of "causal connectibility (or accessibility)". The question arises whether it is possible to work backwards, i.e. \(\text{start with the pair } (M, \ll)\) or \((M, \prec)\), with \(M\) now construed as a bare point set, and recover the geometric structure with which we began. The question is suggested by long standing interest on the part of some philosophers in "causal theories" of time or spacetime. It also figures centrally in a certain approach to quantum gravity developed by Rafael Sorkin and co-workers. (See, e.g. Sorkin [1995; 2005].)

Here is one way to make the question precise. (For convenience, we work with the relation \(\ll\).)

Let \((M, g_{ab})\) and \((\bar{M}, \bar{g}_{ab})\) be (temporally oriented) relativistic spacetimes. We say that a bijection \(\varphi: M \rightarrow \bar{M}\) between their underlying point sets is a **causal isomorphism** if, for all \(p\) and \(q\) in \(M\),

\[(56) \quad p \ll q \iff \varphi(p) \ll \varphi(q).\]

Now we ask: Does a causal isomorphism have to be a homeomorphism? a diffeomorphism? a conformal isometry?\(^{65}\)

Without further restrictions on \((M, g_{ab})\) and \((\bar{M}, \bar{g}_{ab})\), the answer is certainly 'no' to all three questions. Unless the "causal structure" (i.e. the structure determined by \(\ll\)) of a spacetime is reasonably well behaved, it provides no useful information at all. For example, let us say that a spacetime is **causally degenerate** if \(p \ll q\) for all points \(p\) and \(q\). Any bijection between two causally degenerate spacetimes qualifies as a causal isomorphism. But we can certainly find causally degenerate spacetimes whose underlying

\(^{63}\) Earman [1995] offers a comprehensive review of many of them. On the topic of singularities, I can also recommend Curiel [1999].

\(^{64}\) Recall that \(p \ll q\) holds if there is a future-directed timelike curve that runs from \(p\) to \(q\); and \(p \prec q\) holds if there is a future-directed causal curve that runs from \(p\) to \(q\).

\(^{65}\) We know in advance that a causal isomorphism need not be a (full) isometry because conformally equivalent metrics \(g_{ab}\) and \(\Omega^2 g_{ab}\) on a manifold \(M\) determine the same relation \(\ll\). The best one can ask for is that it be a conformal isometry, i.e. that it be a diffeomorphism that preserves the metric up to a conformal factor.
manifolds have different topologies (e.g. Gödel spacetime and a rolled-up version of Minkowski spacetime).

There is a hierarchy of "causality conditions" that is relevant here. (See, e.g. Hawking and Ellis [1972, section 6.4].) They impose, with varying degrees of stringency, the requirement that there exist no closed, or "almost closed", timelike curves. Here are three.

chronology: There do not exist closed timelike curves. (Equivalently, for all \(p \), it is not the case that \(p \ll p \).)

future (resp. past) distinguishability: For all points \(p \), and all sufficiently small open sets \(O \) containing \(p \), no future directed (resp. past directed) timelike curve that starts at \(p \), and leaves \(O \), ever returns to \(O \).

strong causality: For all points \(p \), and all sufficiently small open sets \(O \) containing \(p \), no future directed timelike curve that starts in \(O \), and leaves \(O \), ever returns to \(O \).

It is clear that strong causality implies both future distinguishability and past distinguishability, and that each of the distinguishability conditions (alone) implies chronology. Standard examples (Hawking and Ellis [1972]) establish that the converse implications do not hold, and that neither distinguishability condition implies the other.

The names "future distinguishability" and "past distinguishability" are easily explained. For any \(p \), let \(I^+(p) \) be the set \(\{ q : p \ll q \} \) and let \(I^-(p) \) be the set \(\{ q : q \ll p \} \). Then future distinguishability is equivalent to the requirement that, for all \(p \) and \(q \),

\[
I^+(p) = I^+(q) \Rightarrow p = q.
\]

And the counterpart requirement with \(I^+ \) replaced by \(I^- \) is equivalent to past distinguishability.

We mention all this because it turns out that one gets a positive answer to all three questions above if one restricts attention to spacetimes that are both future and past distinguishing.

PROPOSITION 15. Let \((M, g_{ab})\) and \((\overline{M}, \overline{g}_{ab})\) be (temporally oriented) relativistic spacetimes that are past and future distinguishing, and let \(\varphi : M \to \overline{M} \) be a causal isomorphism. Then \(\varphi \) is a diffeomorphism and preserves \(g_{ab} \) up to a conformal factor, i.e. \(\varphi_* g_{ab} \) is conformally equivalent to \(\overline{g}_{ab} \).

A proof is given in Malament [1977]. A counterexample given there also shows that the proposition fails if the initial restriction on causal structure is weakened to past distinguishability or to future distinguishability alone.

ACKNOWLEDGEMENTS

I am grateful to Jeremy Butterfield, Erik Curiel, John Earman, and Chris Smeenk for comments on earlier drafts.
BIBLIOGRAPHY

NON-RELATIVISTIC QUANTUM MECHANICS

Michael Dickson

This article is an introduction to some of the most important philosophical and foundational issues that arise from or concern non-relativistic quantum theory. The chapter has six main sections. The first introduces the theory, including some of the important mathematical results required to formulate and address many of the philosophical and foundational issues. This section is the longest, and most important, for it will begin to give the careful reader the background needed to understand and evaluate much of the vast literature on non-relativistic quantum theory. And that literature is indeed vast — there is no way that it can even be summarized in a chapter of this length. Instead, in the five subsequent sections, I will consider some of the more important issues: foundational characterizations of the formalism of quantum theory, empirical content, quantum uncertainty, the measurement problem, and non-locality. There are many other issues one could discuss, and some recent movements that merit consideration. Alas, we will not have time for them. A careful reading of the material here is a start, however, towards understanding these other issues.

Of these five issues, the first two are somewhat less discussed, especially in the Anglo-American philosophical literature. Those sections are therefore longer, relative to the final three, than some readers might expect. This fact is not meant to imply anything about the relative importance of the issues, but is an attempt to redress a relative lack of coverage in certain circles.

Much of the material presented here — especially from §4, §5, and §6 — is largely my review of standard material that can be found in many places. I have therefore chosen not to provide extensive bibliographic information. Indeed, I have kept bibliographic references to a minimum. This article is thus not intended to be a compendium of work in the field, much less an extensive annotated bibliography. The reader is encouraged to seek additional resources to fill out the brief accounts given here. Such resources are numerous.

The final section is a brief mathematical appendix, reviewing essential definitions and results, mostly from the theory of Hilbert spaces and groups. It may serve one of two purposes, depending on the reader: a brief reminder of concepts learned elsewhere; or a prompt to learn the concepts elsewhere. It is unlikely that a reader who is completely unfamiliar with these concepts will absorb them just from what is said here. Reference is made to the relevant subsections of this appendix at the appropriate places in the text.
While at some points I have made some effort at rigor, for the most part, the discussion here is only partly rigorous, with the occasional attempt made to point towards what further would be required for complete rigor. The reader is, again, encouraged to consult the literature for mathematical details, and in any case is encouraged to bear in mind that much of the discussion here is not intended to be entirely mathematically rigorous, while, I hope, also not being misleading.

1 THE THEORY

This section is an introduction to the formalism of quantum theory. After a brief justification of this approach (§1.1), I will introduce the major elements of the formalism (§1.2), followed by a simple, but important, example (§1.3). I will then introduce the commonly used ‘Dirac’ notation (§1.4), and conclude by considering the role of transformations (groups) in the theory (§1.5), including dynamical transformations (equations of motion) and finally (§1.6) a brief preview of the philosophical issues to come. More than subsequent sections, this section will rely heavily on the material from the mathematical appendix (§7), with references where appropriate.

1.1 The Thought Behind Starting with Formalism

Why begin an account of a physical theory with its formalism? Why not begin, instead, with its basic physical insights, or fundamental physical principles? One problem with such an approach here is that, in the case of quantum theory, there is not much significant agreement about what the basic physical insights, or fundamental physical principles, are. Some argue that the collapse postulate (to be discussed later) is at the heart of the theory. Others argue that it must be excised from the theory. Some argue that the theory is fundamentally indeterministic, while others argue that we can make sense of it only in terms of an underlying determinism. Some argue that the familiar notion of a ‘particle’ with a definite location is a casualty of the theory, while others argue that the theory makes sense only if one takes such a notion as fundamental.

Now, advocates of these different views tend also, it is true, to advocate different formulations of the theory, but they will not suggest that formulations other than their preferred one are wrong, only that they, perhaps, emphasize the wrong points. (Indeed, there is no disputing that the standard formalism — the one presented here — is empirically successful; advocates of different views will ultimately have to account for that success in their own terms.) Hence, while the choice of a single formalism at the start of our discussion might slant our point of view somewhat, it will, unlike the choice of basic physical insights or fundamental physical principles, not preclude the central issues.
1.2 The Standard Formalism

I begin with a very brief sketch of a common understanding of the formalism, which I shall flesh out and generalize subsequently. (The reader is not expected to have a deep understanding of any aspect of the formalism merely as a result of reading this subsection.)

1.2.1 Hilbert Space

The formalism of quantum mechanics is normally understood in terms of the theory of Hilbert spaces (§7.1). A Hilbert space is a vector space (§7.1.1) with an inner product (§7.1.3) that is also complete with respect to the norm (§7.1.4) defined by this inner product. A standard example is the space, ℓ^2, of (modulus)-square-summable sequences of complex numbers. In this space, the inner product of two vectors, (x_1, x_2, \ldots) and (y_1, y_2, \ldots) is $\sum_{n=1}^{\infty} x_n^* y_n$. Another standard example is the space, $L^2(\mathbb{R}^N)$, of (modulus)-square-integrable, Lebesgue-measurable, complex-valued functions on \mathbb{R}^N, where we identify two functions (i.e., they represent the same vector) if (and only if) they differ only on a set of Lebesgue measure (§7.5.4) zero. Here the inner product of two vectors, $f(x)$ and $g(x)$, is $\int f^*(x) g(x) dx$ (where $f(x)$ and $g(x)$ are arbitrary representatives from their respective equivalence classes).\footnote{For those who have some familiarity with quantum theory: the space ℓ^2 is the space used in Heisenberg's 'matrix mechanics', while the space $L^2(\mathbb{R}^N)$ is the space used in Schrödinger's 'wave mechanics'. As Hilbert spaces, ℓ^2 and $L^2(\mathbb{R}^N)$ are isomorphic, meaning that the two theories are essentially the same.}

1.2.2 Observables

The 'observables' of the theory — the physical quantities, or properties, whose value or presence one can, in principle at least, measure, or 'observe' — are normally taken to be represented by the self-adjoint operators (§7.2.1, §7.2.3) on the Hilbert space. (The nature of the representation — that is, which operators represent which observables — can depend on the physical situation being described.) Via the spectral theorem (discussed below), one can identify each observable with a spectral family of projection operators, the observable being given, essentially, by a map from Borel sets (§7.5.5) of possible values of the observable to elements in the spectral family. This subsection reviews these ideas briefly.

1.2.2.1 Positive Operator Valued Measures It is often useful to adopt a broader notion of an observable, as a 'positive-operator-valued measure' (POVM). In this approach, we begin with a set of 'possible values' for the observable, represented in the most general case as a locally compact topological space, S (§7.5.1). In most cases of interest to us, S is a subset of the real numbers, or things can be reworked so that it is.
A map, \(E : B(S) \rightarrow B(\mathcal{H}) \), from the Borel subsets of \(S \) to the bounded operators \((\Sect{7.2.2}) \) on some Hilbert space, \(\mathcal{H} \), is a POVM just in case for any disjoint sequence of such subsets, \(\Delta_n \subseteq S \),

1. \(E(\Delta_n) \) is a positive operator for all \(n \)

2. \(E(S) = I \), the identity on \(\mathcal{H} \)

3. \(E(\cup_n \Delta_n) = \sum_n E(\Delta_n) \).

In (1), an operator, \(E \), is positive if \(\langle v, Ev \rangle \geq 0 \) for all \(v \in \mathcal{H} \). The positive operators on \(\mathcal{H} \) are denoted by \(B(\mathcal{H})^+ \). The convergence intended in (3) is in the weak operator topology on \(\mathcal{H} \) \((\Sect{7.5.3}) \). If, in addition, \(E(\Delta_n \cap \Delta_m) = E(\Delta_n)E(\Delta_m) \) whenever \(n \neq m \) then: everything in the image of \(E \) is a projection operator; \(E \) is then called a ‘projection-valued measure’ (PVM); and the family \(\left\{ E(\Delta_n) \right\} \) is a ‘spectral family’. In this case, the \(E(\Delta_n) \) are mutually orthogonal, meaning that \(E(\Delta_m)E(\Delta_n) = 0 \) (the zero operator) whenever \(m \neq n \), and we write \(E(\Delta_m) \perp E(\Delta_n) \).

We can recover a self-adjoint operator from any PVM, \(E \). If the cardinality of \(S \subseteq \mathbb{R} \) is finite \((S = \{ s_1, \ldots, s_N \}) \), then the recovery is straightforward:

4. \(F = \sum_{n=1}^N s_n E(s_n) \).

That is, the operator \(F \) is the weighted sum of the (mutually orthogonal) projections \(E(s_n) \), the weights being the ‘possible values’ of the observable, i.e., elements of \(S \). If \(S \) is countably infinite, then the situation is much the same, though one must worry about convergence. If \(S \) is uncountably infinite, then the sum becomes an integral, and matters become considerably more complicated. In any case, the resulting operator, \(F \), is self-adjoint.

1.2.2.2 Spectral Theorem The spectral theorem states the converse of the construction given by (4). Again, the finite case is simplest. There, every self-adjoint operator, \(F \), can be written as

5. \(F = \sum_n s_n P_n \),

where the \(s_n \) are real numbers and the \(P_n \) are mutually orthogonal projections. A spectral family therefore fixes a self-adjoint operator, and a self-adjoint operator fixes a spectral family. Hence the formalism of PVMs makes quick contact with a formalism (in terms of self-adjoint operators) that is perhaps more familiar to

\[^2 \text{In (4) } E(s_n) \text{ should strictly be written } E(\{s_n\}), \text{ because } E() \text{ acts on Borel sets, but the notation is clumsy, and the meaning of } E(s_n) \text{ should be clear enough. I follow the same convention elsewhere.} \]
some readers, and certainly widely used in physics; thus that latter formalism can be seen as a special case of the more general formalism in terms of POVMs. The case of infinite-dimensional spaces is conceptually analogous, but mathematically trickier.

Notice that every vector inside the subspace corresponding to a projection P_n (henceforth, ran P_n, the 'range' of P_n) is an eigenvector (§7.2.1) of F; the ran P_n are therefore often called 'eigenspaces' of F. When the eigenspaces of F are all one-dimensional, then F is called 'maximal'. The import of being maximal will become clear below.

Finally, notice that the spectral projections of F partially define an orthogonal, indeed orthonormal (§7.1.4), basis for the space. Within each P_n, choose a set of mutually orthogonal and normalized vectors, $\{e_{n,m}\}^{\dim(P_n)}_{m=1}$. Do the same for the kernel of F (the subspace that F maps to 0, denoted ker F). The result (i.e., the union of all these sets) is an orthonormal basis (which, if F is maximal, is in fact fixed up to constant multipliers of the elements of the basis). Even when this basis is not uniquely fixed by F (because it is non-maximal), I will refer to such a basis as 'a basis determined by F'.

1.2.3 States

1.2.3.1 Probabilities The formalism in terms of POVMs (as well as the special case of PVMs) describes a probabilistic theory, inasmuch as it provides probabilities for (Borel sets of) values of observables, or (equivalently and sometimes more conveniently) expectation values for observables. I will take probabilities as fundamental; expectation values can then be generated from a probability measure over the possible values, f_n, of F in the usual way:

$$\text{(6) } \text{Exp}(F) = f_1 \Pr(f_1) + f_2 \Pr(f_2) + \cdots.$$

As we noticed above, rather than considering directly the possible values of an observable, we can also consider the corresponding (spectral) projections, which can be taken, in a given physical situation, to represent those values.

A probability measure, p, defined on the projection operators should, minimally, be such that $p(P_1 + P_2) = p(P_1) + p(P_2)$ whenever $P_1 \perp P_2$. (Later I will motivate this condition. The basic idea is that it corresponds to the usual 'additivity axiom' of Kolmogorovian probability theory — see §7.5.6.) More specifically, and for now considering just the case of PVMs, we require a probability measure on the projections on a Hilbert space to be a map, p, from projections to the interval $[0,1]$, where p is countably additive on sets of mutually orthogonal projections.

Precisely what one means by countable additivity for the operators that are in the image of a POVM (rather than a PVM) is a slightly subtle matter. In particular, in general the operators in the image of a POVM — normally they are called 'effects' — do not correspond to subspaces, and the notion of orthogonality does not apply. However, there is a natural generalization of the concept. Notice that for projections, $\{P_i\}$, in the image of a PVM, the condition that $I = \sum_i P_i$
be a projection (or maybe the zero operator) is equivalent to the condition that
the \(\{P_i\} \) be mutually orthogonal.\(^3\) The analogous condition in the case of positive
operators is that, for effects \(\{E_i\} \) in the image of a POVM, if \(\mathbb{I} - \sum_i E_i \) is positive
(or 0), then \(\Pr(\sum_i E_i) = \sum_i \Pr(E_i) \).

1.2.3.2 Statevectors and Wavefunctions

1.2.3.2.a Statevectors Normalized vectors determine probability measures over
the projections, via:

\[(7) \quad \text{probability of } P \text{ as given by } v := \Pr_v(P) := \langle v, P v \rangle.\]

(One often sees the expression \(|\langle \psi, v \rangle|^2 \), where \(\psi \) is a normalized vector from \(\text{ran } P \).
The two expressions are equivalent.) Notice that the probabilities generated by
the vectors \(v \) and \(e^{i\phi} v \) (where \(\phi \) is a real number) are the same. One says that
'overall phases do not affect probabilities'. The expectation value of a self-adjoint
operator, \(F \), given by the state \(v \) is

\[(8) \quad \text{expectation of } P \text{ as given by } v := \Exp_v(F) := \langle v, F v \rangle.\]

(Note that the expectation value of a projection is also its probability.)

Note that if \(v \in \text{ran } P \) then \(\Pr_v(P) = 1 \). More generally, if \(P_n \) is an eigenspace
of \(F \) corresponding to the eigenvalue \(f_n \) and \(v \in \text{ran } P_n \), then \(\Pr_v(P_n) = 1 \), i.e. the
probability (in the state \(v \)) that \(F \) has the value \(f_n \) is 1. Such a state, \(v \), is called an 'eigenstate' of \(F \) — it is a normalized vector inside the eigenspace, \(\text{ran } P_n \), of \(F \).

Notice that, in this case, writing \(F \) in terms of its spectral decomposition (recall
4) makes the determination of probabilities and expectation values trivial. Indeed,
even when dealing with general states, it is often convenient to write \(F \) in terms
of its spectral decomposition, and the state in terms of a basis determined by \(F \).

1.2.3.2.b Superposition It is a standard assumption of quantum theory
that every vector in the Hilbert space for a system is a possible state for the system.
This assumption is often expressed as the 'superposition principle', which asserts
that (normalized) linear combinations of statevectors are again statevectors.

Given an observable, \(F \), the superposition principle gives rise to (possible) states
that are not eigenstates of \(F \). Suppose, for simplcity, that \(F \) is maximal, with
eigenspaces and eigenvalues \(\{P_n\} \) and \(\{f_n\} \), and consider an orthonormal basis,
\(\{v_n\} \), determined by \(F \) (which, because \(F \) is maximal, just amounts to choosing
one normalized vector from each \(\text{ran } P_n \)). Now form the statevector

\[(9) \quad v = \sum_n k_n |v_n\rangle\]

\(^3\)Sketch of a proof: Write \((\mathbb{I} - \sum_i P_i)(\mathbb{I} - \sum_i P_i) \); expand; argue that if the \(\{P_i\} \) are mutually
orthogonal, then the result is \(\mathbb{I} - \sum_i P_i \); argue (using the fact that projections are positive —
this part is less trivial) that if the result is \(\mathbb{I} - \sum_i P_i \), then the \(\{P_i\} \) are mutually orthogonal;
finally, argue that \(\mathbb{I} - \sum_i P_i \) is self-adjoint.
where $\sum_n |k_n|^2 = 1$ and with at least two non-zero coefficients k_n. In this case, we say that v is a superposition of the v_n. (One sometimes hears the word 'superposition' used in a way that suggests that some vectors are 'in superpositions' and others are not. Relative to a given basis, this distinction makes sense, but otherwise it does not. Every vector is a superposition for some choices of basis.) Notice that v is not an eigenstate of F, and assigns non-trivial probabilities to more than one possible value of F. Of course, the superposition principle implies that v is nonetheless a possible state of a system.

1.2.3.2.c Wavefunctions Wavefunctions are just a specific way of representing statevectors. It is often convenient to take the Hilbert space for a quantum system to be the elements of $L^2(\mathbb{R}^3)$, in which case statevectors are (equivalence classes of) complex-valued functions on \mathbb{R}^3. The equation of motion that they standardly satisfy is a type of wave equation (e.g., the Schrödinger equation — see §1.5.2.3.a), and for this reason — as well as the fact that the equation was historically derived with wave phenomena in mind — these functions are called 'wavefunctions'. Linear combinations of waves may be conceived in terms of 'superposing' the waves; hence the term 'superposition'.

1.2.3.3 Gleason's Theorem One can generate probability measures using non-negative trace-1 operators ('density operators'). The functional $\text{Tr}[\cdot]$ is the 'trace functional', a map from the bounded operators on a Hilbert space to \mathbb{R} defined by:

\begin{equation}
\text{Tr}[F] = \sum_k \langle e_k, (F^* F)^{1/2} e_k \rangle
\end{equation}

where $\{e_k\}$ is an orthonormal basis for \mathcal{H}. (Note that $F^* F$ is self-adjoint and positive. It is in fact true that every positive operator, A, has a positive self-adjoint square root, B, defined by $B^2 = A$.) And if F itself is positive, then $F = \sqrt{F^2}$ and

\begin{equation}
\text{Tr}[F] = \sum_k \langle e_k, F e_k \rangle.
\end{equation}

The trace functional is provably independent of the choice of orthonormal basis, $\{e_i\}$. Moreover, a very useful property of the trace functional is that it is invariant under cyclic permutations of its arguments; for example,

\begin{equation}
\text{Tr}[ABC] = \text{Tr}[BCA] = \text{Tr}[CAB]
\end{equation}

for any A, B, C.

Let W be any positive operator on a Hilbert space, \mathcal{H}, with $\text{Tr}[W] = 1$. Let $E(\cdot)$ be any POVM from some 'spectrum', S, of possible values to positive operators. Then $\text{Tr}[WE(\cdot)]$ is a countably additive probability measure on (the σ-algebra of
Borel sets of) possible values of the observable represented by the POVM E as follows:

$$\Pr(\Delta) = \text{Tr}[WE(\Delta)].$$

Countable additivity follows from (3) and the linearity of the trace functional. Normalization follows from (2) and the fact that W has unit trace.

When $E(\cdot)$ is a PVM, (13) defines a countably additive normalized measure on the projections on \mathcal{H}. Hence any density operator generates such a measure. The converse is (remarkably) true as well: every probability (i.e., countably additive, normalized) measure on the projections on a Hilbert space is generated as in (13) by some density operator. This theorem is due to Gleason ([1957]), and says, more precisely:

Theorem (Gleason): Let \mathcal{H} be a Hilbert space of dimension greater than 2. Then every countably additive normalized measure, $\Pr(\cdot)$, on the projections on (equivalently, closed subspaces of) \mathcal{H} is generated by some trace-1 positive operator, W, on \mathcal{H}; for P a projection,

$$\Pr(P) = \text{Tr}[WP].$$

The proof is non-trivial. Gleason's theorem is generalizable to the case of general POVMs. That is, the countably additive probability measures over effects are also given by the density operators. (Indeed, for POVMs, there is no restriction to the case $\dim(\mathcal{H}) > 2$. Again, the proofs are non-trivial. See Busch ([2003]).)

In this common understanding of quantum theory, then, the kinematics of a quantum system is, at its core, given by the POVMs on a Hilbert space together with a state, a density operator. In many cases of interest, one deals with PVMs, hence self-adjoint operators, rather than with POVMs.

Note, finally, that for any statevector, v, we can always represent v in terms of the density-operator formalism, by choosing as the state the projection, P_v, onto the subspace spanned by v. In this case, for any projection Q, $\text{Tr}[P_vQ] = \langle v, Qv \rangle$. (To prove: take the trace in an orthonormal basis containing v.)

1.2.3.4 **Matrix Representation of States** A vector — and in particular a statevector, ψ — can, of course, be written in terms of any orthonormal basis, $\{e_n\}$, and in this case, the coefficients c_n in the expansion $\psi = \sum_n c_n e_n$ may be considered as the 'coordinates of ψ in the e_n-basis'. It is, in fact, sometimes convenient (see, e.g., §1.3.3.2) to write the state as a column vector with these coordinates.

A similar construction is available for density operators. Again in the (orthonormal) basis $\{e_n\}$, consider a matrix whose elements are $\langle e_n, F e_m \rangle$, for any operator, F, on a Hilbert space, \mathcal{H}. This map from operators on \mathcal{H} to $N \times N$ matrices (where N could be infinite) is in fact an isomorphism from the (algebra of) operators on \mathcal{H} to the (algebra of) $N \times N$ matrices.

In particular, let W be a density operator on \mathcal{H}, and let $W_{nm} = \langle e_n, Fe_m \rangle$. Now let F be an observable whose eigenvectors are the e_n. Notice, in this case,
that \(\langle e_n, F e_n \rangle = \delta_{nm} \). One says that \(F \) is 'diagonal' in the basis \(\{e_n\} \) (because all of the entries off of the diagonal are 0). If \(W \) is also diagonal in \(\{e_n\} \), then the probabilities assigned by \(W \) to \(F \) behave completely classically, and in particular the classical 'sum rule' holds:

\[
(15) \quad \text{Pr}_W(f_n \text{ or } f_m) = \text{Pr}_W(f_n) + \text{Pr}_W(f_m)
\]

(where \(\text{Pr}_W \) is the probability assigned by \(W \) via 14 and \(f_n \) is the eigenvalue of \(F \) corresponding to the eigenvector \(e_n \)). However, if \(W \) is not diagonal in \(\{e_n\} \), then in general (15) fails. In this case, one speaks of 'interference' between the \(e_n \) (in the state \(W \)).

1.2.3.5 Expectation Values It follows immediately that the expectation value of the observable (represented by the self-adjoint operator) \(F \) in the state (represented by the density operator) \(W \) is \(\text{Tr}[WF] \). To see why, write \(F \) in terms of its spectral resolution. The point is most easily seen when \(F \) has only a discrete spectrum, as in (5). Then by the linearity of the trace,

\[
(16) \quad \text{Tr}[WF] = \sum_n \text{Tr}[WP_n]s_n.
\]

(When \(F \) has a continuous spectrum, one must work with integrals whose definition must be treated carefully.) Notice that the expression \(\text{Tr}[WP_n] \) is the probability (in state \(W \)) that \(F \) takes the value \(s_n \). Hence (16) is a weighted sum of the possible (spectral) values, \(s_n \), for \(F \), the weights given by the probabilities, \(\text{Tr}[WP_n] \), associated to those values in the state \(W \). Note that the traces in (16) will in general be easiest to calculate in a basis determined by \(F \).

1.2.3.6 Quantum Probability Theory Classical probability theory standardly concerns measures over sigma-algebras of events (§7.5.5, §7.5.6). These sigma-algebras are defined in terms of the usual set-theoretic operations of complement and union. In quantum theory, we are dealing with a different structure. However it is sufficiently analogous to the structure considered in the classical setting that, mathematically at least, one can often easily carry over considerations from classical probability theory. Our 'sample space' is the set of all one-dimensional projections. Set-theoretic complement \((E^c) \) becomes 'orthogonal complement' \((E^\perp) \); set-theoretic union \((E \cup F) \) becomes 'span' (the span of the subspaces \(E \) and \(F \), written \(E \vee F \)); set-theoretic intersection \((E \cap F) \) remains intersection (now written \(E \wedge F \)); and set-theoretic 'inclusion' \((E \subseteq F) \) becomes subspace inclusion (often written \(E \leq F \)). Later, I will consider this structure in more detail — it is the 'lattice', \(\mathcal{L} \), of subspaces of a Hilbert space (§7.4). For now, I simply note that it has the correct properties: (i) \(\mathcal{H} \in \mathcal{L} \), (ii) \(E \in \mathcal{L} \) implies \(E^\perp \in \mathcal{L} \); and (iii) for any countable sequence, \(\{E_k\} \in \mathcal{L} \), \(\forall_k E_k \in \mathcal{L} \). Analogous to classical probability theory, quantum probability theory is then the theory of normalized measures on such a structure. (Of course, if we are thinking in terms of POVMs rather than PVMs, then this story cannot be told, at least not in
its present form. Instead, one considers the algebra of effects, and probability measures over it. However, I will not pursue the details here.)

1.2.3.7 Lüder’s Rule What about conditional probabilities? Although its interpretation can be highly contentious, and its application somewhat tricky, there is a standard expression for a conditional probability in quantum theory, called ‘Lüder’s Rule’. Indeed, one can derive it from elementary considerations.

Recall from basic probability theory that the conditional probability, \(\Pr(A|B) \), of one event, \(A \), given another, \(B \), is defined by

\[
\Pr(A|B) := \frac{\Pr(A \cap B)}{\Pr(B)}.
\]

The thought behind this definition is that the probability of \(A \) (and \(B \)) given \(B \) is the probability that \(A \) and \(B \) occur jointly, ‘renormalized’ under the assumption that \(B \) occurred; i.e., it is the probability of \(A \) ‘as if’ \(B \) had probability 1. Indeed, (17) is the only probability measure that satisfies the condition that if \(A \subseteq B \) then \(\Pr(A|B) = \Pr(A)/\Pr(B) \). In other words, if \(A \) is contained in \(B \), then \(\Pr(A|B) \) is just a renormalization of the original probability measure to one that assigns probability 1 to \(B \).

It turns out that this condition is already sufficient to determine the form of the conditional probability measure over the (lattice of) closed subspaces of (or projections on) a Hilbert space (Bub [1977]). In other words, let \(\Pr_W \) be the probability measure associated with the density operator, \(W \), on \(\mathcal{H} \). Let \(P \) be a subspace such that \(\Pr_W(P) \neq 0 \) (where, of course, \(\Pr_W(P) = \Tr[W P] \)). Then there is a unique probability measure, \(\Pr_W|_P \) (the ‘probability in state \(W \) conditional on \(P \)’), over the closed subspaces of \(\mathcal{H} \) such that

\[
(18) \quad \Pr_W|_P(Q) := \Pr_W(Q|P) = \frac{\Pr_W(Q)}{\Pr_W(P)}
\]

for any \(Q \leq P \). That measure is given by

\[
(19) \quad \Pr_W(Q|P) = \frac{\Tr[P W P Q]}{\Tr[W P]}.
\]

(19) is known as ‘Lüder’s Rule’. Note that for a statevector, \(|v\rangle \), the same effect is achieved by projecting \(|v\rangle \) onto \(P \), normalizing the result, and using that new state \((P |v\rangle /||P v||) \) to calculate the probability of \(Q \). Hence (using eq. 7)

\[
(20) \quad \Pr_{|v\rangle}(Q|P) = \langle P |Q P v\rangle /||P v||^2.
\]

1.2.3.8 Mixed Versus Pure States Density operators that correspond to one-dimensional projections (equivalently, statevectors) are ‘pure’ states. These states assign probability 1 to that one-dimensional projection. Mixed states (i.e., states that are not pure) do not assign probability 1 to any one-dimensional projection. Moreover, mixed states are called ‘mixed’ because they can always be
written as a linear combination of pure states. Indeed, by the spectral theorem, any mixed state, W, can be written as $W = \sum_n w_n P_n$ (and because W is a density operator, $0 \leq w_n \leq 1$ and $\sum_n w_n = 1$). If one or more of the P_n is not one-dimensional, we can always write it as a sum of mutually orthogonal one-dimensional projections — so we may assume, without loss of generality, that all of the P_n are one-dimensional.

The coefficients, or 'weights', w_n, must add to one (because $\text{Tr}[W] = 1$), and in fact w_n is the probability assigned by W to P_n. Hence one can apparently think of W as representing, literally, a 'mixture' of systems in the pure states P_n, in the proportions w_n, so that w_n is the probability that a system chosen at random from the mixture will be found in the (pure) state P_n. We will explore (and qualify) this interpretation of mixed states below.

The converse is also true: any convex combination of pure states is again a state, in general mixed. Indeed, consider the operator

\begin{equation}
W = \sum_n w_n P_n
\end{equation}

where the P_n are here one-dimensional but not necessarily mutually orthogonal (yet still, $\sum_n w_n = 1$).\footnote{More generally, if some of the P_n are not one-dimensional, then we require that $\sum_n w_n \dim P_n = 1$, because in general, for a projection P, $\text{Tr}[P] = \dim P$.} This W has unit trace (because the trace functional is linear), and therefore it is a density operator. Note, however, that (21) is in general not its spectral decomposition.

1.2.3.9 The Eigenstate-Eigenvalue Link According to a standard interpretation of quantum states, a system in the state W has a value for the observable F if and only if W assigns probability 1 to one of the possible values of F (and 0 to the others — in other words, 'trivial probabilities').\footnote{For unbounded observables, such as position and momentum, one is naturally motivated to seek some other account. One possibility is to deny that they ever have definite values, but consider instead coarse-grained values, asserting, for example, that if the state W assigns probability 1 to some region, Δ, then the system is definitely confined to Δ, where this latter assertion is not meant to imply that there is some point in Δ that is the location of the system. There are, however, other approaches. See, for example, Halvorson ([2001]).} Notice, in particular, that this interpretation of states differs from the usual interpretation of classical probabilistic states. In the classical case, the probabilistic state is a measure over possible pure states, and one normally presumes that the system really is in one of those pure states.

This rule for assigning definite values has come to be called, following Fine ([1973]), the 'eigenstate-eigenvalue link'. Later (§5) we will consider in some detail the apparent consequences of this rule.

1.2.4 Incompatibility

An immediate consequence of this formalism is the fact that there are 'incompatible' physical quantities, at least in the minimal sense that if a state assigns
probability 1 to some physical quantity (some projection, for example), then it necessarily assigns non-trivial probabilities (i.e. neither 0 nor 1) to others (and then, by the eigenstate-eigenvector link, these other observables do not have values, in that state — recall §1.2.3.9). This fact follows directly from Gleason’s theorem. (Note, however, that one can show in other, simpler, ways that there are no two-valued probability measures over the projections on a Hilbert space.)

Incompatibility is closely related to non-commutativity, and indeed the two terms are sometimes used interchangeably. Consider two projection operators, Q and Q'. To keep things simple, we will suppose throughout that Q and Q' are one-dimensional. Then if Q and Q' do not commute, i.e., $[Q, Q'] \neq 0$, there is no state that assigns probability 1 to Q and either 0 or 1 to Q'. To prove this claim, we will first show (next paragraph) that the only state assigning probability 1 to a one-dimensional projection, Q, is the state Q itself. (Notice that in the previous sentence, the first mention of Q is as the representative of some physical quantity, and the second is as a state.) We will then show (subsequent paragraph) that Q assigns non-trivial probabilities to any non-commuting Q'.

Let W be a state that assigns probability 1 to (one-dimensional) Q. Writing W in terms of its spectral decomposition, and taking the trace in a basis determined by W, we immediately find that

$$\text{Tr}[WQ] = \sum_n w_n \langle e_n, Q e_n \rangle = 1$$

where the weights w_n (from the spectral decomposition of W) sum to 1. Hence for some n, $Q e_n = e_n$, i.e., W is in fact pure, and equal to Q. Therefore, the only state assigning probability 1 to a one-dimensional projection, Q, is Q itself.6

Now suppose that (one-dimensional) $Q' \neq Q$ and $Q' \not\perp Q$, i.e., Q and Q' do not commute (for a discussion, see below). Then, by the same reasoning as above, replacing Q with Q' in (22), if $\text{Tr}[WQ'] = 1$ then W must be pure and lie inside the subspace associated with Q; i.e., $W = Q'$. But it cannot, because we assumed that $Q \neq Q'$. On the other hand, if we want $\text{Tr}[WQ'] = 0$, then $\ker W \subseteq \text{ran } Q'$. (The reasoning is essentially the same as above.) But again it cannot, because then $Q' \perp Q$, given our earlier conclusion that W is pure and lies in the subspace associated with Q, and we already assumed that $Q' \not\perp Q$.

This fact is also true in a more general form. Given two self-adjoint operators, F and G, if F and G do not share any eigenvectors then any state that assigns probability 1 to some value for F will necessarily assign non-trivial probabilities (neither 0 nor 1) to more than one of the possible values of G. I leave the proof (using essentially the same reasoning as above) to the reader.

Above I claimed that (one-dimensional) Q and Q' do not commute if $Q' \neq Q$ and $Q' \not\perp Q$. In fact, the following is true. For any subspaces, A and B, and the

6This claim is also true in a more general form. Let the state W assign probability 1 to the projection Q (of any dimension). Then $\text{ran } Q \perp \subseteq \ker(W)$, with equality if Q is the smallest subspace to which W assigns probability 1.
corresponding projections P_A and P_B, $[P_A, P_B] = 0$ if and only if

$$\text{(23) } A = (A \land B) \lor (A \land B^\perp) \quad \text{and} \quad B = (B \land A) \lor (B \land A^\perp).$$

(Here we are not restricting to one-dimensional subspaces. Note, however, that (23) is implied by the disjunction ‘$A = B$ or $A \perp B$’, and for one-dimensional subspaces, they are equivalent.) Here is the idea of the proof. Note that $A \land B$ and $A \land B^\perp$ are orthogonal. Hence, if (23) holds, we may write $P_A = P_Z + P_{A'}$ for some $Z \land A'$. (Indeed, of course, $Z = A \land B$ and $A' = A \land B^\perp$.) Similarly, $P_B = P_Z + P_{B'}$, with $B' \perp Z$. Moreover, $A' \perp B'$. In other words, the conditions (23) imply that A and B ‘are orthogonal apart from some shared part (Z)’. Then

$$[P_A, P_B] = [P_Z + P_{A'}, P_Z + P_{B'}] = [P_Z, P_Z] + [P_{A'}, P_{B'}] + [P_A, P_Z] + [P_{A'}, P_{B'}] = 0.$$

Going the other way, we will just sketch the idea. If P_A and P_B commute, then for any vector, v, $P_A P_B v = P_B P_A v$. First choose $v \in A$, so that $P_A P_B v = P_B v$. In general, if $P_A w = w$ (here $w = P_B v$), then either $w \in A$ or $w = 0$. Hence either (i) $P_B v = 0$, or (ii) $P_B v \in A$. If (i) is true for all $v \in A$, then $B \perp A$ and (23) clearly holds. If (ii) holds for all $v \in A$ then $B \leq A$ and again (23) clearly holds. Using the linearity of the operators involved, one can show that if (ii) holds for just some $v \in A$, then the $P_B v$ must form a subspace of A, and clearly this subspace is common to A and B; indeed it is $A \land B$. Similarly, one can show that choosing v from the subspace orthogonal to $A \land B$ gives rise to (i), so that indeed $A = (A \land B) \lor (A \land B^\perp)$. Repeating the argument for $v \in B$, we find that (23) holds.

The fact of incompatibility marks a significant departure from classical physics, where the structure of the space of states and observables allows for states that assign values to all observables with probability 1 (i.e., there are two-valued probability measures over the space of all ‘properties’ of the system). The probabilities of quantum theory appear, therefore, to be of a fundamentally different character from the probabilities of classical theory, which arise always because the state of the system is not maximally specific.\footnote{Here we are considering just cases where classical physics delivers genuine probability measures, and we ignore cases where classical physics is simply indeterminate. See Earman, Ch. 15, this volume.}

1.2.5 Canonical Commutation Relations

An important and classic example of incompatibility involves the position and momentum observables. In fact, they obey the ‘canonical commutation relations’ (CCRs):

$$\text{(24) } [P_i, Q_j] = -i \delta_{ij}$$

where i and j can be x, y, or z. (Henceforth, we will restrict our attention to one dimension, writing $[P, Q] = -i$. The generalization to three dimensions is straightforward.) Note that the constant on the right-hand side implicitly multiplies the identity operator.
Any two observables that obey these commutation relations are typically called 'canonically conjugate'. These relations are central in quantum theory, and we will discuss them in detail in §4. For now, we simply notice them as a central example of incompatibility.

1.2.6 Compound Systems

1.2.6.1 Entangled States Compound systems are represented by tensor-product Hilbert spaces (§7.1.9), so that, for example, a system composed of two particles has a state that is a density operator on the tensor-product of the Hilbert spaces for the two particles individually. There is a fundamental and physically crucial distinction between two kinds of vector in \(\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \). A vector, \(v \), in \(\mathcal{H} \) is called 'factorizable' if it can be written as \(x \otimes y \) for some \(x \in \mathcal{H}_1 \) and \(y \in \mathcal{H}_2 \). Otherwise, \(v \) is called 'unfactorizable', or 'entangled'. An analogous definition applies to the operators (hence, the density operator states) on \(\mathcal{H} \).

The existence of entangled states (whether represented as density operators or vectors) turns out to have numerous interesting consequences. It is connected with 'quantum non-locality', as well as the possibility of certain computational and information-theoretic (for example, cryptographic) feats that cannot be done with classical systems. The existence of these states follows from the demand that the pure (vector) states for the compound system be closed under taking linear combinations. In other words, it follows from applying the superposition principle to compound systems as well as to simple systems.

1.2.6.2 Biorthogonal Decomposition An important result about vectors in tensor-product spaces is the 'biorthogonal decomposition theorem' (Schrödinger [1935b]), which states that, given a vector, \(v \), in a Hilbert space, \(\mathcal{H} \), and a factorization of \(\mathcal{H} \) as \(\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \), there exist orthonormal bases \(\{ e_n \} \) of \(\mathcal{H}_1 \) and \(\{ f_m \} \) of \(\mathcal{H}_2 \) such that

\[
(25) \quad v = \sum_n c_n (e_n \otimes f_n).
\]

If the \(|c_n| \neq |c'_n| \) for all \(n \neq n' \), then the bases are unique (up to a phase \(e^{i\theta} \) on each element of the basis). Note that, in general, for arbitrary bases \(\{ x_n \} \) and \(\{ y_m \} \) of \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \), \(v \) is expressed in general in terms of a double sum:

\[
(26) \quad v = \sum_{n,m} c_{nm} (x_n \otimes y_m)
\]

and compare this expression with (25).

1.2.6.3 Reduced States

\(^8\)See Bub, Ch. 6, this volume.
1.2.6.3.a Partial Trace and the Reduced Density Operator Suppose we are given the state of a compound system, and wish to derive from it a state for one of the components. If the compound state is factorizable, then the procedure is straightforward. (The state $W = W_1 \otimes W_2$ fixes the component states to be W_1 and W_2 respectively.) But what about when it is entangled? Here we face a problem. If the state is entangled, then there is no obvious sense in which it can be ‘divided’ into a ‘part’ corresponding to one system, and a ‘part’ corresponding to the other.

The usual solution to this problem is to take the state of the component systems to be given by a \textit{partial trace}. For any tensor-product Hilbert space, $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$, the ‘partial trace over \mathcal{H}_1’ is a map, $\text{tr}^{(1)}[\cdot]$, from the operators on \mathcal{H} to operators on \mathcal{H}_2. It is the unique such map satisfying the condition that, for any density operator W on \mathcal{H} and any observable F_2 on \mathcal{H}_2, the operator $\text{tr}^{(1)}[W]$ generates the same expectation value for F_2 as W does for $I_1 \otimes F_2$ (Jauch [1968, §11-8]). The idea is that $\text{tr}^{(1)}[\cdot]$ ‘traces out’ system 1, extracting just that part of the compound state that applies to system 2. Unless W is a ‘product state’ (i.e., $W = W_1 \otimes W_2$), the reduced states derived from W are necessarily mixed states.

1.2.6.3.b Proper Versus Improper Mixtures In §1.2.3.8 I introduced the idea that a mixed state can be understood as a literal mixture of systems each in some pure state. Certainly when we are describing the state of a system chosen at random from an ensemble that was produced by literally ‘mixing’ systems in various pure states, it is quite proper to interpret the mixed state in this way. However, we now see that mixed states can arise in another way, namely, as the state of one component of a compound system that is in a non-factorizable compound state. In these cases, it is far from clear that the state (of the component) should be understood as above. Indeed, there need not even be an ensemble of which this component is a part. Hence mixtures that arise from taking the partial trace of the state of a compound system are normally called ‘improper mixtures’, while those that arise from a mixing of individual systems in pure states are normally called ‘proper mixtures’ (a terminology introduced by d'Espagnat §[1971]). Whether the probabilities generated by improper mixtures can reasonably be understood as ‘ignorance about the true pure state’ (as they can for proper mixtures) is a matter for interpretative investigation.

1.2.6.4 Correlations Compound systems that are in a non-factorizable state will exhibit correlations between the measured values of observables on the two (or more) components. Consider, for example, the statevector $v = c_1 f_1 \otimes g_1 + c_2 f_2 \otimes g_2$ (where c_1 and c_2 are non-zero coefficients), and suppose that the f_n and the g_n are eigenvectors of the observables F and G respectively. In this state, there is a correlation between the value of F on system 1 and G on system 2. Indeed, let P_{f_n} and P_{g_n} be the projections onto the subspaces spanned by f_n and g_n respectively, and let P_v be the projection onto the subspace spanned by v. Then, applying
Lüder's Rule (19), we find

\[
(27) \quad \text{Pr}_{P_c}(I_1 \otimes P_{g_{n'}}, | P_{f_n} \otimes I_2) = \frac{\text{Tr}[(P_{f_n} \otimes I_2)P_v(P_{f_n} \otimes I_2)(I_1 \otimes P_{g_{n'}})]}{\text{Tr}[P_v(I_1 \otimes P_{f_n})]}
\]

where \(I_k\) is the identity on \(H_k\). Taking the trace in a basis that includes the \(f_n \otimes g_{n'}\) reveals that this conditional probability is 0 when \(n \neq n'\) and 1 when \(n = n'\). In other words, the values of \(F\) (on system 1) and \(G\) (on system 2) are perfectly correlated.\(^9\) Consideration of other observables would reveal additional correlations (not always perfect correlations). We will see an example later.

1.2.7 Structure of the Space of States

We noted above (§1.2.3.8) that every convex combination of pure states is again a state. Of course, a convex combination of mixed states is (by the spectral theorem) also a convex combination of pure states, so that in fact the set of states forms a convex set (§7.1.10), a point that I shall discuss in detail later (§2.2.1). Here we note the fundamental point that the convex set of states in quantum theory is not a simplex.

This point (§7.1.10) marks a departure from classical physics, where every mixed state is uniquely decomposable in terms of pure states. One thus naturally takes the mixed state as a measure of ignorance over the pure states that appear in its decomposition. No correspondingly straightforward interpretation of mixed states in quantum theory is available, in part because the mixed states are multiply decomposable into a convex combination of pure states.

1.3 Simple Example: A Spin-\(\frac{1}{2}\) Particle

An understanding of the formalism, and the issues to which it gives rise, is much aided by some experience with actual calculations, however simple. In that spirit, let us consider the example of a spin-\(\frac{1}{2}\) particle. The example is well-worn, but deservedly so. While there are some important foundational and philosophical issues concerning quantum theory that cannot be illustrated or investigated in the context of spin-\(\frac{1}{2}\) particles, many such issues can be investigated in this context.

1.3.1 Introduction of Spin into Quantum Theory

Spin was introduced in 1924 in the course of an attempt to understand the spectrum of electromagnetic radiation emitted by certain metals. In the course of that explanation, electrons were supposed to have some "two-valued quantum degree

\(^9\)Authors will sometimes say that two observables are 'perfectly anti-correlated' if the two observables have the same spectrum and the value of one is always minus the value of the other. They will also occasionally reserve the term 'perfect correlation' for a similar case, where the value of one is always equal to the value of the other. Our use of the term 'perfect correlation' — according to which two observables are perfectly correlated in a state just in case the conditional probabilities for values of one, given a value of the other, are always 0 or 1 — covers both cases.
of freedom". 10 This degree of freedom was soon associated with a rotation of the electron. Because the electron is a charged body, its rotation creates a magnetic field — the electron acts as a magnet whose north and south poles lie on the axis of rotation. This magnetic property was just what was needed to explain the phenomena.

So far, the story sounds good. However, it was seen almost immediately that the rotation cannot be literal. Nonetheless, the theory of ‘spin’ was developed in the context of the new quantum theory; the name stuck, and we continue to refer to this magnetic property of electrons (and as current theory tells us, other particles) as ‘spin’.

1.3.2 Quantization of Spin

It turns out that spin is ‘quantized’, a fact already anticipated in Pauli’s characterization of the property as a ‘two-valued degree of freedom’. This fact is, classically, unexpected. To see why, consider a standard method for measuring the spin of a particle. (The method does not, in fact, work for electrons, but it illustrates the point well enough, and does work for electrically neutral particles with spin.) The relevant device is a ‘Stern-Gerlach’ device, a pair of magnets shaped and arranged to create an inhomogeneous magnetic field, that is, a magnetic field that is stronger in one direction (say, the north) than in the other. (See figure 1.)

Imagine a simple bar magnet passing between the Stern-Gerlach magnets. If the north pole points straight up so that it is close to the top magnet, then the top magnet pushes the north pole (of the bar magnet) down more than the bottom magnet pushes the south pole up, and the net result will be that the bar magnet is deflected downward. If the bar magnet enters the Stern-Gerlach magnets with the south pole facing up, then the result is the opposite: overall upward deflection. If, on the other hand, the bar magnet enters the Stern-Gerlach magnets horizontally, then it will pass straight through with no overall deflection in its path. Finally, if the bar magnet passes through neither vertically nor horizontally, then the result will be deflection, up or down, that is somewhere between the extreme cases. (The trajectories of the magnet in the two extreme cases are illustrated in figure 1.)

(One’s physical intuition might be that in the intermediate cases, the axis of rotation of the electron would snap into alignment with the magnetic field so that the intermediate cases would quickly collapse into one of the extreme cases. However, such is not the case, alas. Instead, the spinning electron would classically be expected to act as a gyroscope, thereby maintaining its original inclination with respect to the magnetic field.)

Now, imagine putting an ensemble of particles with ‘spin’ through the magnets. Rather than the classically expected result (namely, a distribution of different amounts of deflection, from ‘maximum down’ to ‘maximum up’), one finds only two results: ‘maximum down’ and ‘maximum up’ — these results are illustrated in figure 1.

10See Massimi ([2004, chs. 2,4]) for discussion.
This result holds no matter how the Stern-Gerlach magnets are oriented. That is: notice that we could reorient the magnets so that the axis passing between them is pointing in any direction in space. Passing an electron through the device, we would, again, find that it goes either 'up' or 'down' (relative to this new direction in space). Hence we can measure the spin of a particle in any direction, and we refer to the observables thus measured as 'spin-u', where u refers to some specified direction in space. These facts about spin make it clear, moreover, that classical 'spin' is at best a metaphor for whatever property particles with 'spin' have. (In any case, in non-relativistic quantum theory, the electron is normally treated as a point particle, so that its spin could not be coordinated with any spatial rotation. As it is commonly said, spin has no 'classical analogue'.)

1.3.3 Quantum Formalism for Spin

Let us see, now, how the observables for and states of a particle with spin are represented in the formalism that I sketched above. I will consider just the degrees of freedom related to spin, ignoring, for example, spatial degrees of freedom.

1.3.3.1 Hilbert Space and Observables The Hilbert space for a single spin-$\frac{1}{2}$ particle is \mathbb{C}^2, the space of complex column-vectors with 2 components (§7.3). The 'observables' of the system correspond to 'spin' in various directions (every
direction in space), and each will have just two possible values, which we may call 'up' (represented by the number +1/2) and 'down' (-1/2).11 The spin observables in the \(x \), \(y \), and \(z \) directions are defined in terms of the Pauli matrices by \(S_x = (1/2)\sigma_x \), and similarly for \(S_y \) and \(S_z \). (See §7.3.1).

1.3.3.2 States The pure states can be represented by norm-1 vectors, or by projections onto the space spanned by them. Consider, for example, the statevectors

\[
\psi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \chi = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.
\]

The vector \(\psi \), for example, corresponds to the (pure) density operator (one-dimensional projection operator)

\[
W = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.
\]

The vectors \(\psi \) and \(\chi \) are an eigenvectors of

\[
\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

with eigenvalues +1 and -1 respectively.

Note that the expectation value of \(S_z \) in the state \(W \) is

\[
\text{Tr} \left[\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix} \right] = \text{Tr} \left[\begin{pmatrix} 1/2 & 0 \\ 0 & 0 \end{pmatrix} \right]
\]

\[
= (1 0) \begin{pmatrix} 1/2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + (0 1) \begin{pmatrix} 1/2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

\[
= \frac{1}{2} + 0 = \frac{1}{2}.
\]

(Recall our earlier comments about calculating traces in an appropriately chosen basis.) Of course, in general a system's having an expectation value equal to some value, \(r \), is not sufficient to imply that the system has the value \(r \). (Indeed, \(r \) might not even be in the spectrum of possible values.) In this case, however, we may

11 The particles that I have been discussing — those that have just two degrees of freedom ("up" or "down") for any given direction of spin, are called 'spin-\(\frac{1}{2} \) particles', in part because their angular momentum about any given axis is either \(+\hbar/2\) ("up") or \(-\hbar/2\) ("down"), where \(\hbar \) is a unit of angular momentum equal, in familiar units, to \(1.054 \times 10^{-34} \text{kg m}^2/\text{s} \). (As is often done, I have adopted units in which \(\hbar = 1 \).) There are, in addition, deeper group-theoretic reasons for calling these particles 'spin-\(\frac{1}{2} \) particles, but we cannot go into that point here. (There are also particles with higher spin, which means, operationally, that they have more than two degrees of freedom for each direction of spin.)
also note that the probability associated with the appropriate projection operator is 1. So, first, note that the spectral decomposition of S_z is:

$$S_z = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} = (+\frac{1}{2}) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + (-\frac{1}{2}) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$:= (+\frac{1}{2}) P_{z+} + (-\frac{1}{2}) P_{z-}.$$

Hence the projection associated with the value $+\frac{1}{2}$ for S_z is P_{z+} and the probability for the value $+\frac{1}{2}$ (for S_z) in the state W is

$$\text{Tr}[WP_{z+}] = \text{Tr} \left[\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right] = 1.$$

(We leave the details of the calculation to the reader. Notice that taking the trace of a matrix amounts to just adding the numbers along the diagonal. The reader might wish to prove this fact.) As I noted above in a more general context, this expression is, equivalently, the expectation value of P_{z+} in the state W. Hence, in particular, if one agrees that ‘value r for observable F has probability 1 in state $W’$ implies ‘a system in state W has value r for F’ then we may conclude, from (33), that a system in the state W has the value $+1/2$ for S_z. (We will discuss such interpretive principles in more detail later.)

1.3.4 Incompatibility

Finally, notice that in this state, W, the expectation value of spin in the x and y directions is 0. For example,

$$\text{Tr}[WS_x] = \text{Tr} \left[\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \right] = \text{Tr} \left[\begin{pmatrix} 0 & \frac{1}{2} \\ 0 & 0 \end{pmatrix} \right] = 0.$$

This fact suggests (indeed, in this two-dimensional case, implies) that the probabilities for $S_x = +\frac{1}{2}$ and $S_x = -\frac{1}{2}$ in the state W are $\frac{1}{2}$, as we can also verify by a direct calculation. First, note that the spectral resolution of S_x is:

$$S_x = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} = (\frac{1}{2}) \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} + (-\frac{1}{2}) \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$:= (+\frac{1}{2}) P_{x+} + (-\frac{1}{2}) P_{x-}.$$

As the reader may verify, $\text{Tr}[WP_{x+}] = \text{Tr}[WP_{x-}] = \frac{1}{2}.$

We have thus verified, in this particular case, a claim made previously made abstractly, namely, that a state that is dispersion-free (i.e., generates probabilities of just 0 or 1 for all possible values) for one observable, will necessarily not be dispersion-free for some other observables. Indeed, I said earlier that non-commuting observables that do not share eigenvectors are always incompatible, in the sense that any state that is dispersion-free on one of them is necessarily...
not dispersion-free on the other. Now notice that S_x, S_y, and S_z are mutually non-commuting, and indeed share no eigenvectors. (In this two-dimensional case, non-commuting maximal observables cannot share any eigenvectors.) Hence a state that is dispersion-free for one will necessarily generate non-trivial probabilities for the others.

Indeed, consider any direction, u, in space specified relative to the z-axis by the polar angles θ and ϕ, i.e., in Cartesian coordinates, $u = (x, y, z) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$. (See Figure 2.) Then the associated spin observable is represented by the matrix

$$
S_u = \frac{1}{2} \begin{pmatrix}
\cos \theta & e^{-i\phi} \sin \theta \\
e^{i\phi} \sin \theta & -\cos \theta
\end{pmatrix}.
$$

(One reasonable and quick justification of this expression is to note that $S_u = S_z \sin \theta \cos \phi + S_y \sin \theta \sin \phi + S_x \cos \theta$.) The only pairs of such operators that commute are anti-parallel; i.e., they correspond to spin in anti-parallel directions (and such operators are just multiples of one another by a factor of -1).

(One should keep in mind, however, that Gleason’s theorem does not hold for our 2-dimensional space. Hence the density operators do not define all states, in this case. Indeed, Bell [1964] shows how to define a dispersion-free measure over the projections on \mathbb{C}^2 in terms of an additional ‘hidden’ parameter. Moreover, the quantum-mechanical states are obtainable by averaging over the possible values of the hidden parameters with an appropriate probability distribution over them.)

1.3.5 The Bloch Sphere

The Hilbert space \mathbb{C}^2 is used to represent any two-level quantum system, and such systems are of great interest in quantum theory, all the more so in recent years, as increasing interest in quantum information and quantum computation has focused
attention even more on such systems (because they are the quantum analog of a classical ‘bit’ — see Bub, Ch. 6, this volume). A careful study of the pure states on \(\mathbb{C}^2 \) is often aided by the representation of those states in terms of the Bloch sphere. Note that any pure state on \(\mathbb{C}^2 \) can be represented by a vector of the form
\[
v = \cos(\theta/2) \psi + e^{i\phi} \sin(\theta/2) \chi
\]
(using the notation of equations 28).\(^\text{12}\) Hence, again referring to figure 2, we can represent each distinct pure state as a unique point on the surface of a unit sphere (in \(\mathbb{R}^3 \)), normally called the ‘Bloch sphere’. The ‘north pole’ of the sphere corresponds to the state \(\psi \) and the ‘south pole’ to the state \(\chi \).

In fact, however, the ‘Bloch sphere’ is a ball. The interior points correspond to mixed states, as follows. Every density operator, \(W \), on \(\mathbb{C}^2 \) can be written as
\[
W = \frac{1 + \vec{r} \cdot \vec{\sigma}}{2}
\]
for \(\vec{\sigma} \) the ‘vector’ of Pauli matrices (§7.3.1) and \(\vec{r} \) a vector from \(\mathbb{R}^3 \) with \(||\vec{r}|| \leq 1 \).

The components of \(\vec{r} \) determine a point inside the Bloch sphere representing the corresponding density operator. (Note, in particular, that \(\vec{r} = (0, 0, 1) \) corresponds to the pure state given by \(\theta = 0 \), as it should.)

1.4 Dirac Notation

I will return to the example of a spin-\(\frac{1}{2} \) particle later to illustrate a number of issues in quantum theory. When I do so — and, indeed, throughout the remainder of this essay — it will be helpful to have at hand a useful notation, the so-called ‘Dirac bra-ket’ notation, used commonly by both physicists and philosophers.

1.4.1 Bras and Kets

In the bra-ket notation, vectors are denoted by (and sometimes called) ‘kets’, \(|\psi\rangle \).

In the discussion above, for example, the column vector \(\psi \) in (28) might be denoted \(|z_+\rangle \). Elements of the dual space (the ‘row vectors’ in our discussion above — see §7.1.8) are denoted by ‘bras’, \(\langle v | \). In our example above, there is a natural 1-1 map from the kets (column vectors) to the bras (row vectors):

\[
\begin{pmatrix}
a \\
b
\end{pmatrix} \rightarrow (a^* \ b^*)
\]

(38)

The bras thus define (continuous) linear functionals in the obvious way. Letting

\[
|v\rangle = \begin{pmatrix} a \\ b \end{pmatrix}
\text{ and } |w\rangle = \begin{pmatrix} c \\ d \end{pmatrix},
\]

\(^{12}\)The claim is not that every vector can be written in this form, but that every pure state can be represented in this form. Recall that an overall phase factor does not affect the probabilities generated by a vector. Hence we may assume, without loss of generality, that the coefficient of \(\psi \) is real.
the linear functional \((\text{bra}) \langle v |\) acting on the vector (ket) \(|w\rangle\) is

\[
(40) \quad \begin{pmatrix} a^* & b^* \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = a^* c + b^* d
\]

and is written, in the Dirac notation, as (the 'bra-ket') \(\langle v | w \rangle\). (The reader might wish to check that the functional thus defined is indeed linear.) Of course, as it must be, \(\langle v | w \rangle\) is also the inner product of \(|v\rangle\) with \(|w\rangle\), given (38). (In this notation, we continue to write \(||v||\) for the norm of a vector, instead of \(|||v||||\).)

In the general case, i.e., where \(\mathcal{H}\) is any (complex) Hilbert space (countable-dimensional at most), we take the elements of \(\mathcal{H}\) to be kets, and the elements of the dual space \(\mathcal{H}^*\) to be bras. Inner products may now be written \(\langle v | w \rangle\), which denotes both the linear functional \(|v\rangle\) acting on the vector \(|w\rangle\) and the inner product of the vectors \(|v\rangle\) and \(|w\rangle\).

1.4.2 Operators

The operator, \(F\), acting on the vector \(|v\rangle\) is written \(F|v\rangle\). The expectation value of the observable \(F\) in the state \(|v\rangle\) is written \(\langle v | F | v \rangle\), which is notationally (and numerically) equivalent to \(\langle v | F | v \rangle\), the latter to be read as the inner product of \(|v\rangle\) with the vector \(F|v\rangle\). The expression \(\langle w | F | v \rangle\) is defined similarly.

Corresponding to what is sometimes called the 'vector direct product'

\[
(41) \quad \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} c & d \end{pmatrix} = \begin{pmatrix} ac & ad \\ bc & bd \end{pmatrix},
\]

we can define \(|v\rangle \langle w|\) to be the operator on \(\mathcal{H}\) defined by

\[
(42) \quad (|v\rangle \langle w|) |x\rangle = \langle w| x \rangle |v\rangle.
\]

Notice that simple symbol-manipulation would generate the same result.

1.4.3 Using the Dirac Notation

As I just hinted, the Dirac notation is enormously useful, once its true meaning is understood, and dangerous otherwise. It's power — and danger — lies in the fact that it allows one more or less to ignore various distinctions, such as the distinction between a vector and a linear functional (element of a dual space). It also can be very helpful for 'coordinate-free' calculations. For example, we can discuss the theory of spin-\(\frac{1}{2}\) particles without bothering with Pauli matrices and so on. Consider the basis \(\{|z_+\rangle, |z_-\rangle\}\) for \(\mathbb{C}^2\), where \(|z_+\rangle\) is the state that assigns probability 1 to the value \(+\frac{1}{2}\) for \(S_z\) and so on — note that we do not need to worry about how to represent this state as a column of complex numbers. It is sufficient to carry out calculations to note that for a direction in space, \(u\), specified by the angles \(\theta\) and \(\phi\) relative to the z-axis:

\[
(43) \quad |u_+\rangle = \cos \left(\frac{\theta}{2} \right) e^{-i\frac{\phi}{2}} |z_+\rangle + \sin \left(\frac{\theta}{2} \right) e^{i\frac{\phi}{2}} |z_-\rangle
\]

\[
(44) \quad |u_-\rangle = - \sin \left(\frac{\theta}{2} \right) e^{-i\frac{\phi}{2}} |z_+\rangle + \cos \left(\frac{\theta}{2} \right) e^{i\frac{\phi}{2}} |z_-\rangle.
\]
The spin observables are then represented by

\[(45) \quad S_u = \frac{1}{2} |u_+\rangle\langle u_+| - \frac{1}{2} |u_-\rangle\langle u_-|.\]

Note, for example, that \(\langle z_+|u_+\rangle = \cos \left(\frac{\theta}{2}\right) e^{-i\frac{\phi}{2}}\) and \(\langle z_-|u_+\rangle = \sin \left(\frac{\theta}{2}\right) e^{i\frac{\phi}{2}}\), facts that are immediately read off of (43). Hence, for example, the probability that a system in the state \(W = |z_+\rangle\langle z_+|\) has the value \(+\frac{1}{2}\) for the observable \(S_u\) can be quickly calculated as

\[(46) \quad \text{Tr}[|z_+\rangle\langle z_+| (|u_+\rangle\langle u_+|)] \]
\[(47) \quad = \langle z_+||u_+\rangle\langle u_+|z_+\rangle \]
\[(48) \quad = \langle z_+|u_+\rangle\langle u_+|z_+\rangle \]
\[(49) \quad = |\langle z_+|u_+\rangle|^2 \]
\[(50) \quad = \cos \left(\frac{\theta}{2}\right)^2.\]

(To get from the first to the second line, calculate the trace using the basis \(|z_+\rangle, |z_-\rangle\).) The genius of Dirac’s notation is that one can, as illustrated here, simply ‘do the symbolically natural thing’ and get the correct answer. For example, the third line follows from the second by ‘erasing the parentheses and joining the bars’. Conceptually, we allowed the operator \(|u_+\rangle\langle u_+|\) to act on \(|z_+\rangle\), obtaining the vector \(\langle u_+|z_+\rangle|u_+\rangle\), then took the inner product of this vector with \(|z_+\rangle\) (or, applied the linear functional \(\langle z_+|\) to \(\langle u_+|z_+\rangle|u_+\rangle\)). The convenience of the notation can also, however, lead one to forget conceptually important distinctions.

Keep in mind, moreover, that the convenience of not having to worry about explicit (e.g., matrix) representations of vectors and observables can also lead one to write down some rather silly, or at least physically opaque, states. One frequently, for example, sees ‘states’ such as \(|\text{cat dead}\rangle\) or \(|\text{Sarah sees the pointer}\rangle\) written down. The Dirac notation naturally tempts one to write down such expressions, but we are so far from knowing whether such ‘states’ correspond to some pure vector state, and if so, what their properties are, that such expressions are best left to cartoons.

1.5 Transformations

We have now seen how to represent observables, and how to calculate expectation values (and probabilities). While such matters are indeed at the heart of the theory, there are other aspects of the formalism that are important for philosophical and foundational discussions. In particular, this subsection discusses transformations, both of the states of physical systems and of the observables associated with those systems. Along the way, I will have occasion to mention some theorems that are fundamental for the foundations of quantum mechanics.
1.5.1 Groups and Their Representations

1.5.1.1 Motivation Galileo observed that the laws of motion do not depend on the constant velocity of the ‘lab’ (frame of reference) in which they are applied. (For example, in the hull of a ship moving with constant velocity — more precisely, moving inertially — “jumping with your feet together, you pass equal spaces in every direction”, as Galileo writes, just as you would back on shore.) Neither do they depend on one’s location, nor on the time at which they are applied, nor on the direction in which one is facing. In other words, the laws are invariant under certain transformations, namely, boosts (changes in velocity), spatial translations, temporal translations, and rotations. These sorts of transformation are represented, mathematically, by groups, and in the case of the ‘Galilean transformations’ that I just mentioned, the group is normally called the ‘Galilean group’.\(^\text{13}\) Hence group theory (§7.6) is the natural context in which to study, among other things, the ‘invariances’ of quantum theory.

The motivation here is that the properties of a group are exactly the properties normally thought to apply to ‘invariance transformations’. In particular, if \(\alpha\) and \(\beta\) are transformations that each individually leave the laws unchanged, then the composition of \(\alpha\) followed by \(\beta\) is also such a transformation. Similarly, if \(\alpha\) is a such transformation, then there is the transformation that ‘undoes’ what \(\alpha\) did, that is the inverse of \(\alpha\). Notice, for example, that the composition of two Galilean transformations is another one, and that each transformation has an inverse.\(^\text{14}\)

Groups show up in other contexts as well. Suppose, for example, that we are interested (as we soon will be) in the dynamics of a closed physical system. One way to think about the time-evolution of the state of a system is as a transformation on the set of states. The set of all such time-evolutions, then, plausibly should form a group. The identity represents ‘no change’ (or the degenerate case of evolution over no time). The product represents one period of evolution followed by another. And the inverse represents ‘reversed’ evolution, or evolution backwards in time. (If a given theory is not time-reversible, then we would be dealing with a semi-group rather than a group.)

Now, often one specifies a group abstractly, that is, by specifying the products and inverses in the group without representing it as a group of transformations on some set (such as the set of physical states of a system). The most trivial example is the group \(Z_2\), which contains two elements, \(x\) and \(y\). The multiplication rule is: \(xy = x, yx = x, xx = y,\) and \(yy = y\). The identity is (clearly) \(y\), while \(x\) and \(y\) are their own inverses. Notice that we specified this group without referring to any

\(^{13}\)More precisely, the Galilean group is \((\mathcal{R} \times \mathcal{V}) \ltimes (\mathcal{A} \times T)\), where \(\ltimes\) is the semi-direct product, \(\ltimes\) is the semi-direct product, and \(T, \mathcal{A}, \mathcal{V},\) and \(\mathcal{R}\) are the (sub-)groups of temporal translations, spatial translations, boosts, and rotations, respectively (§7.6.2). If the Galilean group is defined, first and foremost, as the set of affine (parallel-line-preserving) maps from \(E\), the Euclidean 4-dimensional manifold (§7.5.2) of events (space-time), to itself that preserve simultaneity of events and the distance between simultaneous events, then it turns out that the subgroups mentioned above are not all normal, as implied by the use of semi-direct products where one might expect direct products.

\(^{14}\)See Brading and Castellani, Ch. 13, this volume, for more nuanced discussion.
specific mathematical objects — the symbols ‘x’ and ‘y’ are just names for the two elements of this group and by themselves have no further mathematical content. But we could also ‘represent’ the group Z_2 as, for example, the group of maps from any two-element set to itself, with y being the identity map, and x being the map that swaps the elements (maps each to the other). (Another representation of Z_2 takes x to be complex conjugation, *, and y to be **.)

1.5.1.2 Wigner’s Theorem Thinking of groups as ‘collections of symmetry transformations’, the very idea that these transformations are ‘symmetries’ suggests that they should not change the relationships amongst states. In particular, a symmetry transformation on the space of states should be such that a system in state $|\psi\rangle$ generates the same probabilities for observables both before and after the transformation (at least for observables that are supposed to be invariant under this symmetry, or have been ‘transformed along’ with $|\psi\rangle$, in the sense that their eigenvectors are also transformed). How might such transformations be represented?

Notice that a unitary operator (§7.2.6) fits the bill very nicely. Indeed, we define a unitary operator as, in part, one that preserves inner products. There is an important near-converse to this fact, due to Wigner ([1931, p. 251]).

Theorem (Wigner): Let \mathcal{H} be a Hilbert space over \mathbb{C} and let $T : \mathcal{H} \to \mathcal{H}$ be a 1-1 (but not necessarily linear) map satisfying $\langle Tw|Tv\rangle = \langle w|v\rangle$ for any $|w\rangle, |v\rangle \in \mathcal{H}$. Then

$$\langle T|v\rangle = \varphi(v)|U|v\rangle$$

where U is either unitary or anti-unitary and $\varphi()$ is a ‘phase function’, a complex-valued function on \mathcal{H} whose values have modulus 1.

(Any anti-unitary operator, T, can be written as $T = UK$, where K is the ‘complex conjugation’ operator. Hence the anti-unitary transformations are just the unitary ones, followed by complex conjugation. Time-reversal, for example, is often associated with complex conjugation.)

One normally rules out the anti-unitary case on various grounds related to the ‘unphysical’ nature of such transformations; in particular, they are not continuously connected to the identity. In order to make this notion precise, one would need to introduce a topology on the group. In the typical cases of interest, the group is continuously parametrized (§7.6.4) by some set of real indices so that the group in fact forms a manifold (§7.5.2); i.e., it is a Lie group (§7.6.5). In these cases, a topology is already given. The significance of being continuously connected to the identity is just that in this case, one has the picture of the group transformations being built up from transformations that are ‘infinitesimal’, i.e., ‘as close as you like to doing nothing at all to the system’ (the identity transformation). Of course, if we are talking just about symmetries, there is no reason to suppose that being continuously connected to the identity is a necessary condition — consider, just to mention the most obvious examples, time-reversal, or spatial reflection. On the other hand, if the symmetries in question are supposed to correspond, ultimately, to actual physical processes (such as dynamical evolution of a
closed system), then continuous connectedness to the identity begins to look more compelling.

Hence, in general, symmetries in quantum theory are represented in terms of these maps, T, with U unitary or anti-unitary, and often under the assumption (or hope) that U is unitary.

1.5.1.3 Projective Representations In the expression (51) one not only (normally) sets aside the case where U is anti-unitary, but also (normally) seeks maps, T, such that $\varphi(\nu)$ is identically 1. In this case, the representation of the symmetry group is just given in terms of a group of unitary operators. Such representations are particularly nice because much is known about unitary operators. (See §1.5.1.4 for an important example.) But one is not always so fortunate as to be able to find this sort of representation, often called a 'unitary' or 'ordinary' representation (§7.6.8). Sometimes one must live with the phase function's being non-trivial. In this case, the representation is called 'projective'.

The reason is as follows. Let \mathcal{H} be a Hilbert space, and consider the set, \mathcal{PH}, of equivalence classes of vectors from \mathcal{H}, where two vectors are equivalent if and only if they lie in the same one-dimensional subspace. \mathcal{PH} is a projective Hilbert space, whose structure is given by the 'angles' between the rays of \mathcal{H} (the modulus of the inner product of normalized representatives from the rays). When the phase function in (51) is non-trivial, the resulting transformation still generates an automorphism of \mathcal{PH}. (Moreover, we have already observed that the pure states in quantum theory can, for the purposes of calculating probabilities, be just as well represented by one-dimensional projections as by statevectors. Hence it should come as no surprise that projective representations of a group can still preserve all probabilities.) Hence, while ordinary representations tend to be easier to handle, there is nothing terribly inconvenient or problematic about projective representations, and one is sometimes forced to use them.

1.5.1.4 Stone's Theorem Unitary representations are particularly nice, because they can be 'generated' by self-adjoint operators. Note, first, that given any self-adjoint operator, F, the operator e^{iF} is unitary. Moreover, the family of operators $e^{i\alpha F}$ with α a real parameter forms a continuously parametrized group of unitary operators, where $e^{i\alpha F} e^{i\alpha' F} = e^{i(\alpha + \alpha') F}$. (Note that $\lim_{\alpha \to 0} e^{i\alpha F} = I$, i.e., this group is continuously connected to the identity.) Now suppose that we are interested in representing a continuously parametrized group, G, as a family of unitary operators on a Hilbert space. Because of the nice behavior of the $e^{i\alpha F}$, one would very much like to find an F that generates a representation of G. We are in luck:

Theorem (Stone [1932]): Let U_α be a (weakly) continuous unitary representation of G on a Hilbert space, \mathcal{H}. Then there exists a self-adjoint operator, F, on \mathcal{H} such that $U_\alpha = e^{-iF \alpha}$.

\[15\] The map $\alpha \mapsto U_\alpha$ is weakly continuous if and only if $\langle w | U_\alpha | v \rangle$ is a continuous function of α for every $|v\rangle, |w\rangle \in \mathcal{H}$. Indeed, Stone's theorem holds under weaker conditions when \mathcal{H}
Because so many of the groups of interest in non-relativistic (and indeed relativistic) quantum mechanics have the requisite properties, Stone's theorem is of fundamental importance for the theory. We shall see some examples of its use later.

1.5.2 Dynamics

1.5.2.1 Some Initial Assumptions about Dynamical Evolution Dynamical evolution of the state of a system is just a kind of transformation on the space of states. I begin with a few simplifying assumptions, which will turn out to be sufficient to determine the form of dynamical evolution.

Keeping in mind that density operators are mixed states, and hence linear combinations of pure states, let us assume that the evolution of a density operator is induced by the evolution of the pure states of which it composed. The idea here is that a density operator can represent simple physical mixing, and in that case at least, it should evolve as described. Suppose, for example, that we have a mixture, in proportions \(r \) and \(1 - r \) (with \(0 < r < 1 \)), of two different types of system, the first in the pure state \(P_1 \) and the second in the pure state \(P_2 \). The corresponding density operator is \(rP_1 + (1 - r)P_2 \). If the systems evolve without interacting with one another (for example, they might be physically isolated from one another), then one would expect that if the systems in \(P_n \) evolve to the state \(P'_n \), the mixture evolves to \(rP'_1 + (1 - r)P'_2 \), or so I shall assume. In that case, we can focus our attention on the pure states, and hence on the (normalized) vectors of a Hilbert space.

Notice that this argument certainly does not apply to density operators that arise from partial tracing (i.e., 'reduced density operators'). Indeed, in general, such operators will not evolve in the way described. But rather than determining their evolution directly, one may derive it from evolution of the state of the compound system of which it is a component — and if that compound system is in an improper mixture, then repeat the procedure.

We are therefore primarily interested in the dynamics of an isolated physical system (though certainly the system would in general experience internal interactions), represented by a pure state. The question then becomes: which transformations on a Hilbert space for this system are possible dynamical evolutions of the state of the system?

Symmetry is again a helpful tool. Let \(T : \mathcal{H} \to \mathcal{H} \) be a map from the Hilbert space \(\mathcal{H} \) to itself representing the time-evolution (over some given stretch of time) of a closed system. Because the system is closed, it seems reasonable to suppose that this \(T \) should be a symmetry, in the sense that we have already noticed: \(|\langle v | w \rangle|^2 = |\langle Tv | Tw \rangle|^2 \) for all \(|v \rangle, |w \rangle \in \mathcal{H} \). (Of course, the ultimate justification for this supposition is empirical success.) Hence (51) applies. We will assume, further, that the phase function \(\varphi(v) \) is identically 1, i.e., that time-evolution is given by an

has a countable basis (i.e., it is 'separable'), in which case the functions \(\langle w | U_\alpha | v \rangle \) need only be Lebesgue-measurable. See Riesz and Sz.-Nagy ([1955, §137]).
ordinary representation of some group of evolution operators. Finally, recall that the anti-unitary operators are not continuously connected to the identity, meaning that, in this case, if they were used to represent time-evolution, there would be no way to represent evolution over infinitesimal times. Under the assumption that time is continuous, we are led to suppose that time-evolution is given by some group of unitary operators.

Notice, now, that our original argument for the conclusion that the evolution of mixed states should follow from the evolution of pure states, essentially by the assumption of linearity, is encapsulated in this result. As a transformation on \(\mathcal{H} \), a unitary operator \(U \) also generates a transformation on the operators on \(\mathcal{H} \), and assuming that dynamical evolution ought not change the relationship (that is, the relations definable purely in terms of the structure of the Hilbert space) between pure states and the mixtures that they compose, we must use \(U \) to generate the transformation on mixed states by \(W \mapsto U^{-1}WU \). Indeed, this expression is the most general form of the standard dynamics of a closed system in quantum mechanics.

To see where it comes from, consider the density operator, \(W(t) = \sum_n w_n(t)P_n(t) \). Letting \(\{ |\psi_{n,i}(t)\rangle \} \) be an orthonormal basis determined by \(W(t) \) (where the index \(n \) ranges over the spectral projections \(P_n(t) \) and the index \(i \) ranges over the dimension of \(P_n(t) \)), we may write

\[
W = \sum_{n,i} w_{n,i}(t) |\psi_{n,i}(t)\rangle \langle \psi_{n,i}(t)|.
\]

According to our earlier assumption, the evolution of \(W \) will be given in terms of the evolution of the \(|\psi_{n,i}(t)\rangle \), which means in particular that the coefficients \(w_{n,i}(t) \) will be time-independent. (Keep in mind, here, that we presume \(W \) to be the state of a closed (isolated) system. Without that assumption, nothing said here would be at all plausible.) Hence, if \(U_t \) is the evolution operator for the system, we may simply apply it to the summands:

\[
W(t) = \sum_{n,i} w_{n,i}(t) U_t |\psi_{n,i}(0)\rangle \langle \psi_{n,i}(0)| U_t^*.
\]

\[
= U_t \left(\sum_{n,i} w_{n,i} |\psi_{n,i}(0)\rangle \langle \psi_{n,i}(0)| \right) U_t^*
\]

\[
= U_t W(0) U_t^*
\]

where we have used the linearity of the \(U_t \). Finally, recall that for any unitary operator, \(U, U^* = U^{-1} \).

Finally, it is worth noticing that for any given unitary map, \(U \), on \(\mathcal{H} \), considered to be a 'symmetry', the map \(F \mapsto U^{-1}FU \) for all operators \(F \) is the 'correct' corresponding symmetry of operators, at least in the sense that for any \(|v\rangle \in \mathcal{H} \) and any operator, \(F \), on \(\mathcal{H} \), \(U(\langle F|v\rangle) = (UFU^{-1})U|v\rangle \). That is, one can either 'apply the operator \(F \) to the vector \(|v\rangle \), then transform according to \(U \), or 'transform
according to U then apply the transformed operator to the transformed vector', and in both cases the result is the same.

1.5.2.2 The Hamiltonian We can say, then, that the evolutions on \mathcal{H} are generated by unitary operators. But which ones? For example, which operator represents the evolution of a free particle? Which operator represents the evolution of a particle under the influence of some given potential energy? Some progress on that question is made via Stone's Theorem.

Above I claimed that dynamical evolution has all the properties of a group. In particular, let $U_{1,2}$ represent the evolution of a system from time t_1 to time t_2, and similarly for $U_{2,3}$. Then it would seem that evolving from t_1 to t_2, and thence to t_3, is the same as evolving from t_1 to t_3; in other words, $U_{1,3} = U_{2,3}U_{1,2}$. (Keep in mind that we are thinking of these $U_{m,n}$ as operating on some space of states — hence the ordering.)

A slightly stronger, but still quite compelling, assumption is that of 'time homogeneity'. Imagine a system evolving under the influence of some time-independent constraints (for example, time-independent potential energies). Then, if $t_3 - t_2 = t_2 - t_1$, the evolution operator $U_{1,2}$ should in fact be the same as $U_{2,3}$. (Keep in mind that these operators transform the entire space; we are not assuming that a given single system will 'do the same thing' from t_2 to t_3 as it did from t_1 to t_2, but rather that two different isolated systems in the same state at two different times will do the same thing for the next equal stretch of time.) In this case, evolution operators require just a single parameter indicating the length of the time interval concerned, and we then have the relation: $U_tU_{t'} = U_{t+t'}$. We assume, as well, that U_0 is the identity, meaning that 'nothing happens instantaneously'.

Notice the similarity to an additive group. Indeed, a set of operators, U_t, obeying this rule forms a semi-group. But there is, as well, reasonable motivation for the existence of inverses in this case, namely, that they correspond to reverse evolution (evolution backwards in time). Writing the time-reversal of U_t as U_{-t} then we require that $U_tU_{-t} = U_{t-t} = I$. In that case, the U_t form a one-parameter group.

Finally, we will add an assumption of continuity in time. In particular, we will assume the 'weak continuity' of the group U_t (see footnote 15). We can then apply Stone's Theorem to learn that, for any group representing time-evolution of a quantum system, there is some self-adjoint operator, H, such that $U_t = e^{-iHt}$.

How do we know which operator H to choose for a given system? Alas, the usual answer to this question is via 'quantization' of the Hamiltonian of an analogous classical system. For such a system, the Hamiltonian is usually the classical total energy. I say 'Alas', because although at a practical level quantization is normally straightforward, there is, as yet, no completely satisfactory foundational account of the nature of the 'analogy' between a given quantum system and its classical 'analogue'.

\[16\] See Landsman, Ch. 5, §4, this volume.
example, the classical kinetic energy of a particle moving in one dimension is \(p^2/2m \) (where \(p \) is the classical momentum and \(m \) is the mass of the particle), and the quantum-theoretic (‘quantized’) Hamiltonian is \(P^2/2m \) (where \(P \) is the momentum operator). Hence the time evolution of a free particle in quantum theory is given by \(|\psi(t)\rangle = e^{-iP^2t/2m}|\psi(0)\rangle \).

1.5.2.3 Equations of Motion

In this final section about the formalism of quantum theory, I briefly introduce the standard equations of motion in non-relativistic quantum mechanics. Much of the actual practice of quantum mechanics consists in solving these equations, either exactly (in rare cases where analytic solutions are obtainable), or approximately (most of the time, either using standard techniques from perturbation theory, or using numerical approximations).

1.5.2.3.a The Schrödinger Equation

Consider the group of time-evolutions \(U_t = e^{-iHt} \). These \(U_t \) uniquely solve the differential equation

\[
(56) \quad \frac{\partial U_t}{\partial t} = -iHU_t.
\]

But \(\frac{\partial U_t}{\partial t} |\psi(0)\rangle \) is just the time-derivative of \(|\psi(t)\rangle \) at time \(t \), so that, allowing the operators on both sides of (56) to act on \(|\psi(0)\rangle \):

\[
(57) \quad \frac{\partial}{\partial t} |\psi(t)\rangle = -iH|\psi(t)\rangle.
\]

Equation (57) is the Schrödinger equation for a time-independent Hamiltonian. A similar equation holds for ‘bra’ vectors:

\[
(58) \quad \frac{\partial}{\partial t} \langle \psi(t) | = \langle \psi(t) | (iH).
\]

(Recall our earlier comments about the simultaneous usefulness and seductiveness of the Dirac notation. The reader is invited, here, to consider what the terms in this equation really represent.) Of course, the evolution of mixed states is still given by (53).

If \(H \) depends on time, then we can still consider each infinitesimal evolution (from \(t \) to \(t + dt \)) to be given by unitary operators \(e^{-iH(t)} \). In general, it is non-trivial to build up finite-time evolution operators from these infinitesimal ones. But when the Hamiltonian is time-independent, then of course we may define \(U_t = e^{-iHt} \). If, moreover, the system is in a ‘stationary state’ at time \(t = 0 \) — that is if it is in an energy eigenstate, \(|\psi_E(0)\rangle \), of fixed energy, \(E \), i.e., \(H |\psi_E(0)\rangle = E |\psi_E(0)\rangle \) — then the evolution takes the simple form \(|\psi_E(t)\rangle = e^{-iHt} |\psi_E(0)\rangle = e^{-iEt} |\psi_E(0)\rangle \). That is, the system remains in the same one-dimensional subspace; only the phase, \(e^{-iEt} \), changes with time.

Of course, (57) tells us how expectation values change as well. A straightforward application shows that for any operator, \(F \), (57) implies:

\[
(59) \quad \frac{d}{dt} \langle F \rangle = -i\langle [F, H] \rangle + \left\langle \frac{\partial F}{\partial t} \right\rangle,
\]
where $\langle \cdot \rangle$ is the expectation value of the operator on the inside in some (here unspecified) state and H is the Hamiltonian.

Such is the standard account of 'Schrödinger evolution'. One should note, however, that in practice the system is often not isolated, so that it is necessary to add potentials to the Hamiltonian that represent the influence of some external system, σ_{ext}, on the system of interest, σ. The problem here is that it is often impractical to attempt to model the entire compound system (σ_{ext} and σ) whereas one has at least a fighting chance to model the influence of σ_{ext} on σ as an external potential applied to σ. A typical example involves nano-electronics, where, for example, one might be interested in studying a potential difference applied across a molecule. In principle, one would include the electrodes at either end of the molecule. In practice, just modeling the molecule is already very difficult, and including the electrodes in the system is completely unfeasible. Instead, one simply encodes their effect on the molecule into the potential term in the Hamiltonian. In general, doing so results in non-unitary evolution (because the system is not closed).

1.5.2.3.b The Schrödinger and Heisenberg Pictures We have been thinking about dynamics in terms of the evolution of states. One may equivalently consider that the state is constant in time, but evolve the observables instead. Indeed, suppose that the state of the system is $|\psi(t)\rangle$, evolving under the unitary evolution U_t. Then the expectation value of the observable F at time t is $\langle \psi(0)|U^*F(U|\psi(0))\rangle$. So we may just as well let the state be constant in time, i.e. $|\psi(t)\rangle = |\psi(0)\rangle$, while supposing that the observables change according to $F(t) = U_t^*F(0)U_t$. Clearly, the expression for the expectation value will be the same in either case. Hence the two pictures are empirically equivalent.

The first picture (where states evolve in time and observables are constant) is normally called the 'Schrödinger picture', while the second picture (where states are constant and observables evolve in time) is normally called the 'Heisenberg picture'.

1.5.2.3.c The Heisenberg Equation In the Heisenberg picture, how do the observables change in time? We will (temporarily) index 'Schrödinger' observables with an 'S' and the corresponding 'Heisenberg' observables with an 'H'. We will assume, as well, that the Schrödinger observables do not depend explicitly on time (as is normally the case in basic applications). At any finite time, then, we would have $F^H(t) = U_t^*F^S U_t$. (See §1.5.2.3.b.) Then

$$\frac{dF^H}{dt} = \frac{\partial U_t^*}{\partial t} F^S U_t + U_t^* F^S \frac{\partial U}{\partial t} \tag{60}$$

17There is a third picture, the 'interaction picture' (sometimes called the 'Dirac picture'), that combines the first two. In this picture, both the states and the observables evolve in time. The evolution of a system due to the free part of its Hamiltonian is encoded into the evolution of the state, and the evolution of a system due to 'the rest' of the Hamiltonian (the 'interaction' part of the Hamiltonian) in encoded in the evolution of the observables.
(61) \[iU_t^*H^SU_tU_t^*F^SU_t - iU_t^*F^SU_tU_t^*H^SU = 0 \]

(62) \[= i[U_t^*H^SU_t, F^H] \]

(63) \[= i[H, F^H] \]

where we have first used (56) and inserted $U_tU_t^*$ into each term, and then we used the fact that H^S commutes with U_t, hence $U_t^*H^SU_t = H^S = H^H$. (We have therefore also dropped the index from the Hamiltonian in (63).) This equation is normally called the 'Heisenberg equation'.

There is an important similarity between the Heisenberg equation of motion and the equation of motion for a classical observable (function on phase space) $f(x,p)$, written in terms of the Poisson bracket,

(64) \[\{f, g\} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial p} - \frac{\partial f}{\partial p} \frac{\partial g}{\partial x}. \]

The commutator and the Poisson bracket have similar algebraic properties, and moreover, the classical equation of motion is given by $\frac{d}{dt}f = \{H, f\}$, where H is the classical Hamiltonian. Hence one way of thinking about the relationship between classical and quantum theory is in terms of an algebraic analogy between commutators and Poisson brackets.

1.6 Preview of Philosophical Issues

Philosophy of non-relativistic quantum theory has traditionally been largely concerned with four issues (which is not to suggest, of course, that there are not other issues that have been discussed).

The first issue (discussed in §2) is in some ways the most fundamental, but also, in some circles, the least discussed, namely, the origins or justification of the quantum-theoretic formalism. How do we find ourselves using Hilbert spaces and self-adjoint operators on them rather than phase spaces and functions on them? Given that the other issues facing the philosopher of quantum theory are mirrored in certain features of the formalism, answering (or at least addressing) this question could prove very useful. There are some reasonably illuminating attempts to explain why quantum theory uses the formalism it does. The next section is devoted to a discussion of a few such attempts.

The second issue (discussed in §3) concerns empirical content. A close reading of, for example, some of the founders of quantum theory (especially Niels Bohr)
reveals a deep concern on their part with the question how the quantum formalism gets its empirical meaning. I will sketch a proposal, motivated by Bohr, for how to understand the connection between formalism and observation.

The issue of empirical content is closely connected with the issue of incompatibility, and more precisely, the uncertainty relations (discussed in §4). Why is it not possible to determine precise values for all observables? Does it follow from a deeper claim that one observable’s having a definite value can preclude another, incompatible, observable from doing so? Some of the founders of quantum theory (again, especially Bohr) were concerned to explain how it is that the conditions required for the empirical well-definedness of some pieces of the formalism somehow preclude the simultaneous satisfaction of the conditions required for the empirical well-definedness of other pieces of the formalism. Others (especially Einstein) were concerned, instead, to ‘beat’ the uncertainty principle, initially by arguing that one can determine precise values for incompatible observables, and later by arguing for the weaker claim (in the famous Einstein-Podolsky-Rosen paper) that they must have precise values (simultaneously), even if we cannot determine (for example, measure) them.

The fourth issue (discussed in §5), again related to the previous one, arises from Gleason’s Theorem: if there are no dispersion-free (sometimes in this context called ‘two-valued’) states in quantum theory, then apparently some observables can sometimes be in ‘indeterminate’ states. Even worse, it is easy to describe physically plausible scenarios in which observables that one normally believes to be definite will not be assigned a definite value by the state assigned via quantum theory, under a standard interpretation of the relationship between states and values for observables. Famously, Schrödinger described such a scenario, in which a cat was somehow ‘neither alive nor dead’. The obvious way to avoid this problem — by interpreting the probabilities generated by the quantum state epistemically (i.e., as expressions of ignorance about the actual values, as classical probabilities often are) seems to run into serious philosophical, indeed logical, difficulties. Hence other solutions are proposed, in the form of sometimes quite exotic interpretations of the formalism. While many of these solutions can be seen to avoid the basic problem, each has its serious pitfalls as well — and therefore, detractors. No generally accepted response to the problem seems to be on offer.

The final major issue (discussed in §6) is the non-locality of the theory, as implied by the use of tensor-product spaces to represent compound systems. As we noticed, such spaces allow for so-called ‘entangled’ (non-factorizable) states that imply strong (even perfect) correlations between remote systems. Again, the obvious ways to make sense of these correlations, in terms of a common causal history or processes that propagate purely locally in space-time, turn out not to work. Such is the upshot of a series of theorems, the first and most famous of which is due to Bell [1964]. The result is an apparent conflict with the tendency among space-time theorists of the past century or more to adopt some form of a principle of ‘locality’. While various attempts have been made to resolve the apparent conflict, or to argue that it is not a problem, no very satisfying resolution seems
to be on offer.

2 WHENCE THE KINEMATICAL FORMALISM?

Our goal in this section is to review some attempts to say why we use the formalism that we do in quantum theory. There are numerous attempts to 'derive' the Hilbert-space formalism from physically 'intuitive' axioms. The attitude that we shall adopt here is that many of these attempts are worthwhile — they can contribute to our understanding of quantum theory — even if none of them succeeds in deriving the formalism from axioms whose physical import (much less truth) is always clear. It therefore makes sense to survey more than one such route to the formalism, rather than relying on just one of them. Here we will consider a few important representatives of the genre.

The first (§2.1) begins from the notion of a physical proposition, and argues that these propositions are properly represented by the subspaces of a Hilbert space. The second two routes (§2.2) begin from the notion of a physical state, and argue that these states are properly represented as probability measures over the subspaces of a Hilbert space. The final route (§2.3) is similar to these latter two, but while they attempt to characterize the state spaces in a somewhat abstract way (in terms of C*-algebras), and then 'represent' them as states on a Hilbert space, this final route constructs the Bloch sphere (§1.3.5) directly, and builds (the state spaces of) higher-dimensional Hilbert spaces from it. (However, having said that, we will not in fact examine the proofs enough to notice these differences in any detail.)

Our intention is not to claim that any of these routes has, once and for all, illuminated the true reasons behind the use of Hilbert spaces in quantum theory. Rather, in each case, certain interesting or important aspects of the use of Hilbert spaces in quantum theory can be illuminated by following through some of the arguments that take us (ideally) from relatively uncontroversial and physically clear principles to the Hilbert space formalism. Our emphasis here will be on those aspects of each route that seem to be potentially helpful for understanding quantum theory, skipping over what appear to be merely technical conditions. In each case, our discussion will be necessarily brief (relative to the full story); proofs and technicalities will be omitted.

Finally, many concepts (such as the lattice of propositions, and the convex space of states) that are important for the foundations of quantum theory are discussed here. Readers who are not necessarily looking to learn about routes to the Hilbert space formalism will still learn something independently important from reading at least some parts of this section.

2.1 From Propositions to Hilbert Space

In this section, we trace a route to Hilbert space that begins with the logic of physical propositions. The goal, here, is to identify quantum theory (i.e., the
Hilbert space formalism) as, in a sense, the unique theory that satisfies certain logical constraints.20

2.1.1 The Lattice of Propositions

2.1.1.1 Physical Meaning of Propositions We begin by taking as fundamental the set of propositions about a physical system at a time. The idea is that such propositions will take the form ‘the system has the property \(P \) at time \(t' \). (Hence, equivalently, one may take properties as fundamental. For each property, there is a corresponding proposition stating that the system possesses the property, at a given time. Here we shall speak solely in terms of these propositions.)

2.1.1.2 Definition It is standard in the algebraic approach to logic to assume that the set of all propositions (syntactically, sentences) forms a lattice (§7.4). The partial order in the lattice corresponds to implication: \(P \leq Q \) means that \(P \) implies \(Q \). The supremum (join) on the lattice corresponds to disjunction, and the infimum (meet) corresponds to conjunction. These identifications are far from arbitrary. Consider, for example, disjunction. The join of two elements, \(P \) and \(Q \), in the lattice, \(L \), is the logically weakest proposition implied by both \(P \) and \(Q \), which is, arguably, just what one means by ‘disjunction’. Similar considerations apply to conjunction. Finally, assuming (again, as is standard) that the lattice is an ortholattice, the orthocomplement in the lattice corresponds to negation.

2.1.1.3 Motivation and Interpretation of the Lattice Operations Apart from the direct appeal to algebraic logic, such lattices have sometimes been motivated by an operational description of measurements. One speaks, for example, of yes-no experiments, to test for the truth of some proposition. The partial order on the set of such tests is derived from the idea that one test, \(Q \), might be passed every time some other test, \(P \), is, and in this case we write \(P \leq Q \). However, I shall not pursue this approach in any detail here, but instead take it for granted that there is some way to understand these logical operations and relations in physical terms. (I do not mean to suggest that any particular approach — especially the various operational approaches — are entirely satisfactory. Indeed, one could argue that a firm understanding of the physical significance of the lattice-theoretic connectives is the Achilles heel of the route to Hilbert space via propositions.21

20There are many versions of this program, which got its start with Birkhoff and von Neumann [1936]. The discussion here is largely in the spirit of Piron's [1976] work. A recent monograph covering much of the territory is that of Dalla Chiara, Giuntini, and Greechie [2004]. A more operational approach, somewhat different from these others, is that of Ludwig [1983].

21I do not mean to suggest, of course, that this issue has not been addressed by advocates of the quantum-logic program. Jauch [1968], for example, proposes an understanding of the conjunction of non-commuting projections (which, apparently, cannot be understood simply in terms of the proposition ‘both are measured’) in terms of a limit of repeated measurements.
2.1.1.4 Additional Constraints on the Lattice of Propositions In addition to the structure of the lattice of propositions that we have already established, we will need to assume a number of additional properties. First, we assume that the lattice has a bottom and a top (§7.4.5), 0 and 1, corresponding respectively to the logically false proposition and the logically true proposition. (We then require of the orthocomplement that \(P \lor P^\perp = 1 \) for all \(P \). It follows that \(0^\perp = 1 \).)

Second, we assume that the lattice of propositions is complete and atomic (§7.4.5). This assumption amounts to the idea that there are some fundamental propositions — maximally specific propositions — and that one can interpret the truth of any weaker proposition as a consequence of the truth of some fundamental proposition. (It does not follow that one must interpret them in this way.) Another approach to justifying this assumption refers to the convex structure of the set of states. As we will see below (§2.2.1.3.c), there is good reason to suppose that this set has extremal points, corresponding to pure states, i.e., states of maximal information. That characterization suggests that each pure state should assign probability 1 to some maximal (logically strongest) proposition, which would be an atom in the lattice of propositions.

Next we must assume that the lattice is irreducible (§7.4.4). The assumption of irreducibility is far from trivial, but does have something approaching a physical interpretation, due to the following theorem from the theory of lattices:

An ortholattice is irreducible if and only if its center (§7.4.3) is trivial, i.e., \(\{0, 1\} \).

Now, a proposition's being in the center means, logically, that it is compatible with all other propositions (§1.2.4). Therefore, one way to understand the irreducibility of a lattice is as a consequence of the assumption that its center is trivial, i.e., that every proposition (except 0 and 1) is incompatible with at least some other proposition. Note that this assumption is in a sense a 'maximal' violation of the classical law \(p = (p \land q) \lor (p \land q^\perp) \), for it asserts that the law fails for every \(p \) (which is not to say that there are not some \(p, q \) for which the law holds, but that for every \(p \), some \(q \) exists for which the law fails — recall, also, the discussion surrounding the conditions 23).

Our final assumption is that \(L \) satisfies the covering property (§7.4.5). The motivation here is, alas, less clear, although some arguments have been given.\(^{22}\)

2.1.2 Piron's Program

Piron's program was to characterize exactly those lattices that are (isomorphic to) the lattice of subspaces of a Hilbert space. He got as far as the following theorem:

Theorem (Piron [1964]) If \(L \) is a complete, atomic, irreducible, orthomodular lattice that satisfies the covering law and has at least 4 orthogonal atoms, then it is (isomorphic) to the lattice of subspaces of an inner product space, \(V \).

\(^{22}\)For example: Piron [1964], and Cohen and Svetlichny [1987].
In fact, Piron was able also to say something about the field over which V is defined, but not much. In the end, Piron’s theorem is suggestive, but far from the desired end, which is to characterize the lattice of subspaces of a Hilbert space as the unique structure satisfying certain logical constraints.

Piron’s program made a huge step forward with the proof of the following theorem, due to Solér

Theorem (Solér [1995]) If the lattice L in the statement of Piron’s Theorem contains an infinite orthonormal sequence, then the vector space in question is a Hilbert space over the reals, complex numbers, or quaternions.

This result is an important contribution to Piron’s program, although there is an obvious limitation to its applicability: it does not cover the case of finite-dimensional Hilbert spaces (for example, those describing the spin of a particle, as in §1.3).

2.2 From States to Hilbert Space

2.2.1 An Approach in Terms of Convex Spaces of States

We will now consider two approaches to Hilbert space that begin with the structure of the space of states. The first begins with the observation that the states form a convex set (§2.2.1.1). Our procedure will be to embed an arbitrary convex set into a vector space, V (§2.2.1.2), and argue (in the subsequent sections) for progressively adding more structure to V, until it has enough structure to support a theorem to the effect that the convex set of states can in fact be represented as density operators on a Hilbert space.

2.2.1.1 Convex Spaces of States

Earlier we noticed that given any two probability measures, p and p', they can be combined to form a third, $q = rp + (1-r)p'$, where $0 < r < 1$. It is easily checked that q thus defined satisfies Kolmogorov’s axioms (§7.5.6), if p and p' do. Indeed, any convex combination (§7.1.10) of probability measures yields another probability measure, called a ‘mixture’ of the measures appearing in the convex combination.

The general idea, then, will be to take a convex space of states as fundamental. At this point, we make no commitment about the space of states other than that it is convex. We will then impose extra conditions on this space, eventually forcing our space of states to be, in fact, the space of states on a Hilbert space. In other words, we will have characterized the space of states (density operators) on a Hilbert space.\(^{23}\)

\(^{23}\)The discussion in this section is largely an expansion and explanation of the program outlined by Haag [1992, VII.2]. The program has since taken on a new form, in the hands of Alfsen and Shultz [2003], as briefly mentioned below.
2.2.1.2 Embedding in a Vector Space So consider, to start, an arbitrary convex set, S. It is mathematically natural and convenient to embed S into a real vector space, V, in part because convex combinations are just a special type of real linear combination, and the latter is naturally defined in the context of a (real) vector space.

If S is generated by its extreme points, then our immediate task is easy. (An extreme point of a convex set is a point that is not itself a convex combination of other points in the set. S is generated by its extreme points just in case every element of S can be expressed as a convex combination of extreme points.) In that case, we can define the embedding by letting V be the free vector space generated by the extreme points of S. (Intuitively, V is then all formal real linear combinations of the extreme points of S.) However, this approach clearly requires that we assume that S has extreme points; and while it does in quantum theory as standardly understood, it is worth seeing that one need not assume so, but can instead derive this fact from other considerations. (In the context of a physical theory, where S is a set of states, the extreme points are just the pure states — recall, also, §2.1.1.4.) So let V be a real vector space having S as a subset (i.e., S is embedded in V — given the real linear structure of S, it should be clear that it is always possible to find a vector space that contains a subset that is isomorphic to S as a convex set; our problem here is not to show that there is such a V, but to construct it from S, as above).

2.2.1.3 Sufficient Conditions for the Existence of Extreme Points

2.2.1.3.a Observables We will take an arbitrary observable, f, of our theory to be a function from states to expectation values. That is, $f(v)$ is the expectation value of f in the state v. Indeed, after embedding the states in a vector space, V, we will consider the observables to be (possibly a subset of the) real-valued linear functionals on V. It is clear that observables, understood as maps from states to expectation values, should be linear functionals, because for any state, $v = \sum_n w_n v_n$ (written here as a convex combination of states v_n), we must have $f(v) = f(\sum_n w_n v_n) = \sum_n w_n f(v_n)$. Otherwise, $f(v)$ would in general be numerically different from the expectation value of f on a system randomly chosen from the mixture $\sum_n w_n v_n$.

Let O be the set of observables. We need not (yet) make any commitments about the contents of O except to require that it separate V; that is, for any non-zero $v \in V$, there is an $f \in O$ such that $f(v) \neq 0$ (equivalently, if $v_1 \neq v_2$ then there exists $f \in O$ such that $f(v_1) \neq f(v_2)$). In S, this condition amounts to requiring that O be rich enough to make probabilistic distinctions amongst elements of S. To extend to all of V, assume now that O separates S, and note that if O does not also separate all of V, then in fact V is ‘unnecessarily large’

24 This condition can always be met — i.e., one can always find some linear functional that does the job — for any normed vector space, by the Hahn-Banach theorem. Our space V will in fact be normed.
to embed S. For consider the subspace of all v such that $f(v) = 0$ for all $f \in O$. Then consider the quotient space V/W. There is a homomorphism from V to V/W that is an isomorphism from S to its image in V/W as convex sets. So we can just as well work with V/W, and doing so in fact eliminates structure from V that was not needed in order to embed S.

2.2.1.3.b Topology on the Embedding Space Therefore, we assume that O separates V. We now introduce a topology (§7.5) for V. Here, the guiding idea is that ‘infinitesimally small’ changes in the state should result in ‘infinitesimally small’ changes in expectation values. We therefore introduce the coarsest topology on V that makes all of O continuous. Call it the O-topology. In this topology, it makes a certain amount of sense to require that S be compact (§7.5.1). For example, that assumption guarantees that (the expectation values of) observables are bounded, because the continuous image of a compact set is compact.

2.2.1.3.c The Existence of Extreme Points Given these assumptions about S and its embedding into a vector space, V, and the associated observables, O, we can apply the following theorem from functional analysis:

Theorem (Krein-Millman; see Rudin [1973, p. 70]) Let S be a convex subset of V, O a separating set of linear functionals on V, and let S be compact in the O-topology. Then S has extremal points, and it is the smallest closed convex set containing all of those points.

One says that S is the ‘closure of the convex hull of its extreme points’. In other words, S has extreme points, and is ‘generated’ by them in the sense that S is the closure of all convex combinations of extreme points. Hence every element of S can be written as a convex combination of extreme points (pure states), or is the limit of a sequence of such states.

2.2.1.4 Further Properties of the Embedding Recall the prescription for constructing the embedding space, V, as the free vector space over the extreme points of S (§2.2.1.2) Now that we have established that S indeed has extreme points, we can, almost, follow this prescription. The only addendum is that we

25This assumption, while apparently natural, is certainly not compelling. See §2.3.2 for discussion of this idea in the context of Hardy’s approach.

26A basis for this topology is given by all sets (‘open balls’), B, constructible as follows. Choose $v \in V$, $f_1, f_2, \ldots, f_n \in O$, and $\epsilon > 0$. B is then the set of all $w \in V$ such that $|f_i(w) - f_i(v)| < \epsilon$ for $i = 1 \ldots n$.

27In the specific context in which we will soon work, compactness amounts to the assumption that the identity — the linear functional that has value 1 everywhere — is an observable.

28Careful! Those familiar with quantum theory might be tempted to suppose that V is, or is isomorphic to, the Hilbert space containing the statevectors for a system. It is neither. As we will see (once we have defined a norm on V), it is a vector space in which the density operators form the unit sphere.
wish V to be closed under the O-topology. Hence, V is constructed as the closure of the free vector space over the extreme points of S. (By ‘closure’, here, we mean: ensure that the closure of every open set in V is also in V.) In this case, the pure states in S form a basis for V (because, in fact, the free vector space over the pure states is in essence ‘all formal linear combinations’ of pure states).

Let us now insist that O contain a linear functional, I, that assigns the value 1 to every pure state (extreme point) in S. This I is unique (because the pure states form a basis, and I is continuous by assumption and so is extended uniquely from the pure states to all of V). Now, let V^+ be the positive convex cone (§7.1.10) generated by the pure states. The states in V are then identified as the elements of V^+ that take the value 1 for I.

Indeed, I generates a norm on V in a natural way. For any $v \in V^+$, define the norm of v by $\|v\| = I(v)$. Now, any $v \in V$ can be decomposed as $v_1 - v_2$ for some $v_1, v_2 \in V^+$ (or is the limit of a sequence that can be so decomposed). Hence we can define $\|v\|$ (now for any $v \in V$) as the infimum (over all such decompositions) of $\|v_1\| + \|v_2\|$, and require the norm to be continuous. V is thus a real Banach space (§7.1.7), and (by construction) the norm on V assigns norm 1 to every state. (We have now fulfilled our earlier promise that V would turn out to be a normed space.)

2.2.1.5 Faces and Propositions To what do these states assign probabilities? While we do not need to answer that question in order to finish the discussion (at this level), it is instructive to do so nonetheless: the ‘propositions’ to which states assign probabilities are faces of states in the convex set of states (§7.1.10).

In classical mechanics, one can form a face of a convex set by taking the closure, under convex combination, of a set of pure states. In quantum theory, the process of purification will in general add new pure states to the set, and so is essential for the construction of the face. (Recall, as well, that the classical states form a simplex, while the quantum states do not — see §1.2.7.) The physical idea behind the definition of a face in both cases is something like ‘the set of all states that one can create (from some initial set) via mixing, plus the set of all states of which the resulting mixed states could, in principle, be a mixture’.

There is a natural connection between faces of states and propositions about, or properties of, a physical system. (Here, as above, we shall use the terms ‘property’ and ‘proposition’ interchangeably. Also as before, we begin with the minimal assumption that the set of propositions is a poset, the partial order corresponding to implication.) In particular, let us say that a proposition (about a system, at a time) asserts that a measurement on the system reveals that the state of the system is in some face of states.

Note that an extremal point in the space of states is a (singleton) face, and vice versa. Hence one sort of proposition is of the form ‘the system is in the state v’.

\footnote{Sketch of a proof: the pure states span V, so write v as a linear combination of the pure states, and separate it into a part with positive coefficients and a part with negative coefficients. The former is clearly in V^+. The latter, multiplied by -1, is also in V^+.}
for any pure v. This association makes sense, because pure states are supposed to be, intuitively, states of maximal information, and if propositions correspond to faces, then the most specific propositions are the singleton faces (extremal points).

The idea behind the general association between propositions and faces is the following. Suppose you are handed an ensemble of systems, all in the same state, and asked to determine in what state the ensemble was prepared. Given the association between maximally specific propositions and pure states, if you can determine that some maximally specific proposition is true of every member of the ensemble, then you are done — the state is the corresponding pure state. But suppose that there is no such proposition, i.e., no maximally specific proposition true of every member of the ensemble. Then you have been handed a mixed state, but a mixture of what? In general, you will be able to determine with certainty only that the state was created by mixing states from the smallest face containing the actual mixed state (hence, the smallest proposition to which the actual state assigns probability 1).

In terms of standard quantum theory, the point here is that for any mixed state (density operator) W, the logically strongest proposition that is rendered certain by W is just $\text{ran } W$, here generalizing the notion of ‘range’ to mean ‘the image of W under all vectors in the Hilbert space’. (It should come as no surprise that $\text{ran } W = \bigvee_n P_n$, where P_n are the spectral projections of W.) In other words, $\text{ran } W$ is in fact the subspace of pure (vector) states that forms the smallest face containing W.

2.2.1.6 Hilbert Space representations of faces of cones

2.2.1.6.a Homogenous cones
Consider the automorphisms on the set of states (that is, any map from the set of states to itself that preserves the convex structure). Such maps plausibly correspond to the possible state-transitions. Moreover, they are naturally extended to linear maps on V that are automorphisms of V^+ (i.e., such maps take V^+ to itself, and preserve convex structure of V^+; hence they preserve the fact that V^+ is the positive convex cone generated by the pure states). The extension to V^+ is effected simply by the condition that for any such automorphism, f, any real number r, and any state, v, $f(rv) = rf(v)$. Recalling that every element of V can be written as a linear combination of elements of V^+, one can see that f is thus naturally extended to a linear transformation on V.

A cone is said to be ‘homogeneous’ with respect to this set, T, of transformations if for any two non-extremal points, v, v' inside the cone, there is a transformation in T that takes v to v'. The physical idea here is that there is some way for a system to evolve from any non-extremal point to any other non-extremal point.

2.2.1.6.b The Case of Finitely Many Pure States
While we would not want to assume that there are only finitely many pure states, nonetheless the following theorem is extremely suggestive:
Theorem (Vinberg [1965]). The faces of a self-dual,\(^{30}\) homogeneous cone with finitely many extremal points are in one-to-one correspondence with the subspaces of some Hilbert space (over the real numbers, complex numbers, or quaternions).

Hence, if one is convinced that the states of a theory must form a convex set with the properties discussed above, one is, in the sense given by this theorem, committed to the Hilbert space formalism.

2.2.1.6.c The General Case Alfsen and Shultz [2003, p. 414] have extended this program to eliminate the unrealistic (and indeed false) assumption that there are only finitely many pure states. Their main result involves a number of technical assumptions about the structure of the convex set of states that we do not have the space to articulate here. Moreover, in the end, they arrive not quite at a characterization of Hilbert space (at least not directly), but at a characterization of the state spaces of a \(C^*\)-algebra, although, via a GNS construction, they can get to Hilbert space from there.\(^{31}\)

2.2.2 An Approach in Terms of Pure States and \(C^*\)-Algebras

In this sense (i.e., in dealing ultimately with the state-spaces of \(C^*\)-algebras), the theorem of Alfsen and Shultz is similar to a theorem due to Landsman [1998, Theorem 3.9.2 and Corollary 3.9.3], which we will now consider, albeit briefly and (again) in outline.

Landsman argues that the set of pure states should be endowed with two distinct structures, dynamical and probabilistic, and that the two must be connected in the right way. He then adds what is supposed to be the characteristically quantum condition (described below), and arrives at a theorem that characterizes the state spaces of \(C^*\)-algebras.

2.2.2.1 The Poissonian Structure

2.2.2.1.a State Spaces as Poisson Manifolds The first sort of structure corresponds to the dynamics that we discussed earlier. Recall our discussion of the Heisenberg equation (§1.5.2.3.c), and specifically the fact that \((i\text{ times the})\) commutator has the algebraic form of a Poisson bracket. In outline, the general theory of dynamics generated by Poisson brackets goes as follows.

We begin with some space (indeed, manifold — §7.5.2) of states, \(M\). Given \(M\), one defines the evolution of observables in terms of a Poisson bracket defined on the infinitely-differentiable real-valued functions on \(M\), \(C^\infty(M)\) (the observables), as a bilinear operation, \(\{\cdot,\cdot\}\), on \(C^\infty(M)\). (Recall (64), and see Butterfield, Ch. 1, §7.1.10.

\(^{30}\)We pass over the issue of the physical motivation for this condition. See §7.1.10.

\(^{31}\)For more on \(C^*\) algebras, GNS-constructions, and related matters, see Landsman, Ch. 5, Halvorson, Ch. 8, and Emch, Ch. 10, this volume.
§5, this volume, for further discussion.) Together with a choice of a scalar function \(H : M \to \mathbb{R} \) as the Hamiltonian, one can use this definition of the evolution of observables to define an evolution (of states) on \(M \) (analogously to the equivalence between the Heisenberg and Schrödinger pictures). For a given Hamiltonian, the possible dynamical paths from \(M \), thus defined, are the ‘Hamiltonian curves’ of the system.

Keep in mind that this construction is supposed to be very generic. We are essentially laying down ‘what one means’ by a certain kind of dynamical system. To this end, Landsman puts additional constraints of ‘well-behavedness’ on the space of states as a Poisson manifold, which we bypass here.

2.2.2.1.b Symplectic Leaves

It can happen that some portions of a Poisson manifold are ‘inaccessible’ from others. In particular, there may be no (piecewise smooth) Hamiltonian curve connecting them, for any Hamiltonian. Let us say that two points, \(x, y \in M \) of a Poisson manifold \((M, \{,\}) \) are symplectically equivalent if for some Hamiltonian they lie on a single (piecewise smooth) Hamiltonian curve. This relation is clearly an equivalence relation, and therefore partitions \(M \) into ‘symplectic leaves’ (see Butterfield, Ch. 1, §5.3.3, this volume).

2.2.2.2 The Transition Probability Structure

2.2.2.2.a State Spaces as Transition Probability Spaces

The only dynamical structure on a classical Hamiltonian phase space is its Poissonian structure (again see Butterfield, Ch. 1, especially §5.2.4, this volume). However, in standard quantum theory, there are two types of evolution: the continuous, deterministic, evolution described by the Poisson bracket, and the discontinuous, stochastic, ‘quantum jumping’ from one state to another, often associated with ‘measurement’. (See §5.4.3.)

This latter structure is reflected in the fact that, in Landsman’s scheme, the quantum state space must be a ‘transition probability space’, meaning that there must be maps, \(p \), from pairs of elements in the space to \([0, 1]\) that satisfy: \(p(v, w) = 1 \) if and only if \(v = w \); and \(p(v, w) = 0 \) if and only if \(p(w, v) = 0 \). (The expression \(p(v, w) \) is read as ‘the probability of a transition from \(v \) to \(w \).’) In addition, we require that these probabilities be symmetric: \(p(v, w) = p(w, v) \).

2.2.2.2.b Sectors

A sector of a transition probability space is a region of the space that is isolated from the rest. That is, for \(Q \) a sector of states, \(p(v, w) = 0 \) for all \(v \in Q \) and all \(w \in Q' \) (the complement of \(Q \) in the set, \(S \), of all states). Note that the symmetry of \(p \) implies that a system cannot make a transition to or from a sector.

2.2.2.2.c Superpositions

Let \(Q \in S \). We define \(Q^\perp \) by

\[
Q^\perp := \{v \in S \mid p(v, w) = 0 \forall w \in Q\}.
\]
That is, Q^\perp is the set of all states that are inaccessible (via a single probabilistic transition) from every state in Q. We can use this definition to characterize a generic notion of a ‘superposition’, as follows: the class of all ‘superpositions’ of the states v and w is $\{v, w\}^{\perp\perp}$ (see [Butterfield, 1993]).

2.2.2.3 Landsman’s Theorem Landsman shows, roughly, that the state space of a C^* algebra is uniquely determined by its Poissonian and transition probability structure, assuming (among other things) that symplectic leaves correspond to sectors. He then characterizes quantum theories as those in which the ‘2-sphere’ property holds, i.e., condition (iv) in the theorem as stated below. Classical theories, on the other hand, are characterized by the condition that the transition probabilities are trivial, i.e., $p(w,v) = \delta_{vw}$. Notice that in this case, the sectors are singeltons. We will see a similar characterization of the difference between quantum and classical systems below (§2.3.2).

In effect, then, Landsman [1998, 104–106] proves roughly the following theorem:

Theorem (Landsman [1998, 104–106]). A pure state space, S, is the pure state space of a quantum system if and only if: (i) S is a Poisson manifold; (ii) S is a transition probability space; (iii) the symplectic leaves of S correspond to the sectors of S; (iv) for any $v, w \in S$, $\{v, w\}^{\perp\perp}$ is isomorphic as a transition probability space to the space of statevectors in \mathbb{C}^2.

I have already discussed conditions (i) and (ii). Condition (iii) is a requirement that what cannot happen by continuous evolution cannot happen by stochastic evolution either (and vice versa). In other words, if it is ‘dynamically impossible’ to get from state v to state w, then the probability of a stochastic transition from v to w is 0 (and vice versa).

Condition (iv) is, of course, the one that does a lot of the work getting us to the Hilbert space formalism, for it is essentially the requirement that the set of all ‘superpositions’ of a pair of states forms a transition probability space that looks like the quantum-mechanical pure states on the space \mathbb{C}^2, discussed earlier (§1.3.3.2) in the context of spin. Whether or to what extent this more or less explicit reliance on quantum theory is ultimately satisfactory is a matter of taste, but it is, at any rate, worth noticing that what is ‘essentially quantum’ about the Hilbert space formalism can (more or less) be reduced to this assumption.

2.3 Hardy’s Axioms

Finally, we consider a result from Hardy [2001; 2002], again in the tradition of trying to explain the origins of the quantum formalism. This approach also begins

\[32\] The conditions of the theorem are not stated here in full rigor. In addition, the proof of the theorem requires a few other technical assumptions whose immediate physical import is perhaps not clear. I have left them out.
from the notion of a state space, but its framework differs sufficiently from the previous two approaches that we consider it separately.

2.3.1 The Framework

2.3.1.1 States as Probabilistic Predictors Much as has been done already in the previous sections, Hardy takes states in a physical theory to be the determiners of probabilities associated with each possible outcome of any measurement that may be performed by a given preparation of the system. (States are thus associated with preparations.) Hence, for a given preparation, knowing the associated state allows one to predict the probabilities for the results of any measurement.

2.3.1.2 Degrees of Freedom One mathematical characterization of a state is as a 'list' of all of these probabilities. (Of course, in general there are at least uncountably many items in the 'list'.) However, in general the state space has some structure that allows states to be somehow characterized by a shorter list of what Hardy calls 'fiduciary' probabilities. In a given theory, we define the degrees of freedom, K, to be the smallest number of fiduciary probabilities that is sufficient to determine the state.

2.3.1.3 Dimension In addition, there may be sets of states that can be distinguished one from another with probability 1 in a single measurement. In other words, for each pair of states, v, w, in the set, if v assigns non-zero probability to some outcome of the measurement, then w assigns probability zero to the same outcome. There will in general be a maximum number, N, of states that are distinguishible in this way. Hardy calls N the dimension of the space.

2.3.2 The Axioms

Hardy proposes five 'axioms'. The first axiom simply underwrites our earlier assumption that states can be associated with preparations, that is, that there are stable relative frequencies for the outcomes of measurements for a given type of preparation. The remaining axioms are, as adapted from Hardy (2001):

Subspaces For any integer, N, there exist systems with dimension N. Moreover, all systems of dimension N, and all systems with higher dimension but whose state restricts the system to an 'N-dimensional subspace', have the same properties.

Composite Systems A composite system consisting of systems A and B, with degrees of freedom and dimensions K_A, K_B and N_A, N_B respectively, have $K = K_A K_B$ degrees of freedom and dimension $N = N_A N_B$.

Continuity For any dimension, N, any system of dimension N, and any two pure states, v and w, of such a system, there exists a continuous reversible transformation (continuously connected to the identity) from v to w.
Simplicity For given \(N, K \) takes the minimum value consistent with the other axioms.

The motivation for some of these axioms is relatively clear, and for others, not as clear. We will not discuss them all here. ‘Simplicity’ comes into play because the other axioms imply that \(K = N^m \) for some integer \(m \). For \(m = 1 \), the continuity axiom is violated, and one arrives at classical probability theory. For \(m = 2 \), one arrives at quantum theory.

The continuity condition is clearly significant, therefore. One understanding of it that Hardy has encouraged is that it expresses the desideratum that ‘small changes’ in the state should entail ‘small changes’ in the predictions based on that state. However, it is not clear whether this principle is physically compelling. After all, in Hardy’s sense, the state space of classical physics is not continuous (cf. the beginning of §2.2.2.3), and yet in general one does not suppose that there is somehow a serious problem with the relationship between changes of state and changes of prediction based on that state.

A different understanding of continuity connects it with superpositions. The basic point is easiest to visualize geometrically, and we will leave the matter at that here. The quantum state space is ‘continuous’ (in Hardy’s sense) because for any two pure states, there is another pure state that is ‘between’ them, and in fact this ‘middle’ state is a superposition of the two original states. In other words, continuity holds precisely because the superposition principle holds. Continuity fails in the classical theory because the superposition principle fails there. From this point of view, it is less surprising — though not necessarily less important — that continuity is what makes the difference, in Hardy’s framework, between classical and quantum theories.

3 EMPIRICAL CONTENT

In this section, we will discuss the issue of how the formalism of quantum theory gets empirical content. That discussion will lead naturally to a discussion (§4) of uncertainty, because the particular way that we will, here, understand how the formalism gets empirical content leads naturally to the uncertainty principle (§4), as it should. Hence this section is not merely expository. Implicitly, we will develop an argument in favor of a particular way of understanding how the formalism gets its empirical content, based on the fact that it leads naturally to uncertainty.

One question about empirical content concerns how measurement (or empirical observation more generally) is modeled in the theory. Without such a model, it is hard to see how the theory can make predictions about empirical observations. Our first task (§3.1) will be to say something about this issue. But the more difficult — and arguably more philosophically interesting — issue concerns how any element of the formalism is connected with empirical fact at all. The remainder (and majority) of this section will concern that issue.\(^{33}\)

\(^{33}\) Much of that material is adapted and revised from Dickson [2004a; 2004b].
There are two elements in the present approach to establishing a connection between the formalism and its empirical content: symmetries, and reference frames. These elements are connected — 'legitimate' reference frames are connected to one another via certain symmetry transformations — but I will, for the most part, keep them separated. In this section, I first frame the issue of empirical content in terms of POVMs (§3.2), then discuss the role of symmetries (§3.3) and reference frames §3.4) in the definition of physical quantities, and finally I briefly sketch an account (§3.5) of how the formalism gets its empirical content.

3.1 Measurement

3.1.1 The Standard Account of Measurement

One frequently encounters the following account of measurement in quantum theory. Suppose that the state of the system is \(W \) (a density operator). Suppose that one measures an observable represented by the POVM \(E : \mathcal{B}(S) \to \mathcal{B}(\mathcal{H})^+ \). Then the result of the measurement will be some \(\Delta \subset S \), with probability \(\text{Tr}[E(\Delta)W] \). Furthermore, the state after measurement is just the 'projection' of the original state onto the result. In the case where the POVM is a PVM, the projection is given by \(E(\Delta)WE(\Delta) \) (ignoring normalization). Otherwise, the usual procedure is to define 'measurement' operators \(M(\Delta) = \sqrt{E(\Delta)} \), in terms of which the 'projection' (a misnomer, in this case) is (again ignoring normalization) \(M(\Delta)WM^*(\Delta) \). Notice that the latter prescription is equivalent to the former for PVMs.

While useful for making predictions, this account of measurement is completely unsatisfactory, from a foundational point of view. One problem, as it has been pointed out repeatedly by both physicists and philosophers, is that measurement is itself a physical process, and in particular a physical interaction between two (or more) physical systems, one of which we call an 'apparatus' and the other of which we call the 'measured system'. Hence, if quantum theory is our best theory of interactions amongst physical systems, it should be capable of describing this interaction in such a way that the result — the states of the two systems at the end of the interaction — are as stated above.

3.1.2 Impulsive Measurement

There is indeed an account of measurement along those lines.\(^{34}\) It is the so-called 'impulsive model' of measurement. Suppose we are going to measure an observable represented by the self-adjoint operator, \(F \). For simplicity, suppose that the measured system is initially in the pure state \(|\psi\rangle \) and the apparatus is in the pure state \(|\chi\rangle \). The compound system is thus in the state \(|\Psi\rangle = |\chi\rangle |\psi\rangle \). Suppose that apart from the interaction between them, each of these systems evolves freely, with (free) Hamiltonians \(H_S \) and \(H_M \). The total Hamiltonian for the combined system is thus \(H_{\text{total}} = H_S + H_M + H_I \), where \(H_I \) is the interaction Hamiltonian.

\(^{34}\)For an extended classic discussion, which is more or less followed here, see Bohm [1951, ch. 22, especially §5].
(i.e., it represents the energy exchanged between the systems). Finally, let Π be the momentum observable for the apparatus.

Now, for our model of measurement, we take $H_I = g(t)\Pi \otimes F$ (henceforth the \otimes is left implicit), where $g(t)$ is an interaction function given by $g(t) = \gamma f(t)$, with γ a constant, the ‘interaction strength’, and $f(t)$ is a function that is zero except for t between 0 (when the measurement-interaction begins) and τ (when the measurement ends), and $f(t)$ is (purely for convenience) normalized, i.e., $\int_0^\tau f(t)\, dt = 1$. The Schrödinger equation (1.5.2.3.a) may therefore be written:

$$ (66) \quad \frac{d}{dt} |\Psi\rangle = -i \left(H_S + H_M + \gamma f(t)\Pi F \right) |\chi(t)\rangle |\psi(t)\rangle, $$

where now we have explicitly indicated the time-dependence of the states of the measured system and the measuring device.

For an ‘impulsive’ measurement, τ is very small and γ is very large. (The interaction is quick and strong.) If we may assume that the apparatus and system have low or zero momentum, then during the interval $[0, \tau]$, the influence of the interaction Hamiltonian on the evolution of the compound system completely swamps the influence of the free Hamiltonians, so that, during this period, we have

$$ (67) \quad \frac{d}{dt} |\Psi\rangle \sim -i \gamma f(t) |\chi(t)\rangle |\psi(t)\rangle. $$

We can readily solve this equation\(^{35}\) to get the compound state at the end of the interaction (immediately at the end, before the free Hamiltonians take over again):

$$ (68) \quad |\Psi(\tau)\rangle \sim \exp \left[-i \int_0^\tau \gamma f(t)\Pi F \, dt \right] |\chi(0)\rangle |\psi(0)\rangle. $$

Write $|\psi(0)\rangle$ in terms of the (normalized) eigenstates, $|f_n\rangle$, of F (which, for simplicity, we will assume to be maximal): $|\psi(0)\rangle = \sum_n (f_n |\psi(0)\rangle)|f_n\rangle$. (See the last paragraph of 7.1.4). Then (68) becomes

$$ (69) \quad |\Psi(\tau)\rangle \sim \sum_n (f_n |\psi(0)\rangle \exp(-i\gamma f_n \Pi)|\chi(0)\rangle |\psi(0)\rangle, $$

where f_n is the eigenvalue of F corresponding to the eigenvector $|f_n\rangle$. Now define

$$ (70) \quad |\xi_n\rangle = \exp(-i\gamma f_n \Pi)|\chi(0)\rangle. $$

Because γ is large, these states are effectively orthonormal:\(^{36}\)

$$ (71) \quad \langle \xi_n | \xi_m \rangle = \langle \chi(0) | \exp[-i\gamma (f_n - f_m) P]|\chi(0)\rangle \simeq \delta_{nm}. $$

\(^{35}\)The solution in (68) follows only because the interaction Hamiltonian is given in terms of a scalar function of time. General time-dependent Hamiltonians cannot be treated in this way. See, e.g., Cohen-Tannoudji [1977, 172–175].

\(^{36}\)The second equality in (71) holds by the Riemann-Lebesque lemma, under the assumption that the apparatus has a continuous spectrum for P.
As we will see below in a more generic context (78), because Π is the ‘momentum’ of a pointer, the states $|\xi_n\rangle$ are ‘spatial translations’ (i.e., translations in the value of the ‘pointer-position observable’) by an amount γf_n (and therefore, for large γ, they are macroscopically distinguishable states). The upshot of this discussion is that the final state of the compound system is

$$\langle \psi(\tau) \rangle \simeq \sum_n \langle f_n | \psi(0) \rangle | f_n \rangle | \xi_n \rangle.$$

(72)

Notice that this state is entangled, and indeed that it represents a perfect correlation (§1.2.6.4) between the value of F for the measured system and the pointer-position.

In order for this model to match the prescription of the previous subsection, we must adopt from that prescription the ‘rule’ that when the apparatus shows the result $|\xi_n\rangle$, the state of the system ‘collapses’ to $|f_n\rangle$. (Or, the state of the compound system is projected onto $\mathbb{I} \otimes |\xi_n\rangle \langle \xi_n|$, which, because of the perfect correlation, will have the effect of making the compound state into the product state $|f_n\rangle |\xi_n\rangle$.) I will discuss this ‘collapse’ rule in §5.4.3.

Does this model apply to all, or indeed to any, actual ‘measurements’ made by actual physical devices? To a reasonable degree of accuracy, probably. But the point here is not to make such a claim, and certainly not to catalogue the varieties of physical measurement and the ways in which they might be modeled quantum mechanically. Creating and justifying such models is the business of physics. The point, here, is that quantum theory can, to some degree, supply a model of measurement. It need not rely on the non-account of the previous subsection.

One final observation about this model: it models a type of measurement in which the state of the system is in a sense unchanged by the interaction with the measuring device: if the measurement is repeated, the probability of getting the same result the second (and subsequent) times is 1. Notice that, contrary to the occasional declaration by physicists or philosophers, in this sense at least, measurement does not necessarily ‘disturb’ the state of the measured system. Following Pauli [1958], such measurements are often called ‘measurements of the first kind’.

Of course, measurement sometimes does disturb the measured system. Indeed, sometimes it destroys the measured system. Measurements in which the state of the system is disturbed by the process of measurement (i.e., measurements that either are not repeatable, or whose results will not necessarily be the same upon repetition) are often called (again following Pauli) ‘measurements of the second kind’.

3.1.3 Weak Measurement

Once we begin modeling measurement as an actual physical process, it becomes natural to ask what would happen if the physical circumstances were different. One natural case to consider is where the measurement is ‘adiabatic’: that is, the interaction is weak, and takes a long time (on some appropriate scale).
One scheme for realizing this idea has been called ‘protective measurement’ \cite{Aharonov et al., 1993}. The idea is nicely illustrated by the case where $|\psi(0)\rangle$ is the ground state of a harmonic oscillator (the crucial feature of which, for us, is that there is a finite energy difference between the possible states). When τ is large and γ is small, of course we cannot ignore the evolution due to the free Hamiltonians. Let the interaction Hamiltonian be $H_I = g(t)QF$. The solution to (66) in this case is

\begin{align}
 |\Psi(\tau)\rangle &= \exp\left[-i \left(H_{ST} + H_{MT} + \int_0^\tau \gamma_f(t')QF \, dt' \right) \right] |\chi(0)\rangle |\psi(0)\rangle \\
 &= \sum_n \exp[-i(H_{ST} + H_{MT} + \gamma QF)] \langle f_n | \psi(0) \rangle |\chi(0)\rangle |\psi(0)\rangle.
\end{align}

Now, because there is a finite difference in energy between the ground state and any excited state of the measured system, one must add a finite amount of energy to the ground state in order to change it. According to the quantum-mechanical adiabatic theorem (Schiff \cite[289–291]{1968}), if the energy added to a system is small enough and spread out over a long enough time, it is not additive (i.e., the total energy added does not get larger and larger), but adiabatically negligible. Indeed, the probability amplitudes for states other than the ground state can be made arbitrarily small, with suitably small γ and large τ. In other words, the term $\exp[-i \gamma QF]$ has no net effect on $|\psi(0)\rangle$, and we need consider its effect only on $|\chi\rangle$. (Note that there is a possible effect on $|\chi\rangle$ if we presume that the energy spectrum for $|\chi\rangle$ is continuous, or effectively so.) Hence (74) becomes

\begin{equation}
 |\Psi(\tau)\rangle \simeq \sum_n |\phi_n(\tau)\rangle |\psi(\tau)\rangle := |\chi_n(\tau)\rangle |\psi(\tau)\rangle,
\end{equation}

where we have defined $|\phi_n(\tau)\rangle = \exp[-i(\gamma f_n Q + H_{MT})] |\chi(0)\rangle$.

Notice that the state (75) is a product state — the interaction effects only the apparatus, and does not entangle the measured system with it. To see how this change in the state of the apparatus can be used to gain information about the system, recall (59). Taking the expectation value of $\mathbb{I} \otimes \mathbb{I}$ (where here \mathbb{I} is the momentum conjugate to Q) in the state $|\Psi(\tau)\rangle$ from (75), we find that

\begin{equation}
 \frac{d}{dt} \langle \chi(\tau) | \mathbb{I} \otimes \mathbb{I} | \chi(\tau) \rangle = -g(t) \langle \psi(\tau) | F \otimes \mathbb{I} | \psi(\tau) \rangle.
\end{equation}

In other words, the expected value of momentum for the apparatus is an ‘indicator’ of the expected value of F for the measured system. If the system is in a stationary state (i.e., $|\psi(t)\rangle = |\psi(0)\rangle$), then we could, for example, make many ‘protective’ measurements of F, measure the average value of the momentum of the apparatus after the interaction, and gain information about the expected value of F for the measured system.

There are two important remarks to make about this scenario. First, as many have pointed out, in order for the scheme to work, one must know the state of the measured system in advance. (In particular, in this case one must know that it is the ground state of the harmonic oscillator.) Otherwise, we will not know that it is ‘protected’ (i.e., will not change state as a result of the interaction). So there
is an important sense in which the protective measurements do not yield any new information about the system. Moreover, it has been argued [Uffink, 1999a] that only observables, \(F \), that commute with the measured system's Hamiltonian can be measured in this way.

Nonetheless, despite these limitations, there remains the question of what exactly is going on in such an interaction. In the case of impulsive measurements (of the first kind, anyway), if we measure \(F \) on a system whose value for \(F \) was just measured, we will gain no new information about the value of \(F \) for the measured system. Nonetheless, we might be tempted to explain the result of the second measurement thus: the measuring device interacted with the system in such a way that its indicator-state became correlated with the state of the system, and in particular with its value for \(F \). That is, the second interaction was, again, physically a measurement, albeit one that was bound to give us no new information. One might, then, be tempted to say a similar thing about protective measurements. True, they tell us nothing that we did not already know. But how are we to understand what is going on during such interactions? One plausible understanding is that the apparatus' state is changing because it is somehow sensitive to the expected value of \(F \) on the measured system (even though, of course, we already know what that expected value is). Indeed, what else could explain the change in the apparatus' state?

Second, protective measurements are an explicit model of a more general class of measurements, so-called 'weak measurements'. The general scheme (somewhat in parallel with the general scheme for standard measurements, of which impulsive measurement is one model) is as follows. Consider a quantum system known to be in the state \(|\psi_1\rangle \) at time 0, and known to be in the state \(|\psi_2\rangle \) at time \(t \). Typically, this knowledge is obtained by what is often called 'pre- and post-selection'. That is, the state \(|\psi_1\rangle \) is 'pre-selected' (prior to what will be the 'weak measurement' of \(F \) on the system) by performing a standard (e.g., impulsive) measurement on some ensemble of systems and selecting just those for which the result of this first measurement is \(|\psi_1\rangle \). (In particular, one might measure the observable corresponding to \(|\psi_1\rangle \langle \psi_1 | \) then select just those systems for which the result is 1.) Then, after the 'weak measurement', one again performs a standard measurement on the ensemble, selecting just those systems for which the result corresponds to \(|\psi_2\rangle \). The resulting ensemble of systems is said to be 'pre- and post-selected'. For any given observable represented by the operator \(F \), define the 'weak value of \(F \) on the pre- and post-selected ensemble' by

\[
(77) \quad \frac{\langle \psi_2 | F | \psi_1 \rangle}{\langle \psi_2 | \psi_1 \rangle}.
\]

Note that in the protective measurement discussed above, we presumed that the state of the measured system was unchanged over time, so that the weak value of \(F \) was just its expectation value in the state \(|\psi(0)\rangle \).\(^{38}\)

\(^{37}\) An early paper on weak measurements is [Aharonov et al., 1987]. See also note 38.

\(^{38}\) The very notion of 'weak values', not to mention the interpretation of these values, is con-
There is, of course, a great deal more to be said about measurement. Later (§5), we will consider perhaps the most important philosophical issue concerning measurement, namely, the measurement problem (which has already made an early appearance in the form of our barely suppressed skepticism about the collapse of the state after an impulsive measurement). For now, however, we will rest content with the observation that, barring problems to arise later, quantum theory provides a rich framework in which to describe measurements.

3.2 The Issue of Empirical Content in Terms of POVMs

Describing measurements is part, but only part, of the story about how the formalism is connected with empirical observation. Another part of the story concerns a more general question about the connection between formalism and physical fact. For example, we have been allowing observables such as \(S_u \) to 'represent' spin in the \(u \)-direction, but what precisely is this relationship of 'representation'? How may the connection between formalism and physical fact be made, or understood? (Notice that the accounts of measurement above already presuppose an answer to this, more fundamental, question.)

It is crucial to understand that the issue here is not about how to engineer a spin-measuring device, for example. Rather, it is about what it means to 'have' spin-up in the \(u \)-direction (for example), and how this meaning is captured in the formalism. Supposing that there are no limitations of engineering, there remains a question about what laboratory procedures correspond to 'measuring \(S_u \)', for example. Below, we will offer a partial answer to this question.

Recall that, considered as POVMs, observables are maps from (Borel sets of) 'the possible values' to positive operators. Another way to put the question above, then, is in terms of the empirical meanings of the mathematical elements in the domain of this map. (Once this question is answered, then, for example, the probability calculus associated with the elements in the range of the map becomes a calculus with empirical content.) Indeed, one advantage of conceiving of observables as POVMs (apart from the greater generality of this approach) is that it affords greater precision to a discussion of the issue of which parts of the formalism are, in which contexts, doing the work of 'representation'. For a POVM \(E : \mathcal{B}(S) \to \mathcal{B}(\mathcal{H})^+ \), the elements of \(\mathcal{B}(\mathcal{H})^+ \) are doing the representing, and the elements of \(\mathcal{B}(S) \) (indeed, ultimately, \(S \)) are, in a sense, what is being represented.

Why we represent with elements of \(\mathcal{B}(\mathcal{H})^+ \) is a question that we have addressed already in §2 (though certainly it has not been conclusively answered). But what is the physical interpretation of the domain of the map \(E \), and how are we to troversial. A recent discussion by the main proponent (and co-author), with plenty of references to prior work, both pro and con, is Aharonov and Botero [2005]. Note that Aharonov and other proponents often discuss weak values in the context of a 'two-state-vector' formalism for quantum theory (which concerns pre- and post-selected systems and is supposed to be time-reversal invariant) that is itself controversial; however, the notion of a weak value is not irrevocably tied to that approach to quantum theory, but only to the idea of a pre- and post-selected ensemble, the operational meaning of which, at any rate, is clear enough.
understand the statement that some element in its domain is 'represented by' some element in its range? What, in other words, is the relationship between the elements of the mathematical formalism that we have described and physical matters of fact? And finally, why do we pick one map (POVM) rather than another to represent some given physical quantity? The next section (§3.3), on symmetries, and the following one (§3.4), on reference frames, introduce material that will eventually contribute to a sketch of a story (§3.5) about the empirical content of quantum theory, one that addresses, or suggests ways to address, some of the issues raised in this section.

3.3 Symmetries

3.3.1 Groups as Symmetries

There is a traditional account of one way that groups have been related to empirical content. Take any group, G, and consider its action on a set, S. If two elements of S are connected by an element of G, then call them 'equivalent'. One can readily verify that G thus paritions S into equivalence classes, and we can say, then, that G is a group of 'symmetries' on S, in the sense that elements of S connected by an element of G are in some important sense 'the same'. (If, according to some theory of the elements of S, distinct elements within the same equivalence class in S can have 'importantly' distinct properties, then in this theory, G would arguably not be a symmetry. What one means by 'important' is subtle, but in the context of this discussion it could, for example, mean 'empirical', or 'observable'.) For example, let the elements of S represent the positions of all of the particles in the universe (i.e., S is a configuration space for the universe). A spatial translation of a point in S results in a universe that is, arguably, no different, empirically (because all distances and other spatial relations amongst the particles stay the same).

3.3.2 Groups and Observables

The (outline of an) approach to empirical content that we shall propose is given, in part, in terms of groups of transformations on S (considered as the domain of a POVM, E), and the requirement that E in a sense preserve the behavior of S under those transformations. To get this view off of the ground, we require (at least!) the following two things of a quantum theory: (1) a faithful representation of the relevant groups on a Hilbert space, and (2) a map from $\mathcal{B}(S)$ to $\mathcal{B}(\mathcal{H})^+$ that in some relevant sense 'preserves' the action of these groups.

39Here I am considering groups primarily as transformations on the set of states. One can also think of them in terms of formal transformations of physical laws. For more discussion of this and related points, see Brading and Castellani, Ch. 13, this volume.

40The view described here has been strongly influenced by discussions with Scott Tanona, and by Tanona [2002; 2006]. (Tanona's view is distinctive, and differs from the one presented here in important ways.) Indeed, it is largely due to those discussions that I began to develop a view about this matter.
Let us consider these points in the context of an example, the Galilean group, G, and more specifically, the spatial translations, A, and boosts, V (i.e., ignoring rotations and temporal translations). For any $a \in A$ and $b \in V$, let U_a and V_b be the corresponding elements of a faithful representation of A and V, respectively. It is, at this point, an open question whether there exist faithful representations of A and V on a given Hilbert space, i.e., whether requirement (1), above, can be met. On an infinite-dimensional space, there are in fact operators P (momentum) and Q (position) that do the job:

\[
\begin{align*}
U_a &= e^{-iP_a} \\
V_b &= e^{-iQ_m b},
\end{align*}
\]

respectively, where m is the mass of the particle, and appears here because momentum is mass times velocity.\(^{41}\)

Notice that positions are translated by the action of A and invariant under the action of V. The converse holds for velocities (and therefore, of course, momenta).

Now, let $E_Q : B(\mathbb{R}^3) \rightarrow B(\mathcal{H}^+)$ be the POVM for position and consider the action (§7.6.7) of G on \mathbb{R} (or \mathbb{R}^3 — see note 41), understood as representing positions of a particle.\(^{42}\) In that case, the requirement (2) above amounts to the requirement that the quantum-theoretic representation of position have the same properties:

\[
\begin{align*}
U_a E_Q(\Delta) U_a^{-1} &= E_Q(\alpha_a(\Delta)) \quad \text{(covariance)} \\
V_b E_Q(\Delta) V_b^{-1} &= E_Q(\Delta) \quad \text{(invariance)}
\end{align*}
\]

for any $a \in A$ and any $b \in V$, where α_a is the action of a on $B(\mathbb{R}^3)$. Corresponding conditions must hold for E_P, the POVM for momentum (i.e., it should be invariant under translations and covariant under boosts). Note that at this point, we do not presume that the P and Q in (79) are those from (78). Indeed, these conditions (79) turn out to be powerful enough on their own to determine the maps E_Q and E_P, as well as the representations (78) (up to unitary equivalence). We shall return to this point below. Here, we take it as motivation for defining ‘position’ and ‘momentum’ in terms of (79) (and the corresponding conditions for momentum).

One might have either of two objections at this point. First, where did these requirements come from? Why do we insist that position must have this particular

\(^{41}\) One normally says that position is the ‘generator of translations’ and momentum is the ‘generator of boosts’. The reason ultimately has to do with the fact that the momentum (position) operator is involved in the expression for an infinitesimal translation (boost). The expressions in the text for finite translations and boosts are essentially integrals of their infinitesimal counterparts. Note, also, that (78) is given in one spatial dimension only. Replacing P and Q with the ‘vectors’ of operators $\vec{P} = (P_x, P_y, P_z)$ and $\vec{Q} = (P_x, P_y, P_z)$, and the parameters a and v with vectors (from \mathbb{R}^3) \vec{a} and \vec{v}, we would have the three-dimensional version. Note, for example, that these changes do not change anything about the definition of a continuously parametrized group in §7.6.4.

\(^{42}\) G naturally acts on the phase space in classical physics, but we can of course consider its action on the reduced space of position or velocity.
invariance and covariance, even in the classical case, or at all? The answer is that, at least in this discussion, we are taking covariance with respect to \(\mathcal{A} \) and invariance with respect to \(\mathcal{V} \) to define what we mean by position. For example, if the position of a particle is \(\vec{x} \) in a reference frame \(F \) (below we will consider in more detail the role of reference frames in this discussion), and if frame \(F \) is related to frame \(F' \) by a spatial translation \(\vec{a} \), then the position of the particle in frame \(F' \) is \(\vec{x} - \vec{a} \). The seeming triviality of this feature of position is, one might suppose, a consequence of the fact that it is part of what 'position' means. That is, an observable (POVM) that lacked this feature would, ipso facto, not be 'position'. Similar remarks will hold for boosts, and again for the relationship between momentum on the one hand and translations and boosts on the other. Corresponding remarks hold for other observables, such as angular momentum and spin.

Second (objection), by insisting that position 'mean the same thing' in the context of quantum theory (i.e., that the POVM respect, in the relevant sense, the action of the (representation of the) Galilean group), are we not thereby preventing ourselves from learning, perhaps, that position is 'very different' from what we thought it was? (A similar remark holds, of course, for momentum, and indeed for the hosts of other physical quantities that can be defined in this way.) There are two answers to this objection. First, in the context of quantum theory (where the position and momentum POVMs do obey the 'correct' invariances and covariances), we do in fact learn that position is 'very different' from what we thought it was, and this fact already makes it clear that we have not so narrowly restricted our definition of position that substantial modifications to our existing conception of it become impossible. The second answer is that we should distinguish between, on the one hand, learning something new about an existing physical concept — in which case something must make it 'the same' concept both before and after we learned something new about it (and we are proposing that what is the same is its relationship to certain parts of the Galilean group) — and, on the other hand, discovering new physical concepts. We have no proposals to make here about how such discoveries occur, or how to understand them.\footnote{Tanona [2006] is particularly helpful on this point.}

In the remainder of this subsection, I will discuss in further detail the claims made above, that insisting on the relevant invariances and covariance is sufficient to fix the position and momentum observables. In the next subsection, I will turn to the role of reference frames in the definition of observables.

3.3.2.1 Systems of Imprimitivity and the 'Uniqueness' of Quantum Observables

Position and momentum, considered as POVMs, each give rise to a 'system of imprimitivity', a special case of a system of covariance.\footnote{See Landsman, Ch. 5, this volume, for further discussion of imprimitivity and its application to issues in quantum theory.} Generically, a system of covariance is a set \((\mathcal{H}, E, S, \mathcal{G}, \alpha, \{U_g\}) \) where \(\mathcal{H} \) is a Hilbert space, \(E \) is a POVM whose domain is \(S \) and whose range is positive operators on \(\mathcal{H}, \mathcal{G} \) is some group, \(\alpha \) is the action of \(\mathcal{G} \) on \(S \), and \(\{U_g\} \) is a unitary representation of \(\mathcal{G} \) on
\mathcal{H}. If E is a PVM then the set is a system of imprimitivity.45 Systems of imprimitivity have important properties, in part summarized by Mackey's imprimitivity theorem. My discussion here will follow that of Mackey [1996], emphasizing the structure and assumptions of the argument, rather than the mathematical details, which can easily be found in many places.46

In a system of imprimitivity, S is often taken to be quite generic — e.g., it might be a generic metric space with \mathcal{G} some locally compact and separable group of isometries (assumed to have a continuous and transitive action on S — see §7.6.7). However, we will immediately specialize, in order to make quicker and more evident contact with real physical concerns. With that goal in mind, it is natural to take S to be \mathbb{R}^3 and \mathcal{G} to be, for example, the semi-direct product (§7.6.2) of translations and rotations ($\mathcal{A} \ltimes \mathcal{R}$). However, in preparation for an application of the imprimitivity theorem, it is more useful to take S to be the topological group of translations ($\mathcal{A} = \mathcal{G}/\mathcal{R}$), which is clearly isomorphic to \mathbb{R}^3 as a topological space (indeed, as a metric space, given a suitable, and obvious, metric on \mathcal{A}). The idea, then, is that elements of S represent 'displacements' from some fixed origin, and thereby represent a position (and so are possible values of a position observable). The subgroup \mathcal{R} describes rotations around this origin.

We now require that a PVM for position, E^Q, be covariant with respect to $\mathcal{G} = \mathcal{A} \ltimes \mathcal{R}$. (The action of any $g \in G$ on $S = \mathcal{A}$ is defined in the obvious way: for $g \in \mathcal{A}$ its action on $a \in \mathcal{A}$ is just ga; $g \in \mathcal{R}$ acts as the identity on \mathcal{A}. The action thus defined is transitive.) Finally, given a representation $\{U_g\}_{g \in \mathcal{G}}$ of \mathcal{G} on some Hilbert space, \mathcal{H}, we have a system of imprimitivity.

In one form, the imprimitivity theorem is the following.

Theorem (Mackey): Let $\{U_g\}_{g \in \mathcal{G}}$ be a unitary representation of a separable, locally compact, topological group, \mathcal{G}, on a separable Hilbert space, \mathcal{H}, and let \mathcal{K} be any closed subgroup of \mathcal{G}. Let E be a PVM whose domain is \mathcal{G}/\mathcal{K} such that $(\mathcal{H}, \mathcal{G}/\mathcal{K}, \mathcal{G}, \alpha, \{U_g\}, E)$ is a system of imprimitivity (with α a transitive action of \mathcal{G} on \mathcal{G}/\mathcal{K}). Then for any representation, $\{V_k\}_{k \in \mathcal{K}}$ of \mathcal{K} on some Hilbert space, \mathcal{H}', the representation of \mathcal{G} induced by $\{V_k\}$ on the Hilbert space $L^2(\mathcal{G}/\mathcal{K}) \otimes \mathcal{H}'$ (and this induced representation exists) is unitarily equivalent to $\{U_g\}$. Moreover, $E(\Delta)$ (or its appropriate unitary transform, if the induced representation is related to $\{U_g\}$ by a non-trivial unitary transformation) must be the tensor product of the multiplication operator χ_Δ on $L^2(\mathcal{G}/\mathcal{K})$ with the identity on \mathcal{H}'.

45Systems of covariance can be 'dilated' to systems of imprimitivity via the Neumark dilation theorem. See, e.g., Cattaneo [1979]. It follows, in essence, that we lose no generality by considering systems of imprimitivity.

46In addition to Mackey [1996], see Busch, Grabowski and Lahti [1995] and references therein for additional mathematical details and alternative routes to the same conclusion. Full details are available in Varadarajan [1985].
So in the case we are considering, we will let \mathcal{H} be $L^2(\mathbb{R}^3)$. Then let $\{D_r\}_{r \in \mathcal{R}}$ be a representation of \mathcal{R} on some Hilbert space, \mathcal{H}', and consider the associated induced representation of \mathcal{G}. This induced representation must be unitarily equivalent to any representation of \mathcal{G}, and moreover, $E^Q(\Delta)$ is just $\chi_\Delta \otimes 1'$.

Now consider the simplest case, where $\{D_r\}$ is the trivial identity representation (i.e., every element of \mathcal{R} is represented by the identity on a 1-dimensional Hilbert space). Mackey's theorem immediately yields the usual Schrödinger representation of the position operator. More explicitly, for $\Delta \in \mathbb{R}^3$, $E(\Delta) = \chi_\Delta$, where the latter is the operator with action ‘multiply an element of $L^2(\mathbb{R}^3)$ by the characteristic function of Δ‘. (This operator is a projection.) Integrating over all of \mathcal{S} with respect to this PVM yields the usual position operator:

$$\tag{80} Q = \int_{\mathbb{R}^3} \vec{r} \, dE^Q(\vec{r}),$$

which is a ‘vector’ of operators, Q_x, Q_y, Q_z, with the action, for $\vec{r} = (x, y, z)$, $Q_x \psi(\vec{r}) = x \psi(\vec{r})$ for any $\psi(\vec{r}) \in L^2(\mathbb{R}^3, d\vec{x})$, and similarly for Q_y and Q_z. Notice what has happened, here. We began with the requirement that the PVM representing position have the ‘correct’ covariances with respect to translations and rotations — i.e., that it be a part of the relevant system of imprimitivity — and we ended up, via Mackey’s theorem, showing that up to unitary transformation, we must choose the usual (‘Schrödinger’) representation of position. Another, somewhat more operational, way of putting the point is this: assuming that observations (or predictions) involving the position observable respect the symmetries (translations and rotations) of the space of possible values of position, all representations of the position operator (PVM) are unitarily equivalent to the Schrödinger representation. In terms of establishing the empirical meaning of the theory, we might say that what it means to ‘be the position’ of a system is to transform in the right way under the action of the relevant pieces of the Galilean group. Mackey’s theorem establishes the uniqueness (up to unitary transformation) of position, so defined.

Indeed, Mackey’s theorem establishes more. It also establishes the relationship between the representation of (i.e., choice of a POVM for) position (and momentum) and the representation of the Galilean group. To see why (in outline), let \mathcal{G} be any group continuously parametrized by $a \in \mathbb{R}$ (§7.6.4). Now, as we have already discussed, if \mathcal{G} is supposed to be a symmetry group, then in general it should be represented, quantum-mechanically, in terms of transformations of the Hilbert space that ‘make no difference, physically’, and such transformations are often given in terms of unitary operators. (Recall the discussion from §1.5.1.2.) Moreover (recall §1.5.1.4), when the group is continuously parametrized by a (as it will be in the cases of interest for us), these unitary operators are given in terms

47 More precisely, we should use the topological group of translations in place of \mathbb{R}^3, but we already noted that for our purposes these are the same spaces.

48 The result is a description of a spinless particle — see Mackey [1996]. Non-trivial representations of \mathcal{R} result in the description of particles with spin $\frac{\dim(N') - 1}{2}$.
of a self-adjoint operator, F, on \mathcal{H} such that $U_a = e^{-iF_a}$. Hence, for example, the unitary representation of spatial translations and boosts must take this form. Mackey's theorem then implies that, in fact, translations and boosts are given by (78) up to unitary equivalence.

It is important to keep in mind that 'up to unitary equivalence' does not mean that one can apply different unitary transformations to the U_a and V_b (from eq. 78) and still satisfy all of the (invariance and covariance) conditions that have been placed on the POVMs for position and momentum. The point here is that the relationship between position and momentum is established by those conditions via Mackey's imprimitivity theorem. (On the other hand, one can always apply a global unitary transformation, but such a transformation is akin to 'translating the universe five feet to the right' in classical mechanics.)

Indeed, one can establish, from these results, the conclusion that position and momentum must obey the Weyl form of the commutation relations. In particular,

$$ U_a V_b = e^{i\alpha \beta} V_b U_a, \quad (\alpha, \beta \in \mathbb{R}). $$

As we will discuss later (§4.1.2), this expression is a version of the canonical commutation relation (24) between P and Q. In other words, the assumption that position and momentum bear the right relation to the Galilean group leads directly to their incompatibility.

Hence the role that the position and momentum operators (POVMs) play in the Galilean group, the action of the Galilean group on them, and the (Weyl form of the) commutation relations between them, are fixed as soon as we insist on two things: (1) that position and momentum satisfy the invariance and covariance conditions given above, and (2) that position and momentum, as well as the Galilean group itself, be represented on a Hilbert space. There seems to be little room to deny (1) in a non-relativistic theory, and (2) may be understood as the requirement that our theory be genuinely quantum-mechanical. Finally, one should bear in mind the generality of Mackey's theorem. I have discussed it largely in the context of position and momentum, but analogous accounts hold for any observables (POVMs) that form a system of imprimitivity (or covariance) with regard to some group of symmetries. Some examples (among them, angular momentum and spin) can be found throughout Busch et al., [1995]. We leave the

50 We must be a little careful, here. (Thanks to Jos Uffink for raising this question.) It is well known that classical mechanics can be represented as a theory on a complex Hilbert space. See Bracken [2003] and references therein, the originator of the idea being, apparently, Groenewold [1946]. However, the classical observables on Hilbert space form (unsurprisingly) a commutative algebra, in virtue of the definition of a 'non-standard' product of linear operators (the 'odot' product in Bracken [2003]), one that does not make an appearance in quantum theory. (The dynamics, for example, are defined in terms of a Lie bracket defined in terms of this 'odot' product rather than in terms of the usual product of operators given by the composition of their action on the space.) Hence the more careful statement of the claim in the text is that we require position and momentum to be operators in the algebra of operators on a Hilbert space as standardly understood, that is, under the usual product of operators (composition).
reader to investigate, and turn now to consider the role of reference frames in the
definition of physical quantities in quantum mechanics.

3.4 Reference Frames

3.4.1 Identification and Role of Reference Frames in Quantum Theory

It has been claimed (not unreasonably) since the early days of quantum theory that
there is no room in the theory for the notion of a reference frame. The apparent
difficulty is this: a reference frame, by definition, has a well-defined location and
state of motion, because locations and states of motion are defined relative to it.
But then it is hard to see how there could be any such thing as a quantum reference
frame, because, as I have mentioned already (§1.2.5), and shall discuss in some
detail below (§4), standard quantum theory cannot describe anything as having a
well-defined location and state of motion (momentum). Bohr (on one reading51)
concluded that it is up to us to stipulate some object (normally, a measuring
apparatus) as defining a reference frame, and that this stipulation requires us to
treat the object classically, because the stipulation requires the object to be well-
defined in position and momentum. (Of course, we can also step back and describe
that object quantum-mechanically again, having stipulated some other object to
serve the role of a reference frame.)

However, there are good and bad stipulations — as Bohr himself emphasized,
not every object is reasonably taken to define a reference frame for a given purpose.
One important reason is that there is a prima facie distinction between inertial
frames and reference frames. Inertial frames are the frames in which the laws of
motion (whether classical or quantum) are valid.52 It is a matter for empirical
investigation to seek out inertial frames. Reference frames, on the other hand, are
the frames used to define physical quantities, such as position, momentum, angular
momentum, spin, and so on. For the instantaneous definition of these quantities,
any stipulation of a reference frame is fine.

However, the choice of a reference frame for the description of systems over time
is far from arbitrary. For example, a rotating coordinate system used as a reference
frame will introduce fictitious Coriolis forces. Of course, by 'rotating' one means
'rotating relative to an inertial frame', and herein lies the crucial point: a reference
frame that is not inertial will always introduce fictitious forces (i.e., apparent
violations of the laws of motion). Hence, in the end, although it is certainly
permissible to describe our physical systems with respect to whichever reference

51See Bohr [1935]. For some (albeit flawed) interpretive remarks on this paper, see Dickson
[2002a; 2002b]. Recent detailed interpretations of Bohr's insistence on the necessity of classical
concepts can be found, for example, in Tanona [2002] and Howard [2003]. Of course, many
others have also written on this topic. The references in those works will get the interested
reader started.

52 There is a long history behind this understanding of what it means to be inertial. See
DiSalle [1990; 2002] and Barbour [1989]. It culminates in the idea that Newton's law of inertia
should be understood as the claim that there is a reference frame, an 'inertial frame', in which
the other two laws are true. This idea can be extended to quantum theory.
frame is most convenient, it is also necessary that we know how to describe the system in terms of a reference frame that is inertial, by which we mean, here, one in which the laws of motion — classical or quantum, as the case may be — are true.

Nothing in quantum theory rules out the possibility of an inertial frame in this sense. Indeed, just as classical physics does, quantum physics contains an assumption (usually left implicit) that there is some frame (some system of coordinates) in which the laws are valid. (It does not follow that such a system of coordinates can be used as a reference frame in the classical sense, i.e., to define, simultaneously, definite positions and momenta.)

In quantum mechanics, as in classical mechanics, one goes about finding an inertial frame by searching for coordinates in which the dynamical laws are true. In classical mechanics, this search often extends to frames defined in terms of celestial bodies (Ma et al., 1998)). In quantum theory, one does not go to such lengths. Typically measuring devices, or the labs that contain them, are sufficient to serve the purpose of defining a reference frame.

3.4.2 Relational and Absolute Coordinates

If it is correct that quantum observables are typically defined relative to a reference frame (whether inertial or otherwise), then typically, in quantum theory, the observationally significant variables will be relational in character.

This point does not apply only to the case of measurements involving position (or $L^2(\mathbb{R}^N)$ spaces) explicitly. Consider spin. What, for example, does it mean observationally to say that a system is in the state $|\psi\rangle = |z_+\rangle$? If we are not told which direction in space counts as z then the claim that a system is in that state is observationally empty.

However, we saw above that when we wish to apply the quantum laws of motion to a system, we must do so in coordinates given by some frame in which the laws are valid. We also mentioned that in quantum theory, this frame is often determined by some macroscopic piece of apparatus. What are the conditions that must be met by this macroscopic piece of apparatus in order for it to serve the purpose of defining coordinates in which the laws are valid? And how are we ever in a position to verify that those conditions are met?

In the end, the answer to the last question is the same as in classical mechanics — we never have access to any ‘absolute’ frame, one that is known to be inertial, from which we can check the inertiality of other frames (and hence their suitability to define coordinates in which the laws are valid). The best we can do is to determine, empirically, as best we can, that the laws are valid in some particular frame, F, and then justify the use of other frames by reference to F, and in particular by noting that these other legitimate frames are related to F by an appropriate symmetry transformation.

In other words, at least until we have a truly relational theory on hand, the relational coordinates are ultimately defined in terms of the absolute coordinates,
and they are so defined in terms of certain symmetry transformations, as we shall now describe.53

Let us begin by recalling that the transformations from one inertial frame to another are (in the present non-relativistic context) given by the Galilean transformations. (Moreover, we have seen that we have little choice about the mathematical form that these transformations take in quantum theory.) We can use that fact to derive an expression for a transformation from the absolute coordinates of some given inertial frame to coordinates measured relative to some stipulated reference frame.

A helpful way to consider the situation is as follows. Imagine an observer, A, inside a lab and suppose that A measures physical quantities relative to the lab. Now imagine an 'external' observer, B, who has been given the information (or has assumed it) that some frame, F, is inertial. B also uses F as a reference frame: as far as B is concerned, the lab and its contents are all described in the coordinates given by F. But suppose B wishes to describe A's measurements as relational and in the frame given by the lab. How does B transform from the coordinates given by F' to the (relational) coordinates given by the lab (which could also be moving relative to F)?

The answer follows more or less immediately from the form of the Galilean transformations. (Of course, we are not simply applying a Galilean transformation in this case. We are also transforming to relational coordinates.) As Aharonov and Kaufherr [1984] point out, the correct transformations are

\begin{equation}
U_{\text{AK}} = e^{-i \sum_{n>0} P^B_n Q^A_n}
\end{equation}

where P^B_n represents the momentum observable used by B to describe the momentum of system n, and Q^B_n similarly represents B's position observable. System 0 is the lab itself. (Note that their result implicitly assumes that the reference body — the 'lab' — moves inertially in F. Notice also that in this situation, the lab drops out of view. A has no coordinates to describe the lab (system 0) because A's coordinates are all defined relative to the lab.)

As a quick check, note that

\begin{equation}
U_{\text{AK}} Q^A_n U_{\text{AK}}^{-1} = Q^B_n - Q^B_0 \quad (n > 0),
\end{equation}

so that, as expected, what A describes but Q^A_n, B 'knows to be' $Q^B_n - Q^B_0$. That is, B can describe, in purely quantum-theoretic terms, the fact that A's measurements of position are made relative to the lab.

The main lesson of this discussion, for us, is this: in general, we are in the position of observer A, not that of B. We are not given an absolute frame. Instead, our quantities are measured (and therefore, operationally at least, defined) relationally. Nonetheless, the symmetries that take us from one frame to another are ultimately involved in the definition of those quantities, because in order for our physical theories legitimately to apply to them, we must consider them to be

53The discussion here is motivated primarily by the work of Aharonov and Kaufherr [1984].
‘really’ defined in terms of the coordinates of an ‘absolute’ inertial frame, and such a definition involves the symmetry transformations that take us from one (inertial) frame to another.

An interesting side-point here is the following. Observer B (whose point of view is, in principle, the truly legitimate one, here), has a particularly interesting way of noticing the incompatibility of position and momentum. Suppose A is going to measure the position of a particle, and writes down an interaction Hamiltonian along the lines of the model of impulsive measurement ($§3.1.2$). Of course, A just writes down something like $H_1 = g(t)\Pi Q$, where Q is A’s position operator for the measured system. When B transforms this Hamiltonian to the correct, i.e., relational coordinates, and solves the equation, B finds that as a result of the measurement, the lab itself experiences a shift in momentum, which renders the lab unsuitable (for A) for defining momentum (because A has no way to measure the shift in the momentum of the lab — the lab is the reference frame relative to which any such measurement could be made, for A). 54

3.5 A Group-Theoretic Characterization of Empirical Content

$3.5.1$ Reframing the Issue

How does the discussion of $§3.3$ and $§3.4$ help to establish an account of the empirical content of the quantum formalism? Of all of the questions raised in $§3.2$, let us focus on the following two: (1) What empirical meaning is attached to the elements in the domain of a POVM? (2) Given an answer to (1), how is the POVM itself chosen appropriately?

The discussion above suggests the following general approach. (a) Observables are frame-dependent quantities that are defined in terms of their behavior with regard to some group of symmetries. (b) Having pointed out that legitimate reference frames ought to be related in the right way to inertial frames — more generally, they ought to be suitable for defining the quantities that we indeed wish to define — we ought then seek to attach some empirical, observational, significance to such things. (c) Similarly, having pointed out the role that symmetry transformations play in the definition of physical quantities, we ought then to seek to attach some empirical, observational, significance to such things. A more detailed version of (a) would constitute an answer to question (2) above. More detailed versions of (b) and (c) would constitute an answer to question (1) above.

In fact, we have already said something about (a), and considerably more has been said in the literature about the symmetries that are obeyed by (and thus that are definitive of) quantum-mechanical observables. In any case, the basic point is that the (reference-frame-dependent) observables may be uniquely characterized

54See Dickson [2004b] for details. It is not sufficiently emphasized there that these observations are at best a first step towards understanding the incompatibility of position and momentum. Note, moreover, that nothing in B’s calculations implies the uncertainty relations, understood as placing a lower bound on the precision with which position and momentum can be simultaneously measured, or known, or defined.
(up to trivial transformations, such as scaling of length, and global unitary transformations) by the invariances and covariances that they obey with respect to some appropriate symmetry groups. In this sense, the very meaning of 'position', 'momentum', and so on, is partially given by these invariances and covariances. I conclude this section with some preliminary thoughts about (b) and (c), followed by the consideration of an objection.

3.5.2 The Empirical Content of Frames and Transformations

Concerning (b), the basic proposal here is that reference frames describe the world as witnessed by some observer, and ultimately, some human being. This proposal reflects a point of view according to which theories are, ultimately, human constructions. This point of view does not (necessarily) include the idea that there is any (or much) arbitrariness in physical theory — the world might still dictate how observational creatures such as ourselves are bound to construct theories, if we are to be successful. It does entail that the ‘observables’ of a theory are intimately connected with the observational capacities of human beings, and with the properties of those capacities.

However, those who would subscribe to such a view must be careful, for at least two related reasons. First, reference frames are typically idealized in various ways that might not apply to actual human observation. They are, for example, typically taken to be entirely rigid (spatially). Second, if a given reference frame is to be used over any stretch of time, then either it must be inertial, or one must know how to relate it to an inertial frame, in order legitimately (and successfully) to apply the law of motion (whether that be Newton’s second law, Schrödinger’s equation, or something else). But as noted earlier, in actual practice it is very difficult to determine whether a given frame is inertial. Nonetheless, the proposal being floated here is that ultimately reference frames should be understood as ‘legitimate (and idealized) human points of view’, where the notion of legitimacy is to be spelled out in terms of a known connection with an inertial frame.

Concerning (c), the empirical content of the symmetry transformations themselves, I again offer a kind of anthropocentric view. The suggestion, coming from various 19th century philosophers of geometry (for example Helmholtz, and in a different way, Poincaré), is that such transformations are connected to experience via the physiological-kinesthetic experience of undergoing the change from observing from one reference frame, to observing from another. (Consider, for example, the physiological-kinesthetic experience associated with a rotation, or spatial translation.) However, the connection of specific groups of transformations with empirical content of various sorts is far beyond the scope of this essay. We merely note that an essential ingredient in the program outlined here is establishing (or understanding) such connections, for the groups that are at the heart of quantum theory.\footnote{One could adopt an approach completely opposite to the one suggested here, one that takes a theory as somehow ‘already’ empirically meaningful prior to the empirical account of the relevant}
3.5.3 ‘Absolute’ Quantities

What about quantities that are not reference-frame dependent? Surely one of the lessons of relativity theory is that while many measured quantities are frame-dependent, some physical quantities — perhaps even the most important ones — are ‘absolute’, i.e., frame-independent. Think, for example, of the spacetime interval, defined by \(\tau^2 := t^2 - (x^2 + x^2 + x^2) \). It is frame-independent, in the sense that whatever coordinates one uses to calculate \(\tau \), the result is always the same. Indeed, one understanding of non-absolute quantities is that they are nothing more than the absolute quantities seen ‘from a particular perspective’, so that the absolute quantities are somehow fundamental, the frame-dependent ones derived.

But how does one measure, or observe the value of an absolute quantity? The claim made here is that we cannot help but do so from within some reference frame. While the result is not dependent on the reference frame, the measurement still occurs in one. (Consider, for example, how one might measure \(\tau \).) If this claim is correct, there there are two responses to the point that some quantities are absolute.

The less radical response is to allow that the absolute quantities might even be more fundamental in some sense. However, we are here concerned with the observational content of quantum theory — how does the mathematical formalism connect with experimental observation? If, as claimed above, observation always takes place within a frame, then it is fair enough for an account to consider the empirical content of just the frame-dependent quantities.

The more radical response is to assert the reverse of the point of view mentioned above: the fundamental quantities are the frame-dependent ones, and the ‘absolute’ quantities are derived (calculated) from them. This view is in fact closely connected with the view, expressed above, that (our) physical theories are fundamentally about the world as observed by us. On this view, the role of the absolute quantities is to underwrite the possibility of communication amongst inhabitants of different frames about the values of their frame-dependent quantities; it makes possible some sort of agreement; and that is all.

4 UNCERTAINTY

This section is devoted to an examination of uncertainty in quantum theory. We will begin (§4.1) with the formal origins of the uncertainty relations, namely, the canonical commutation relations. We will then consider the uncertainty relations (§4.2), which, minimally, express the fact that the dispersions of two non-commuting observables (a notion that we will define) cannot be made simultaneously arbitrarily small. We will then (§4.3) consider two fundamentally different ways to understand, or interpret, the uncertainty relations, and finally (§4.4), we will consider in some detail the famous argument by Einstein, Podolsky, and Rosen groups of transformations, and then define the empirical content of those transformations in terms of their consequences within the theory. I shall not follow that idea through here.
intended to cast some form of doubt on the fundamentality of quantum uncertainty, and ultimately on the 'completeness' of quantum theory as a description of physical reality.

4.1 Canonical Commutation Relations

4.1.1 Representations of the Commutation Relations

Earlier (§1.2.5) we note that the quantum-mechanical position (Q) and momentum (P) operators obey the CCRs (24). It is perhaps more accurate to say that in quantum theory, Q and P are chosen so that (24) is obeyed. Choosing operators, Q and P, on some Hilbert space, \mathcal{H}, such that (24) is satisfied is choosing a representation of the CCRs. It is, arguably, the satisfaction of these commutation relations by (the operators that stand for) certain pairs of observables — centrally, position and momentum — that makes a theory truly 'quantum'.

It turns out that for any representation, the operators cannot both be bounded, and therefore \mathcal{H} must be infinite-dimensional (§7.2.2). Heisenberg constructed a representation on the space ℓ^2 (§1.2.1) in terms of infinite-dimensional square matrices:

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & \cdots \\
1 & 0 & \sqrt{2} & 0 & \cdots \\
0 & \sqrt{2} & 0 & \sqrt{3} & \cdots \\
0 & 0 & \sqrt{3} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

(84) $Q = \frac{-i}{\sqrt{2}}$

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & \cdots \\
-1 & 0 & \sqrt{2} & 0 & \cdots \\
0 & -\sqrt{2} & 0 & \sqrt{3} & \cdots \\
0 & 0 & -\sqrt{3} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

$P = \frac{-i}{\sqrt{2}}$

Schrödinger constructed a representation in terms of operators on the space $L^2(\mathbb{R})$ in which Q is the multiplication operator (i.e., $Qf(x) = xf(x)$ for any $f \in L^2(\mathbb{R})$) and $P = -i \frac{d}{dx}$.

These two representations are in fact unitarily equivalent. (I.e., there exists an isomorphism from ℓ^2 to $L^2(\mathbb{R})$, under which the Heisenberg operators go to the Schrödinger operators.) Any representation that is isomorphic to these is called regular. Non-regular representations exist.\(^{56}\)

Note that because (at least one of) the operators in a representation of the CCRs must be unbounded, we must be careful about keeping track of their domains of definition (§7.2.2). The CCRs are thus defined only on some (dense) subset of the space.

4.1.2 The Weyl Relations

The fact that P and Q must be unbounded is occasionally bothersome. For example, we just noted that this fact requires one to keep track of their domains of

\(^{56}\)Here is an easy example. Consider the space of square-integrable functions on the open interval $(0,1)$. Let Q and P again be the multiplication and differentiation operators (as given above). In this case, Q is in fact bounded (but P is not), and so this representation cannot be unitarily equivalent to the Schrödinger representation, because, in that case, both of the operators are unbounded.
definition. An alternative approach, due to Weyl, avoids the problem. We begin by considering a pair of strongly continuous one-parameter unitary groups of operators U_a and V_b, $a, b \in \mathbb{R}$ (§7.6.4). We will call them a Weyl pair if they satisfy the relation (81) from §3.3.2.1. By Stone’s Theorem (§1.5.1.4), U_a and V_b can be written as

$$U_a = e^{-iaQ}, \quad V_b = e^{-ibP}$$

where Q and P are unbounded selfadjoint operators, defined on a common (dense) domain. (Recall eq. 78.) Writing these exponentials formally, in terms of a power series expansion,

$$e^{-iaQ} = \sum_{n=0}^{\infty} \frac{(-iaQ)^n}{n!},$$

(similarly for e^{-ibP}) and substituting into (85) we retrieve the CCRs. (If both sides of (85) are defined on a common dense subspace, then this procedure is rigorously valid. Otherwise, it is suggestive symbol-manipulation.) Note, finally, that the operators e^{iaQ} and e^{ibP} are bounded, so that, for example, issues about the domain of definition do not arise.

4.1.3 Von Neumann’s Uniqueness Theorem

There is another nice feature of the Weyl relations: all representations of them are regular. In other words, every Weyl pair is unitarily equivalent to the Weyl pair generated by the Schrödinger position and momentum operators. This result, due to von Neumann [1931], implies that the generators of any Weyl pair must have spectra that are the entire real line.

A further question concerns when a representation of the CCRs is regular — i.e., how can one tell, apart from checking for unitary equivalence directly (which can be hard) that a given representation is regular? Answers to this question (beyond the observation just made about spectra) are known (Rellich [1946], Dixmier [1958], but beyond the scope of this essay). See Summers [2001] for discussion and further references.

4.2 The Uncertainty Relations

One of the reasons that the CCRs are so important is that they give rise, directly, to the uncertainty relations. Recall that if two bounded operators do not commute, then there are eigenvectors of one that are not eigenvectors of the other. (Similar remarks hold for unbounded operators, but there we must take account of the fact that they might not have any eigenvectors, and speak instead in terms of the non-commutativity of their spectral projections.) It follows that there are states that assign trivial probabilities to the possible values of one observable (i.e., probability 1 for one eigenvalue, and 0 for the others), and non-trivial (not 0 or 1) to at least two possible values of the other. Hence non-commutativity already
implies a type of ‘uncertainty relation’: certainty about the value of one observable can imply uncertainty about the value of another. Below, we shall make this idea more precise, and consider its interpretation.

4.2.1 The Optical Derivation

In [1927], and in an improved version in [1930], Heisenberg made the following argument, intended to make some sense of, perhaps even to derive, the uncertainty relations for position and momentum. Suppose we wished to measure the location of a small particle (e.g., an electron), by means of an optical microscope. The resolving power of the microscope with an aperture angle θ is approximately $\frac{\lambda}{\sin \theta}$, where λ is the wavelength of the light. This resolving power determines our uncertainty about the position of the particle after the measurement. On the other hand, in order for us to detect the particle, at least one photon would have to strike it. This photon has momentum $^{57} \frac{h}{\lambda}$ and the angle of impact is uncertain to within the angle θ; hence the amount of momentum transferred to the particle is uncertain to within roughly $(\frac{h \sin \theta}{\lambda})$, and the product of the uncertainty in the position and momentum of the measured particle, after the measurement, is roughly h.

In other words, there is a lower limit on the product of the uncertainty of position and momentum. Notice that this lower bound applies only after the measurement. Indeed, we could measure the momentum of the particle with arbitrary precision prior to measuring its position, also with arbitrary precision. We would then have determined its position and momentum just prior to the moment of impact (of the photon on the particle) with arbitrary precision (though we would still be uncertain about its momentum after the measurement).

There are other derivations of the uncertainty relations, derivations that rely more explicitly on the formalism of quantum theory. We now consider two of them.

4.2.2 The Wavefunctional Derivation

Position and momentum are related by a Fourier transformation. Indeed, it is often easier, when dealing with momentum in the Schrödinger representation, to apply a Fourier transform (which is a unitary transformation on the Hilbert space), so that the momentum operator becomes a multiplication operator (and the position operator then becomes differentiation). But consider what happens to the wavefunctions. A wavefunction that is very well peaked corresponds to a state in which position is well-defined. That is, most of the probability is concentrated in a relatively small region of space. But the Fourier transform of such a function is very flat, so that the probability is uniformly distributed across all of the real line, which, after the transformation, corresponds to possible momenta of the particle.

57 The relation $p = \frac{h}{\lambda}$ as applied to photons was introduced as part of Einstein’s [1905] explanation of the photoelectric effect, and generalized to material particles by de Broglie [1924].
This general idea can be made mathematically more precise. Consider a Gaussian 'wavepacket', a wavefunction from $L^2(\mathbb{R})$, which, as a function of x, has appreciable magnitude only in some region of size $2a$:

\begin{equation}
\psi(x) = e^{-x^2/2a^2}.
\end{equation}

The Fourier transform of this wavefunction (i.e., transforming to a 'momentum representation') is:

\begin{equation}
\tilde{\psi}(k) = e^{-a^2k^2/2}
\end{equation}

(where k is the 'wave number'; momentum is given by $p = \hbar k$). This Gaussian has width $2/a$. Hence a narrowly peaked wavefunction in position (i.e., a is small) is widely spread in momentum (i.e., $1/a$ is large). Specifically, setting $\Delta x \approx a$ and $\Delta p = \hbar \Delta k \approx 1/a$, we have that $\Delta x \Delta p \approx \hbar$. (This expression is not quite the standard uncertainty relation, but then the derivation here is not meant to be exact.)

4.2.3 The Algebraic Derivation

There are in fact many roads from the quantum formalism to the uncertainty relations. Here, we consider just one other commonly found derivation, in part because it will shed some additional light on meaning of 'uncertainty', and in part because unlike the previous two derivations, this one is rigorous, and results in the exact form of the uncertainty relations.

Given an observable, F, define $\Delta F := F - \langle F \rangle$. (The right-hand side is the expectation value of F, where we have left the state unspecified.) The expectation of $(\Delta F)^2$ is the dispersion of F. Indeed,

\begin{equation}
\langle (\Delta F)^2 \rangle = \left\langle F^2 - 2F\langle F \rangle + \langle F \rangle^2 \right\rangle = \langle F^2 \rangle - \langle F \rangle^2,
\end{equation}

which is a standard statistical notion of 'dispersion' (often called 'mean-square deviation' by physicists, and 'variance' by statisticians; its square root is the standard deviation). Now, let F and G be observables (self-adjoint operators). Then the Schwarz Inequality (§7.1.3) implies that

\begin{equation}
\langle (\Delta F)^2 \rangle \langle (\Delta G)^2 \rangle \geq \langle (\Delta F \Delta G) \rangle^2.
\end{equation}

Straightforward algebraic manipulations (see, e.g., Sakurai [1985, p. 36]) transform (90) into the standard uncertainty relation:

\begin{equation}
\langle \Delta F \rangle \langle \Delta G \rangle \geq \frac{1}{2} |\langle [F, G] \rangle|.
\end{equation}

for any observables F and G. Notice, for example, that

\begin{equation}
\langle \Delta P \rangle \langle \Delta Q \rangle \geq \frac{1}{2}.
\end{equation}
(or, if we are not setting $\hbar = 1$, then the right-hand side is $\hbar/2$ — see note 11).

Above, we said that this derivation would shed some light on the meaning of uncertainty. In particular, we can now see that, rigorously, 'uncertainty' refers to the dispersion (standard deviation) of an observable in a given state, which is normally understood as a measure of the 'spread' in its values over an ensemble of systems all in some given state.

4.2.4 Limitations and Generalizations

The derivation of (91) makes it clear that any two non-commuting operators will give rise to some uncertainty relation. Hence (91) is quite general. However, there are also 'uncertainty relations' between quantities that are not represented by operators. The most well-known is the time-energy uncertainty relation, whose interpretation is notoriously problematic precisely because time is not an observable in quantum theory. (There is no self-adjoint operator that represents time.) Another example is phase and photon number. (Again, there is no 'phase' operator.) Various proposals exist for how to understand these other uncertainty relations, but here we merely note the point that they must apparently be understood in some sense other than that given by (91).

Moreover, (91) faces other problems. First, recall that (91) is state-dependent. Indeed, if we choose a state that is an eigenstate of F (or G), then even if F and G do not commute, both sides of (91) are zero, which certainly seems to violate the spirit of 'uncertainty'. (The 'solution', perhaps, is to notice that if F and G do not commute, then in general the dispersion of G for a system in an eigenstate of F will be non-zero.) Second, keep in mind that 'dispersion' itself can be misleading. Even when most of the probability is concentrated on a narrow range of possible values of F, a small amount of probability that is located very far from F's mean can cause its dispersion to become large. There are proposals to handle these shortcomings. (See especially Uffink [1994].)

4.2.5 'Wave-Particle Duality'

A quantum-theoretic experiment that is commonly associated with the uncertainty principle is the double-slit experiment (which had been done, in some form, from well before the advent of quantum theory). The set-up is as follows: a source of particles (or monochromatic light, i.e., photons) is placed in front of an opaque barrier with two parallel slits. Behind the barrier is a screen (such as a photographic plate). A particle is fired at the slits in the barrier, and the screen records the location of each particle as it strikes the screen. (See figure 3.)

The main point is the following. We shine a beam of particles from the source onto the barrier. If both slits are left open and no determination is made about which slit the particle traverses, then an interference pattern develops on the screen, which is just what one would expect if a wave somehow passes through the slits. (See figure 4a.) If, on the other hand, we determine which slit the particles traverse, then no interference pattern shows up on the screen — instead,
a pattern that is characteristic of particles (one 'blob' behind each slit) shows up. (See figure 4b.) What is more, one can do the experiment one particle at a time, and in this case, one sees 'dots' on the screen, and yet, if no determination is made about which slit the particles traverse, eventually the dots exhibit an interference pattern. (See figure 4c.)

This experiment illustrates 'wave-particle duality': when we measure a wave-like property of particles (interference), we get wave-like behavior (interference pattern), while when we measure a particle-like property of particles (which slit a particle traverses), we get particle-like behavior (no interference pattern).

Indirectly, it also illustrates the uncertainty relations. For consider what it takes to determine with reasonable accuracy which slit a particle traverses — in that case, we must measure the particle's position to an accuracy much better than $d/2$, where d is the distance between the slits. If the interference pattern is to be maintained despite this measurement, then the particle's momentum cannot
be disturbed so much that, with appreciable probability, it gets deflected from a region of constructive interference (where, from the wave-theoretic point of view, the waves passing through each slit interfere constructively, i.e., a region where many dots show up in figure 4c) to an adjacent (or indeed any) region of destructive interference (i.e., regions where few or no dots show up in figure 4c). A rough trigonometric analysis shows that in fact the product of the uncertainty in our position measurement and the required low uncertainty in momentum must violate the uncertainty relation between position and momentum. In other words, the uncertainty relations appear to require that measuring the position of the particle at the slits well enough to determine (with good accuracy) which slit the particle traverses will tend to wash out the interference pattern (the more so, the more accurate the measurement of position).

4.3 Interpretation of the Uncertainty Relations

4.3.1 Observational-Epistemological

Interpretations of the uncertainty relations are helpfully divided into two kinds: those that understand uncertainty purely in terms of observationally obtainable facts about the values of observables, and those that attribute observational uncertainty to a more fundamental, 'ontological', uncertainty, or 'indeterminacy'. I will consider each of these two kinds of interpretation in turn.

4.3.1.1 Uncertainty as Uncertainty The term 'uncertainty', and the understanding of uncertainty as standard deviation (dispersion), strongly suggests an epistemic, even operationalist, understanding of the uncertainty relations. In particular, one is quite tempted to understand the uncertainty relations in terms of post-observational uncertainty about the actual values of observables.

There is a question about whether this uncertainty concerns single systems, or ensembles. In the latter case — i.e., if, as suggested by the usual statistical understanding of standard deviation, we understand uncertainty to reflect dispersion of values (for some observable) in an ensemble — the 'interpretation' of the uncertainty relations does not go beyond a straightforward statistical understanding of standard deviation. Of course, in this case then there is still a sense in which uncertainty applies to single systems, namely, when they drawn at random from such an ensemble. But one might, in addition, suppose that the notion of uncertainty applies to single systems independently of the consideration of any ensemble. Indeed, one might argue that only in this case would we really understand why uncertainty holds at the statistical level. In any case, let us consider that possibility.

The idea, then, is that measurement (more generally, observation) in general reduces our uncertainty about the value of some observable, \(F \), on the (single!) measured system. The uncertainty principle would then be read as asserting that a reduction in uncertainty about the value of \(F \) can imply an increase in uncertainty about the values of observables that are incompatible with \(F \).
The meaning of such an assertion is clear enough, but understanding why incompatible observables have this feature is another matter. Suppose that F and G are incompatible. Suppose that we measure F. We then measure G. Why should it be the case that this second measurement ruins our previous knowledge of the value of F? Indeed, supposing that the second measurement is isolated from the first, and that the value of F was not in any way disturbed in the meantime, how could the second measurement ruin our previous knowledge of the value of F?

4.3.1.2 Einstein’s Early Thought Experiment Early critics of quantum theory — notably, Einstein — asked something like this question, and indeed proposed (thought) experiments that were apparently intended to show that in fact it is possible to ‘beat’ the uncertainty principle. A famous such experiment, due to Einstein, involves a standard two-slit apparatus (see figure 3) that is mounted on springs. The basic idea is to use the springs to determine which slit the particle traversed, without in fact disturbing the particle itself, by measuring the exchange of momentum between the particle and the barrier. (If the source is located on the plane exactly between the slits, then if the particle goes through the right-hand slit (and the slits are narrow enough), the barrier will in general experience a kick to the right, and so on.)

4.3.1.3 Reply to Einstein Einstein’s challenge to the uncertainty principle, here, is empirical: he is claiming that, contrary to what quantum theory allows, it is possible to prepare a system in a state of precise position and momentum (or at any rate, more precise than the uncertainty relations allow). The response must, therefore, be empirical. If indeed it is possible to prepare a system in a precise state of position and momentum, then we ought to be able to use our knowledge of either to make a verifiable prediction about the system. In particular, if the measurement of the position of the particle right after it passes through the slits does not, in fact, disturb the momentum of the particle, then we should still see the same interference pattern on the screen that we see in the standard two-slit experiment. If, on the other hand, the interference pattern ‘washes out’ (see §4.2.5), and approaches the ‘two blobs’ (see figure 4b) as the measurement of position becomes more and more precise, then the epistemically version of the uncertainty principle stands.

As far as current experiment can discern, it seems that a measurement of which slit the particle traverses does indeed wash out the interference pattern. Indeed, a remarkable experiment appears to show that not even this much is quite right; rather, what seems to matter is whether a record of the result of the measurement is kept, where by a ‘record’, here, we mean an encoding of the result in a measurable physical state of the universe. The experiment\(^\text{58}\) is, in essence, the two-slit experiment, with a detector placed behind one of the slits. The detector is, moreover, ‘eraseable’, in the following sense. Once a particle passes through the detector, the particle leaves a trace in the state of the detector. We may then

\(^{58}\)See, for example, Scully and Walther [1989] and Walborn et al. [2002].
choose to magnify this ‘trace’ in order to turn it into a discernible signal indicating the presence of the particle, or we may completely erase it, so that the state of the detector no longer contains any retrievable information about whether the particle was once in the detector.

With this erasable detector in place, now imagine performing the following experiment. Fire the particles at the barrier one at a time. After the particle passes through the barrier, either erase the detector, or not. On the runs where we erase the detector, the particles build up an interference pattern (as in figure 4c). On the runs where we do not erase the detector, the particles do not build up an interference pattern, but instead ‘behave as particles’ (as in figure 4b). The experiment is relatively recent, and requires further scrutiny, but it strongly suggests, as do other quantum-mechanical experiments, that the epistemic version of the uncertainty principle is a fact of nature.

4.3.2 Ontological

With the epistemic version of the uncertainty principle apparently intact, we are left wondering why it is true. Different interpretations will propose different answers to this question. Some assert a ‘disturbance theory’, according to which the measurement of one quantity physically disturbs others (corresponding to incompatible observables) in an uncontrollable and unpredictable way. Others assert that reality matches our knowledge, here: we cannot know the value of G (when the value of incompatible F is known) because, in fact, G has no value.

There are many versions of this idea. Here we consider two. The first, often claimed to be part of the ‘Copenhagen’ interpretation of quantum theory, rests on some version of a verificationalist, or operationalist, theory of the meanings of physical quantities, according to which a physical quantity has a value if and only if it has been measured (i.e., verified — the appropriate physical operations have been carried out, with the appropriate outcome). One must then argue that it is physically impossible to perform measurements of incompatible observables simultaneously on the same system.

This argument suggests a second ontological version of the uncertainty principle, according to which a physical quantity is well-defined just in case the conditions required for its well-definedness obtain. Of course, stated thus, this view sounds almost tautologous. It’s real content comes from arguing that there are indeed non-trivial physical conditions that must be in place in order for certain physical quantities to be well-defined, and that the conditions required for the well-definedness of a given quantity cannot be in place simultaneously with the conditions required for the well-definedness of any incompatible quantity.

This sort of argument has bite, if it does, because of the role of reference frames in the definition of physical quantities (§3.4). Hence, for example, ‘momentum’ must mean ‘momentum relative to X’, where ‘X’ is some physical system that defines a reference frame. But if ‘X’ (more precisely, the reference frame that it defines) is a non-inertial system, then it is not suitable for defining momentum (at
least not over any stretch of time), unless we know its relation to some inertial frame F (but then we are really defining momentum relative to F) — recall §3.4.1. Similarly, a non-inertial physical system is inappropriate for defining position (with the same caveat as before). These brief points recall the more extensive discussion above, and we shall have to leave the matter at that.

4.4 The Einstein-Podolsky-Rosen Argument

Thus far, everything that has been said about the uncertainty relations is consistent with the claim that the loss of certainty about the value of one observable, F, upon measurement of incompatible G, is a result of an unknown and uncontrollable physical disturbance of the value of F as a consequence of the measurement of G. Indeed, Heisenberg’s ‘optical’ derivation of the uncertainty relations uses precisely this idea. But an argument due to Einstein, Podolsky, and Rosen (EPR)59 purports to show that in fact the uncertainty relations cannot be understood in this way.

This argument concedes that the epistemic version of the uncertainty principle is true: the values of incompatible observables are not simultaneously verifiable. The point, here, is to question ontological versions of the principle.

4.4.1 Incompleteness

In particular, the point is to call into question the completeness of quantum theory. Recall (§1.2.3.9) the standard interpretation of quantum theory, according to which an observable, F, has a value for a system in a state, W, just in case W assigns probability 1 to some possible value of F (and 0 to the others). This interpretation immediately implies that there are no quantum states that assign simultaneously definite values to all observables, or indeed to any two observables with no common eigenvectors. Hence any argument that successfully shows that two such observables must have definite values implies that quantum theory is incomplete — more precisely, it shows that under the standard interpretation of the theory, quantum states do not describe (and cannot describe) the complete physical state of a system. The EPR argument purports to show exactly this claim.

4.4.2 The Generic Experiment

Generically, the experiment considered by EPR involves a pair of particles (call them α and β) prepared in the state

\begin{equation}
\Psi_{\text{EPR}} = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} |a_n\rangle |b_n\rangle
\end{equation}

59There are very good reasons to believe that the argument as presented by EPR [1935] was not quite what Einstein himself had intended. (The paper was not written by him.) See Fine [1986, esp. chs. 3-5], for example.
where the $|a_n\rangle$ and the $|b_n\rangle$ form orthonormal sets.60 Hence there are observables, A for system α and B for system β (whose eigenvectors are respectively the $|a_n\rangle$ and the $|b_n\rangle$), corresponding to eigenvalues a_n and b_n) that are perfectly correlated (§1.2.6.4) in this state.

So suppose that α and β are in the state $|\Psi_{EPR}\rangle$ while they are spatially separated. Then the perfect correlation between A and B allows one to discover the value of A without, as EPR say, ‘in any way disturbing’ α, simply by measuring B on β.

Now for the crucial point. Consider orthonormal bases $\{|a'_n\rangle\}$ and $\{|b'_n\rangle\}$ obtained from the $|a_n\rangle$ and the $|b_n\rangle$ as follows:

\[
|a'_n\rangle = \frac{1}{\sqrt{2}} \left(|a_n\rangle - i|a_{n+1}\rangle\right) \quad |b'_n\rangle = \frac{1}{\sqrt{2}} \left(|b_n\rangle + i|b_{n+1}\rangle\right),
\]

where the sum in subscripted ‘$n + 1$’ is modulo-N (i.e., $N + 1 = 1$). In this basis, the state $|\Psi_{EPR}\rangle$ has exactly the same form:

\[
|\Psi_{EPR}\rangle = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} |a'_n\rangle |b'_n\rangle.
\]

(To verify, plug (94) into (95) and simplify. The ‘cross’ terms of the form $-i|a_n\rangle |b_{n+1}\rangle$ and $i|a_n\rangle |b_{n+1}\rangle$ cancel.) Hence there are additional observables, A' and B' (whose eigenvectors are respectively the $|a'_n\rangle$ and the $|b'_n\rangle$) that are also perfectly correlated in the state $|\Psi_{EPR}\rangle$. Moreover, A' does not commute with (is incompatible with) A — indeed, they share no eigenvectors — and similarly for B and B'. Again, we can discover the value of A' on α by measuring B' on β.61

Finally, notice that this entire description is quantum-mechanical. One sometimes hears the EPR experiment described in more or less classical terms. For example, letting A and B be position and momentum (see §4.4.3), one might be tempted to describe the preparation of the EPR state as follows: fire two particles of equal mass from a common source with equal (in magnitude) but oppositely directed forces. Their positions (distance from the source) and momenta (relative to the source) will then be perfectly correlated. This picture is tempting, but it is also completely wrong. Indeed, standard quantum mechanics implies that the state just described cannot be prepared in a way that would allow one to infer the position (or momentum) of α from that of β, because such inferences would require us to know, with precision, the position and momentum of the source, and such knowledge already violates the (epistemic) uncertainty principle.

4.4.3 Position and Momentum

Above we assumed that the perfectly correlated observables have a discrete spectrum. In fact, when they consider an explicit example (rather than the abstract

60In fact, there is a ‘continuous’ version of (93), which is appropriate when we are considering observables, such as position and momentum, with continuous spectra. See §4.4.3.

61The situation as described here is not mathematically exactly the same as that considered by EPR, but the result is the same.
case as considered above), EPR refer to position and momentum, and a state that is perfectly correlated in position and momentum (in the sense that it is a simultaneous eigenstate of the sum of the momenta of the two particles, and the difference of their positions). Explicitly,

\[(96) \quad \Psi_{\text{EPR}}(x_1, x_2) = \int_{-\infty}^{+\infty} e^{i(2\pi i/h)(x_1 - x_2 + x_0)p} dp, \]

for some fixed \(x_0 \). However, it is worth pointing out that in fact this state is not an allowed state of the system at all — it is not a vector in \(L^2(\mathbb{R}^2) \). Moreover, this state, even if it could be prepared, necessarily spreads under any time evolution (associated with a finite potential energy), hence immediately becoming a state of less than perfect correlation.\(^{62}\)

To overcome these limitations of EPR's example, one could consider, for example, a narrow Gaussian that is very close to being a state of perfect correlation, but doing so makes the argument to come messy at best. And we should keep in mind that the discussion in terms of position and momentum is in fact only an example that EPR give to illustrate the main point.

In the end, in fact, it is easier to consider an example that involves bounded observables. The simplest case is the so-called 'singlet' state of a pair of spin-1/2 particles. Generically, this case corresponds (for an appropriate choice of the \(|a_n\rangle \) and the \(|b_n\rangle \)) to the state \(|\Psi_{\text{EPR}}\rangle \) above, for \(N = 2 \). We will just continue to speak of the observables \(A, A', B, \) and \(B' \), with the understanding that the perfect correlations discussed above obtain.

4.4.4 The Argument

How can this experimental situation be used to generate an argument for the incompleteness of quantum theory? The conclusion that EPR hope to establish is that \(A \) and \(A' \) both have a definite value simultaneously. Because they share no common eigenvectors, this conclusion is inconsistent with the standard interpretation of quantum states (see §1.2.3.9).

One tempting path to this conclusion involves presuming that once \(B \) has been measured on \(\beta \), thereby establishing the value of \(A \) on \(\alpha \), we can measure \(A' \) on \(\alpha \) and thereby establish its value directly. However, the problem with this suggestion should be clear: the disturbance theory of uncertainty can quickly be applied to conclude that the measurement of \(A' \) on \(\alpha \) disturbs the previously established value of \(A \). We are thus reminded that the point of this discussion is, in fact, to establish the definiteness of \(A \) and \(A' \) without 'in any way' disturbing \(\alpha \).

EPR's strategy involves two assumptions. The first, with which at least some versions of the standard interpretation can easily agree, is their 'criterion for physical reality', which asserts that whenever the value of an observable can be predicted with certainty, the observable actually has that value. (Notice that this criterion

\(^{62}\)By the state 'spreading', here, we mean, roughly, that it gets closer to a uniform distribution over \(\mathbb{R}^2 \). See Dickson [2002b] for a discussion of these points, and further references.
is inconsistent with the sort of verificationist or operationalist views, mentioned above (§4.3.2), according to which a system has a value only if that value has been obtained as the result of a measurement.) Before we introduce the second assumption, let us see how far we can get with just this one.

Notice that if we measure B on β, we can predict the value of A on α with certainty. Similarly for B' and A'. Of course, we cannot measure both B and B'. Hence, instead of considering actual measurements of B and B', let us consider non-actual, but possible (i.e., 'counterfactual') measurements of B and B'. We have:

Premise 1 Possibly, B is measured on β, and in this case, α has a definite value for A.

Premise 2 Possibly, B' is measured on β, and in this case, α has a definite value for A'.

From these two premises (which follow from the criterion for physical reality), EPR hope to conclude:

Conclusion Possibly, α has a definite value for both A and A'.

However, the Conclusion does not follow from the Premises 1 and 2. Indeed, the logical problem is, in part, that there is no guarantee that the possible conditions ('B is measured' and ' B' is measured') are co-possible. Indeed, as we know, they are not.\(^{63}\)

Hence EPR need another premise. They introduce a notion of 'non-disturbance' that is supposed to help patch up the argument: although the conditions (measurement of B) under which we can infer the definiteness of A on α are incompatible with the conditions (measurement of B') under which we can infer the definiteness of A', the difference between them is supposed to make no difference to α, because they only involve a change of circumstances for β, which may be spatially separated from α.

However, not just any such principle will work. Consider, for example, the following:

Weak non-disturbance. If B is measured on β and (therefore, by the criterion for physical reality) A is definite for α, then: had we not measured B on β, α would still have had a definite value for A (and likewise, substituting primed observables for the unprimed ones).

This principle, which might be taken to deny that measuring B is what brings it about that A has a definite value, is insufficient to get EPR's conclusion. They need, instead:

\(^{63}\)Consider the following analogous argument. (i) It is possible that the paper is burned, and in this case it will be reduced to ashes. (ii) It is possible that the paper is not burned, and in this case it will remain whole. Therefore, (iii) it is possible that the paper is both whole and reduced to ashes. Of course, this argument is invalid.
Strong non-disturbance. If B is measured on β and (therefore, by the criterion for physical reality) A is definite for α, then: had we instead measured B' on β, α would still have had a definite value for A (and likewise, substituting primed observables for the unprimed ones).

The weak principle is insufficient to get the conclusion because the introduction of the measurement of B' (as opposed to the mere absence of the measurement of B) could destroy essential features of the situation, and in particular features that permit the inference of properties of α (its value for A) from the results of measurements (of B) on β.\footnote{The possible-worlds semantics for counterfactuals makes the point easy to see: while the closest $(B$ is not measured)$'$-worlds to the B is measured and A is definite for α'-worlds might all be A is definite for α'-worlds, those closest worlds might not contain any $(B$ is measured)$'$-worlds, so that the closest $(B$ is not measured but B' is measured)$'$-worlds to the B is measured and A is definite for α'-worlds need not be A is definite for α'-worlds.}

The principle of strong non-disturbance is supposed, of course, to capture some notion of 'locality'. In particular, the idea is supposed to be that nothing that is done to β can have any affect on the properties of α, under the assumption that the two particles are space-like separated. Einstein's theory of special relativity is presumably supposed to license this assumption.\footnote{See Malament, this volume.} In any case, with the principle of strong non-disturbance, EPR have a logically valid argument for the Conclusion, above. Indeed, they could (and seem to claim to) establish a stronger form of the conclusion, replacing 'Possibly' with 'Actually', as follows. Argue, further, that a measurement of B (or B') does not bring it about that α has a value for A (A'), so that α must have values for both A and A' even when B (B') is not measured.

4.4.5 Replies to EPR

One can, in fact, deny strong non-disturbance by denying locality. We shall consider the status of locality in quantum theory below (§6). Here, we consider two other replies to EPR.

We have already more or less encountered one of these replies: note that the EPR argument has no impact on those verificationist or operationalist views according to which an explicit measurement of a physical quantity is required not merely for us to know its value, but also for it to have a value. Of course, such views must deny the criterion for physical reality (which, keep in mind, is only a sufficient, not a necessary condition), and many find this principle quite compelling. (Apart from actually having the value in question, what else could, reasonably, make it be the case that we can predict its value with certainty?)

But Bohr offered a reply that appears to rely neither on this verificationist or operationalist strategy, nor — so he claims — on an explicit endorsement of non-locality. In particular, recall that EPR were aiming to avoid the 'disturbance' account of uncertainty, according to which, for example, a measurement of A'
physically disturbs the value of A. Here, because we are only ever performing measurements on β, it is far from clear how a measurement of B', for example, could disturb the value of A on α — after all, such a disturbance would have to be non-local. Bohr’s reply denies strong non-disturbance, but without (so the claim goes) endorsing a physically direct (Bohr uses the term ‘mechanical’) disturbance of (e.g., the value of A for) α as a consequence of any measurement (e.g., of B) on β. Instead, recall the idea from above (§4.3.2), that the very well-definedness of certain physical quantities relies on certain physical conditions being in place.

Indeed, consider the EPR experiment, now, as Bohr (and EPR) did, in terms of position and momentum. We will assume (without loss of generality) that the positions and momenta are defined relative to the source. On Bohr’s view, the well-definedness of the sum of the momenta for each particle (i.e., the total momentum for the system) is maintained just so long as the system (particles plus source) remains closed, i.e., just as long as total momentum is conserved. But a measurement of the position of β introduces a disturbance of β’s momentum. The system is no longer closed: β either loses momentum to or gains momentum from an object (the measuring apparatus) that is external to the system. But then the total momentum (relative to the source, which ‘knows nothing’ about this external influence on β) is no longer conserved, and thus the conditions for its well-definedness (relative to the source) are no longer in place, and therefore any inferences that we might have made about the well-definedness of α’s momentum, based on the well-definedness of the total momentum, are no longer valid. In other words, on Bohr’s view, the conditions required (under the circumstances) for the well-definedness of α’s momentum are, when we are measuring β’s position, no longer in place. Note that the ‘old’ type of disturbance is still at work here — we are indeed supposing that β’s momentum is physically disturbed by a measurement of its position — but in addition there is another type of disturbance at work: the measurement of β’s position ‘disturbs’ the conditions required for the well-definedness of α’s momentum (under the circumstances). Thus Bohr believes that he can avoid EPR’s conclusion by (in essence) denying strong non-disturbance, but in a way that does not entail a non-local disturbance, in the sense of an exchange of energy or momentum between β and α.

4.4.6 Where We Stand

Regardless, finally, of whether one finds any of these replies to EPR satisfactory (and we should not make any judgment on this point at least until we have considered the issues in §§5 and §§6), it should be emphasized that none of them shows that the EPR argument is unsound, much less invalid. Indeed, they are, in a sense, defensive maneuvers designed to articulate a view of quantum theory that avoids EPR’s conclusion by denying, in a consistent and presumably plausible way, one of the premises of their argument. EPR’s conclusion is thus far from called into question by such replies. Indeed, many philosophers of quantum theory are more or less in agreement with EPR that standard quantum theory is incomplete, if not
because of EPR's argument, then because of the so-called 'measurement problem', which we consider next.

5 THE 'MEASUREMENT PROBLEM'

The problem of measurement is, perhaps, the most discussed issue in the foundations of quantum theory, and has inspired numerous and varied interpretations of the theory, from the brilliant to the bizarre. In this section, I will first review the problem (§5.1), emphasizing its generality. Then I will consider some natural, but in the end unsatisfactory, reactions to the problem (§5.4). In the final section (§5.5), I will consider a few examples of interpretations of the theory, each of them largely directed towards solving the measurement problem.

5.1 The Basic Problem

5.1.1 'Schrödinger's Cat'

Recall (1.2.3.2.b) that the superposition principle implies that for any observable, F, if a system can have each (or indeed, just two of) the eigenvalues of F as its values for F, then it is also possible for a system to have (assuming the eigenstate-eigenvalue link, §1.2.3.9) no value for F (because it is in a superposition of the eigenstates of F).

If F is some unfamiliar observable of the unfamiliar quantum world, then perhaps one can live with this consequence. But what about observables on middle-sized solid objects that are the bread and butter of our everyday experience? What about 'the (approximate) location of the house', or 'the (approximate) momentum of the horse', and so on? In 1935, Schrödinger illustrated the sort of problem that we face with the following example.

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with the following device (which must be secured against direct interference by the cat): in a Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps in the course of the hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, the counter tube discharges and through a relay releases a hammer which shatters a small flask of hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts. (Schrödinger [1935a])

The point, of course, is that after some stretch of time, the atom is in a superposition of 'decayed' and 'not decayed', and hence the hammer, poison, and ultimately
the cat, are in corresponding superpositions — in the case of the cat, a superposition of ‘alive’ and ‘dead’. But of course we never witness cats in such states. So apparently there is a serious problem with quantum theory.

5.2 Measurement

Notice that the cat serves, in essence, as a decay-indication device, a kind of crude measuring apparatus. Indeed, it is precisely Schrödinger’s point that one can magnify a superposition at the microscopic level (the atom) to a superposition at the macroscopic level (the cat), the level at which one is probably more inclined to deny categorically that superpositions (of at least some sorts, such as of the states ‘alive’ and ‘dead’) make any sense, physically, or at any rate that they exist with anything like the frequency that quantum theory apparently predicts. Measurement devices designed to measure quantum-mechanical observables are characteristically of this sort: they ‘magnify’ the state of some microscopic quantum system into the (indicator, or ‘pointer’) state of an apparatus that can be directly observed.\(^{66}\)

Of course, this magnification is a physical process, and as such, it is in principle to be described as a solution to Schrödinger’s equation (or some other quantum-theoretic equation of motion). Those equations are linear. (In fact, it is precisely this linearity that partially grounds the principle of superposition: any linear combination of solutions is again a solution.) Indeed, recall that the dynamical evolution of a system can be described in terms of a family of unitary operators, which are, of course, linear.

So let a given measurement-interaction (between some apparatus and some measured system) be described by the operator \(U\). (As an example, recall §3.1.2.) Let the apparatus’ ‘ready-to-measure’ state be \(\Psi_0\) and let its ‘pointer’ states be \(\Psi_n\). For each of the eigenstates, \(f_n\) of the measured observable, \(F\), we presume that the measurement-interaction results in an accurate indication of the result:

\[
(97) \quad U(f_n|\Psi_0) = |f_n\rangle|\Psi_n\rangle
\]

so that the state \(\Psi_n\) indicates that the measured system has the value \(f_n\) for \(F\). But then, by linearity,

\[
(98) \quad U\left(\sum_n k_n|f_n\rangle|\Psi_0\rangle\right) = \sum_n k_n|f_n\rangle|\Psi_n\rangle.
\]

Now we are in trouble. The eigenstate-eigenvalue link implies that this final state is one in which the pointer-observable for the apparatus in fact has no value.

\(^{66}\)Recall my earlier (§1.4.3) skepticism, however, about ‘pure’ states such as \(|\text{cat dead}\rangle\). Does this skepticism suggest a way out of the measurement problem? Alas, it does not. We could just as well speak in terms of mixed states, here, and generate the problem, which relies only on the fact that at the end of a measurement, the state of the apparatus may assign non-trivial probabilities to all possible values of the ‘pointer-observable’.
The pointer is not indicating anything. But at the end of typical successful measurements, the apparatus does indicate a result, even when the measured system begins in a superposition of eigenstates of the measured observable. Standard quantum theory seems to contradict this apparent fact of experience. Hence the ‘measurement problem’.

5.3 Generality of the Problem

There are at least three senses in which the ‘measurement problem’ as described above does not capture the real problem with sufficient generality. First, it relies on the quite conservative eigenstate-eigenvalue link, and on a very restrictive notion of ‘measurement’. Second, it fails to indicate the ubiquity of superpositions. Third, it relies on the questionable assumption that the macroscopic pointer-states of the apparatus are pure states, when in fact they are almost surely mixed. In this subsection I will briefly consider these points. Finally, I will briefly raise a related problem, the problem of the ‘classical limit’.

5.3.1 ‘No-go’ Theorems

Two important premises in the argument leading up to the measurement problem, above, were the eigenstate-eigenvalue link and the account of what counts as a successful ‘measurement’. Both of these assumptions can be weakened considerably.67 I will consider each in turn.

5.3.1.1 Weaker Conditions for Definiteness First, we may introduce a weak condition for when an observable has a definite value, roughly as follows: the final state of the apparatus assigns a definite value to the pointer-observable for the apparatus just in case the final state of the compound system is a mixture of states each of which has a definite value for the pointer observable according to the eigenstate-eigenvalue link. In other words, we now allow the adoption of an ignorance interpretation of mixed states of the compound system, accepting that when the compound system has the sort of mixed state just described, it is actually in one of the pure states appearing in the mixture, and therefore, according to the eigenstate-eigenvalue link, the apparatus has a definite value for the pointer-observable.

Note that the condition applies to the compound system, not to the apparatus on its own. The difference is subtle, but crucial. For example, in an ideal measurement, the apparatus by itself will always be in a mixture of eigenstates of the pointer-observable. It does not follow, however, that this mixture can be given an ignorance interpretation. I shall discuss this point in a somewhat different context below (§5.4.5.2.a).

67There is a long history of proofs, increasingly general, that the measurement problem is ‘insoluble’ in the context of standard quantum theory. A review of the early history, together with arguably the simplest proof of the theorem, is given by Brown [1986]. For a more recent survey and extensive discussion of this issue, see Mittelstaedt [1998, esp. ch. 4].
5.3.1.2 Weaker Accounts of Measurement We may also weaken the account of measurement, along the following lines. Let U represent the time-evolution of states of the compound system during the measurement of a POVM, E, by a ‘pointer-observable’ POVM, Q. We require: for any two states, W and W', of the compound system, if W and W' differ in their probabilities for at least one of the effects in the image of E, then $UUWU^{-1}$ and $UW'U^{-1}$ differ in their probabilities for at least one of the effects in the image of Q. Intuitively, U renders the pointer-observable ‘somehow sensitive (even if only probabilistically) to the measured observable’.

Note, however, that while this weaker account of measurement, together with the weaker criterion for definiteness (§5.3.1.1), is sufficient to derive the measurement problem (i.e., the non-definiteness of the pointer-observable at the end of a measurement), it is also worth keeping in mind that, by the biorthogonal decomposition theorem (§1.2.6.2), there are some observables (one for the measured system and one for the apparatus) with respect to which the state of the compound system has the same form that it does in an ideal measurement. (I.e., write the state in its biorthogonal form. The bases for the measured system and apparatus will be bases determined by some observable for each.) On the other hand, whether this apparatus-observable is one that we antecedently believe to be definite is another question, the answer to which probably depends on the details of the interaction.

5.3.2 The Ubiquity of Superposition

The superposition principle asserts that superpositions of possible states are again possible states. But perhaps they are extremely rare. In that case, again perhaps we should not be terribly concerned about the measurement problem.

In fact, however, superpositions at the microscopic level are ubiquitous. To see why, we need only consider the case of spin. Recall that S_{u} and S_{v} are incompatible unless $u = v$ or $u = -v$. Hence every spin-1/2 particle is ‘in a superposition’ with respect to just about every direction of spin. A similar remark holds for the polarization of photons. And there is good experimental and theoretical reason to believe that many fundamental particles may have wavefunctions that are highly de-localized.

Moreover, we need not imagine exotic situations such as that described by Schrödinger in order to believe that these microscopic superpositions may be ‘magnified’. While such magnification is an important part of measurement, there is little reason to suppose that it does not occur naturally, and frequently. After all, the human eye, for example, is sensitive to as few as a half-dozen or so photons. It seems plausible to suppose that many other interactions that occur in nature have the effect of correlating the state of some macroscopic object with the state of some microscopic object — and such correlation (even if imperfect) is sufficient for the sort of magnification that will give rise to the measurement problem.

Hence, there is good reason to believe that the measurement problem is highly general, in a few senses: (a) even under apparently weak accounts of when appa-
tatus' have a definite value for some macroscopic observable (§5.3.1.1), quantum theory apparently implies that they do not; (b) the sort of correlation between a macroscopic and microscopic object that is required in order to bring about the situation in (a) is very weak, and moreover perfect correlations are, by the biorthogonal decomposition theorem, ubiquitous (§5.3.1.2); and (c) the sort of superposition, and interaction, that is required give rise to the situation in (b) is plausibly quite common (this section).

5.3.3 The Classical Limit

Finally, I will quickly notice a problem that is discussed in detail elsewhere in this volume. In a sense, the measurement problem is the problem that the 'weirdness' of the quantum world is somehow not confined to the microscopic world. In other words, the 'weird' quantum world does not (always) mesh nicely with our more familiar classical world, in the sense that superpositions at the micro-level (where we might be able to live with them) are not confined to that level, but can be made to appear at the macro-level (where, so the argument goes, we cannot live with them). This apparent conflict leads to a more general question: how does quantum theory go over to classical theory (which, after all, works quite well for a large domain of objects in a wide variety of conditions)? The question is vexed in a number of ways, which, however, I shall not consider here. I refer the reader to Landsman, Ch. 5, this volume (esp. §§5,6).

5.4 Non-Solutions

Numerous solutions to the measurement problem have been proposed, and we shall consider some of them in a separate section on interpretations. Here, we consider several proposed solutions that in fact do not work, or at the very least, face extraordinary obstacles to making them work.

5.4.1 Naïve Realism

5.4.1.1 The Obvious Solution to the Rescue? The obvious solution to the problem is to give up the eigenstate-eigenvalue link. Indeed, why not interpret the probabilities delivered by quantum theory as entirely epistemic? That is, why not suppose that every observable has a definite value all of the time, and that incompatibility merely represents the fact that observing the value of one of them disturbs the values of others in an incontrollable way? Something like an epistemic version of Bohr's approach to uncertainty, if it works, could be put to use in the service of this view, both accounting for the uncertainty relations, and avoiding the measurement problem.

5.4.1.2 The Kochen-Specker Theorem While initially attractive, this view founders on a well-known theorem, the Kochen-Specker theorem (Kochen and Specker [1967]). Notice that naïve realism seeks to identify a single value for each
observable. With one further requirement, one can show that no such assignment is possible.

5.4.1.2.a Non-Contextuality This further requirement is specifiable in a variety of ways. Here we put it in terms of 'non-contextuality'. Note that assigning a value to an observable amounts to assigning, to each set of mutually orthogonal subspaces that span the entire space, a '1' to exactly one of the subspaces, and '0' to the others. (These subspaces are the eigenspaces of the observable to which a value is assigned; assigning a 1 to a given eigensubspace is equivalent to assigning the corresponding eigenvalue to the observable.) Proceeding in this way, we will further assume that all observables with exactly the same eigenspaces have 'the same' value, in the sense that they have the eigenvalue associated with a given common eigenspace. This assumption amounts to the requirement that for any observable \(G \), if \(G \) has the value \(g \), then for any function, \(f() \), the observable \(f(G) \) has the value \(f(g) \).

Non-contextuality includes this assumption, but goes a step further, requiring, in addition, that the assignment of a '0' or '1' to a given subspace \(P \) is independent of which set of mutually orthogonal and jointly spanning subspaces \(P \) is considered to be a member. This requirement amounts to the condition that whenever two observables, \(F \) and \(G \), share an eigenspace, \(P \) (but do not necessarily share all of their eigenspaces), \(F \) has the eigenvalue corresponding to \(P \) if and only if \(G \) does. (The eigenvalues will in general differ, of course.) (Note that in this case \(F \) and \(G \) in general will not commute.)

5.4.1.2.b The State-Independent Theorem Given non-contextuality, naïve realism amounts to the requirement that we be able to find a homomorphism from the lattice, \(L(\mathcal{H}) \), of subspaces of a Hilbert space, \(\mathcal{H} \), to the Boolean lattice \(\{0,1\} \). That is, we require a map, \(h : L(\mathcal{H}) \rightarrow \{0,1\} \) such that, for any \(P, Q \in L(\mathcal{H}) \), \(h(P) \leq h(Q) \) if and only if \(P \leq Q \). It follows (from the definitions of the meet, joint, and orthocomplement, which are all given in terms of the partial order — §7.4.2), that \(h(P) \wedge h(Q) = h(P \wedge Q) \), \(h(P) \vee h(Q) = h(P \vee Q) \), and \(h(P) \perp = h(P^\perp) \). But notice that in \(\{0,1\} \), the operators \(\wedge, \vee \), and \(\perp \) behave just as those from classical logic (i.e.: \(0 \wedge 0 = 0 \), \(0 \vee 1 = 0 \), \(1 \wedge 1 = 1 \), \(0 \vee 0 = 0 \), \(0 \vee 1 = 1 \), \(1 \vee 1 = 1 \), and \(0^\perp = 1 \)). In other words, the naïve realist requires that it be possible to consider quantum theory to arise from an underlying (logically) 'classical' theory.

Such a picture is available in classical mechanics. Indeed, let \(\Gamma \) be the phase space for a classical system. The physical propositions (cf. §2.1.1) are represented by the lattice of Borel subsets of \(\Gamma \) (where the partial order is given by subset inclusion), and it is possible to define a homomorphism from this algebra to \(\{0,1\} \).

68 Here I ignore observables, such as position and momentum, whose spectrum is continuous (so that their possible values do not correspond to subspaces). After all, assigning them values as well only makes the naïve realist's life even harder.

69 Note that, in general, if \(G = \sum_n g_n P_n \) is the spectral decomposition of \(G \), then \(f(G) = \sum_n f(g_n) P_n \).
Indeed, choose a point \(x \in \Gamma \), and define the map, \(\delta_x \), by, for any Borel subset \(S \subseteq \Gamma \), \(\delta_x(S) = 1 \) if \(x \in S \) and 0 otherwise. This \(\delta_x \) is a homomorphism.

The content of the Kochen-Specker theorem is that for lattices of subspaces of a Hilbert space whose dimension is greater than 2, there are no such homomorphisms. This version of the theorem is sometimes called ‘state-independent’ because it does not rely on any presumptions about the quantum state of a system, but only on the structure of the state space as a whole.

5.4.1.2.c State-Dependent Theorems There are other versions of the theorem that begin with the assumption that the system is in some given quantum state. In this case, we can introduce another condition on the value assignments: they must respect the probabilities generated by the quantum state. For example, if the state assigns probability 0 [1] to a given value, \(f \), for \(F \), then the value-assignment must assign 0 [1] to the corresponding eigenspace. There are some particularly simple state-dependent Kochen-Specker theorems, the most famous being the GHZ (Greenberger-Horne-Zeilinger [Greenberger et al., 1989]) theorem, which (in a form nicely described by Mermin [1990]) considers a three-particle system of spin-1/2 particles, and the observables

\[
\begin{align*}
S^1_z, & \quad S^1_y, & \quad S^2_z, & \quad S^2_y, & \quad S^3_z, & \quad S^3_y, \\
S^1_x, & \quad S^2_x, & \quad S^3_x, & \quad S^1_y \otimes S^2_z \otimes S^3_z, & \quad S^1_x \otimes S^2_y \otimes S^3_y, & \quad S^1_y \otimes S^2_y \otimes S^3_y, \\
S^1_z \otimes S^2_y \otimes S^3_y, & \quad S^1_x \otimes S^2_x \otimes S^3_x, & \quad S^1_y \otimes S^2_y \otimes S^3_y, & \quad S^1_x \otimes S^2_x \otimes S^3_x, & \quad S^1_y \otimes S^2_y \otimes S^3_y, \\
S^1_z \otimes S^2_y \otimes S^3_y, & \quad S^1_x \otimes S^2_x \otimes S^3_x, & \quad S^1_y \otimes S^2_y \otimes S^3_y, & \quad S^1_x \otimes S^2_x \otimes S^3_x, & \quad S^1_y \otimes S^2_y \otimes S^3_y,
\end{align*}
\]

where \(S^n_z \) is shorthand for \(S^1_z \otimes I^2 \otimes I^3 \) and the superscripts indicate the particles with which each observables is associated. For simplicity, suppose that each of the \(S^n_z \) has been ‘normalized’ to have eigenvalues \pm 1 \((\text{rather than the usual } \pm 1/2) \). Hence the eigenvalues of all of the observables in (99) and (100) are \pm 1.

Note that the observables in (100) commute. Hence we can consider a state, the ‘GHZ-state’, that is a simultaneous eigenstate of them all. We shall consider an eigenstate with eigenvalues \(+1, +1, +1, -1\) respectively. For a system in this quantum state, any ascription of definite values to the observables must assign those values to the observables in (100). Let \(v() \) be a map from the observables in (99) and (100) to their values, and consider then the following array of values:

\[
\begin{align*}
v(S^1_z) & \quad v(S^2_z) & \quad v(S^3_z) \\
v(S^1_y) & \quad v(S^2_y) & \quad v(S^3_y) \\
v(S^1_y) & \quad v(S^2_y) & \quad v(S^3_y) \\
v(S^1_x) & \quad v(S^2_x) & \quad v(S^3_x).
\end{align*}
\]

The possible values are always \pm 1. The product of the values across each row must be \(+1\) for the first three rows, and \(-1\) for the last, so that the product of all twelve numbers must be \(-1\). But on the other hand, \(v(S^n_u) \) for each \(n = 1, 2, 3 \) and \(u = x, y \) appears exactly twice in the array, so that the product of all twelve numbers must be \(+1\), contradicting our conclusion above. Hence there is no assignment of values to all ten of the observables in (99) and (100) that is consistent with the GHZ-state.
Naïve realism is thus in serious trouble. The most straightforward reading of its basic commitments leads, via the Kochen-Specker theorem and its analogues such as the GHZ theorem, to a logical contradiction. While there are proposals to save aspects of naïve realism from this problem, all of them (of course) violate one or more of the conditions of the Kochen-Specker theorem, and, arguably, are no longer ‘ naïve’ realism.

5.4.2 Ensemble Interpretations

Ensemble interpretations (e.g., Ballentine [1970]) attempt to avoid the measurement problem altogether by stipulating that quantum states are not about individual quantum systems. They are essentially statistical, and thus can be used to describe only ensembles of systems. Hence the state at the end of a measurement ought not be thought of as describing a particular apparatus (and measured system) at the end of a particular measurement, but all such apparatuses (and measured systems) and the end of all such measurements.

There are two strains of this sort of interpretation in the literature, not always distinguished. The first we might call ‘minimalist’: it is the deflationary view that one can make sense of the quantum state (for example, at the end of a measurement) only as the description of an ensemble of similarly prepared systems.

The second strain of the ensemble interpretation makes a stronger claim, namely, something to the following effect: nothing more than the deflationary account of the quantum state is needed; i.e., there is no scientific demand for a theory that describes individual systems. On this view, such a demand is an artifact of a deterministic world view, and the usual 'mysteries' of quantum theory simply disappear once one learns to live with statistical theories. However, most researchers in the philosophy and foundations of quantum theory appear to be unconvinced.

Moreover, even the minimalist claim faces a problem, and the problem also shows why the stronger claims are, at the least, in need of further development. The Kochen-Specker theorem already shows that the probabilities generated by quantum states cannot be understood straightforwardly as classical probabilities. Thus the ensemble interpretations appear to be pushed towards other views, such as the quantum logic view, which will be considered later.

5.4.3 Collapse Postulate

The ‘standard’ solution to the problem of measurement is the so-called ‘collapse postulate’ (also called the ‘projection postulate’) of quantum theory, already mentioned in §3.1.2, first discussed in detail by von Neumann ([1932, p. 351 and pp. 417-418 of the English translation]). The postulate can be found stated in numerous ways, such as:

Collapse Postulate/ Upon measurement of the observable F on a system in the state W, the result of the measurement will be an eigenvalue corresponding to some eigenspace, P of F, and the state of the
system will then be \(PWP/\text{Tr}[PWP] \).

If the state can be written as a vector, \(|\psi\rangle \), then the 'collapse' amounts to projecting this vector onto \(\text{ran} \, P \), i.e., onto \(P|\psi\rangle \), and renormalizing the result.

There are many reasons to be unhappy with the collapse postulate, but it is worth saying, at the start, that most of the time, for most of the predictions that one wants to make from quantum theory, the postulate works very well.

One often-cited problem with the collapse postulate is that it amounts to discontinuous (and irreversible) evolution of a system. The resulting picture of the evolution of quantum systems is thus odd indeed: continuous, deterministic, reversible, unitary evolution (through Hilbert space) according to the Schrödinger equation (or some other quantum equation of motion), punctuated by discontinuous, irreversible, probabilistic, instantaneous, changes of the state.

At the very least, one would like some story about why these punctuations occur. Clearly, in the statement of the postulate, they are connected with measurement. But what is physically special about measurement? Alas, no compelling answer is forthcoming. Indeed, the most obvious problem with the collapse postulate is that it relies on an unanalyzed notion of 'measurement'. Most of the time, reasonable people can agree about when a measurement has occurred, but that fact is entirely unhelpful. For most researchers in the foundations and philosophy of quantum theory seem to agree that if quantum theory is supposed to be a fundamental theory, then it should tell us when a measurement occurs (or more generally, what a measurement is), not vice versa. The world should not rely on us to 'tell it' when to collapse a state.

5.4.4 Macro-Micro Distinction

One answer to the question 'what is a measurement' is suggested by our discussion of Schrödinger's cat (§5.1.1), and is sometimes put forward as a response to the measurement problem. The suggestion is that a measurement occurs when the state of a microscopic system is 'magnified' in such a way that it becomes correlated with the state of some macroscopic system. There is no denying that paradigmatic measurements do have this feature. Alas, this characterization relies on another ill-defined notion, namely, the difference between the microscopic and the macroscopic.

The distinction is also sometimes made between the 'easily reversible' and the 'essentially irreversible'. Because microscopic systems have few degrees of freedom, their behavior is often easy to reverse, while the behavior of macroscopic systems, with vastly many degrees of freedom, is very difficult if not practically impossible to reverse.

In either case — whether the point is made in terms of size or reversibility — the idea is supposed to be that at an appropriately large (or irreversible) scale, physical systems behave classically. Indeed, one sometimes hears 'the Copenhagen'\(^{70}\)

\(^{70}\)This 'interpretation' — unlikely, however, to have ever been a single unified view — is
interpretation of quantum theory, and especially Bohr’s version of it, characterized in this way: one must presume that measuring apparatuses are classical objects, and this presumption provides the grounds for determining when a collapse (measurement) occurs.

However, while again providing an often useful practical characterization of measurement and ‘the classical’, these distinctions are, in most researchers’ view, not well enough defined to sit at the foundations of a supposedly fundamental theory.

5.4.5 Decoherence

A related idea, but recently more well developed, is that sufficient interaction with ‘the environment’ serves, in essence, to ‘collapse’ (‘decohere’) the state of a system. Here we need to be very careful, because there is a well-studied phenomenon, called ‘decoherence’, that involves the interaction of a system with its environment. There is no disputing the physical importance of this phenomenon. On the other hand, many have invoked this phenomenon as providing some sort of solution to the measurement problem. This claim requires careful scrutiny.

5.4.5.1 The Phenomenon of Decoherence

5.4.5.1.a Qualitative Description

It is remarkably difficult to isolate a physical system from the rest of the world (its ‘environment’). Particles from almost every corner of the particle zoo are hurling around, and a great many of them can penetrate even very strong barriers (such as lead walls). Even for very small systems (such as a particle of dust), it is well-nigh impossible to prevent significant interaction with the environment.

Physicists have developed both simple and very sophisticated models of this interaction, ranging from assuming that the system interacts with an otherwise unspecified thermal bath to carefully modeling the rate, nature, and strength of interactions that a given system is likely to experience in a given type of environment. With these models, one can estimate (and in very rare, usually highly idealized, cases, explicitly determine) the effect of these interactions on the state of the system.

Notice that these interactions will entangle the system with the environment. We are therefore no longer talking, in the first place, about ‘the’ state of the system, but about the state of the composite ‘system-plus-environment’. Of course, typically we will have little or no access to the relevant environmental degrees of freedom. (Imagine, for example, that a photon bounces off a dust particle, then gets trapped in the atmosphere, or worse, heads out to space. In the former case, recovering the photon will be practically impossible, and in the latter case, it could

so-called because it is typically associated with Niels Bohr and his associates, who worked in Copenhagen. See Cushing [1994, chs. 6,7], Beller [1999], and references therein, as well as Landsman, Ch. 4, §1, this volume.
be literally impossible.) Although these degrees of freedom in a sense ‘encode’ certain information about the system (such as its location, because typically the interactions are position-dependent), that information is almost always practically, and occasionally in principle, lost to us.

Hence, although the system will become entangled with the environment, we typically have access only to its reduced state, not to the state of the total composite. We obtain this reduced state by tracing out the degrees of freedom of the environment. In many models of the interaction, the result is a reduced state for the system that is approximately diagonal in position; that is, its (mixed) state looks like the state of a system that is well-localized in space (in the sense that each component (spectral projection) of the mixture is well-localized in space). Decoherence may, in this sense, be thought of as ‘localizing’ the system (but see section 5.4.5.2.a, where we will worry explicitly about the fact that this mixture is improper).

This localization ultimately derives from the fact that in these models, the interaction between the system and the environment is position-dependent. (The environment interacts with the particle only in the vicinity of the particle.) More generally, if the interaction Hamiltonian that describes the exchanges of energy between the system and its environment commutes with some system observable, \(Q \otimes I \), then the reduced state of the system becomes approximately diagonal in the basis picked out by the eigenvectors (or eigenspaces) of \(Q \). The environment is said to ‘suppress’ the off-diagonal, ‘interference’ terms. Moreover, because the interaction Hamiltonian commutes with \(Q \), a system that is already in an eigenstate of \(Q \) will tend to remain so (assuming, as is often physically reasonable, that the interaction Hamiltonian swamps the effects of the free Hamiltonian for the system).

5.4.5.1.b Example

A classic and much-studied example of decoherence (e.g., Joos and Zeh [1985]), involves a dust particle in the atmosphere. Here is a simplified summary of their argument.

Let \(|\psi\rangle \) represent the initial state of the dust particle. Let the states \(|\psi_q\rangle \) be a basis of well-localized states for the particle (each centered at a position labeled \(q \)). Let \(|E_0\rangle \) be the initial state of the environment, and consider the interaction between the particle and a single air molecule in the environment for a particle that is in one of the states \(|\psi_q\rangle \): as a result of this single interaction, we will assume that the particle-plus-environment evolves into the state \(|\psi_q\rangle \otimes |E_q\rangle \). (Here we assume, in particular, that the dust particle is much heavier than the air molecule, so that the interaction leaves the state of the dust molecule essentially unchanged).

Joos and Zeh show, roughly, that if \(|\psi\rangle \) (represented as a wavefunction) is initially in a Gaussian (not necessarily well-localized) state, written in the \(|\psi_q\rangle \)-basis as

\[
|\psi\rangle = \sum_q c_q |\psi_q\rangle,
\]

then the matrix representation of the reduced density operator for the particle in the \(|\psi_q\rangle \)-basis (recall §1.2.3.4), after one such interaction, will be:

\[
W_{qq'} = c_q c_{q'}^* \langle E_q | E_{q'} \rangle,
\]
where \(|\langle E_q | E_{q'} \rangle| \approx 0\) whenever the distance between \(q\) and \(q'\) is much larger than the wavelength of the dust particle.\(^71\) In other words, the off-diagonal \((q \neq q')\) terms in \(W_{qq'}\) get reduced by a factor of \(|\langle E_q | E_{q'} \rangle|\). The intuition here is that because the states \(|E_q\rangle\) and \(|E_{q'}\rangle\) correspond to environments where the air molecule has scattered from the dust particle in two different locations (represented by \(q\) and \(q'\)), if those locations are very different, then the corresponding states of the environment will be 'very different' (i.e., nearly orthogonal). (Of course, if \(q = q'\) then this inner product is 1.)

Joos and Zeh then show, for a wide range of different models of the environment, that after many such interactions, the off-diagonal terms in the reduced density matrix decay exponentially, at a rate that depends on \(q - q'\) (and is zero when \(q = q'\)). The rate is very fast: according to Joos [1986], the reduced density matrix for a dust particle with radius \(10^{-5}\) cm in even a high quality vacuum will be extremely close to diagonal in position\(^72\) in about one microsecond. One says that the state of the object system (the dust particle) has 'decohered' as a result of its interaction with the environment.

5.4.5.2 Decoherence and the Measurement Problem

5.4.5.2.a Decoherence Does not Solve the Problem Decoherence appears to 'localize' systems that interact with their environment, so that perhaps we will not, after all, ever need to worry about encountering cats that are 'smeared' between two macroscopically distinct states (recall §5.1.1). Alas, there is a problem with this conclusion, stemming from the fact that the reduced state of the system is an improper mixture (recall §1.2.6.3.b). Let us investigate this point further.

On the one hand, we must acknowledge that it would be practically impossible to perform an experiment to determine that the reduced state of a system that has decohered is not a proper mixture. To see why, consider the very simple case of two perfectly correlated particles (analogous to the object system and its environment, which, as a result of their interaction, have become correlated), as in (93). The reduced state for \(\alpha\) is \(W_\alpha = \sum_n (1/N) |a_n\rangle\langle a_n|\) (analogous to the reduced state of the object system, which, recall, is 'nearly diagonal in position'). This state makes the same predictions for every observable on \(\alpha\) as the state in (93) does. In order to distinguish between proper and improper \(W_\alpha\), we would therefore need to measure some observable on the compound system (\(\alpha\&\beta\), and in particular we would need to measure the correlations between \(\alpha\) and \(\beta\) (for \(\alpha \& \beta\) is not in an entangled state — and therefore \(\alpha\)'s state is a proper mixture — if and only if there are no non-trivial correlations between them). Now, in the case

\(^71\) Here we are relying on de Broglie's relation between momentum and wavelength — recall note 57 of §4.2.1.

\(^72\) In this case, 'extremely close to diagonal in position' means that the reduced density operator can be written as a sum of states that represent the dust particle localized to within about \(10^{-13}\) cm.
of (93), measuring these correlations is relatively straightforward (assuming that we have many copies of the pair all in the same state), because in fact they are perfectly correlated in many observables. But in the case of interest here — an object system and its environment — things are decidedly more difficult, because the correlations exist only between a very few particles of the environment and the object system. As I noted above, it is in general practically impossible to recover those particles from the environment, and even if we could, in general not just any measurement on them will do the job. Indeed, if we do not have many copies of the total system (and in general we will not!), then the measurement in question becomes even more difficult, because we must measure an observable (analogous to the projection onto the state in eq. 93) that is not even a product (i.e., of the form $F \otimes G$).

On the other hand, the practical impossibility of performing such a measurement on the environment does not by itself license the assumption that the mixed state of the decohered system is (or may be treated as if it is) proper. The problem, as ever, is the eigenstate-eigenvalue link. The true quantum-mechanical state of the compound system is an entangled state, and in this state, according to the eigenstate-eigenvalue link, the object system does not have a definite location (in general). The assumption that the state of the system 'might as well' be a proper mixture is in fact inconsistent with this claim. In other words, while the two states are observationally very hard to distinguish, they are (given the eigenstate-eigenvalue link) interpretationally inconsistent.

Of course, one could give up on the eigenstate-eigenvalue link, and many interpretations do. We will discuss some of them shortly. The point here is that, with the eigenstate-eigenvalue link in place, decoherence does not solve the measurement problem.

5.4.5.2.b Decoherence Does Help with the Problem Decoherence does, however, help with the most general form of the problem of measurement. Recall (§5.3.2) that the measurement problem is not confined to interactions that would typically be regarded as measurements. Many interactions between quantum and macroscopic systems will put the macroscopic system in a state that, given the eigenstate-eigenvalue link, will be contrary to what most presume to be the deliverances of everyday experience. In other words, in its most general form, the 'measurement' problem is just the problem that quantum theory apparently fails to assign definite values to observables that appear, on the basis of everyday observation, to have definite values. In the special case of a typical measurement, we are perhaps already halfway to a solution, for in this case, the apparatus is at least already in a mixture, albeit improper, of 'desired' states.

But what about the more general sorts of interactions, mentioned above, that are not explicitly measurements but still generate 'bad' states for macroscopic objects? Decoherence promises to secure the following: for 'relatively large' systems (for example, at least as big as a dust particle), interaction with the environment will entail that the state of the system will become a mixture, albeit improper, of
‘desired’ states (or something that is very close to such a mixture — so close that one might be willing to overlook the difference). Even so, however, this strategy has merely reduced the general problem to a problem that continues to elude a satisfactory solution, although it does give one further justification for focusing the discussion specifically on measurements (because decoherence apparently reduces the general situation to one that is at least formally similar to measurement-situations).

5.5 Interpretations

5.5.1 Ways of Pursuing the Project

I have covered a number of philosophical and foundational issues arising from quantum theory, and an ‘interpretation’ of the theory should address all of them in some way or other — from providing an account of the empirical content of the theory, to providing an understanding of incompatibility (and thereby the ‘uncertainty relations’), to providing some understanding of the apparent failure of locality in the theory (§6). Nonetheless, most interpretations are aimed primarily at solving the measurement problem. As we saw above, that problem can be characterized (among other ways) as a conflict between (i) a common understanding of the physical properties of familiar physical objects, including the sorts of inferences about them that are valid, and (ii) a minimal account of when observables are empirically well-defined, taken in the context of (iii) quantum theory. Conceived in this way, there are three ingredients that lead to a contradiction, and therefore three generic strategies for avoiding the contradiction:

1. Deny that the common understanding of the physical world or inferences made about the physical world are always true or valid. For example, one might deny, contrary to appearance, that ‘pointers’ at the end of a measurement have a single definite (or nearly definite) position. We will encounter other ways to ‘deny common sense’ below. Let us call these theories ‘uncommon sense interpretations’.

2. Supplement, or replace, the minimal account of when observables are empirically well-defined. In some cases, extra ‘hidden’ variables are added to the theory. In all cases, systems are said to have properties that go beyond what standard quantum theory would assign, and hence all such interpretations are often, with admitted stretching of the concept, called ‘hidden-variables interpretations’. (Inasmuch as adding new physical variables — and often a dynamics for them — to the theory is tantamount to proposing a new theory, these interpretations are often called ‘hidden-variables theories’. I shall usually stick with the term ‘interpretation’, though I mean to be making no particularly substantive claim by doing so, and I shall occasionally use the term ‘theory’ to conform to custom.)

3. Supplement (i.e., change) standard quantum theory as thus far described
with some additional physics. Such interpretations add a rule (usually conceived as expressing a dynamical law of some sort) that results in systems having the properties, or nearly the properties, that we naïvely take them to have. Because the result of all such rules is a 'collapse' of the state from a superposition of values to a single value, these interpretations are often called 'collapse interpretations'. (Again, they are sometimes instead called 'collapse theories' and I shall occasionally use that term as well.)

(Of course, the strategies might also be combined, but generally interpretations characterize themselves in terms of one of these strategies, even if one or both of the others fall out as an additional consequence.) I shall accordingly discuss interpretations under these three headings.

There is not space here to consider all, or even a majority, of the interpretations in each class. I will therefore have to restrict attention to a brief account of just two important representatives from each of the three genres. The reader should keep in mind that there are different versions of even the few interpretations that I shall discuss here. In most cases, I have chosen to describe a version that strikes me as the least problematic, but this claim is, in most cases, controversial.

My treatment of these interpretations will, necessarily, be brief. I will give a few more references than I have previously, to get the interested reader started on the literature.

5.5.2 'Uncommon Sense' Interpretations

5.5.2.1 Quantum Logic Interpretations I have already noticed (§2.1.1) that the lattice of subspaces of a Hilbert space, i.e., the lattice of 'propositions' about a physical system, can, prima facie, be interpreted logically. Quantum logic interpretations take this idea seriously, and understand quantum theory to necessitate a revolutionary change from classical to quantum logic.\(^{73}\)

One way to characterize the difference between classical and quantum logic is in terms of the failure of distributivity (§7.4.3) — the classical and quantum lattices of propositions are otherwise structurally (logically) the same. The basic idea of the quantum logic interpretation, then, is that in particular the classical law of distributivity is invalid. This invalidity is supposed to allow one to make the sorts of assertion that, for example, the naïve realist (§5.4.1) had hoped all along to be able to make. For example, let \(F\) and \(G\) be two incompatible maximal observables sharing no eigenvectors. Denote their eigenspaces by \(\{F_n\}\) and \(\{G_m\}\). As propositions (elements of the lattice of subspaces of the Hilbert space, interpreted

\(^{73}\) Birkhoff and von Neumann [1936] were among the earliest advocates of something like a quantum logic interpretation. Subsequent work in this area is founded on theirs. Some of the advocates of a quantum logic interpretation have been: Finklestein [1962; 1969], Putnam [1969], Friedman and Putnam [1978], and Bub [1974]. See also the collection of papers (Hooker 1975; 1979). Some well-known critiques have been made by Dummett [1976] and Gibbons [1987]. Many of the standard objections are addressed in Dickson [2001], and occasionally also in the work of the advocates listed above.
logically), they assert that a system has the corresponding eigenvalue as a value for the observable. Then:

\[(103) \left(\bigvee_n F_n \right) \wedge \left(\bigvee_m G_n \right) = \mathbb{I} \wedge \mathbb{I} = \mathbb{I} \]

where \(\mathbb{I}\) is the logically true proposition. If we read the first half of this conjunction as asserting that the observable \(F\) has some value (understanding the existential quantifier in terms of disjunction, as one often does), and similarly for the second half of the conjunction, then (103) asserts that \(F\) has a value and \(G\) has a value. Indeed, this assertion is logically true. (Note that if we could apply distributivity to (103), then we could quickly turn it into a logical contradiction, because for any \(n\) and \(m\), \(F_n \wedge G_m = 0\), the logically false proposition.)

Moreover, the corresponding claim is true for a similar conjunction (\(\wedge\)) of such disjunctions for any number of observables. Hence (understanding the universal quantifier in terms of conjunction) the quantum logic interpretation claims to recover the idea that all observables (for a given system) always have a value (for that system). If so, then the measurement problem is no longer a problem. Of course, this approach also raises some questions. In addition to doubts about whether logic is revisable at all, some have argued that the quantum logic interpretation simply moves the mystery from one place (quantum theory) to another (logic). In any case, it is clear that the quantum logic interpretation needs to make some argument about why classical logic does in fact work within certain domains. (Decoherence could be helpful, here.) It also needs to say something about the success of classical reasoning in mathematics. Both of these projects amount to open questions in the quantum-logic interpretation (Dickson [2001]).

5.5.2.2 Many-Somethings Interpretations Our second example of 'uncommon-sense' interpretations is the 'many-somethings' interpretations. These interpretations generally go under the heading 'many-worlds' interpretations, but the notion of a 'world' that is at work here (quite problematic in its own right) is sufficiently far from the usual understanding of that term that a less committal word seems appropriate.\(^74\)

In any case, whereas quantum-logic interpretations deny (or at best re-interpret) the logical validity of apparently valid inferences about the properties of physical objects, many-somethings interpretations deny (or at best re-interpret) the truth of apparently true claims about the properties of physical objects.

Consider again the right-hand side of (98). The problem that this state raised earlier was that, on the standard interpretation (adopting the eigenstate-eigenvalue

\(^74\)Indeed, we are talking, here, about a rather wide class of interpretations. It is far from clear that the intention of the originator of this class of views, Everett [1957], was to invoke the idea of many worlds, which appears to have been introduced by DeWitt (see his, and Everett's, article in DeWitt and Graham, [1973]). A 'many-minds' variant has been proposed by Albert and Loewer [1988] and Donald ([1990]), among others. See the review by Butterfield ([1995]) and the book by Barrett [1999] for finer-grained classifications and many references.
link), a (compound) system in this state has no particular value for the observable $F \otimes Q$ (where Q is the pointer-observable). The many-somethings interpretations go to the opposite extreme, and claim that every term on the right-hand side is ‘real’, corresponds to some reality. The apparatus has neither zero, nor one, of the values for the pointer-observable, but all of them.

Immediately, these interpretations face some questions. There is, of course, the obvious question of how systems can manage to ‘have’ multiple states — it appears to involve a straightforward contradiction. Generically, the reply is to introduce an indexical property that resolves the contradiction — the different values of the pointer-observable, for example, are realized relative to different values of the indexical property, which correspond to different somethings (‘worlds’, or in some versions, ‘minds’).

Everett’s original idea, however, seems rather to have been fundamentally relational in character. Indeed, consider a generic two-system state, as in (26). If the first system might be said, in some sense, to ‘really have’ the state $|x_j\rangle$, then relative to $|x_j\rangle$, the second system might be said to be in the state $|\psi_{\text{relative to } x_j}\rangle = K_j \sum_m c_{jm} |y_m\rangle$, where K_j is some constant of normalization. The probabilities generated by $|\psi_{\text{relative to } x_j}\rangle$ for the results of measurements on the second system are exactly those generated by the original compound state (for measurements that are restricted to the second system). Everett’s original idea seems to have been that systems posses states only ‘relative’ to the states of other systems. Others seem to adopt something like the view that the first system has various of the $|x_j\rangle$ in different ‘worlds’, and in those worlds, the second system has the corresponding relative state.

Each of these views raises difficult questions. In the case of Everett’s relational view, more needs doing. Consider the analogous case in space-time theories, where (prior to the 20th century), relationalists asserted that the only (spatio-temporal) reality is relational, but the only theory that was available (Newtonian classical mechanics) was not explicitly relational. Everett’s relational view seems to be in somewhat of a similar situation. (For example, how and from what ‘point of view’ does the quantum state for the compound system itself get assigned? And how can it be understood relationally?) Moreover, the many-somethings views face the obvious metaphysical hurdle of making some sense of the plurality of ‘somethings’ (worlds, minds, whatever).

Here, I will raise just one additional question, commonly raised. The general prescription of these interpretations is to allow that every term in a superposition corresponds to a ‘reality’, in the sense just described. But recall that a given state can be decomposed in many ways, and that in general the terms in the superposition are different, depending on the decomposition. Which decomposition is ‘correct’?

One sort of answer to this question will postulate, or argue for, a preferred basis, in terms of which the decomposition is to be made. (The argument for a

75 See, for example, Brown and Pooley [2002] for details of the history, and see Butterfield, Ch. 1, §2.3, this volume, for further discussion of relationalism.
preferred basis is most often made on the grounds that decoherence (§5.4.5) picks it out, but there is a serious question whether the near-diagonality in position that decoherence typically effects is sufficient.\footnote{It is worth noticing as well that a state's being nearly diagonal in position does not entail that the basis in which it is diagonal is anything close to position. See Bacciagaluppi [2000]. In these cases, which basis are we to say is 'picked out' by decoherence?} This answer is, in any case, highly problematic. For suppose that we had some good reason to believe that there is a preferred basis whose elements represented the true physical properties of all objects. In that case, we would hardly need the extravagance of the many-somethings interpretations to resolve the measurement problem. Relying on the preferred basis, we would simply assert that systems are always to be described in terms of this basis. There would then be no obstacle (for example, no Kochen-Specker contradiction) to defining probabilities over the properties picked out by this basis. (Indeed, below (§5.5.3.1) we will consider an interpretation — the de Broglie-Bohm theory — that can be characterized in precisely these terms.)

Another answer allows all decompositions to correspond to realities. Here, decoherence can be helpful, because it suggests that creatures like us, that is, creatures who interact with their environment in the particular way that we in fact do, will in fact be subject to decoherence, so that our perceptions will be correlated to the 'right' states of the objects of our perception, and we, as perceivers, will, as far as we can tell (with very high probability) be in worlds where the properties are the ones we typically believe objects to have. Of course, there remains to explain the point that in fact there are many 'copies' of each one of us (one for each value of the indexical), but we leave that issue to the advocates of these interpretations, who have their own ways of making sense of this type of plurality.

5.5.3 'Hidden-variables' Interpretations

The basic idea behind any hidden-variables interpretation is that quantum theory (as EPR argued! see §4.4) is incomplete. These interpretations propose to supplement the state assigned to a system by quantum theory with an additional, 'hidden', state. (The variables need not in any sense be unavailable to observation; they are 'hidden' only from the eyes of quantum theory.) Of course, not just any proposal will do. In particular, such theories must somehow recover the empirical success of quantum theory. Doing so amounts to recovering the quantum probabilities as an average over the hidden states, in much the same way that one hopes to recover classical thermodynamics from classical statistical mechanics by averaging over the micro-states of the system. (See Uffink, Ch. 9, this volume.)

Hence, for example, label the hidden states by λ (where for simplicity we will assume that $\lambda \in \mathbb{R}$). Let $\rho_W()$ be the distribution of the hidden states in the (quantum) state W. Finally, let $\Pr_{\lambda,W}(F = f_k)$ be the probability assigned by the hidden state λ to the result (eigenvalue) f_k of a measurement of F on a system in the state W. (In the deterministic case, all such probabilities are of course 0 or...
1.) Empirical adequacy then requires that

\[(104) \int_{\mathbb{R}} \rho_W(\lambda) P_{\lambda,W}(F = f_k) d\lambda = \text{Tr}[W P_{f_k}],\]

where \(P_{f_k}\) is the eigenspace of \(F\) corresponding to the eigenvalue \(f_k\).

In this section, I will consider the de Broglie-Bohm theory (§5.5.3.1), a deterministic hidden-variables theory, and modal interpretations (§5.5.3.2), which are in general indeterministic.

5.5.3.1 The Theory of de Broglie and Bohm

The de Broglie-Bohm theory is a deterministic theory of the trajectories of particles, somewhat in the mold of classical Newtonian (better, Hamiltonian) dynamics. In its original form, the hidden-variables theory was formulated explicitly by separating the Schrödinger equation (including a potential, \(V\), in the Hamiltonian) into a real and complex part, so that the solution, \(\psi(x,t)\), is written as \(\psi(x,t) = R(x,t)e^{iS(x,t)}\). The complex part has the form:

\[(105) \frac{\partial S}{\partial t} + \frac{(\nabla S)^2}{2m} + V - \frac{1}{2m} \frac{\nabla^2 R}{R} = 0.\]

This equation has the form of Hamilton's equation, with the potential given by \(V + U\) where \(U\) is the 'quantum' potential \(-\frac{\nabla^2 R}{2m R}\). The real part has the form of a continuity equation, and implies the conservation of probability:

\[(106) \frac{\partial p}{\partial t} + \nabla \cdot p \dot{q} = 0,\]

where \(p(x,t) = R^2(x,t) = |\psi(x,t)|^2\) is understood (stipulated to be) the probability of finding a particle at the point \(x\) (at time \(t\)) and

\[(107) \dot{q}(x,t) = \nabla S(x,t)/m\]

is interpreted as the velocity of the particle (when it is at the point \(x\) and time \(t\)).

Hence, one can understand the one-particle Schrödinger equation as describing an ensemble of particles (each of whose ‘quantum state’ is the same), distributed (in space) according to \(p(x,t)\). By (106), this distribution is conserved over time, and thus may be understood properly as a probability distribution. The individual particles move as if they were classical particles governed essentially by Newton's laws with the usual classical potential plus the additional 'quantum potential', \(U\).

This theory is important for several reasons. Here I will mention three.

First, it shows that the eigenstate-eigenvalue link is far from a required principle of interpretation. Indeed, the eigenstate-eigenvalue link is quite strongly denied in

77 The basic idea was first suggested by de Broglie, most famously in his [1927]. Later (after de Broglie had been convinced that the theory does not work) it was developed by Bohm [1952], and has seen much further development in the past few decades. For a variety of approaches to and viewpoints on the theory, see Cushing, Fine, and Goldstein [1996].
this theory. The position observable does not even have eigenstates, and yet, on this theory, every particle always has a definite position.

Second, it provides a clear counter-example to oft-cited lessons of quantum theory, to the effect that quantum mechanics implies a lack of determinacy at the fundamental level, the impossibility of fundamental determinism, the impossibility of definite trajectories for particles, the impossibility of picturing quantum phenomena, and so on. The theory clearly describes particles with definite trajectories, moving deterministically under the potential $V + U$.

Third, this theory is probably the best-developed interpretation, with applications. There are compelling accounts of how particles behave during measurements of spin, for example (Dewdney, Holland, and Kyprianidis, [1986]). Moreover, the theory has occasionally been used to make headway on applications and problems that seemed much more difficult from the standard point of view. A nice example involves the prediction of how long a particle that will tunnel through a potential barrier will spend in the barrier. Determining this quantity is conceptually tricky (at best) in standard quantum theory, because the 'particles' have no definite trajectories, and there is no time observable in quantum theory. But the problem is conceptually straightforward within the de Broglie-Bohm theory (Leavens [1990]), precisely because one can essentially display the possible trajectories of a particle under the influence of the potential barrier (and the quantum potential), and then simply take the average of the times spent in the barrior in each trajectory.

However, we should not ignore some difficult issues faced by the theory. Setting aside (as outside the purview of this article) the (very significant) difficulty of extending the basic idea to relativistic quantum field theory, there are other questions that it faces. Here I will mention one.

Initial appearances notwithstanding, the ontology of the theory can stretch the imagination a bit. Indeed, one faces the following dilemma. One the one hand, if we take the 'guiding field' (quantum potential) to be a real potential field of some sort, it is highly non-local. (In the literature, this point is sometimes put in terms of the fact that it 'lives' not in \mathbb{R}^3, but in the configuration space for the multi-particle system; of course, for a one-particle system they are the same.) This point gets reflected in the form of the 'guidance condition' (107) for many particles: $\dot{q}_i(x_1, x_2, \ldots, x_n, t) = \nabla_i S(x_1, x_2, \ldots, x_n, t)/m_i$. That is, the velocity of particle i depends not only on its location, but also on the locations of the other particles. Finally, notice that the particle does not respond to the intensity of the quantum potential in its region, but to the form. That is, increasing the intensity of the quantum potential (multiplying R in (105) by some constant > 1) does not change its effect on the particles at all. All of these (and more) observations will, for some, add up to the conclusion that the quantum potential is, at best, in need of some serious metaphysical clarification, and at worst, too bizarre to countenance.

On the other hand, one might then deny its reality. A particle moving according to the guidance condition, with $V = 0$ (zero 'classical' potential) will in general still 'deviate' from the classically expected trajectory, but are we thereby required
to suppose that this ‘deviation’ is due to the presence of some additional, non-classical, potential? Perhaps, instead, we can take the guidance condition as a fundamental rewriting of Newton’s laws.78 In this case, we may avoid the oddness of the quantum potential as a physical entity, but the theory becomes extremely reductionistic — the only real property of particles is their spatio-temporal trajectory. Such a theory is forced to eschew providing explanations (for phenomena such as bonding between particles) that one might wish to have, and in general we do have in standard quantum theory.79

5.5.3.2 ‘Modal’ Interpretations Modal interpretations80 are in many ways similar to the de Broglie-Bohm theory: they also postulate hidden-variables (denying the eigenstate-eigenvalue link) and they also (at least, they can) formulate a dynamics for these hidden-variables. There are two major differences: (1) in general modal interpretations will allow that the physical quantities that are ‘definite’ for a system are state-dependent, and therefore they can change in time; (2) in general (and typically as a consequence of the choice they make for which physical quantities are definite) modal interpretations are stochastic. Many such interpretations have been proposed. Here we concentrate one class of such interpretations (‘spectral modal interpretations’) that has seen much development, and briefly refer to some more recent ideas.

Recall that every density operator can be uniquely decomposed as a weighted sum of its spectral projections. The central claim of spectral modal interpretations is that the set of observables with a definite value is the largest set that can consistently be assigned values, with the restriction that the spectral projections of the density operator must have values (0 or 1, in this case). In other words, treat the density operator as an observable, and assign it a value; then assign values to as much else as one can without running into a Kochen-Specker-type contradiction. It turns out that, under some reasonable assumptions, this idea leads, for any given state (density operator), to a unique set of observables that will get assigned a definite value.81 Because the state (of course) changes in time — and keep in mind that we are talking about the reduced density operator, so that it need not change unitarily — the definite-valued observables generally change in time.

Many (though not all) modal theorists aim to define some sort of dynamics for the definite properties of a system. The problem is complicated because there are

78Indeed, the basic idea here is to reform the very notion of an ‘inertial’ trajectory. See Pitowsky [1991].

79See Bedard [1999] and Dickson [2000].

80There are many variants on the general theme of modal interpretations. The term itself was coined by van Fraassen [1972]. A renaissance of sorts occurred in the 1980s, with, for example, key works by Kochen [1985], Dieks [1988], and Healey [1989], and a later related but somewhat different view put forward by Bub [1997]. A helpful monograph is Vermaas [2000], and a helpful collection is Dieks and Vermaas [1998].

81As an example of this genre of theorem, see Clifton [1995]. Bub and Clifton [1996] prove a similar theorem, but geared towards Bub’s [1997] interpretation.
two sorts of dynamics occurring 'together': (deterministic) changes in the set of definite-valued properties (observables) for a system, and (stochastic) transitions from one definitely possessed property to another. It was shown by Bacciagaluppi and Dickson [1999] that the problem has a solution, and they exhibit some examples. However, just as in the de Broglie-Bohm theorem, there arises a serious difficulty about whether such a dynamics can be made Lorentz-invariant. Straightforward generalizations from the non-relativistic to the relativistic case are known to be unavailable, but it remains an open question whether a 'natively' relativistic version of the approach can work. The resolution of this issue is connected with the more general issue of whether, and if so how, the basic idea of the modal interpretation (‘make as many observables definite as possible, given certain constraints’) can be extended to quantum field theory. If it can, it seems that the most likely venue will be that of algebraic quantum field theory, for even the non-relativistic quantum-mechanical versions of the modal interpretation lend themselves nicely to an algebraic formulation.\footnote{For example, see Halvorson and Clifton [1999]. For an initial foray into modal interpretations of quantum field theory, see Clifton [2000]. For a discussion of this foray especially as it relates to the issue of Lorentz-invariance, see Earman and Ruettsche [2006], which also includes references to the earlier work on Lorentz-invariance in modal interpretations. Cf. also Halvorson, Ch. 8, Section 5, this vol.}

Do modal theories solve the measurement problem? If so, they do because their prescription for choosing the definite-valued observables manages to pick out the observables — such as pointer observables — whose definiteness is threatened by the measurement problem. The de Broglie-Bohm theory (as well as the modal interpretation of Bub [1997]) accomplishes this feat more or less by fiat. So long as the properties we believe pointers (and cats, and so on) to have can ultimately be understood to supervene on the trajectories of the constituent particles, the de Broglie-Bohm theory has a convincing solution to the measurement problem. Modal interpretations must in general argue their way to this point. For example, is definiteness of the spectral projections of the reduced density operator enough to secure definiteness of the properties that we believe macroscopic objects have? This question, as it turns out, is quite difficult to answer. In the case of an idealized impulsive measurement, the reduced density operator for the apparatus \textit{does} have the definite pointer-states as its spectral projections. But in realistic (non-ideal) measurements, there is potential trouble. At one time, it was thought that decoherence saves the day, but it is no longer clear whether decoherence does the work needed here.\footnote{See Bacciagaluppi and Hemmo [1996] for the former attitude, and Bacciagaluppi [2000] for the latter.}

5.5.4 Collapse Interpretations

5.5.4.1 Non-Dynamical Collapse Interpretation The idea that the quantum state must, in some sense or other, 'collapse', is quite natural as soon as one interprets it in terms of probability. And various suggestions have been made,
from time to time, about when this collapse occurs. See, for example, Dirac [1930]

Consider an observation, consisting of the measurement of an observable \(\alpha \), to be made on a system in the state \(\psi \). The state of the system after the observation must be an eigenstate of \(\alpha \), since the result of a measurement of \(\alpha \) for this state must be a certainty.

That is, collapse occurs upon observation (i.e., measurement). The argument that Dirac is making here is the following. If we repeat the measurement of \(\alpha \) on the system, we will get the same result that we got the first time (regardless of \(\psi \), and assuming, of course, that the measurement was of the first kind — §3.1.2) with probability 1. Suppose that result was \(a \). There is only one state that assigns probability 1 to \(a \), namely, the eigenstate corresponding to \(a \).

I have already suggested (§5.4.3) that an account along these lines is, at best, in need of help. Otherwise, it is little more than a statement of the collapse postulate, with no clear account of what makes the difference between ‘measurements’ and other interactions.

One obstacle to drawing this distinction in a principled way is that if too few interactions count as measurements, then we might, after all, still be stuck with the measurement problem (because collapse might not occur in situations where we need it to get the definiteness of properties that we experience as definite). However, if too many interactions count as measurements, we might end up with a theory that is empirically false. (For example, if the state of a photon passing through the double-slit apparatus (figure 3) always collapses after it passes through the barrier, then we will never see an interference pattern, contrary to experimental results.)

One approach to drawing the distinction (between cases where collapse occurs and cases where no collapse occurs) that arguably avoids both of these pitfalls, and arguably does begin to smell like an interpretation of the theory, is due to Wigner [1961]. Wigner is motivated by the following argument, often referred to by the name ‘Wigner’s friend’.

Wigner asks us to imagine the following scenario. A measuring apparatus, \(\mu \), measures some observable, \(F \) (by means of a pointer-observable, \(M \)), on an object-system, \(\sigma \). Meanwhile, both Wigner (\(\alpha \)) and his friend (\(\beta \)) are in a position to observe \(\mu \) (by means of ‘observation-observables’ \(A \) and \(B \)). Let us use \(|m_n\rangle \) to refer to the eigenstates of \(M \), and similarly for the rest. Now, suppose that the measurement of \(\sigma \) by \(\mu \) has occurred, while neither \(\alpha \) nor \(\beta \) has observed \(\mu \). If \(\sigma \) was originally in the state \(\sum_n c_n |f_n\rangle \) then we may write the state of the total system as

\[
(108) \sum_n c_n |f_n\rangle |m_n\rangle |a_0\rangle |b_0\rangle
\]

\[84\text{And, alas, such help has only rarely been forthcoming. Hence I have no list of references to offer the reader, here. Perhaps the most famous attempt to make sense of non-dynamical collapse is precisely the one discussed here, due to Wigner.}

\[85\text{There is a serious question whether a physical state such as ‘observes the pointer to be in the state \(|M_n\rangle \)’ is pure, and therefore whether there are observables such as \(A \) and \(B \). See §1.4.3.}\]
According to the eigenstate-eigenvalue link, in this state, μ and σ are not in a definite states of $M \otimes F$. At this stage, standard quantum theory will say to invoke the collapse postulate, so that the state becomes $|f_k\rangle|m_k\rangle|a_0\rangle|b_0\rangle$ for some k. In other words, in absence of specific knowledge about the outcome, the state becomes the (ignorance-interpretable) mixture
\[
(109) \sum_n |c_n|^2 P_{f_n} \otimes P_{m_n} \otimes P_{a_0} \otimes P_{b_0}.
\]

However, as noticed above (§5.4.5.2.a), there is a real empirical difference between (108) and (109), even if in general it is practically impossible to detect. Wigner finds nothing in the nature of σ, μ, or the interaction between them, to warrant the assumption that this physical change of state occurs.

Notice, moreover, that the observers α and β have not yet entered the picture in a substantial way. But it is their definite experiences that we are (in this argument) obligated to secure. Wigner considers himself (α), and notices that at this stage of the process (i.e., once the state is given by eq. 108), nothing threatens the definiteness of his experiences — in fact, he remains in the ‘has not yet observed’ state ($|a_0\rangle$) with probability 1. So consider the state after α observes the apparatus:
\[
(110) \sum_n c_n |f_n\rangle|m_n\rangle|a_n\rangle|b_0\rangle.
\]

Now Wigner feels compelled to assent to collapse, because otherwise (by the eigenstate-eigenvalue link) his own state would be indefinite.

But what about Wigner’s friend (β)? Suppose that β observes the apparatus before α. Wigner argues that, given a principle of charity about β’s reports of prior mental states, he is obligated to collapse the state upon observation by β, even if he (α) has not yet observed μ. For suppose that α then (after β) observes μ, and then asks β: After you observed μ, did you feel that you experienced a definite outcome? Did you observe it to be in a definite state? Surely β will answer ‘yes’, and assuming (as Wigner does — this assumption is the principle of charity) that we are to believe β’s report, we must assume that the state collapses upon observation by β.

Hence any observer to whom the principle of charity applies will effect a collapse of the state, upon observation. Wigner believes that the principle extends to anything that is, or has, a ‘mind’ (a term that is largely uncircumscribed, here). Moreover, given a fairly strong distinction between physical bodies and minds (i.e., given some form of dualism), one can point to the distinctness of minds as somehow the reason that observation by a mind collapses the state, while observation by a non-mind (e.g., a typical measuring apparatus) does not collapse the state.

Setting aside the question of the plausibility of the premises of Wigner’s argument, notice that we have arrived at this conclusion through the backdoor. In other words, Wigner does not give us an argument that proceeds from the nature of minds, and appeals to that nature to argue that observation by a mind will
collapse the physical state. Indeed, Wigner’s view faces the same difficulty that all dualisms face: what is the connection between mind and matter? How does mind collapse the physical state of a system? Various extraordinarily speculative ideas have been floated, none particularly convincing. (See Atmanspacher [2004] for a review.)

5.5.4.2 Dynamical Reduction Theories Another strategy for making collapse well-defined is to describe it as a physical process. Of course, in one sense it already has been characterized as a physical process, for it is a change in the physical state of a system. Here, however, I mean something more, namely, formulating a single equation of motion that somehow incorporates both the continuous ‘Schrödinger’ evolution and collapse, in a unified way. There have been (and continue to be) many proposed schemes along these lines.\(^86\) Here, again, I consider just one example.

5.5.4.2.a Intuitive Account of Continuous Spontaneous Localization
The example that I will consider is the continuous version of a theory originally proposed by Ghirardi, Rimini, and Weber [1986]. The continuous version, called ‘continuous spontaneous localization’ (CSL), is due to Pearle [1989]. It is easiest to state in terms of wavefunctions. The basic idea is that each physical system in the universe experiences, simultaneously, two types of evolution: the ‘normal’, deterministic, ‘Schrödinger evolution’, and a stochastic tendency towards localization. By the latter, we mean that the system’s wavefunction (in configuration space) experiences random (but infinitesimally small) fluctuations, the net result of which is, on average and with overwhelming probability, to tend to make the wavefunction more localized — more of the probability gets concentrated in some localized region.

The strength of this stochastic evolution, which determines how quickly the localization occurs, is determined by the number of particles in the system.\(^87\) For systems with microscopic numbers of particles, the stochastic part of the evolution is swamped by the Schrödinger evolution, so that the evolution is, for such systems, nearly identical to that given by standard quantum theory. But for systems with macroscopic (e.g., around \(10^{23}\)) numbers of particles, if the system is initially in a superposition of two (or more) localized states whose centers of localization are far apart (\(> 10^{-5}\) cm or so), then the stochastic element of the evolution acts very quickly to suppress (continuously) all but one of the terms in the superposition. The parameters of this stochastic process are arranged so that the probability of reduction to one state or the other is equal to the quantum probability assigned to that state (by the initial superposition).

\(^{86}\)See, for just a few examples, Diosi [1992], Ghirardi, Rimini, and Weber [1986], Gisin [1984], and Primas [1990].

\(^{87}\)There are schemes in which the strength of the stochastic evolution depends on other things, for example, mass.
5.5.4.2.b Mathematical Account of Continuous Spontaneous Localization

Here are a few mathematical details. In CSL, the evolution of the wavefunction (here written in one spatial dimension) is given in terms of the (non-unitary)\(^{88}\) operator:

\[
(111) \quad U(t) = \exp[-iHt] \exp \left[-\frac{\gamma t}{2} \int N^2(x) dx \right] \exp \left[\int N(x) B_x(t) dx \right].
\]

The first term is just the usual quantum-mechanical evolution operator (for a time-independent Hamiltonian, \(H\)). The \(N(x)\) are a family of ‘number density’ operators that, intuitively, indicate roughly the number of particles inside some region centered on \(x\) (or, in three dimensions, a ball of some fixed radius around \(x\) — this fixed radius is part of the definition of the \(N(x)\), which we set aside here). The \(B_x(t)\) is a field of stochastic processes (i.e., a continuous family of stochastic processes, each evolving at a point \(x\)). Hence the evolution operator in (111) is ‘stochastic’ — it depends on the values that the \(B_x(t)\) take. Notice, though, that for a given realization of the \(B_x(t)\), one can plug the realization into (111) and it would then be deterministic.

The second term in (111) is a ‘decay’ term, where the rate of decay depends on \(\gamma\) (and the particle-density). The third term in (111) is a ‘growth’ term, where the growth depends on the evolution of the stochastic process \(B_x(t)\) (and the particle-density). These two terms ‘fight’ against one another, with the ultimate result tending (with extremely high probability) to be an overall decay of the wavefunction, except in some localized region, where it grows.

\(B_x(t)\) is defined so that the likelihood of a growth in any given region is directly proportional to the amplitude of the wavefunction in that area. Hence the probability that the growth term will eventually cause the wavefunction to grow in a given area is indeed the same as the quantum-mechanical probability that a collapse would occur in that region. Notice that as the wavefunction begins to collapse onto some region, the probability that it will continue to collapse onto that region grows, because the amplitude of the wavefunction will be higher there, and therefore the stochastic processes in that region will be more likely to grow.

The final ‘trick’ is to choose \(\gamma\) so that the claim of the previous section is true, namely: for systems with a small number of particles, the first term in (111) dominates the other two (because \(N(x)\) will be small everywhere), while for systems with a very large number of particles, the second and third terms will come into play. There are empirical constraints on the choice of \(\gamma\), but it is in fact possible to find values for \(\gamma\) that are consistent with known experimental fact.

5.5.4.2.c Evaluation CSL has the obvious virtue of being a well-defined, mathematically precise, theory that manages to describe ‘collapse’ as a physical process in an unambiguous way. Nonetheless, several questions have been raised about it. Here I mention two.

\(^{88}\)In general, the norm of the wavefunction is not preserved by its evolution in CSL. However, it is a straightforward matter to renormalize the wavefunction at any time.
The first concerns perhaps the biggest theoretical obstacle faced by the theory, namely, the formulation of a relativistic version. While progress has been made in various directions (e.g., Ghirardi, Grassi and Pearle [1990]), serious problems remain. Moreover, these problems are directly related to the characteristic feature of CSL, the introduction of the family stochastic processes \(B_x(t) \), which, in the relativistic context, gives rise to infinities that do not appear in the standard theory (and cannot be ‘renormalized away’ in the same way).

The second issue concerns the fact that the collapse in CSL is never complete. That is, the state never becomes one whose support is entirely contained within a localized region. Instead, it always has ‘tails’ — the wavefunction always has non-zero amplitude at points outside the region in which the system has supposedly been localized.

The question here is whether one is still licensed to call such a system ‘localized’. If we maintain the eigenstate-eigenvalue link then the answer might well be ‘no’. After all, a wavefunction with tails is not an eigenstate of the position observable, nor any coarse-graining of it. The response on the part of at least some advocates of CSL has indeed been a new understanding of the wavefunction, as some sort of direct representation of, as Bell [1990] put it, ‘density of stuff’. This view, while avoiding the immediate problem, does have some metaphysically disturbing consequences, such as the fact that apparently there will, on this view, be very ‘faint’ (low-density) ‘copies’ of all objects located in many places.

6 NON-LOCALITY

Recall (§1.2.6.4) that compound systems in a non-factorizable state may exhibit correlations in the properties that they exhibit (upon measurement at least). These correlations may be ‘non-local’. Non-locality involves, first, the spatial separation of the particles (and the measurement-events on them that exhibit the correlated properties). There is the question, then, whether correlations exhibited by spatially separated systems can be explained in terms of a ‘common cause’, a single event in the history of the two systems that could explain the correlation between them.

In §6.1 I will clarify this question (§6.1.1), and then consider some theorems that show, under reasonable assumptions, that in fact no such common cause explanation is available (§§6.1.2–6.1.3). Hence quantum theory — and indeed the physical world itself! — appears to be ‘non-local’, in some sense or other. In §6.2 I will consider several reactions to these theorems, and the implications for the prospects of finding a relativistically invariant and also conceptually satisfactory interpretation of quantum theory.
6.1 No-Go Theorems

6.1.1 Non-local Correlations

6.1.1.1 Statistical Correlation The term ‘correlation’ comes from statistics, and it is being used here in that sense. Given two random variables, A and B, their correlation is defined to be:

$$\rho_{AB} = \frac{\mathbb{E}[(A - \bar{A})(B - \bar{B})]}{\sigma(A)\sigma(B)},$$

where $\mathbb{E}[\cdot]$ is the expected value and $\sigma(\cdot)$ is the standard deviation. The correlation is 1 if $A = kB + m$ for positive k (and any fixed m), and -1 for negative k. The numerator of (112) is called the ‘covariance’. The denominator is present essentially for normalization.

It should be clear that correlation is a measure of the ‘dependence’ of the value of one variable on the other. Non-zero correlations will generally be a consequence of the fact that, for at least some possible values a and b of the random variables, \(\Pr(A = a|B = b) \neq \Pr(A = a) \), i.e., A and B are not statistically independent.

6.1.1.2 Correlations in the Singlet State For a pair of spin-1/2 particles, the state

$$|\psi_{\text{singlet}}\rangle = \frac{1}{\sqrt{2}}(\langle z_+|z_\rangle - |z_-|z_+\rangle).$$

is called the ‘singlet’ state. (Notice that it is a two-particle analogue of the state in eq. 93.) Consider the observables S_z on each of the two particles. (One can think of these observables as random variables, because the state in (113) generates probabilities for the possible values of these observables, or more precisely, for the observables $S_z^{(1)} \otimes S_z^{(2)}$ and $I_z^{(1)} \otimes S_z^{(2)}$, where the superscripts number the particles.) The covariance of these observables (normalized to have eigenvalues ± 1 in order to bypass calculating standard deviations) in the state $|\psi\rangle$ above is:

$$\rho_{S_z^{(1)}S_z^{(2)}} = \langle \psi | (S_z^{(1)} \otimes S_z^{(2)}) | \psi \rangle$$

$$= \frac{1}{2} \left(\langle z_+|z_\rangle - \langle z_-|z_+\rangle \right) \left((-1)|z_+\rangle|z_-\rangle - (-1)|z_-\rangle|z_+\rangle \right)$$

$$= -1.$$

The values are perfectly anti-correlated. Indeed, a similar calculation for $S_u^{(1)} \otimes S_u^{(2)}$ (for an arbitrary direction u) shows that $\rho_{S_u^{(1)}S_u^{(2)}} = -1$; the perfect anti-correlation holds in every direction. For distinct directions, u and u' (but, without loss of generality given the spherical symmetry of the state, setting $\phi = \phi' = 0$ in (36) and again ‘normalizing’ the observables), we calculate:

$$\rho_{S_u^{(1)}S_{u'}^{(2)}} = -\cos \theta \cos \theta' - \sin \theta \sin \theta' = -\cos(\theta - \theta').$$
This correlation is predicted by quantum theory, and well confirmed by a variety of experimental tests.

6.1.1.3 Common-Cause Accounts of Correlations Of course, in one sense, non-local correlations are ubiquitous. Consider: there is a correlation in the tides at different locations on the planet; there is a (negative) correlation between the average daily temperature in Sydney, Australia and London, England; there is a (positive, near-perfect) correlation in the number of words appearing in the newspaper at my front door each morning, and the one appearing at my neighbor’s front door each morning. None of these correlations are surprising, even though they are correlations between the properties of spatially separated objects. The reason is clear: these ‘non-local’ correlations have a local explanation, in terms of a common cause.

Following Reichenbach [1956, 158-159], one can formalize the notion of a common cause in terms of conditional probabilities. Suppose that A and B are correlated. In this case, $\Pr(A \land B) \neq \Pr(A) \Pr(B)$. A common cause for the (let us say, simultaneously occurring) events A and B is an event, C, such that: (i) $\Pr(A | C) > \Pr(A | \neg C)$; (ii) $\Pr(B | C) > \Pr(B | \neg C)$; (iii) $\Pr(A \land B | C) = \Pr(A | C) \Pr(B | C)$; and (iv) $\Pr(A \land B | \neg C) = \Pr(A | \neg C) \Pr(B | \neg C)$. Conditions (i) and (ii) say that C is probabilistically relevant to the occurrence A and B respectively, while conditions (iii) and (iv) say that C ‘screens A off from B’ (and vice versa) — that is, C completely accounts for the correlation between A and B.\(^{89}\)

Hence, for example, we may observe that the newspaper at my front door (A) was printed from the same master (C) as the one at my neighbor’s front door (B). The same earth whose inclination towards the sun (C) partially determines temperature in Sydney (A) also partially determines temperature in London (B). And so on.

And yes, thanks to Einstein’s theory of general relativity, even the moon’s gravitational pull on the oceans is a local common cause: the gravitational ‘force’ propagates locally, as a wave, through space. Indeed, physics has, for at least the past century, been pushing towards local theories, and indeed theories that are, in some appropriate sense, Lorentz-invariant. (The precise meaning of ‘Lorentz-invariant’ varies, but the rough idea is that the theory does not permit the transmission of matter and energy faster than light, or does not permit a signal to be sent faster than light, or at the very least, does not permit matter to be accelerated from subluminal to superluminal speeds. See Malament, Ch. 3, §2, this volume.)

Quantum theory permits non-local correlations. The question we face is whether those correlations can also, like the others mentioned here, be given a (local) common cause explanation. In particular, can the correlations implied by (115) be explained by a common cause?

\(^{89}\)This formulation is not entirely satisfactory, but illustrates the notion of a common cause well enough for present purposes. See Uffink [1999b] and references therein.
6.1.2 Bell's Theorem

Bell’s theorem essentially answers ‘no’ to this question. Moreover, Bell was able to derive some constraints on the predictions made by any local theory. These constraints are quite convincingly violated by experiment.

6.1.2.1 The Experiment The experiment considered by Bell is essentially the one considered by EPR (§4.4), in a version described by Bohm [1951, ch. 22]. There is a source of pairs of spin-1/2 particles, each pair in the state $|\psi_{\text{singlet}}\rangle$ (113); the particles are directed towards Stern-Gerlach devices, each oriented in some direction (labeled u and u'). The particles arrive at these devices in such a way that the measurements are made at space-like separation. Indeed, even the choices of the directions u and u' are made at space-like separation. That is, the choice of measurement, and the measurements themselves, are made sufficiently far apart in space, and sufficiently close together in time, that a signal of any sort from one measurement-event to the other would have to travel faster than light. After many runs of the experiment, the results are collected, and correlations determined.

In fact, in order to get Bell’s Theorem underway, we need consider only three possible directions (u_a, u_b, and u_c) on each side. The measurement-devices thus choose, at the ‘last second’, which of these three directions to measure, and then they record the result.

6.1.2.2 The Issue in Terms of ‘Hidden Variables’ One way to think about the question about common causes that we raised above is in terms of so-called ‘hidden-variables theories’ (§5.5.3) and indeed Bell conceived of the issue in these terms. Recall that hidden variables describe complete states of the particles, states that include information not provided by the quantum state. In the deterministic case, these complete states fix the values of S_u for each value of u, for each particle. The picture, then, is that, back at the source, the pair of particles about to be released towards the two measurement-devices has some ‘hidden’ state. This state already determines, for each particle, and each possible direction u_a, u_b, and u_c, a value (+1 or −1) for spin.

Indeed, recall the EPR argument (§4.4), and their conclusion that quantum mechanics is ‘incomplete’. The point there was that locality (plus the criterion for physical reality) forces one to conclude, in the context of this experiment, that each system must in some way already have values for all S_u — they must have ‘established’ the correct correlations back at the source (for they cannot do so later, at spacelike separation, by locality).

Note that for a given direction, the hidden state must determine the particles to have opposite spin, because of the perfect anti-correlations. (These hidden states can thus be partitioned into eight classes, two possible assignments of spin for each of the three directions.) Apart from that, the only requirement is that it be possible to recover the quantum-theoretic correlations by averaging over some
distribution of the hidden states, as in (104).

6.1.2.3 Probabilistic Hidden States A slightly more general approach is to allow the hidden states to determine spins only probabilistically. The theory will remain 'local' as long as the hidden state of the particles back at the source screens off the measurement-event at one side from the results at the other side (§6.1.1.3). Letting Pr_λ be the probabilities for measurement-results prescribed by the hidden state λ (and we are assuming, now, that the quantum state is fixed as $|\psi_{\text{singlet}}\rangle$), the screening-off condition is that, for any $u, u', k = \pm 1,\text{ and } k' = \pm 1$:

$$Pr_\lambda(x = k|i = u, j = u', y = k') = Pr_\lambda(x = k|i = u),$$

where x is the result for particle 1, y is the result for particle 2, i is the direction of spin measured on particle 1, and j is the direction of spin measured on particle 2. The intuitive idea, here, is that the result for particle 1 depends only on the direction of spin measured (and λ), and is thus independent of the result for particle 2, and the direction in which spin was measured on particle 2. This condition, or something similar, is often called 'Bell locality'.

So, finally, the question we face is whether there can be hidden states, λ, and a distribution over them, $\rho()$, such that the probabilities, Pr_λ both obey Bell locality (116) and reproduce the quantum correlations (115) via averaging as in (104). (Note that a similar condition will hold for the single-wing probabilities, i.e., those obtained for just one of the two particles, which will also, of course, be obtained by averaging over hidden states.)

In general, as I mentioned earlier (§5.5.3), the distribution $\rho()$ would depend on the quantum state (which, recall, we are presuming here to be $|\psi_{\text{singlet}}\rangle$). But it must not depend on anything that would require a non-local influence on the source, because $\rho()$ is supposed to represent the distribution of hidden states amongst pairs produced at the source. For example, we will presume that the choice of measurement-direction and the results of the measurements do not influence $\rho()$.

6.1.2.4 Bell's Theorem Bell's theorem shows that in fact no common-cause explanation of the sort outlined above exists.

Theorem (Bell [1964]): For any choice of directions $u_a, u_b,\text{ and } u_c,$ any hidden-variables theory that satisfies (i) Bell locality (116) and (ii) independence of $\rho()$ from the measurement-events will obey the inequality

$$|r_{ac} - r_{bc}| - r_{ab} \leq 1.$$

(where $r_{ab} := r_{g^{(1)}_{u_a} g^{(2)}_{u_b}}$ and so on).90

90Numerous other inequalities have since been derived, with various virtues, especially regarding experimental testability. See Clauser and Shimony [1978].
Given the quantum-mechanical prediction (115), this inequality is violated by many choices for \(u_a, u_b, \) and \(u_c \). For example, defining each \(u_k \) in terms of Euler angles \(\phi_k \) and \(\theta_k \), choose \(\phi_k = 0 \) for \(k = a, b, c \) (so that these directions are coplanar), \(\theta_a = 0, \theta_b = \pi/4, \) and \(\theta_c = \pi/2 \). In this case, the quantity on the left-hand side of (117) is \(\sqrt{2} \).

6.1.2.5 Experimental Violation of Bell's Inequality

Bell’s Inequality is violated by experiment. Of course, as is always the case with experimental realizations of theory, there are complications. For example, actual sources often do not produce particles that move away from the source in precisely opposite directions. One must either filter out those that do not, or take account of the fact that they do not move in exactly opposite directions. Neither solution is completely straightforward. And there are other issues with existing experimental tests of Bell’s inequality, although experimentalists are increasingly able to settle these issues in favor of the violation of the inequality in the world, i.e., the confirmation of the quantum correlations.

There is one issue that will not be settled by experiment, at least not entirely, and it involves the fact that for any given pair of particles, only one pair of measurements (one on each particle) can be made. In other words, for each given pair, we are not really probing the entire hidden state, but only its implications for one pair of measurements. We must therefore presume that the sample we are getting of ensemble of hidden states is representative. To put the point another way, consider all of the pairs where we measure, for example, \(u_a, u_b, \) and then all the pairs where we measure \(u_b, u_c \). In order to test Bell’s inequality, we will calculate the correlations amongst these two groups of pairs, then plug the results into (117). In doing so, we are assuming that had we measured \(u_b, u_c \) on the \(u_a, u_b \)-pairs (i.e., instead of measuring \(u_a, u_b \) on them), we would have gotten the same correlation that we in fact got for our actual \(u_b, u_c \)-measurements. Most consider this counterfactual innocuous — in large part because violating it seems to involve one in some rather odd conspiracy theories, many of which would in any case be non-local.\(^{91}\)

It is worth pointing out, however, that the counterfactual nature of the assumption is not due to contingent facts about what we happened to measure (as the corresponding counterfactuals often would be in classical physics), but rather it is due to the in principle incompatibility of the measurements involved — \(S_{u_a} \) and \(S_{u_b} \) cannot be measured at the same time on the same particle, and, moreover, in accordance with the uncertainty principle (§4.2), measuring one destroys whatever previous knowledge we have of the other.

\(^{91}\)For example, it will not do to suppose that only a ‘certain kind’ of hidden state is ever involved in a \(u_b, u_c \)-measurement, because this theory would violate the condition that the distribution at the source be independent of the choice of measurement. However, models that rely on detector inefficiencies can assert — however oddly — that detectors have a preference for revealing only ‘certain kinds’ of hidden states, based on which measurement was performed. Fine’s ‘prism models’ are of this sort — see Fine [1991] and Szabó and Fine [2002]. Note that detector efficiencies continue to improve, and could eventually rule out such theories on purely empirical grounds.
Finally, note that although Bell's Theorem is framed in terms of so-called 'hidden' states, it is ultimately not a theorem about hidden-variables theories, but about locality. After all, there is nothing stopping us from taking the \(\lambda \) to be the quantum state itself and following through Bell's derivation. Of course, in doing so, we will make an assumption (Bell locality) that is violated by quantum theory, and we could have checked this violation directly if we had wanted to. Either way the conclusion is the same: in the sense discussed here (Bell locality), standard quantum theory is itself a non-local theory.

6.1.3 Other Bell-Like Theorems

 Plenty of other theorems are floating around that also bear on the issue of locality. A couple of them we have already seen (§5.4.1.2 and §5.4.1.2.c), and so will be mentioned only briefly here.

6.1.3.1 The Kochen-Specker Theorem as a Theorem about Locality

 The non-contextuality condition in the Kochen-Specker theorem can, in the right circumstances, be seen as a locality condition, and the sought-for homomorphisms (recall §5.4.1.2.b) from the lattice of subspaces to the Boolean lattice \(\{0,1\} \) are the 'hidden states'. However, rather than develop this point in the context of the general Kochen-Specker theorem, let us just consider the point in the context of the GHZ theorem, which in fact was originally (and correctly) characterized by its authors as a Bell-like theorem without inequalities — one need only suppose that the three particles are space-like separated.

 In this context, the condition of non-contextuality becomes this: the value assigned to each of the observables in (99) must be assigned independently of which observables (100) one considers it to be a part, that is, independently of the 'context of measurement', which is given by the set of observables measured on each of the three particles. In other words, the value that particle 1, for example, has for \(S_x(1) \) cannot depend on whether we are measuring \(S_x(1) \otimes S_y(2) \otimes S_y(3) \) or \(S_x(1) \otimes S_x(2) \otimes S_x(3) \). This condition is a consequence of locality, because such a dependence would imply that the result of the measurement on particle 1 would depend on which observable we decided to measure on particles 2 and 3, even if those decisions were made at space-like separation from the measurement-event on particle 1.

6.1.3.2 Hardy's Argument

 GHZ simplified the conclusion of Bell's argument, getting rid of the inequality, but at the expense of introducing another particle. Hardy [1992] managed to make an argument not based on inequalities, but considering only two particles.\(^{92}\) He considers the experimental arrangement depicted in figure 5, which shows a 'double-interferometer' (called 'double' because there are two interferometers, 'overlapping' at the point \(A \)). The electron (\(e^- \)) and

\(^{92}\)The exposition here follows that in Dickson [1998, pp. 209–211].
Figure 5. Hardy’s Experiment.

positron \((e^+) \) enter the interferometers on the paths \(s^- \) and \(s^+ \) respectively. They encounter a beam-splitter, and as a result, follow either the ‘u’ path or the ‘v’ path, with equal probability. If they both follow their u path then they meet at A and annihilate one another. Otherwise, they both reach a second beam splitter and the positron then goes on to either the detector \(C^+ \) or the detector \(D^+ \), with equal probability. The electron is in the corresponding situation.

Hardy assumes that a hidden-variable theory will assign a definite path \((u \text{ or } v) \) to each particle. He claims further that the question whether a particle is on a given path ought to have a Lorentz-invariant answer — its path ought not depend on an observer’s reference frame. Otherwise the hidden-variable theory is not Lorentz-invariant, and is, in that sense at least, non-local. Here, we will consider three reference frames. In the first, \(F^+ \), the detection of the positron (at \(C^+ \) or \(D^+ \)) occurs before the electron has passed through its beam splitter. In the second, \(F^- \), the order of these events is reversed. And in the third, the detections are simultaneous.

The initial state of the electron and positron is \(|s^-\rangle|s^+\rangle \) respectively, indicating that (before they reach the initial beam-splitter) they are on the paths \(s^- \) and \(s^+ \) respectively. The initial beam splitters effect the evolution

\[
(118) \quad |s^{\pm}\rangle \rightarrow (1/\sqrt{2})(i|u^{\pm}\rangle + |v^{\pm}\rangle).
\]

Similarly, the second set of beam splitters effect the evolution

\[
(119) \quad |u^{\pm}\rangle \rightarrow (1/\sqrt{2})(|e^{\pm}\rangle + i|d^{\pm}\rangle)
\]
\[
(120) \quad |v^{\pm}\rangle \rightarrow (1/\sqrt{2})(i|e^{\pm}\rangle + |d^{\pm}\rangle).
\]
Using (118), the state after the system passes the point A is (in frame F)

$$\frac{1}{2} \left(-|\gamma\rangle + i|u^+\rangle|v^-\rangle + i|v^+\rangle|u^-\rangle + |u^+\rangle|v^-\rangle \right),$$

where $|\gamma\rangle$ is the state after an annihilation. One can calculate the state at various times in the frames F, F^+, and F^- by applying one or more of (118–120). I leave these calculations to the reader.

Now, in F^+, if the positron is detected at D^+, then the electron must be on the path u^- (with probability 1). Similarly, in F^-, if the electron is detected at D^-, then the positron is on the path u^+. However, in F, the state of the pair before either particle goes through its second beam splitter is orthogonal to a state where the particles take the paths u^+ and u^- (because of the annihilation in that case).

Consider, then, a run of the experiment in which detectors D^+ and D^- both register a hit. (This outcome does indeed have non-zero probability.) In that case, an observer in F^+ will conclude that the electron took the path u^-. An observer in F^- will conclude that the positron took the path u^+. Both of these statements must be true for an observer in F, but as we saw above, they cannot both be true. Hence, Hardy concludes, a theory that assigns definite paths to the particles cannot be Lorentz-invariant.

Note, finally, that Hardy has implicitly assumed non-contextuality as well. A hidden-variables theory is obliged only to reproduce the experimental predictions of quantum theory. If the theory is contextual, then in particular the path of a particle may depend on the presence (or not) of a device on the path that will detect the particle (or not) on the path. Hence, for example, such a theory is not obliged to assign the path u^+ to the positron if the electron is detected at D^- (in F^-) unless there is a detector in place to determine whether the positron is on u^+. But in this case, the detector will interact with the positron, and everything changes, including (most importantly) the quantum-theoretic calculations that are behind Hardy’s argument. In the absence of such a detector, and such an interaction, a hidden-variables theory need not respect the quantum probabilities. But agreed, a non-contextual theory does always have to respect those probabilities, because such a theory cannot alter the (hidden) state (i.e., the path) that it assigns to a particle depending on whether a detector is in place along the path u^+.

6.2 Reactions to the Theorems

What should we make of the failure of locality? In this section, I shall consider four more precise versions of that question.\(^{93}\) Can the failure of locality be used to send signals from one measurement-station to the other (§6.2.2)? Does the failure of locality imply the existence of some causal connection between the measurement-stations (§6.2.3)? Does the failure of locality imply (or can it be understood in terms of the claim that) the two systems are somehow not really distinct (§6.2.4)?

\(^{93}\)Extensive discussion of these issues and more is available in many places. Cushing and McMullin [1989], Butterfield [1992], Maudlin [1994], and Dickson [1998, chs. 6-9] will get the interested reader started.
Finally, and perhaps most important from the point of view of theoretical physics, what does the failure of locality imply about the possibilities for a fully Lorentz-invariant (relativistic) quantum theory (§6.2.5)?

Prior to asking these questions, I shall review (§6.2.1) an important analysis of locality, one that some have claimed helps resolve some of these questions.

6.2.1 Parameter Independence and Outcome Independence

Once we have accepted the non-locality of quantum theory, and of empirically adequate hidden-variables theories — and it is surprising how far some will go to resist this conclusion — the question becomes how to understand Bell locality. The most famous analysis of this condition is in terms of two other conditions, often called ‘parameter independence’ and ‘outcome independence’. The former expresses the idea that the parameters — the settings on (direction of spin to be measured by) the measurement-apparatus — at one measurement-station do not affect the outcomes at the other measurement-station. The latter expresses the idea that the outcomes at one measurement-station do not affect the outcomes at the other.

These conditions are, like Bell locality, statements of probabilistic independence:

Parameter Independence for all i, j, k, k', λ,

\[
(122) \Pr_{\lambda}(x = k|y = k', i = u, j = u') = \Pr_{\lambda}(x = k|y = k', i = u)
\]

and similarly, reversing the roles of particles 1 and 2.

Outcome Independence for all i, j, k, k', λ,

\[
(123) \Pr_{\lambda}(x = k, y = k'|i = u, j = u') = \Pr_{\lambda}(x = k|i = u, j = u') \times \Pr_{\lambda}(y = k'|i = u, j = u').
\]

(See 6.1.2.3 for the notation.) The conjunction of Parameter Independence and Outcome Independence yields Bell locality with just some trivial applications of probability theory.

One of the values of this analysis is that it reveals, more precisely, how quantum theory violates Bell locality. In particular, quantum theory violates Outcome Independence, but satisfies Parameter Independence. The derivation of the correlation (115) more or less proves the first claim.\(^{95}\) We will see one way of proving the second claim in the next subsection.

\(^{94}\)There are subtly different versions of these conditions, taking into account, for example, hidden variables in the apparatus, and so on. We are skating over such distinctions here. In addition, there are hosts of other locality conditions one might introduce. See Dickson [1998, chs. 6-9]. Jarrett [1984] is responsible for the first clear statement of this distinction. The conditions as stated here, and the terminology used here, is due to Shimony [1986].

\(^{95}\)Strictly speaking, in order to implement the probabilities in (123), one should introduce the
6.2.2 Signaling

6.2.2.1 Locality and Signaling Part of the original intention behind the analysis of Bell locality into Parameter Independence and Outcome Independence was to isolate a part of Bell Locality that does not involve a violation of relativity theory, in some sense or other. In particular, the claim is often made that a failure of Outcome Independence is somehow consistent with relativity, while a failure of Parameter Independence is not.

In particular, one might understand relativity theory as prohibiting superluminal signaling. A violation of Outcome Independence, so the argument goes, does not involve the possibility signaling, because even though it implies that the outcome at one measurement-station depends probabilistically on the outcome at the other (and of course the measurement-events are space-like separated), the outcomes themselves are probabilistic. That is, an experimenter cannot control the outcomes. But controlling the outcomes would be necessary in order to use the dependence between outcomes to send a signal.

On the other hand, experimenters are in control of parameters — they are in fact normally assumed to be the result of a free choice of the experimenter. Hence, so the argument goes, a violation of Parameter Independence implies that an experimenter can (probabilistically) influence the outcomes at the other station by manipulating the parameter (direction in which spin is measured) at the local station.

However, keep in mind that the probabilities in Parameter Independence and Outcome Independence are those generated by the hidden state, \(\lambda \). If the experimenter is not in control of these hidden states, then a failure of Parameter Independence will also not imply the possibility of signaling. Moreover, control of the hidden states would mean that in fact a violation of Outcome Independence also implies the possibility of signaling, so long as the probabilities for the outcomes generated by different hidden states are different. In this case, an experimenter can in fact locally manipulate the outcomes in the probabilistic sense of controlling the hidden state in order to make a given outcome more or less likely, and thus, via the probabilistic dependence between outcomes, influence (probabilistically) the outcomes at the other station.outcome independence

An illuminating example of the significance of being able to control the hidden state is provided by the de Broglie-Bohm theory. It is clear that the theory satisfies Outcome Independence, because it is a fully deterministic theory. That is, given the parameters \(i \) and \(j \), and the initial state (which, in this theory, is the initial positions of the particles, plus the quantum wavefunction), the results of the measurements are fixed. Hence, in particular, the result of one measurement, being fixed by \(\lambda \), \(i \), and \(j \), does not depend on the result of the other measure-
ment. On the other hand, the de Broglie-Bohm theory does violate Parameter Independence, for the result of a measurement on one particle does in general depend on the direction in which spin is measured on the other. (Changing the setting on the apparatus changes the wavefunction for the compound system in a way that ultimately changes the quantum potential, and hence the trajectories for both particles.) However, knowing how a particle is affected by a change in the parameters (and therefore being able to control this effect) requires knowing its precise position but recall that the precise positions of the particles are not knowing in this theory. Hence the violation of Parameter Independence cannot be used for signaling.

Indeed, as Cushing [1994] points out in this context, Valentini [1991a; 1991b] has shown that in the de Broglie-Bohm theory, signaling is possible if and only if the distribution of the particles is different from that given by the usual quantum-mechanical probability. Hence, given that Bohm’s theory does respect this distribution, we have a case where, phenomenologically, the theory violates Outcome Independence and respects Parameter Independence, while at the level of the (uncontrollable!) hidden-variables (trajectories of particles), the reverse is true. Hence one should be very cautious about identifying a failure of Parameter Independence with the possibility of signaling.

6.2.2.2 The No-Signaling Theorem While the distinction between Outcome Independence and Parameter Independence is, as explained above, not the same as the distinction between the impossibility and possibility of signaling, it is true that quantum theory (which, recall, obeys Outcome Independence but not Parameter Independence) does not permit signaling from one measurement-station to the other (or, indeed, non-local signaling in general). This claim is the conclusion of the quantum no-signaling theorem.

There are (at least) two routes to this conclusion, one focused on the effect that local generic interactions can have on the states of spatially separated systems, and on focused on the effect that measurements can have on the results of measurements on spatially separated systems. I shall outline each in turn. In both cases, we will consider a two-particle system in the (generally entangled) state W, and suppose that the two particles are spatially separated.

6.2.2.2.a Local Interactions and Reduced States Now consider the evolution of the compound system by two different unitary evolutions (generated by two different Hamiltonians), $U^{(1)} \otimes U^{(2)}$ and $U^{(1)} \otimes \bar{U}^{(2)}$. The no-signaling theorem says that the reduced state for particle 1 is the same at the end of the evolution, whether the system evolves according to $U^{(1)} \otimes U^{(2)}$ or $U^{(1)} \otimes \bar{U}^{(2)}$. In

\[\text{In fact, Valentini's [1991a; 1991b] view, supported by a kind of quantum analogue of the classical H-Theorem (see Uffink, ch. 9, §I.4.2, this volume), is that the standard quantum distribution is a kind of 'equilibrium' distribution, to which the universe naturally relaxes. It is possible (indeed quite likely), on this view, that the universe is not quite in the equilibrium distribution, which means that in principle one could signal, if one could find an ensemble of particles not in the equilibrium distribution.}\]
fact, under the first evolution, the reduced state for particle 1 is (recall §1.2.6.3.a)

\[
W^{(1)} = \text{tr}^{(2)}[U^{(1)} \otimes U^{(2)}W(U^{(1)} \otimes U^{(2)})^{-1}] = \\
\sum_n \langle \tilde{e}_n | U^{(1)} \otimes U^{(2)}W(U^{(1)} \otimes U^{(2)})^{-1}|e_n \rangle.
\]

where \(\{|e_n\} \) is some orthonormal basis in the Hilbert space for particle 2. But recall that the (partial) trace functional does not depend on the choice of this basis. Hence, when figuring the reduced state under the alternative evolution, \(\text{tr}^{(2)}[U^{(1)} \otimes \tilde{U}^{(2)}W(U^{(1)} \otimes \tilde{U}^{(2)})^{-1}] \), we need only choose a basis, \(\{|\tilde{e}_n\} \), such that \(\tilde{U}^{(2)}|\tilde{e}_n\rangle = U^{(2)}|e_n\rangle \). Because \(U^{(2)} \) and \(\tilde{U}^{(2)} \) are unitary, such a basis always exists.

In other words, no interaction with just one of the systems can effect the reduced state of the other, and because the marginal probabilities for particle 1 (the probabilities for outcomes of measurements of observables on particle 1 only) depend only on the reduced state \(W^{(1)} \), no interaction that involves just particle 2 can change the statistics of measurement-results for particle 1 (and, of course, vice versa).

6.2.2.2.2 Single-System Measurements

But what about measurements? Consider a measurement of an observable \(\mathbb{1} \otimes G \), i.e., a measurement of \(G \) on system 2, leaving system 1 untouched. Let \(G = \sum_n g_n P_n \). Of course, we have already seen that if we project the state of the compound system onto the result of this measurement, then in general (for example, if \(W \) is the singlet state), the probabilities for results of measurements on system 1 will change. That fact is just a rehearsal of the existence of correlations between the two systems. But keep in mind that we are talking about the possibility of signaling, here. An observer who is restricted to the vicinity of system 1 will not know the results of measurements on system 2, but will know only that a measurement of \(\mathbb{1} \otimes G \) might or might not occur. To such an observer, the measurement of \(\mathbb{1} \otimes G \) on particle 2 is a ‘non-selective’ measurement, meaning that the most that this observer can say about the state after the measurement is that the compound system is now in the state

\[
(125) \sum_n (\mathbb{1} \otimes P_n)W(\mathbb{1} \otimes P_n).
\]

It is instructive to see why (125) is the state after a non-selective measurement. Suppose that the result were in fact \(g_k \). In that case, applying the collapse postulate, the state would be \(P_k WP_k/\text{Tr}[WP_k] \). (Compare this expression with Lüder's Rule, eq. 19.) Now consider that the probability of the result \(P_k \) is \(\text{Tr}[WP_k] \), so that if we do not know the result of the measurement (i.e., the measurement is non-selective) then the state is a weighted sum of all possible results, the weights given by the probabilities of the various results. I.e., the state is (125).

The idea here is that an experimenter (‘B’) in the vicinity of particle 2 will attempt to send a signal to an experimenter (‘A’) in the vicinity of particle 1 by choosing to measure \(G \) (on particle 2) or not. The question, then, is whether \(A \)
can detect any change in the statistics of results for measurements on particle 1 as a result of B’s measurement on particle 2.

The answer is ‘no’. To see why, consider an observable, \(F \otimes \mathbb{I} \), and let \(F = \sum_n f_n Q_n \). In the state \(W \), the probability for the result \(f_m \) (of a measurement of \(F \otimes \mathbb{I} \)) is

\[
(126) \quad \text{Tr}[(Q_m \otimes \mathbb{I})W] .
\]

Suppose, instead, that the state is (125), i.e., a non-selective measurement of \(\mathbb{I} \otimes G \) has been made. In that case, the probability for the result \(f_m \) (of a measurement of \(F \otimes \mathbb{I} \)) is

\[
(127) \quad \text{Tr} \left[(Q_m \otimes \mathbb{I}) \sum_n (\mathbb{I} \otimes P_n) W (\mathbb{I} \otimes P_n) \right] .
\]

By the linearity of \(Q_m \otimes \mathbb{I} \), it can be taken inside the sum, and by the linearity of the trace functional, the trace of a sum then becomes a sum of traces. Moreover, because \(Q_m \otimes \mathbb{I} \) commutes with \(\mathbb{I} \otimes P_n \) (for any \(n, m \)), this sum becomes:

\[
(128) \quad \sum_n \text{Tr} [(\mathbb{I} \otimes P_n) (Q_m \otimes \mathbb{I})W(\mathbb{I} \otimes P_n)] .
\]

Using (12) together with the fact that \(PP = P \) for any projection \(P \), (128) is

\[
(129) \quad \sum_n \text{Tr} [(\mathbb{I} \otimes P_n) (Q_m \otimes \mathbb{I})W] .
\]

Taking the sum back inside the trace functional and observing that the \(\mathbb{I} \otimes P_n \) constitute a resolution of the identity (i.e., \(\sum_n \mathbb{I} \otimes P_n = \mathbb{I} \otimes \mathbb{I} \)), we find that (129) is exactly (126). In other words, no measurement that \(A \) can make on particle 1 can determine whether the compound state is the original \(W \), or the state (125) — B’s non-selective measurement of \(\mathbb{I} \otimes G \) has no effect on the probabilities for outcomes of measurements performed by \(A \) on particle 1. Hence \(B \) cannot send a signal to \(A \) by means of such a measurement.

6.2.3 Causation

Does a failure of Bell locality (or one of its constituent conditions) imply a causal connection between the two measurement-stations? This question is much-discussed and disputed, and I certainly will not settle it here. But let us consider a few approaches.

Consider a counterfactual approach to the analysis of causation, one that, for example, takes as a sufficient condition for causal connection the truth of counterfactuals such as ‘if it had been that \(C \) then it would have been that \(E \)’ and ‘if it had not been that \(C \), then it would not have been that \(E \).’\(^{97}\) It would appear, adopting some such understanding of causation, that causal connections do

\(^{97}\) Causation has frequently been associated with counterfactuals such as these. Lewis [1973] is famous for such an analysis, and as his work clearly shows, one must add several additional conditions to this basic idea — for example, conditions about the similarity of possible worlds, where those conditions will effect the semantics, hence truth-values, of the counterfactuals involved.
exist between outcomes, or between parameters and outcomes, in a deterministic hidden-variables theory that violates Outcome Independence, or Parameter Independence, respectively. If the hidden-variables theory is probabilistic, then perhaps one would conclude instead that there is a relation of probabilistic causality, though of course one would have to formulate appropriate probabilistic counterfactual conditions, for example, replacing 'it would [not] have been the case that E' with 'the probability of E would have been higher [lower]'..

On the other hand, others prefer an account of causation that requires that causal connections are underwritten by 'causal processes' that can transmit a 'mark'. That is, impressing some sort of 'mark' on the cause should leave a trace 'from the cause to the effect', and ultimately in the effect itself. There are different understandings of what this account really means, but on at least some understandings — most clearly, those that require the mark to travel continuously in space — the violation of Parameter Independence and Outcome Independence does not imply the existence of a causal connection between the measurement-stations.

Finally, some, e.g., Collier [1999], have argued that causation amounts to the transfer of information, in the information-theoretic sense. Maudlin [1994, ch. 6] has argued that there is a transfer of information in the Bell-type experiments. Hence, if one buys these arguments, there is causation between the measurement-stations, on this account of causation.

6.2.4 Holism

The issues surrounding Bell's Theorem have led some to a radical view of entangled states as representing 'holistic' properties of entangled pairs (or n-tuples) of particles. On the one hand, we can agree that the properties represented by, for example, the (projection onto the) singlet state are not reducible to, and do not supervene on, properties of the individual particles. (Otherwise, a local hidden variables theory would, after all, be possible.) On the other hand, some claim that these holistic properties explain our inability to provide a common cause explanation for the quantum correlations in a way that does not violate any version of locality that we should care about, and does not, in particular, imply any violation of relativity theory. The basic idea is clear enough: the 'two' (or more) particles involved in a Bell-type experiment are not really 'two' particles; they are really one object, and therefore, no matter how far apart they may be, there is no question of an 'influence from one to the other', for there is no 'one and other' but only the whole thing.

There are, however, some prima facie problems with this proposal. First, it is not clear that it really explains anything; perhaps it only restates the problem in the form of an equally mysterious doctrine. Moreover, it is unclear what the real difference is, as regards the apparent conflict with relativity theory, between a space-like influence between two distinct objects and a space-like 'connection'

98 See, for example, Salmon [1984].
between different ‘parts’ of the same object. (Of course, we must be very cautious about the meaning of ‘part’ here.) Indeed, the events that are involved in Bell-type experiments are well-defined, localized, events in space-time, viz., macroscopic pointer-readings. There are correlations between these events that cannot be explained in terms of a local common cause. That fact is enough to raise the question about non-locality and the compatibility with relativity, regardless of whether one wishes to invoke some ‘holistic’ property of the pair that somehow gives rise to these correlations. In other words, we might simply have to conclude that holism itself is incompatible with relativity. (See Butterfield [1992].)

Second, as discussed earlier in the context of the measurement problem (§5.3.2), entanglement is ubiquitous — even the objects of our everyday experience are likely in entangled states. Can we make sense of the idea that these apparently distinct objects are in fact not independent objects at all, but somehow ‘parts’ of some holistic object? Perhaps, but at the very least, some serious metaphysical work is going to have to be done here, if we are to recover the obvious facts of ordinary experience.

6.2.5 Relativity Theory

While some might find non-locality to be contrary to intuition, the real problem that it poses, arguably, is an apparent incompatibility with the theory of relativity. Indeed, supposing that the non-locality of quantum theory were completely and unambiguously compatible with the theory of relativity, it is hard to see how one could have any serious objections to it.

And indeed, on the one hand, one might note that the quantum no-signaling theorem (§6.2.2.2) suggests some kind of compatibility of quantum theory with relativity theory. Hence, there may be, as some have called it, a ‘peaceful co-existence’ between the two theories. While the quantum correlations seem to imply a failure of locality, and while collapse of the quantum state occurs instantaneously, neither of these facts entails the capacity to send a signal faster than light. More generally, neither of these features of quantum theory entails an experimental, or observational conflict with relativity. It is sometimes said that quantum theory respects the letter of the law of relativity (but violates the spirit of the law).

Moreover, even the claim that superluminal signaling is incompatible with relativity is controversial. The argument for the incompatibility relies on the idea that such signaling generates inconsistent causal loops because it allows for causal propagation into the past. And some will point out that even superluminal causal processes (for example, the superluminal transmission of matter or energy) is not inconsistent with relativity.

So what does relativity demand? One thing seems clear, and is, at least, agreed by the vast majority of physicists: a theory must be Lorentz-invariant to be relativistic. Here, we encounter the real problem. The collapse postulate of standard

99 The term was introduced by Shimony [1978].
quantum theory is not Lorentz-invariant, nor is it clear how to make it so, while maintaining empirical adequacy. (See Aharonov and Albert [1981].)

There are, of course, relativistic quantum theories. (See 't Hooft, Ch. 7 and Halvorson, Ch. 8, this volume.) Their equations of motion are Lorentz-invariant in the requisite way. However, the collapse postulate, the need for which does not disappear in relativistic quantum theories, is not Lorentz-invariant — it specifies an instantaneous collapse.

Moreover, it is far from clear whether the interpretations of quantum theory that most straightforwardly and obviously solve the measurement problem (recall §5.5) can be made Lorentz-invariant. We do not know that all hidden-variables theories must violate Lorentz-invariance, but the evidence for this claim is very good.

On the other hand, the no-signaling theorem seems to imply that quantum theory itself is observationally consistent with relativity. Hence any theory, and in particular any hidden-variables theory, that is observationally indistinguishable from quantum theory, will be observationally consistent with relativity. Hence, while many hidden-variables theories explicitly violate Lorentz-invariance at the level of the evolution of the values of the hidden variables, this violation is not empirically accessible. Another way to put the point is this: these theories require a preferred reference frame (as quantum theory with the collapse postulate itself does), and yet there is no way to determine, experimentally, which is the preferred frame. The question of whether they are thus satisfactory therefore has a lot do with the status one attaches to Lorentz-invariance.

7 MATHEMATICAL APPENDIX

These notes are intended as quick reminders of several definitions and standard mathematical facts that are assumed in the text. All proofs are omitted.

7.1 Hilbert Spaces

7.1.1 Vector Spaces

A vector space, V, is a set that is closed under addition and 'multiplication by a scalar' from a field, K. These operations must satisfy, for any $u, v, w \in V$ and $k, k' \in K$: (commutativity) $u + v = v + u$; (vector associativity) $u + (v + w) = (u + v) + w$; (additive identity) $\exists 0 \in V \forall v \in V, v + 0 = v$; (additive inverses) $\forall v \in V, \exists -v \in V, v + (-v) = 0$, and one generally writes $v - w$ for $v + (-w)$; (scalar associativity) $k(k'v) = (kk')v$; (scalar identity) for $1 \in K$ (the identity in K) $1v = v$; (vector distributivity) $k(u + w) = kv + kw$; (scalar distributivity) $(k + k')v = kv + k'v$. (Notes: commutativity actually follows from the others; additive inverses are (provably) unique; $\forall k \in K, v \in V, k0 = 0v = 0$.) In all of the cases that we consider, $K = \mathbb{R}$ or $K = \mathbb{C}$. The set V is used interchangeably to
refer to the entire vector space, and to the underlying set of vectors. Sometimes for clarity one speaks of 'a vector space over K'.

7.1.2 Bases and Dimension

Given a set of vectors $\{v_n\} \subseteq V$, any vector of the form $v = \sum_{i=1}^{N} k_n v_n$ (with $k_n \in K$) is called a linear combination of the v_n. The set $\{v_n\}$ is called linearly independent if none of the v_n can be written as a linear combination of the others. (In this case, the set may have infinite cardinality, but notice that linear combinations are always finite sums.) Any maximal linearly independent set in V is called a basis for V. All such sets provably have the same cardinality, which is called the dimension of the space, denoted $\dim V$. All vector spaces, V, V', with the same dimension are isomorphic. That is, there exists a 1-1 map $m : V \to V'$ such that, for any $k \in K$ and any $v, w \in V$, $m[k(v + v')] = km(v) + km(v')$. (This last condition makes m a linear map, and being 1-1 in addition makes it an isomorphism.)

7.1.3 Inner Product Spaces

An inner product on a vector space, V over K, is a map from $V \times V$ to K, denoted $\langle \cdot, \cdot \rangle$, and satisfying, for all $u, v, w \in V$ and all $k \in K$: (non-negativity) $\langle v, w \rangle \geq 0$; (non-degeneracy) $\langle v, v \rangle = 0$ iff $v = 0$; (sesquilinearity) $\langle u, k(v + w) \rangle = k \langle u, v \rangle + k \langle u, w \rangle$ and $\langle v, w \rangle = \langle w, v \rangle^*$, where * indicates conjugation in K (so, complex conjugation if $K = \mathbb{C}$ and the identity map if $K = \mathbb{R}$). (Note: it follows from the last two properties that $\langle k(v + w), u \rangle = k^* \langle v, u \rangle + k^* \langle w, u \rangle$; hence the name 'sesquilinearity'.) A vector space with an inner product is called an inner product space. In an inner product space, w is orthogonal to w', written $w \perp w'$, if and only if $\langle w, w' \rangle = 0$. In an inner product space, a basis is called 'orthogonal' if its elements are mutually orthogonal.

An important fact about inner products is the Schwarz Inequality: for any $v, w \in V$, $\langle v, v \rangle \langle w, w \rangle \geq |\langle v, w \rangle|^2$.

7.1.4 Norms and Orthonormal Bases

A norm on a vector space, V, over K is a function from V to \mathbb{R}, denoted $|| \cdot ||$, satisfying, for all $v, w \in V$ and $k \in K$: $||v|| = 0$ iff $v = 0$; $||kv|| = |k||v||$; and $||v + w|| \leq ||v|| + ||w||$. (Note: it follows that $||v|| \geq 0$ for all $v \in V$.) The norm defines a topology (see §7.5) on V in the obvious way: the open balls are sets of the form $\{x | ||x - v|| < r\}$ for some $v \in V$ and $r \in \mathbb{R}$. Another way to put the point is this: a sequence $\{v_n\} \subseteq V$ converges to a vector $v \in V$ 'in the norm topology' just in case $||v_n - v||$ converges to 0 (in \mathbb{R}). Inner products define a norm by: $||v|| = \sqrt{\langle v, v \rangle}$. An important fact about normed complex vector spaces in which the norm is derived from an inner product is the 'polarization identity':

$$
\langle w, v \rangle = \frac{1}{4} (||w + v||^2 - ||w - v||^2 + i||w + iv||^2 - i||w - iv||^2).
$$
In other words, in such spaces, the inner product is also derived from the norm.

In an inner product space, an orthogonal basis (§7.1.3) is called orthonormal if its elements all have norm-1. Given any basis for an inner product space, it is possible to construct an orthonormal basis by ‘Gram-Schmidt orthogonalization’, the details of which we will skip. Note that in an inner product space, there is a convenient expression for a given vector, \(v \), in terms of some orthonormal basis, \(\{e_n\} \), as:

\[v = \sum_n \langle e_n, v \rangle e_n. \]

7.1.5 Subspaces

A subset, \(W \), of a vector space, \(V \), is a subspace if it is a vector space in its own right, under the operations inherited from \(V \). Similar definitions hold for inner product spaces and Hilbert spaces (defined below, §7.1.7). In an inner product space, one subspace, \(W \), is orthogonal to another, \(W' \), when, for any \(w \in W \) and any \(w' \in W' \), \(w \perp w' \).

7.1.6 Direct Sums

A direct sum of vector spaces \(V \) and \(V' \) (over the same field, e.g., \(\mathbb{R} \) or \(\mathbb{C} \)) is the vector space whose elements are taken from the Cartesian product \(V \times V' \), with the vector space operations defined component-wise. If \(V = V' \oplus V'' \), for example, then \(V' \) and \(V'' \) are disjoint (or, in an inner-product space, orthogonal) subspaces of \(V \), and \(V \) is their span.

7.1.7 Banach Space and Hilbert Space

A Banach space is a normed vector space that is complete with respect to the norm topology (meaning that the limit of any sequence of vectors is itself contained in the space). A Hilbert space is an inner product space that is complete with respect to the norm topology (the norm here being the one given by the inner product). The three ‘classical’ types of Hilbert space are those over the real numbers, complex numbers, and quaternions.

7.1.8 Dual Space

Given a vector space, \(V \), the dual space (sometimes denoted \(V^* \), but the * here is not complex conjugation) is the space of linear functionals on \(V \), that is, the space of linear maps from \(V \) to \(\mathbb{R} \). When \(V \) has topological structure (such as when \(V \) is a Hilbert space), we restrict to the continuous linear functionals. The norm of a (continuous) linear functional, \(\phi \), on \(V \) is

\[(131) \quad \| \phi \| = \sup_{v \in V} \{ |\phi(v)| \mid \| v \| \leq 1 \}. \]

Every finite-dimensional vector space has the same dimension as its dual. The Riesz Representation Theorem states that for any Hilbert space, \(\mathcal{H} \) (finite-dimensional or infinite-dimensional), and any continuous linear functional, \(\phi \), in its dual \(\mathcal{H}^* \),
there is a unique \(v \in \mathcal{H} \) such that, for all \(w \in \mathcal{H} \), \(\phi(w) = \langle v, w \rangle \). Conversely, each \(v \in \mathcal{H} \) obviously generates a continuous linear functional, \(\langle v, \cdot \rangle \), on \(\mathcal{H} \). In other words, there is a 1-1 map, \(\Phi : \mathcal{H} \to \mathcal{H}^* \), from a Hilbert space to its dual. Moreover, \(\Phi \) is an isometry (\(||v|| = ||\Phi(v)|| \)) and an ‘anti-isomorphism’ (in particular, \(\Phi(kv) = k^*\Phi(v) \) for any \(v \in V \) and \(k \in \mathbb{C} \)). This last property follows from the fact that the inner product is sesquilinear.

7.1.9 Tensor Products

The tensor-product of two Hilbert spaces, \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \), both over \(K \), is a third Hilbert space, \(\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \) over \(K \), constructed from \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) as follows. First choose bases \(\{e_n\} \) for \(\mathcal{H}_1 \) and \(\{f_n\} \) for \(\mathcal{H}_2 \). Then form the Cartesian product of \(\{e_n\} \) and \(\{f_n\} \). This set contains all pairs of the form \((e_n, f_m) \), and it is stipulated to be a basis for the tensor product space \(\mathcal{H} \). Hence, at this stage, \(\mathcal{H} \) consists of all formal linear combinations (over \(K \)) of the \((e_n, f_m) \). Now, let the inner products on \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) be denoted \(\langle \cdot, \cdot \rangle_1 \) and \(\langle \cdot, \cdot \rangle_2 \). Define the inner product on \(\mathcal{H} \) by \(\langle v \otimes w, x \otimes y \rangle = \langle v, x \rangle_1 \langle w, y \rangle_2 \) for all \(v, w \in \mathcal{H}_1 \) and \(x, y \in \mathcal{H}_2 \), and extend to all of \(\mathcal{H}_1 \otimes \mathcal{H}_2 \) by linearity. Finally, complete \(\mathcal{H}_1 \otimes \mathcal{H}_2 \) in the norm topology induced by this inner product.

Note that \(\dim \mathcal{H} = \dim \mathcal{H}_1 \times \dim \mathcal{H}_2 \). One can (if \(\dim \mathcal{H} \) is not prime) ‘factorize’ a given Hilbert space into a tensor product, typically in many ways.

7.1.10 Convex Sets and Cones

A subset, \(X \), of a real vector space, \(V \), is convex if for any \(x, y \in X \), \(rx + (1-r)y \in X \) for all \(r \) in the real interval \([0,1] \). In other words, the ‘line segment’ connecting \(x \) and \(y \) is also in \(X \). A point, \(x \), in a convex set \(X \) is an extreme point if it is not a convex combination of other points from \(X \). A convex set, \(X \), is a simplex if every non-extreme point has a unique decomposition as a convex combination of points from \(X \).

A positive cone in \(V \) is a set \(C \subseteq V \) such that \(rx \in C \) for all real \(r \geq 0 \) and all \(x \in C \). (A negative cone requires instead \(r \leq 0 \).) A convex cone is a cone that is also convex. Given a set, \(S \subseteq V \), one can form the convex set generated by \(S \), in the obvious way, by closing under the required condition. Equivalently, one can take the intersection of all convex sets containing \(S \). A similar point holds for cones, and of course for convex cones.

Given a positive cone, \(C \), in \(V \), and an inner product, \(\langle \cdot, \cdot \rangle \) on \(V \), the dual of \(C \) with respect to this inner product is: \(C^* = \{ y | \langle x, y \rangle \geq 0, x \in C \} \). If \(C = C^* \) we say that \(C \) is self-dual.

A face, \(F \subseteq X \), of a convex set, \(X \), is a convex subset that is closed under ‘purification’, meaning that for any \(v \in F \), if \(v = pv_1 + (1-p)v_2 \) then \(v_1 \) and \(v_2 \) are in \(F \) as well.
7.2 Operators

7.2.1 Basic Definitions Regarding Operators

A linear operator, F, on a vector space, V over K, is a map from V to itself that preserves the linear structure of V, i.e., for any $v, w \in V$ and any $k \in K$: $F(v + w) = F(v) + F(w)$; and $F(kv) = kF(v)$. One normally just writes Fv, and here we refer to F as an ‘operator’ (as we will not be discussing non-linear operators). Two operators, F and G, are said to commute if their commutator, $[F, G] := FG - GF$ is 0 (i.e., the ‘zero operator’). The identity operator, denoted I, is the operator on V such that $Iv = v, \forall v \in V$.

Given an operator, F, any vector, v, such that $Fv = kv$ for some $k \in K$ is called an eigenvector of F, and k is its associated eigenvalue. Operators need not have any eigenvectors. The zero vector is not normally counted amongst an operator’s eigenvectors.

An operator, F, on the vector space V is invertible just in case there is an operator, G, such that $FG = I$, where I is the identity on V. The operator G is denoted F^{-1}. It is unique if it exists.

On a tensor-product space $V = V_1 \otimes V_2$, consider two operators, F on V_1 and G on V_2. The tensor-product operator $F \otimes G$ can be defined as follows. Choose any bases, $\{e_n\}$ and $\{f_m\}$ for V_1 and V_2. Define $(F \otimes G)(e_n \otimes f_m) = (Fe_n) \otimes (Gf_m)$, and extend to all of V by linearity.

7.2.2 Boundedness and Continuity

If V has a norm, $\| \cdot \|$, then F is bounded if and only if there is some $r \in \mathbb{R}$ such that $\|Fv\| \leq r\|v\|$ for all $v \in V$. When V has a topology (as when it is a Hilbert space), one says that an operator F is continuous if and only if it is continuous as a function on V as a topological space. An operator is bounded if and only if it is continuous. Moreover, if the dimension of V is finite, then all operators on V are bounded, i.e., continuous. Note that unbounded operators do not have the entire space as their domain, so that one must keep track of their domains of definition.

7.2.3 Adjoints

When \mathcal{H} is finite-dimensional, we define adjoints and related notions as follows. The adjoint, F^*, of an operator, F, on \mathcal{H} satisfies $\langle Fw, v \rangle = \langle w, F^*v \rangle \forall w, v \in V$. An operator, F, is self-adjoint if $F = F^*$. The proof that adjoints exist is non-trivial.

When \mathcal{H} is infinite-dimensional, we must be slightly more careful, because V might not be in the domain of F, if F is unbounded (see §7.2.2). In the infinite-dimensional case, then, we define the adjoint, F^*, of F as follows. The domain of F^* is all $v \in \mathcal{H}$ such that there is a $v' \in \mathcal{H}$ satisfying $(Fw, v) = \langle w, v' \rangle$ for all w in the domain of F. For each such v, define $F^*v = v'$. (One must show that F^* is thus an operator.) Finally, in order to make relevant distinctions in the infinite-dimensional case, we say that an operator, F, is symmetric if $\langle Fw, v \rangle = \langle w, Fv \rangle$
for all \(v, w \) in the domain of \(F \). We say that \(F \) is self-adjoint if \(F = F^* \). The difference is, provably, that a symmetric but non-self-adjoint operator will have a domain that is a proper subset of the domain of its adjoint.

7.2.4 Normal Operators

A normal operator, \(F \), is one that commutes with its adjoint: \(FF^* = F^*F \). Given the comments above, it is clear that one must be aware of issues relating to the domains of operators if \(\mathcal{H} \) is infinite-dimensional. Clearly all self-adjoint operators are normal, but the converse is not true. Consider \(F = 2iI \).

7.2.5 Projection Operators

An operator, \(P \), is idempotent just in case \(PP = P \), i.e., \(P(Pv) = Pv \) for any \(v \in V \). An operator, \(P \), on \(V \) is a projection operator just in case it is self-adjoint and idempotent. Each projection operator, \(P \), corresponds to a closed subspace, namely, the subspace of vectors, \(v \), for which \(Pv = v \). Note that \(PQ = 0 \) if and only if the corresponding subspaces are orthogonal.

7.2.6 Unitary Operators

An automorphism of a vector space, \(V \), is a map from \(V \) to itself that 'preserves the structure of \(V \)', and in particular the linear, inner-product, and topological structures (the latter two if they exist in \(V \)). Let \(U \) be a (linear) operator on the Hilbert space \(\mathcal{H} \) such that: \(U \) is invertible (hence \(U \) is 1-1); and \(U \) preserves inner products (i.e., for any \(v, w \in \mathcal{H} \), \(\langle Uw, Uv \rangle = \langle w, v \rangle \)). Such an operator is called 'unitary', and clearly implements an automorphism of \(\mathcal{H} \). In that case, of course \(U \) also preserves norms, i.e., \(||Uv|| = ||v|| \) for all \(v \).

It is readily shown that for any unitary operator, \(U, U^* = U^{-1} \). Conversely, any invertible linear operator with that property is unitary. (If, instead, \(\langle Uw, Uv \rangle = \langle w, v \rangle^* \) and \(U(kv) = k^*Uv \), then \(U \) is anti-unitary.)

7.3 The Hilbert Space \(\mathbb{C}^2 \)

The space of complex column-vectors with 2 components is denoted \(\mathbb{C}^2 \). The elements of \(\mathbb{C}^2 \) are added component-wise:

\[
\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} a + c \\ b + d \end{pmatrix}.
\]

The (linear) operators on this space can be represented by \(2 \times 2 \) complex matrices. A matrix operates on a vector according to the rule:

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}.
\]
The product of two matrices (which can in fact be derived from the rule above) is:

\[
(134) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae + bg & ce + dg \\ af + bh & cf + dh \end{pmatrix}.
\]

The inner product on the space is given by

\[
(135) \left\langle \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix} \right\rangle = a^* c + b^* d.
\]

The norm, or 'length', of the vector with components \(a, b\) is then just \(\sqrt{a^* a + b^* b}\). (Compare this expression with the Euclidean length of a vector in the real vector space \(\mathbb{R}^2\).)

7.3.1 The Pauli Matrices

The Pauli Matrices (operators on \(\mathbb{C}^2\)) are:

\[
(136) \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

These matrices have many nice properties, which the reader might wish to verify. For example:

\[
\begin{align*}
\sigma_x^2 &= \sigma_y^2 = \sigma_z^2 = I \\
\text{Tr}[\sigma_x] &= \text{Tr}[\sigma_y] = \text{Tr}[\sigma_z] = 0 \\
\sigma_x \sigma_y &= i \sigma_z \\
[\sigma_x, \sigma_y] &= 2i \sigma_z.
\end{align*}
\]

The last two properties generalize: they remain true under cyclic permutations of the indices.

One often sees the expression \(\vec{\sigma}\), which is to be understood as a 'vector' whose components are the three Pauli matrices, so that, for example, \(\vec{r} \cdot \vec{\sigma}\) is a shorthand for a linear combination of the three Pauli matrices, with the coefficients given by the components of (the real vector) \(\vec{r}\).

7.4 Posets and Lattices

7.4.1 Posets

A partially ordered set (normally, poset) is a set, \(L\), together with a relation, \(\leq\), that obeys, for all \(a, b, c \in L\): (reflexivity) \(a \leq a\); (anti-symmetry) if \(a \leq b\) and \(b \leq a\) then \(a = b\); and (transitivity) if \(a \leq b\) and \(b \leq c\) then \(a \leq c\). The relation \(\leq\) is called a partial order on \(L\). Note, in particular, that in general there will be \(a, b \in L\) such that neither \(a \leq b\) nor \(b \leq a\). (If there are no such \(a\) and \(b\) in \(L\), then \(\leq\) is a total order on \(L\).) As elsewhere, I let \(L\) denote both the poset itself as well as its underlying set.
7.4.2 Lattices

Let L be a poset. Define the join of two elements, $a, b \in L$ as the least upper bound of a and b, i.e., the smallest (under \leq) c such that $a \leq c$ and $b \leq c$. The join of a and b (which need not exist in general) is denoted $a \vee b$. Define the meet of two elements, $a, b \in L$ as the greatest lower bound of a and b, i.e., the largest (under \leq) c such that $c \leq a$ and $c \leq b$. The meet of a and b (which need not exist in general) is denoted $a \wedge b$. A poset in which every pair (hence every finite set) of elements has a meet and a join is called a lattice.

A lattice, L, is complemented if every $a \in L$ has a complement, $a^\perp \in L$, satisfying: $a \wedge a^\perp = 0$; and $a \vee a^\perp = 1$. The operation \perp is in this case a complement. A complemented lattice L is called orthocomplemented, or an ortholattice, if for all $a, b \in L$: $a \leq b$ implies $b^\perp \leq a^\perp$; and $a^\perp \perp = a$. The operation \perp is in this case an orthocomplement.

7.4.3 Distributivity

A lattice, L, is distributive if, for all $a, b, c \in L$: $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$, and similarly, swapping \wedge with \vee. In general, lattices are not distributive. The center, $Z(L)$, of a lattice L is the set of all $z \in L$ such that, for any $p \in L$, $p = (p \wedge z) \vee (p \wedge z^\perp)$. $Z(L)$ is a distributive sublattice of L.

7.4.4 Direct Products and Reducibility

Let L_1 and L_2 be ortholattices. Then we can form a third ortholattice, L, which is the ‘direct product’ of L_1 and L_2. As a set, L is the direct (Cartesian) product of L_1 and L_2 as sets. Then define, for $a, b \in L$ where $a = (a_1, a_2)$ and $b = (b_1, b_2)$, $a \leq b$ just in case $a_1 \leq b_1$ and $a_2 \leq b_2$. Meets, joins, and orthocomplements are similarly (therefore) defined componentwise. An ortholattice, L is ‘irreducible’ if it is not isomorphic to the direct product of non-trivial ortholattices.

7.4.5 Atomicity and the Covering Property

The ‘top’ (or ‘identity’) of a lattice (if it exists) is the element $\top \in L$ such that $a \leq \top$ for all $a \in L$. The ‘bottom’ (or ‘zero’) of a lattice (if it exists) is the element $0 \in L$ such that $0 \leq a$ for all $a \in L$. An atom in a poset, L, is a non-zero element $a \in L$ such that, for any $b \in L$, if $b \leq a$ then either $b = 0$ or $b = a$. A poset is atomic if every non-zero element contains (under \leq) an atom. Finally, a lattice is complete if every collection of elements from L has a meet and join. In a complete atomic lattice, every element (apart from 0) is either an atom or the join of atoms.

Finally, we say that a lattice L has the covering property if, for every atom $a \in L$ and any $b \in L$ where $a \wedge b = 0$, $a \vee b$ ‘covers’ b; that is, there is no element strictly between b and $a \vee b$.
7.5 Topology and Measure

7.5.1 Topological Spaces

A topological space is a set, S, together with a collection, T, of subsets of S satisfying: $\emptyset, S \in T$ (with \emptyset the null set); the union of any collection of sets in T is in T; the intersection of any pair of sets in T is in T. T is the topology of S. The elements of T are the open sets, and their complements (in S) are the closed sets. A function, f, from one topological space to another is continuous if the inverse image under f of every open set is again an open set.

A base, B, for a topology, T, is a collection of open sets in T such that every open set in T can be written as a union of elements of B. A common example involves spaces (such as vector spaces) with a norm, where one can define a base as the collection of 'open balls', that is, the collection of sets of the form $\{x ||x - y|| < \epsilon\}$ where x and y are points (e.g., vectors) in the space, and ϵ is a real number.

A topological space is compact if every sequence of points has a subsequence that converges to some point in the space. The space is locally compact if, roughly, each point in the space has a neighborhood that is compact — roughly, each small part of the space 'looks like' a small part of a compact space.

Given two topological spaces, S_1 and S_2, we can form their Cartesian product, $S_1 \times S_2$ as sets. We then define the product topology on this Cartesian product as follows. Let B_1 and B_2 be bases for the topologies on S_1 and S_2 respectively. The product topology on $S_1 \times S_2$ is the topology whose base is the Cartesian product $B_1 \times B_2$. (The definition of the product topology on a Cartesian product of more than two spaces is more convoluted. We will not need it here.)

7.5.2 Manifolds

A manifold is a topological space that is 'locally Euclidean', meaning that there is a neighborhood around each point that is topologically the same as the open unit ball in \mathbb{R}^n (for some n — and n is then the dimension of the manifold). An open set, S, of the manifold M, together with a homeomorphism between S and an open set of \mathbb{R}^n is called a coordinate chart. A collection of charts that covers M is an atlas. Now consider the region, S, in which two charts overlap. We thus have two distinct maps from S to \mathbb{R}^n, which defines a map, μ, from a subset of \mathbb{R}^n (the range of the first chart, applied to S) to some other subset of \mathbb{R}^n (the range of the second chart, applied to S). If all of the μ generated by all overlapping charts in the atlas are infinitely differentiable, then the manifold is a smooth manifold.

7.5.3 Weak Operator Topology

The weak operator topology over the operators on a Hilbert space, \mathcal{H} is the weakest topology on the set, $\mathcal{B}(\mathcal{H})$, of bounded operators on \mathcal{H}, such that the map $F \mapsto \langle w, Fv \rangle$ is continuous for any vectors $v, w \in \mathcal{H}$ and any $F \in \mathcal{B}(\mathcal{H})$. In the weak operator topology, a sequence, $\{F_n\}$, of operators converges to the operator F just in case $|\langle w, F_nv \rangle - \langle w, Fv \rangle|$ converges to 0 for every $v, w \in \mathcal{H}$.
7.5.4 Lebesgue Measure

On the real line, \(\mathbb{R} \), the Lebesgue measure is the natural extension of the usual measure of distance (size of intervals) to more complicated sets of points. For example, given any open set, \(S \), that is the union of disjoint intervals, the Lebesgue measure of \(S \) is the sum of the size of the intervals. Any countable union of individual points in \(\mathbb{R} \) has Lebesgue-measure zero. The measure is extended to volumes in \(\mathbb{R}^3 \) in the obvious way.

7.5.5 Borel Sets

Borel sets of real numbers are definable as follows. Given some set, \(S \), a \(\sigma \)-algebra over \(S \) is a family of subsets of \(S \) closed under complement, countable union and countable intersection. The Borel algebra over \(\mathbb{R} \) is the smallest \(\sigma \)-algebra containing the open sets of \(\mathbb{R} \). (One must show that there is indeed a smallest.) A Borel set of real numbers is an element of the Borel algebra over \(\mathbb{R} \). Note that not every subset of real numbers is a Borel set, though the ones that are not are somewhat exotic. All open and closed sets are Borel. The importance of Borel algebras (hence Borel sets) lies in the fact that certain measure-theoretic results apply only to them. On the other hand, in many cases one can extend the important results and definitions to a wider class of sets, for example, all sets that are the image of a Borel set under a continuous function. However, we shall not continue to make note of such points.

7.5.6 Probability Measures

Let \(X \) be a set (a ‘sample space’) of basic events and \(\mathcal{A} \) a \(\sigma \)-algebra over \(X \). The (Kolmogorovian) axioms of probability theory may then be stated as follows. Let \(p : \mathcal{A} \to [0, 1] \) be a map from \(\mathcal{A} \) to the interval \([0, 1]\). This \(p \) is a probability measure on \(\mathcal{A} \) just in case: (normalization) \(p(X) = 1 \); (negation) \(p(E^c) = 1 - p(E) \) for any \(E \in \mathcal{A} \); and (additivity) for any countable disjoint sequence \(\{E_k\} \) of elements of \(\mathcal{A} \), \(p(\bigcup_k E_k) = \sum_k p(E_k) \).

7.6 Groups

7.6.1 Groups and Homomorphisms

A group is a non-empty set, \(\mathcal{G} \), with a binary operation, \(* \) (called the ‘product’) on that set satisfying: (associativity) for all \(a, b, c \in \mathcal{G} \), \((a \ast b) \ast c = a \ast (b \ast c) \); (identity) there is an element, \(e \in \mathcal{G} \), such that for any \(a \in \mathcal{G} \), \(e \ast a = a \ast e = a \); (inverse) for all \(a \in \mathcal{G} \), there exists \(b \in \mathcal{G} \) such that \(a \ast b = b \ast a = e \) (this \(b \) is usually denoted \(a^{-1} \)); (closure) for all \(a, b \in \mathcal{G} \), \(a \ast b \in \mathcal{G} \). A structure satisfying all of these properties except for the existence of inverses is called a ‘semi-group’. A map, \(m : \mathcal{G} \to \mathcal{G}' \), from one group, \(\mathcal{G} \), to another, \(\mathcal{G}' \), is a homomorphism if, for all \(a, b \in \mathcal{G} \), \(m(a \ast b) = m(a) \ast m(b) \). (Note that the product on the left-hand side is taken in \(\mathcal{G} \), while the product on the right-hand side is taken in \(\mathcal{G}' \).) It follows
that \(m \) preserves inverses and maps the identity in \(\mathcal{G} \) to the identity in \(\mathcal{G}' \). The map \(m \) is an isomorphism if it is a homomorphism and it is 1-1. An isomorphism from \(\mathcal{G} \) to itself is an \textit{automorphism} of \(\mathcal{G} \). Normally the group product operator \(\ast \) is left implicit; hence we will from now on write \(a \ast b \) as \(ab \) and so on.

7.6.2 Subgroups and Products

Given a group, \(\mathcal{G} \), the subgroup \(\mathcal{H} \) is \textit{normal} if and only if \(g\mathcal{H}g^{-1} \subset \mathcal{H} \) for any \(g \in \mathcal{G} \) (where \(g\mathcal{H}g^{-1} \) is the set \(\{ghg^{-1} | h \in \mathcal{H}\} \)). Given two groups, \(\mathcal{H} \) and \(\mathcal{K} \), the group \(\mathcal{G} \) is their \textit{direct product} if and only if: (i) \(\mathcal{H} \) and \(\mathcal{K} \) are (isomorphic to) normal subgroups of \(\mathcal{G} \); (ii) \(\mathcal{H} \cap \mathcal{K} = e \), the identity in \(\mathcal{G} \); and (iii) as a set, \(\mathcal{G} \) is (isomorphic to) \(\{hk : h \in \mathcal{H}, k \in \mathcal{K}\} \). We write \(\mathcal{G} = \mathcal{H} \times \mathcal{K} \). The usual way to construct a direct product of groups is to let \(\mathcal{G} \) as a set be the Cartesian product of \(\mathcal{H} \) and \(\mathcal{K} \) as sets, and define \((h, k)(h', k') = (hh', kk') \) for all \(h, h' \in \mathcal{H} \) and \(k, k' \in \mathcal{K} \). (Notice in this case that \(\mathcal{H} \) is isomorphic to the subgroup of elements of the form \((h, e) \) for any \(h \in \mathcal{H} \) and \(e \) the identity in \(\mathcal{G} \), and similarly for \(\mathcal{K} \). Both \(\mathcal{H} \) and \(\mathcal{K} \) in this case are also normal subgroups.) If only \(\mathcal{K} \) is a normal subgroup of \(\mathcal{G} \), while \(\mathcal{H} \) is a non-normal subgroup, then \(\mathcal{G} \) is the \textit{semi-direct product} of \(\mathcal{H} \) by \(\mathcal{K} \), and we write \(\mathcal{G} = \mathcal{H} \rtimes \mathcal{K} \).

7.6.3 Cosets and Quotients

Let \(\mathcal{H} \) be a subgroup of \(\mathcal{G} \). We define the \textit{(left) cosets} of \(\mathcal{H} \) in \(\mathcal{G} \) as the set \(\{g\mathcal{H} | g \in \mathcal{G}\} \), where \(g\mathcal{H} = \{gh | h \in \mathcal{H}\} \). (Note that for some of the \(g, g' \in \mathcal{G} \) we will have \(g\mathcal{H} = g'\mathcal{H} \).) The left cosets of \(\mathcal{H} \) in \(\mathcal{G} \) partition \(\mathcal{G} \). They also themselves form a group, with the multiplication rule \((g\mathcal{H})(g'\mathcal{H}) = (gg')\mathcal{H} \). This group is called the \textit{quotient of} \(\mathcal{G} \) by \(\mathcal{H} \), typically written \(\mathcal{G}/\mathcal{H} \).

7.6.4 Continuously Parametrized Groups

To say that the group, \(\mathcal{G} \), is \textit{continuously parametrized} by \(a \) means, in particular, that the group as a set is indexed by \(a \), and: \(g_0 = I \) (the identity on \(\mathcal{G} \)); \(ga + b = ga + gb \); \(\lim_{n \to \infty} a_n = b \) implies \(\lim_{n \to \infty} ga_n = gb \). In the third condition, the limit on the right requires that the group be a \textit{topological group}, i.e., the group is also a topological space.

7.6.5 Lie Groups

A \textit{Lie group} is a smooth manifold (§7.5.2) that is also a group, where the group operations of multiplication and inversion are continuous maps on the manifold. (In fact, Lie groups are often defined as analytic manifolds, but we will not bother with that point here.)
7.6.6 Vector Space Representations

It is a fundamental theorem of group theory that every group, \(G \), is (isomorphic to) a subgroup of the group of permutations on some set. Another common type of representation of \(G \) is a vector space representation, a group-homomorphism from \(G \) to \(\text{GL}(V) \), the ‘general linear group’ of transformations of the vector space \(V \), that is, the group of invertible linear operators on \(V \).

A representation \(m : G \to \text{GL}(V) \) of the group \(G \) is faithful just in case \(m \) is 1-1. Non-faithful representations ignore structure in the represented group. Representations can also introduce structure, in the following sense. A proper subspace \(W \) of \(V \) that is invariant under the group (that is, the group is an automorphism of \(W \)) carries a ‘subrepresentation’ of \(G \) in the sense that the restriction of the representation of \(G \) on \(V \) to \(W \) is itself a representation of \(G \). When a (proper) subrepresentation of a representation, \(m \), of \(G \) exists, \(m \) is called ‘reducible’. Otherwise, it is ‘irreducible’. If a representation is reducible, then the vector space on which it is represented is in a sense ‘bigger than it needs to be’ to represent the group.

7.6.7 Group Action

For any set, \(S \), a group action of \(G \) on \(S \) is a map \(\mu : G \times S \to S \) satisfying:
- (a) \(\mu(g, \mu(h, s)) = \mu(gh, s) \) for all \(g, h \in G \) and \(s \in S \); and
- (b) \(\mu(e, s) = s \) for all \(s \in S \) (where \(e \) is the identity in \(G \)). \(\mu(g, s) \) is often written \(\mu_g s \). Each \(\mu_g \) is in fact a bijection on \(S \), so that we may also define a group action as a group homomorphism from \(G \) to the group of bijections on \(S \). Sometimes \(\mu_g \) is called the ‘action of \(g \) on \(S \)’. A group action, \(\mu \), of \(G \) on \(S \) is transitive if and only if for any \(s, t \in S \), there exists \(g \in G \) such that \(\mu_g x = y \). If both \(G \) and \(S \) have a topological structure, then the action of \(G \) on \(S \) is continuous if the map \(\mu \) is continuous with respect to the product topology (§7.5.1) of \(G \times S \).

7.6.8 Unitary Representations

Given a Hilbert space, \(\mathcal{H} \), any unitary operator, \(U \), on \(\mathcal{H} \) implements an automorphism of \(\text{GL}(\mathcal{H}) \). In particular, map \(\text{GL}(\mathcal{H}) \) to itself via \(F \mapsto U^{-1}FU \) for every \(F \in \text{GL}(\mathcal{H}) \). Note that, in particular, \(U^{-1}FGU = (U^{-1}FU)(U^{-1}GU) \) and \(U^{-1}F^{-1}U = (U^{-1}FU)^{-1} \) (assuming \(F \) is invertible), for any \(F, G \in \text{GL}(\mathcal{H}) \) (using the fact that \((AB)^{-1} = B^{-1}A^{-1} \) for any invertible operators \(A \) and \(B \)). Moreover, note that this map is 1-1: for any operator \(F \), there is a unique operator \(G \) such that \(U^{-1}GU = F \), namely, \(G = UFU^{-1} \).

Note also that every unitary operator is an element of \(\text{GL}(\mathcal{H}) \). Hence we have here an example of a general construction, the group inner isomorphism, by which one maps a group, \(G \), to itself via \(h \mapsto ghg^{-1} \) for some \(g \in G \) and all \(h \in G \).
7.6.9 Induced Representations

Given a group, \(\mathcal{G} \), and a subgroup, \(\mathcal{H} \), a representation of \(\mathcal{H} \) on a vector space, \(W \), 'induces' a representation of \(\mathcal{G} \), in the following sense. One can construct, from the representation of \(\mathcal{H} \) on \(W \), a vector space, \(V \), which is in fact the direct sum of copies of \(W \), and a representation of \(\mathcal{G} \) on \(V \). Each of the copies of \(W \) inside \(V \) carries a representation of \(\mathcal{H} \).

Here is a rough description of how the construction goes. Let \(\sigma \) be a representation of \(\mathcal{H} \) on \(W \). The general idea behind constructing the representation of \(\mathcal{G} \) induced by \(\sigma \) is to construct a vector space \(V \) that is the direct sum of copies of \(W \), i.e., \(V = \bigoplus W_n \), where each \(W_n \) is a copy of \(W \), and each copy of \(W \) corresponds to an element of \(\mathcal{G}/\mathcal{H} \). The representation, \(\rho \), of \(\mathcal{G} \) induced by \(\sigma \) is defined as follows. Fix a representative, \(g_n \), for each coset, \(n \), of \(\mathcal{G}/\mathcal{H} \). Note that for any \(g \in \mathcal{G} \), \(gg_n = g_m h \) for some \(h \in \mathcal{H} \) and some \(m \in \mathcal{G}/\mathcal{H} \). Let \(w_n \) be an arbitrary vector from \(W_n \), corresponding (under some isomorphism) to \(w \in W \). (Note that if we define an operator on a basis for each of the \(W_n \) then we have defined it for all of \(V \), by linearity.) Define the \(\rho(g) \) (for any \(g \in \mathcal{G} \)) by \(\rho(g)w_n = (\sigma(h)w)_m \), where \(h \) and \(m \) are given as above. The expression on the right should be read as 'let \(\sigma(h) \) act on \(w_n \in W_n \) in the same way that it acts on \(w \in W \), then map the result to the corresponding vector in \(W_m \).' Note that this entire prescription presupposes a set of isomorphisms between \(W \) and the \(W_n \). Finally, it can be shown that none of the above depends on the choice of representatives \(g_n \), in the sense that a different choice produces an isomorphic representation.

ACKNOWLEDGEMENTS

Thanks to Jeremy Butterfield and John Earman for their comments and suggestions. Thanks also to the participants of a workshop at the University of Pittsburgh in November, 2004, for helpful comments.

BIBLIOGRAPHY

This page intentionally left blank
BETWEEN CLASSICAL AND QUANTUM

N.P. Landsman

'But the worst thing is that I am quite unable to clarify the transition [of matrix mechanics] to the classical theory.' [Heisenberg to Pauli, October 23th, 1925]¹

'Hendrik Lorentz considered the establishment of the correct relation between the classical and the quantum theory as the most fundamental problem of future research. This problem bothered him as much as it did Planck.' [Mehra and Rechenberg, 2000, 721]

'Thus quantum mechanics occupies a very unusual place among physical theories: it contains classical mechanics as a limiting case, yet at the same time it requires this limiting case for its own formulation.' [Landau and Lifshitz, 1977, 3]

1 INTRODUCTION

Most modern physicists and philosophers would agree that a decent interpretation of quantum mechanics should fulfill at least two criteria. Firstly, it has to elucidate the physical meaning of its mathematical formalism and thereby secure the empirical content of the theory. This point (which we address only in a derivative way) was clearly recognized by all the founders of quantum theory.² Secondly (and this is the subject of this paper), it has to explain at least the appearance of the classical world.³ As shown by our second quotation above, Planck saw the difficulty this poses, and as a first contribution he noted that the high-temperature

¹'Aber das Schlimmste ist, daß ich über den Übergang in die klassische Theorie nie Klarheit bekommen kann.' See [Pauli, 1979, 251].

²The history of quantum theory has been described in a large number of books. The most detailed presentation is in [Mehra and Rechenberg, 1982–2001], but this multi-volume series has by no means superseded smaller works such as [Jammer, 1966; van der Waerden, 1967; Hendry, 1984; Darrigol, 1992], and [Beller, 1999]. Much information may also be found in biographies such as [Heisenberg, 1969; Pais, 1982; Moore, 1989; Pais, 1991; Cassidy, 1992; Heilbron, 2000; Enz, 2002], etc. See also [Pauli, 1979]. A new project on the history of matrix mechanics led by Jürgen Renn is on its way.

³That these points are quite distinct is shown by the Copenhagen Interpretation, which exclusively addresses the first at utter neglect of the second. Nonetheless, in most other approaches to quantum mechanics there is substantial overlap between the various mechanisms that are proposed to fulfill the two criteria in question.
limit of his formula for black-body radiation converged to the classical expression. Although Bohr believed that quantum mechanics should be interpreted through classical physics, among the founders of the theory he seems to have been unique in his lack of appreciation of the problem of deriving classical physics from quantum theory. Nonetheless, through his correspondence principle (which he proposed in order to address the first problem above rather than the second) Bohr made one of the most profound contributions to the issue. Heisenberg initially recognized the problem, but quite erroneously came to believe he had solved it in his renowned paper on the uncertainty relations. Einstein famously did not believe in the fundamental nature of quantum theory, whereas Schrödinger was well aware of the problem from the beginning, later highlighted the issue with his legendary cat, and at various stages in his career made important technical contributions towards its resolution. Ehrenfest stated the well-known theorem named after him. Von Neumann saw the difficulty, too, and addressed it by means of his well-known analysis of the measurement procedure in quantum mechanics.

The problem is actually even more acute than the founders of quantum theory foresaw. The experimental realization of Schrödinger’s cat is nearer than most physicists would feel comfortable with [Leggett, 2002; Brezger et al., 2002; Chiorescu et al., 2003; Marshall et al., 2003; Devoret et al., 2004]. Moreover, awkward superpositions are by no means confined to physics laboratories: due to its chaotic motion, Saturn’s moon Hyperion (which is about the size of New York) has been estimated to spread out all over its orbit within 20 years if treated as an isolated quantum-mechanical wave packet [Zurek and Paz, 1995]. Furthermore, decoherence theorists have made the point that “measurement” is not only a procedure carried out by experimental physicists in their labs, but takes place in Nature all the time without any human intervention. On the conceptual side, parties as diverse as Bohm and Bell and their followers on the one hand and the quantum cosmologists on the other have argued that a “Heisenberg cut” between object and observer cannot possibly lie at the basis of a fundamental theory of physics. These and other remarkable insights of the past few decades have drawn wide attention to the importance of the problem of interpreting quantum mechanics, and in particular of explaining classical physics from it.

We will discuss these ideas in more detail below, and indeed our discussion of the relationship between classical and quantum mechanics will be partly historical. However, other than that it will be technical and mathematically rigorous. For the problem at hand is so delicate that in this area sloppy mathematics is almost guaranteed to lead to unreliable physics and conceptual confusion (notwithstanding...

4 One can see that the transition from micro- to macro-mechanics is now very easy to understand: classical mechanics is altogether part of quantum mechanics. (Heisenberg to Bohr, 19 March 1927, just before the submission on 23 March of Heisenberg [1927]. See Bohr’s Scientific Correspondence in the Archives for the History of Quantum Physics).

5 Not to speak of the problem, also raised by quantum cosmologists, of deriving classical space-time from some theory of quantum gravity. This is certainly part of the general program of deriving classical physics from quantum theory, but unfortunately it cannot be discussed in this paper.
ing the undeniable success of poor man’s math elsewhere in theoretical physics). Except for von Neumann, this was not the attitude of the pioneers of quantum mechanics; but while it has to be acknowledged that many of their ideas are still central to the current discussion, these ideas per se have not solved the problem. Thus we assume the reader to be familiar with the Hilbert space formalism of quantum mechanics, and for some parts of this paper (notably Section 6 and parts of Section 4) also with the basic theory of C*-algebras and its applications to quantum theory. In addition, some previous encounter with the conceptual problems of quantum theory would be helpful.

Which ideas have solved the problem of explaining the appearance of the classical world from quantum theory? In our opinion, none have, although since the founding days of quantum mechanics a number of new ideas have been proposed that almost certainly will play a role in the eventual resolution, should it ever be found. These ideas surely include:

- The limit $\hbar \to 0$ of small Planck's constant (coming of age with the mathematical field of microlocal analysis);
- The limit $N \to \infty$ of a large system with N degrees of freedom (studied in a serious way only after the emergence of C*-algebraic methods);
- Decoherence and consistent histories.

Mathematically, the second limit may be seen as a special case of the first, though the underlying physical situation is of course quite different. In any case, after a detailed analysis our conclusion will be that none of these ideas in isolation is capable of explaining the classical world, but that there is some hope that by combining all three of them, one might do so in the future.

Because of the fact that the subject matter of this review is unfinished business, to date one may adopt a number of internally consistent but mutually incompatible philosophical stances on the relationship between classical and quantum theory. Two extreme ones, which are always useful to keep in mind whether one holds one of them or not, are:

1. Quantum theory is fundamental and universally valid, and the classical world has only “relative” or “perspectival” existence.

2. Quantum theory is an approximate and derived theory, possibly false, and the classical world exists absolutely.

\footnote{Apart from seasoned classics such as [Mackey, 1963; Jauch, 1968; Prugovecki, 1971; Reed and Simon, 1972], or [Thirring, 1981], the reader might consult more recent books such as [Gustafson and Sigal, 2003] or [Williams, 2003]. See also [Dickson, 2005].}

\footnote{For physics-oriented introductions to C*-algebras see [Davies, 1976; Roberts and Roepstorff, 1969; Primas, 1983; Thirring, 1983; Emch, 1984; Strocchi, 1985; Sewell, 1986; Roberts, 1990; Haag, 1992; Landsman, 1998; Araki, 1999], and [Sewell, 2002]. Authoritative mathematical texts include [Kadison and Ringrose, 1983; 1986] and [Takesaki, 2003].}

\footnote{Trustworthy books include, for example, [Scheibe, 1973; Jammer, 1974; van Fraassen, 1991; d'Espagnat, 1995; Peres, 1995; Omnès, 1994; 1999; Bub, 1997], and [Mittelstaedt, 2004].}
An example of a position that our modern understanding of the measurement problem\(^9\) has rendered internally inconsistent is:

3. Quantum theory is fundamental and universally valid, and (yet) the classical world exists absolutely.

In some sense stance 1 originates with Heisenberg [1927], but the modern era started with Everett [1957].\(^10\) These days, most decoherence theorists, consistent historians, andmodal interpreters seem to support it. Stance 2 has a long and respectable pedigree unequivocally, including among others Einstein, Schrödinger, and Bell. More recent backing has come from Leggett as well as from “spontaneous collapse” theorists such as Pearle, Ghirardi, Rimini, Weber, and others. As we shall see in Section 3, Bohr’s position eludes classification according to these terms; our three stances being of an ontological nature, he probably would have found each of them unattractive.

Of course, one has to specify what the terminology involved means. By quantum theory we mean standard quantum mechanics including the eigenvector-eigenvalue link.\(^11\) Modal interpretations of quantum mechanics [Dieks, 1989a; 1989b; van Fraassen, 1991; Bub, 1999; Vermaas, 2000; Bene & Dieks, 2002; Dickson, 2005] deny this link, and lead to positions close to or identical to stance 1. The projection postulate is neither endorsed nor denied when we generically speak of quantum theory.

It is a bit harder to say what “the classical world” means. In the present discussion we evidently can not define the classical world as the world that exists independently of observation – as Bohr did, see Subsection 3.1 – but neither can it be taken to mean the part of the world that is described by the laws of classical physics full stop; for if stance 1 is correct, then these laws are only approximately valid, if at all. Thus we simply put it like this:

The classical world is what observation shows us to behave – with appropriate accuracy – according to the laws of classical physics.

There should be little room for doubt as to what ‘with appropriate accuracy’ means: the existence of the colour grey does not imply the nonexistence of black and white!

We can define the absolute existence of the classical world à la Bohr as its existence independently of observers or measuring devices. Compare with Moore’s [1939] proof of the existence of the external world:

\(^9\) See the books cited in footnote 8, especially [Mittelstaedt, 2004].

\(^10\) Note, though, that stance 1 by no means implies the so-called Many-Worlds Interpretation, which also in our opinion is ‘simply a meaningless collage of words’ [Leggett, 2002].

\(^11\) Let \(A\) be a selfadjoint operator on a Hilbert space \(\mathcal{H}\), with associated projection-valued measure \(P(\Delta)\), \(\Delta \subset \mathbb{R}\), so that \(A = \int \lambda dP(\lambda)\) (see also footnote 99 below). The eigenvector-eigenvalue link states that a state \(\Psi\) of the system lies in \(P(\Delta)\mathcal{H}\) if and only if \(A\) takes some value in \(\Delta\) for sure. In particular, if \(\Psi\) is an eigenvector of \(A\) with eigenvalue \(\lambda\) (so that \(P(\set{\lambda}) \neq 0\) and \(\Psi \in P(\lambda)\mathcal{H}\)), then \(A\) takes the value \(\lambda\) in the state \(\Psi\) with probability one. In general, the probability \(p_{\Psi}(\Delta)\) that in a state \(\Psi\) the observable \(A\) takes some value in \(\Delta\) (“upon measurement”) is given by the Born–von Neumann rule \(p_{\Psi}(\Delta) = (\Psi, P(\Delta)\Psi)\).
How? By holding up my two hands, and saying, as I make a certain gesture with the right hand, ‘Here is one hand’, and adding, as I make a certain gesture with the left, ‘and here is another’.

Those holding position 1, then, maintain that the classical world exists only as an appearance relative to a certain specification, where the specification in question could be an observer (Heisenberg), a certain class of observers and states (as in decoherence theory), or some coarse-graining of the Universe defined by a particular consistent set of histories, etc. If the notion of an observer is construed in a sufficiently abstract and general sense, one might also formulate stance 1 as claiming that the classical world merely exists from the perspective of the observer (or the corresponding class of observables). For example, Schrödinger’s cat “paradox” dissolves at once when the appropriate perspective is introduced; cf. Subsection 6.6.

Those holding stance 2, on the other hand, believe that the classical world exists in an absolute sense (as Moore did). Thus stance 2 is akin to commonsense realism, though the distinction between 1 and 2 is largely independent of the issue of scientific realism. For defendants of stance 1 usually still believe in the existence of some observer-independent reality (namely somewhere in the quantum realm), but deny that this reality incorporates the world observed around us. This justifies a pretty vague specification of such an important notion as the classical world: one of the interesting outcomes of the otherwise futile discussions surrounding the Many Worlds Interpretation has been the insight that if quantum mechanics is fundamental, then the notion of a classical world is intrinsically vague and approximate. Hence it would be self-defeating to be too precise at this point.

Although stance 1 is considered defensive if not cowardly by adherents of stance 2, it is a highly nontrivial mathematical fact that so far it seems supported by the formalism of quantum mechanics. In his derision of what he called ‘FAPP’ (= For All Practical Purposes) solutions to the measurement problem (and more general attempts to explain the appearance of the classical world from quantum theory), Bell [1987; 2001] and others in his wake mistook a profound epistemological stance for a poor defensive move. It is, in fact, stance 2 that we would recommend to the cowardly: for proving or disproving stance 1 seems the real challenge of the

12The terminology “perspectival” was suggested to the author by Richard Healey.
13See [Landsman, 1995] for a more elaborate discussion of realism in this context. Words like “objective” or “subjective” are not likely to be helpful in drawing the distinction either: the claim that ‘my children are the loveliest creatures in the world’ is at first glance subjective, but it can trivially be turned into an objective one through the reformulation that ‘Klaas Landsman finds his children the loveliest creatures in the world’. Similarly, the proposition that (perhaps due to decoherence) ‘local observers find that the world is classical’ is perfectly objective, although it describes a subjective experience. See also [Davidson, 2001].
14See [Wallace, 2002; 2003]; also cf. [Butterfield, 2002]. This point was not lost on Bohr and Heisenberg either; see [Scheibe, 1973].
15The insistence on “precision” in such literature is reminiscent of Planck’s long-held belief in the absolute nature of irreversibility [Darrigol, 1992; Heilbron, 2002]. It should be mentioned that although Planck’s stubbornness by historical accident led him to take the first steps towards quantum theory, he eventually gave it up to side with Boltzmann.
entire debate, and we regard the technical content of this paper as a survey of progress towards actually proving it. Indeed, to sum up our conclusions, we claim that there is good evidence that:

1. Classical physics emerges from quantum theory in the limit \(h \to 0 \) or \(N \to \infty \) provided that the system is in certain "classical" states and is monitored with "classical" observables only;

2. Decoherence and consistent histories will probably explain why the system happens to be in such states and has to be observed in such a way.

However, even if one fine day this scheme will be made to work, the explanation of the appearance of the classical world from quantum theory will be predicated on an external solution of the notorious 'from "and" to "or"' problem: If quantum mechanics predicts various possible outcomes with certain probabilities, why does only one of these appear to us?\(^{16}\)

For a more detailed outline of this paper we refer to the table of contents above. Most philosophical discussion will be found in Section 3 on the Copenhagen interpretation, since whatever its merits, it has undeniably set the stage for the entire discussion on the relationship between classical and quantum.\(^{17}\) The remainder of the paper will be of an almost purely technical nature. Beyond this point we will try to avoid controversy, but when unavoidable it will be confined to the Epilogues appended to Sections 3-6. The final Epilogue (Section 8) expresses our deepest thoughts on the subject.

2 EARLY HISTORY

This section is a recapitulation of the opinions and contributions of the founders of quantum mechanics regarding the relationship between classical and quantum. More detail may be found in the books cited in footnote 2 and in specific literature to be cited; for an impressive (but incomplete) bibliography see also [Gutzwiller, 1998]. The early history of quantum theory is of interest in its own right, concerned as it is with one of the most significant scientific revolutions in history. Although this history is not a main focus of this paper, it is of special significance for our theme. For the usual and mistaken interpretation of Planck’s work (i.e. the idea that he introduced something like a "quantum postulate", see Subsection 3.2 below) appears to have triggered the belief that quantum theory and Planck’s constant are related to a universal discontinuity in Nature. Indeed, this discontinuity is sometimes even felt to mark the basic difference between classical and quantum physics. This belief is particularly evident in the writings of Bohr, but still resonates even today.

\(^{16}\)It has to be acknowledged that we owe the insistence on this question to the defendants of stance 2. See also footnote 10.

\(^{17}\)We do not discuss the classical limit of quantum mechanics in the philosophical setting of theory reduction and intertheoretic relations; see, e.g., [Scheibe, 1999] and [Batterman, 2002].
2.1 Planck and Einstein

The relationship between classical physics and quantum theory is so subtle and confusing that historians and physicists cannot even agree about the precise way the classical gave way to the quantum! As Darrigol [2001] puts it: 'During the past twenty years, historians [and physicists] have disagreed over the meaning of the quanta which Max Planck introduced in his black-body theory of 1900. The source of this confusion is the publication (...) of Thomas Kuhn's [1978] iconoclastic thesis that Planck did not mean his energy quanta to express a quantum discontinuity.'

As is well known (cf. [Mehra and Rechenberg, 1982a], etc.), Planck initially derived Wien's law for blackbody radiation in the context of his (i.e. Planck's) program of establishing the absolute nature of irreversibility (competing with Boltzmann's probabilistic approach, which eventually triumphed). When new high-precision measurements in October 1900 turned out to refute Wien's law, Planck first guessed his expression

\[E_\nu / N_\nu = \hbar / (e^{h\nu/kT} - 1) \]

for the correct law, en passant introducing two new constants of nature \(h \) and \(k \),\(^{18}\) and subsequently, on December 14, 1900, presented a theoretical derivation of his law in which he allegedly introduced the idea that the energy of the resonators making up his black body was quantized in units of \(\varepsilon_\nu = h\nu \) (where \(\nu \) is the frequency of a given resonator). This derivation is generally seen as the birth of quantum theory, with the associated date of birth just mentioned.

However, it is clear by now [Kuhn, 1978; Darrigol, 1992; 2001; Carson, 2000; Brush, 2002] that Planck was at best agnostic about the energy of his resonators, and at worst assigned them a continuous energy spectrum. Technically, in the particular derivation of his empirical law that eventually turned out to lead to the desired result (which relied on Boltzmann's concept of entropy),\(^{19}\) Planck had to count the number of ways a given amount of energy \(E_\nu \) could be distributed over a given number of resonators \(N_\nu \) at frequency \(\nu \). This number is, of course, infinite, hence in order to find a finite answer Planck followed Boltzmann in breaking up \(E_\nu \) into a large number \(A_\nu \) of portions of identical size \(\varepsilon_\nu \), so that \(A_\nu \varepsilon_\nu = E_\nu \).\(^{20}\) Now, as we all know, whereas Boltzmann let \(\varepsilon_\nu \rightarrow 0 \) at the end of his corresponding calculation for a gas, Planck discovered that his empirical blackbody law emerged if he assumed the relation \(\varepsilon_\nu = h\nu \).

However, this postulate did not imply that Planck quantized the energy of his resonators. In fact, in his definition of a given distribution he counted the number of resonators with energy between say \((k - 1)\varepsilon_\nu \) and \(k\varepsilon_\nu \) (for some \(k \))

\(^{18}\)Hence Boltzmann's constant \(k \) was introduced by Planck, who was the first to write down the formula \(S = k \log W \).

\(^{19}\)Despite the fact that Planck only converted to Boltzmann's approach to irreversibility around 1914.

\(^{20}\)The number in question is then given by \((N + A - 1)!(N - 1)!A!\), dropping the dependence on \(\nu \) in the notation.
N), as Boltzmann did in an analogous way for a gas, rather than the number of resonators with energy \(k\varepsilon_\nu \), as most physicists came to interpret his procedure. More generally, there is overwhelming textual evidence that Planck himself by no means believed or implied that he had quantized energy; for one thing, in his Nobel Prize Lecture in 1920 he attributed the correct interpretation of the energy-quanta \(\varepsilon_\nu \) to Einstein. Indeed, the modern understanding of the earliest phase of quantum theory is that it was Einstein rather than Planck who, during the period 1900–1905, clearly realized that Planck’s radiation law marked a break with classical physics [Büttnér et al., 2003]. This insight, then, led Einstein to the quantization of energy. This he did in a twofold way, both in connection with Planck’s resonators — interpreted by Einstein as harmonic oscillators in the modern way — and, in a closely related move, through his concept of a photon. Although Planck of course introduced the constant named after him, and as such is the founding father of the theory characterized by \(\hbar \), it is the introduction of the photon that made Einstein at least the mother of quantum theory. Einstein himself may well have regarded the photon as his most revolutionary discovery, for what he wrote about his pertinent paper is not matched in self-confidence by anything he said about relativity: ‘Sie handelt über die Strahlung und die energetischen Eigenschaften des Lichtes und ist sehr revolutionär’.

Finally, in the light of the present paper, it deserves to be mentioned that Einstein [1905] and Planck [1906] were the first to comment on the classical limit of quantum theory; see the preamble to Section 5 below.

2.2 Bohr

Bohr’s brilliant model of the atom reinforced his idea that quantum theory was a theory of quanta.\(^{22}\) Since this model simultaneously highlighted the clash between classical and quantum physics and carried the germ of a resolution of this conflict through Bohr’s equally brilliant correspondence principle, it is worth saying a few words about it here.\(^{23}\) Bohr’s atomic model addressed the radiative instability of Rutherford’s solar-system-style atom:\(^{24}\) according to the electrodynamics of Lorentz, an accelerating electron should radiate, and since the envisaged circular or elliptical motion of an electron around the nucleus is a special case of an accelerated motion, the electron should continuously lose energy and spiral towards

\(^{21}\) [This paper] is about radiation and the energetic properties of light, and is very revolutionary. See also the Preface to Pais [1982].

\(^{22}\) Although at the time Bohr followed practically all physicists in their rejection of Einstein’s photon, since he believed that during a quantum jump the atom emits electromagnetic radiation in the form of a spherical wave. His model probably would have gained in consistency by adopting the photon picture of radiation, but in fact Bohr was to be the last prominent opponent of the photon, resisting the idea until 1925. See also Blair Bolles [2004] and footnote 33 below.

\(^{23}\) Cf. [Darrigol, 1992] for a detailed treatment; also see [Liboff, 1984] and [Steiner, 1998].

\(^{24}\) The solar system provides the popular visualization of Rutherford’s atom, but his own picture was more akin to Saturn’s rings than to a planet orbiting the Sun.
the nucleus.25 Bohr countered this instability by three simultaneous moves, each of striking originality:

1. He introduced a quantization condition that singled out only a discrete number of allowed electronic orbits (which subsequently were to be described using classical mechanics, for example, in Bohr's calculation of the Rydberg constant R).

2. He replaced the emission of continuous radiation called for by Lorentz by quantum jumps with unpredictable destinations taking place at unpredictable moments, during which the atom emits light with energy equal to the energy difference of the orbits between which the electron jumps.

3. He prevented the collapse of the atom through such quantum jumps by introducing the notion of a ground state, below which no electron could fall.

With these postulates, for which at the time there existed no foundation whatsoever,26 Bohr explained the spectrum of the hydrogen atom, including an amazingly accurate calculation of R. Moreover, he proposed what was destined to be the key guiding principle in the search for quantum mechanics in the coming decade, viz. the correspondence principle (cf. [Darrigol, 1992, passim], and [Mehra and Rechenberg, 1982a, 249–257]).

In general, there is no relation between the energy that an electron loses during a particular quantum jump and the energy it would have radiated classically (i.e. according to Lorentz) in the orbit it revolves around preceding this jump. Indeed, in the ground state it cannot radiate through quantum jumps at all, whereas according to classical electrodynamics it should radiate all the time. However, Bohr saw that in the opposite case of very wide orbits (i.e. those having very large principal quantum numbers n), the frequency $\nu = (E_n - E_{n-1})/\hbar$ (with $E_n = -R/n^2$) of the emitted radiation approximately corresponds to the frequency of the lowest harmonic of the classical theory, applied to electron motion in the initial orbit.27 Moreover, the measured intensity of the associated spectral line (which theoretically should be related to the probability of the quantum jump, a quantity out of the reach of early quantum theory), similarly turned out to be given by classical electrodynamics. This property, which in simple cases could be verified either by explicit computation or by experiment, became a guiding principle in situations where it could not be verified, and was sometimes even

25In addition, any Rutherford style atom with more than one electron is mechanically unstable, since the electrons repel each other, as opposed to planets, which attract each other.

26What has hitherto been mathematically proved of Bohr's atomic model is the existence of a ground state (see [Griesemer et al., 2001], and references therein for the greatest generality available to date) and the metastability of the excited states of the atom after coupling to the electromagnetic field (cf. [Bach et al., 1998; 1999] and [Gustafson and Sigal, 2003]). The energy spectrum is discrete only if the radiation field is decoupled, leading to the usual computation of the spectrum of the hydrogen atom first performed by Schrödinger and Weyl. See also the end of Subsection 5.4.

27Similarly, higher harmonics correspond to quantum jumps $n \rightarrow n - k$ for $k > 1$.
extended to low quantum numbers, especially when the classical theory predicted selection rules.

It should be emphasized that Bohr’s correspondence principle was concerned with the properties of radiation, rather than with the mechanical orbits themselves. This is not quite the same as what is usually called the correspondence principle in the modern literature. In fact, although also this modern correspondence principle has a certain range of validity (as we shall see in detail in Section 5), Bohr never endorsed anything like that, and is even on record as opposing such a principle.

‘The place was Purcell’s office where Purcell and others had taken Bohr for a few minutes of rest [during a visit to the Physics Department at Harvard University in 1961]. They were in the midst of a general discussion when Bohr commented: “People say that classical mechanics is the limit of quantum mechanics when \(\hbar \) goes to zero.” Then, Purcell recalled, Bohr shook his finger and walked to the blackboard on which he wrote \(e^2/\hbar c \). As he made three strokes under \(\hbar \), Bohr turned around and said, “you see \(\hbar \) is in the denominator.”’

2.3 Heisenberg

Heisenberg’s [1925] paper Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen is generally seen as a turning point in the development of quantum mechanics. Even A. Pais, no friend of Heisenberg’s, conceded that Heisenberg’s paper marked ‘one of the great jumps — perhaps the greatest — in the development of twentieth century physics.’ What did Heisenberg actually accomplish? This question is particularly interesting from the perspective of our theme.

At the time, atomic physics was in a state of crisis, to which various camps responded in different ways. Bohr’s approach might best be described as damage control: his quantum theory was a hybrid of classical mechanics adjusted by means of ad hoc quantization rules, whilst keeping electrodynamics classical at all cost.

28 As such, it remains to be verified in a rigorous way.
29 A typical example of the modern version is: ‘Non-relativistic quantum mechanics was founded on the correspondence principle of Bohr: “When the Planck constant \(\hbar \) can be considered small with respect to the other parameters such as masses and distances, quantum theory approaches classical Newton theory.”’ [Robert, 1998, 44]. The reference to Bohr is historically inaccurate!
30 Quoted from [Miller, 1984, 313].
31 On the quantum theoretical reinterpretation of kinematical and mechanical relations. English translation in [van der Waerden, 1967].
32 For example, in [Pais, 2000], claiming to portray the ‘genius of science’, Heisenberg is conspicuously absent.
33 Continuing footnote 22, we quote from [Mehra and Rechenberg, 1982a, 256–257]: ‘Thus, in the early 1920s, Niels Bohr arrived at a definite point of view how to proceed forward in atomic theory. He wanted to make maximum use of what he called the “more dualistic prescription” (….) In it the atom was regarded as a mechanical system having discrete states and emitting radiation of discrete frequencies, determined (in a nonclassical way) by the energy differences
Einstein, who had been the first physicist to recognize the need to quantize classical electrodynamics, in the light of his triumph with General Relativity nonetheless dreamt of a classical field theory with singular solutions as the ultimate explanation of quantum phenomena. Born led the radical camp, which included Pauli: he saw the need for an entirely new mechanics replacing classical mechanics, which was to be based on discrete quantities satisfying difference equations. This was a leap in the dark, especially because of Pauli’s frowning upon the correspondence principle [Hendry, 1984; Beller, 1999].

It was Heisenberg’s genius to *interpolate* between Bohr and Born. The meaning of his *Umdeutung* was to keep the classical equations of motion, whilst reinterpreting the mathematical symbols occurring therein as (what were later recognized to be) matrices. Thus his *Umdeutung* $x \mapsto a(n, m)$ was a precursor of what now would be called a quantization map $f \mapsto Q_h(f)$, where f is a classical observable, i.e., a function on phase space, and $Q_h(f)$ is a quantum mechanical observable, in the sense of an operator on a Hilbert space or, more abstractly, an element of some C^*-algebra. See Section 4 below. As Heisenberg recognized, this move implies the noncommutativity of the quantum mechanical observables; it is this, rather than something like a “quantum postulate” (see Subsection 3.2 below), that is the defining characteristic of quantum mechanics. Indeed, most later work on quantum physics and practically all considerations on the connection between classical and quantum rely on Heisenberg’s idea of *Umdeutung*. This even applies to the mathematical formalism as a whole; see Subsection 2.5.

We here use the term “observable” in a loose way. It is now well recognized [Mehra and Rechenberg, 1982b; Beller, 1999; Camilleri, 2005] that Heisenberg’s claim that his formalism could be physically interpreted as the replacement of atomic orbits by observable quantities was a red herring, inspired by his discussions with Pauli. In fact, in quantum mechanics any mechanical quantity has to be “reinterpreted”, whether or not it is observable. As Heisenberg [1969] recalls, Einstein reprimanded him for the illusion that physics admits an *a priori* notion of an observable, and explained that a theory determines what can be observed. Rethinking the issue of observability then led Heisenberg to his second major contribution to quantum mechanics, namely his uncertainty relations.

These relations were Heisenberg’s own answer to the quote opening this paper. Indeed, matrix mechanics was initially an extremely abstract and formal scheme, between stationary states; radiation, on the other hand, had to be described by the classical electrodynamical theory.’

34. It was Born who coined the name *quantum mechanics* even before Heisenberg’s paper.
35. This idea had earlier occurred to Kramers.
36. Also literally! Heisenberg’s traveled between Copenhagen and Göttingen most of the time.
37. This crucial aspect of *Umdeutung* was appreciated at once by Dirac [1926]: ‘In a recent paper Heisenberg puts forward a new theory which suggests that it is not the equations of classical mechanics that are in any way at fault, but that the mathematical operations by which physical results are deduced from them require modification. (…) The correspondence between the quantum and classical theories lies not so much in the limiting agreement when $h \to 0$ as in the fact that the mathematical operations on the two theories obey in many cases the same laws.’
which lacked not only any visualization but also the concept of a state (see below). Although these features were initially quite to the liking of Born, Heisenberg, Pauli, and Jordan, the success of Schrödinger's work forced them to renege on their radical stance, and look for a semiclassical picture supporting their mathematics; this was a considerable U-turn [Beller, 1999; Camilleri, 2005]. Heisenberg [1927] found such a picture, claiming that his uncertainty relations provided the 'intuitive content of the quantum theoretical kinematics and mechanics' (as his paper was called). His idea was that the classical world emerged from quantum mechanics through observation: 'The trajectory only comes into existence because we observe it.' This idea was to become extremely influential, and could be regarded as the origin of stance 1 in the Introduction.

2.4 Schrödinger

The history of quantum mechanics is considerably clarified by the insight that Heisenberg and Schrödinger did not, as is generally believed, discover two equivalent formulations of the theory, but rather that Heisenberg [1925] identified the mathematical nature of the observables, whereas Schrödinger [1926a] found the description of states. Matrix mechanics lacked the notion of a state, but by the same token wave mechanics initially had no observables; it was only in his attempts to relate wave mechanics to matrix mechanics that Schrödinger [1926c] introduced the position and momentum operators

\[Q_h(q^j) = x^j; \]
\[Q_h(p_j) = -i\hbar \frac{\partial}{\partial x^j}. \]

This provided a new basis for Schrödinger's equation

\[\left(-\frac{\hbar^2}{2m} \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2} + V(x) \right) \Psi = i\hbar \frac{\partial \Psi}{\partial t}, \]

by interpreting the left-hand side as \(H \Psi \), with \(H = Q_h(h) \) in terms of the classical Hamiltonian \(h(p, q) = \sum_j p_j^2/2m + V(q) \). Thus Schrödinger founded the theory of the operators now named after him, and in doing so gave what is still the most important example of Heisenberg's idea of Umdeutung of classical observables.

38 'Die Bahn entsteht erst dadurch, daß wir sie beobachten.'

39 See also [Muller, 1997].

40 Here \(j = 1, 2, 3 \). In modern terms, the expressions on the right-hand side are unbounded operators on the Hilbert space \(\mathcal{H} = L^2(\mathbb{R}^n) \). See Section 4 for more details. The expression \(x^j \) is a multiplication operator, i.e. \((x^j \Psi)(x) = x^j \Psi(x) \), whereas, obviously, \((\partial/\partial x^j) \Psi)(x) = (\partial \Psi/\partial x^j)(x) \).

41 Or the corresponding time-independent one, with \(E \Psi \) on the right-hand side.

42 See [Reed and Simon, 1972; 1975; 1987; 1979; Cycon et al., 1987; Hislop and Sigal, 1996; Hunziker and Sigal, 2000; Simon, 2000; Gustafsson and Sigal, 2003]. For the mathematical origin of the Schrödinger equation also cf. [Simon, 1976].
Subsequently, correcting and expanding on certain ideas of Dirac, Pauli, and Schrödinger, von Neumann [1932] brilliantly glued these two parts together through the concept of a Hilbert space. He also gave an abstract form of the formulae of Born, Pauli, Dirac, and Jordan for the transition probabilities, thus completing the mathematical formulation of quantum mechanics.

However, this is not how Schrödinger saw his contribution. He intended wave mechanics as a full-fledged classical field theory of reality, rather than merely as one half (namely in modern parlance the state space half) of a probabilistic description of the world that still incorporated the quantum jumps he so detested [Mehra and Rechenberg, 1987; Götsch, 1992; Bitbol and Darrigol, 1992; Bitbol, 1996; Beller, 1999]. Particles were supposed to emerge in the form of wave packets, but it was immediately pointed out by Heisenberg, Lorentz, and others that in realistic situations such wave packets tend to spread in the course of time. This had initially been overlooked by Schrödinger [1926b], who had based his intuition on the special case of the harmonic oscillator. On the positive side, in the course of his unsuccessful attempts to derive classical particle mechanics from wave mechanics through the use of wave packets, Schrödinger [1926b] gave the first example of what is now called a coherent state. Here a quantum wave function Ψ_z is labeled by a ‘classical’ parameter z, in such a way that the quantum-mechanical time-evolution $\Psi_z(t)$ is approximately given by $\Psi_{z(t)}$, where $z(t)$ stands for some associated classical time-evolution; see Subsections 4.2 and 5.2 below. This has turned out to be a very important idea in understanding the transition from quantum to classical mechanics.

Furthermore, in the same paper Schrödinger [1926b] proposed the following wave-mechanical version of Bohr’s correspondence principle: classical atomic states should come from superpositions of a very large number (say at least 10,000) of highly excited states (i.e. energy eigenfunctions with very large quantum numbers). After decades of limited theoretical interest in this idea, interest in wave packets in atomic physics was revived in the late 1980s due to the development of modern experimental techniques based on lasers (such as pump-probing and phase-modulation). See [Robinett, 2004] for a recent technical review, or [Nauenberg et al., 1994] for an earlier popular account. Roughly speaking, the picture that has emerged is this: a localized wave packet of the said type initially follows a time-evolution with almost classical periodicity, as Schrödinger hoped, but subsequently spreads out after a number of orbits. Consequently, during this second phase the probability distribution approximately fills the classical orbit (though not uniformly). Even more surprisingly, on a much longer time scale there is a phenomenon of wave packet revival, in which the wave packet recovers its initial localization. Then the whole cycle starts once again, so that one does see periodic behaviour, but not of the expected classical type. Hence even in what naively would be thought of as the thoroughly classical regime, wave phenomena continue to play a role, leading to quite unusual and unexpected behaviour. Although a rigorous mathematical description of wave packet revival has not yet been forthcoming, the overall picture (based on both “theoretical physics” style mathematics
and experiments) is clear enough.

It is debatable (and irrelevant) whether the story of wave packets has evolved according to Schrödinger’s intentions (cf. [Littlejohn, 1986]); what is certain is that his other main idea on the relationship between classical and quantum has been extremely influential. This was, of course, Schrödinger’s [1926a] “derivation” of his wave equation from the Hamilton–Jacobi formalism of classical mechanics. This gave rise to the WKB approximation and related methods; see Subsection 5.5.

In any case, where Schrödinger hoped for a classical interpretation of his wave function, and Heisenberg wanted to have nothing to do with it whatsoever [Beller, 1999], Born and Pauli were quick to realize its correct, probabilistic significance. Thus they deprived the wave function of its naive physical nature, and effectively degraded it to the purely mathematical status of a probability amplitude. And in doing so, Born and Pauli rendered the connection between quantum mechanics and classical mechanics almost incomprehensible once again! It was this incomprehensibility that Heisenberg addressed with his uncertainty relations.

2.5 von Neumann

Through its creation of the Hilbert space formalism of quantum mechanics, von Neumann’s book [1932] can be seen as a mathematical implementation of Heisenberg’s idea of Umdeutung. Von Neumann in effect proposed the following quantum-theoretical reinterpretations:

Phase space $M \mapsto$ Hilbert space \mathcal{H};

Classical observable (i.e. real-valued measurable function on M) \mapsto self-adjoint operator on \mathcal{H};

Pure state (seen as point in M) \mapsto unit vector (actually ray) in \mathcal{H};

Mixed state (i.e. probability measure on M) \mapsto density matrix on \mathcal{H};

Measurable subset of $M \mapsto$ closed linear subspace of \mathcal{H};

Set complement \mapsto orthogonal complement;

Union of subsets \mapsto closed linear span of subspaces;

Intersection of subsets \mapsto intersection of subspaces;

Yes-no question (i.e. characteristic function on M) \mapsto projection operator.43

Here we assume for simplicity that quantum observables R on a Hilbert space \mathcal{H} are bounded operators, i.e. $R \in \mathcal{B}(\mathcal{H})$. Von Neumann actually derived his Umdeutung of classical mixed states as density matrices from his axiomatic characterization of quantum-mechanical states as linear maps $\text{Exp} : \mathcal{B}(\mathcal{H}) \to \mathbb{C}$ that

43Later on, he of course added the Umdeutung of a Boolean lattice by a modular lattice, and the ensuing Umdeutung of classical logic by quantum logic [Birkhoff and von Neumann, 1936].
satisfy \(\text{Exp}(R) \geq 0 \) when \(R \geq 0 \),\(^{44}\) \(\text{Exp}(1) = 1 \),\(^{45}\) and countable additivity on a commuting set of operators. For he proved that such a map \(\text{Exp} \) is necessarily given by a density matrix \(\rho \) according to \(\text{Exp}(R) = \text{Tr}(\rho R) \).\(^{46}\) A unit vector \(\Psi \in \mathcal{H} \) defines a pure state in the sense of von Neumann, which we call \(\psi \), by \(\psi(R) = (\Psi, R\Psi) \) for \(R \in \mathcal{B}(\mathcal{H}) \). Similarly, a density matrix \(\rho \) on \(\mathcal{H} \) defines a (generally mixed) state, called \(\rho \) as well, by \(\rho(R) = \text{Tr}(\rho R) \). In modern terminology, a state on \(\mathcal{B}(\mathcal{H}) \) as defined by von Neumann would be called a normal state. In the \(C^* \)-algebraic formulation of quantum physics (cf. footnote 7), this axiomatization has been maintained until the present day; here \(\mathcal{B}(\mathcal{H}) \) is replaced by more general algebras of observables in order to accommodate possible superselection rules [Haag, 1992].

Beyond his mathematical axiomatization of quantum mechanics, which (along with its subsequent extension by the \(C^* \)-algebraic formulation) lies at the basis of all serious efforts to relate classical and quantum mechanics, von Neumann contributed to this relationship through his analysis of the measurement problem.\(^{47}\) Since here the apparent clash between classical and quantum physics comes to a head, it is worth summarizing von Neumann's analysis of this problem here. See also [Wheeler and Zurek, 1983; Busch et al., 1991; Auletta, 2001] and [Mittelstaedt, 2004] for general discussions of the measurement problem.

The essence of the measurement problem is that certain states are never seen in nature, although they are not merely allowed by quantum mechanics (on the assumption of its universal validity), but are even predicted to arise in typical measurement situations. Consider a system \(S \), whose pure states are mathematically described by normalized vectors (more precisely, rays) in a Hilbert space \(\mathcal{H}_S \). One wants to measure an observable \(\mathcal{O} \), which is mathematically represented by a self-adjoint operator \(\mathcal{O} \) on \(\mathcal{H}_S \). Von Neumann assumes that \(\mathcal{O} \) has discrete

\(^{44}\)I.e., when \(R \) is self-adjoint with positive spectrum, or, equivalently, when \(R = S^* S \) for some \(S \in \mathcal{B}(\mathcal{H}) \).

\(^{45}\)Where the 1 in \(\text{Exp}(1) \) is the unit operator on \(\mathcal{H} \).

\(^{46}\)This result has been widely misinterpreted (apparently also by von Neumann himself) as a theorem excluding hidden variables in quantum mechanics. See [Scheibe, 1991]. However, Bell's characterization of von Neumann's linearity assumption in the definition of a state as "silly" is far off the mark, since it holds both in classical mechanics and in quantum mechanics. Indeed, von Neumann's theorem does exclude all hidden variable extensions of quantum mechanics that are classical in nature, and it is precisely such extensions that many physicists were originally looking for. See [Rédei and Stöltzner, 2001] and [Scheibe, 2001] for recent discussions of this issue.

\(^{47}\)Von Neumann [1932] refrained from discussing either the classical limit of quantum mechanics or (probably) the notion of quantization. In the latter direction, he declares that 'If the quantity \(\mathcal{M} \) has the operator \(R \), then the quantity \(f(\mathcal{M}) \) has the operator \(f(R) \)', and that 'If the quantities \(\mathcal{M}, \mathcal{G}, \cdots \) have the operators \(R, S, \cdots \), then the quantity \(\mathcal{M} + \mathcal{G} + \cdots \) has the operator \(R + S + \cdots \)'. However, despite his legendary clarity and precision, von Neumann is rather vague about the meaning of the transition \(\mathcal{M} \mapsto R \). It is tempting to construe \(\mathcal{M} \) as a classical observable whose quantum-mechanical counterpart is \(R \), so that the above quotations might be taken as axioms for quantization. However, such an interpretation is neither supported by the surrounding text, nor by our current understanding of quantization (cf. Section 4). For example, a quantization map \(\mathcal{M} \mapsto \mathcal{Q}_h(\mathcal{M}) \) cannot satisfy \(f(\mathcal{M}) \mapsto f(\mathcal{Q}_h(\mathcal{M})) \) even for very reasonable functions such as \(f(x) = x^2 \).
spectrum, a simplification which does not hide the basic issues in the measurement problem. Hence \(\mathcal{O} \) has unit eigenvectors \(\Psi_n \) with real eigenvalues \(o_n \). To measure \(\mathcal{O} \), one couples the system to an apparatus \(A \) with Hilbert space \(\mathcal{H}_A \) and “pointer” observable \(P \), represented by a self-adjoint operator \(\Pi \) on \(\mathcal{H}_A \), with discrete eigenvalues \(p_n \) and unit eigenvectors \(\Phi_n \). The pure states of the total system \(S + A \) then correspond to unit vectors in the tensor product \(\mathcal{H}_S \otimes \mathcal{H}_A \). A good (“first kind”) measurement is then such that after the measurement, \(\Psi_n \) is correlated to \(\Phi_n \), that is, for a suitably chosen initial state \(I \in \mathcal{H}_A \), a state \(\Psi_n \otimes I \) (at \(t = 0 \)) almost immediately evolves into \(\Psi_n \otimes \Phi_n \). This can indeed be achieved by a suitable Hamiltonian.

The problem, highlighted by Schrödinger’s cat, now arises if one selects the initial state of \(S \) to be \(\sum_n c_n \Psi_n \) (with \(\sum |c_n|^2 = 1 \)), for then the superposition principle leads to the conclusion that the final state of the coupled system is \(\sum_n c_n \Psi_n \otimes \Phi_n \). Now, basically all von Neumann said was that if one restricts the final state to the system \(S \), then the resulting density matrix is the mixture \(\sum_n |c_n|^2 [\Psi_n] \) (where \([\Psi] \) is the orthogonal projection onto a unit vector \(\Psi \)),

so that, from the perspective of the system alone, the measurement appears to have caused a transition from the pure state \(\sum_{n,m} c_n \bar{c}_m \Psi_n \Psi_m^* \) to the mixed state \(\sum_n |c_n|^2 [\Psi_n] \), in which interference terms \(\Psi_n \Psi_m^* \) for \(n \neq m \) are absent. Here the operator \(\Psi_n \Psi_m^* \) is defined by \(\Psi_n \Psi_m^* f = (\Psi_m, f) \Psi_n \); in particular, \(\Psi \Psi^* = [\Psi] \).

Similarly, the apparatus, taken by itself, has evolved from the pure state \(\sum_{n,m} c_n \bar{c}_m \Psi_n \Psi_m^* \) to the mixed state \(\sum_n |c_n|^2 [\Phi_n] \). This is simply a mathematical theorem (granted the possibility of coupling the system to the apparatus in the desired way), rather than a proposal that there exist two different time-evolutions in Nature, viz. the unitary propagation according to the Schrödinger equation side by side with the above “collapse” process.

In any case, by itself this move by no means solves the measurement problem.\(^{50}\) Firstly, in the given circumstances one is not allowed to adopt the ignorance interpretation of mixed states (i.e. assume that the system really is in one of the states \(\Psi_n \)); cf., e.g., [Mittelstaedt, 2004]. Secondly, even if one were allowed to do so, one could restore the problem (i.e. the original superposition \(\sum_n c_n \Psi_n \otimes \Phi_n \)) by once again taking the other component of the system into account.

Von Neumann was well aware of at least this second point, to which he responded by his construction of a chain: one redefines \(S + A \) as the system, and couples it to a new apparatus \(B \), etc. This eventually leads to a post-measurement state \(\sum_n c_n \Psi_n \otimes \Phi_n \otimes \chi_n \) (in hopefully self-explanatory notation, assuming the vectors \(\chi_n \) form an orthonormal set), whose restriction to \(S + A \) is the mixed state \(\sum_n |c_n|^2 [\Psi_n] \otimes [\Phi_n] \). The restriction of the latter state to \(S \) is, once again, \(\sum_n |c_n|^2 [\Psi_n] \). This procedure may evidently be iterated; the point of the construction is evidently to pass on superpositions in some given system to arbitrary

\(^{48}\)I.e., \([\Psi] f = (\Psi, f) \Psi\); in Dirac notation one would have \(|\Psi\rangle = |\Psi\rangle \langle \Psi|\).

\(^{49}\)In Dirac notation one would have \(\Psi_n \Psi_m^* = |\Psi_n\rangle \langle \Psi_m| \).

\(^{50}\)Not even in an ensemble-interpretation of quantum mechanics, which was the interpretation von Neumann unfortunately adhered to when he wrote his book.
systems higher up in the chain. It follows that for the final state of the original system it does not matter where one “cuts the chain” (that is, which part of the chain one leaves out of consideration), as long as it is done somewhere. Von Neumann ([1932], in beautiful prose) and others suggested identifying the cutting with the act of observation, but it is preferable and much more general to simply say that some end of the chain is omitted in the description.

The burden of the measurement problem, then, is to

1. Construct a suitable chain along with an appropriate cut thereof; it doesn’t matter where the cut is made, as long as it is done.

2. Construct a suitable time-evolution accomplishing the measurement.

3. Justify the ignorance interpretation of mixed states.

As we shall see, these problems are addressed, in a conceptually different but mathematically analogous way, in the Copenhagen interpretation as well as in the decoherence approach. (The main conceptual difference will be that the latter aims to solve also the more ambitious problem of explaining the appearance of the classical world, which in the former seems to be taken for granted).

We conclude this section by saying that despite some brilliant ideas, the founders of quantum mechanics left wide open the problem of deriving classical mechanics as a certain regime of their theory.

3 COPENHAGEN: A REAPPRAISAL

The so-called “Copenhagen interpretation” of quantum mechanics goes back to ideas first discussed and formulated by Bohr, Heisenberg, and Pauli around 1927. Against the idea that there has been a “party line” from the very beginning, it has frequently been pointed out that in the late 1920s there were actually sharp differences of opinion between Bohr and Heisenberg on the interpretation of quantum mechanics and that they never really arrived at a joint doctrine [Hooker, 1972; Stapp, 1972; Hendry, 1984; Beller, 1999; Howard, 2004; Camilleri, 2005]. For example, they never came to agree about the notion of complementarity (see Subsection 3.3). More generally, Heisenberg usually based his ideas on the mathematical formalism of quantum theory, whereas Bohr’s position was primarily philosophically oriented. Nonetheless, there is a clearly identifiable core of ideas on which they did agree, and since this core has everything to do with the relationship between classical and quantum, we are going to discuss it in some detail.

The principal primary sources are Bohr’s Como Lecture, his reply to EPR, and his essay dedicated to Einstein [Bohr, 1927; 1935; 1949]. Historical discussions of the emergence and reception of these papers are given in Bohr [1985; 1996] and in Mehra and Rechenberg [2001]. As a selection of the enormous literature

51 These papers were actually written in collaboration with Pauli (after first attempts with Klein), Rosenfeld, and Pais, respectively.
these papers have given rise to, we mention among relatively recent works [Hooker, 1972; Scheibe, 1973; Folse, 1985; Murdoch, 1987; Lahti and Mittelstaedt, 1987; Honner, 1987; Chevalley, 1991; 1999; Faye, 1991; Faye and Folse, 1994; Held, 1994; Howard, 1994; Beller, 1999; Faye, 2002], and [Saunders, 2005]. For Bohr’s sparring partners see [Heisenberg, 1930; 1942; 1958; 1984a,b; 1985] with associated secondary literature [Heelan, 1965; Hörz, 1968; Geyer et al., 1993; Camilleri, 2005] and [Pauli, 1933; 1949; 1979; 1985; 1994]), along with [Laurikainen, 1988] and [Enz, 2002].

As with Wittgenstein (and many other thinkers), it helps to understand Bohr if one makes a distinction between an “early” Bohr and a “later” Bohr.52 Despite a good deal of continuity in his thought (see below), the demarcation point is his response to EPR [Bohr, 1935],53 and the main shift he made afterwards lies in his sharp insistence on the indivisible unity of object and observer after 1935, focusing on the concept of a phenomenon. Before EPR, Bohr equally well believed that object and observer were both necessary ingredients of a complete description of quantum theory, but he then thought that although their interaction could never be neglected, they might at least logically be considered separately. After 1935, Bohr gradually began to claim that object and observer no longer even had separate identities, together forming a “phenomenon”. Accordingly, also his notion of complementarity changed, increasingly focusing on the idea that the specification of the experimental conditions is crucial for the unambiguous use of (necessarily) classical concepts in quantum theory [Scheibe, 1973; Held, 1994]. See also Subsection 3.3 below. This development culminated in Bohr’s eventual denial of the existence of the quantum world:

‘There is no quantum world. There is only an abstract quantum-physical description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what we can say about nature. (...) What is it that we humans depend on? We depend on our words. Our task is to communicate experience and ideas to others. We are suspended in language.’ (quoted by [Petersen, 1963, 8].)54

3.1 The doctrine of classical concepts

Despite this shift, it seems that Bohr stuck to one key thought throughout his career:

52 Here we side with Held [1994] and Beller [1999] against Howard [1994] and Saunders [2005]. See also [Pais, 2000, 22]: ‘Bohr’s Como Lecture did not bring the house down, however. He himself would later frown on expressions he used there, such as “disturbing the phenomena by observation”. Such language may have contributed to the considerable confusion that for so long has reigned around this subject.’

53 This response is problematic, as is EPR itself. Consequently, there exists a considerable exegetical literature on both, marked by the fact that equally competent and well-informed pairs of commentators manage to flatly contradict each other while at the same time both claiming to explain or reconstruct what Bohr “really” meant.

54 See [Mermin, 2004] for a witty discussion of this controversial quotation.
'However far the phenomena transcend the scope of classical physical explanation, the account of all evidence must be expressed in classical terms. (...) The argument is simply that by the word *experiment* we refer to a situation where we can tell others what we have done and what we have learned and that, therefore, the account of the experimental arrangements and of the results of the observations must be expressed in unambiguous language with suitable application of the terminology of classical physics.' [Bohr, 1949, 209].

This is, in a nutshell, Bohr's *doctrine of classical concepts*. Although his many drawings and stories may suggest otherwise, Bohr does not quite express the idea here that the goal of physics lies in the description of experiments.55 In fact, he merely points out the need for "unambiguous" communication, which he evidently felt threatened by quantum mechanics.56 The controversial part of the quote lies in his identification of the means of unambiguous communication with the language of classical physics, involving particles and waves and the like. We will study Bohr's specific argument in favour of this identification shortly, but it has to be said that, like practically all his foundational remarks on quantum mechanics, Bohr presents his reasoning as self-evident, necessary, and not in need of any further analysis [Scheibe, 1973; Beller, 1999]. Nonetheless, young Heisenberg clashed with Bohr on precisely this point, for Heisenberg felt that the abstract mathematical formalism of quantum theory (rather than Bohr's world of words and pictures) provided those means of unambiguous communication.57

By classical physics Bohr undoubtedly meant the theories of Newton, Maxwell, and Lorentz, but that is not the main point.58 For Bohr, the *defining* property of classical physics was the property that it was *objective*, i.e. that it could be studied in an observer-independent way:

'All description of experiences so far has been based on the assumption, already inherent in ordinary conventions of language, that it is possible to distinguish sharply between the behaviour of objects and the means of observation. This assumption is not only fully justified by everyday experience, *but even constitutes the whole basis of classical physics*'.

55Which often but misleadingly has been contrasted with Einstein's belief that the goal of physics is rather to describe reality. See [Landsman, 2006b] for a recent discussion.

56Here "unambiguous" means "objective" [Scheibe, 1973; Chevalley, 1991].

57It is hard to disagree with Beller's [1999] conclusion that Bohr was simply not capable of understanding the formalism of post-1925 quantum mechanics, turning his own need of understanding this theory in terms of words and pictures into a deep philosophical necessity.

58Otherwise, one should wonder why one shouldn't use the physics of Aristotle and the scholastics for this purpose, which is a much more effective way of communicating our naive impressions of the world. In contrast, the essence of physics since Newton has been to unmask a reality behind the phenomena. Indeed, Newton himself emphasized that his physics was intended for those capable of natural philosophy, in contrast to *ye vulgar* who believed naive appearances. The fact that Aristotle's physics is now known to be wrong should not suffice to disqualify its use for Bohr's purposes, since the very same comment may be made about the physics of Newton etc.
[Bohr, 1958, 25; italics added].

See also [Hooker, 1972; Scheibe, 1973] and [Howard, 1994]. Heisenberg [1958, 55] shared this view:

'In classical physics science started from the belief — or should one say from the illusion? — that we could describe the world or at least part of the world without any reference to ourselves. This is actually possible to a large extent. We know that the city of London exists whether we see it or not. It may be said that classical physics is just that idealization in which we can speak about parts of the world without any reference to ourselves. Its success has led to the general idea of an objective description of the world.'

On the basis of his "quantum postulate" (see Subsection 3.2), Bohr came to believe that, similarly, the defining property of quantum physics was precisely the opposite, i.e. the necessity of the role of the observer (or apparatus — Bohr did not distinguish between the two and never assigned a special role to the mind of the observer or endorsed a subjective view of physics). Identifying unambiguous communication with an objective description, in turn claimed to be the essence of classical physics, Bohr concluded that despite itself quantum physics had to be described entirely in terms of classical physics. Thus his doctrine of classical concepts has an epistemological origin, arising from an analysis of the conditions for human knowledge. In that sense it may be said to be Kantian in spirit [Hooker, 1972; Murdoch, 1987; Chevalley, 1991; 1999].

Now, Bohr himself is on record as saying: 'They do it smartly, but what counts is to do it right' [Rosenfeld, 1967, 129]. The doctrine of classical concepts is certainly smart, but is it right? As we have seen, Bohr's argument starts from the claim that classical physics is objective (or 'unambiguous') in being independent of the observer. In fact, nowadays it is widely believed that quantum mechanics leads to the opposite conclusion that "quantum reality" (whatever that may be) is objective (though "veiled" in the terminology of d'Espagnat [1995]), while "classical reality" only comes into existence relative to a certain specification: this is

59 Despite the typical imperative tone of this quotation, Bohr often regarded certain other properties as essential to classical physics, such as determinism, the combined use of space-time concepts and dynamical conservation laws, and the possibility of pictorial descriptions. However, these properties were in some sense secondary, as Bohr considered them to be consequences of the possibility of isolating an object in classical physics. For example: 'The assumption underlying the ideal of causality [is] that the behaviour of the object is uniquely determined, quite independently of whether it is observed or not' [Bohr, 1937], and then again, now negatively: 'the renunciation of the ideal of causality [in quantum mechanics] is founded logically only on our not being any longer in a position to speak of the autonomous behaviour of a physical object' [Bohr, 1937]. See [Scheibe, 1973].

60 As Camilleri [2005, 161] states: 'For Heisenberg, classical physics is the fullest expression of the ideal of objectivity.'

61 See, for example, the very title of Bohr [1958]!

62 'They' refers to EPR.
stance 1 discussed in the Introduction. Those who disagree with stance 1 cannot use stance 2 (of denying the fundamental nature of quantum theory) at this point either, as that is certainly not what Bohr had in mind. Unfortunately, in his most outspoken defence of Bohr, even Heisenberg [1958, 55] was unable to find a better argument for Bohr’s doctrine than the lame remark that ‘the use of classical concepts is finally a consequence of the general human way of thinking.’

In our opinion, Bohr’s motivation for his doctrine has to be revised in the light of our current understanding of quantum theory; we will do so in Subsection 3.4. In any case, whatever its motivation, the doctrine itself seems worth keeping: apart from the fact that it evidently describes experimental practice, it provides a convincing explanation for the probabilistic nature of quantum mechanics (cf. the next subsection).

3.2 Object and apparatus: the Heisenberg cut

Describing quantum physics in terms of classical concepts sounds like an impossible and even self-contradictory task (cf. [Heisenberg, 1958]). For one, it precludes a completely quantum-mechanical description of the world: ‘However far the phenomena transcend the scope of classical physical explanation, the account of all evidence must be expressed in classical terms.’ But at the same time it precludes a purely classical description of the world, for underneath classical physics one has quantum theory. The fascination of Bohr’s philosophy of quantum mechanics lies precisely in his brilliant resolution of this apparently paradoxical situation.

The first step of this resolution that he and Heisenberg proposed is to divide the system whose description is sought into two parts: one, the object, is to be described quantum-mechanically, whereas the other, the apparatus, is treated as if it were classical. Despite innumerable claims to the contrary in the literature (i.e. to the effect that Bohr held that a separate realm of Nature was intrinsically classical), there is no doubt that both Bohr and Heisenberg believed in the fundamental and universal nature of quantum mechanics, and saw the classical description of the apparatus as a purely epistemological move without any coun-

63 Indeed, interesting recent attempts to make Bohr’s philosophy of quantum mechanics precise accommodate the a priori status of classical observables into some version of the modal interpretation; see [Dieks, 1989b; Bub, 1999; Halvorson and Clifton, 1999; 2002], and [Dickson, 2005]. It should give one some confidence in the possibility of world peace that the two most hostile interpretations of quantum mechanics, viz. Copenhagen and Bohm [Cushing, 1994] have now found a common home in the modal interpretation in the sense of the authors just cited! Whether or not one agrees with Bub’s [2004] criticism of the modal interpretation, Bohr’s insistence on the necessity of classical concepts is not vindicated by any current version of it.

64 And similarly: ‘We are forced to use the language of classical physics, simply because we have no other language in which to express the results.’ [Heisenberg, 1971, 130]. This in spite of the fact that the later Heisenberg thought about this matter very deeply; see, e.g., his [1942], as well as [Camilleri, 2005]. Murdoch [1987, 207–210] desperately tries to boost the doctrine of classical concepts into a profound philosophical argument by appealing to Strawson [1959].

65 This peculiar situation makes it very hard to give a realist account of the Copenhagen interpretation, since quantum reality is denied whereas classical reality is neither fundamental nor real.
terpart in ontology, expressing the fact that a given quantum system is being used as a measuring device. For example: 'The construction and the functioning of all apparatus like diaphragms and shutters, serving to define geometry and timing of the experimental arrangements, or photographic plates used for recording the localization of atomic objects, will depend on properties of materials which are themselves essentially determined by the quantum of action' [Bohr, 1948, 315], as well as: 'We are free to make the cut only within a region where the quantum mechanical description of the process concerned is effectively equivalent with the classical description' [Bohr, 1935, 701].

The separation between object and apparatus called for here is usually called the Heisenberg cut, and it plays an absolutely central role in the Copenhagen interpretation of quantum mechanics. The idea, then, is that a quantum-mechanical object is studied exclusively through its influence on an apparatus that is described classically. Although described classically, the apparatus is a quantum system, and is supposed to be influenced by its quantum-mechanical coupling to the underlying (quantum) object.

The alleged necessity of including both object and apparatus in the description was initially claimed to be a consequence of the so-called "quantum postulate". This notion played a key role in Bohr's thinking: his Como Lecture [Bohr, 1927] was even entitled 'The quantum postulate and the recent development of atomic theory'. There he stated its contents as follows: 'The essence of quantum theory is the quantum postulate: every atomic process has an essential discreteness — completely foreign to classical theories — characterized by Planck's quantum of action.' Even more emphatically, in his reply to EPR [Bohr, 1935, 697]: 'Indeed the finite interaction between object and measuring agencies conditioned by the

66. See especially [Scheibe, 1973] on Bohr, and [Heisenberg, 1958]). The point in question has also been made by R. Haag (who knew both Bohr and Heisenberg) in most of his talks on quantum mechanics in the 1990s. In this respect we disagree with Howard [1994], who claims that according to Bohr a classical description of an apparatus amounts to picking a particular (maximally) abelian subalgebra of its quantum-mechanical algebra of 'beables', which choice is dictated by the measurement context. But having a commutative algebra falls far short of a classical description, since in typical examples one obtains only half of the canonical classical degrees of freedom in this way. Finding a classical description of a quantum-mechanical system is a much deeper problem, to which we shall return throughout this paper.

67. This last point suggests that the cut has something to do with the division between a microscopic and a macroscopic realm in Nature, but although this division often facilitates making the cut when it is well defined, this is by no means a matter of principle. Cf. [Howard, 1994]. In particular, all objections to the Copenhagen interpretation to the effect that the interpretation is ill-defined because the micro-macro distinction is blurred are unfounded.

68. Pauli [1949] went as far as saying that the Heisenberg cut provides the appropriate generalization modern physics offers of the old Kantian opposition between a knowable object and a knowing subject: 'Auf diese Weise verallgemeinert die moderne Physik die alte Gegenüberstellung von erkennenden Subjekt auf der einen Seite und des erkannten Objektes auf der anderen Seite zu der Idee des Schnittes zwischen Beobachter oder Beobachtungsmittel und dem beobachten System.' ('In this way, modern physics generalizes the old opposition between the knowing subject on the one hand and the known object on the other to the idea of the cut between observer or means of observation and the observed system.') He then continued calling the cut a necessary condition for human knowledge: see footnote 72.

69. Instead of 'discreteness', Bohr alternatively used the words 'discontinuity' or 'individuality'
very existence of the quantum of action entails — because of the impossibility of controlling the reaction of the object on the measurement instruments if these are to serve their purpose — the necessity of a final renunciation of the classical ideal of causality and a radical revision of our attitude towards the problem of physical reality.' Also, Heisenberg's uncertainty relations were originally motivated by the quantum postulate in the above form. According to Bohr and Heisenberg around 1927, this 'essential discreteness' causes an 'uncontrollable disturbance' of the object by the apparatus during their interaction. Although the "quantum postulate" is not supported by the mature mathematical formalism of quantum mechanics and is basically obsolete, the intuition of Bohr and Heisenberg that a measurement of a quantum-mechanical object causes an 'uncontrollable disturbance' of the latter is actually quite right.\(^{70}\)

In actual fact, the reason for this disturbance does not lie in the "quantum postulate", but in the phenomenon of entanglement, as further discussed in Subsection 3.4. Namely, from the point of view of von Neumann's measurement theory (see Subsection 2.5) the Heisenberg cut is just a two-step example of a von Neumann chain, with the special feature that after the quantum-mechanical interaction has taken place, the second link (i.e. the apparatus) is described classically. The latter feature not only supports Bohr's philosophical agenda, but, more importantly, also suffices to guarantee the applicability of the ignorance interpretation of the mixed state that arises after completion of the measurement.\(^{71}\) All of von Neumann's analysis of the arbitrariness of the location of the cut applies here, for one may always extend the definition of the quantum-mechanical object by coupling the original choice to any other purely quantum-mechanical system one likes, and analogously for the classical part. Thus the two-step nature of the Heisenberg cut includes the possibility that the first link or object is in fact a lengthy chain in itself (as long as it is quantum-mechanical), and similarly for the second link (as long as it is classical).\(^{72}\) This arbitrariness, subject to the limitation expressed by the second [1935] Bohr quote in this subsection, was well recognized by Bohr and Heisenberg, and was found at least by Bohr to be of great philosophical importance.

It is the interaction between object and apparatus that causes the measurement to 'disturb' the former, but it is only and precisely the classical description of

\(^{70}\)Despite the fact that Bohr later distanced himself from it; cf. [Beller, 1999] and footnote 52 above. In a correct analysis, what is disturbed upon coupling to a classical apparatus is the quantum-mechanical state of the object (rather than certain sharp values of classical observables such as position and momentum, as the early writings of Bohr and Heisenberg suggest).

\(^{71}\)In a purely quantum-mechanical von Neumann chain the final state of system plus apparatus is pure, but if the apparatus is classical, then the post-measurement state is mixed.

\(^{72}\)Pauli [1949] once more: ' Während die EXISTENZ eines solchen Schnittes eine notwendige Bedingung menschlicher Erkenntnis ist, faßt sie die LAGE des Schnittes als bis zu einem gewissen Grade willkürlich und als Resultat einer durch Zweckmäßigkeitsüberlegungen mitbestimmt, also teilweise freien Wahl auf.' ('While the EXISTENCE of such a [Heisenberg] cut is a necessary condition for human knowledge, its LOCATION is to some extent arbitrary as a result of a pragmatic and thereby partly free choice. ')
the latter that (through the ignorance interpretation of the final state) makes the disturbance ‘uncontrollable’. In the Copenhagen interpretation, probabilities arise solely because we look at the quantum world through classical glasses.

‘Just the necessity of accounting for the function of the measuring agencies on classical lines excludes in principle in proper quantum phenomena an accurate control of the reaction of the measuring instruments on the atomic objects.’ [Bohr, 1956, 87]

‘One may call these uncertainties objective, in that they are simply a consequence of the fact that we describe the experiment in terms of classical physics; they do not depend in detail on the observer. One may call them subjective, in that they reflect our incomplete knowledge of the world.’ [Heisenberg, 1958, 53–54]

Thus the picture that arises is this: Although the quantum-mechanical side of the Heisenberg cut is described by the Schrödinger equation (which is deterministic), while the classical side is subject to Newton’s laws (which are equally well deterministic), unpredictability arises because the quantum system serving as an apparatus is approximated by a classical system. The ensuing probabilities reflect the ignorance arising from the decision (or need) to ignore the quantum-mechanical degrees of freedom of the apparatus. Hence the probabilistic nature of quantum theory is not intrinsic but extrinsic, and as such is entirely a consequence of the doctrine of classical concepts, which by the same token explains this nature.

Mathematically, the simplest illustration of this idea is as follows. Take a finite-dimensional Hilbert space \(\mathcal{H} = \mathbb{C}^n \) with the ensuing algebra of observables \(\mathcal{A} = M_n(\mathbb{C}) \) (i.e. the \(n \times n \) matrices). A unit vector \(\Psi \in \mathbb{C}^n \) determines a quantum-mechanical state in the usual way. Now describe this quantum system as if it were classical by ignoring all observables except the diagonal matrices. The state then immediately collapses to a probability measure on the set of \(n \) points, with probabilities given by the Born rule \(p(i) = |(e_i, \Psi)|^2 \), where \((e_i)_{i=1,\ldots,n} \) is the standard basis of \(\mathbb{C}^n \). Similarly, the Born–Pauli rule for the probabilistic interpretation of the wave function \(\Psi \in L^2(\mathbb{R}^3) \) in terms of \(|\Psi(x)|^2 \) immediately follows if one ignores all observables on \(L^2(\mathbb{R}^3) \) except the position operator.

Despite the appeal of this entire picture, it is not at all clear that it actually applies! There is no a priori guarantee whatsoever that one may indeed describe a quantum system “as if it were classical”. Bohr and Heisenberg apparently took the existence of the classical world of mountains and creeks they loved so much for granted, the former probably on empirical grounds, the latter on the basis of his

73 These points were not clearly separated by Heisenberg [1927] in his paper on the uncertainty relations, but were later clarified by Bohr. See [Scheibe, 1973].

74 But see [Earman, 1986; 2005].

75 Technically, one restricts \(\Psi \) — seen as a state on the C*-algebra \(\mathcal{B}(L^2(\mathbb{R}^3)) \) — to the C*-algebra \(C_0(\mathbb{R}^3) \) given by all multiplication operators on \(L^2(\mathbb{R}^3) \) defined by continuous functions of \(x \in \mathbb{R}^3 \) that vanish at infinity. This restriction yields a probability measure on \(\mathbb{R}^3 \), which is precisely the usual one originally proposed by Pauli.
own uncertainty relations — both almost blind to the extremely delicate mathematical and conceptual problems involved. In our opinion, the main difficulty in making sense of the Copenhagen interpretation therefore lies in the justification of the classical description in question. This difficulty is the main topic of this paper, of which Section 6 is of particular relevance in the present context.

3.3 Complementarity

The notion of a Heisenberg cut is subject to a certain arbitrariness even apart from the precise location of the cut within a given chain, for one might in principle construct the chain in various different and incompatible ways. This arbitrariness was analyzed by Bohr in terms of what he called complementarity.\(^76\)

Bohr never gave a precise definition of complementarity,\(^77\) but restricted himself to the analysis of a number of examples.\(^78\) A prominent such example is the complementarity between a “causal”\(^79\) description of a quantum system in which conservation laws hold, and a space-time description that is necessarily statistical in character. Here Bohr’s idea seems to have been that a stationary state (i.e. an energy eigenstate) of an atom is incompatible with an electron moving in its orbit in space and time — see Subsection 5.4 for a discussion of this issue. Heisenberg [1958], however, took this example of complementarity to mean that a system on which no measurement is performed evolves deterministically according to the Schrödinger equation, whereas a rapid succession of measurements produces a space-time path whose precise form quantum theory is only able to predict statistically [Camilleri, 2005]. In other words, this example reproduces precisely the picture through which Heisenberg [1927] believed he had established the connection between classical and quantum mechanics; cf. Subsection 2.3.

Bohr’s other key example was the complementarity between particles and waves. Here his principal aim was to make sense of Young’s double-slit experiment. The well-known difficulty with a classical visualization of this experiment is that a particle description appears impossible because a particle has to go through a single slit, ruining the interference pattern gradually built up on the detection screen, whereas a wave description seems incompatible with the point-like localization on the screen once the wave hits it. Thus Bohr suggested that whilst each of these classical descriptions is incomplete, the union of them is necessary for a complete

\(^76\)Unfortunately and typically, Bohr once again presented complementarity as a necessity of thought rather than as the truly amazing possible mode of description it really is.

\(^77\)Perhaps he preferred this approach because he felt a definition could only reveal part of what was supposed to be defined: one of his favourite examples of complementarity was that between definition and observation.

\(^78\)We refrain from discussing the complementarity between truth and clarity, science and religion, thoughts and feelings, and objectivity and introspection here, despite the fact that on this basis Bohr’s biographer Pais [1997] came to regard his subject as the greatest philosopher since Kant.

\(^79\)Bohr’s use the word “causal” is quite confusing in view of the fact that in the British empiricist tradition causality is often interpreted in the sense of a space-time description. But Bohr’s “causal” is meant to be complementary to a space-time description!
description of the experiment.

The deeper epistemological point appears to be that although the completeness of the quantum-mechanical description of the microworld systems seems to be endangered by the doctrine of classical concepts, it is actually restored by the inclusion of two "complementary" descriptions (i.e. of a given quantum system plus a measuring device that is necessarily described classically, 'if it is to serve its purpose'). Unfortunately, despite this attractive general idea it is unclear to what precise definition of complementarity Bohr's examples should lead. In the first, the complementary notions of determinism and a space-time description are in mutual harmony as far as classical physics is concerned, but are apparently in conflict with each other in quantum mechanics. In the second, however, the wave description of some entity contradicts a particle description of the same entity precisely in classical physics, whereas in quantum mechanics these descriptions somehow coexist.80

Scheibe [1973, 32] notes a 'clear convergence [in the writings of Bohr] towards a preferred expression of a complementarity between phenomena', where a Bohrian phenomenon is an indivisible union (or "whole") of a quantum system and a classically described experimental arrangement used to study it; see item 2 below. Some of Bohr's early examples of complementarity can be brought under this heading, others cannot [Held, 1994]. For many students of Bohr (including the present author), the fog has yet to clear up.81 Nonetheless, the following mathematical interpretations might assign some meaning to the idea of complementarity in the framework of von Neumann's formalism of quantum mechanics.82

1. Heisenberg [1958] identified complementary pictures of a quantum-mechanical system with equivalent mathematical representations thereof. For example, he thought of the complementarity of x and p as the existence of what we now call the Schrödinger representations of the canonical commutation relations (CCR) on $L^2(\mathbb{R}^n)$ and its Fourier transform to momentum space. Furthermore, he felt that in quantum field theory particles and waves gave two equivalent modes of description of quantum theory because of second quantization. Thus for Heisenberg complementary pictures are classical because there is an underlying classical variable, with no apparatus in sight, and such pictures are not mutually contradictory but (unitarily) equivalent.

80On top of this, Bohr mixed these examples in conflicting ways. In discussing bound states of electrons in an atom he jointly made determinism and particles one half of a complementary pair, waves and space-time being the other. In his description of electron-photon scattering he did it the other way round: this time determinism and waves formed one side, particles and space-time the other (cf. [Beller, 1999]).

81Even Einstein [1949, 674] conceded that throughout his debate with Bohr he had never understood the notion of complementarity, 'the sharp formulation of which, moreover, I have been unable to achieve despite much effort which I have expended on it.' See [Landsman, 2006b] for the author's view on the Bohr–Einstein debate.

82This exercise is quite against the spirit of Bohr, who is on record as saying that 'von Neumann's approach (...) did not solve problems but created imaginary difficulties' ([Scheibe, 1973, 11], quoting Feyerabend; italics in original).
See also [Camilleri, 2005, 88], according to whom ‘Heisenberg never accepted Bohr's complementarity arguments’.

2. Pauli [1933] simply stated that two observables are complementary when the corresponding operators fail to commute.83 Consequently, it then follows from Heisenberg’s uncertainty relations that complementary observables cannot be measured simultaneously with arbitrary precision. This suggests (but by no means proves) that they should be measured independently, using mutually exclusive experimental arrangements. The latter feature of complementarity was emphasized by Bohr in his later writings.84 This approach makes the notion of complementarity unambiguous and mathematically precise, and perhaps for this reason the few physicists who actually use the idea of complementarity in their work tend to follow Pauli and the later Bohr.85

3. The present author proposes that observables and pure states are complementary. For in the Schrödinger representation of elementary quantum mechanics, the former are, roughly speaking, generated by the position and

83 More precisely, one should probably require that the two operators in question generate the ambient algebra of observables, so that complementarity in Pauli’s sense is really defined between two commutative subalgebras of a given algebra of observables (again, provided they jointly generate the latter).

84 Bohr’s earlier writings do not quite conform to Pauli’s approach [Scheibe, 1973; Held, 1994]. In Bohr’s discussions of the double-slit experiment particle and wave form a complementary pair, whereas Pauli’s complementary observables are position and momentum, which refer to a single side of Bohr’s pair. For a precise analysis of the relationship between mutually exclusive experimental arrangements, non-commuting observables, and the Heisenberg uncertainty relations see [Busch et al., 1998] and [De Muyck, 2002].

85 Adopting this point of view, it is tempting to capture the complementarity between position and momentum by means of the following conjecture: Any normal pure state ω on $\mathcal{B}(L^2(\mathbb{R}^n))$ (that is, any wave function seen as a state in the sense of C^\ast-algebras) is determined by the pair $\{\omega|L^\infty(\mathbb{R}^n), \omega|FL^\infty(\mathbb{R}^n)^{F\!\!\!-\!1}\}$ (in other words, by its restrictions to position and momentum). Here $L^\infty(\mathbb{R}^n)$ is the von Neumann algebra of multiplication operators on $L^2(\mathbb{R}^n)$, i.e. the von Neumann algebra generated by the position operator, whereas $FL^\infty(\mathbb{R}^n)^{F\!\!\!-\!1}$ is its Fourier transform, i.e. the von Neumann algebra generated by the momentum operator. The idea is that each of its restrictions $\omega|L^\infty(\mathbb{R}^n)$ and $\omega|FL^\infty(\mathbb{R}^n)^{F\!\!\!-\!1}$ gives a classical picture of ω. These restrictions are a measure on \mathbb{R}^n interpreted as position space, and another measure on \mathbb{R}^n interpreted as momentum space. Unfortunately, this conjecture is false. The following counterexample was provided by D. Buchholz (private communication): take ω as the state defined by the wave function $\Psi(x) \sim \exp(-ax^2/2)$ with $\text{Re}(a) > 0$, $\text{Im}(a) \neq 0$, and $|a|^2 = 1$. Then ω depends on $\text{Im}(a)$, whereas neither $\omega|L^\infty(\mathbb{R}^n)$ nor $\omega|FL^\infty(\mathbb{R}^n)^{F\!\!\!-\!1}$ does. There is even a counterexample to the analogous conjecture for the C^\ast-algebra of 2×2 matrices, found by H. Halvorson: if A is the commutative C^\ast-algebra generated by σ_x, and B the one generated by σ_y, then the two different eigenstates of σ_x coincide on A and on B. One way to improve our conjecture might be to hope that if, in the Schrödinger picture, two states coincide on the two given commutative von Neumann algebras for all times, then they must be equal. But this can only be true for certain “realistic” time-evolutions, for the trivial Hamiltonian $H = 0$ yields the above counterexample. We leave this as a problem for future research. At the time of writing, Halvorson [2004] contains the only sound mathematical interpretation of the complementarity between position and momentum, by relating it to the representation theory of the CCR. He shows that in any representation where the position operator has eigenstates, there is no momentum operator, and vice versa.
momentum operators, whereas the latter are given by wave functions. Some
of Bohr's other examples of complementarity also square with this inter-
pretation (at least if one overlooks the collapse of the wavefunction upon a
measurement). Here one captures the idea that both ingredients of a com-
plementary pair are necessary for a complete description, though the alleged
mutual contradiction between observables and states is vague. Also, this
reading of complementarity relies on a specific representation of the canoni-
cal commutation relations. It is not quite clear what one gains with this
ideology, but perhaps it deserves to be developed in some more detail. For
example, in quantum field theory it is once more the observables that carry
the space-time description, especially in the algebraic description of Haag
[1992].

3.4 Epilogue: entanglement to the rescue?

Bohr's "quantum postulate" being obscure and obsolete, it is interesting to con-
sider Howard's [1994] 'reconstruction' of Bohr's philosophy of physics on the basis
of entanglement.86 His case can perhaps be strengthened by an appeal to the
analysis Primas [1983] has given of the need for classical concepts in quantum
physics.87 Primas proposes to define a "quantum object" as a physical system S
that is free from what he calls "EPR-correlations" with its environment. Here the
"environment" is meant to include apparatus, observer, the rest of the universe if
necessary, and what not. In elementary quantum mechanics, quantum objects in
this sense exist only in very special states: if \mathcal{H}_S is the Hilbert space of the system
S, and \mathcal{H}_E that of the environment E, any pure state of the form $\sum_i c_i \psi_i \otimes \phi_i$
(with more than one term) by definition correlates S with E; the only uncorre-
lated pure states are those of the form $\psi \otimes \phi$ for unit vectors $\psi \in \mathcal{H}_S$, $\phi \in \mathcal{H}_E$.
The restriction of a pure EPR-correlated state on $S + E$ to S is mixed, so that the
(would-be) quantum object 'does not have its own pure state'; in other words, the
restriction of an EPR-correlated state ω to S together with its restriction to E
do not jointly determine ω. More generally, if the state of $S + E$ is EPR-correlated,
a complete characterization of the state of S requires E (and vice versa). But
(against Bohr!) mathematics defeats words: the sharpest characterization of the
notion of EPR-correlations can be given in terms of operator algebras, as follows.
In the spirit of the remainder of the paper we proceed in a rather general and
abstract way.88 For what follows see especially [Werner, 1989].

86We find little evidence that Bohr himself ever thought along those lines. With approval we
quote Zehe, who, following a statement of the quantum postulate by Bohr similar to the one
in Subsection 3.2 above, writes: 'The later revision of these early interpretations of quantum
theory (required by the important role of entangled quantum states for much larger systems)
seems to have gone unnoticed by many physicists.' [Joos et al., 2003, 23] See also [Howard, 1990]
for an interesting historical perspective on entanglement, and cf. [Raimond et al., 2001] for the
experimental situation.

87See also [Amann and Primas, 1997] and [Primas, 1997].

88Summers and Werner [1987] give even more general results, where the tensor product $A \otimes B$
below is replaced by an arbitrary C^*-algebra C containing A and B as C^*-subalgebras.
Let A and B be C^*-algebras, with tensor product $A \hat{\otimes} B$. Less abstractly, just think of two Hilbert spaces \mathcal{H}_S and \mathcal{H}_E as above, with tensor product $\mathcal{H}_S \otimes \mathcal{H}_E$, and assume that $A = B(\mathcal{H}_S)$ while B is either $B(\mathcal{H}_E)$ itself or some (norm-closed and involutive) commutative subalgebra thereof. The tensor product $A \hat{\otimes} B$ is then a (norm-closed and involutive) subalgebra of $B(\mathcal{H}_S \otimes \mathcal{H}_E)$, the algebra of all bounded operators on $\mathcal{H}_S \otimes \mathcal{H}_E$.

A product state on $A \hat{\otimes} B$ is a state of the form $\omega = \rho \otimes \sigma$, where the states ρ on A and σ on B may be either pure or mixed. We say that a state ω on $A \hat{\otimes} B$ is decomposable when it is a mixture of product states, i.e. when $\omega = \sum_i p_i \rho_i \otimes \sigma_i$, where the coefficients $p_i > 0$ satisfy $\sum_i p_i = 1$. A decomposable state ω is pure precisely when it is a product of pure states. This has the important consequence that both its restrictions $\omega|_A$ and $\omega|_B$ to A and B, respectively, are pure as well. On the other hand, a state on $A \hat{\otimes} B$ may be said to be epr-correlated [Primas, 1983] when it is not decomposable. An epr-correlated pure state has the property that its restriction to A or B is mixed.

Raggio [1981] proved that the following two conditions are equivalent:

Footnotes:

90 Recall that a C^*-algebra is a complex algebra A that is complete in a norm $\| \cdot \|$ that satisfies $\|AB\| \leq \|A\| \|B\|$ for all $A, B \in A$, and has an involution $A \rightarrow A^*$ such that $\|A^* A\| = \|A\|^2$. A basic example is $A = B(\mathcal{H})$, the algebra of all bounded operators on a Hilbert space \mathcal{H}, equipped with the usual operator norm and adjoint. By the Gelfand–Naimark theorem, any C^*-algebra is isomorphic to a norm-closed self-adjoint subalgebra of $B(\mathcal{H})$, for some Hilbert space \mathcal{H}. Another key example is $A = C_0(X)$, the space of all continuous complex-valued functions on a (locally compact Hausdorff) space X that vanish at infinity (in the sense that for every $\varepsilon > 0$ there is a compact subset $K \subset X$ such that $|f(x)| < \varepsilon$ for all $x \notin K$), equipped with the supremum norm $\|f\|_\infty := \sup_{x \in X} |f(x)|$, and involution given by (pointwise) complex conjugation. By the Gelfand–Naimark lemma, any commutative C^*-algebra is isomorphic to $C_0(X)$ for some locally compact Hausdorff space X.

91 The tensor product of two (or more) C^*-algebras is not unique, and we here need the so-called projective tensor product $A \hat{\otimes} B$, defined as the completion of the algebraic tensor product $A \otimes B$ in the maximal C^*-cross-norm. The choice of the projective tensor product guarantees that each state on $A \otimes B$ extends to a state on $A \hat{\otimes} B$ by continuity; conversely, since $A \otimes B$ is dense in $A \hat{\otimes} B$, each state on the latter is uniquely determined by its values on the former. See [Wegge-Olsen, 1993, Appendix T], or [Takesaki, 2003, Vol. I, Ch. IV]. In particular, product states $\rho \otimes \sigma$ and mixtures $\omega = \sum_i p_i \rho_i \otimes \sigma_i$ thereof are considered below are well defined on $A \hat{\otimes} B$. If $A \subset B(\mathcal{H}_S)$ and $B \subset B(\mathcal{H}_E)$ are von Neumann algebras, as in the analysis of Raggio [1981; 1988], it is easier (and sufficient) to work with the spatial tensor product $A \overline{\otimes} B$, defined as the double commutant (or weak completion) of $A \otimes B$ in $B(\mathcal{H}_S \otimes \mathcal{H}_E)$. For any normal state on $A \otimes B$ extends to a normal state on $A \overline{\otimes} B$ by continuity.

92 We use the notion of a state that is usual in the algebraic framework. Hence a state on a C^*-algebra A is a linear functional $\rho : A \rightarrow C$ that is positive in that $\rho(A^* A) \geq 0$ for all $A \in A$ and normalized in that $\rho(1) = 1$, where 1 is the unit element of A. If A is a von Neumann algebra, one has the notion of a normal state, which satisfies an additional continuity condition. If $A = B(\mathcal{H})$, then a fundamental theorem of von Neumann states that each normal state ρ on A is given by a density matrix $\hat{\rho}$ on \mathcal{H}, so that $\rho(A) = \text{Tr}(\hat{\rho} A)$ for each $A \in A$. In particular, a normal pure state on $B(\mathcal{H})$ (seen as a von Neumann algebra) is necessarily of the form $\psi(A) = (\Psi, A\Psi)$ for some unit vector $\Psi \in \mathcal{H}$.

93 Infinite sums are allowed here. More precisely, ω is decomposable if it is in the ω-closure of the convex hull of the product states on $A \hat{\otimes} B$.

94 The restriction $\omega|_A$ of a state ω on $A \hat{\otimes} B$ to, say, A is given by $\omega|_A(A) = \omega(A \otimes 1)$, where 1 is the unit element of B, etc.
Each state on $\mathcal{A} \otimes \mathcal{B}$ is decomposable;

- \mathcal{A} or \mathcal{B} is commutative.

In other words, EPR-correlated states exist precisely when \mathcal{A} and \mathcal{B} are both non-commutative. As one might expect, this result is closely related to the Bell inequalities. Namely, consider the inequality

$$\left| \sup \{\omega(A_1(B_1 + B_2) + A_2(B_1 - B_2))\} \right| \leq 2,$$

where ω is a fixed state on $\mathcal{A} \otimes \mathcal{B}$ and the supremum is taken over all self-adjoint operators $A_1, A_2 \in \mathcal{A}$, $B_1, B_2 \in \mathcal{B}$, each of norm ≤ 1. Eq. (1) holds if and only if ω is decomposable [Baez, 1987; Raggio, 1988]. Consequently, the inequality (1) can only be violated in some state ω when the algebras \mathcal{A} and \mathcal{B} are both noncommutative. If, on the other hand, (1) is satisfied, then one knows that there exists a classical probability space and probability measure (and hence a "hidden variables" theory) reproducing the given correlations [Pitowsky, 1989]. As stressed by Bacciagaluppi [1993], such a description does not require the entire setting to be classical; as we have seen, only one of the algebras \mathcal{A} and \mathcal{B} has to be commutative for the Bell inequalities to hold.

Where does this leave us with respect to Bohr? If we follow Primas [1983] in describing a (quantum) object as a system free from EPR-correlations with its environment, then the mathematical results just reviewed leave us with two possibilities. Firstly, we may pay lip-service to Bohr in taking the algebra \mathcal{B} (interpreted as the algebra of observables of the environment in the widest possible sense, as above) to be commutative as a matter of description. In that case, our object is really an "object" in any of its states. But clary this is not the only possibility. For even in the case of elementary quantum mechanics — where $\mathcal{A} = \mathcal{B}(\mathcal{H}_S)$ and $\mathcal{B} = \mathcal{B}(\mathcal{H}_E)$ — the system is still an "object" in the sense of Primas as long as the total state ω of $S + E$ is decomposable. In general, for pure states this just means that $\omega = \psi \otimes \phi$, i.e. that the total state is a product of pure states. To accomplish this, one has to define the Heisenberg cut in an appropriate way, and subsequently hope that the given product state remains so under time-evolution (see [Amann and Primas, 1997] and [Atmanspacher et al., 1999], and references therein). This selects certain states on \mathcal{A} as "robust" or "stable", in much the same way as in the decoherence approach. We therefore continue this discussion in Section 7 (see especially point 6 in Subsection 7.1).

4 QUANTIZATION

Heisenberg's [1925] idea of Umdeutung (reinterpretation) suggests that it is possible to construct a quantum-mechanical description of a physical system whose classical description is known. As we have seen, this possibility was realized by Schrödinger.

94 Raggio [1981] proved this for von Neumann algebras and normal states. His proof was adapted to C^*-algebras by Bacciagaluppi [1993].
who found the simplest example (2) and (3) of *Umdeutung* in the context
of atomic physics. This early example was phenomenally successful, as almost all
of atomic and molecular physics is still based on it.

Quantization theory is an attempt to understand this example, make it math-
ematically precise, and generalize it to more complicated systems. It has to be
stated from the outset that, like the entire classical-quantum interface, the nature
of quantization is not yet well understood. This fact is reflected by the existence
of a fair number of competing quantization procedures, the most transparent of
which we will review below. Among the first mathematically serious discussions
of quantization are [Mackey, 1968] and [Souriau, 1969]; more recent and compre-
hensive treatments are, for example, [Woodhouse, 1992; Landsman, 1998], and
[Ali and Engeb, 2004].

4.1 Canonical quantization and systems of imprimivity

The approach based on (2) is often called *canonical quantization*. Even apart from
the issue of mathematical rigour, one can only side with Mackey [1992, 283], who
wrote: ‘Simple and elegant as this model is, it appears at first sight to be quite
arbitrary and ad hoc. It is difficult to understand how anyone could have guessed
it and by no means obvious how to modify it to fit a model for space different from
\(\mathbb{R}^n \).’

One veil of the mystery of quantization was lifted by von Neumann [1931],
who (following earlier heuristic proposals by Heisenberg, Schrödinger, Dirac, and
Pauli) recognized that (2) does not merely provide a representation of the canonical
commutation relations

\[
[Q_h(p_j), Q_h(q^k)] = -i\hbar \delta^k_j,
\]

but (subject to a regularity condition)\(^{96}\) is the only such representation that is
irreducible (up to unitary equivalence). In particular, the seemingly different for-
mulations of quantum theory by Heisenberg and Schrödinger (amended by the
inclusion of states and of observables, respectively — cf. Section 2) simply in-
volved superficially different but unitarily equivalent representations of (1): the
difference between matrices and waves was just one between coordinate systems in
Hilbert space, so to speak. Moreover, any other conceivable formulation of quan-

\(^{95}\) The path integral approach to quantization is still under development and so far has had no
impact on foundational debates, so we will not discuss it here. See [Albeverio and Høegh-Krohn,
1976] and [Glimm and Jaffe, 1987].

\(^{96}\) It is required that the unbounded operators \(Q_h(p_j) \) and \(Q_h(q^k) \) integrate to a unitary repre-
sentation of the 2n + 1-dimensional Heisenberg group \(H_n \), i.e. the unique connected and simply
connected Lie group with 2n + 1-dimensional Lie algebra with generators \(X_i, Y_i, Z \) (\(i = 1, \ldots, n \))
subject to the Lie brackets \([X_i, X_j] = [Y_i, Y_j] = 0, [X_i, Y_j] = \delta_{ij} Z, [X_i, Z] = [Y_i, Z] = 0 \). Thus
von Neumann’s uniqueness theorem for representations of the canonical commutation relations
is (as he indeed recognized himself) really a uniqueness theorem for unitary representations of
\(H_n \) for which the central element \(Z \) is mapped to \(-i\hbar^{-1} \), where \(\hbar \neq 0 \) is a fixed constant. See,
for example, [Corwin and Greenleaf, 1989] or [Landsman, 1998].
tum mechanics — now simply defined as a (regular) Hilbert space representation of (1) — has to be equivalent to the one of Heisenberg and Schrödinger.

This, then, transfers the quantization problem of a particle moving on \(\mathbb{R}^n \) to the canonical commutation relations (1). Although a mathematically rigorous theory of these commutation relations (as they stand) exists [Jørgensen and Moore, 1984; Schmidgen, 1990], they are problematic nonetheless. Firstly, technically speaking the operators involved are unbounded, and in order to represent physical observables they have to be self-adjoint; yet on their respective domains of self-adjointness the commutator on the left-hand side is undefined. Secondly, and more importantly, (1) relies on the possibility of choosing global coordinates on \(\mathbb{R}^n \), which precludes a naive generalization to arbitrary configuration spaces. And thirdly, even if one has managed to quantize \(p \) and \(q \) by finding a representation of (1), the problem of quantizing other observables remains — think of the Hamiltonian and the Schrödinger equation.

About 50 years ago, Mackey set himself the task of making good sense of canonical quantization; see [Mackey, 1968; 1978; 1992] and the brief exposition below for the result. Although the author now regards Mackey’s reformulation of quantization in terms of induced representations and systems of imprimitivity merely as a stepping stone towards our current understanding based on deformation theory and groupoids (cf. Subsection 4.3 below), Mackey’s approach is (quite rightly) often used in the foundations of physics, and one is well advised to be familiar with it. In any case, Mackey [1992, 283] — continuing the previous quotation — claims with some justification that his approach to quantization ‘removes much of the mystery.’

Like most approaches to quantization, Mackey assigns momentum and position a quite different role in quantum mechanics, despite the fact that in classical mechanics \(p \) and \(q \) can be interchanged by a canonical transformation.

1. The position operators \(Q_\mathcal{H}(q^j) \) are collectively replaced by a single projection-valued measure \(P \) on \(\mathbb{R}^n \), \(^99\) which on \(L^2(\mathbb{R}^n) \) is given by \(P(E) = \chi_E \) as a multiplication operator. Given this \(P \), any multiplication operator defined by a (measurable) function \(f : \mathbb{R}^n \to \mathbb{R} \) can be represented as \(\int_{\mathbb{R}^n} dP(x) f(x) \), which is defined and self-adjoint on a suitable domain.\(^{100}\) In particular, the position operators \(Q_\mathcal{H}(q^j) \) can be reconstructed from \(P \) by choosing \(f(x) = \)

\(^{97}\)This is unrelated to the issue of the Heisenberg picture versus the Schrödinger picture, which is about the time-evolution of observables versus that of states.

\(^{98}\)Up to a minus sign, that is. This is true globally on \(\mathbb{R}^n \) and locally on any symplectic manifold, where local Darboux coordinates do not distinguish between position and momentum.

\(^{99}\)A projection-valued measure \(P \) on a space \(\Omega \) with Borel structure (i.e. equipped with a \(\sigma \)-algebra of measurable sets defined by the topology) with values in a Hilbert space \(\mathcal{H} \) is a map \(E \mapsto P(E) \) from the Borel subsets \(E \subset \Omega \) to the projections on \(\mathcal{H} \) that satisfies \(P(\emptyset) = 0 \), \(P(\Omega) = 1 \), \(P(E)P(F) = P(F)P(E) = P(E \cap F) \) for all measurable \(E, F \subset \Omega \), and \(P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i) \) for all countable collections of mutually disjoint \(E_i \subset \Omega \).

\(^{100}\)This domain consists of all \(\Psi \in \mathcal{H} \) for which \(\int_{\mathbb{R}^n} d\langle \Psi, P(x)\Psi \rangle |f(x)|^2 < \infty \).
\(x^j \), i.e.

\begin{equation}
(2) \quad Q_n(q^j) = \int_{\mathbb{R}^n} dP(x) x^j.
\end{equation}

2. The momentum operators \(Q_n(p_j) \) are collectively replaced by a single unitary group representation \(U(\mathbb{R}^n) \), defined on \(L^2(\mathbb{R}^n) \) by

\[U(y)\Psi(x) := \Psi(x - y). \]

Each \(Q_n(p_j) \) can be reconstructed from \(U \) by means of

\begin{equation}
(3) \quad Q_n(p_j)\Psi := i\hbar \lim_{t_j \to 0} t_j^{-1}(U(t_j) - 1)\Psi,
\end{equation}

where \(U(t_j) \) is \(U \) at \(x^j = t_j \) and \(x^k = 0 \) for \(k \neq j \).

Consequently, it entails no loss of generality to work with the pair \((P, U)\) instead of the pair \((Q_n(q^k), Q_n(p_j))\). The commutation relations (1) are now replaced by

\begin{equation}
(4) \quad U(x)P(E)U(x)^{-1} = P(x E),
\end{equation}

where \(E \) is a (Borel) subset of \(\mathbb{R}^n \) and \(x E = \{x\omega \mid \omega \in E\} \). On the basis of this reformulation, Mackey proposed the following sweeping generalization of the canonical commutation relations:

A system of imprimitivity \((\mathcal{H}, U, P)\) for a given action of a group \(G \) on a space \(Q \) consists of a Hilbert space \(\mathcal{H} \), a unitary representation \(U \) of \(G \) on \(\mathcal{H} \), and a projection-valued measure \(E \mapsto P(E) \) on \(Q \) with values in \(\mathcal{H} \), such that (4) holds for all \(x \in G \) and all Borel sets \(E \subset Q \).

In physics such a system describes the quantum mechanics of a particle moving on a configuration space \(Q \) on which \(G \) acts by symmetry transformations; see Subsection 4.3 for a more detailed discussion. When everything is smooth, each element \(X \) of the Lie algebra \(g \) of \(G \) defines a generalized momentum operator

\begin{equation}
(5) \quad Q_n(X) = i\hbar dU(X)
\end{equation}

on \(\mathcal{H} \). These operators satisfy the generalized canonical commutation relations

\begin{equation}
(6) \quad [Q_n(X), Q_n(Y)] = i\hbar Q_n([X, Y]).
\end{equation}

101 By Stone's theorem (cf. Reed and Simon, 1972), this operator is defined and self-adjoint on the set of all \(\Psi \in \mathcal{H} \) for which the limit exists.

102 All groups and spaces are supposed to be locally compact, and actions and representations are assumed continuous.

103 I.e. \(G \) is a Lie group, \(Q \) is a manifold, and the \(G \)-action is smooth.

104 This operator is defined and self-adjoint on the domain of vectors \(\Psi \in \mathcal{H} \) for which \(dU(X)\Psi := \lim_{t \to 0} t^{-1}(U(\exp(tX)) - 1)\Psi \) exists.

105 As noted before in the context of (1), the commutation relations (6), (8) and (9) do not hold on the domain of self-adjointness of the operators involved, but on a smaller common core.
Furthermore, in terms of the operators\(^{106}\)

\[\mathcal{Q}_\hbar (f) = \int_Q dP(x) f(x),\]

where \(f\) is a smooth function on \(Q\) and \(X \in g\), one in addition has

\[\left[\mathcal{Q}_\hbar (X), \mathcal{Q}_\hbar (f)\right] = i\hbar \mathcal{Q}_\hbar (\xi^Q_X f),\]

where \(\xi^Q_X\) is the canonical vector field on \(Q\) defined by the \(G\)-action,\(^ {107}\) and

\[\left[\mathcal{Q}_\hbar (f_1), \mathcal{Q}_\hbar (f_2)\right] = 0.\]

Elementary quantum mechanics on \(\mathbb{R}^n\) corresponds to the special case \(Q = \mathbb{R}^n\) and \(G = \mathbb{R}^n\) with the usual additive group structure. To see this, we denote the standard basis of \(\mathbb{R}^3\) (in its guise as the Lie algebra of \(\mathbb{R}^3\)) by the name \((p_j)\), and furthermore take \(f_1(q) = q^j, f_2(q) = q^k\). Eq. (6) for \(X = p_j\) and \(Y = p_k\) then reads \(\left[\mathcal{Q}_\hbar (p_j), \mathcal{Q}_\hbar (p_k)\right] = 0\), eq. (8) yields the canonical commutation relations (1), and (9) states the commutativity of the position operators, i.e.

\[\left[\mathcal{Q}_\hbar (q^j), \mathcal{Q}_\hbar (q^k)\right] = 0.\]

In order to incorporate spin, one picks \(G = E(3) = SO(3) \ltimes \mathbb{R}^3\) (i.e. the Euclidean motion group), acting on \(Q = \mathbb{R}^3\) in the obvious (defining) way. The Lie algebra of \(E(3)\) is \(\mathbb{R}^6 = \mathbb{R}^3 \times \mathbb{R}^3\) as a vector space; we extend the basis \((p_j)\) of the second copy of \(\mathbb{R}^3\) (i.e. the Lie algebra of \(\mathbb{R}^3\)) by a basis \((J_i)\) of the first copy of \(\mathbb{R}^3\) (in its guise as the Lie algebra of \(SO(3)\)), and find that the \(\mathcal{Q}_\hbar (J_i)\) are just the usual angular momentum operators.\(^ {108}\)

Mackey’s generalization of von Neumann’s [1931] uniqueness theorem for the irreducible representations of the canonical commutation relations (1) is his “imprimitivity theorem.” This theorem applies to the special case where \(Q = G/H\) for some (closed) subgroup \(H \subset G\), and states that (up to unitary equivalence) there is a bijective correspondence between:

1. Systems of imprimitivity \((\mathcal{H}, U, P)\) for the left-translation of \(G\) on \(G/H\);

2. Unitary representations \(U_X\) of \(H\).

This correspondence preserves irreducibility.\(^ {109}\)

\(^{106}\)For the domain of \(\mathcal{Q}_\hbar (f)\) see footnote 100.

\(^{107}\)i.e. \(\xi^Q_X f(y) = d/dt|_{t=0}[f(\exp(-tX)y)]\).

\(^{108}\)The commutation relations in the previous paragraph are now extended by the familiar relations

\[\left[\mathcal{Q}_\hbar (J_i), \mathcal{Q}_\hbar (J_j)\right] = i\hbar \epsilon_{ijk} \mathcal{Q}_\hbar (J_k),\]

\[\left[\mathcal{Q}_\hbar (J_i), \mathcal{Q}_\hbar (p_j)\right] = i\hbar \epsilon_{ijk} \mathcal{Q}_\hbar (p_k),\]

and

\[\left[\mathcal{Q}_\hbar (J_i), \mathcal{Q}_\hbar (q^j)\right] = i\hbar \epsilon_{ijk} \mathcal{Q}_\hbar (q^k).\]

\(^{109}\)Specifically, given \(U_X\) the triple \((\mathcal{H}^X, U^X, P^X)\) is a system of imprimitivity, where \(\mathcal{H}^X = L^2(G/H) \otimes \mathcal{H}_X\) carries the representation \(U\) induced by \(U_X\), and the \(P^X\) act like multiplication operators. Conversely, if \((\mathcal{H}, U, P)\) is a system of imprimitivity, then there exists a unitary representation \(U_X(H)\) such that the triple \((\mathcal{H}, U, P)\) is unitarily equivalent to the triple \((\mathcal{H}^X, U^X, P^X)\) just described. For example, for \(G = E(3)\) and \(H = SO(3)\) one has \(X = J = 0, 1, 2, \ldots\) and \(\mathcal{H}^i = L^2(\mathbb{R}^3) \otimes \mathcal{H}_j\) (where \(\mathcal{H}_j = \mathbb{C}^{2j+1}\) carries the given representation \(U_j(SO(3))\)).
For example, von Neumann's theorem is recovered as a special case of Mackey's by making the choice \(G = \mathbb{R}^3 \) and \(H = \{ e \} \) (so that \(Q = \mathbb{R}^3 \), as above): the uniqueness of the (regular) irreducible representation of the canonical commutation relations here follows from the uniqueness of the irreducible representation of the trivial group. A more illustrative example is \(G = E(3) \) and \(H = SO(3) \) (so that \(Q = \mathbb{R}^3 \)), in which case the irreducible representations of the associated system of imprimitivity are classified by spin \(j = 0, 1, \ldots \). Mackey saw this as an explanation for the emergence of spin as a purely quantum-mechanical degree of freedom.\(^{110}\) Although the opinion that spin has no classical analogue was widely shared also among the pioneers of quantum theory,\(^{111}\) it is now obsolete (see Subsection 4.3 below). Despite this unfortunate misinterpretation, Mackey's approach to canonical quantization is hard to surpass in power and clarity, and has many interesting applications.\(^{112}\)

We mention one of specific interest to the philosophy of physics, namely the *Newton–Wigner position operator* (as analyzed by Wightman [1962]).\(^{113}\) Here the general question is whether a given unitary representation \(U \) of \(G = E(3) \) on some Hilbert space \(\mathcal{H} \) may be extended to a system of imprimitivity with respect to \(H = SO(3) \) (and hence \(Q = \mathbb{R}^3 \), as above); in that case, \(U \) (or rather the associated quantum system) is said to be *localizable* in \(\mathbb{R}^3 \). Following Wigner's (1939) suggestion that a relativistic particle is described by an irreducible representation \(U \) of the Poincaré group \(P \), one obtains a representation \(U(E(3)) \) by restricting \(U(P) \) to the subgroup \(E(3) \subset P \).\(^{114}\) It then follows from the previous analysis that the particle described by \(U(P) \) is localizable if and only if \(U(E(3)) \) is induced by some representation of \(SO(3) \). This can, of course, be settled, with the result that massive particles of arbitrary spin can be localized in \(\mathbb{R}^3 \) (the corresponding position operator being precisely the one of Newton and Wigner), whereas massless particles may be localized in \(\mathbb{R}^3 \) if and only if their helicity is less than one. In particular, the photon (and the graviton) cannot be localized in \(\mathbb{R}^3 \) in the stated

\(^{110}\)By the usual arguments (Wigner's theorem), one may replace \(SO(3) \) by \(SU(2) \), so as to obtain \(j = 0, 1/2, \ldots \).

\(^{111}\)This opinion goes back to Pauli [1925], who talked about a 'klassisch nicht beschreibbare Zweideutigkeit in den quantentheoretischen Eigenschaften des Elektrons,' (i.e. an 'ambivalence in the quantum theoretical properties of the electron that has no classical description') which was later identified as spin by Goudsmit and Uhlenbeck. Probably the first person to draw attention to the classical counterpart of spin was Souriau [1969]. Another misunderstanding about spin is that its ultimate explanation must be found in relativistic quantum mechanics.

\(^{112}\)This begs the question about the 'best' possible proof of Mackey's imprimitivity theorem. Mackey's own proof was rather measure-theoretic in flavour, and did not shed much light on the origin of his result. Probably the shortest proof has been given by [Orsted, 1979], but the insight brevity gives is still rather limited. Quite to the contrary, truly transparent proofs reduce a mathematical claim to a tautology. Such proofs, however, tend to require a formidable machinery to make this reduction work; see [Echterhoff et al., 2002] and [Landsman, 2006a] for two different approaches to the imprimitivity theorem in this style.

\(^{113}\)Fleming and Butterfield [2000] give an up-to-date introduction to particle localization in relativistic quantum theory. See also [De Bièvre, 2003].

\(^{114}\)Strictly speaking, this hinges on the choice of an inertial frame in Minkowski space, with associated adapted co-ordinates such that the configuration space \(\mathbb{R}^3 \) in question is given by \(x^0 = 0 \).
To appreciate our later material on both phase space quantization and deformation quantization, it is helpful to give a C^*-algebraic reformulation of Mackey's approach. Firstly, by the spectral theorem [Reed and Simon, 1972; Pedersen, 1989], a projection-valued measure $E \mapsto P(E)$ on a space Q taking values in a Hilbert space \mathcal{H} is equivalent to a nondegenerate representation π of the commutative C^*-algebra $C_0(Q)$ on \mathcal{H} through the correspondence (7). Secondly, if \mathcal{H} in addition carries a unitary representation U of G, the defining condition (4) of a system of imprimitivity (given a G-action on Q) is equivalent to the covariance condition

$$U(x)Q_h(f)U(x)^{-1} = Q_h(L_x f)$$

for all $x \in G$ and $f \in C_0(Q)$, where $L_x f(m) = f(x^{-1}m)$. Thus a system of imprimitivity for a given G-action on Q is "the same" as a covariant nondegenerate representation of $C_0(Q)$. Thirdly, from a G-action on Q one can construct a certain C^*-algebra $C^*(G, Q)$, the so-called transformation group C^*-algebra defined by the action, which has the property that its nondegenerate representations correspond bijectively (and "naturally") to covariant nondegenerate representations of $C_0(Q)$, and therefore to systems of imprimitivity for the given G-action [Effros and Hahn, 1967; Pedersen, 1979; Landsman, 1994]. In the C^*-algebraic approach to quantum physics, $C^*(G, Q)$ is the algebra of observables of a particle moving on Q subject to the symmetries defined by the G-action; its inequivalent irreducible representations correspond to the possible superselection sectors of the system [Doebner and Tolar, 1975; Majid, 1988; 1990; Landsman, 1990a; 1990b; 1992].

4.2 Phase space quantization and coherent states

In Mackey's approach to quantization, Q is the configuration space of the system; the associated position coordinates commute (cf. (9)). This is reflected by the correspondence just discussed between projection-valued measures on Q and representations of the commutative C^*-algebra $C_0(Q)$. The noncommutativity of observables (and the associated uncertainty relations) typical of quantum mechanics is incorporated by adding the symmetry group G to the picture and imposing

115 Seeing photons as quantized light waves with two possible polarizations transverse to the direction of propagation, this last result is physically perfectly reasonable.

116 A representation of a C^*-algebra \mathcal{A} on a Hilbert space \mathcal{H} is a linear map $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ such that $\pi(AB) = \pi(A)\pi(B)$ and $\pi(A^*) = \pi(A)^*$ for all $A, B \in \mathcal{A}$. Such a representation is called nondegenerate when $\pi(A)\Psi = 0$ for all $A \in \mathcal{A}$ implies $\Psi = 0$.

117 Another reformulation of Mackey's approach, or rather an extension of it, has been given by Isham [1984]. In an attempt to reduce the whole theory to a problem in group representations, he proposed that the possible quantizations of a particle with configuration space G/H are given by the inequivalent irreducible representations of a "canonical group" $G_c = G \ltimes V$, where V is the lowest-dimensional vector space that carries a representation of G under which G/H is an orbit in the dual vector space V^*. All pertinent systems of imprimitivity then indeed correspond to unitary representations of G_c, but this group has many other representations whose physical interpretation is obscure. See also footnote 157.
the relations (4) (or, equivalently, (8) or (10)). As we have pointed out, this procedure upsets the symmetry between the phase space variables position and momentum in classical mechanics.

This somewhat unsatisfactory feature of Mackey's approach may be avoided by replacing \(Q \) by the *phase space* of the system, henceforth called \(M \).\(^{118}\) In this approach, noncommutativity is incorporated by a treacherously tiny modification to Mackey's setup. Namely, the projection-valued measure \(E \mapsto P(M) \) on \(M \) with which he starts is now replaced by a *positive-operator-valued measure* or *POVM* on \(M \), still taking values in some Hilbert space \(\mathcal{K} \). This is a map \(E \mapsto A(E) \) from the (Borel) subsets \(E \) of \(M \) to the collection of *positive* bounded operators on \(\mathcal{K} \),\(^{119}\) satisfying \(A(\emptyset) = 0 \), \(A(M) = 1 \), and \(A(\bigcup_i E_i) = \sum_i A(E_i) \) for any countable collection of disjoint Borel sets \(E_i \).\(^{120}\) A POVM that satisfies \(A(E \cap F) = A(E)A(F) \) for all (Borel) \(E, F \subset M \) is precisely a projection-valued measure, so that a POVM is a generalization of the latter.\(^{121}\) The point, then, is that a given POVM defines a quantization procedure by the stipulation that a classical observable \(f \) (i.e., a measurable function on the phase space \(M \), for simplicity assumed bounded) is quantized by the operator\(^{122}\)

\[
Q(f) = \int_M dA(x) f(x).
\]

Thus the seemingly slight move from projection-valued measures on configuration space to positive-operator valued measures on phase space gives a wholly new perspective on quantization, actually reducing this task to the problem of finding such POVM's.\(^{123}\)

\(^{118}\)Here the reader may think of the simplest case \(M = \mathbb{R}^6 \), the space of \(p \)'s and \(q \)'s of a particle moving on \(\mathbb{R}^3 \). More generally, if \(Q \) is the configuration space, the associated phase space is the cotangent bundle \(M = T^*Q \). Even more general phase spaces, namely arbitrary symplectic manifolds, may be included in the theory as well. References for what follows include [Busch et al., 1998; Schroeck, 1996], and [Landsman, 1998; 1999a].

\(^{119}\)A bounded operator \(A \) on \(\mathcal{K} \) is called positive when \(\langle \Psi, A\Psi \rangle \geq 0 \) for all \(\Psi \in \mathcal{K} \). Consequently, it is self-adjoint with spectrum contained in \(\mathbb{R}^+ \).

\(^{120}\)Here the infinite sum is taken in the weak operator topology. Note that the above conditions force \(0 \leq A(E) \leq 1 \), in the sense that \(0 \leq \langle \Psi, A(E)\Psi \rangle \leq \langle \Psi, \Psi \rangle \) for all \(\Psi \in \mathcal{K} \).

\(^{121}\)This has given rise to the so-called *operational approach* to quantum theory, in which observables are not represented by self-adjoint operators (or, equivalently, by their associated projection-valued measures), but by POVM's. The space \(M \) on which the POVM is defined is the space of outcomes of the measuring instrument; the POVM is determined by both \(A \) and a calibration procedure for this instrument. The probability that in a state \(\rho \) the outcome of the experiment lies in \(E \subset M \) is taken to be \(\text{Tr}(\rho A(E)) \). See [Davies, 1976; Holevo, 1982; Ludwig, 1985; Schroeck, 1996; Busch et al., 1998], and [De Muynck, 2002].

\(^{122}\)The easiest way to define the right-hand side of (11) is to fix \(\Psi \in \mathcal{K} \) and define a probability measure \(p_\Psi \) on \(M \) by means of \(p_\Psi(E) = \langle \Psi, A(E)\Psi \rangle \). One then defines \(Q(f) \) as an operator through its expectation values \(\langle \Psi, Q(f)\Psi \rangle = \int_M dp_\Psi(x) f(x) \). The expression (11) generalizes (7), and also generalizes the spectral resolution of the operator \(f(A) = \int_\mathbb{R} dP(\lambda)f(\lambda) \), where \(P \) is the projection-valued measure defined by a self-adjoint operator \(A \).

\(^{123}\)An important feature of \(Q \) is that it is *positive* in the sense that if \(f(x) \geq 0 \) for all \(x \in M \), then \(\langle \Psi, Q(f)\Psi \rangle \geq 0 \) for all \(\Psi \in \mathcal{K} \). In other words, \(Q \) is positive as a map from the \(C^* \)-algebra \(C_0(M) \) to the \(C^* \)-algebra \(B(\mathcal{H}) \).
The solution to this problem is greatly facilitated by Naimark's dilation theorem. This states that, given a POVM $E \mapsto A(E)$ on M in a Hilbert space \mathcal{K}, there exists a Hilbert space \mathcal{H} carrying a projection-valued measure P on M and an isometric injection $\mathcal{K} \hookrightarrow \mathcal{H}$, such that

$$(12) \quad A(E) = [\mathcal{K}]P(E)[\mathcal{K}]$$

for all $E \subset M$ (where $[\mathcal{K}]$ is the orthogonal projection from \mathcal{H} onto \mathcal{K}). Combining this with Mackey's imprimitivity theorem yields a powerful generalization of the latter [Poulsen, 1970; Neumann, 1972; Scutaru, 1977; Cattaneo, 1979; Castrigiano and Henrichs, 1980]. First, define a generalized system of imprimitivity (\mathcal{K}, U, A) for a given action of a group G on a space M as a POVM A on M taking values in a Hilbert space \mathcal{K}, along with a unitary representation V of G on \mathcal{K} such that

$$(13) \quad V(x)A(E)V(x)^{-1} = A(xE)$$

for all $x \in G$ and $E \subset M$; cf. (4). Now assume $M = G/H$ (and the associated canonical left-action on M). The generalized imprimitivity theorem states that a generalized system of imprimitivity (\mathcal{K}, V, A) for this action is necessarily (unitarily equivalent to) a reduction of a system of imprimitivity (\mathcal{H}, U, P) for the same action. In other words, the Hilbert space \mathcal{H} in Naimark's theorem carries a unitary representation $U(G)$ that commutes with the projection $[\mathcal{K}]$, and the representation $V(G)$ is simply the restriction of U to \mathcal{K}. Furthermore, the POVM A has the form (12). The structure of (\mathcal{H}, U, P) is fully described by Mackey's imprimitivity theorem, so that one has a complete classification of generalized systems of imprimitivity. One has

$$(14) \quad \mathcal{K} = p\mathcal{H}; \quad \mathcal{H} = L^2(M) \otimes \mathcal{H}_\chi,$$

where L^2 is defined with respect to a suitable measure on $M = G/H$, the Hilbert space \mathcal{H}_χ carries a unitary representation of H, and p is a projection in the commutant of the representation $U^\chi(G)$ induced by $U^\chi(G)$. The quantization (11) is given by

$$(15) \quad Q(f) = pf:p,$$

where f acts on $L^2(M) \otimes \mathcal{H}_\chi$ as a multiplication operator, i.e. $(f\Psi)(x) = f(x)\Psi(x)$. In particular, one has $P(E) = \chi_E$ (as a multiplication operator) for a region $E \subset M$ of phase space, so that $Q(\chi_E) = A(E)$. Consequently, the probability

124See, for example, [Riesz and Sz.-Nagy, 1990]. It is better, however, to see Naimark's theorem as a special case of Stinespring's, as explained e.g. in [Landsman, 1998], and below.

125Continuing footnote 109: $V(G)$ is necessarily a subrepresentation of some representation $U^\chi(G)$ induced by $U^\chi(H)$.

126In the physically relevant case that G/H is symplectic (so that it typically is a coadjoint orbit for G) one should take a multiple of the Liouville measure.

127The explicit form of $U^\chi(g)$, $g \in G$, depends on the choice of a cross-section $\sigma : G/H \to G$ of the projection $\pi : G \to G/H$ (i.e. $\pi \circ \sigma = \text{id}$). If the measure on G/H defining $L^2(G/H)$ is G-invariant, the explicit formula is $U^\chi(g)\Psi(x) = U^\chi(s(x)^{-1}gs(g^{-1}x))\Psi(g^{-1}x)$.

that in a state \(\rho \) (i.e. a density matrix on \(\mathcal{K} \)) the system is localized in \(E \) is given by \(\text{Tr}(\rho A(E)) \).

In a more natural way than in Mackey’s approach, the covariant POVM quantization method allows one to incorporate space-time symmetries \(\textit{ab initio} \) by taking \(G \) to be the Galilei group or the Poincaré group, and choosing \(H \) such that \(G/H \) is a physical phase space (on which \(G \), then, canonically acts). See [Ali \textit{et al.}, 1995] and [Schroeck, 1996].

Another powerful method of constructing POVM’s on phase space (which in the presence of symmetries overlaps with the preceding one)\(^{128}\) is based on \textit{coherent states}.\(^{129}\) The minimal definition of coherent states in a Hilbert space \(\mathcal{H} \) for a phase space \(M \) is that (for some fixed value of Planck’s constant \(\hbar \), for the moment) one has an injection\(^{130}\) \(M \hookrightarrow \mathcal{H} \), \(z \mapsto \Psi_z^\hbar \), such that

\[
(16) \quad \|\Psi_z^\hbar\| = 1
\]

for all \(z \in M \), and

\[
(17) \quad c_\hbar \int_M d\mu_L(z) |(\Psi_z^\hbar, \Phi)|^2 = 1,
\]

for each \(\Phi \in \mathcal{H} \) of unit norm (here \(\mu_L \) is the Liouville measure on \(M \) and \(c_\hbar > 0 \) is a suitable constant).\(^{131}\) Condition (17) guarantees that we may define a POVM on \(M \) in \(\mathcal{K} \) by\(^{132}\)

\[
(18) \quad A(E) = c_\hbar \int_E d\mu_L(z) [\Psi_z^\hbar].
\]

Eq. (11) then simply reads (inserting the \(\hbar \)-dependence of \(\mathcal{Q} \) and a suffix \(B \) for later use)

\[
(19) \quad \mathcal{Q}_\hbar^B(f) = c_\hbar \int_M d\mu_L(z) f(z)[\Psi_z^\hbar].
\]

The time-honoured example, due to Schrödinger [1926b], is \(M = \mathbb{R}^{2n}, \mathcal{H} = L^2(\mathbb{R}^n) \), and

\[
(20) \quad \Psi_{(p,q)}^\hbar(x) = (\pi \hbar)^{-n/4} e^{-ipq/2\hbar} e^{ipx/\hbar} e^{-(x-q)^2/2\hbar}.
\]

\(^{128}\) Suppose there is a vector \(\Omega \in \mathcal{K} \) such that \(\int_{G/H} d\mu(z)|\langle \Omega, V(\sigma(z))\Omega \rangle|^2 < \infty \) with respect to some cross-section \(\sigma : G/H \to G \) and a \(G \)-invariant measure \(\mu \), as well as \(V(\hbar)\Omega = U_\hbar(\hbar)\Omega \) for all \(\hbar \in H \), where \(U_\hbar : H \to \mathbb{C} \) is \textit{one-dimensional}. Then (taking \(\hbar = 1 \)) the vectors \(V(\sigma(z))\Omega \) (suitably normalized) form a family of coherent states on \(G/H \) [Ali \textit{et al.}, 1995; Schroeck, 1996; Ali, Antoine, and Gazeau, 2000].

\(^{130}\) This injection must be continuous as a map from \(M \) to \(\Psi \mathcal{H} \), the projective Hilbert space of \(\mathcal{H} \).

\(^{131}\) Other measures might occur here; see, for example, [Bonechi and De Bièvre, 2000].

\(^{132}\) Recall that \([\Psi] \) is the orthogonal projection onto a unit vector \(\Psi \).
Eq. (17) then holds with \(d\mu_L(p,q) = (2\pi)^{-n} d^n p d^n q \) and \(c_n = \hbar^{-n} \). One may verify that \(Q^B_\hbar(p_j) \) and \(Q^B_\hbar(q^j) \) coincide with Schrödinger's operators (2). This example illustrates that coherent states need not be mutually orthogonal; in fact, in terms of \(z = p + iq \) one has for the states in (20)

\[
(21) \quad |(\Psi^h_z, \Psi^h_w)|^2 = e^{-|z-w|^2/2\hbar},
\]

the significance of this result will emerge later on.

In the general case, it is an easy matter to verify Naimark's dilation theorem for the POVM (18): changing notation so that the vectors \(\Psi^h_z \) now lie in \(\mathcal{K} \), one finds

\[
(22) \quad \mathcal{H} = L^2(M, c_\hbar \mu_L),
\]

the embedding \(W : \mathcal{K} \hookrightarrow \mathcal{H} \) being given by \((W\Phi)(z) = (\Psi^h_z, \Phi) \). The projection-valued measure \(P \) on \(\mathcal{H} \) is just \(P(E) = \chi_E \) (as a multiplication operator), and the projection \(p \) onto \(W\mathcal{K} \) is given by

\[
(23) \quad p\Psi(z) = c_\hbar \int_M d\mu_L(w)(\Psi^h_z, \Psi^h_w)\Psi(w).
\]

Consequently, (19) is unitarily equivalent to (15), where \(f \) acts on \(L^2(M) \) as a multiplication operator.\(^{133}\)

Thus (15) and (22) (or its possible extension (14)) form the essence of phase space quantization.\(^{134}\)

We close this subsection in the same fashion as the previous one, namely by pointing out the C*-algebraic significance of POVM's. This is extremely easy: whereas a projection-valued measure on \(M \) in \(\mathcal{H} \) is the same as a nondegenerate representation of \(C_0(M) \) in \(\mathcal{H} \), a POVM on \(M \) in a Hilbert space \(\mathcal{K} \) is nothing but a nondegenerate completely positive map \(\varphi : C_0(M) \rightarrow \mathcal{B}(\mathcal{K}) \).\(^{135}\) Consequently, Naimark's dilation theorem becomes a special case of Stinespring's [1955] theorem: if \(Q : \mathcal{A} \rightarrow \mathcal{B}(\mathcal{K}) \) is a completely positive map, there exists a Hilbert space \(\mathcal{H} \) carrying a representation \(\pi \) of \(C_0(M) \) and an isometric injection \(\mathcal{K} \hookrightarrow \mathcal{H} \), such that \(Q(f) = [K] \pi(f) [K] \) for all \(f \in C_0(M) \). In terms of \(Q(C_0(M)) \), the covariance condition (13) becomes \(U(x)Q(f)U(x)^{-1} = Q(L_x f) \), just like (10).

\(^{133}\) This leads to a close relationship between coherent states and Hilbert spaces with a reproducing kernel; see [Landsman, 1998] or [Ali et al., 2000].

\(^{134}\) See also footnote 172 below.

\(^{135}\) A map \(\varphi : \mathcal{A} \rightarrow \mathcal{B} \) between C*-algebras is called positive when \(\varphi(A) \geq 0 \) whenever \(A \geq 0 \); such a map is called completely positive if for all \(n \in \mathbb{N} \) the map \(\varphi_n : \mathcal{A} \otimes M_n(\mathbb{C}) \rightarrow \mathcal{B} \otimes M_n(\mathbb{C}) \), defined by linear extension of \(\varphi \otimes \text{id} \) on elementary tensors, is positive (here \(M_n(\mathbb{C}) \) is the C*-algebra of \(n \times n \) complex matrices). When \(\mathcal{A} \) is commutative a nondegenerate positive map \(\mathcal{A} \rightarrow \mathcal{B} \) is automatically completely positive for any \(\mathcal{B} \).
4.3 Deformation quantization

So far, we have used the word ‘quantization’ in a heuristic way, basing our account
on historical continuity rather than on axiomatic foundations. In this subsection
and the next we set the record straight by introducing two alternative ways of
looking at quantization in an axiomatic way. We start with the approach that his-
torically came last, but which conceptually is closer to the material just discussed.
This is deformation quantization, originating in the work of Berezin [1974; 1975a;
1975b], Vey [1975], and Bayen et al. [1977]. We here follow the \(C^* \)-algebraic
approach to deformation quantization proposed by Rieffel [1989a; 1994], since it
is not only mathematically transparent and rigorous, but also reasonably close
to physical practice.\(^{136}\) Due to the mathematical language used, this method of
course naturally fits into the general \(C^* \)-algebraic approach to quantum physics.

The key idea of deformation quantization is that quantization should be defined
through the property of having the correct classical limit. Consequently, Planck’s
"constant" \(\hbar \) is treated as a variable, so that for each of its values one should have
a quantum theory. The key requirement is that this family of quantum theories
converges to the underlying classical theory as \(\hbar \to 0 \).\(^{137}\) The mathematical
implementation of this idea is quite beautiful, in that the classical algebra of
observables is “glued” to the family of quantum algebras of observables in such a
way that the classical theory literally forms the boundary of the space containing
the pertinent quantum theories (one for each value of \(\hbar > 0 \)). Technically, this is
done through the concept of a continuous field of \(C^* \)-algebras.\(^{138}\) What follows
may sound unnecessarily technical, but the last 15 years have indicated that this
yields exactly the right definition of quantization.

Let \(I \subseteq \mathbb{R} \) be the set in which \(\hbar \) takes values; one usually has \(I = [0, 1] \), but
when the phase space is compact, \(\hbar \) often takes values in a countable subset of
\((0, 1] \).\(^{139}\) The same situation occurs in the theory of infinite systems; see Section
6. In any case, \(I \) should contain zero as an accumulation point. A continuous field
of \(C^* \)-algebras over \(I \), then, consists of a \(C^* \)-algebra \(A \), a collection of \(C^* \)-algebras
\(\{ A_\hbar \}_{\hbar \in I} \), and a surjective morphism \(\varphi_\hbar : A \to A_\hbar \) for each \(\hbar \in I \),
such that:

1. The function \(\hbar \mapsto \| \varphi_\hbar(A) \|_\hbar \) is in \(C_0(I) \) for all \(A \in A ; \)^{140}

2. The norm of any \(A \in A \) is \(\| A \| = \sup_{\hbar \in I} \| \varphi_\hbar(A) \| ; \)

\(^{136}\)See also [Landsman, 1998] for an extensive discussion of the \(C^* \)-algebraic approach to
deformation quantization. In other approaches to deformation quantization, such as the theory of
star products, \(\hbar \) is a formal parameter rather than a real number. In particular, the meaning of
the limit \(\hbar \to 0 \) is obscure.

\(^{137}\)Cf. the preamble to Section 5 for further comments on this limit.

\(^{138}\)See [Dixmier, 1977; Fell and Doran, 1988], and [Kirchberg and Wassermann, 1995] for three
different approaches to the same concept. Our definition follows the latter; replacing \(I \) by an
arbitrary locally compact Hausdorff space one finds the general definition.

\(^{139}\)Cf. [Landsman, 1998] and footnote 204, but in contrast see [Rieffel, 1989a] for the example of
the noncommutative torus, where one quantizes a compact phase space for each \(\hbar \in (0, 1] \).
Further examples of this sort are discussed by Natsume and Nest [1999], Natsume, Nest and Ingo
[2003], and Hawkins [2005].

\(^{140}\)Here \(\| \cdot \|_\hbar \) is the norm in the \(C^* \)-algebra \(A_\hbar \).
3. For any \(f \in C_0(I) \) and \(A \in \mathcal{A} \) there is an element \(fA \in \mathcal{A} \) for which \(\varphi_\hbar(fA) = f(\hbar)\varphi_\hbar(A) \) for all \(\hbar \in I \).

The idea is that the family \(\{ A_\hbar \}_{\hbar \in I} \) of \(\mathcal{C}^* \)-algebras is glued together by specifying a topology on the bundle \(\coprod_{\hbar \in [0,1]} A_\hbar \) (disjoint union). However, this topology is in fact defined rather indirectly, via the specification of the space of continuous sections of the bundle.\(^{141}\) Namely, a continuous section of the field is by definition an element \(\{ A_\hbar \}_{\hbar \in I} \) of \(\prod_{\hbar \in I} A_\hbar \) (equivalently, a map \(\hbar \mapsto A_\hbar \) where \(A_\hbar \in \mathcal{A}_\hbar \)) for which there is an \(A \in \mathcal{A} \) such that \(A_\hbar = \varphi_\hbar(A) \) for all \(\hbar \in I \). It follows that the \(\mathcal{C}^* \)-algebra \(\mathcal{A} \) may actually be identified with the space of continuous sections of the field: if we do so, the morphism \(\varphi_\hbar \) is just the evaluation map at \(\hbar \).\(^{142}\)

Physically, \(\mathcal{A}_0 \) is the commutative algebra of observables of the underlying classical system, and for each \(\hbar > 0 \) the noncommutative \(\mathcal{C}^* \)-algebra \(\mathcal{A}_\hbar \) is supposed to be the algebra of observables of the corresponding quantum system at value \(\hbar \) of Planck's constant. The algebra \(\mathcal{A}_0 \), then, is of the form \(C_0(M) \), where \(M \) is the phase space defining the classical theory. A phase space has more structure than an arbitrary topological space; it is a manifold on which a Poisson bracket \(\{ \cdot, \cdot \} \) can be defined. For example, on \(M = \mathbb{R}^{2n} \) one has the familiar expression

\[
\{ f, g \} = \sum_j \frac{\partial f}{\partial p_j} \frac{\partial g}{\partial q^j} - \frac{\partial f}{\partial q^j} \frac{\partial g}{\partial p_j}.
\]

Technically, \(M \) is taken to be a Poisson manifold. This is a manifold equipped with a Lie bracket \(\{ \cdot, \cdot \} \) on \(C^\infty(M) \) with the property that for each \(f \in C^\infty(M) \) the map \(g \mapsto \{ f, g \} \) defines a derivation of the commutative algebra structure of \(C^\infty(M) \) given by pointwise multiplication. Hence this map is given by a vector field \(\xi_f \), called the Hamiltonian vector field of \(f \) (i.e. one has \(\xi_{fg} = \{ f, g \} \)). Symplectic manifolds are special instances of Poisson manifolds, characterized by the property that the Hamiltonian vector fields exhaust the tangent bundle. A Poisson manifold is foliated by its symplectic leaves: a given symplectic leaf \(L \) is characterized by the property that at each \(x \in L \) the tangent space \(T_xL \subset T_xM \) is spanned by the collection of all Hamiltonian vector fields at \(x \). Consequently, the flow of any Hamiltonian vector field on \(M \) through a given point lies in its entirety within the symplectic leaf containing that point. The simplest example of a Poisson manifold is \(M = \mathbb{R}^{2n} \) with Poisson bracket (24); this manifold is even symplectic.\(^{143}\)

\(^{141}\)This is reminiscent of the Gelfand–Naimark theorem for commutative \(\mathcal{C}^* \)-algebras, which specifies the topology on a locally compact Hausdorff space \(X \) via the \(\mathcal{C}^* \)-algebra \(C_0(X) \). Similarly, in the theory of (locally trivial) vector bundles the Serre–Swan theorem allows one to reconstruct the topology on a vector bundle \(E \xrightarrow{\pi} X \) from the space \(\Gamma_0(E) \) of continuous sections of \(E \), seen as a (finitely generated projective) \(C_0(X) \)-module. See, for example, [Gracia-Bondía et al., 2001]. The third condition in our definition of a continuous field of \(\mathcal{C}^* \)-algebras makes \(\mathcal{A} \) a \(C_0(I) \)-module in the precise sense that there exists a nondegenerate morphism from \(C_0(I) \) to the center of the multiplier of \(\mathcal{A} \). This property may also replace our condition 3.

\(^{142}\)The structure of \(\mathcal{A} \) as a \(\mathcal{C}^* \)-algebra corresponds to the operations of pointwise scalar multiplication, addition, adjoining, and operator multiplication on sections.

After this preparation, our basic definition is this:

A deformation quantization of a phase space \(M \) consists of a continuous field of \(C^* \)-algebras \((A_{h})_{h \in [0,1]}\) (with \(A_{0} = C_{0}(M) \)), along with a family of self-adjoint \(^{145}\) linear maps \(Q_{h} : C_{c}^{\infty}(M) \to A_{h}, \ h \in (0, 1], \) such that:

1. For each \(f \in C_{c}^{\infty}(M) \) the map defined by \(0 \mapsto f \) and \(h \mapsto Q_{h}(f) \) \((h \neq 0)\) is a continuous section of the given continuous field;\(^{146}\)

2. For all \(f, g \in C_{c}^{\infty}(M) \) one has

\[
(25) \quad \lim_{h \to 0} \left\| \frac{i}{\hbar} [Q_{h}(f), Q_{h}(g)] - Q_{h}(\{f,g\}) \right\|_{h} = 0.
\]

Obvious continuity properties one might like to impose, such as

\[
(26) \quad \lim_{h \to 0} \left\| Q_{h}(f) Q_{h}(g) - Q_{h}(fg) \right\| = 0,
\]

or

\[
(27) \quad \lim_{h \to 0} \left\| Q_{h}(f) \right\| = \left\| f \right\|_{\infty},
\]

turn out to be an automatic consequence of this definition.\(^{147}\) Condition (25), however, transcends the \(C^* \)-algebraic setting, and is the key ingredient in proving (among other things) that the quantum dynamics converges to the classical dynamics;\(^{148}\) see Section 5. The map \(Q_{h} \) is the quantization map at value \(h \) of Planck's constant; we feel it is the most precise formulation of Heisenberg's original \textit{Umdeutung} of classical observables known to date. It has the same interpretation as the heuristic symbol \(Q_{h} \) used so far: the operator \(Q_{h}(f) \) is the quantum-mechanical observable whose classical counterpart is \(f \).

This has turned out to be an fruitful definition of quantization, firstly because most well-understood examples of quantization fit into it \cite{Rieffel1994, Landsman1998}, and secondly because it has suggested various fascinating new ones \cite{Rieffel1994}.

\(^{144}\)Here \(C_{c}^{\infty}(M) \) stands for the space of smooth functions on \(M \) with compact support; this is a norm-dense subalgebra of \(A_{0} = C_{0}(M) \). The question whether the maps \(Q_{h} \) can be extended from \(C_{c}^{\infty}(M) \) to \(C_{0}(M) \) has to be answered on a case by case basis. Upon such an extension, if it exists, condition (25) will lose its meaning, since the Poisson bracket \(\{f,g\} \) is not defined for all \(f, g \in C_{0}(M) \).

\(^{145}\)I.e. \(Q_{h}(\overline{f}) = Q_{h}(f)^{\ast} \).

\(^{146}\)Equivalently, one could extend the family \((Q_{h})_{h \in (0,1]}\) to \(h = 0 \) by \(Q_{0} = \text{id} \), and state that \(h \mapsto Q_{h}(f) \) is a continuous section. Also, one could replace this family of maps by a single section \(Q : C_{c}^{\infty}(M) \to A \) of \(\varphi_{0} \) and define \(Q_{h} = \varphi_{h} \circ Q : C_{c}^{\infty}(M) \to A_{h} \).

\(^{147}\)That they are automatic should not distract from the fact that especially (27) is a beautiful connection between classical and quantum mechanics. See footnote 89 for the meaning of \(\|f\|_{\infty} \).

\(^{148}\)This insight is often attributed to Dirac \cite{Dirac1930}, who was the first to recognize the analogy between the commutator in quantum mechanics and the Poisson bracket in classical mechanics. In fact, the Poisson structure on \(M \) is uniquely determined by the continuous field structure together with condition (25). Thus the choice of the \(Q_{h} \) is secondary.
1989a; Natsume and Nest, 1999; Natsume et al., 2003; Hawkins, 2005]. Restricting ourselves to the former, we note, for example, that (19) with (20) defines a deformation quantization of the phase space \(\mathbb{R}^{2n} \) (with standard Poisson bracket) if one takes \(\mathcal{A}_R \) to be the \(C^* \)-algebra of compact operators on the Hilbert space \(L^2(\mathbb{R}^n) \). This is called the Berezin quantization of \(\mathbb{R}^{2n} \) (as a phase space);\(^{149}\) explicitly, for \(\Phi \in L^2(\mathbb{R}^n) \) one has

\[
(28) \quad Q^B_R(f) \Phi(x) = \int_{\mathbb{R}^{2n}} \frac{d^npd^nq}{(2\pi\hbar)^{n}} f(p,q) \overline{\Psi^h_{(p,q)}(y)} \Phi(y) \Psi^h_{(p,q)}(x).
\]

This quantization has the distinguishing feature of positivity,\(^{150}\) a property not shared by its more famous sister called Weyl quantization.\(^{151}\) The latter is a deformation quantization of \(\mathbb{R}^{2n} \) as well, having the same continuous field of \(C^* \)-algebras, but differing from Berezin quantization in its quantization map

\[
(29) \quad Q^W_R(f) \Phi(x) = \int_{\mathbb{R}^{2n}} \frac{d^npd^nq}{(2\pi\hbar)^{n}} e^{ip(x-q)/\hbar} f \left(p, \frac{1}{2} (x + q) \right) \Phi(q).
\]

Although it lacks good positivity and hence continuity properties,\(^{152}\) Weyl quantization enjoys better symmetry properties than Berezin quantization.\(^{153}\) Despite these differences, which illustrate the lack of uniqueness of concrete quantization procedures, Weyl and Berezin quantization both reproduce Schrödinger's position and momentum operators (2).\(^{154}\) Furthermore, if \(f \in L^1(\mathbb{R}^{2n}) \), then \(Q^B_R(f) \) and \(Q^W_R(f) \) are trace class, with

\[
(30) \quad \text{Tr} Q^B_R(f) = \text{Tr} Q^W_R(f) = \int_{\mathbb{R}^{2n}} \frac{d^npd^nq}{(2\pi\hbar)^{n}} f(p,q).
\]

Weyl and Berezin quantization are related by

\[
(31) \quad Q^B_R(f) = Q^W_R(e^{\frac{\hbar}{2} \Delta_{2n}} f),
\]

\(^{149}\) In the literature, Berezin quantization on \(\mathbb{R}^{2n} \) is often called anti-Wick quantization (or ordering), whereas on compact complex manifolds it is sometimes called Toeplitz or Berezin-Toeplitz quantization. Coherent states based on other phase spaces often define deformation quantizations as well; see [Landsman, 1998].

\(^{150}\) Cf. footnote 123. As a consequence, (28) is valid not only for \(f \in C^\infty_c(\mathbb{R}^{2n}) \), but even for all \(f \in L^\infty(\mathbb{R}^{2n}) \), and the extension of \(Q^B_R \) from \(C^\infty_c(\mathbb{R}^{2n}) \) to \(L^\infty(\mathbb{R}^{2n}) \) is continuous.

\(^{151}\) The original reference is Weyl [1931]. See, for example, [Dubin et al., 2000] and [Esposito et al., 2004] for a modern physics-oriented yet mathematically rigorous treatment. See also [Rieffel, 1994] and [Landsman, 1998] for a discussion from the perspective of deformation quantization, as well as [Binz et al., 2004] for infinite-dimensional examples.

\(^{152}\) Nonetheless, Weyl quantization may be extended from \(C^\infty_c(\mathbb{R}^{2n}) \) to much larger function spaces using techniques from the theory of distributions (leaving the Hilbert space setting typical of quantum mechanics). The classical treatment is in Hörmander [1979; 1985a].

\(^{153}\) Weyl quantization is covariant under the affine symplectic group \(\text{Sp}(n, \mathbb{R}) \times \mathbb{R}^{2n} \), whereas Berezin quantization is merely covariant under its subgroup \(O(2n) \times \mathbb{R}^{2n} \).

\(^{154}\) This requires a formal extension of the maps \(Q^W_R \) and \(Q^B_R \) to unbounded functions on \(M \) like \(p_j \) and \(q^j \).
where $\Delta_{2n} = \sum_{j=1}^{n} (\partial^2 / \partial p_j^2 + \partial^2 / \partial (q_j)^2)$, from which it may be shown that Weyl and Berezin quantization are \textit{asymptotically equal} in the sense that for any $f \in C_c^\infty(\mathbb{R}^{2n})$ one has

\begin{equation}
\lim_{h \to 0} \|Q^B_h(f) - Q^W_h(f)\| = 0.
\end{equation}

Mackey's approach to quantization also finds its natural home in the setting of deformation quantization. Let a Lie group G act on a manifold Q, interpreted as a \textit{configuration space}, as in Subsection 4.1. It turns out that the corresponding classical \textit{phase space} is the manifold $g^* \times Q$, equipped with the so-called \textit{semidirect product Poisson structure} [Marsden et al., 1984; Krishnaprasad and Marsden, 1987]. Relative to a basis (T_a) of the Lie algebra g of G with structure constants C_{ab}^c (i.e. $[T_a, T_b] = \sum_c C_{ab}^c T_c$), the Poisson bracket in question is given by

\begin{equation}
\{f, g\} = \sum_a \left(\xi^M_a f \frac{\partial g}{\partial \theta_a} - \frac{\partial f}{\partial \theta_a} \xi^M_a g \right) - \sum_{a,b,c} C_{ab}^c \theta_c \frac{\partial f}{\partial \theta_a} \frac{\partial g}{\partial \theta_b},
\end{equation}

where $\xi^M_a = \xi^M_{T_a}$. To illustrate the meaning of this lengthy expression, we consider a few special cases. First, take $f = X \in g$ and $g = Y \in g$ (seen as linear functions on the dual g^*). This yields

\begin{equation}
\{X, Y\} = -[X, Y].
\end{equation}

Subsequently, assume that g depends on position q alone. This leads to

\begin{equation}
\{X, g\} = -\xi^M_X g.
\end{equation}

Finally, assume that $f = f_1$ and $g = f_2$ depend on q only; this clearly gives

\begin{equation}
\{f_1, f_2\} = 0.
\end{equation}

The two simplest physically relevant examples, already considered at the quantum level in Subsection 4.1, are as follows. First, take $G = \mathbb{R}^n$ (as a Lie group) and $Q = \mathbb{R}^n$ (as a manifold), with G acting on Q by translation. Eqs. (34) - (36) then yield the Poisson brackets $\{p_j, p_k\} = 0$, $\{p_j, q^k\} = \delta_j^k$, and $\{q^j, q^k\} = 0$, showing that in this case $M = g^* \times Q = \mathbb{R}^{2n}$ is the standard phase space of a particle moving in \mathbb{R}^n; cf. (24). Second, the case $G = E(3)$ and $Q = \mathbb{R}^3$ yields a phase space $M = \mathbb{R}^3 \times \mathbb{R}^6$, where \mathbb{R}^6 is the phase space of a spinless particle just considered, and \mathbb{R}^3 is an additional internal space containing spin as a classical degree of freedom. Indeed, beyond the Poisson brackets on \mathbb{R}^6 just described, (34) - (36) give rise to the additional Poisson brackets $\{J_i, J_j\} = \epsilon_{ijk} J_k$, $\{J_i, p_j\} = \epsilon_{ijk} p_k$, and $\{J_i, q^j\} = \epsilon_{ijk} q^k.^{155}$

The analogy between (34), (35), (36) on the one hand, and (6), (8), (9), respectively, on the other, is no accident: the Poisson brackets in question \textit{are} the

\footnote{155 These are the classical counterparts of the commutation relations for angular momentum written down in footnote 108.}
classical counterpart of the commutation relations just referred to. This observation is made precise by the fundamental theorem relating Mackey's systems of imprimitivity to deformation quantization [Landsman, 1993; 1998]: one can equip the family of C^*-algebras

\begin{align}
\mathcal{A}_0 &= C_0(g^* \times Q); \\
\mathcal{A}_h &= C^*(G, Q),
\end{align}

where $C^*(G, Q)$ is the transformation group C^*-algebra defined by the given G-action on Q (cf. the end of Subsection 4.1), with the structure of a continuous field, and one can define quantization maps $\mathcal{Q}_h : C^\infty_c(g^* \times Q) \to C^*(G, Q)$ so as to obtain a deformation quantization of the phase space $g^* \times Q$. It turns out that for special functions of the type $X, Y \in g$, and $f = f(g)$ just considered, the equality

\begin{equation}
\frac{i}{\hbar} [\mathcal{Q}_h(f), \mathcal{Q}_h(g)] - \mathcal{Q}_h(\{f, g\}) = 0
\end{equation}

holds exactly (and not merely asymptotically for $\hbar \to 0$, as required in the fundamental axiom (25) for deformation quantization).

This result clarifies the status of Mackey’s quantization by systems of imprimitivity. The classical theory underlying the relations (4) is not the usual phase space T^*Q of a structureless particle moving on Q, but $M = g^* \times Q$. For simplicity we restrict ourselves to the transitive case $Q = G/H$ (with canonical left G-action). Then M coincides with T^*Q only when $H = \{e\}$ and hence $Q = G$;\(^{156}\) in general, the phase space $g^* \times (G/H)$ is locally of the form $T^*(G/H) \times h^*$ (where h^* is the dual of the Lie algebra of H). The internal degree of freedom described by h^* is a generalization of classical spin, which, as we have seen, emerges in the case $G = E(3)$ and $H = SO(3)$. All this is merely a special case of a vast class of deformation quantizations described by Lie groupoids; see [Landsman, 1998; 1999b; 2006a] and [Landsman and Ramazan, 2001].\(^{157}\)

4.4 Geometric quantization

Because of its use of abstract C^*-algebras, deformation quantization is a fairly sophisticated and recent technique. Historically, it was preceded by a more concrete and traditional approach called geometric quantization.\(^{158}\) Here the goal is to

\(^{156}\)For a Lie group G one has $T^*G \cong g^* \times G$.

\(^{157}\)A similar analysis can be applied to Isham’s [1984] quantization scheme mentioned in footnote 117. The unitary irreducible representations of the canonical group G_c stand in bijective correspondence with the nondegenerate representations of the group C^*-algebra $C^*(G_c)$ [Pedersen, 1979], which is a deformation quantization of the Poisson manifold g_c^* (i.e. the dual of the Lie algebra of G_c). This Poisson manifold contains the coadjoint orbits of G_c as “irreducible” classical phase spaces, of which only one is the cotangent bundle $T^*(G/H)$ one initially thought one was quantizing (see [Landsman, 1998] for the classification of the coadjoint orbits of semidirect products). All other orbits are mere lumber that one should avoid. See also [Robson, 1996]. If one is ready for groupoids, there is no need for the canonical group approach.

\(^{158}\)Geometric quantization was independently introduced by Kostant [1970] and Souriau [1969]. Major later treatments on the basis of the original formalism are [Guillemin and Sternberg, 1977;
firstly "quantize" a phase space M by a concretely given Hilbert space $\mathcal{H}(M)$, and secondly to map the classical observables (i.e. the real-valued smooth functions on M) into self-adjoint operators on \mathcal{H} (which after all play the role of observables in von Neumann's formalism of quantum mechanics).\footnote{In geometric quantization phase spaces are always seen as symplectic manifolds (with the sole exception of \cite{Vaisman,1991}; the reason why it is unnatural to start with the more general class of Poisson manifolds will become clear in the next subsection.)} In principle, this program should align geometric quantization much better with the fundamental role unbounded self-adjoint operators play in quantum mechanics than deformation quantization, but in practice geometric quantization continues to be plagued by problems.\footnote{Apart from rather technical issues concerning the domains and self-adjointness properties of the operators defined by geometric quantization, the main point is that the various mathematical choices one has to make in the geometric quantization procedure cannot all be justified by physical arguments, although the physical properties of the theory depend on these choices. (The notion of a polarization is the principal case in point; see also footnote 173 below.) Furthermore, as we shall see, one cannot quantize sufficiently many functions in standard geometric quantization. Our functorial approach to geometric quantization in Subsection 4.5 was partly invented to alleviate these problems.} However, it would be wrong to see deformation quantization and geometric quantization as competitors; as we shall see in the next subsection, they are natural allies, forming "complementary" parts of a conjectural quantization functor.

In fact, in our opinion geometric quantization is best compared and contrasted with phase space quantization in its concrete formulation of Subsection 4.2 (i.e. before its C^\ast-algebraic abstraction and subsequent absorption into deformation quantization as indicated in Subsection 4.3).\footnote{See also \cite{Tuynman,1987}.} For geometric quantization equally well starts with the Hilbert space $L^2(M)$,\footnote{Defined with respect to the Liouville measure times a suitable factor c_h, as in (17) etc.; in geometric quantization this factor is not very important, as it is unusual to study the limit $h \to 0$. For $M = \mathbb{R}^{2n}$ the measure on M with respect to which $L^2(M)$ is defined is $d^n\rho d^nq/(2\pi h)^n$.} and subsequently attempts to construct $\mathcal{H}(M)$ from it, though typically in a different way from (14).

Before doing so, however, the geometric quantization procedure first tries to define a linear map Q^pre_h from $C^\infty(M)$ to the class of (generally unbounded) operators on $L^2(M)$ that formally satisfies

$$\frac{i}{\hbar} [Q^\text{pre}_h(f), Q^\text{pre}_h(g)] - Q^\text{pre}_h(\{f, g\}) = 0, \quad (39)$$

i.e. (38) with $Q = Q^\text{pre}_h$, as well as the nondegeneracy property

$$Q^\text{pre}_h(\chi_M) = 1, \quad (40)$$

where χ_M is the function on M that is identically equal to 1, and the 1 on the right-hand side is the unit operator on $L^2(M)$. Such a map is called a prequantization functor.
of M.\footnote{The idea of prequantization predates geometric quantization; see [van Hove, 1951] and [Segal, 1960].} For $M = \mathbb{R}^{2n}$ (equipped with its standard Poisson bracket (24)), a prequantization map is given (on $\Phi \in L^2(M)$) by

\begin{equation}
Q^\text{pre}_h(f)\Phi = -i\hbar\{f, \Phi\} + \left(f - \sum_j p_j \frac{\partial f}{\partial p_j}\right)\Phi.
\end{equation}

This expression is initially defined for $\Phi \in C^\infty_c(M) \subset L^2(M)$, on which domain $Q^\text{pre}_h(f)$ is symmetric when f is real-valued;\footnote{An operator A defined on a dense subspace $\mathcal{D} \subset \mathcal{H}$ of a Hilbert space \mathcal{H} is called symmetric when $(A^*\Psi, \Phi) = (\Psi, A\Phi)$ for all $\Psi, \Phi \in \mathcal{D}$.} note that the operator in question is unbounded even when f is bounded.\footnote{As mentioned, self-adjointness is a problem in geometric quantization; we will not address this issue here. Berezin quantization is much better behaved than geometric quantization in this respect, since it maps bounded functions into bounded operators.} This looks complicated; the simpler expression $Q_h(f)\Phi = -i\hbar\{f, \Phi\}$, however, would satisfy (38) but not (40), and the goal of the second term in (41) is to satisfy the latter condition while preserving the former.\footnote{One may criticize the geometric quantization procedure for emphasizing (39) against its equally natural counterpart $Q(fg) = Q(f)Q(g)$, which fails to be satisfied by $Q^\text{pre}_h(f)$ (and indeed by any known quantization procedure, except the silly $Q(f) = f$ (as a multiplication operator on $L^2(M)$).} For example, one has

\begin{align}
Q^\text{pre}_h(q^k) &= q^k + i\hbar \frac{\partial}{\partial p_k}; \\
Q^\text{pre}_h(p_j) &= -i\hbar \frac{\partial}{\partial q^j}.
\end{align}

For general phase spaces M one may construct a map Q^pre_h that satisfies (39) and (40) when M is "prequantizable"; a full explanation of this notion requires some differential geometry.\footnote{A symplectic manifold (M, ω) is called prequantizable at some fixed value of \hbar when it admits a complex line bundle $L \to M$ (called the prequantization line bundle) with connection ∇ such that $F = -i\omega/\hbar$ (where F is the curvature of the connection, defined by $F(X, Y) = [\nabla_X, \nabla_Y]$) is the de Rham cohomology class of the symplectic form. If so, prequantization is defined by the formula $Q^\text{pre}_h(f) = -i\hbar \nabla \xi_f + f$, where ξ_f is the Hamiltonian vector field of f (see Subsection 4.3). This expression is defined and symmetric on the space $C^\infty_c(M, L) \subset L^2(M)$ of compactly supported smooth sections of L, and is easily checked to satisfy (39) and (40). To obtain (41) as a special case, note that for $M = \mathbb{R}^{2n}$ with the canonical symplectic form $\omega = \sum_k dp_k \wedge dq^k$ one has $[\omega] = 0$, so that L is the trivial bundle $L = \mathbb{R}^{2n} \times \mathbb{C}$. The connection $\nabla = d + A$ with $A = -\frac{i}{\hbar} \sum_k p_k dq^k$ satisfies $F = -i\omega/\hbar$, and this eventually yields (41).} Assuming this to be the case, then for one thing prequantization is a very effective tool in constructing unitary group representations of the kind that are interesting for physics. Namely, suppose a Lie group G acts on the phase space M in "canonical" fashion. This means that there exists a map $\mu : M \to g^*$, called the momentum map, such that $\xi_{\mu_X} = \xi^M_X$ for each
\(X \in \mathfrak{g},^{168}\) and in addition \(\{\mu_X, \mu_Y\} = \mu_{[X,Y]}\). See [Abraham and Marsden, 1985; Marsden and Ratiu, 1994; Landsman, 1998; Belot, 2005; Butterfield, 2005], etc. On then obtains a representation \(\pi\) of the Lie algebra \(\mathfrak{g}\) of \(G\) by skew-symmetric unbounded operators on \(L^2(M)\) through

\[
(43) \quad \pi(X) = -i\hbar Q^\text{pre}_\hbar(\mu_X),
\]

which often exponentiates to a unitary representation of \(G.\)

As the name suggests, prequantization is not yet quantization. For example, the prequantization of \(M = \mathbb{R}^{2n}\) does not reproduce Schrödinger's wave mechanics: the operators \((42)\) are not unitarily equivalent to \((2)\). In fact, as a carrier of the representation \((42)\) of the canonical commutation relations \((1)\), the Hilbert space \(L^2(\mathbb{R}^{2n})\) contains \(L^2(\mathbb{R}^n)\) (carrying the representation \((2)\)) with infinite multiplicity [Ali and Emch, 1986]. This situation is often expressed by the statement that "prequantization is reducible" or that the prequantization Hilbert space \(L^2(M)\) is "too large", but both claims are misleading: \(L^2(M)\) is actually irreducible under the action of \(Q^\text{pre}_\hbar(\mathcal{C}^\infty(M))\) [Tuynman, 1998], and saying that for example \(L^2(\mathbb{R}^n)\) is "larger" than \(L^2(\mathbb{R}^n)\) is unmathematical in view of the unitary isomorphism of these Hilbert spaces. What is really meant here is that in typical examples \(L^2(M)\) is generically reducible under the action of some Lie algebra where one would like it to be irreducible. This applies, for example, to \((2)\), which defines a representation of the Lie algebra of the Heisenberg group. More generally, in the case where a phase space \(M\) carries a transitive action of a Lie group \(G\), so that one would expect the quantization of this \(G\)-action by unitary operators on a Hilbert space to be irreducible, \(L^2(M)\) is typically highly reducible under the representation \((43)\) of \(\mathfrak{g}.^{170}\)

Phase space quantization encounters this problem as well. Instead of the complicated expression \((41)\), through \((11)\) it simply "phase space prequantizes" \(f \in \mathcal{C}^\infty(M)\) on \(L^2(M)\) by \(f\) as a multiplication operator.\(^{171}\) Under this action of \(\mathcal{C}^\infty(M)\) the Hilbert space \(L^2(M)\) is of course highly reducible.\(^{172}\) The identifica-

\(^{168}\)Here \(\mu_X \in \mathcal{C}^\infty(M)\) is defined by \(\mu_X(x) = \langle \mu(x), X \rangle\), and \(\xi^M_X\) is the vector field on \(M\) defined by the \(G\)-action (cf. footnote 107). Hence this condition means that \(\{\mu_X, f\}(y) = d/dt|_{t=0}[f(\exp(-tX)y)]\) for all \(f \in \mathcal{C}^\infty(M)\) and all \(y \in M.\)

\(^{169}\)An operator \(A\) defined on a dense subspace \(D \subset \mathcal{H}\) of a Hilbert space \(\mathcal{H}\) is called skew-symmetric when \((A\Psi, \Phi) = -(\Psi, A\Phi)\) for all \(\Psi, \Phi \in D.\) If one has a unitary representation \(U\) of a Lie group \(G\) on \(\mathcal{H}\), then the derived representation \(dU\) of the Lie algebra \(\mathfrak{g}\) (see footnote 104) consists of skew-symmetric operators, making one hopeful that a given representation of \(\mathfrak{g}\) by skew-symmetric operators can be integrated (or exponentiated) to a unitary representation of \(G.\) See [Barut and Račka, 1977] or [Jørgensen and Moore, 1984] and references therein.

\(^{170}\)This can be made precise in the context of the so-called orbit method, cf. the books cited in footnote 158.

\(^{171}\)For unbounded \(f\) this operator is defined on the set of all \(\Phi \in L^2(M)\) for which \(f\Phi \in L^2(M).\)

\(^{172}\)Namely, each (measurable) subset \(E \subset M\) defines a projection \(\chi_E\), and \(\chi_EL^2(M)\) is stable under all multiplication operators \(f\). One could actually decide not to be bothered by this problem and stop here, but then one is simply doing classical mechanics in a Hilbert space setting [Koopman, 1931]. This formalism even turns out to be quite useful for ergodic theory [Reed and Simon, 1972].
tion of an appropriate subspace

\[\mathcal{H}(M) = pL^2(M) \]

of \(L^2(M) \) (where \(p \) is a projection) as the Hilbert space carrying the "quantization" of \(M \) (or rather of \(C^\infty(M) \)) may be seen as a solution to this reducibility problem, for if the procedure is successful, the projection \(p \) is chosen such that \(pL^2(M) \) is irreducible under \(pC^\infty(M)p \). Moreover, in this way practically any function on \(M \) can be quantized, albeit at the expense of (38) (which, as we have seen, gets replaced by its asymptotic version (25)). See Subsection 6.3 for a discussion of reducibility versus irreducibility of representations of algebras of observables in classical and quantum theory.

We restrict our treatment of geometric quantization to situations where it adopts the same strategy as above, in assuming that the final Hilbert space has the form (44) as well.\(^{173}\) But it crucially differs from phase space quantization in that its first step is (41) (or its generalization to more general phase spaces) rather than just having \(f\Phi \) on the right-hand side.\(^{174}\) Moreover, in geometric quantization one merely quantizes a subspace of the set \(C^\infty(M) \) of classical observables, consisting of those functions that satisfy

\[[Q^\text{pre}_h(f), p] = 0. \]

If a function \(f \in C^\infty(M) \) satisfies this condition, then one defines the "geometric quantization" of \(f \) as

\[Q^G_h(f) = Q^\text{pre}_h(f) \upharpoonright \mathcal{H}(M). \]

This is well defined, since because of (45) the operator \(Q^\text{pre}_h(f) \) now maps \(pL^2(M) \) onto itself. Hence (38) holds for \(Q_h = Q^G_h \) because of (39); in geometric quantization one simply refuses to quantize functions for which (38) is not valid.

Despite some impressive initial triumphs,\(^{175}\) there is no general method that accomplishes the goals of geometric quantization with guaranteed success. Therefore, geometric quantization has remained something like a hacker's tool, whose applicability largely depends on the creativity of the user.

In any case, our familiar example \(M = \mathbb{R}^{2\pi} \) is well understood, and we illustrate the general spirit of the method in its setting, simplifying further by taking \(n = 1 \). It is convenient to replace the canonical coordinates \((p, q) \) on \(M \) by \(z = p + iq \) and \(\bar{z} = p - iq \), and the mathematical toolkit of geometric quantization makes it very

\(^{173}\) Geometric quantization has traditionally been based on the notion of a polarization (cf. the references in footnote 158). This device produces a final Hilbert space \(\mathcal{H}(M) \) which may not be a subspace of \(L^2(M) \), except in the so-called (anti-) holomorphic case.

\(^{174}\) It also differs from phase space quantization in the ideology that the projection \(p \) ought to be constructed solely from the geometry of \(M \): hence the name 'geometric quantization'.

\(^{175}\) Such as the orbit method for nilpotent groups and the newly understood Borel–Weil method for compact groups, cf. [Kirillov, 2004] and most other books cited in footnote 158.
natural to look at the space of solutions within $L^2(\mathbb{R}^2)$ of the equations176

\begin{equation}
(47) \quad \left(\frac{\partial}{\partial \bar{z}} + \frac{z}{4\hbar} \right) \Phi(z, \bar{z}) = 0.
\end{equation}

The general solution of these equations that lies in $L^2(\mathbb{R}^2) = L^2(\mathbb{C})$ is

\begin{equation}
(48) \quad \Phi(z, \bar{z}) = e^{-|z|^2/4\hbar} f(z),
\end{equation}

where f is a holomorphic function such that

\begin{equation}
(49) \quad \int_{\mathbb{C}} \frac{dzd\bar{z}}{2\pi\hbar} e^{-|z|^2/2\hbar} |f(z)|^2 < \infty.
\end{equation}

The projection p, then, is the projection onto the closed subspace of $L^2(\mathbb{C})$ consisting of these solutions.177 The Hilbert space $pL^2(\mathbb{C})$ is unitarily equivalent to $L^2(\mathbb{R})$ in a natural way (i.e. without the choice of a basis). The condition (45) boils down to $\partial^2 f(z, \bar{z})/\partial z_i \partial \bar{z}_j = 0$; in particular, the coordinate functions q and p are quantizable. Transforming to $L^2(\mathbb{R})$, one finds that the operators $Q^G_p(q)$ and $Q^G_{\hbar}(p)$ coincide with Schrödinger's expressions (2). In particular, the Heisenberg group H_1, which acts with infinite multiplicity on $L^2(\mathbb{C})$, acts irreducibly on $pL^2(\mathbb{C})$.

4.5 Epilogue: functoriality of quantization

A very important aspect of quantization is its interplay with symmetries and constraints. Indeed, the fundamental theories describing Nature (viz. electrodynamics, Yang–Mills theory, general relativity, and possibly also string theory) are a priori formulated as constrained systems. The classical side of constraints and reduction is well understood,178 a large class of important examples being codified by the procedure of symplectic reduction. A special case of this is Marsden–Weinstein reduction: if a Lie group G acts on a phase space M in canonical fashion with momentum map $\mu : M \to \mathfrak{g}^*$ (cf. Subsection 4.4), one may form another phase space $M//G = \mu^{-1}(0)/G$.179 Physically, in the case where G is a gauge group and M is the unconstrained phase space, $\mu^{-1}(0)$ is the constraint hypersurface (i.e. the

176Using the formalism explained in footnote 167, we replace the 1-form $A = -\frac{i}{\hbar} \sum_k p_k dq^k$ defining the connection $\nabla = d + A$ by the gauge-equivalent form $A = \frac{i}{2\hbar} (\sum_k q^k dp_k - \sum_k p_k dq^k) = -\frac{i}{\hbar} \sum_k p_k dq^k + \frac{i}{2\hbar} d(\sum_k p_k q^k)$, which has the same curvature. In terms of this new A, which in complex coordinates reads $A = \sum_k (z_k dz_k - \bar{z}_k d\bar{z}_k)/4\hbar$, eq. (47) is just $\nabla_{\partial z} \Phi = 0$. This is an example of the so-called holomorphic polarization in the formalism of geometric quantization.

177The collection of all holomorphic functions on \mathbb{C} satisfying (49) is a Hilbert space with respect to the inner product $(f, g) = (2\pi\hbar)^{-1} \int_{\mathbb{C}} dzd\bar{z} \exp(-|z|^2/2\hbar) f(z)g(z)$, called the Bargmann–Fock space \mathcal{H}_{BF}. This space may be embedded in $L^2(\mathbb{C})$ by $f(z) \mapsto \exp(-|z|^2/2\hbar) f(z)$, and the image of this embedding is of course just $pL^2(\mathbb{C})$.

178See [Gotay et al., 1978; Bizou et al., 1988; Marsden, 1992; Marsden and Ratiu, 1994; Landsman, 1998; Butterfield, 2005], and [Belot, 2005].

179Technically, M has to be a symplectic manifold, and if G acts properly and freely on $\mu^{-1}(0)$, then $M//G$ is again a symplectic manifold.
subspace of M on which the constraints defined by the gauge symmetry hold), and $M//G$ is the true phase space of the system that only contains physical degrees of freedom.

Unfortunately, the correct way of dealing with constrained quantum systems remains a source of speculation and controversy: 180 practically all rigorous results on quantization (like the ones discussed in the preceding subsections) concern unconstrained systems. Accordingly, one would like to quantize a constrained system by reducing the problem to the unconstrained case. This could be done provided the following scenario applies. One first quantizes the unconstrained phase space M (supposedly the easiest part of the problem), and subsequently imposes a quantum version of symplectic reduction. Finally, one proves by abstract means that the quantum theory thus constructed is equal to the theory defined by first reducing at the classical level and then quantizing the constrained classical phase space (usually an impossible task to perform in practice).

Tragically, sufficiently powerful theorems stating that "quantization commutes with reduction" in this sense remain elusive. 181 So far, this has blocked, for example, a rigorous quantization of Yang–Mills theory in dimension 4; this is one of the Millenium Problems of the Clay Mathematical Institute, rewarded with 1 Million dollars. 182

On a more spiritual note, the mathematician E. Nelson famously said that 'First quantization is a mystery, but second quantization is a functor.' The functoriality of 'second' quantization (a construction involving Fock spaces, see [Reed and Simon, 1975] being an almost trivial matter, the deep mathematical and conceptual problem lies in the possible functoriality of 'first' quantization, which simply means quantization in the sense we have been discussing so far. This was initially taken to mean that canonical transformations α of the phase space M should be 'quantized' by unitary operators $U(\alpha)$ on $\mathcal{H}(M)$, in such a way $U(\alpha)\mathcal{Q}_f(f)U(\alpha)^{-1} = \mathcal{Q}(\alpha,f)$ (cf. (10)). This is possible only in special circumstances, e.g., when $M = \mathbb{R}^{2n}$ and α is a linear symplectic map, and more generally when $M = G/H$ is homogeneous and $\alpha \in G$ (see the end of Subsection 4.2). 183 Consequently, the functoriality of quantization is widely taken to be a dead end. 184

However, all no-go theorems establishing this conclusion start from wrong and

181The so-called Guillemin–Sternberg conjecture [Guillemin and Sternberg, 1982] — now a theorem [Meinrenken, 1998; Meinrenken and Sjamaar, 1999] — merely deals with the case of Marsden–Weinstein reduction where G and M are compact. Mathematically impressive as the "quantization commutes with reduction" theorem already is here, it is a far call from gauge theories, where the groups and spaces are not only noncompact but even infinite-dimensional.

182See http://www.claymath.org/millenium/

183Canonical transformations can be quantized in approximate sense that becomes precise as $\hbar \to 0$ by means of so-called Fourier integral operators; see [Hörmander, 1971; 1985b] and [Duistermaat, 1996].

184See [Groenewold, 1946; van Hove, 1951; Gotay et al., 1996], and [Gotay, 1999].
naive categories, both on the classical and on the quantum side.\footnote{Typically, one takes the classical category to consist of symplectic manifolds as objects and symplectomorphisms as arrows, and the quantum category to have C^\ast-algebras as objects and automorphisms as arrows.} It appears very likely that one may indeed make quantization functorial by a more sophisticated choice of categories, with the additional bonus that deformation quantization and geometric quantization become unified: the former is the object part of the quantization functor, whereas the latter (suitably reinterpreted) is the arrow part. Amazingly, on this formulation the statement that 'quantization commutes with reduction' becomes a special case of the functoriality of quantization [Landsman, 2002; 2005].

To explain the main idea, we return to the geometric quantization of $M = \mathbb{R}^2 \cong \mathbb{C}$ explained in the preceding subsection. The identification of $pL^2(\mathbb{C})$ as the correct Hilbert space of the problem may be understood in a completely different way, which paves the way for the powerful reformulation of the geometric quantization program that will eventually define the quantization functor. Namely, \mathbb{C} supports a certain linear first-order differential operator \mathcal{D} that is entirely defined by its geometry as a phase space, called the \textit{Dirac operator}.$\footnote{Or the Bargmann–Fock space \mathcal{H}_{BF}, see footnote 177.}$ This operator is given by

\begin{equation}
\mathcal{D} = 2 \begin{pmatrix} 0 & -\frac{\partial}{\partial \mathbf{z}} + \frac{\mathbf{z}}{4\hbar} \\ \frac{\partial}{\partial \mathbf{z}} + \frac{\mathbf{z}}{4\hbar} & 0 \end{pmatrix},
\end{equation}

acting on $L^2(\mathbb{C}) \otimes \mathbb{C}^2$ (as a suitably defined unbounded operator). This operator has the generic form

\begin{equation}
\mathcal{D} = \begin{pmatrix} 0 & \mathcal{D}_- \\ \mathcal{D}_+ & 0 \end{pmatrix}.
\end{equation}

The \textit{index} of such an operator is given by

\begin{equation}
\text{index} (\mathcal{D}) = [\ker (\mathcal{D}_+)] - [\ker (\mathcal{D}_-)],
\end{equation}

where $[\ker (\mathcal{D}_\pm)]$ stand for the (unitary) isomorphism class of $\ker (\mathcal{D}_\pm)$ seen as a representation space of a suitable algebra of operators.$\footnote{Specifically, this is the so-called Spinc Dirac operator defined by the complex structure of \mathbb{C}, \textit{coupled to the prequantization line bundle}. See [Guillemin et al., 2002].}$ In the case at hand,
one has \(\ker(\mathcal{P}_+) = pL^2(\mathbb{C}) \) (cf. (47) etc.) and \(\ker(\mathcal{P}_-) = 0 \).\(^{190}\) where we regard \(\ker(\mathcal{P}_+) \) as a representation space of the Heisenberg group \(H_1 \). Consequently, the geometric quantization of the phase space \(\mathbb{C} \) is given modulo unitary equivalence by \(\text{index}(\mathcal{P}) \), seen as a "formal difference" of representation spaces of \(H_1 \).

This procedure may be generalized to arbitrary phase spaces \(M \), where \(\mathcal{P} \) is a certain operator naturally defined by the phase space geometry of \(M \) and the demands of quantization.\(^{191}\) This has turned out to be the most promising formulation of geometric quantization — at some cost.\(^{192}\) For the original goal of quantizing a phase space by a Hilbert space has now been replaced by a much more abstract procedure, in which the result of quantization is a formal difference of certain isomorphism classes of representation spaces of the quantum algebra of observables. To illustrate the degree of abstraction involved here, suppose we ignore the action of the observables (such as position and momentum in the example just considered). In that case the isomorphism class \([\mathcal{H}] \) of a Hilbert space \(\mathcal{H} \) is entirely characterized by its dimension \(\dim(\mathcal{H}) \), so that (in case that \(\ker(\mathcal{P}_-) \neq 0 \)) quantization (in the guise of \(\text{index}(\mathcal{P}) \)) can even be a negative number! Have we gone mad?

Not quite. The above picture of geometric quantization is indeed quite irrelevant to physics, unless it is supplemented by deformation quantization. It is convenient to work at some fixed value of \(\hbar \) in this context, so that deformation quantization merely associates some \(C^* \)-algebra \(\mathcal{A}(P) \) to a given phase space \(P \).\(^{193}\) Looking for a categorical interpretation of quantization, it is therefore natural to assume that the objects of the classical category \(\mathcal{C} \) are phase spaces \(P \),\(^{194}\) whereas the

\(^{190}\) Since \(-\frac{\partial}{\partial x} + \frac{x}{\hbar} \Phi = 0 \) implies \(\Phi(z, \bar{z}) = \exp(\frac{i z^2}{2\hbar}) f(\bar{z}) \), which lies in \(L^2(\mathbb{C}) \) iff \(f = 0 \).

\(^{191}\) Any symplectic manifold carries an almost complex structure compatible with the symplectic form, leading to a Spin\(^ \ast \) Dirac operator as described in footnote 187. See, again, [Guillemin et al., 2002]. If \(M = G/H \), or, more generally, if \(M \) carries a canonical action of a Lie group \(G \) with compact quotient \(M/G \), then \(\text{index}(\mathcal{P}) \) defines an element of \(K_0(C^*(G)) \). See footnote 189. In complete generality, \(\text{index}(\mathcal{P}) \) ought to be an element of \(K_0(\mathcal{A}) \), where \(\mathcal{A} \) is the \(C^* \)-algebra of observables of the quantum system.

\(^{192}\) On the benefit side, the invariance of the index under continuous deformations of \(\mathcal{P} \) seems to obviate the ambiguity of traditional quantization procedures with respect to different 'operator orderings' not prescribed by the classical theory.

\(^{193}\) Here \(P \) is not necessarily symplectic; it may be a Poisson manifold, and to keep Poisson and symplectic manifolds apart we denote the former by \(P \) from now on, preserving the notation \(M \) for the latter.

\(^{194}\) Strictly speaking, to be an object in this category a Poisson manifold \(P \) must be integrable;
objects of the quantum category Ω are C^*-algebras.\footnote{For technical reasons involving K-theory these have to be separable.} The object part of the hypothetical quantization functor is to be deformation quantization, symbolically written as $P \mapsto \mathcal{Q}(P)$.

Everything then fits together if geometric quantization is reinterpreted as the arrow part of the conjectural quantization functor. To accomplish this, the arrows in the classical category \mathcal{C} should not be taken to be maps between phase spaces, but symplectic bimodules $P_1 \leftarrow M \rightarrow P_2$.\footnote{Here M is a symplectic manifold and P_1 and P_2 are integrable Poisson manifolds; the map $M \rightarrow P_2$ is anti-Poisson, whereas the map $P_1 \leftarrow M$ is Poisson. Such bimodules (often called dual pairs) were introduced by Karasev [1989] and Weinstein [1983]. In order to occur as arrows in \mathcal{C}, symplectic bimodules have to satisfy a number of regularity conditions [Landsman, 2001].} More precisely, the arrows in \mathcal{C} are suitable isomorphism classes of such bimodules.\footnote{This is necessary in order to make arrow composition associative; this is given by a generalization of the symplectic reduction procedure.} Similarly, the arrows in the quantum category Ω are not morphisms of C^*-algebras, as might naively be expected, but certain isomorphism classes of bimodules for C^*-algebras, equipped with the additional structure of a generalized Dirac operator.\footnote{The category Ω is nothing but the category KK introduced by Kasparov, whose objects are separable C^*-algebras, and whose arrows are the so-called Kasparov group $KK(A,B)$, composed with Kasparov's product $KK(A,B) \times KK(B,C) \rightarrow KK(A,C)$. See [Higson, 1990] and [Blackadar, 1998].}

Having already defined the object part of the quantization map $\mathcal{Q} : \mathcal{C} \rightarrow \Omega$ as deformation quantization, we now propose that the arrow part is geometric quantization, in the sense of a suitable generalization of (51); see [Landsman, 2005] for details. We then conjecture that \mathcal{Q} is a functor; in the cases where this can and has been checked, the functoriality of \mathcal{Q} is precisely the statement that quantization commutes with reduction.\footnote{A canonical G-action on a symplectic manifold M with momentum map $\mu : M \rightarrow g^*$ gives rise to a dual pair $pt \leftarrow M \rightarrow g^*$, which in \mathcal{C} is interpreted as an arrow from the space pt with one point to g^*. The composition of this arrow with the arrow $g^* \leftarrow 0 \rightarrow pt$ from g^* to pt is $pt \leftarrow M//G \rightarrow pt$. If G is connected, functoriality of quantization on these two pairs is equivalent to the Guillemin–Sternberg conjecture (cf. footnote 181); see [Landsman, 2005].}

Thus Heisenberg's idea of Umdeutung finds it ultimate realization in the quantization functor.

5 THE LIMIT $\hbar \rightarrow 0$

It was recognized at an early stage that the limit $\hbar \rightarrow 0$ of Planck's constant going to zero should play a role in the explanation of the classical world from quantum theory. Strictly speaking, \hbar is a dimensionful constant, but in practice one studies the semiclassical regime of a given quantum theory by forming a dimensionless combination of \hbar and other parameters; this combination then re-enters the theory as if it were a dimensionless version of \hbar that can indeed be varied. The oldest example is Planck's radiation formula (1), with temperature T as the pertinent
variable. Indeed, the observation of Einstein [1905] and Planck [1906] that in
the limit $\hbar \nu / kT \to 0$ this formula converges to the classical equipartition law
$E_\nu / N_\nu = kT$ may well be the first use of the $\hbar \to 0$ limit of quantum theory.\footnote{Here Einstein [1905] put $h\nu/kT \to 0$ by letting $\nu \to 0$ at fixed T and \hbar, whereas Planck [1906] took $T \to \infty$ at fixed ν and \hbar.}

Another example is the Schrödinger equation (3) with Hamiltonian $H = -\hbar^2/2m \Delta_x + V(x)$, where m is the mass of the pertinent particle. Here one may pass to di-

dimensional parameters by introducing an energy scale ϵ typical of H, like $\epsilon = \sup_x |V(x)|$, as well as a typical length scale λ, such as $\lambda = \epsilon / \sup_x |\nabla V(x)|$ (if these quantities are finite). In terms of the dimensionless variable $\tilde{x} = x/\lambda$, the rescaled Hamiltonian $\tilde{H} = H/\epsilon$ is then dimensionless and equal to $\tilde{H} = -\hbar^2 \Delta_{\tilde{x}} + \tilde{V}(\tilde{x})$, where $\hbar = h/\lambda \sqrt{2m\epsilon}$ and $\tilde{V}(\tilde{x}) = V(\lambda \tilde{x})/\epsilon$. Here \hbar is dimensionless, and one might study the regime where it is small [Gustafson and Sigal, 2003]. Our last example
will occur in the theory of large quantum systems, treated in the next Section. In
what follows, whenever it is considered variable \hbar will denote such a dimensionless
version of Planck’s constant.

Although, as we will argue, the limit $\hbar \to 0$ cannot by itself explain the classical
world, it does give rise to a number of truly pleasing mathematical results. These,
in turn, render almost inescapable the conclusion that the limit in question is
indeed a relevant one for the recovery of classical physics from quantum theory.
Thus the present section is meant to be a catalogue of those pleasanties that
might be of direct interest to researchers in the foundations of quantum theory.

There is another, more technical use of the $\hbar \to 0$ limit, which is to perform
computations in quantum mechanics by approximating the time-evolution of states
and observables in terms of associated classical objects. This endeavour is known
as \textit{semiclassical analysis}. Mathematically, this use of the $\hbar \to 0$ limit is closely
related to the goal of recovering classical mechanics from quantum mechanics, but
conceptually the matter is quite different. We will attempt to bring the pertinent
differences out in what follows.

\subsection{Coherent states revisited}

As Schrödinger [1926b] foresaw, coherent states play an important role in the
limit $\hbar \to 0$. We recall from Subsection 4.2 that \textit{for some fixed value \hbar of Planck’s constant} coherent states in a Hilbert space \mathcal{H} for a phase space M are defined by
an injection $M \hookrightarrow \mathcal{H}$, $z \mapsto \Psi_z^\hbar$, such that (16) and (17) hold. In what follows, we shall say that Ψ_z^\hbar is \textit{centered at $z \in M$}, a terminology justified by the key example (20).

To be relevant to the classical limit, coherent states must satisfy an additional
property concerning their dependence on \hbar, which also largely clarifies their nature
[Landsman, 1998]. Namely, we require that for each $f \in C_c(M)$ and each $z \in M$
the following function from the set I in which \hbar takes values (i.e. usually $I = [0, 1]$,
but in any case containing zero as an accumulation point) to \mathbb{C} is continuous:

1. $\hbar \mapsto c_\hbar \int_M d\mu_L(w) |(\Psi_w^\hbar, \Psi_x^\hbar)|^2 f(w) \ (\hbar > 0)$;
2. $0 \mapsto f(z)$.

In view of (19), the right-hand side of (2) is the same as $\langle \Psi_x^\hbar, Q_h^B(f)\Psi_x^\hbar \rangle$. In particular, this continuity condition implies

3. $\lim_{\hbar \to 0} \langle \Psi_x^\hbar, Q_h^B(f)\Psi_x^\hbar \rangle = f(z)$.

This means that the classical limit of the quantum-mechanical expectation value of the phase space quantization (19) of the classical observable f in a coherent state centered at $z \in M$ is precisely the classical expectation value of f in the state z. This interpretation rests on the identification of classical states with probability measures on phase space M, under which points of M in the guise of Dirac measures (i.e. delta functions) are pure states. Furthermore, it can be shown (cf. [Landsman, 1998]) that the continuity of all functions (1) - (2) implies the property

4. $\lim_{\hbar \to 0} |(\Psi_w^\hbar, \Psi_x^\hbar)|^2 = \delta_{wz}$,

where δ_{wz} is the ordinary Kronecker delta (i.e. $\delta_{wz} = 0$ whenever $w \neq z$ and $\delta_{zz} = 1$ for all $z \in M$). This has a natural physical interpretation as well: the classical limit of the quantum-mechanical transition probability between two coherent states centered at $w, z \in M$ is equal to the classical (and trivial) transition probability between w and z. In other words, when \hbar becomes small, coherent states at different values of w and z become increasingly orthogonal to each other.\(^\text{201}\)

This has the interesting consequence that

5. $\lim_{\hbar \to 0} \langle \Psi_w^\hbar, Q_h^B(f)\Psi_z^\hbar \rangle = 0 \ (w \neq z)$.

for all $f \in C_c(M)$. In particular, the following phenomenon of the Schrödinger cat type occurs in the classical limit: if $w \neq z$ and one has continuous functions $\hbar \mapsto c_w^\hbar \in \mathbb{C}$ and $\hbar \mapsto c_z^\hbar \in \mathbb{C}$ on $\hbar \in [0, 1]$ such that

6. $\Psi_{w,z}^\hbar = c_w^\hbar \Psi_w^\hbar + c_z^\hbar \Psi_z^\hbar$

is a unit vector for $\hbar \geq 0$ and also $|c_w^0|^2 + |c_z^0|^2 = 1$, then

7. $\lim_{\hbar \to 0} \langle \Psi_{w,z}^\hbar, Q_h^B(f)\Psi_{w,z}^\hbar \rangle = |c_w^0|^2 f(w) + |c_z^0|^2 f(z)$.

Hence the family of (typically) pure states $\psi_{w,z}^\hbar$ (on the C^*-algebras A_\hbar in which the map Q_h^B takes values)\(^\text{202}\) defined by the vectors $\Psi_{w,z}^\hbar$ in some sense converges

\(^{201}\)See [Mielnik, 1968; Cantoni, 1975; Beltrametti and Cassinelli, 1984; Landsman, 1998], and Subsection 6.3 below for the general meaning of the concept of a transition probability.

\(^{202}\)For example, for $M = \mathbb{R}^{2n}$ each A_\hbar is equal to the C^*-algebra of compact operators on $L^2(\mathbb{R}^n)$, on which each vector state is certainly pure.
to the mixed state on $C_0(M)$ defined by the right-hand side of (7). This is made precise at the end of this subsection.

It goes without saying that Schrödinger's coherent states (20) satisfy our axioms; one may also verify (4) immediately from (21). Consequently, by (32) one has the same property (3) for Weyl quantization (as long as $f \in \mathcal{S}(\mathbb{R}^{2n})$),

$$
\lim_{\hbar \to 0} (\Psi_{\hbar}, Q^W_\hbar(f), \Psi_{\hbar}) = f(z).
$$

(8) Similarly, (5) holds for Q^W_\hbar as well.

In addition, many constructions referred to as coherent states in the literature (cf. the references in footnote 129) satisfy (16), (17), and (4); see [Landsman, 1998].

The general picture that emerges is that a coherent state centered at $z \in M$ is the *Umdeutung* of z (seen as a classical pure state, as explained above) as a quantum-mechanical pure state.

Despite their wide applicability (and some would say beauty), one has to look beyond coherent states for a complete picture of the $\hbar \to 0$ limit of quantum mechanics. The appropriate generalization is the concept of a *continuous field of states*. This is defined relative to a given deformation quantization of a phase space M; cf. Subsection 4.3. If one now has a state ω_{\hbar} on A_{\hbar} for each $\hbar \in [0,1]$ (or, more generally, for a discrete subset of $[0,1]$ containing 0 as an accumulation point), one may call the ensuing family of states a *continuous field* whenever the function $\hbar \mapsto \omega_{\hbar}(Q_{\hbar}(f))$ is continuous on $[0,1]$ for each $f \in C^\infty(M)$; this notion is actually intrinsically defined by the continuous field of C^*-algebras, and is therefore independent of the quantization maps Q_{\hbar}. In particular, one has

$$
\lim_{\hbar \to 0} \omega_{\hbar}(Q_{\hbar}(f)) = \omega_0(f).
$$

(9) Eq. (3) (or (8)) shows that coherent states are indeed examples of continuous fields of states, with the additional property that each ω_{\hbar} is pure. As an example where all states ω_{\hbar} are mixed, we mention the convergence of quantum-mechanical

Footnotes:

203. Here $\mathcal{S}(\mathbb{R}^{2n})$ is the usual Schwartz space of smooth test functions with rapid decay at infinity.

204. For example, coherent states of the type introduced by Perelomov [1986] fit into our setting as follows [Simon, 1980]. Let G be a compact connected Lie group, and O_λ an integral coadjoint orbit, corresponding to a highest weight λ. (One may think here of $G = SU(2)$ and $\lambda = 0,1/2,1,\ldots$.) Note that $O_\lambda \cong G/T$, where T is the maximal torus in G with respect to which weights are defined. Let $\mathcal{H}_{\lambda}^\text{reg}$ be the carrier space of the irreducible representation $U_\lambda(G)$ with highest weight λ, containing the highest weight vector Ω_λ. (For $G = SU(2)$ one has $\mathcal{H}_{\lambda}^\text{reg} = C^{2j+1}$, the well-known Hilbert space of spin j, in which Ω_j is the vector with spin j in the z-direction.)

205. This idea is also confirmed by the fact that at least Schrödinger's coherent states are states of minimal uncertainty; cf. the references in footnote 129.

206. The use of this concept in various mathematical approaches to quantization is basically folklore. For the C^*-algebraic setting see [Emch, 1984; Rieffel, 1989b; Werner, 1995; Blanchard, 1996; Landsman, 1998], and [Nagy, 2000].
partition functions to their classical counterparts in statistical mechanics along these lines; see [Lieb, 1973; Simon, 1980; Duffield, 1990], and [Nourrigat and Royer, 2004]. Finally, one encounters the phenomenon that pure quantum states may converge to mixed classical ones. The first example of this has just been exhibited in (7); other cases in point are energy eigenstates and WKB states (see Subsections 5.4, 5.5, and 5.6 below).

5.2 Convergence of quantum dynamics to classical motion

Nonrelativistic quantum mechanics is based on the Schrödinger equation (3), which more generally reads

\[H \Psi(t) = i\hbar \frac{\partial \Psi}{\partial t}. \]

The formal solution with initial value \(\Psi(0) = \Psi \) is

\[\Psi(t) = e^{-\frac{i}{\hbar} H t}. \]

Here we have assumed that \(H \) is a given self-adjoint operator on the Hilbert space \(\mathcal{H} \) of the system, so that this solution indeed exists and evolves unitarily by Stone's theorem; cf. [Reed and Simon, 1972] and [Simon, 1976]. Equivalently, one may transfer the time-evolution from states (Schrödinger picture) to operators (Heisenberg picture) by putting

\[A(t) = e^{\frac{i}{\hbar} H t} A e^{-\frac{i}{\hbar} H t}. \]

We here restrict ourselves to particle motion in \(\mathbb{R}^n \), so that \(\mathcal{H} = L^2(\mathbb{R}^n) \).\(^{207}\) In that case, \(H \) is typically given by a formal expression like (3) (on some specific domain)\(^{208}\). Now, the first thing that comes to mind is Ehrenfest's Theorem [1927], which states that for any (unit) vector \(\Psi \in L^2(\mathbb{R}^n) \) in the domain of \(Q_h(q^j) = x^j \) and \(\partial V(x)/\partial x^j \) one has

\[m \frac{d^2}{dt^2} (x^j)(t) = -\left(\frac{\partial V(x)}{\partial x^j} \right)(t), \]

with the notation

\[\langle x^j(t) \rangle = (\Psi(t), x^j \Psi(t)); \]

\[\left(\frac{\partial V(x)}{\partial x^j} \right)(t) = \left(\Psi(t), \frac{\partial V(x)}{\partial x^j} \Psi(t) \right). \]

This looks like Newton's second law for the expectation value of \(x \) in the state \(\psi \), with the tiny but crucial difference that Newton would have liked to see \((\partial V/\partial x^j)(\langle x \rangle(t)) \) on the right-hand side of (13). Furthermore, even apart from

\(^{207}\)See [Hunziker and Sigal, 2000] for a recent survey of \(N \)-body Schrödinger operators.

\(^{208}\)One then has to prove self-adjointness (or the lack of it) on a larger domain on which the operator is closed; see the literature cited in footnote 42.
this point Ehrenfest's Theorem by no means suffices to have classical behaviour, since it gives no guarantee whatsoever that \(\langle x \rangle(t) \) behaves like a point particle. Much of what follows can be seen as an attempt to sharpen Ehrenfest's Theorem to the effect that it *does* indeed yield appropriate classical equations of motion for the expectation values of suitable operators.

We assume that the quantum Hamiltonian has the more general form

\[
(15) \quad H = h(Q_n(p_j), Q_n(q^j)),
\]

where \(h \) is the classical Hamiltonian (i.e. a function defined on classical phase space \(\mathbb{R}^{2n} \)) and \(Q_n(p_j) \) and \(Q_n(q^j) \) are the operators given in (2). Whenever this expression is ambiguous (as in cases like \(h(p, q) = pq \)), one has to assume a specific quantization prescription such as Weyl quantization \(Q^W_n \) (cf. (29)), so that formally one has

\[
(16) \quad H = Q^W_n(h).
\]

In fact, in the literature to be cited an even larger class of quantum Hamiltonians is treated by the methods explained here. The quantum Hamiltonian \(H \) carries an explicit (and rather singular) \(h \)-dependence, and for \(h \to 0 \) one then expects (11) or (12) to be related in one way or another to the flow of the classical Hamiltonian \(h \). This relationship was already foreseen by Schrödinger (1926a), and was formalized almost immediately after the birth of quantum mechanics by the well-known WKB approximation (cf. [Landau and Lifshitz, 1977] and Subsection 5.5 below). A mathematically rigorous understanding of this and analogous approximation methods only emerged much later, when a technique called *microlocal analysis* was adapted from its original setting of partial differential equations [Hörmander, 1965; Kohn and Nirenberg, 1965; Duistermaat, 1974; 1996; Guillemin and Sternberg, 1977; Howe, 1980; Hörmander, 1979; 1985a; 1985b; Grigis and Sjöstrand, 1994] to the study of the \(h \to 0 \) limit of quantum mechanics. This adaptation (often called *semiclassical analysis*) and its results have now been explained in various reviews written by the main players, notably [Robert, 1987; 1998; Helffer, 1988; Paul and Uribe, 1995; Colin de Verdière, 1998; Ivrii, 1998; Dimassi and Sjöstrand, 1999], and [Martinez, 2002] (see also the papers in [Robert, 1992]). More specific references will be given below.\(^{209}\)

As mentioned before, the relationship between \(H \) and \(h \) provided by semiclassical analysis is double-edged. On the one hand, one obtains approximate solutions of (11) or (12), or approximate energy eigenvalues and energy eigenfunctions (sometimes called quasi-modes) for small values of \(h \) in terms of classical data. This is how the results are usually presented; one computes specific properties of quantum theory in a certain regime in terms of an underlying classical theory. On the other hand, however, with some effort the very same results can often be reinterpreted as a partial explanation of the emergence of classical dynamics from

\(^{209}\)For the heuristic theory of semiclassical asymptotics [Landau and Lifshitz, 1977] is a goldmine.
quantum mechanics. It is the latter aspect of semiclassical analysis, somewhat understated in the literature, that is of interest to us. In this and the next three subsections we restrict ourselves to the simplest type of results, which nonetheless provide a good flavour of what can be achieved and understood by these means. By the same token, we just work with the usual flat phase space $M = \mathbb{R}^{2n}$ as before.

The simplest of all results relating classical and quantum dynamics is this:\footnote{More generally, Egorov's Theorem states that for a large class of Hamiltonians one has $\mathcal{Q}_h^W(f)(t) = \mathcal{Q}_h^W(f_t) + \mathcal{O}(\hbar)$. See, e.g., [Robert, 1987; Dimassi and Sjöstrand, 1999], and [Martinez, 2002].}

If the classical Hamiltonian $h(p, q)$ is at most quadratic in p and q, and the Hamiltonian in (12) is given by (16), then

\begin{equation}
\mathcal{Q}_h^W(f)(t) = \mathcal{Q}_h^W(f_t).
\end{equation}

Here f_t is the solution of the classical equation of motion $df_t/dt = \{h, f_t\}$; equivalently, one may write

\begin{equation}
f_t(p, q) = f(p(t), q(t)),
\end{equation}

where $t \mapsto (p(t), q(t))$ is the classical Hamiltonian flow of h with initial condition $(p(0), q(0)) = (p, q)$. This holds for all decent f, e.g., $f \in \mathcal{S}(\mathbb{R}^{2n})$.

This result explains quantum in terms of classical, but the converse may be achieved by combining (17) with (9). This yields

\begin{equation}
\lim_{\hbar \to 0} \omega_\hbar(\mathcal{Q}_\hbar(f)(t)) = \omega_0(f_t)
\end{equation}

for any continuous field of states (ω_\hbar). In particular, for Schrödinger's coherent states (20) one obtains

\begin{equation}
\lim_{\hbar \to 0} \left(\Psi^\hbar_{(p,q)}, \mathcal{Q}_\hbar(f)(t) \Psi^\hbar_{(p,q)} \right) = f_t(p, q).
\end{equation}

Now, whereas (17) merely reflects the good symmetry properties of Weyl quantization,\footnote{Eq. (17) is equivalent to the covariance of Weyl quantization under the affine symplectic group; cf. footnote 153.} (and is false for \mathcal{Q}_h^R), eq. (20) is actually valid for a large class of realistic Hamiltonians and for any deformation quantization map \mathcal{Q}_h that is asymptotically equal to \mathcal{Q}_h^W (cf. (32)). A result of this type was first established by Hepp [1974]; further work in this direction includes [Yajima, 1979; Hogreve et al., 1983; Wang, 1986; Robinson, 1988a; 1988b; Combescure, 1992; Arai, 1995; Combescure and Robert, 1997; Robert, 1998], and [Landsman, 1998].

Impressive results are available also in the Schrödinger picture. The counterpart of (17) is that for any suitably smooth classical Hamiltonian h (even a time-dependent one) that is at most quadratic in the canonical coordinates p and q on
phase space \mathbb{R}^{2n} one may construct generalized coherent states $\Psi^\hbar_{(p,q,C)}$, labeled by a set C of classical parameters dictated by the form of \hbar, such that

\begin{equation}
\left(21\right)\quad e^{-\frac{i}{\hbar}Q^W_{\hbar}(h)\Psi^\hbar_{(p,q,C)}} = e^{iS(t)/\hbar}\Psi^\hbar_{(p(t),q(t),C(t))}.
\end{equation}

Here $S(t)$ is the action associated with the classical trajectory $(p(t),q(t))$ determined by h, and $C(t)$ is a solution of a certain system of differential equations that has a classical interpretation as well [Hagedorn, 1998]. Schrödinger's coherent states (20) are a special case for the standard harmonic oscillator Hamiltonian. For more general Hamiltonians one then has an asymptotic result [Hagedorn and Joye, 1999; 2000]212

\begin{equation}
\left(22\right)\quad \lim_{\hbar \to 0} \left\| e^{-\frac{i}{\hbar}Q^W_{\hbar}(h)\Psi^\hbar_{(p,q,C)}} - e^{iS(t)/\hbar}\Psi^\hbar_{(p(t),q(t),C(t))} \right\| = 0.
\end{equation}

Once again, at first sight such results merely contribute to the understanding of quantum dynamics in terms of classical motion. As mentioned, they may be converted into statements on the emergence of classical motion from quantum mechanics by taking expectation values of suitable \hbar-dependent observables of the type $Q^W_{\hbar}(f)$.

For finite \hbar, the second term in (22) is a good approximation to the first - the error even being as small as $O(\exp(-\gamma/\hbar))$ for some $\gamma > 0$ as $\hbar \to 0$ - whenever t is smaller than the so-called Ehrenfest time

\begin{equation}
\left(23\right)\quad T_E = \lambda^{-1} \log(\hbar^{-1}),
\end{equation}

where λ is a typical inverse time scale of the Hamiltonian (e.g., for chaotic systems it is the largest Lyapunov exponent).213 This is the typical time scale on which semiclassical approximations to wave packet solutions of the time-dependent Schrödinger equation with a general Hamiltonian tend to be valid [Ehrenfest, 1927; Berry et al., 1979; Zaslavsky, 1981; Combescure and Robert, 1997; Bambusi et al., 1999; Hagedorn and Joye, 2000].214 For example, Ehrenfest [1927] himself estimated that for a mass of 1 gram a wave packet would double its width only in

212See also [Paul and Uribe, 1995; 1996] as well as the references listed after (20) for analogous statements.

213Recall that throughout this section we assume that \hbar has been made dimensionless through an appropriate rescaling.

214One should distinguish here between two distinct approximation methods to the time-dependent Schrödinger equation. Firstly, one has the semiclassical propagation of a quantum-mechanical wave packet, i.e. its propagation as computed from the time-dependence of the parameters on which it depends according to the underlying classical equations of motion. It is shown in the references just cited that this approximates the full quantum-mechanical propagation of the wave packet well until $t \sim T_E$. Secondly, one has the time-dependent WKB approximation (for integrable systems) and its generalization to chaotic systems (which typically involve tens of thousands of terms instead of a single one). This second approximation is valid on a much longer time scale, typically $t \sim \hbar^{-1/2}$ [O'Connor, Tomsovic, and Heller, 1992; Heller and Tomsovic, 1993; Tomsovic and Heller, 1993; 2002; Vanicek and Heller, 2003]. Adding to the confusion, Ballentine has claimed over the years that even the semiclassical propagation of a wave packet approximates its quantum-mechanical propagation for times much longer than the Ehrenfest time, typically $t \sim \hbar^{-1/2}$ [Ballentine et al., 1994; Ballentine, 2002; 2003]. This claim
about \(10^{13}\) years under free motion. However, Zurek and Paz [1995] have estimated the Ehrenfest time for Saturn’s moon Hyperion to be of the order of 20 years! This obviously poses a serious problem for the program of deriving (the appearance of) classical behaviour from quantum mechanics, which affects all interpretations of this theory.

Finally, we have not discussed the important problem of combining the limit \(t \to \infty\) with the limit \(\hbar \to 0\); this should be done in such a way that \(T_E\) is kept fixed. This double limit is of particular importance for quantum chaos; see Robert [1998] and most of the literature cited in Subsection 5.6.

5.3 Wigner functions

The \(\hbar \to 0\) limit of quantum mechanics is often discussed in terms of the so-called Wigner function, introduced by Wigner [1932].\(^{215}\) Each unit vector (i.e. wave function) \(\Psi \in L^2(\mathbb{R}^n)\) defines such a function \(W^\hbar_\Psi\) on classical phase space \(M = \mathbb{R}^{2n}\) by demanding that for each \(f \in S(\mathbb{R}^{2n})\) one has

\[
(24) \quad (\Psi, Q^W_\hbar(f)\Psi) = \int_{\mathbb{R}^{2n}} \frac{d^m p d^n q}{(2\pi)^n} W^\hbar_\Psi(p, q) f(p, q).
\]

The existence of such a function may be proved by writing it down explicitly as

\[
(25) \quad W^\hbar_\Psi(p, q) = \int_{\mathbb{R}^n} d^n v e^{i p v} \Psi(q + \frac{1}{2} \hbar v) \Psi(q - \frac{1}{2} \hbar v).
\]

In other words, the quantum-mechanical expectation value of the Weyl quantization of the classical observable \(f\) in a quantum state \(\Psi\) formally equals the classical expectation value of \(f\) with respect to the distribution \(W^\hbar_\Psi\). However, the latter may not be regarded as a probability distribution because it is not necessarily positive definite.\(^{216}\) Despite this drawback, the Wigner function possesses some attractive properties. For example, one has

\[
(26) \quad Q^W_\hbar(W^\hbar_\Psi) = \hbar^{-n} [\Psi].
\]

This somewhat perverse result means that if the Wigner function defined by \(\Psi\) is seen as a classical observable (despite its manifest \(\hbar\)-dependence!), then its Weyl

\(^{215}\)The original context was quantum statistical mechanics; one may write down (24) for mixed states as well. See [Hillery et al., 1984] for a survey.

\(^{216}\)Indeed, it may not even be in \(L^1(\mathbb{R}^{2n})\), so that its total mass is not necessarily defined, let alone equal to 1. Conditions for the positivity of Wigner functions defined by pure states are given by Hudson [1974]; see [Bröcker and Werner, 1995] for the case of mixed states.
quantization is precisely \((\hbar^{-n} \text{ times})\) the projection operator onto \(\Psi\). Furthermore, one may derive the following formula for the transition probability:\(^{218}\)

\[
(27) \quad |\langle \Phi, \Psi \rangle|^2 = \hbar^n \int_{\mathbb{R}^{2n}} \frac{d^n p d^n q}{(2\pi)^n} W_{\Psi}^h(p, q) W_{\Phi}^h(p, q).
\]

This expression has immediate intuitive appeal, since the integrand on the right-hand side is supported by the area in phase space where the two Wigner functions overlap, which is well in tune with the idea of a transition probability.

The potential lack of positivity of a Wigner function may be remedied by noting that Berezin's deformation quantization scheme (see (28)) analogously defines functions \(B^h_{\Psi}\) on phase space by means of

\[
(28) \quad (\Psi, Q^B_\hbar(f) \Psi) = \int_{\mathbb{R}^{2n}} \frac{d^n p d^n q}{(2\pi)^n} B^h_{\Psi}(p, q) f(p, q).
\]

Formally, (28) and (28) immediately yield

\[
(29) \quad B^h_{\Psi}(p, q) = \hbar^{-n} |\langle \Psi_{(p,q)}^h, \Psi \rangle|^2
\]

in terms of Schrödinger's coherent states (20). This expression is manifestly positive definite. The existence of \(B^h_{\Psi}\) may be proved rigorously by recalling that the Berezin quantization map \(f \mapsto Q^B_\hbar(f)\) is positive from \(C_0(\mathbb{R}^{2n})\) to \(B(L^2(\mathbb{R}^n))\). This implies that for each (unit) vector \(\Psi \in L^2(\mathbb{R}^n)\) the map \(f \mapsto (\Psi, Q^B_\hbar(f) \Psi)\) is positive from \(C_c(\mathbb{R}^{2n})\) to \(\mathbb{C}\), so that (by the Riesz theorem of measure theory) there must be a measure \(\mu_{\Psi}\) on \(\mathbb{R}^{2n}\) such that

\[
(\Psi, Q^B_\hbar(f) \Psi) = \int d\mu_{\Psi} f.
\]

This measure, then, is precisely given by

\[
d\mu_{\Psi}(p, q) = (2\pi)^{-n} d^n p d^n q B^h_{\Psi}(p, q).
\]

If \((\Psi, \Psi) = 1\), then \(\mu_{\Psi}\) is a probability measure. Accordingly, despite its \(\hbar\)-dependence, \(B^h_{\Psi}\) defines a bona fide classical probability distribution on phase space, in terms of which one might attempt to visualize quantum mechanics to some extent.

For finite values of \(\hbar\), the Wigner and Berezin distribution functions are different, because the quantization maps \(Q^W_\hbar\) and \(Q^B_\hbar\) are. The connection between \(B^h_{\Psi}\) and \(W^h_{\Psi}\) is easily computed to be

\[
(30) \quad B^h_{\Psi} = W^h_{\Psi} \ast g^h,
\]

where \(g^h\) is the Gaussian function

\[
(31) \quad g^h(p, q) = (2/\hbar)^n \exp(-(p^2 + q^2)/\hbar).
\]

This is how physicists look at the Berezin function,\(^{219}\) viz. as a Wigner function smeared with a Gaussian so as to become positive. But since \(g^h\) converges to a

\(^{217}\) In other words, \(W_{\Psi}\) is the Weyl symbol of the projection operator \([\Psi]\).

\(^{218}\) This formula is well defined since \(\Psi \in L^2(\mathbb{R}^n)\) implies \(W^h_{\Psi} \in L^2(\mathbb{R}^{2n})\).

\(^{219}\) The 'Berezin' functions \(B^h_{\Phi}\) were introduced by Husimi [1940] from a different point of view, and are therefore actually called Husimi functions by physicists.
Dirac delta function as $\hbar \to 0$ (with respect to the measure $(2\pi)^{-n}d^n p d^n q$ in the sense of distributions), it is clear from (30) that as distributions one has\(^{220}\)

\[
(32) \quad \lim_{\hbar \to 0} (B^\hbar_\Psi - W^\hbar_\Psi) = 0.
\]

See also (32). Hence in the study of the limit $\hbar \to 0$ there is little advantage in the use of Wigner functions; quite to the contrary, in limiting procedures their generic lack of positivity makes them more difficult to handle than Berezin functions.\(^{221}\)

For example, one would like to write the asymptotic behaviour (8) of coherent states in the form $\lim_{\hbar \to 0} W^\hbar_{\Psi^\hbar} = \delta_z$. Although this is indeed true in the sense of distributions, the corresponding limit

\[
(33) \quad \lim_{\hbar \to 0} B^\hbar_{\Psi^\hbar} = \delta_z,
\]

exists in the sense of (probability) measures, and is therefore defined on a much larger class of test functions.\(^{222}\) Here and in what follows, we abuse notation: if μ^0 is some probability measure on \mathbb{R}^{2n} and (Ψ^\hbar) is a sequence of unit vectors in $L^2(\mathbb{R}^n)$ indexed by \hbar (and perhaps other labels), then $B^\hbar_{\Psi^\hbar} \to \mu^0$ for $\hbar \to 0$ by definition means that for any $f \in C^\infty_c(\mathbb{R}^{2n})$ one has\(^{223}\)

\[
(34) \quad \lim_{\hbar \to 0} \langle \Psi^\hbar, Q^B_{\hbar}(f) \Psi^\hbar \rangle = \int_{\mathbb{R}^{2n}} d\mu^0 f.
\]

5.4 The classical limit of energy eigenstates

Having dealt with coherent states Ψ^\hbar_z in (33), in this subsection we discuss the much more difficult problem of computing the limit measure μ^0 for eigenstates Ψ^\hbar_n of the quantum Hamiltonian H. Thus we assume that H has eigenvalues E^\hbar_n labeled by $n \in \mathbb{N}$ (defined with or without 0 according to convenience), and also depending on \hbar because of the explicit dependence of H on this parameter. The associated eigenstates Ψ^\hbar_n then by definition satisfy

\[
(35) \quad H \Psi^\hbar_n = E^\hbar_n \Psi^\hbar_n.
\]

Here we incorporate the possibility that the eigenvalue E^\hbar_n is degenerate, so that the label n extends n. For example, for the one-dimensional harmonic oscillator one has $E^\hbar_n = \hbar \omega (n + \frac{1}{2})$ ($n = 0, 1, 2, \ldots$) without multiplicity, but for the hydrogen

\(^{220}\) Eq. (32) should be interpreted as a limit of the distribution on $\mathcal{D}(\mathbb{R}^{2n})$ or $\mathcal{S}(\mathbb{R}^{2n})$ defined by $B^\hbar_\Psi - W^\hbar_\Psi$. Both functions are continuous for $\hbar > 0$, but lose this property in the limit $\hbar \to 0$, generally converging to distributions.

\(^{221}\) See, however, [Robinett, 1993] and [Arai, 1995]. It should be mentioned that (32) expresses the asymptotic equivalence of Wigner and Berezin functions as distributions on \hbar-independent test functions. Even in the limit $\hbar \to 0$ one is sometimes interested in studying $O(\hbar)$ phenomena, in which case one should make a choice.

\(^{222}\) Namely those in $C_0(\mathbb{R}^{2n})$ rather than in $\mathcal{D}(\mathbb{R}^{2n})$ or $\mathcal{S}(\mathbb{R}^{2n})$.

\(^{223}\) Since Q^B_{\hbar} may be extended from $C^\infty_c(\mathbb{R}^{2n})$ to $L^\infty(\mathbb{R}^{2n})$, one may omit the stipulation that μ^0 be a probability measure in this definition if one requires convergence for all $f \in L^\infty(\mathbb{R}^{2n})$, or just for all f in the unitization of the C^*-algebra $C_0(\mathbb{R}^{2n})$.\)
atom the Bohrian eigenvalues $E_n^h = -m_e e^4/2\hbar^2 n^2$ (where m_e is the mass of the electron and e is its charge) are degenerate, with the well-known eigenfunctions $\Psi_{(n,l,m)}^h$ [Landau and Lifshitz, 1977]. Hence in this case one has $n = (n, l, m)$ with $n = 1, 2, 3, \ldots$, subject to $l = 0, 1, \ldots, n - 1$, and $m = -l, \ldots, l$.

In any case, it makes sense to let $n \to \infty$; this certainly means $n \to \infty$, and may in addition involve sending the other labels in n to infinity (subject to the appropriate restrictions on $n \to \infty$, as above). One then expects classical behaviour à la Bohr if one simultaneously lets $\hbar \to 0$ whilst $E_n^h \to E^0$ converges to some 'classical' value E^0. Depending on how one lets the possible other labels behave in this limit, this may also involve similar asymptotic conditions on the eigenvalues of operators commuting with H — see below for details in the integrable case. We denote the collection of such eigenvalues (including E_n^h) by E_n^h. (Hence in the case where the energy levels E_n^h are nondegenerate, the label E is just E.) In general, we denote the collective limit of the eigenvalues E_n^h as $\hbar \to 0$ and $n \to \infty$ by E^0.

For example, for the hydrogen atom one has the additional operators J^2 of total angular momentum as well as the operator J_3 of angular momentum in the z-direction. The eigenfunction $\Psi_{(n,l,m)}^h$ of H with eigenvalue E_n^h is in addition an eigenfunction of J^2 with eigenvalue $j_1^2 = \hbar^2 l(l + 1)$ and of J_3 with eigenvalue $j_3^h = \hbar m$. Along with $n \to \infty$ and $\hbar \to 0$, one may then send $l \to \infty$ and $m \to \pm \infty$ in such a way that j_1^2 and j_3^h approach specific constants.

The object of interest, then, is the measure on phase space obtained as the limit of the Berezin functions (29), i.e.

\[(36) \quad \mu_E^0 = \lim_{\hbar \to 0, n \to \infty} B^h_{\Psi^h}. \]

Although the pioneers of quantum mechanics were undoubtedly interested in quantities like this, it was only in the 1970s that rigorous results were obtained. Two cases are well understood: in this subsection we discuss the integrable case, leaving chaotic and more generally ergodic motion to Subsection 5.6.

In the physics literature, it was argued that for an integrable system the limiting measure μ_E^0 is concentrated (in the form of a δ-function) on the invariant torus associated to E^0 [Berry, 1977a].\footnote{This conclusion was, in fact, reached from the Wigner function formalism. See [Ozorio de Almeida, 1988] for a review of work of Berry and his collaborators on this subject.} Independently, mathematicians began to study a quantity very similar to μ_E^0, defined by limiting sequences of eigenfunctions of the Laplacian on a Riemannian manifold M. Here the underlying classical flow is Hamiltonian as well, the corresponding trajectories being the geodesics of the given metric (see, for example, [Klingenberg, 1982; Abraham and Marsden, 1985; Katok and Hasselblatt, 1995], or [Landsman, 1998]).\footnote{The simplest examples of integrable geodesic motion are n-tori, where the geodesics are projections of lines, and the sphere, where the geodesics are great circles [Katok and Hasselblatt, 1995].} The ensuing picture largely confirms the folklore of the physicists:

\textit{In the integrable case the limit measure μ_E^0 is concentrated on invariant tori.}
See [Charbonnel, 1986; 1988; Zelditch, 1990, 1996a; Toth, 1996; 1999; Nadirashvili et al., 2001], and [Toth and Zelditch, 2002; 2003a; 2003b]. Finally, as part of the transformation of microlocal analysis to semiclassical analysis (cf. Subsection 5.2), these results were adapted to quantum mechanics [Paul and Uribe, 1995; 1996].

Let us now give some details for integrable systems (of Liouville type); these include the hydrogen atom as a special case. Integrable systems are defined by the property that on a $2p$-dimensional phase space M one has p independent classical observables $(f_1 = h, f_2, \ldots, f_p)$ whose mutual Poisson brackets all vanish [Arnold, 1989]. One then hopes that an appropriate quantization scheme \mathcal{Q}_\hbar exists under which the corresponding quantum observables $(\mathcal{Q}_\hbar(f_1) = H, \mathcal{Q}_\hbar(f_2), \ldots, \mathcal{Q}_\hbar(f_p))$ are all self-adjoint and mutually commute (on a common core). This is indeed the case for the hydrogen atom, where (f_1, f_2, f_3) may be taken to be (h, j^2, j_3) (where j^2 is the total angular momentum and j_3 is its z-component). H is given by (16), $j^2 = \mathcal{Q}_h^W(j^2)$, and $j_3 = \mathcal{Q}_h^W(j_3)$. In general, the energy eigenfunctions Ψ_n^h will be joint eigenfunctions of the operators $(\mathcal{Q}_\hbar(f_1), \ldots, \mathcal{Q}_\hbar(f_p))$, so that $E_n^h = (E_{n_1}^h, \ldots, E_{n_p}^h)$, with $\mathcal{Q}_\hbar(f_k)\Psi_n^h = E_{n_k}^h\Psi_n^h$. We assume that the submanifolds $\cap_{k=1}^p f_k^{-1}(x_k)$ are compact and connected for each $x \in \mathbb{R}^p$, so that they are tori by the Liouville–Arnold Theorem [Abraham and Marsden, 1985; Arnold, 1989].

Letting $\hbar \to 0$ and $n \to \infty$ so that $E_{n_k}^h \to E_k^0$ for some point $E^0 = (E_1^0, \ldots, E_p^0) \in \mathbb{R}^p$, it follows that the limiting measure μ_k^0 as defined in (36) is concentrated on the invariant torus $\cap_{k=1}^p f_k^{-1}(E_k^0)$. This torus is generically p-dimensional, but for singular points E^0 it may be of lower dimension. In particular, in the exceptional circumstance where the invariant torus is one-dimensional, μ_k^0 is concentrated on a classical orbit. Of course, for $p = 1$ (where any Hamiltonian system is integrable) this singular case is generic. Just think of the foliation of \mathbb{R}^2 by the ellipses that form the closed orbits of the harmonic oscillator motion.230

226 These papers consider the limit $n \to \infty$ without $\hbar \to 0$; in fact, a physicist would say that they put $\hbar = 1$. In that case $E_n \to \infty$; in this procedure the physicists' microscopic $E \sim \mathcal{O}(\hbar)$ and macroscopic $E \sim \mathcal{O}(1)$ regimes correspond to $E \sim \mathcal{O}(1)$ and $E \to \infty$, respectively.
227 I.e. $df_1 \wedge \cdots \wedge df_p \neq 0$ everywhere. At this point we write $2p$ instead of $2n$ for the dimension of phase space in order to avoid notational confusion.
228 There is no general theory of quantum integrable systems. Olshanetsky and Perelomov [1981; 1983] form a good starting point.
229 In fact, if μ is the momentum map for the standard $SO(3)$-action on \mathbb{R}^3, then $j_2 = \sum_{k=1}^3 \mu_k^2$ and $j_3 = \mu_3$.
230 It may be enlightening to consider geodesic motion on the sphere; this example may be seen as the hydrogen atom without the radial degree of freedom (so that the degeneracy in question occurs in the hydrogen atom as well). If one sends $l \to \infty$ and $m \to \infty$ in the spherical harmonics Y_l^m (which are eigenfunctions of the Laplacian on the sphere) in such a way that $\lim m/l = \cos \varphi$, then the invariant tori are generically two-dimensional, and occur when $\cos \varphi \neq \pm 1$; an invariant torus labeled by such a value of $\varphi \neq 0, \pi$ comprises all great circles (regarded as part of phase space by adding to each point of the geodesic a velocity of unit length and direction tangent to the geodesic) whose angle with the z-axis is φ (more precisely, the angle in question is the one between the normal of the plane through the given great circle and the z-axis). For $\cos \varphi = \pm 1$ (i.e. $m = \pm l$), however, there is only one great circle with $\varphi = 0$ namely the equator (the case
What remains, then, of Bohr’s picture of the hydrogen atom in this light?231 Quite a lot, in fact, confirming his remarkable physical intuition. The energy levels Bohr calculated are those given by the Schrödinger equation, and hence remain correct in mature quantum mechanics. His orbits make literal sense only in the “correspondence principle” limit $\hbar \to 0$, $n \to \infty$, where, however, the situation is even better than one might expect for integrable systems: because of the high degree of symmetry of the Kepler problem [Guillemin and Sternberg, 1990], one may construct energy eigenfunctions whose limit measure μ^0 concentrates on any desired classical orbit [Nauenberg, 1989].232 In order to recover a travelling wave packet, one has to form wave packets from a very large number of energy eigenstates with very high quantum numbers, as explained in Subsection 2.4. For finite n and \hbar Bohr’s orbits seem to have no meaning, as already recognized by Heisenberg [1969] in his pathfinder days!233

5.5 The WKB approximation

One might have expected a section on the $\hbar \to 0$ limit of quantum mechanics to be centered around the WKB approximation, as practically all textbooks base their discussion of the classical limit on this notion. Although the scope of this method is actually rather limited, it is indeed worth saying a few words about it. For simplicity we restrict ourselves to the time-independent case.234 In its original formulation, the time-independent WKB method involves an attempt to approximate solutions of the time-independent Schrödinger equation $H \Psi = E \Psi$ by wave functions of the type

$$\Psi(x) = a_\hbar(x)e^{iS(x)},$$

where $a_\hbar(x)$ admits an expansion in \hbar as a power series. Assuming the Hamiltonian H is of the form (15), plugging the Ansatz (37) into the Schrödinger equation, and expanding in \hbar, yields in lowest order the classical (time-independent) Hamilton–Jacobi equation

$$\hbar \left(\frac{\partial S}{\partial x}, x \right) = E,$$

$\varphi = \pi$ corresponds to the same equator traversed in the opposite direction). Hence in this case the invariant torus is one-dimensional. The reader may be surprised that the invariant tori explicitly depend on the choice of variables, but this feature is typical of so-called degenerate systems; see Arnold (1989), §51.

231We ignore coupling to the electromagnetic field here; see footnote 26.

232Continuing footnote 230, for a given principal quantum number n one forms the eigenfunction $\Psi_{n,n-1,n-1}^\hbar$ by multiplying the spherical harmonic Y_{n-1}^{n-1} with the appropriate radial wave function. The limiting measure (36) as $n \to \infty$ and $\hbar \to 0$ is then concentrated on an orbit (rather than on an invariant torus). Now, beyond what it possible for general integrable systems, one may use the SO(4) symmetry of the Kepler problem and the construction in footnote 204 for the group-theoretic coherent states of Perelomov [1986] to find the desired eigenfunctions. See also [De Bièvre, 1992] and [De Bièvre et al., 1993].

233The later Bohr also conceded this through his idea that causal descriptions are complementary to space-time pictures; see Subsection 3.3.

234Cf. [Robert, 1998] and references therein for the time-dependent case.
supplemented by the so-called (homogeneous) transport equation235

\begin{equation}
\left(\frac{1}{\hbar} \Delta S + \sum_k \frac{\partial S}{\partial x^k} \frac{\partial}{\partial x^k} \right) a_0 = 0.
\end{equation}

In particular, E should be a classically allowed value of the energy. Even when it applies (see below), in most cases of interest the Ansatz (37) is only valid locally (in x), leading to problems with caustics. These problems turn out to be an artefact of the use of the coordinate representation that lies behind the choice of the Hilbert space $\mathcal{H} = L^2(\mathbb{R}^n)$, and can be avoided [Maslov and Fedoriuk, 1981]: the WKB method really comes to its own in a geometric reformulation in terms of symplectic geometry. See [Arnold, 1989; Bates and Weinstein, 1995], and [Dimassi and Sjöstrand, 1999] for (nicely complementary) introductory treatments, and [Guillemin and Sternberg, 1977; Hörmander, 1985a; 1985b], and [Duistermaat, 1974; 1996] for advanced accounts.

The basic observation leading to this reformulation is that in the rare cases that S is defined globally as a smooth function on the configuration space \mathbb{R}^n, it defines a submanifold \mathcal{L} of the phase space $M = \mathbb{R}^{2n}$ by $\mathcal{L} = \{(p = dS(x), q = x), x \in \mathbb{R}^n\}$. This submanifold is Lagrangian in having two defining properties: firstly, \mathcal{L} is n-dimensional, and secondly, the restriction of the symplectic form (i.e. $\sum_k dp_k \wedge dq^k$) to \mathcal{L} vanishes. The Hamilton–Jacobi equation (38) then guarantees that the Lagrangian submanifold $\mathcal{L} \subset M$ is contained in the surface $\Sigma_E = h^{-1}(E)$ of constant energy E in M. Consequently, any solution of the Hamiltonian equations of motion that starts in \mathcal{L} remains in \mathcal{L}.

In general, then, the starting point of the WKB approximation is a Lagrangian submanifold $\mathcal{L} \subset \Sigma_E \subset M$, rather than some function \tilde{S} that defines it locally. By a certain adaptation of the geometric quantization procedure, one may, under suitable conditions, associate a unit vector $\Psi_\mathcal{L}$ in a suitable Hilbert space to \mathcal{L}, which for small \hbar happens to be a good approximation to an eigenfunction of H at eigenvalue E. This strategy is successful in the integrable case, where the nondegenerate tori (i.e. those of maximal dimension n) provide such Lagrangian submanifolds of M; the associated unit vector $\Psi_\mathcal{L}$ then turns out to be well defined precisely when \mathcal{L} satisfies (generalized) Bohr–Sommerfeld quantization conditions. In fact, this is how the measures μ^0_E in (36) are generally computed in the integrable case.

If the underlying classical system is not integrable, it may still be close enough to integrability for invariant tori to be defined. Such systems are called quasi-integrable or perturbations of integrable systems, and are described by the Kolmogorov–Arnold–Moser (KAM) theory; see [Gallavotti, 1983; Abraham and Marsden, 1985; Ozorio de Almeida, 1988; Arnold, 1989; Lazutkin, 1993; Gallavotti et al., 2004], and many other books. In such systems the WKB method continues to

235Only stated here for a classical Hamiltonian $\hbar p, q) = p^2/2m + V(q)$. Higher-order terms in \hbar yield further, inhomogeneous transport equations for the expansion coefficients $a_j(x)$ in $a_\hbar = \sum_j a_j \hbar^j$. These can be solved in a recursive way, starting with (39).
provide approximations to the energy eigenstates relevant to the surviving invariant tori [Colin de Verdière, 1977; Lazutkin, 1993; Popov, 2000], but already loses some of its appeal.

In general systems, notably chaotic ones, the WKB method is almost useless. Indeed, the following theorem of Werner [1995] shows that the measure \(\mu^0_\hbar \) defined by a WKB function (37) is concentrated on the Lagrangian submanifold \(\mathcal{L} \) defined by \(S \):

Let \(a_\hbar \) be in \(L^2(\mathbb{R}^n) \) for each \(\hbar > 0 \) with pointwise limit \(a_0 = \lim_{\hbar \to 0} a_\hbar \) also in \(L^2(\mathbb{R}^n) \),\(^{236}\) and suppose that \(S \) is almost everywhere differentiable. Then for each \(f \in C_0^\infty(\mathbb{R}^{2n}) \):

\[
\lim_{\hbar \to 0} \left(a_\hbar e^{\frac{i}{\hbar} S}, \mathcal{Q}_\hbar^B(f)a_\hbar e^{\frac{i}{\hbar} S} \right) = \int_{\mathbb{R}^n} d^n x |a_0(x)|^2 f \left(\frac{\partial S}{\partial x}, x \right).
\]

As we shall see shortly, this behaviour is impossible for ergodic systems, and this is enough to seal the fate of WKB for chaotic systems in general (except perhaps as a hacker's tool).

Note, however, that for a given energy level \(E \) the discussion so far has been concerned with properties of the classical trajectories on \(\Sigma_E \) (where they are constrained to remain by conservation of energy). Now, it belongs to the essence of quantum mechanics that other parts of phase space than \(\Sigma_E \) might be relevant to the spectral properties of \(H \) as well. For example, for a classical Hamiltonian of the simple form \(\hbar(p, q) = p^2/2m + V(q) \), this concerns the so-called classically forbidden area \(\{ q \in \mathbb{R}^n \mid V(q) > E \} \) (and any value of \(p \)). Here the classical motion can have no properties like integrability or ergodicity, because it does not exist. Nonetheless, and perhaps counterintuitively, it is precisely here that a slight adaptation of the WKB method tends to be most effective. For \(q = x \) in the classically forbidden area, the Ansatz (37) should be replaced by

\[
\Psi(x) = a_\hbar(x)e^{-\frac{S(x)}{\hbar}},
\]

where this time \(S \) obeys the Hamilton–Jacobi equation 'for imaginary time',\(^{237}\) i.e.

\[
h \left(i \frac{\partial S}{\partial x}, x \right) = E,
\]

and the transport equation (39) is unchanged. For example, it follows that in one dimension (with a Hamiltonian of the type (3)) the WKB function (41) assumes the form

\[
\Psi(x) \sim e^{-\frac{\sqrt{2m}}{\hbar} \int |z| dy \sqrt{V(y) - E}}
\]

\(^{236}\)This assumption is not made in Werner (1995), who directly assumes that \(\Psi = a_0 \exp(iS/\hbar) \) in (37).

\(^{237}\)This terminology comes from the Lagrangian formalism, where the classical action \(S = \int dt L(t) \) is replaced by \(iS \) through the substitution \(t = -i\tau \) with \(\tau \in \mathbb{R} \).
in the forbidden region, which explains both the tunnel effect in quantum mechanics (i.e. the propagation of the wave function into the forbidden region) and the fact that this effect disappears in the limit \(\hbar \to 0 \). However, even here the use of WKB methods has now largely been superseded by techniques developed by Agmon [1982]; see, for example, [Hislop and Sigal, 1996] and [Dimassi and Sjöstrand, 1999] for reviews.

5.6 Epilogue: quantum chaos

Chaos in classical mechanics was probably known to Newton and was famously highlighted by Poincaré (1892–1899), but its relevance for (and potential threat to) quantum theory was apparently first recognized by Einstein [1917] in a paper that was ‘completely ignored for 40 years’ [Gutzwiller, 1992]. Currently, the study of quantum chaos is one of the most thriving businesses in all of physics, as exemplified by innumerable conference proceedings and monographs on the subject, ranging from the classic by Gutzwiller [1990] to the online *opus magnum* by Cvitanovic et al. [2005]. Nonetheless, the subject is still not completely understood, and provides a fascinating testing ground for the interplay between classical and quantum mechanics.

One should distinguish between various different goals in the field of quantum chaos. The majority of papers and books on quantum chaos is concerned with the semiclassical analysis of some concretely given quantum system having a chaotic system as its classical limit. This means that one tries to approximate (for small \(\hbar \)) a suitable quantum-mechanical expression in terms of data associated with the underlying classical motion. Michael Berry even described this goal as the “Holy Grail” of quantum chaos. The methods described in Subsection 5.2 contribute to this goal, but are largely independent of the nature of the dynamics. In this subsection we therefore concentrate on techniques and results specific to chaotic motion.

Historically, the first new tool in semiclassical approximation theory that specifically applied to chaotic systems was the so-called *Gutzwiller trace formula*. Roughly speaking, this formula approximates the eigenvalues of the quantum Hamiltonian in terms of the periodic (i.e. closed) orbits of the underlying clas-

238 See also [Diacu and Holmes, 1996] and [Barrow-Green, 1997] for historical background.

239 It was the study of the very same Helium atom that led Heisenberg to believe that a fundamentally new ‘quantum’ mechanics was needed to replace the inadequate old quantum theory of Bohr and Sommerfeld. See [Mehra and Rechenberg, 1982b] and [Cassidy, 1992]. Another microscopic example of a chaotic system is the hydrogen atom in an external magnetic field.

240 Other respectable books include, for example, [Guhr *et al.*, 1998, [Haake, 2001] and [Reichl, 2004].

241 This attribution is based on Gutzwiller [1971]. A similar result was independently derived by Balian and Bloch [1972; 1974]. See also [Gutzwiller, 1990] and [Brack and Bhaduri, 2003] for mathematically heuristic but otherwise excellent accounts of semiclassical physics based on the trace formula. Mathematically rigorous discussions and proofs may be found in [Colin de Verdière, 1973; Duistermaat and Guillemin, 1975; Guillemin and Uribe, 1989; Paul and Uribe, 1995], and [Combescure *et al.*, 1999].
The Gutzwiller trace formula does not start from the wave function (as the WKB approximation does), but from the propagator $K(x, y, t)$. Physicists write this as $K(x, y, t) = \langle x | \exp(-itH/\hbar) | y \rangle$, whereas mathematicians see it as the Green's function in the formula

$$e^{-\frac{it}{\hbar}H} \Psi(x) = \int d^n y \ K(x, y, t) \Psi(y),$$

where $\Psi \in L^2(\mathbb{R}^n)$. Its (distributional) Laplace transform

$$G(x, y, E) = \frac{1}{i\hbar} \int_0^\infty dt \ K(x, y, t) e^{\frac{iE}{\hbar}}$$

contains information about both the spectrum and the eigenfunctions; for if the former is discrete, one has

$$G(x, y, E) = \sum_j \frac{\Psi_j(x) \Psi_j(y)}{E - E_j}.$$

It is possible to approximate K or G itself by an expression of the type

$$K(x, y, t) \sim (2\pi i\hbar)^{-n/2} \sum_P \sqrt{|\det V_P|} e^{\frac{i}{\hbar} S_P(x, y, t)} e^{-\frac{1}{2} i\pi \mu_P},$$

where the sum is over all classical paths P from y to x in time t (i.e. paths that solve the classical equations of motion). Such a path has an associated action S_P, Maslov index μ_P, and Van Vleck [1928] determinant $\det V_P$ [Arnold, 1989]. For chaotic systems one typically has to include tens of thousands of paths in the sum, but if one does so the ensuing approximation turns out to be remarkably successful [Heller and Tomsovic, 1993; Tomsovic and Heller, 1993]. The Gutzwiller trace formula is a semiclassical approximation to

$$g(E) = \int d^n x \ G(x, x, E) = \sum_j \frac{1}{E - E_j},$$

for a quantum Hamiltonian with discrete spectrum and underlying classical Hamiltonian having chaotic motion. It has the form

$$g(E) \sim g_0(E) + \frac{1}{i\hbar} \sum_P \sum_{k=1}^\infty \frac{T_P}{2 \sinh(k\chi_P/2)} e^{\frac{i}{\hbar} S_P(E) - \frac{1}{2} i\pi \mu_P},$$

where g_0 is a smooth function giving the mean density of states. This time, the sum is over all (prime) periodic paths P of the classical Hamiltonian at energy E with associated action $S_P(E) = \int pdq$ (where the momentum p is determined by P, given E), period T_P, and stability exponent χ_P (this is a measure of how rapidly neighbouring trajectories drift away from P). Since the frustration expressed by

242Such orbits are dense but of Liouville measure zero in chaotic classical systems. Their crucial role was first recognized by Poincaré (1892–1899).
Einstein [1917], this was the first indication that semiclassical approximations had some bearing on chaotic systems.

Another important development concerning energy levels was the formulation of two key conjectures:243

- If the classical dynamics defined by the classical Hamiltonian \(h \) is integrable, then the spectrum of \(H \) is "uncorrelated" or "random" [Berry and Tabor, 1977].

- If the classical dynamics defined by \(h \) is chaotic, then the spectrum of \(H \) is "correlated" or "regular" [Bohigas, Giannoni, and Schmit, 1984].

The notions of correlation and randomness used here can be made precise using notions like the distribution of level spacings and the pair correlation function of eigenvalues; see [Zelditch, 1996a] and [De Bièvre, 2001] for introductory treatments, and most of the literature cited in this subsection for further details.244

We now consider energy eigenfunctions instead of eigenvalues, and return to the limit measure (36). In the non (quasi-) integrable case, the key result is that

\[
\text{for ergodic classical motion,}^{245} \text{ the limit measure } \mu_E^0 \text{ coincides with the (normalized) Liouville measure induced on the constant energy surface } \Sigma_E \equiv \hbar^{-1}(E).^{246}
\]

This result was first suggested in the mathematical literature for ergodic geodesic motion on compact hyperbolic Riemannian manifolds [Sarnak, 1974], where it was subsequently proved with increasing generality [Colin de Verdière, 1985; Zelditch, 1987].247 For certain other ergodic systems this property was proved by Zelditch [1991], Gérard and Leichtnam [1993], Zelditch and Zworski [1996], and

\footnotesize
\begin{itemize}
 \item 243Strictly speaking, both conjectures are wrong; for example, the harmonic oscillator yields a counterexamples to the first one. See [Zelditch, 1996a] for further information. Nonetheless, the conjectures are believed to be true in a deeper sense.
 \item 244This aspect of quantum chaos has applications to number theory and might even lead to a proof of the Riemann hypothesis; see, for example, [Sarnak, 1999; Berry and Keating, 1999], and many other recent papers. Another relevant connection, related to the one just mentioned, is between energy levels and random matrices; see especially [Guhr et al., 1998]. For the plain relevance of all this to practical physics see [Mirlin, 2000].
 \item 245Ergodicity is the weakest property that any chaotic dynamical system possesses. See [Katok and Hasselblatt, 1995; Emch and Liu, 2002; Gallavotti et al., 2004], and countless other books.
 \item 246The unnormalized Liouville measure \(\mu_E \) on \(\Sigma_E \) is defined by \(\mu_E(B) = \int_B dS_E(x) (|dh(x)|)^{-1} \), where \(dS_E \) is the surface element on \(\Sigma_E \) and \(B \subset \Sigma_E \) is a Borel set. If \(\Sigma_E \) is compact, the normalized Liouville measure \(\mu_E \) on \(\Sigma_E \) is given by \(\mu_E(B) = \mu_E^{-1}(B)/\mu_E(\Sigma_E) \). It is a probability measure on \(\Sigma_E \), reflecting the fact that the eigenvectors \(\Psi_n \) are normalized to unit length so as to define quantum-mechanical states.
 \item 247In the Riemannian case with \(\hbar = 1 \) the cosphere bundle \(S^*Q \) (i.e. the subbundle of the cotangent bundle \(T^*Q \) consisting of one-forms of unit length) plays the role of \(\Sigma_E \). Low-dimensional examples of ergodic geodesic motion are provided by compact hyperbolic spaces. Also cf. [Zelditch, 1992a] for the physically important case of a particle moving in an external gauge field. See also the appendix to Lazutkin [1993] by A.I. Shnirelman, and [Nadirashvili et al., 2001] for reviews.
\end{itemize}

others; to the best of our knowledge a completely general proof remains to be given.

An analogous version for Schrödinger operators on \mathbb{R}^n was independently stated in the physics literature [Berry, 1977b; Voros, 1979], and was eventually proved under certain assumptions on the potential by Helffer, Martinez and Robert [1987], Charbonnel [1992], and Paul and Uribe [1995]. Under suitable assumptions one therefore has

\[
\lim_{\hbar \to 0, n \to \infty} \langle \Psi_n^\hbar, Q_E^\hbar(f) \Psi_n^\hbar \rangle = \int_{\Sigma_E} d\mu_E f
\]

for any $f \in C_c^\infty(\mathbb{R}^{2n})$, where again μ_E is the (normalized) Liouville measure on $\Sigma_E \subset \mathbb{R}^{2n}$ (assuming this space to be compact). In particular, in the ergodic case μ_E^\hbar only depends on E^0 and is the same for (almost) every sequence of energy eigenfunctions (Ψ_n^\hbar) as long as $E_n^\hbar \to E^0$.\(^{248}\) Thus the support of the limiting measure is uniformly spread out over the largest part of phase space that is dynamically possible.

The result that for ergodic classical motion μ_E^\hbar is the Liouville measure on Σ_E under the stated condition leaves room for the phenomenon of ‘scars’, according to which in chaotic systems the limiting measure is sometimes concentrated on periodic classical orbits. This terminology is used in two somewhat different ways in the literature. ‘Strong’ scars survive in the limit $\hbar \to 0$ and concentrate on stable closed orbits;\(^{249}\) they may come from ‘exceptional’ sequences of eigenfunctions.\(^{250}\) These are mainly considered in the mathematical literature; cf. [Nadirashvili et al., 2001] and references therein.

In the physics literature, on the other hand, the notion of a scar usually refers to an anomalous concentration of the functions $B_{\Psi_n^\hbar}$ (cf. (29)) near unstable closed orbits for finite values of \hbar; see [Heller and Tomovic, 1993; Tomovic and Heller, 1993; Kaplan and Heller, 1998a; 1998b], and [Kaplan, 1999] for surveys. Such scars turn out to be crucial in attempts to explain the energy spectrum of the associated quantum system. The reason why such scars do not survive the (double) limit in (36) is that this limit is defined with respect to \hbar-independent smooth test functions. Physically, this means that one averages over more and more De Broglie wavelengths as $\hbar \to 0$, eventually losing information about the single wavelength scale [Kaplan, 1999]. Hence to pick them up in a mathematically sound way, one should redefine (36) as a pointwise limit [Duclos and Høgrev, 1993; Paul and Uribe, 1996; 1998]. In any case, there is no contradiction between the mathematical results cited and what physicists have found.

Another goal of quantum chaos is the identification of chaotic phenomena within a given quantum-mechanical model. Here the slight complication arises that one

\(^{248}\) The result is not necessarily valid for all sequences (Ψ_n^\hbar) with the given limiting behaviour, but only for ‘almost all’ such sequences (technically, for a class of sequences of density 1). See, for example, [De Bièvre, 2001] for a simple explanation of this.

\(^{249}\) An orbit $\gamma \subset M$ is called stable when for each neighbourhood U of γ there is neighbourhood $V \subset U$ of γ such that $z(t) \in U$ for all $z \in V$ and all t.

\(^{250}\) Cf. footnote 248.
cannot simply copy the classical definition of chaos in terms of diverging trajectories in phase space, since (by unitarity of time-evolution) in quantum mechanics \(\| \Psi(t) - \Phi(t) \| \) is constant in time \(t \) for solutions of the Schrödinger equation. However, this just indicates that should intrinsic quantum chaos exist, it has to be defined differently from classical chaos.\(^{251}\) This has now been largely accomplished in the algebraic formulation of quantum theory [Benatti, 1993; Emch et al., 1994; Zelditch, 1996b; 1996c; Belot and Earman, 1997; Alicki and Fannes, 2001; Narnhofer, 2001]. The most significant recent development in this direction in the "heuristic" literature has been the study of the quantity

\[
M(t) = \| \langle e^{-\frac{i}{\hbar}(H+\Sigma)}\Psi, e^{-\frac{i}{\hbar}H}\Psi \rangle \|^2,
\]

where \(\Psi \) is a coherent state (or Gaussian wave packet), and \(\Sigma \) is some perturbation of the Hamiltonian \(H \) [Peres, 1984]. In what is generally regarded as a breakthrough in the field, Jalabert and Pastawski [2001] discovered that in a certain regime \(M(t) \) is independent of the detailed form of \(\Sigma \) and decays as \(\sim \exp(-\lambda t) \), where \(\lambda \) is the (largest) Lyapunov exponent of the underlying classical system. See [Cucchielli, 2004] for a detailed account and further development.

In any case, the possibility that classical chaos appears in the \(\hbar \to 0 \) limit of quantum mechanics is by no means predicated on the existence of intrinsic quantum chaos in the above sense.\(^{252}\) For even in the unlikely case that quantum dynamics would turn out to be intrinsically non-chaotic, its classical limit is sufficiently singular to admit kinds of classical motion without a qualitative counterpart in quantum theory. This possibility is not only confirmed by most of the literature on quantum chaos (little of which makes any use of notions of intrinsic quantum chaotic motion), but even more so by the possibility of incomplete motion. This is a type of dynamics in which the flow of the Hamiltonian vector field is only defined until a certain time \(t_f < \infty \) (or from an initial time \(t_i > -\infty \)), which means that the equations of motion have no solution for \(t > t_f \) (or \(t < t_i \)).\(^{253}\) The

\(^{251}\)As pointed out by Belot and Earman [1997], the Koopman formulation of classical mechanics (cf. footnote 172) excludes classical chaos if this is formulated in terms of trajectories in Hilbert space. The transition from classical to quantum notions of chaos can be smoothened by first reformulating the classical definition of chaos (normally put in terms of properties of trajectories in phase space).

\(^{252}\)Arguments by [Ford, 1988] and others to the effect that quantum mechanics is wrong because it cannot give rise to chaos in its classical limit have to be discarded for the reasons given here. See also [Belot and Earman, 1997]. In fact, using the same argument, such authors could simultaneously have 'proved' the opposite statement that any classical dynamics that arises as the classical limit of a quantum theory with non-degenerate spectrum must be ergodic. For the naive definition of quantum ergodic flow clearly is that quantum time-evolution sweeps out all states at some energy \(E \); but for non-degenerate spectra this is a tautology by definition of an eigenfunction!

\(^{253}\)The simplest examples are incomplete Riemannian manifolds \(Q \) with geodesic flow; within this class, the case \(Q = (0, 1) \) with flat metric is hard to match in simplicity. Clearly, the particle reaches one of the two boundary points in finite time, and does not know what to do (or even whether its exists) afterwards. Other examples come from potentials \(V \) on \(Q = \mathbb{R}^n \) with the property that the classical dynamics is incomplete; see [Reed and Simon, 1975] and [Gallavotti, 1983]. On a somewhat different note, the Universe itself has incomplete dynamics because of the Big Bang and possible Big Crunch.
point, then, is that unitary quantum dynamics, though intrinsically complete, may very well have incomplete motion as its classical limit.\footnote{The quantization of the Universe is unknown at present, but geodesic motion on Riemannian manifolds, complete or not, is quantized by $H = -\frac{\hbar^2}{2m} \Delta$ (perhaps with an addition term proportional to the Ricci scalar R, see [Landsman, 1998]), where Δ is the Laplacian, and quantization on $Q = \mathbb{R}^n$ is given by the Schrödinger equation (3), whether or not the classical dynamics is complete. In these two cases, and probably more generally, the incompleteness of the classical motion is often (but not always) reflected by the lack of essential self-adjointness of the quantum Hamiltonian on its natural initial domain $C_c^\infty(Q)$. For example, if Q is complete as a Riemannian manifold, then Δ is essentially self-adjoint on $C_c^\infty(Q)$ [Chernoff, 1973; Strichartz, 1983], and if Q is incomplete then the Laplacian usually fails to be essentially self-adjoint on this domain (but see [Horowitz and Marolf, 1995] for counterexamples). One may refer to the latter property as quantum-mechanical incompleteness [Reed and Simon, 1975], although a Hamiltonian that fails to be essentially self-adjoint on $C_c^\infty(Q)$ can often be extended (necessarily in a non-unique way) to a self-adjoint operator by a choice of boundary conditions (possibly at infinity). By Stone’s theorem, the quantum dynamics defined by each self-adjoint extension is unitary (and therefore defined for all times). Similarly, although no general statement can be made relating (in)complete classical motion in a potential to (lack of) essential selfadjointness of the corresponding Schrödinger operator, it is usually the case that completeness implies essential selfadjointness, and vice versa. See [Reed and Simon, 1975], Appendix to §X.1, where the reader may also find examples of classically incomplete but quantum-mechanically complete motion, and vice versa. Now, here is the central point for the present discussion: as probably first noted by Hepp [1974], different self-adjoint extensions have the same classical limit (in the sense of (20) or similar criteria), namely the given incomplete classical dynamics. This proves that complete quantum dynamics can have incomplete motion as its classical limit. However, much remains to be understood in this area. See also [Earman, 2005; 2006].}
microscopic systems are finite, whereas macroscopic systems are infinite. This procedure is eventually justified by the results it produces.

Similarly, in the context of quantum theory classical behaviour is simply not found in finite systems (when $\hbar > 0$ is fixed), whereas, as we shall see, it is found in infinite ones. Given the observed classical nature of the macroscopic world, at the end of the day one concludes that the idealization in question is apparently a valid one. One should not be confused by the fact that the error in the number of particles this approximation involves (viz. $\infty - 10^{23} = \infty$) is considerably larger than the number of particles in the actual system. If all of the 10^{23} particles in question were individually tracked down, the approximation is indeed a worthless ones, but the point is rather that the limit $N \to \infty$ is valid whenever averaging over $N = 10^{23}$ particles is well approximated by averaging over an arbitrarily larger number N (which, then, one might as well let go to infinity). Below we shall give a precise version of this argument.

Despite our opening comments above, the quantum theory of infinite systems has features of its own that deserve a separate section. Our treatment is complementary to texts such as Thirring [1983], Strocchi [1985], Bratteli and Robinson [1987], Haag [1992], Araki [1999], and Sewell [1986; 2002], which should be consulted for further information on infinite quantum systems. The theory in Subsections 6.1 and 6.5 is a reformulation in terms of continuous field of C^*-algebras and deformation quantization of the more elementary parts of a remarkable series of papers on so-called quantum mean-field systems by Raggio and Werner [1989; 1991], Duffield and Werner [1992a,b,c], and Duffield, Roos, and Werner [1992]. These models have their origin in the treatment of the BCS theory of superconductivity due to Bogoliubov [1958] and Haag [1962], with important further contributions by Thirring and Wehrl [1967], Thirring [1968], Hepp [1972], Hepp and Lieb [1973], Rieckers [1984], Morchio and Strocchi [1987], Duffner and Rieckers [1988], Bona [1988; 1989; 2000], Unnerstall [1990a; 1990b], Bagarello and Morchio [1992], Sewell [2002], and others.

6.1 Macroscopic observables

The large quantum systems we are going to study consist of N copies of a single quantum system with unital algebra of observables A_1. Almost all features already emerge in the simplest example $A_1 = M_2(\mathbb{C})$ (i.e. the complex 2×2 matrices), so there is nothing wrong with having this case in mind as abstraction increases. The aim of what follows is to describe in what precise sense macroscopic observables (i.e. those obtained by averaging over an infinite number of sites) are "classical".

255 With the well-known mesoscopic exceptions [Leggett, 2002; Brezger et al., 2002; Chiorescu et al., 2003; Marshall et al., 2003; Devoret et al., 2004].

256 In the opposite direction of greater generality, it is worth noting that the setting below actually incorporates quantum systems defined on general lattices in \mathbb{R}^n (such as \mathbb{Z}^n). For one could relabel things so as to make $A_{1/N}$ below the algebra of observables of all lattice points Λ contained in, say, a sphere of radius N. The limit $N \to \infty$ then corresponds to the limit $\Lambda \to \mathbb{Z}^n$.

From the single C^*-algebra A_1, we construct a continuous field of C^*-algebras $A^{(c)}$ over

$$I = 0 \cup 1/N = \{0, \ldots, 1/N, \ldots, 1/3, 1/2, 1\} \subset [0, 1],$$

as follows. We put

$$A_0^{(c)} = C(S(A_1));$$
$$A_{1/N}^{(c)} = A_1^N,$$

where $S(A_1)$ is the state space of A_1 (equipped with the weak*-topology)\(^{257}\) and $A_1^N = \widehat{\otimes}^N A_1$ is the (spatial) tensor product of N copies of A_1.\(^{258}\) This explains the suffix c in $A^{(c)}$: it refers to the fact that the limit algebra $A_0^{(c)}$ is classical or commutative.

For example, take $A_1 = M_2(\mathbb{C})$. Each state is given by a density matrix, which is of the form

$$\rho(x, y, z) = \frac{1}{2} \begin{pmatrix} 1 + z & x - iy \\ x + iy & 1 - z \end{pmatrix},$$

for some $(x, y, z) \in \mathbb{R}^3$ satisfying $x^2 + y^2 + z^2 \leq 1$. Hence $S(M_2(\mathbb{C}))$ is isomorphic (as a compact convex set) to the three-ball B^3 in \mathbb{R}^3. The pure states are precisely the points on the boundary,\(^{259}\) i.e. the density matrices for which $x^2 + y^2 + z^2 = 1$ (for these and these alone define one-dimensional projections).\(^{260}\)

In order to define the continuous sections of the field, we introduce the symmetrization maps $j_{NM} : A_1^M \rightarrow A_1^N$, defined by

$$j_{NM}(A_M) = S_N(A_M \otimes 1 \otimes \cdots \otimes 1),$$

where one has $N - M$ copies of the unit 1 in A_1 so as to obtain an element of A_1^N. The symmetrization operator $S_N : A_1^N \rightarrow A_1^N$ is given by (linear and continuous)

\(^{257}\)In this topology one has $\omega_A \rightarrow \omega$ when $\omega_A(A) \rightarrow \omega(A)$ for each $A \in A_1$.

\(^{258}\)When A_1 is finite-dimensional the tensor product is unique. In general, one needs the projective tensor product at this point. See footnote 90. The point is the same here: any tensor product state $\omega_1 \otimes \cdots \otimes \omega_N$ on $\otimes^N A_1$ — defined on elementary tensors by $\omega_1 \otimes \cdots \otimes \omega_N(A_1 \otimes \cdots \otimes A_N) = \omega_1(A_1) \cdots \omega_N(A_N)$ — extends to a state on $\odot^N A_1$ by continuity.

\(^{259}\)The extreme boundary $\partial_e K$ of a convex set K consists of all $\omega \in K$ for which $\omega = pp + (1-p)\sigma$ for some $p \in (0, 1)$ and $\rho, \sigma \in K$ implies $\rho = \sigma = \omega$. If $K = S(A)$ is the state space of a C^*-algebra A, the extreme boundary consists of the pure states on A (the remainder of $S(A)$ consisting of mixed states). If K is embedded in a vector space, the extreme boundary $\partial_e K$ may or may not coincide with the geometric boundary ∂K of K. In the case $K = B^3 \subset \mathbb{R}^3$ it does, but for an equilateral triangle in \mathbb{R}^2 it does not, since $\partial_e K$ merely consists of the corners of the triangle whereas the geometric boundary includes the sides as well.

\(^{260}\)Eq. (3) has the form $\rho(x, y, z) = \frac{1}{2}(x\sigma_x + y\sigma_y + z\sigma_z)$, where the σ_i are the Pauli matrices. This yields an isomorphism between \mathbb{R}^3 and the Lie algebra of $SO(3)$ in its spin-$\frac{1}{2}$ representation $D_{1/2}$ on \mathbb{C}^2. This isomorphism intertwines the defining action of $SO(3)$ on \mathbb{R}^3 with its adjoint action on $M_2(\mathbb{C})$. I.e., for any rotation R one has $\rho(Rx) = D_{1/2}(R)\rho(x)D_{1/2}(R)^{-1}$. This will be used later on (see Subsection 6.5).
extension of

\[S_N(B_1 \otimes \cdots \otimes B_N) = \frac{1}{N!} \sum_{\sigma \in \mathfrak{S}_N} B_{\sigma(1)} \otimes \cdots \otimes B_{\sigma(N)}, \]

where \(\mathfrak{S}_N \) is the permutation group (i.e. symmetric group) on \(N \) elements and \(B_i \in \mathcal{A}_1 \) for all \(i = 1, \ldots, N \). For example, \(j_{N1} : \mathcal{A}_1 \to \mathcal{A}_1^N \) is given by

\[j_{N1}(B) = \overline{B}^{(N)} = \frac{1}{N} \sum_{k=1}^{N} 1 \otimes \cdots \otimes B_{(k)} \otimes 1 \cdots \otimes 1, \]

where \(B_{(k)} \) is \(B \) seen as an element of the \(k \)'th copy of \(\mathcal{A}_1 \) in \(\mathcal{A}_1^N \). As our notation \(\overline{B}^{(N)} \) indicates, this is just the 'average' of \(B \) over all copies of \(\mathcal{A}_1 \).More generally, in forming \(j_{NM}(A_M) \) an operator \(A_M \in \mathcal{A}_1^M \) that involves \(M \) sites is averaged over \(N \geq M \) sites. When \(N \to \infty \) this means that one forms a macroscopic average of an \(M \)-particle operator.

We say that a sequence \(\mathcal{A} = (A_1, A_2, \cdots) \) with \(A_N \in \mathcal{A}_1^N \) is symmetric when

\[\mathcal{A}_N = j_{NM}(A_M) \]

for some fixed \(M \) and all \(N \geq M \). In other words, the tail of a symmetric sequence entirely consists of 'averaged' or 'intensive' observables, which become macroscopic in the limit \(N \to \infty \). Such sequences have the important property that they commute in this limit; more precisely, if \(\mathcal{A} \) and \(\mathcal{A}' \) are symmetric sequences, then

\[\lim_{N \to \infty} \| A_N A'_N - A'_N A_N \| = 0. \]

As an enlightening special case we take \(A_N = j_{N1}(B) \) and \(A'_N = j_{N1}(C) \) with \(B, C \in \mathcal{A}_1 \). One immediately obtains from the relation \([B_{(k)}, C_{(l)}] = 0 \) for \(k \neq l \) that

\[\left[\overline{B}^{(N)}, \overline{C}^{(N)} \right] = \frac{1}{N} [B, C]^{(N)}. \]

For example, if \(\mathcal{A}_1 = M_2(\mathbb{C}) \) and if for \(B \) and \(C \) one takes the spin-\(\frac{1}{2} \) operators \(S_j = \frac{\hbar}{2} \sigma_j \) for \(j = 1, 2, 3 \) (where \(\sigma_j \) are the Pauli matrices), then

\[\left[\overline{S}_j^{(N)}, \overline{S}_k^{(N)} \right] = i \frac{\hbar}{N} \epsilon_{jkl} \overline{S}_l^{(N)}. \]

This shows that averaging one-particle operators leads to commutation relations formally like those of the one-particle operators in question, but with Planck's constant \(\hbar \) replaced by a variable \(\hbar/N \). For constant \(\hbar = 1 \) this leads to the interval (1) over which our continuous field of \(C^* \)-algebras is defined; for any other constant value of \(\hbar \) the field would be defined over \(\mathcal{I} = 0 \cup \hbar/N \), which of course merely changes the labeling of the \(C^* \)-algebras in question.

We return to the general case, and denote a section of the field with fibers (2) by a sequence \(\mathcal{A} = (A_0, A_1, A_2, \cdots) \), with \(A_0 \in \mathcal{A}_0^{(c)} \) and \(A_N \in \mathcal{A}_1^N \) as before
(i.e. the corresponding section is $0 \mapsto A_0$ and $1/N \mapsto A_N$). We then complete the definition of our continuous field by declaring that a sequence A defines a continuous section iff:

- (A_1, A_2, \cdots) is approximately symmetric, in the sense that for any $\varepsilon > 0$ there is an N_ε and a symmetric sequence A' such that $\|A_N - A'_N\| < \varepsilon$ for all $N \geq N_\varepsilon$;261

- $A_0(\omega) = \lim_{N \to \infty} \omega^N(A_N)$, where $\omega \in S(A_1)$ and $\omega^N \in S(A_1^N)$ is the tensor product of N copies of ω, defined by (linear and continuous) extension of

\begin{equation}
\omega^N(B_1 \otimes \cdots \otimes B_N) = \omega(B_1) \cdots \omega(B_N).
\end{equation}

This limit exists by definition of an approximately symmetric sequence.262

It is not difficult to prove that this choice of continuous sections indeed defines a continuous field of C^*-algebras over $I = 0 \cup 1/N$ with fibers (2). The main point is that

\begin{equation}
\lim_{N \to \infty} \|A_N\| = \|A_0\|
\end{equation}

whenever (A_0, A_1, A_2, \cdots) satisfies the two conditions above.263 This is easy to show for symmetric sequences,264 and follows from this for approximately symmetric ones.

Consistent with (8), we conclude that in the limit $N \to \infty$ the macroscopic observables organize themselves in a commutative C^*-algebra isomorphic to $C(S(A_1))$.

6.2 Quasilocal observables

In the C^*-algebraic approach to quantum theory, infinite systems are usually described by means of inductive limit C^*-algebras and the associated quasilocal

261 A symmetric sequence is evidently approximately symmetric.

262 If (A_1, A_2, \cdots) is symmetric with (7), one has $\omega^N(A_N) = \omega^M(A_M)$ for $N > M$, so that the tail of the sequence $(\omega^N(A_N))$ is even independent of N. In the approximately symmetric case one easily proves that $(\omega^N(A_N))$ is a Cauchy sequence.

263 Given (12), the claim follows from Prop. II.1.2.3 in Landsman [1998] and the fact that the set of functions A_0 on $S(A_1)$ arising in the said way are dense in $C(S(A_1))$ (equipped with the supremum-norm). This follows from the Stone–Weierstrass theorem, from which one infers that the functions in question even exhaust $S(A_1)$.

264 Assume (7), so that $\|A_N\| = \|\omega_N(A_N)\|$ for $N \geq M$. By the C^*-axiom $\|A^*A\| = \|A^2\|$ it suffices to prove (12) for $A_0^* = A_0$, which implies $A_N^* = A_N$ and hence $A_N^* = A_N$ for all $N \geq M$. One then has $\|A_N\| = \sup\{|\rho(A_N)/\rho \in S(A_1^N)\}$. Because of the special form of A_N one may replace the supremum over the set $S(A_1^N)$ of all states on A_1^N by the supremum over the set $S^p(A_1^N)$ of all permutation invariant states, which in turn may be replaced by the supremum over the extreme boundary $\partial S^p(A_1^N)$ of $S^p(A_1^N)$. It is well known ([Størmer, 1969]; see also Subsection 6.2) that the latter consists of all states of the form $\rho = \omega^N$, so that $\|A_N\| = \sup\{|\omega^N(A_N)/\omega \in S(A_1)\}$. This is actually equal to $\|A_M\| = \sup\{|\omega^M(A_M)/\omega \in S(A_1)\}$. Now the norm in $A_0^0 = \|A_0\| = \sup\{|A_0(\omega)/\omega \in S(A_1)\}$, and by definition of A_0 one has $A_0(\omega) = \omega^M(A_M)$. Hence (12) follows.
observables [Thirring, 1983; Strocchi, 1985; Bratteli and Robinson, 1981; 1987; Haag, 1992; Araki, 1999; Sewell, 1986; 2002]. To arrive at these notions in the case at hand, we proceed as follows [Duffield and Werner, 1992c].

A sequence \(A = (A_1, A_2, \cdots) \) (where \(A_N \in A_1^N \), as before) is called \textit{local} when for some fixed \(M \) and all \(N \geq M \) one has \(A_N = A_M \otimes 1 \otimes \cdots \otimes 1 \) (where one has \(N - M \) copies of the unit \(1 \in A_1 \)); cf. (4). A sequence is said to be \textit{quasilocal} when for any \(\varepsilon > 0 \) there is an \(N_\varepsilon \) and a local sequence \(A' \) such that ||\(A_N - A'_N || < \varepsilon \) for all \(N \geq N_\varepsilon \). On this basis, we define the \textit{inductive limit} \(C^* \)-algebra

\[(13) \quad \bigcup_{N \in \mathbb{N}} A_1^N \]

of the family of \(C^* \)-algebras \((A_1^N) \) with respect to the inclusion maps \(A_1^N \hookrightarrow A_1^{N+1} \) given by \(A_N \mapsto A_N \otimes 1 \). As a set, (13) consists of all equivalence classes \([A] \equiv A_0 \) of quasilocal sequences \(A \) under the equivalence relation \(A \sim B \) when \(\lim_{N \to \infty} ||A_N - B_N|| = 0 \). The norm on \(\bigcup_{N \in \mathbb{N}} A_1^N \) is

\[(14) \quad ||A_0|| = \lim_{N \to \infty} ||A_N||, \]

and the rest of the \(C^* \)-algebraic structure is inherited from the quasilocal sequences in the obvious way (e.g., \(A_0^* = [A^*] \) with \(A^* = (A_1^*, A_2^*, \cdots) \), etc.). As the notation suggests, each \(A_1^N \) is contained in \(\bigcup_{N \in \mathbb{N}} A_1^N \) as a \(C^* \)-subalgebra by identifying \(A_N \in A_1^N \) with the local (and hence quasilocal) sequence \(A = (0, \cdots, 0, A_N \otimes 1, A_N \otimes 1 \otimes 1, \cdots) \), and forming its equivalence class \(A_0 \) in \(\bigcup_{N \in \mathbb{N}} A_1^N \) as just explained.265 The assumption underlying the common idea that (13) is "the" algebra of observables of the infinite system under study is that by locality or some other human limitation the infinite tail of the system is not accessible, so that the observables must be arbitrarily close (i.e. in norm) to operators of the form \(A_N \otimes 1 \otimes 1, \cdots \) for some \textit{finite} \(N \).

This leads us to a second continuous field of \(C^* \)-algebras \(\mathcal{A}^{(q)} \) over \(0 \cup \mathbb{N} \), with fibers

\[(15) \quad A^{(q)}_{1/N} = A_1^N. \]

Thus, the suffix \(q \) reminds one of that fact that the limit algebra \(A_0^{(q)} \) consists of quasilocal or quantum-mechanical observables. We equip the collection of \(C^* \)-algebras (15) with the structure of a continuous field of \(C^* \)-algebras \(\mathcal{A}^{(q)} \) over \(0 \cup \mathbb{N} \) by declaring that the continuous sections are of the form \((A_0, A_1, A_2, \cdots) \) where \((A_1, A_2, \cdots) \) is quasilocal and \(A_0 \) is defined by this quasilocal sequence as just explained.266 For \(N < \infty \) this field has the same fibers

\[(16) \quad A^{(q)}_{1/N} = A^{(c)}_{1/N} = A_1^N. \]

265Of course, the entries \(A_1, \cdots A_{N-1} \), which have been put to zero, are arbitrary.

266The fact that this defines a continuous field follows from (14) and Prop. II.1.2.3 in [Landsman, 1998]; cf. footnote 263.
as the continuous field \mathcal{A} of the previous subsection, but the fiber $\mathcal{A}_0^{(q)}$ is completely different from $\mathcal{A}_0^{(c)}$. In particular, if \mathcal{A}_1 is noncommutative then so is $\mathcal{A}_0^{(q)}$, for it contains all \mathcal{A}_1^N.

The relationship between the continuous fields of C^*-algebras $\mathcal{A}^{(q)}$ and $\mathcal{A}^{(c)}$ may be studied in two different (but related) ways. First, we may construct concrete representations of all C^*-algebras \mathcal{A}_0^N, $N < \infty$, as well as of $\mathcal{A}_0^{(c)}$ and $\mathcal{A}_0^{(q)}$ on a single Hilbert space; this approach leads to superselections rules in the traditional sense. This method will be taken up in the next subsection. Second, we may look at those families of states $(\omega_1, \omega_{1/2}, \ldots, \omega_{1/N}, \ldots)$ (where $\omega_{1/N}$ is a state on \mathcal{A}_1^N) that admit limit states $\omega_0^{(c)}$ and $\omega_0^{(q)}$ on $\mathcal{A}_0^{(c)}$ and $\mathcal{A}_0^{(q)}$, respectively, such that the ensuing families of states $(\omega_0^{(c)}, \omega_1, \omega_{1/2}, \ldots)$ and $(\omega_0^{(q)}, \omega_1, \omega_{1/2}, \ldots)$ are continuous fields of states on $\mathcal{A}^{(c)}$ and on $\mathcal{A}^{(q)}$, respectively (cf. the end of Subsection 5.1).

Now, any state $\omega_0^{(q)}$ on $\mathcal{A}_0^{(q)}$ defines a state $\omega_{0|1/N}^{(q)}$ on \mathcal{A}_1^N by restriction, and the ensuing field of states on $\mathcal{A}^{(q)}$ is clearly continuous. Conversely, any continuous field $(\omega_0^{(q)}, \omega_1, \omega_{1/2}, \ldots, \omega_{1/N}, \ldots)$ of states on $\mathcal{A}^{(q)}$ becomes arbitrarily close to a field of the above type for N large.\footnote{For any fixed quasilocal sequence (A_1, A_2, \ldots) and $\varepsilon > 0$, there is an N_ε such that $|\omega_{1/N}(A_N) - \omega_{0|1/N}^{(q)}(A_N)| < \varepsilon$ for all $N > N_\varepsilon$.} However, the restrictions $\omega_{0|1/N}^{(q)}$ of a given state $\omega_0^{(q)}$ on $\mathcal{A}_0^{(q)}$ to \mathcal{A}_1^N may not converge to a state $\omega_0^{(c)}$ on $\mathcal{A}_0^{(c)}$ for $N \to \infty$.\footnote{See footnote 288 below for an example.} States $\omega_0^{(q)}$ on $\bigcup_{N \in \mathbb{N}} \mathcal{A}_1^N$ that do have this property will here be called classical. In other words, $\omega_{0|1/N}^{(q)}$ is classical when there exists a probability measure μ_0 on $\mathcal{S}(\mathcal{A}_1)$ such that

\begin{equation}
\lim_{N \to \infty} \int_{\mathcal{S}(\mathcal{A}_1)} d\mu_0(\rho) \left(\rho^N(A_N) - \omega_{0|1/N}^{(q)}(A_N) \right) = 0
\end{equation}

for each (approximately) symmetric sequence (A_1, A_2, \ldots). To analyze this notion we need a brief intermezzo on general C^*-algebras and their representations.

- A folium in the state space $\mathcal{S}(\mathcal{B})$ of a C^*-algebra \mathcal{B} is a convex, norm-closed subspace \mathcal{F} of $\mathcal{S}(\mathcal{B})$ with the property that if $\omega \in \mathcal{F}$ and $B \in \mathcal{B}$ such that $\omega(B^*B) > 0$, then the "reduced" state $\omega_B : A \mapsto \omega(B^*AB)/\omega(B^*B)$ must be in \mathcal{F} [Haag et al., 1970].\footnote{See also [Haag, 1992]. The name ‘folium’ is very badly chosen, since $\mathcal{S}(\mathcal{B})$ is by no means foliated by its folia; for example, a folium may contain subfolia.} For example, if π is a representation of \mathcal{B} on a Hilbert space \mathcal{H}, then the set of all density matrices on \mathcal{H} (i.e. the π-normal states on \mathcal{B})\footnote{A state ω on \mathcal{B} is called π-normal when it is of the form $\omega(B) = \text{Tr} \rho \pi(B)$ for some density matrix ρ. Hence the π-normal states are the normal states on the von Neumann algebra $\pi(\mathcal{B})''$.} comprises a folium \mathcal{F}_π. In particular, each state ω on \mathcal{B} defines a folium $\mathcal{F}_\omega \equiv \mathcal{F}_{\pi_\omega}$ through its GNS-representation π_ω.
vice versa. They are said to be quasi-equivalent, written $\pi \sim \pi'$, when π has no subrepresentation disjoint from π', and vice versa.271 Quasi-equivalence is an equivalence relation \sim on the set of representations. See [Kadison and Ringrose, 1986, Ch. 10].

- Similarly, two states ρ, σ are called either quasi-equivalent ($\rho \sim \sigma$) or disjoint ($\rho \perp \sigma$) when the corresponding GNS-representations have these properties.

- A state ω is called primary when the corresponding von Neumann algebra $\pi_\omega(B)'$ is a factor.272 Equivalently, ω is primary iff each subrepresentation of $\pi_\omega(B)$ is quasi-equivalent to $\pi_\omega(B)$, which is the case iff $\pi_\omega(B)$ admits no (nontrivial) decomposition as the direct sum of two disjoint subrepresentations.

Now, there is a bijective correspondence between folia in $S(B)$ and quasi-equivalence classes of representations of B, in that $\mathcal{F}_\pi = \mathcal{F}_{\pi'}$ iff $\pi \sim \pi'$. Furthermore (as one sees from the GNS-construction), any folium $\mathcal{F} \subset S(B)$ is of the form $\mathcal{F} = \mathcal{F}_\pi$ for some representation $\pi(B)$. Note that if π is injective (i.e. faithful), then the corresponding folium is dense in $S(B)$ in the weak*-topology by Fell’s Theorem. So in case that B is simple,273 any folium is weak*-dense in the state space.

Two states need not be either disjoint or quasi-equivalent. This dichotomy does apply, however, within the class of primary states. Hence two primary states are either disjoint or quasi-equivalent. If ω is primary, then each state in the folium of π_ω is primary as well, and is quasi-equivalent to ω. If, on the other hand, ρ and σ are primary and disjoint, then $\mathcal{F}_\rho \cap \mathcal{F}_\sigma = \emptyset$. Pure states are, of course, primary.274 Furthermore, in thermodynamics pure phases are described by primary KMS states [Emch and Knops, 1970; Bratteli and Robinson, 1981; Haag, 1992; Sewell, 2002]. This apparent relationship between primary states and “purity” of some sort is confirmed by our description of macroscopic observables.275

- If $\omega^{(q)}_0$ is a classical primary state on $A_0^{(q)} = \bigcup_{N \in \mathbb{N}} A_1^N$, then the corresponding limit state $\omega^{(c)}_0$ on $A_0^{(c)} = C(S(A_1))$ is pure (and hence given by a point in $S(A_1)$).

271 Equivalently, two representations π and π' are disjoint iff no π-normal state is π'-normal and vice versa, and quasi-equivalent iff each π-normal state is π'-normal and vice versa.

272 A von Neumann algebra \mathcal{M} acting on a Hilbert space is called a factor when its center $\mathcal{M} \cap \mathcal{M}'$ is trivial, i.e. consists of multiples of the identity.

273 In the sense that it has no closed two-sided ideals. For example, the matrix algebra $M_n(\mathbb{C})$ is simple for any n, as is its infinite-dimensional analogue, the C^*-algebra of all compact operators on a Hilbert space. The C^*-algebra of quasilocal observables of an infinite quantum systems is typically simple as well.

274 Since the corresponding GNS-representation π_ω is irreducible, $\pi_\omega(B)' = B(\mathcal{H}_\omega)$ is a factor.

275 These claims easily follow from Sewell [2002], §2.6.5, which in turn relies on Hepp [1972].
If $\rho_0^{(q)}$ and $\sigma_0^{(q)}$ are classical primary states on $A_0^{(q)}$, then

\begin{align}
(18) & \quad \rho_0^{(c)} = \sigma_0^{(c)} \iff \rho_0^{(q)} \sim \sigma_0^{(q)}; \\
(19) & \quad \rho_0^{(c)} \neq \sigma_0^{(c)} \iff \rho_0^{(q)} \perp \sigma_0^{(q)}.
\end{align}

As in (17), a general classical state $\omega_0^{(q)}$ with limit state $\omega_0^{(c)}$ on $C(S(A_1))$ defines a probability measure μ_0 on $S(A_1)$ by

\begin{equation}
\omega_0^{(c)}(f) = \int_{S(A_1)} d\mu_0 f,
\end{equation}

which describes the probability distribution of the macroscopic observables in that state. As we have seen, this distribution is a delta function for primary states. In any case, it is insensitive to the microscopic details of $\omega_0^{(q)}$ in the sense that local modifications of $\omega_0^{(q)}$ do not affect the limit state $\omega_0^{(c)}$ [Sewell, 2002]. Namely, it easily follows from (8) and the fact that the GNS-representation is cyclic that one can strengthen the second claim above:

Each state in the folium $\mathcal{F}_{\omega_0^{(q)}}$ of a classical state $\omega_0^{(q)}$ is automatically classical and has the same limit state on $A_0^{(c)}$ as $\omega_0^{(q)}$.

To make this discussion a bit more concrete, we now identify an important class of classical states on $\bigcup_{N \in \mathbb{N}} A_1^N$. We say that a state ω on this C^*-algebra is permutation-invariant when each of its restrictions to A_1^N is invariant under the natural action of the symmetric group \mathfrak{S}_N on A_1^N (i.e. $\sigma \in \mathfrak{S}_N$ maps an elementary tensor $A_N = B_1 \otimes \cdots \otimes B_N \in A_1^N$ to $B_{\sigma(1)} \otimes \cdots \otimes B_{\sigma(N)}$, cf. (5)). The structure of the set $S^\mathfrak{S}$ of all permutation-invariant states in $S(A_0^{(q)})$ has been analyzed by Størmer [1969]. Like any compact convex set, it is the (weak*-closed) convex hull of its extreme boundary $\partial_e S^\mathfrak{S}$. The latter consists of all infinite product states $\omega = \rho^\infty$, where $\rho \in S(A_1)$. I.e. if $A_0 \in A_0^{(q)}$ is an equivalence class $\{A_1, A_2, \cdots\}$, then

\begin{equation}
\rho^\infty(A_0) = \lim_{N \to \infty} \rho^N(A_N);
\end{equation}

cf. (11). Equivalently, the restriction of ω to any $A_1^N \subset A_0^{(q)}$ is given by $\otimes^N \rho$. Hence $\partial_e S^\mathfrak{S}$ is isomorphic (as a compact convex set) to $S(A_1)$ in the obvious way, and the primary states in $S^\mathfrak{S}$ are precisely the elements of $\partial_e S^\mathfrak{S}$.
A general state $\omega^{(q)}_0$ in S^S has a unique decomposition\(^{276}\)

\[
(22) \quad \omega^{(q)}_0(A_0) = \int_{S(A_0)} d\mu(\rho) \rho^\infty(A_0),
\]

where μ is a probability measure on $S(A_1)$ and $A_0 \in A^{(q)}_0$.\(^{277}\) The following beautiful illustration of the abstract theory [Unnerstall, 1990a,b] is then clear from (17) and (22):

If $\omega^{(q)}_0$ is permutation-invariant, then it is classical. The associated limit state $\omega^{(c)}_0(A^{(c)}_0)$ is characterized by the fact that the measure μ_0 in (20) coincides with the measure μ in (22).\(^{278}\)

6.3 Superselection rules

Infinite quantum systems are often associated with the notion of a superselection rule (or sector), which was originally introduced by Wick, Wightman and Wigner [1952] in the setting of standard quantum mechanics on a Hilbert space \mathcal{H}. The basic idea may be illustrated in the example of the boson/fermion (or "univalence") superselection rule.\(^{279}\) Here one has a *projective* unitary representation \mathcal{D} of the rotation group $SO(3)$ on \mathcal{H}, for which $\mathcal{D}(R_{2\pi}) = \pm 1$ for any rotation $R_{2\pi}$ of 2π around some axis. Specifically, on bosonic states Ψ_B one has $\mathcal{D}(R_{2\pi})\Psi_B = \Psi_B$, whereas on fermionic states Ψ_F the rule is $\mathcal{D}(R_{2\pi})\Psi_F = -\Psi_F$. Now the argument is that a rotation of 2π accomplishes nothing, so that it cannot change the physical state of the system. This requirement evidently holds on the subspace $\mathcal{H}_B \subset \mathcal{H}$ of bosonic states in \mathcal{H}, but it is equally well satisfied on the subspace $\mathcal{H}_F \subset \mathcal{H}$ of fermionic states, since Ψ and $z\Psi$ with $|z| = 1$ describe the same physical state. However, if $\Psi = c_B \Psi_B + c_F \Psi_F$ (with $|c_B|^2 + |c_F|^2 = 1$), then $\mathcal{D}(R_{2\pi})\Psi = c_B \Psi_B - c_F \Psi_F$, which is not proportional to Ψ and apparently describes a genuinely different physical state from Ψ.

The way out is to deny this conclusion by declaring that $\mathcal{D}(R_{2\pi})\Psi$ and Ψ do describe the same physical state, and this is achieved by postulating that no phys-

\(^{276}\)This follows because S^S is a so-called Bauer simplex [Alfsen, 1970]. This is a compact convex set K whose extreme boundary $\partial_e K$ is closed and for which every $\omega \in K$ has a *unique* decomposition as a probability measure supported by $\partial_e K$, in the sense that $a(\omega) = \int_{\partial_e K} d\mu(\rho) a(\rho)$ for any continuous affine function a on K. For a unital C^*-algebra A the continuous affine functions on the state space $K = S(A)$ are precisely the elements \hat{A} of A, reinterpreted as functions \hat{A} on $S(A)$ by $\hat{A}(\omega) = \omega(A)$. For example, the state space $S(A)$ of a commutative unital C^*-algebra A is a Bauer simplex, which consists of all (regular Borel) probability measures on the pre state space $\mathcal{P}(A)$.

\(^{277}\)This is a quantum analogue of De Finetti’s representation theorem in classical probability theory [Heath and Sudderth, 1976; van Fraassen, 1991]; see also [Hudson and Moody, 1975/76] and [Caves et al., 2002].

\(^{278}\)In fact, each state in the folium S^S in $S(A^{(q)}_0)$ corresponding to the (quasi-equivalence class of) the representation $\Theta_{[\omega \in S^S]} \pi_\omega$ is classical.

\(^{279}\)See also [Giulini, 2003] for a modern mathematical treatment.
ical observables A (in their usual mathematical guise as operators on \mathcal{H}) exist for which $(\Psi_B, A\Psi_F) \neq 0$. For in that case one has

$$\langle c_B \Psi_B \pm c_F \Psi_F, A(c_B \Psi_B \pm c_F \Psi_F) \rangle = |c_B|^2 \langle \Psi_B, A\Psi_B \rangle + |c_F|^2 \langle \Psi_F, A\Psi_F \rangle$$

for any observable A, so that $(D(R_{2\pi})\Psi, A D(R_{2\pi})\Psi) = (\Psi, A\Psi)$ for any $\Psi \in \mathcal{H}$. Since any quantum-mechanical prediction ultimately rests on expectation values $(\Psi, A\Psi)$ for physical observables A, the conclusion is that a rotation of 2π indeed does nothing to the system. This is codified by saying that superpositions of the type $c_B \Psi_B + c_F \Psi_F$ are incoherent (whereas superpositions $c_1 \Psi_1 + c_2 \Psi_2$ with Ψ_1, Ψ_2 both in either \mathcal{H}_B or in \mathcal{H}_F are coherent). Each of the subspaces \mathcal{H}_B and \mathcal{H}_F of \mathcal{H} is said to be a superselection sector, and the statement that $(\Psi_B, A\Psi_F) = 0$ for any observable A and $\Psi_B \in \mathcal{H}_B$ and $\Psi_F \in \mathcal{H}_F$ is called a superselection rule.\[\text{280}\]

The price one pays for this solution is that states of the form $c_B \Psi_B + c_F \Psi_F$ with $c_B \neq 0$ and $c_F \neq 0$ are mixed, as one sees from (23). More generally, if $\mathcal{H} = \bigoplus_{\lambda \in \Lambda} \mathcal{H}_\lambda$ with $(\Psi, A\Phi) = 0$ whenever A is an observable, $\Psi \in \mathcal{H}_\lambda$, $\Phi \in \mathcal{H}_\lambda'$, and $\lambda \neq \lambda'$, and if in addition for each λ and each pair $\Psi, \Phi \in \mathcal{H}_\lambda$ there exists an observable A for which $(\Psi, A\Phi) \neq 0$, then the subspaces \mathcal{H}_λ are called superselection sectors in \mathcal{H}. Again a key consequence of the occurrence of superselection sectors is that unit vectors of the type $\Psi = \sum_\lambda c_\lambda \Psi_\lambda$ with $\Psi \in \mathcal{H}_\lambda$ (and $c_\lambda \neq 0$ for at least two λ's) define mixed states

$$\psi(A) = (\Psi, A\Psi) = \sum_\lambda |c_\lambda|^2 \langle \Psi_\lambda, A\Psi_\lambda \rangle = \sum_\lambda |c_\lambda|^2 \psi_\lambda(A).$$

This procedure is rather ad hoc. A much deeper approach to superselection theory was developed by Haag and collaborators; see [Roberts and Ropstorf, 1969] for an introduction. Here the starting point is the abstract C^*-algebra of observables \mathcal{A} of a given quantum system, and superselection sectors are reinterpreted as equivalence classes (under unitary isomorphism) of irreducible representations of \mathcal{A} (satisfying a certain selection criterion — see below). The connection between the concrete Hilbert space approach to superselection sectors discussed above and the abstract C^*-algebraic approach is given by the following lemma [Hepp, 1972].\[\text{281}\]

Two pure states ρ, σ on a C^*-algebra \mathcal{A} define different sectors iff for each representation $\pi(\mathcal{A})$ on a Hilbert space \mathcal{H} containing unit vectors Ψ_ρ, Ψ_σ such that $\rho(A) = (\Psi_\rho, \pi(A)\Psi_\rho)$ and $\sigma(A) = (\Psi_\sigma, \pi(A)\Psi_\sigma)$ for all $A \in \mathcal{A}$, one has $\langle \Psi_\rho, \pi(A)\Psi_\sigma \rangle = 0$ for all $A \in \mathcal{A}$.

In practice, however, most irreducible representations of a typical C^*-algebra \mathcal{A} used in physics are physically irrelevant mathematical artefacts. Such representations may be excluded from consideration by some selection criterion. What this

\[\text{280}\text{In an ordinary selection rule between Ψ and Φ one merely has $(\Psi, H\Phi) = 0$ for the Hamiltonian H.}\]

\[\text{281}\text{Hepp proved a more general version of this lemma, in which 'Two pure states ρ, σ on a C^*-algebra \mathcal{B} define different sectors iff...' is replaced by 'Two states ρ, σ on a C^*-algebra \mathcal{B} are disjoint iff...'}\]
means depends on the context. For example, in quantum field theory this notion is made precise in the so-called DHR theory (reviewed by Roberts [1990], Haag [1992], Araki [1999], and Halvorson [2005]). In the class of theories discussed in the preceding two subsections, we take the algebra of observables \(\mathcal{A} \) to be \(\mathcal{A}_0^{(q)} \) — essentially for reasons of human limitation — and for pedagogical reasons define (equivalence classes of) irreducible representations of \(\mathcal{A}_0^{(q)} \) as superselection sectors, henceforth often just called sectors, only when they are equivalent to the GNS-representation given by a permutation-invariant pure state on \(\mathcal{A}_0^{(q)} \). In particular, such a state is classical. On this selection criterion, the results in the preceding subsection trivially imply that there is a bijective correspondence between pure states on \(\mathcal{A}_1 \) and sectors of \(\mathcal{A}_0^{(q)} \). The sectors of the commutative \(\mathcal{C}^* \)-algebra \(\mathcal{A}_0^{(c)} \) are just the points of \(\mathcal{S}(\mathcal{A}_1) \); note that a mixed state on \(\mathcal{A}_1 \) defines a pure state on \(\mathcal{A}_0^{(c)} \)!

The role of the sectors of \(\mathcal{A}_1 \) in connection with those of \(\mathcal{A}_0^{(c)} \) will be clarified in Subsection 6.5.

Whatever the model or the selection criterion, it is enlightening (and to some extent even in accordance with experimental practice) to consider superselection sectors entirely from the perspective of the pure states on the algebra of observables \(\mathcal{A} \), removing \(\mathcal{A} \) itself and its representations from the scene. To do so, we equip the space \(\mathcal{P}(\mathcal{A}) \) of pure states on \(\mathcal{A} \) with the structure of a transition probability space [von Neumann, 1981; Mielnik, 1968].

A transition probability on a set \(\mathcal{P} \) is a function

\[
(24) \quad p : \mathcal{P} \times \mathcal{P} \to [0, 1]
\]

that satisfies

\[
(25) \quad p(\rho, \sigma) = 1 \iff \rho = \sigma
\]

and

\[
(26) \quad p(\rho, \sigma) = 0 \iff p(\sigma, \rho) = 0.
\]

A set with such a transition probability is called a transition probability space. Now, the pure state space \(\mathcal{P}(\mathcal{A}) \) of a \(\mathcal{C}^* \)-algebra \(\mathcal{A} \) carries precisely this structure if we define

\[
(27) \quad p(\rho, \sigma) := \inf \{ \rho(A) \mid A \in \mathcal{A}, 0 \leq A \leq 1, \sigma(A) = 1 \}.
\]

To give a more palatable formula, note that since pure states are primary, two pure states \(\rho, \sigma \) are either disjoint \((\rho \perp \sigma) \) or else (quasi, hence unitarily) equivalent \((\rho \sim \sigma) \). In the first case, (27) yields

\[
(28) \quad p(\rho, \sigma) = 0 \quad (\rho \perp \sigma).
\]

282 See also [Beltrametti and Cassinelli, 1984] or [Landsman, 1998] for concise reviews.

283 This definition applies to the case that \(\mathcal{A} \) is unital; see [Landsman, 1998] for the general case. An analogous formula defines a transition probability on the extreme boundary of any compact convex set.
In the second case it follows from Kadison's transitivity theorem (cf. Thm. 10.2.6 in [Kadison and Ringrose, 1986]) that the Hilbert space \mathcal{H}_ρ from the GNS-representation $\pi_\rho(A)$ defined by ρ contains a unit vector Ω_σ (unique up to a phase) such that

$$\sigma(A) = (\Omega_\sigma, \pi_\rho(A)\Omega_\sigma).$$

Eq. (27) then leads to the well-known expression

$$p(\rho, \sigma) = |(\Omega_\rho, \Omega_\sigma)|^2 \ (\rho \sim \sigma).$$

In particular, if A is commutative, then

$$p(\rho, \sigma) = \delta_{\rho\sigma}.$$

For $A = M_2(\mathbb{C})$ one obtains

$$p(\rho, \sigma) = \frac{1}{2}(1 + \cos \theta_{\rho\sigma}),$$

where $\theta_{\rho\sigma}$ is the angular distance between ρ and σ (seen as points on the two-sphere $S^2 = \partial eB^3$, cf. (3) etc.), measured along a great circle.

Superselection sectors may now be defined for any transition probability spaces \mathcal{P}. A family of subsets of \mathcal{P} is called orthogonal if $p(\rho, \sigma) = 0$ whenever ρ and σ do not lie in the same subset. The space \mathcal{P} is called reducible if it is the union of two (nonempty) orthogonal subsets; if not, it is said to be irreducible. A component of \mathcal{P} is a subset $\mathcal{C} \subset \mathcal{P}$ such that \mathcal{C} and $\mathcal{P}\setminus\mathcal{C}$ are orthogonal. An irreducible component of \mathcal{P} is called a (superselection) sector. Thus \mathcal{P} is the disjoint union of its sectors. For $\mathcal{P} = \mathcal{P}(A)$ this reproduces the algebraic definition of a superselection sector (modulo the selection criterion) via the correspondence between states and representations given by the GNS-constructions. For example, in the commutative case $A \cong C(X)$ each point in $X \cong \mathcal{P}(A)$ is its own little sector.

6.4 A simple example: the infinite spin chain

Let us illustrate the occurrence of superselection sectors in a simple example, where the algebra of observables is $A_0^{(q)}$ with $A_1 = M_2(\mathbb{C})$. Let $\mathcal{H}_1 = \mathbb{C}^2$, so that $\mathcal{H}_1^N = \otimes^N \mathbb{C}^2$ is the tensor product of N copies of \mathbb{C}^2. It is clear that A_1^N acts on \mathcal{H}_1^N in a natural way (i.e. componentwise). This defines an irreducible representation π_N of A_1^N, which is indeed its unique irreducible representation (up to unitary equivalence). In particular, for $N < \infty$ the quantum system whose algebra of observables is A_1^N (such as a chain with N two-level systems) has no superselection rules. We define the $N \to \infty$ limit \((M_2(\mathbb{C}))^{\infty}\) of the C^*-algebras \((M_2(\mathbb{C}))^N\) as the inductive limit $A_0^{(q)}$ for $A_1 = M_2(\mathbb{C})$, as introduced in Subsection 6.2; see (13). The definition of \(\otimes^{\infty} \mathbb{C}^2\) is slightly more involved, as follows [von Neumann, 1938].

For any Hilbert space \mathcal{H}_1, let Ψ be a sequence (Ψ_1, Ψ_2, \ldots) with $\Psi_n \in \mathcal{H}_1$. The space \mathcal{H}_1 of such sequences is a vector space in the obvious way. Now let Ψ and Φ be two such sequences, and write $(\Psi_n, \Phi_n) = \exp(i\alpha_n)|(\Psi_n, \Phi_n)|$. If $\sum_n |\alpha_n| = \infty$, \(\Psi_n \Phi_n\) is a sequence of vectors in \mathcal{H}_1. The norm of this sequence is defined as $\left(\sum_n |\Psi_n^* \Phi_n|^2\right)^{1/2}$. This makes \mathcal{H}_1 a complete metric space. The C^*-algebra $A_0^{(q)}$ is then defined as the completion of $\left(\mathcal{H}_1, C^\infty(\mathbb{Z})\right)$ under the norm induced by the inner product $\langle \Psi, \Phi \rangle = \sum_n \Psi_n^* \Phi_n$.
we define the (pre-) inner product \((\Psi, \Phi)\) to be zero. If \(\sum_n |\alpha_n| < \infty\), we put \((\Psi, \Phi) = \prod_n (\Psi_n, \Phi_n)\) (which, of course, may still be zero!). The (vector space) quotient of \(\mathcal{H}_1\) by the space of sequences \(\Psi\) for which \((\Psi, \Psi) = 0\) can be completed to a Hilbert space \(\mathcal{H}_1^\infty\) in the induced inner product, called the complete infinite tensor product of the Hilbert space \(\mathcal{H}_1\) (over the index set \(\mathbb{N}\)).\(^{284}\) We apply this construction with \(\mathcal{H}_1 = \mathbb{C}^2\). If \((e_i)\) is some basis of \(\mathbb{C}^2\), an orthonormal basis of \(\mathcal{H}_1^\infty\) then consists of all different infinite strings \(e_{i_1} \otimes \cdots e_{i_n} \otimes \cdots\), where \(e_{i_n}\) is \(e_i\) regarded as a vector in \(\mathbb{C}^2\).\(^{285}\) We denote the multi-index \((i_1, \ldots, i_n, \ldots)\) simply by \(I\), and the corresponding basis vector by \(e_I\).

This Hilbert space \(\mathcal{H}_1^\infty\) carries a natural faithful representation \(\pi\) of \(\mathcal{A}_0^{(q)}\): if \(A_0 \in \mathcal{A}_0^{(q)}\) is an equivalence class \([A_1, A_2, \cdots]\), then \(\pi(A_0) e_I = \lim_{N \to \infty} A_N e_{i_N}\), where \(A_N\) acts on the first \(N\) components of \(e_I\) and leaves the remainder unchanged.\(^{286}\) Now the point is that although each \(A_N\) acts irreducibly on \(\mathcal{H}_1^N\), the representation \(\pi(A_0^{(q)})\) on \(\mathcal{H}_1^\infty\) thus constructed is highly reducible. The reason for this is that by definition (quasi-) local elements of \(\mathcal{A}_0^{(q)}\) leave the infinite tail of a vector in \(\mathcal{H}_1^\infty\) (almost) unaffected, so that vectors with different tails lie in different superselection sectors. Without the quasi-locality condition on the elements of \(\mathcal{A}_0^{(q)}\), no superselection rules would arise. For example, in terms of the usual basis

\[
\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}
\]

of \(\mathbb{C}^2\), the vectors \(\Psi_\uparrow = \uparrow \otimes \uparrow \cdots \uparrow \cdots\) (i.e. an infinite product of ‘up’ vectors) and \(\Psi_\downarrow = \downarrow \otimes \downarrow \cdots \downarrow \cdots\) (i.e. an infinite product of ‘down’ vectors) lie in different sectors. The reason why the inner product \((\Psi_\uparrow, \pi(A) \Psi_\downarrow)\) vanishes for any \(A \in \mathcal{A}_0^{(q)}\) is that for local observables \(A\) one has \(\pi(A) = A_M \otimes 1 \otimes 1 \cdots\) for some \(A_M \in \mathcal{B}(\mathcal{H}_M)\); the inner product in question therefore involves infinitely many factors \((\uparrow, 1 \downarrow) = (\uparrow, \downarrow) = 0\). For quasilocal \(A\) the operator \(\pi(A)\) might have a small nontrivial tail, but the inner product vanishes nonetheless by an approximation argument.

More generally, elementary analysis shows that \((\Psi_u, \pi(A) \Psi_v) = 0\) whenever \(\Psi_u = \otimes^\infty u\) and \(\Psi_v = \otimes^\infty v\) for unit vectors \(u, v \in \mathbb{C}^2\) with \(u \neq v\). The corresponding vector states \(\psi_u\) and \(\psi_v\) on \(\mathcal{A}_0^{(q)}\) (i.e. \(\psi_u(A) = (\Psi_u, \pi(A) \Psi_v)\) etc.) are obviously permutation-invariant and hence classical. Identifying \(S(M_2(\mathbb{C}))\) with \(B^3\), as in (3), the corresponding limit state \((\psi_u)_0\) on \(\mathcal{A}_0^{(c)}\) defined by \(\psi_u\) is given by (evaluation at) the point \(\bar{u} = (x, y, z)\) of \(\partial_e B^3 = S^2\) (i.e. the two-sphere) for which the corresponding density matrix \(\rho(\bar{u})\) is the projection operator onto \(u\).

\(^{284}\) Each fixed \(\Psi \in \mathcal{H}_1\) defines an incomplete tensor product \(\mathcal{H}_1^\infty\), defined as the closed subspace of \(\mathcal{H}_1^\infty\) consisting of all \(\Phi\) for which \(\sum_n |(\Psi_n, \Phi_n)| - 1\) is finite. If \(\mathcal{H}_1\) is separable, then so is \(\mathcal{H}_1^\infty\) (in contrast to \(\mathcal{H}_1^\infty\), which is an uncountable direct sum of the \(\mathcal{H}_1^N\)).

\(^{285}\) The cardinality of the set of all such strings equals that of \(\mathbb{R}\), so that \(\mathcal{H}_1^\infty\) is non-separable, as claimed.

\(^{286}\) Indeed, this yields an alternative way of defining \(\bigcup_{N \in \mathbb{N}} \mathcal{A}_1^N\) as the norm closure of the union of all \(\mathcal{A}_1^N\) acting on \(\mathcal{H}_1^\infty\) in the stated way.
follows that \(\psi_u \) and \(\psi_v \) are disjoint; cf. (19). We conclude that each unit vector \(u \in \mathbb{C}^2 \) determines a superselection sector \(\pi_u \), namely the GNS-representation of the corresponding state \(\psi_u \), and that each such sector is realized as a subspace \(\mathcal{H}_u \) of \(\mathcal{H}_1^{\infty} \) (viz. \(\mathcal{H}_u = \pi(A_0^{(q)})\psi_u \)). Moreover, since a permutation-invariant state on \(A_0^{(q)} \) is pure if and only if it is of the form \(\psi_u \), we have found all superselection sectors of our system. Thus in what follows we may concentrate our attention on the subspace (of \(\mathcal{H}_1^{\infty} \)) and subrepresentation (of \(\pi \))

\[
\mathcal{H}_\Theta = \bigoplus_{\bar{u} \in S^2} \mathcal{H}_u;
\]

\[
(34) \quad \pi_\Theta(A_0^{(q)}) = \bigoplus_{\bar{u} \in S^2} \pi_u(A_0^{(q)}),
\]

where \(\pi_u \) is simply the restriction of \(\pi \) to \(\mathcal{H}_u \subset \mathcal{H}_1^{\infty} \).

In the presence of superselection sectors one may construct operators that distinguish different sectors whilst being a multiple of the unit in each sector. In quantum field theory these are typically global charges, and in our example the macroscopic observables play this role. To see this, we return to Subsection 6.1. It is not difficult to show that for any approximately symmetric sequence \((A_1, A_2, \cdots) \) the limit

\[
(35) \quad \bar{A} = \lim_{N \to \infty} \pi_\Theta(A_N)
\]

exists in the strong operator topology on \(\mathcal{B}(\mathcal{H}_\Theta) \) [Bona, 1988]. Moreover, if \(A_0 \in \mathcal{A}_0^{(c)} = C(S(A_1)) \) is the function defined by the given sequence,\(^{287}\) then the map \(A_0 \to \bar{A} \) defines a faithful representation of \(\mathcal{A}_0^{(c)} \) on \(\mathcal{H}_\Theta \), which we call \(\pi_\Theta \) as well (by abuse of notation). An easy calculation in fact shows that \(\pi_\Theta(A_0)\Psi = A_0(\bar{u})\Psi \) for \(\Psi \in \mathcal{H}_u \), or, in other words,

\[
(36) \quad \pi_\Theta(A_0) = \bigoplus_{\bar{u} \in S^2} A_0(\bar{u})1_{\mathcal{H}_u}.
\]

Thus the \(\pi_\Theta(A_0) \) indeed serve as the operators in question.

To illustrate how delicate all this is, it may be interesting to note that even for symmetric sequences the limit \(\lim_{N \to \infty} \pi(A_N) \) does not exist on \(\mathcal{H}_1^{\infty} \), not even in the strong topology.\(^{288}\) On the positive side, it can be shown that \(\lim_{N \to \infty} \pi(A_N)\Psi \) exists as an element of the von Neumann algebra \(\pi(A_0^{(q)})'' \) whenever the vector state \(\psi \) defined by \(\Psi \) lies in the folium \(\mathcal{F}^S \) generated by all permutation-invariant states [Bona, 1988; Unnerstall, 1990a].

This observation is part of a general theory of macroscopic observables in the setting of von Neumann algebras [Primas, 1983; Rieckers, 1984; Amann, 1986; 1987; Morchio and Strocchi, 1987; Bona, 1988; 1989; Unnerstall, 1990a; 1990b; Breuer,

\(^{287}\) Recall that \(A_0(\omega) = \lim_{N \to \infty} \omega^N(A_N) \).

\(^{288}\) For example, let us take the sequence \(A_N = j_{N1}(\text{diag}(1,-1)) \) and the vector \(\Psi = \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \cdots \), where a sequence of \(2^N \) factors of \(\uparrow \) is followed by \(2^{N+1} \) factors of \(\downarrow \), etc. Then the sequence \(\{\pi(A_N)\Psi\}_{N \in \mathbb{N}} \) in \(\mathcal{H}_1^{\infty} \) diverges: the subsequence where \(N \) runs over all numbers \(2^n \) with \(n \) odd converges to \(\frac{1}{3} \Psi \), whereas the subsequence where \(N \) runs over all \(2^n \) with \(n \) even converges to \(-\frac{1}{3} \Psi \).
1994; Atmanspacher et al., 1999], which complements the purely C^*-algebraic approach of Raggio and Werner [1989; 1991], Duffield and Werner [1992a,b,c], and Duffield et al. [1992] explained above.\footnote{Realistic models have been studied in the context of both the C^*-algebraic and the von Neumann algebraic approach by Rieckers and his associates. See, for example, [Honegger and Rieckers, 1994; Gerisch et al., 1999; Gerisch, et al. 2003], and many other papers. For altogether different approaches to macroscopic observables see [van Kampen, 1954; 1988; 1993; Wan and Fountain, 1998; Harrison and Wan, 1997; Wan et al., 1998; Fröhlich et al., 2002], and [Poulin, 2004].} In our opinion, the latter has the advantage that conceptually the passage to the limit $N \to \infty$ (and thereby the idealization of a large system as an infinite one) is very satisfactory, especially in our reformulation in terms of continuous fields of C^*-algebras. Here the commutative C^*-algebra $A^{(c)}_0$ of macroscopic observables of the infinite system is glued to the noncommutative algebras $A^{(c)}_N$ of the corresponding finite systems in a continuous way, and the continuous sections of the ensuing continuous field of C^*-algebras $A^{(c)}$ exactly describe how macroscopic quantum observables of the finite systems converge to classical ones. Microscopic quantum observables of the pertinent finite systems, on the other hand, converge to quantum observables of the infinite quantum system, and this convergence is described by the continuous sections of the continuous field of C^*-algebras $A^{(g)}$. This entirely avoids the language of superselection rules, which rather displays a shocking discontinuity between finite and infinite systems: for superselection rules do not exist in finite systems!\footnote{We here refer to superselection rules in the traditional sense of inequivalent irreducible representations of simple C^*-algebras. For topological reasons certain finite-dimensional systems are described by (non-simple) C^*-algebras that do admit inequivalent irreducible representations [Landsman, 1990a,b].}

6.5 Poisson structure and dynamics

We now pass to the discussion of time-evolution in infinite systems of the type considered so far. We start with the observation that the state space $S(B)$ of a finite-dimensional C^*-algebra B (for simplicity assumed unital in what follows) is a Poisson manifold (cf. Subsection 4.3) in a natural way. A similar statement holds in the infinite-dimensional case, and we carry the reader through the necessary adaptations of the main argument by means of footnotes.\footnote{Of which this is the first. When B is infinite-dimensional, the state space $S(B)$ is no longer a manifold, let alone a Poisson manifold, but a Poisson space [Landsman, 1997; 1998]. This is a generalization of a Poisson manifold, which turns a crucial property of the latter into a definition. This property is the foliation of a Poisson manifold by its symplectic leaves [Weinstein, 1983], and the corresponding definition is as follows: A Poisson space P is a Hausdorff space of the form $P = \cup_{\alpha} S_{\alpha}$ (disjoint union), where each S_{α} is a symplectic manifold (possibly infinite-dimensional) and each injection $\iota_{\alpha} : S_{\alpha} \to P$ is continuous. Furthermore, one has a linear subspace $F \subseteq C(P, \mathbb{R})$ that separates points and has the property that the restriction of each $f \in F$ to each S_{α} is smooth. Finally, if $f, g \in F$ then $\{f, g\} \in F$, where the Poisson bracket is defined by $\{f, g\}(\iota_{\alpha}(\cdot)) = \{f_\alpha, g_\alpha\}(\cdot)$. Clearly, a Poisson manifold M defines a Poisson space if one takes $P = M$, $F = C^{\infty}(M)$, and the S_{α} to be the symplectic leaves defined by the given Poisson bracket. Thus we refer to the manifolds S_{α} in the above definition as the symplectic leaves of P as well.}

We write $K = S(B)$.

Firstly, an element \(A \in \mathcal{B} \) defines a linear function \(\hat{A} \) on \(\mathcal{B}^* \) and hence on \(K \) (namely by restriction) through \(\hat{A}(\omega) = \omega(A) \). For such functions we define the Poisson bracket by

\[
\{\hat{A}, \hat{B}\} = i[\overline{A}, B].
\]

Here the factor \(i \) has been inserted in order to make the Poisson bracket of two real-valued functions real-valued again; for \(\hat{A} \) is real-valued on \(K \) precisely when \(A \) is self-adjoint, and if \(A^* = A \) and \(B^* = B \), then \(i[A, B] \) is self-adjoint (whereas \([A, B] \) is skew-adjoint). In general, for \(f, g \in C^\infty(K) \) we put

\[
\{f, g\}(\omega) = i\omega(\{df, dg\}),
\]

interpreted as follows.\(^{292}\) Let \(\mathcal{B}_R \) be the self-adjoint part of \(\mathcal{B} \), and interpret \(K \) as a subspace of \(\mathcal{B}_R^* \); since a state \(\omega \) satisfies \(\omega(A^*) = \overline{\omega(A)} \) for all \(A \in \mathcal{B} \), it is determined by its values on self-adjoint elements. Subsequently, we identify the tangent space at \(\omega \) with

\[
\mathcal{T}_\omega K = \{\rho \in \mathcal{B}_R^* \mid \rho(1) = 0\} \subset \mathcal{B}_R^*
\]

and the cotangent space at \(\omega \) with the quotient (of real Banach spaces)

\[
\mathcal{T}^*\omega K = \mathcal{B}_R^{**}/\mathbb{R}1,
\]

where the unit \(1 \in \mathcal{B} \) is regarded as an element of \(\mathcal{B}^{**} \) through the canonical embedding \(\mathcal{B} \subset \mathcal{B}^{**} \). Consequently, the differential forms \(df \) and \(dg \) at \(\omega \in K \) define elements of \(\mathcal{B}^{**}_R/\mathbb{R}1 \). The commutator in (38) is then defined as follows: one lifts \(df, dg \in \mathcal{B}^{**}_R/\mathbb{R}1 \) to \(\mathcal{B}^{**}_R \), and uses the natural isomorphism \(\mathcal{B}^{**} \cong \mathcal{B} \) typical of finite-dimensional vector spaces.\(^{293}\) The arbitrariness in this lift is a multiple of \(1 \), which drops out of the commutator. Hence \(i[\{df, dg\}] \) is an element of \(\mathcal{B}^{**}_R \cong \mathcal{B}_R \), on which the value of the functional \(\omega \) is defined.\(^{294}\) This completes the definition of the Poisson bracket; one easily recovers (37) as a special case of (38).

The symplectic leaves of the given Poisson structure on \(K \) have been determined by Duffield and Werner [1992a].\(^{295}\) Namely:

Two states \(\rho \) and \(\sigma \) lie in the same symplectic leaf of \(\mathcal{S}(\mathcal{B}) \) iff \(\rho(A) = \sigma(UAU^*) \) for some unitary \(U \in \mathcal{B} \).

\(^{292}\)In the infinite-dimensional case \(C^\infty(K) \) is defined as the intersection of the smooth functions on \(K \) with respect to its Banach manifold structure and the space \(C(K) \) of weak\(^*\)-continuous functions on \(K \). The differential forms \(df \) and \(dg \) in (38) also require an appropriate definition; see [Duffield and Werner, 1992a; Bona, 2000], and [Odzijewicz and Ratiu, 2003] for the technicalities.

\(^{293}\)In the infinite-dimensional case one uses the canonical identification between \(\mathcal{B}^{**} \) and the enveloping von Neumann algebra of \(\mathcal{B} \) to define the commutator.

\(^{294}\)If \(\mathcal{B} \) is infinite-dimensional, one here regards \(\mathcal{B}^* \) as the predual of the von Neumann algebra \(\mathcal{B}^{**} \).

\(^{295}\)See also [Bona, 2000] for the infinite-dimensional special case where \(\mathcal{B} \) is the \(C^* \)-algebra of compact operators.
When \(\rho \) and \(\sigma \) are pure, this is the case iff the corresponding GNS-representations \(\pi_\rho(B) \) and \(\pi_\sigma(B) \) are unitarily equivalent,\(^{296}\) but in general the implication holds only in one direction: if \(\rho \) and \(\sigma \) lie in the same leaf, then they have unitarily equivalent GNS-representations.\(^{297}\)

It follows from this characterization of the symplectic leaves of \(K = S(B) \) that the pure state space \(\partial_\sigma K = \mathcal{P}(B) \) inherits the Poisson bracket from \(K \), and thereby becomes a Poisson manifold in its own right.\(^{298}\) This leads to an important connection between the superselection sectors of \(B \) and the Poisson structure on \(\mathcal{P}(B) \) [Landsman, 1997; 1998]:

The sectors of the pure state space \(\mathcal{P}(B) \) of a \(C^* \)-algebra \(B \) as a transition probability space coincide with its symplectic leaves as a Poisson manifold.

For example, when \(B \cong C(X) \) is commutative, the space \(S(C(X)) \) of all (regular Borel) probability measures on \(X \) acquires a Poisson bracket that is identically zero, as does its extreme boundary \(X \). It follows from (31) that the sectors in \(X \) are its points, and so are its symplectic leaves (in view of their definition and the vanishing Poisson bracket). The simplest noncommutative case is \(B = M_2(\mathbb{C}) \), for which the symplectic leaves of the state space \(K = S(M_2(\mathbb{C})) \cong B^3 \) (cf. (3)) are the spheres with constant radius.\(^{299}\) The sphere with radius 1 consists of points in \(B^3 \) that correspond to pure states on \(M_2(\mathbb{C}) \), all interior symplectic leaves of \(K \) coming from mixed states on \(M_2(\mathbb{C}) \).

The coincidence of sectors and symplectic leaves of \(\mathcal{P}(B) \) is a compatibility condition between the transition probability structure and the Poisson structure. It is typical of the specific choices (27) and (38), respectively, and hence of quantum theory. In classical mechanics one has the freedom of equipping a manifold \(M \) with an arbitrary Poisson structure, and yet use \(C_0(M) \) as the commutative \(C^* \)-algebra of observables. The transition probability (31) (which follows from (27) in the commutative case) are clearly the correct ones in classical physics, but since the

\(^{296}\)Cf. Thm. 10.2.6 in [Kadison and Ringrose, 1986].

\(^{297}\)An important step of the proof is the observation that the Hamiltonian vector field \(\xi_f(\omega) \in T_\omega K \subset \mathcal{A}_K^\ast \) of \(f \in C^\infty(K) \) is given by \(\xi_f(\omega), B = i[\omega, B] \), where \(B \in B_R \subset B_R^{**} \) and \(d\omega \in B_R^{**}/\mathbb{R} \). (For example, this gives \(\xi_{\hat{A}} \hat{B} = i[\hat{A}, \hat{B}] = \{ \hat{A}, \hat{B} \} \) by (37), as it should be.) If \(\gamma_h^t \) denotes the Hamiltonian flow of \(h \) at time \(t \), it follows (cf. [Duffield et al., 1992, Prop. 6.1] or [Duffield and Werner, 1992a, Prop. 3.1]) that \(\gamma_h^t(\omega), B = \langle \omega, U_h^t B U_h^t \rangle \) for some unitary \(U_h^t \in B \). For example, if \(h = \hat{A} \) then \(U_h^t = \exp(it\hat{A}) \).

\(^{298}\)More generally, a Poisson space. The structure of \(\mathcal{P}(B) \) as a Poisson space was introduced by Landsman [1997; 1998] without recourse to the full state space or the work of Duffield and Werner [1992a].

\(^{299}\)Equipped with a multiple of the so-called Fubini–Study symplectic structure; see [Landsman, 1998] or any decent book on differential geometry for this notion. This claim is immediate from footnote 260. More generally, the pure state space of \(M_n(\mathbb{C}) \) is the projective space \(\mathbb{P}\mathbb{C}^n \), which again becomes equipped with the Fubini–Study symplectic structure. This is even true for \(n = \infty \) if one defines \(M_\infty(\mathbb{C}) \) as the \(C^* \)-algebra of compact operators on a separable Hilbert space \(\mathcal{H} \): in that case one has \(\mathcal{P}(M_\infty(\mathbb{C})) \cong \mathbb{P}\mathbb{H} \). Cf. [Cantoni, 1977; Cirelli et al., 1983; Cirelli et al., 1990; Landsman, 1998; Ashtekar and Schilling, 1999; Marmo et al., 2005], etc.
symplectic leaves of M can be almost anything, the coincidence in question does not hold.

However, there exists a compatibility condition between the transition probability structure and the Poisson structure, which is shared by classical and quantum theory. This is the property of unitarity of a Hamiltonian flow, which in the present setting we formulate as follows. First, in quantum theory with algebra of observables \mathcal{B} we define time-evolution (in the sense of an automorphic action of the abelian group \mathbb{R} on \mathcal{B}, i.e. a one-parameter group α of automorphisms on \mathcal{B}) to be Hamiltonian when $A(t) = \alpha_t(A)$ satisfies the Heisenberg equation $i\hbar dA/dt = [A, H]$ for some self-adjoint element $H \in \mathcal{B}$. The corresponding flow on $\mathcal{P}(\mathcal{B})$ — i.e. $\omega_t(A) = \omega(A(t))$ — is equally well said to be Hamiltonian in that case. In classical mechanics with Poisson manifold M we similarly say that a flow on M is Hamiltonian when it is the flow of a Hamiltonian vector field ξ_h for some $h \in C^\infty(M)$. (Equivalently, the time-evolution of the observables $f \in C^\infty(M)$ is given by $df/dt = \{h, f\}$; cf. (18) etc.) The point is that in either case the flow is unitary in the sense that

\[(41)\quad p(\rho(t), \sigma(t)) = p(\rho, \sigma)\]

for all t and all $\rho, \sigma \in P$ with $P = \mathcal{P}(\mathcal{B})$ (equipped with the transition probabilities (27) and the Poisson bracket (38)) or $P = M$ (equipped with the transition probabilities (31) and any Poisson bracket).\(^{301}\)

In both cases $P = \mathcal{P}(\mathcal{B})$ and $P = M$, a Hamiltonian flow has the property (which is immediate from the definition of a symplectic leaf) that for all (finite) times t a point $\omega(t)$ lies in the same symplectic leaf of P as $\omega = \omega(0)$. In particular, in quantum theory $\omega(t)$ and ω must lie in the same sector. In the quantum theory of infinite systems an automorphic time-evolution is rarely Hamiltonian, but one reaches a similar conclusion under a weaker assumption. Namely, if a given one-parameter group of automorphisms α on \mathcal{B} is implemented in the GNS-representation $\pi_\omega(\mathcal{B})$ for some $\omega \in \mathcal{P}(\mathcal{B})$,\(^{302}\) then $\omega(t)$ and ω lie in the same sector and hence in the same symplectic leaf of $\mathcal{P}(\mathcal{B})$.

To illustrate these concepts, let us return to our continuous field of C^*-algebras \mathcal{A}_t; cf. (2). It may not come as a great surprise that the canonical C^*-algebraic transition probabilities (27) on the pure state space of each fiber algebra $\mathcal{A}_t^{(c)}$, for $N < \infty$ converge to the classical transition probabilities (31) on the commutative limit algebra $\mathcal{A}_0^{(c)}$. Similarly, the C^*-algebraic Poisson structure (38) on each $\mathcal{P}(\mathcal{A}_t^{(c)})$ converges to zero. However, we know from the limit $\hbar \to 0$ of quantum mechanics that in generating classical behaviour on the limit algebra of a continuous field of C^*-algebras one should rescale the commutators; see Subsection 4.3.

\(^{300}\) All this can be boosted into an axiomatic structure into which both classical and quantum theory fit; see [Landsman, 1997; 1998].

\(^{301}\) In quantum theory the flow is defined for any t. In classical dynamics, (41) holds for all t for which $\rho(t)$ and $\sigma(t)$ are defined, cf. footnote 253.

\(^{302}\) This assumption means that there exists a unitary representation $t \mapsto U_t$ of \mathbb{R} on \mathcal{H}_ω such that $\pi_\omega(\alpha_t(A)) = U_t \pi_\omega(A) U_t^*$ for all $A \in \mathcal{B}$ and all $t \in \mathbb{R}$.
and Section 5. Thus we replace the Poisson bracket (38) for $A_{1/N}^{(c)}$ by

$$\{f, g\}(\omega) = iN\omega([df, dg]).$$

Thus rescaled, the Poisson brackets on the spaces $\mathcal{P}(A_{1/N})$ turn out to converge to the canonical Poisson bracket (38) on $\mathcal{P}(A_0^{(c)}) = \mathcal{S}(A_1)$, instead of the zero bracket expected from the commutative nature of the limit algebra $A_0^{(c)}$. Consequently, the symplectic leaves of the full state space $\mathcal{S}(A_1)$ of the fiber algebra $A_1^{(c)}$ become the symplectic leaves of the pure state space $\mathcal{S}(A_1)$ of the fiber algebra $A_0^{(c)}$. This is undoubtedly indicative of the origin of classical phase spaces and their Poisson structures in quantum theory.

More precisely, we have the following result [Duffield and Werner, 1992a]:

If $A = (A_0, A_1, A_2, \cdots)$ and $A' = (A_0', A_1', A_2', \cdots)$ are continuous sections of $A^{(c)}$ defined by symmetric sequences,\(^{303}\) then the sequence

$$\{A_0, A_0', i[A_1, A_1'], \ldots, iN[A_N, A_N'], \cdots\}$$

defines a continuous section of $A^{(c)}$.

This follows from an easy computation. In other words, although the sequence of commutators $[A_N, A_N']$ converges to zero, the rescaled commutators $iN[A_N, A_N'] \in A_N$ converge to the macroscopic observable $A_0, A_0' \in A_0^{(c)} = C(\mathcal{S}(A_1))$. Although it might seem perverse to reinterpret this result on the classical limit of a large quantum system in terms of quantization (which is the opposite of taking the classical limit), it is formally possible to do so (cf. Section 4.3) if we put

$$\hbar = \frac{1}{N}.\tag{44}$$

Using the axiom of choice if necessary, we devise a procedure that assigns a continuous section $A = (A_0, A_1, A_2, \cdots)$ of our field to a given function $A_0 \in A_0^{(c)}$. We write this as $A_N = \mathcal{Q}_N(A_0)$, and similarly $A_N' = \mathcal{Q}_N'(A_0')$. This choice need not be such that the sequence (43) is assigned to $\{A_0, A_0'\}$, but since the latter is the unique limit of (43), it must be that

$$\lim_{N \to \infty} \left\| iN \left[\mathcal{Q}_N(A_0), \mathcal{Q}_N'(A_0') \right] - \mathcal{Q}_N(\{A_0, A_0'\}) \right\| = 0.\tag{45}$$

Also note that (27) is just (12). Consequently (cf. (25) and surrounding text):

\(^{303}\) The result does not hold for all continuous sections (i.e. for all approximately symmetric sequences), since, for example, the limiting functions A_0 and A_0' may not be differentiable, so that their Poisson bracket does not exist. This problem occurs in all examples of deformation quantization. However, the class of sequences for which the claim is valid is larger than the symmetric ones alone. A sufficient condition on A and B for (43) to make sense is that $A_N = \sum_{M < N} j_{NM}(A_N^{(N)})$ (with $A_M^{(N)} \in A_M^{(N)}$), such that $\lim_{N \to \infty} A_N^{(N)}$ exists (in norm) and $\sum_{M=1}^{\infty} M \sup_{N \geq M} \{\|A_M^{(N)}\|\} < \infty$. See [Duffield and Werner, 1992a].
The continuous field of C^*-algebras $A^{(c)}$ defined by (2) and approximately symmetric sequences (and their limits) as continuous sections yields a deformation quantization of the phase space $S(A_1)$ (equipped with the Poisson bracket (38)) for any quantization map Q.

For the dynamics this implies:

Let $H = (H_0, H_1, H_2, \cdots)$ be a continuous section of $A^{(c)}$ defined by a symmetric sequence,\footnote{304 Once again, the result in fact holds for a larger class of Hamiltonians, namely the ones satisfying the conditions specified in footnote 303 [Duffield and Werner, 1992a]. The assumption that each Hamiltonian H_N lies in A_1^N and hence is bounded is natural in lattice models, but is undesirable in general.} and let $A = (A_0, A_1, A_2, \cdots)$ be an arbitrary continuous section of $A^{(c)}$ (i.e. an approximately symmetric sequence). Then the sequence

$$\begin{align*}
(46) \quad (A_0(t), e^{iH_1t}A_1e^{-iH_1t}, \cdots e^{iNH_Nt}A_Ne^{-iNH_Nt}, \cdots),
\end{align*}$$

where $A_0(t)$ is the solution of the equations of motion with classical Hamiltonian H_0,\footnote{305 See (18) and surrounding text.} defines a continuous section of $A^{(c)}$.

In other words, for bounded symmetric sequences of Hamiltonians H_N the quantum dynamics restricted to macroscopic observables converges to the classical dynamics with Hamiltonian H_0. Compare the positions of \hbar and N in (12) and (46), respectively, and rejoice in the reconfirmation of (44).

In contrast, the quasilocal observables are not well behaved as far as the $N \to \infty$ limit of the dynamics defined by such Hamiltonians is concerned. Namely, if (A_0, A_1, \cdots) is a section of the continuous field $A^{(q)}$, and (H_1, H_2, \cdots) is any bounded symmetric sequence of Hamiltonians, then the sequence

$$\begin{align*}
(e^{iH_1t}A_1e^{-iH_1t}, \cdots e^{iNH_Nt}A_Ne^{-iNH_Nt}, \cdots)
\end{align*}$$

has no limit for $N \to \infty$, in that it cannot be extended by some $A_0(t)$ to a continuous section of $A^{(q)}$. Indeed, this was the very reason why macroscopic observables were originally introduced in this context [Rieckers, 1984; Morchio and Strocchi, 1987; Bona, 1988; Unnerstall, 1990a; Raggio and Werner, 1989; Duffield and Werner, 1992a]. Instead, the natural finite-N Hamiltonians for which the limit $N \to \infty$ of the time-evolution on A_1^N exists as a one-parameter automorphism group on $A^{(q)}$ satisfy an appropriate locality condition, which excludes the global averages defining symmetric sequences.

6.6 Epilogue: Macroscopic observables and the measurement problem

In a renowned paper, Hepp [1972] suggested that macroscopic observables and superselection rules should play a role in the solution of the measurement problem of
quantum mechanics. He assumed that a macroscopic apparatus may be idealized as an infinite quantum system, whose algebra of observables \(A_A \) has disjoint pure states. Referring to our discussion in Subsection 2.5 for context and notation, Hepp’s basic idea (for which he claimed no originality) was that as a consequence of the measurement process the initial state vector \(\Omega_I = \sum_n c_n \Psi_n \otimes I \) of system plus apparatus evolves into a final state vector \(\Omega_F = \sum_n c_n \Psi_n \otimes \Phi_n \), in which each \(\Phi_n \) lies in a different superselection sector of the Hilbert space of the apparatus (in other words, the corresponding states \(\varphi_n \) on \(A_A \) are mutually disjoint). Consequently, although the initial state \(\omega_I \) is pure, the final state \(\omega_F \) is mixed. Moreover, because of the disjointness of the \(\omega_n \) the final state \(\omega_F \) has a unique decomposition \(\omega_F = \sum_n |c_n|^2 \psi_n \otimes \varphi_n \) into pure states, and therefore admits a bona fide ignorance interpretation. Hepp therefore claimed with some justification that the measurement “reduces the wave packet”, as desired in quantum measurement theory.

Even apart from the usual conceptual problem of passing from the collective of all terms in the final mixture to one actual measurement outcome, Hepp himself indicated a serious mathematical problem with this program. Namely, if the initial state is pure it must lie in a certain superselection sector (or equivalence class of states); but then the final state must lie in the very same sector if the time-evolution is Hamiltonian, or, more generally, automorphic (as we have seen in the preceding subsection). Alternatively, it follows from a more general lemma Hepp [1972] himself proved:

If two states \(\rho, \sigma \) on a C*-algebra \(B \) are disjoint and \(\alpha : B \to B \) is an automorphism of \(B \), then \(\rho \circ \alpha \) and \(\sigma \circ \alpha \) are disjoint, too.

To reach the negative conclusion above, one takes \(B \) to be the algebra of observables of system and apparatus jointly, and computes back in time by choosing \(\alpha = \alpha_{t_F}^{-1} \alpha_{t_I} \), where \(\alpha_t \) is the one-parameter automorphism group on \(B \) describing the joint time-evolution of system and apparatus (and \(t_I \) and \(t_F \) are the initial and final times of the measurement, respectively). However, Hepp pointed out that this conclusion may be circumvented if one admits the possibility that a measurement takes infinitely long to complete. For the limit \(A \mapsto \lim_{t \to \infty} \alpha_t(A) \) (provided it exists in a suitable sense, e.g., weakly) does not necessarily yield an automorphism of \(B \). Hence a state — evolving in the Schrödinger picture by \(\omega_t(A) \equiv \omega(\alpha_t(A)) \) — may leave its sector in infinite time, a possibility Hepp actually demonstrated in a range of models; see also [Frigerio, 1974; Whitten-Wolfe and Emch, 1976; Araki, 1980; Bona, 1980; Hannabuss, 1984; Bub, 1988; Landsman, 1991; Frasca, 2003; 2004], and many other papers.

Despite the criticism that has been raised against the conclusion that a quantum-mechanical measurement requires an infinite apparatus and must take infinite time [Bell, 1975; Robinson, 1994; Landsman, 1995], and despite the fact that this procedure is quite against the spirit of von Neumann [1932], in whose widely accepted description measurements are practically instantaneous, this conclusion resonates well with the modern idea that quantum theory is universally valid and the classical
world has no absolute existence; cf. the Introduction. Furthermore, a quantum-mechanical measurement is nothing but a specific interaction, comparable with a scattering process; and it is quite uncontroversial that such a process takes infinite time to complete. Indeed, what would it mean for scattering to be over after some finite time? Which time? As we shall see in the next section, the theory of decoherence requires the limit \(t \to \infty \) as well, and largely for the same mathematical reasons. There as well as in Hepp's approach, the limiting behaviour actually tends to be approached very quickly (on the pertinent time scale), and one needs to let \(t \to \infty \) merely to make terms \(\sim \exp -\gamma t \) (with \(\gamma > 0 \)) zero rather than just very small. See also [Primas, 1997] for a less pragmatic point of view on the significance of this limit.

A more serious problem with Hepp's approach lies in his assumption that the time-evolution on the quasilocal algebra of observables of the infinite measurement apparatus (which in our class of examples would be \(\mathcal{A}_0^{(q)} \)) is automorphic. This, however, is by no means always the case; cf. the references listed near the end of Subsection 6.5. As we have seen, for certain natural Hamiltonian (and hence automorphic) time-evolutions at finite \(N \) the dynamics has no limit \(N \to \infty \) on the algebra of quasilocal observables — let alone an automorphic one.

Nonetheless, Hepp's conclusion remains valid if we use the algebra \(\mathcal{A}_0^{(c)} \) of macroscopic observables, on which (under suitable assumptions — see Subsection 6.5) Hamiltonian time-evolution on \(\mathcal{A}_1^N \) does have a limit as \(N \to \infty \). For, as pointed out in Subsection 6.3, each superselection sector of \(\mathcal{A}_0^{(q)} \) defines and is defined by a pure state on \(\mathcal{A}_1 \), which in turn defines a sector of \(\mathcal{A}_0^{(c)} \). Now the latter sector is simply a point in the pure state space \(\mathcal{S}(\mathcal{A}_1) \) of the commutative \(\text{C}^* \)-algebra \(\mathcal{A}_0^{(c)} \), so that Hepp's lemma quoted above boils down to the claim that if \(\rho \neq \sigma \), then \(\rho \circ \alpha \neq \sigma \circ \alpha \) for any automorphism \(\alpha \). This, of course, is a trivial property of any Hamiltonian time-evolution, and it follows once again that a transition from a pure pre-measurement state to a mixed post-measurement state on \(\mathcal{A}_0^{(c)} \) is impossible in finite time. To avoid this conclusion, one should simply avoid the limit \(N \to \infty \), which is the root of the \(t \to \infty \) limit; see [Janssens, 2005].

What, then, does all this formalism mean for Schrödinger's cat? In our opinion, it confirms the impression that the appearance of a paradox rests upon an equivocation. Indeed, the problem arises because one oscillates between two mutually exclusive interpretations.\(^{306}\)

Either one is a bohemian theorist who, in vacant or in pensive mood, puts off his or her glasses and merely contemplates whether the cat is dead or alive. Such a person studies the cat exclusively from the point of view of its macroscopic observables, so that he or she has to use a post-measurement state \(\omega_F^{(c)} \) on the algebra \(\mathcal{A}_0^{(c)} \). If \(\omega_F^{(c)} \) is pure, it lies in \(\mathcal{P}(\mathcal{A}_1) \) (unless the pre-measurement state was mixed). Such a state corresponds to a single superselection sector \([\omega_F^{(q)}] \) of \(\mathcal{A}_0^{(q)} \), so that the cat is dead or alive. If, on the other hand, \(\omega_F^{(c)} \) is mixed (which

\(^{306}\)Does complementarity re-enter through the back door?
is what occurs if Schrödinger has his way), there is no problem in the first place: at the level of macroscopic observables one merely has a statistical description of the cat.

Or one is a hard-working experimental physicist of formidable power, who investigates the detailed microscopic constitution of the cat. For him or her the cat is always in a pure state on \mathcal{A}_N for some large N. This time the issue of life and death is not a matter of lazy observation and conclusion, but one of sheer endless experimentation and computation. From the point of view of such an observer, nothing is wrong with the cat being in a coherent superposition of two states that are actually quite close to each other microscopically — at least for the time being.

Either way, the riddle does not exist (Wittgenstein, TLP, §6.5).

7 WHY CLASSICAL STATES AND OBSERVABLES?

'We have found a strange footprint on the shores of the unknown. We have devised profound theories, one after another, to account for its origins. At last, we have succeeded in reconstructing the creature that made the footprint. And lo! It is our own.' [Eddington, 1920, 200–201]

The conclusion of Sections 5 and 6 is that quantum theory may give rise to classical behaviour in certain states and with respect to certain observables. For example, we have seen that in the limit $\hbar \to 0$ coherent states and operators of the form $Q_\hbar(f)$, respectively, are appropriate, whereas in the limit $N \to \infty$ one should use classical states (nomen est omen!) as defined in Subsection 6.2 and macroscopic observables. If, instead, one uses superpositions of such states, or observables with the wrong limiting behaviour, no classical physics emerges. Thus the question remains why the world at large should happen to be in such states, and why we turn out to study this world with respect to the observables in question. This question found its original incarnation in the measurement problem (cf. Subsection 2.5), but this problem is really a figure-head for a much wider difficulty.

Over the last 25 years,307 two profound and original answers to this question have been proposed.

7.1 Decoherence

The first goes under the name of decoherence. Pioneering papers include [van Kampen, 1954; Zeh, 1970; Zurek, 1981; 1982],308 and [Joos and Zeh, 1985], and some recent reviews are [Bub, 1999; Auletta, 2001; Joos et al., 2003; Zurek, 2003; Blanchard and Olkiewicz, 2003; Bacciagaluppi, 2004] and [Schlosshauer, 2004].309

307 Though some say the basic idea of decoherence goes back to Heisenberg and Ludwig.

308 See also [Zurek, 1991] and the subsequent debate in Physics Today [Zurek, 1993], which drew wide attention to decoherence.

309 The website http://almaak.usc.edu/~tbrun/Data/decoherence.html contains an extensive list of references on decoherence.
More references will be given in due course. The existence (and excellence) of these reviews obviates the need for a detailed treatment of decoherence in this article, all the more so since at the time of writing this approach appears to be in a transitional stage, conceptually as well as mathematically (as will be evident from what follows). Thus we depart from the layout of our earlier chapters and restrict ourselves to a few personal comments.

1. Mathematically, decoherence boils down to the idea of adding one more link to the von Neumann chain (see Subsection 2.5) beyond $S + A$ (i.e. the system and the apparatus). Conceptually, however, there is a major difference between decoherence and older approaches that took such a step: whereas previously (e.g., in the hands of von Neumann, London and Bauer, Wigner, etc.) the chain converged towards the observer, in decoherence it diverges away from the observer. Namely, the third and final link is now taken to be the environment (taken in a fairly literal sense in agreement with the intuitive meaning of the word). In particular, in realistic models the environment is treated as an infinite system (necessitating the limit $N \to \infty$), which has the consequence that (in simple models where the pointer has discrete spectrum) the post-measurement state $\sum_n c_n \Psi_n \otimes \Phi_n \otimes \chi_n$ (in which the χ_n are mutually orthogonal) is only reached in the limit $t \to \infty$. However, as already mentioned in Subsection 6.6, infinite time is only needed mathematically in order to make terms of the type $\sim \exp -\gamma t$ (with $\gamma > 0$) zero rather than just very small: in many models the inner products (χ_n, χ_m) are actually negligible for $n \neq m$ within surprisingly short time scales.311

If only in view of the need for limits of the type $N \to \infty$ (for the environment) and $t \to \infty$, in our opinion decoherence is best linked to stance 1 of the Introduction: its goal is to explain the approximate appearance of the classical world from quantum mechanics seen as a universally valid theory. However, decoherence has been claimed to support almost any opinion on the foundations of quantum mechanics; cf. [Bacciagaluppi, 2004] and [Schlosshauer, 2004] for a critical overview and also see Point 3 below.

2. Originally, decoherence entered the stage as a proposed solution to the measurement problem (in the precise form stated at the end of Subsection 2.5). For the restriction of the state $\sum_n c_n \Psi_n \otimes \Phi_n \otimes \chi_n$ to $S + A$ (i.e. its trace over the degrees of freedom of the environment) is mixed in the limit $t \to \infty$, which means that the quantum-mechanical interference between the states $\Psi_n \otimes \Phi_n$ for different values of n has become 'delocalized' to the environment, and accordingly is irrelevant if the latter is not observed (i.e. omitted from the description). Unfortunately, the application of the ignorance interpretation of the mixed post-measurement state of $S + A$ is illegal even from the point of view of stance 1 of the Introduction. The ignorance interpretation

310See [Wheeler and Zurek, 1983].

311Cf. Tables 3.1 and 3.2 on pp. 66–67 of [Jöcs et al., 2003].
is only valid if the environment is kept within the description and is classical (in having a commutative C^*-algebra of observables). The latter assumption [Primas, 1983], however, makes the decoherence solution to the measurement problem circular.\footnote{On the other hand, treating the environment as if it were classical might be an improvement on the Copenhagen ideology of treating the measurement apparatus as if it were classical (cf. Section 3).}

In fact, as quite rightly pointed out by Bacciagaluppi [2004], decoherence actually aggravates the measurement problem. Where previously this problem was believed to be man-made and relevant only to rather unusual laboratory situations (important as these might be for the foundations of physics), it has now become clear that "measurement" of a quantum system by the environment (instead of by an experimental physicist) happens everywhere and all the time: hence it remains even more miraculous than before that there is a single outcome after each such measurement. Thus decoherence as such does not provide a solution to the measurement problem [Leggett, 2002];\footnote{In fact, Leggett's argument only applies to strawman 3 of the Introduction and loses its force against stance 1. For his argument is that decoherence just removes the evidence for a given state (of Schrödinger's cat type) to be a superposition, and accuses those claiming that this solves the measurement problem of committing the logical fallacy that removal of the evidence for a crime would undo the crime. But according to stance 1 the crime is only defined relative to the evidence! Leggett is quite right, however, in insisting on the 'from "and" to "or" problem' mentioned at the end of the Introduction.} Adler, 2003; Joos and Zeh, 2003], but is in actual fact parasitic on such a solution.

3. There have been various responses to this insight. The dominant one has been to combine decoherence with some interpretation of quantum mechanics: decoherence then finds a home, while conversely the interpretation in question is usually enhanced by decoherence. In this context, the most popular of these has been the many-worlds interpretation, which, after decades of obscurity and derision, suddenly started to be greeted with a flourish of trumpets in the wake of the popularity of decoherence. See, for example, [Saunders, 1993; 1995; Joos \textit{et al.}, 2003] and [Zurek, 2003]. In quantum cosmology circles, the consistent histories approach has been a popular partner to decoherence, often in combination with many worlds; see below. The importance of decoherence in the modal interpretation has been emphasized by Dieks [1989b] and Bene and Dieks [2002], and practically all authors on decoherence find the opportunity to pay some lip-service to Bohr in one way or another. See [Bacciagaluppi, 2004] and [Schlosshauer, 2004] for a critical assessment of all these combinations.

In our opinion, none of the established interpretations of quantum mechanics will do the job, leaving room for genuinely new ideas. One such idea is the return of the environment: instead of "tracing it out", as in the original setting of decoherence theory, the environment should not be ignored! The
essence of measurement has now been recognized to be the redundancy of
the outcome (or “record”) of the measurement in the environment. It is this
very redundancy of information about the underlying quantum object that
"objectifies" it, in that the information becomes accessible to a large number
of observers without necessarily disturbing the object314 [Zurek, 2003; Ol-
livier et al. 2004; Blume-Kohout and Zurek, 2004; 2005]. This insight (called
“Quantum Darwinism”) has given rise to the “existential” interpretation of
quantum mechanics due to Zurek [2003].

4. Another response to the failure of decoherence (and indeed all other ap-
proaches) to solve the measurement problem (in the sense of failing to win
a general consensus) has been of a somewhat more pessimistic (or, some
would say, pragmatic) kind: all attempts to explain the quantum world are
given up, yielding to the point of view that ‘the appropriate aim of physics
at the fundamental level then becomes the representation and manipula-
tion of information’ [Bub, 2004]. Here ‘measuring instruments ultimately
remain black boxes at some level’, and one concludes that all efforts to under-
stand measurement (or, for that matter, EPR-correlations) are futile and
pointless.315

5. Night thoughts of a quantum physicist, then?316 Not quite. Turning vice
into virtue: rather than solving the measurement problem, the true sig-
nificance of the decoherence program is that it gives conditions under which
there is no measurement problem! Namely, foregoing an explanation of the
transition from the state \(\sum_c c_n \Psi_n \otimes \Phi_n \otimes \chi_n\) of \(S + A + E\) to a single one
of the states \(\Psi_n \otimes \Phi_n\) of \(S + A\), at the heart of decoherence is the claim
that each of the latter states is robust against coupling to the environment
(provided the Hamiltonian is such that \(\Psi_n \otimes \Phi_n\) tensored with some initial
state \(I_E\) of the environment indeed evolves into \(\Psi_n \otimes \Phi_n \otimes \chi_n\), as assumed
so far). This implies that each state \(\Psi_n \otimes \Phi_n\) remains pure after coupling to
the environment and subsequent restriction to the original system plus ap-
paratus, so that at the end of the day the environment has had no influence
on it. In other words, the real point of decoherence is the phenomenon of
einselection (for environment-induced superselection), where a state is ‘ein-
selected’ precisely when (given some interaction Hamiltonian) it possesses the
stability property just mentioned. The claim, then, is that einselected states
are often classical, or at least that classical states (in the sense mentioned at
the beginning of this section) are classical precisely because they are robust
against coupling to the environment. Provided this scenario indeed gives

314Such objectification is claimed to yield an ‘operational definition of existence’ [Zurek, 2003,
749].
315It is indeed in describing the transformation of quantum information (or entropy) to classical
information during measurement that decoherence comes to its own and exhibits some of its
greatest strength. Perhaps for this reason such thinking pervades also Zurek [2003].
316[Kent, 2000]. Pun on the title of McCormmach [1982].
rise to the classical world (which remains to be shown in detail), it gives a
dynamical explanation of it. But even short of having achieved this goal,
the importance of the notion of einselection cannot be overstated; in our
opinion, it is the most important and powerful idea in quantum theory since
entanglement (which einselection, of course, attempts to undol).

6. The measurement problem, and the associated distinction between system
and apparatus on the one hand and environment on the other, can now be
omitted from decoherence theory. Continuing the discussion in Subsection
3.4, the goal of decoherence should simply be to find the robust or ein-
elected states of a object \(O \) coupled to an environment \(\mathcal{E} \), as well as the
induced dynamics thereof (given the time-evolution of \(O + \mathcal{E} \)). This search,
however, must include the correct identification of the object \(O \) within the
total \(S + \mathcal{E} \), namely as a subsystem that actually has such robust states.
Thus the Copenhagen idea that the Heisenberg cut between object and appa-
ratus be movable (cf. Subsection 3.2) will not, in general, extend to the
"Primas–Zurek" cut between object and environment. In traditional physics
terminology, the problem is to find the right "dressing" of a quantum system
so as to make at least some of its states robust against coupling to its envi-
ronment [Amann and Primas, 1997; Brun and Hartle, 1999; Omnès, 2002].
In other words: What is a system? To mark this change in perspective, we
now change notation from \(O \) (for "object") to \(S \) (for "system"). Various
tools for the solution of this problem within the decoherence program have
now been developed — with increasing refinement and also increasing re-
liance on concepts from information theory [Zurek, 2003] — but the right
setting for it seems the formalism of consistent histories, see below.

7. Various dynamical regimes haven been unearthed, each of which leads to a
different class of robust states [Joos et al., 2003; Zurek, 2003; Schlosshauer,
2004]. Here \(H_S \) is the system Hamiltonian, \(H_I \) is the interaction Hamiltonian
between system and environment, and \(H_E \) is the environment Hamiltonian.
As stated, no reference to measurement, object or apparatus need be made
here.

- In the regime \(H_S \ll H_I \), for suitable Hamiltonians the robust states
 are the traditional pointer states of quantum measurement theory. This
 regime conforms to von Neumann's [1932] idea that quantum measure-
 ments be almost instantaneous. If, moreover, \(H_E \ll H_I \) as well —
 with or without a measurement context — then the decoherence mech-
 anism turns out to be universal in being independent of the details of
 \(\mathcal{E} \) and \(H_E \) [Strunz et al., 2003].

- If \(H_S \approx H_I \), then (at least in models of quantum Brownian motion) the
 robust states are coherent states (either of the traditional Schrödinger
 type, or of a more general nature as defined in Subsection 5.1); see
 [Zurek et al., 1993] and [Zurek, 2003]. This case is, of course, of supreme
importance for the physical relevance of the results quoted in our Section 5 above, and — if only for this reason — decoherence theory would benefit from more interaction with mathematically rigorous results on quantum stochastic analysis.317

- Finally, if $H_S \gg H_I$, then the robust states turn out to be eigenstates of the system Hamiltonian H_S [Paz and Zurek, 1999; Ollivier et al., 2004]. In view of our discussion of such states in Subsections 5.5 and 5.6, this shows that robust states are not necessarily classical. It should be mentioned that in this context decoherence theory largely coincides with standard atomic physics, in which the atom is taken to be the system S and the radiation field plays the role of the environment E; see [Gustafson and Sigal, 2003] for a mathematically minded introductory treatment and [Bach et al., 1998; 1999] for a full (mathematical) meal.

8. Further to the above clarification of the role of energy eigenstates, decoherence also has had important things to say about quantum chaos [Zurek, 2003; Joos et al., 2003]. Referring to our discussion of wave packet revival in Subsection 2.4, we have seen that in atomic physics wave packets do not behave classically on long time scales. Perhaps surprisingly, this is even true for certain chaotic macroscopic systems: cf. the case of Hyperion mentioned in the Introduction and at the end of Subsection 5.2. Decoherence now replaces the underlying superposition by a classical probability distribution, which reflects the chaotic nature of the limiting classical dynamics. Once again, the transition from the pertinent pure state of system plus environment to a single observed system state remains clouded in mystery. But granted this transition, decoherence sheds new light on classical chaos and circumvents at least the most flagrant clashes with observation.318

9. Robustness and einselection form the state side or Schrödinger picture of decoherence. Of course, there should also be a corresponding observable side or Heisenberg picture of decoherence. But the transition between the two pictures is more subtle than in the quantum mechanics of closed systems. In the Schrödinger picture, the whole point of einselection is that most pure states simply disappear from the scene. This may be beautifully visualized on the example of a two-level system with Hilbert space $\mathcal{H}_S = \mathbb{C}^2$ [Zurek, 2003]. If \uparrow and \downarrow (cf. (33)) happen to be the robust vector states of the system after coupling to an appropriate environment, and if we identify the corresponding density matrices with the north-pole $(0, 0, 1) \in B^3$ and the south-pole $(0, 0, -1) \in B^3$, respectively (cf. (3)), then following decoherence all other states move towards the axis connecting the north- and south poles

317Cf. [Davies, 1976; Accardi et al., 1990; Parthasarathy, 1992; Streater, 2000; Kümmerer, 2002; Maassen, 2003], etc.

318It should be mentioned, though, that any successful mechanism explaining the transition from quantum to classical should have this feature, so that at the end of the day decoherence might turn out to be a red herring here.
(i.e. the intersection of the z-axis with B^3) as $t \to \infty$. In the Heisenberg picture, this disappearance of all pure states except two corresponds to the reduction of the full algebra of observables $M_2(\mathbb{C})$ of the system to its diagonal (and hence commutative) subalgebra $\mathbb{C} \oplus \mathbb{C}$ in the same limit. For it is only the latter algebra that contains enough elements to distinguish \uparrow and \downarrow without containing observables detecting interference terms between these pure states.

10. To understand this in a more abstract and general way, we recall the mathematical relationship between pure states and observables [Landsman, 1998]. The passage from a C^*-algebra \mathcal{A} of observables of a given system to its pure states is well known: as a set, the pure state space $\mathcal{P}(\mathcal{A})$ is the extreme boundary of the total state space $\mathcal{S}(\mathcal{A})$ (cf. footnote 259). In order to reconstruct \mathcal{A} from $\mathcal{P}(\mathcal{A})$, the latter needs to be equipped with the structure of a transition probability space (see Subsection 6.3) through (27). Each element $A \in \mathcal{A}$ defines a function \hat{A} on $\mathcal{P}(\mathcal{A})$ by $\hat{A}(\omega) = \omega(A)$. Now, in the simple case that \mathcal{A} is finite-dimensional (and hence a direct sum of matrix algebras), one can show that each function \hat{A} is a finite linear combination of the form $\hat{A} = \sum_i p_{\omega_i}$, where $\omega_i \in \mathcal{P}(\mathcal{A})$ and the elementary functions p_ρ on $\mathcal{P}(\mathcal{A})$ are defined by $p_\rho(\sigma) = p(\rho, \sigma)$. Conversely, each such linear combination defines a function \hat{A} for some $A \in \mathcal{A}$. Thus the elements of \mathcal{A} (seen as functions on the pure state space $\mathcal{P}(\mathcal{A})$) are just the transition probabilities and linear combinations thereof. The algebraic structure of \mathcal{A} may then be reconstructed from the structure of $\mathcal{P}(\mathcal{A})$ as a Poisson space with a transition probability (cf. Subsection 6.5). In this sense $\mathcal{P}(\mathcal{A})$ uniquely determines the algebra of observables of which it is the pure state space. For example, the space consisting of two points with classical transition probabilities (31) leads to the commutative algebra $\mathcal{A} = \mathbb{C} \oplus \mathbb{C}$, whereas the unit two-sphere in \mathbb{R}^3 with transition probabilities (32) yields $\mathcal{A} = M_2(\mathbb{C})$.

This reconstruction procedure may be generalized to arbitrary C^*-algebras [Landsman, 1998], and defines the precise connection between the Schrödinger picture and the Heisenberg picture that is relevant to decoherence. These pictures are equivalent, but in practice the reconstruction procedure may be difficult to carry through.

11. For this reason it is of interest to have a direct description of decoherence in the Heisenberg picture. Such a description has been developed by Blanchard and Olkiewicz [2003], partly on the basis of earlier results by Olkiewicz [1999a,b; 2000]. Mathematically, their approach is more powerful than the Schrödinger picture on which most of the literature on decoherence is based. Let $\mathcal{A}_S = \mathcal{B}(\mathcal{H}_S)$ and $\mathcal{A}_E = \mathcal{B}(\mathcal{H}_E)$, and assume one has a total Hamiltonian H acting on $\mathcal{H}_S \otimes \mathcal{H}_E$ as well as a fixed state of the environment, represented by a density matrix ρ_E (often taken to be a thermal equilibrium state). If ρ_S is a density matrix on \mathcal{H}_S (so that the total state is $\rho_S \otimes \rho_E$), the Schrödinger
picture approach to decoherence (and more generally to the quantum theory of open systems) is based on the time-evolution

\[\rho_S(t) = \text{Tr}_{H_e} \left(e^{-\frac{it}{\hbar} H} \rho_S \otimes \rho_e e^{\frac{it}{\hbar} H} \right). \]

The Heisenberg picture, on the other hand, is based on the associated operator time-evolution for \(A \in \mathcal{B}(H_S) \) given by

\[A(t) = \text{Tr}_{H_e} \left(\rho_e e^{\frac{it}{\hbar} H} A \otimes 1 e^{-\frac{it}{\hbar} H} \right), \]

since this yields the equivalence of the Schrödinger and Heisenberg pictures expressed by

\[\text{Tr}_{H_S}(\rho_S(t)A) = \text{Tr}_{H_S}(\rho_SA(t)). \]

More generally, let \(A_S \) and \(\mathcal{A}_e \) be unital \(C^* \)-algebras with spatial tensor product \(A_S \otimes A_e \), equipped with a time-evolution \(\alpha_t \) and a fixed state \(\omega_e \) on \(\mathcal{A}_e \). This defines a conditional expectation \(P_e : A_S \otimes A_e \to A_S \) by linear and continuous extension of \(P_e(A \otimes B) = A\omega_e(B) \), and consequently a reduced time-evolution \(A \mapsto A(t) \) on \(A_S \) via

\[A(t) = P_e(\alpha_t(A \otimes 1)). \]

See, for example, Alicki and Lendi [1987]; in our context, this generality is crucial for the potential emergence of continuous classical phase spaces; see below.\(^{319}\) Now the key point is that decoherence is described by a decomposition \(A_S = A_S^{(1)} \oplus A_S^{(2)} \) as a vector space (not as a \(C^* \)-algebra), where \(A_S^{(1)} \) is a \(C^* \)-algebra, with the property that \(\lim_{t \to \infty} A(t) = 0 \) (weakly) for all \(A \in A_S^{(2)} \), whereas \(A \mapsto A(t) \) is an automorphism on \(A_S^{(1)} \) for each finite \(t \).

Consequently, \(A_S^{(1)} \) is the effective algebra of observables after decoherence, and it is precisely the pure states on \(A_S^{(1)} \) that are robust or einselected in the sense discussed before.

12. For example, if \(A_S = M_2(\mathbb{C}) \) and the states \(\uparrow \) and \(\downarrow \) are robust under decoherence, then \(A_S^{(1)} = \mathbb{C} \oplus \mathbb{C} \) and \(A_S^{(2)} \) consists of all \(2 \times 2 \) matrices with zeros on the diagonal. In this example \(A_S^{(1)} \) is commutative hence classical, but this may not be the case in general. But if it is, the automorphic time-evolution on \(A_S^{(1)} \) induces a classical flow on its structure space, which should be shown to be Hamiltonian using the techniques of Section 6.\(^{320}\)

\(^{319}\) For technical reasons Blanchard and Olkiewicz [2003] assume \(A_S \) to be a von Neumann algebra with trivial center.

\(^{320}\) Since on the assumption in the preceding footnote \(A_S^{(1)} \) is a commutative von Neumann algebra one should define the structure space in an indirect way; see [Blanchard and Olkiewicz, 2003].
In any case, there will be some sort of classical behaviour of the decohered system whenever \(\mathcal{A}_S^{(1)} \) has a nontrivial center.\(^{321}\) If this center is discrete, then the induced time-evolution on it is necessarily trivial, and one has the typical measurement situation where the center in question is generated by the projections on the eigenstates of a pointer observable with discrete spectrum. This is generic for the case where \(\mathcal{A}_S \) is a type I factor. However, type II and III factors may give rise to continuous classical systems with nontrivial time-evolution; see [Lugiewicz and Olkiewicz, 2002; 2003]. We cannot do justice here to the full technical details and complications involved here. But we would like to emphasize that further to quantum field theory and the theory of the thermodynamic limit, the present context of decoherence should provide important motivation for specialists in the foundations of quantum theory to learn the theory of operator algebras.\(^{322}\)

7.2 Consistent histories

Whilst doing so, one is well advised to work even harder and simultaneously familiarize oneself with consistent histories. This approach to quantum theory was pioneered by Griffiths [1984] and was subsequently taken up by Omnès [1992] and others. Independently, Gell-Mann and Hartle [1990; 1993] proposed analogous ideas. Like decoherence, the consistent histories method has been the subject of lengthy reviews [Hartle, 1995] and even books [Omnès, 1994; 1999; Griffiths, 2002] by the founders. See also the reviews by Kiefer [2003] and Halliwell [2004], the critiques by Dowker and Kent [1996], Kent [1998], Bub [1999], and Bassi and Ghirardi [2000], as well as the various mathematical reformulations and reinterpretations of the consistent histories program [Isham, 1994; 1997; Isham and Linden, 1994; 1995; Isham et al., 1994; Isham and Butterfield, 2000; Rudolph, 1996a; 1996b; 2000; Rudolph and Wright, 1999].

The relationship between consistent histories and decoherence is somewhat peculiar: on the one hand, decoherence is a natural mechanism through which appropriate sets of histories become (approximately) consistent, but on the other hand these approaches appear to have quite different points of departure. Namely, where decoherence starts from the idea that (quantum) systems are naturally coupled to their environments and therefore have to be treated as open systems, the aim of consistent histories is to deal with closed quantum systems such as the Universe, without a priori talking about measurements or observers. However, this distinction is merely historical: as we have seen in item 6 in the previous subsection, the dividing line between a system and its environment should be seen as a dynamical entity to be drawn according to certain stability criteria, so that even in decoherence theory one should really study the system plus its environment as a whole from the outset.\(^{323}\) And this is precisely what consistent historians do.

\(^{321}\)This is possible even when \(\mathcal{A}_S \) is a factor!

\(^{322}\)See the references in footnote 7.

\(^{323}\)This renders the distinction between "open" and "closed" systems a bit of a red herring, as
As in the preceding subsection, and for exactly the same reasons, we format our treatment of consistent histories as a list of items open to discussion.

1. The starting point of the consistent histories formulation of quantum theory is conventional: one has a Hilbert space \(\mathcal{H} \), a state \(\rho \), taken to be the initial state of the total system under consideration (realized as a density matrix on \(\mathcal{H} \)) and a Hamiltonian \(H \) (defined as a self-adjoint operator on \(\mathcal{H} \)). What is unconventional is that this total system may well be the entire Universe. Each property \(\alpha \) of the total system is mathematically represented by a projection \(P_\alpha \) on \(\mathcal{H} \); for example, if \(\alpha \) is the property that the energy takes some value \(\epsilon \), then the operator \(P_\alpha \) is the projection onto the associated eigenspace (assuming \(\epsilon \) belongs to the discrete spectrum of \(H \)). In the Heisenberg picture, \(P_\alpha \) evolves in time as \(P_\alpha(t) \) according to (12); note that \(P_\alpha(t) \) is once again a projection.

A history \(\mathbb{H}_A \) is a chain of properties (or propositions) \((\alpha_1(t_1), \ldots, \alpha_n(t_n)) \) indexed by \(n \) different times \(t_1 < \cdots < t_n \); here \(A \) is a multi-label incorporating both the properties \((\alpha_1, \ldots, \alpha_n) \) and the times \((t_1, \ldots, t_n) \). Such a history indicates that each property \(\alpha_i \) holds at time \(t_i, i = 1, \ldots, n \). Such a history may be taken to be a collection \(\{\alpha(t)\}_{t \in \mathbb{R}} \) defined for all times, but for simplicity one usually assumes that \(\alpha(t) \neq 1 \) (where 1 is the trivial property that always holds) only for a finite set of times \(t \); this set is precisely \(\{t_1, \ldots, t_n\} \). An example suggested by Heisenberg (1927) is to take \(\alpha_i \) to be the property that a particle moving through a Wilson cloud chamber may be found in a cell \(\Delta_i \subset \mathbb{R}^6 \) of its phase space; the history \((\alpha_1(t_1), \ldots, \alpha_n(t_n)) \) then denotes the state of affairs in which the particle is in cell \(\Delta_1 \) at time \(t_1 \), subsequently is in cell \(\Delta_2 \) at time \(t_2 \), etcetera. Nothing is stated about the particle's behaviour at intermediate times. Another example of a history is provided by the double slit experiment, where \(\alpha_1 \) is the particle's launch at the source at \(t_1 \) (which is usually omitted from the description), \(\alpha_2 \) is the particle passing through (e.g.) the upper slit at \(t_2 \), and \(\alpha_3 \) is the detection of the particle at some location \(L \) at the screen at \(t_3 \). As we all know, there is a potential problem with this history, which will be clarified below in the present framework.

The fundamental claim of the consistent historians seems to be that quantum theory should do no more (or less) than making predictions about the probabilities that histories occur. What these probabilities actually mean remains obscure (except perhaps when they are close to zero or one, or when reference is made to some measurement context; see [Hartle, 2005]), but let us first see when and how one can define them. The only potentially meaningful mathematical expression (within quantum mechanics) for the probability of

\[\text{even in decoherence theory the totality of the system plus its environment is treated as a closed system.} \]
a history H_A with respect to a state ρ is [Groenewold, 1952; Wigner, 1963]

$$p(H_A) = \text{Tr} (C_A \rho C_A^*)$$

where

$$C_A = P_{\alpha_n}(t_n) \cdots P_{\alpha_1}(t_1).$$

Note that C_A is generally not a projection (and hence a property) itself (unless all P_{α_i} mutually commute). In particular, when $\rho = [\Psi]$ is a pure state (defined by some unit vector $\Psi \in \mathcal{H}$), one simply has

$$p(H_A) = \|C_A \Psi\|^2 = \|P_{\alpha_n}(t_n) \cdots P_{\alpha_1}(t_1) \Psi\|^2.$$

When $n = 1$ this just yields the Born rule. Conversely, see Isham (1994) for a derivation of (5) from the Born rule.324

2. Whatever one might think about the metaphysics of quantum mechanics, a probability makes no sense whatsoever when it is only attributed to a single history (except when it is exactly zero or one). The least one should have is something like a sample space (or event space) of histories, each (measurable) subset of which is assigned some probability such that the usual (Kolmogorov) rules are satisfied. This is a (well-known) problem even for a single time t and a single projection P_α (i.e. $n = 1$). In that case, the problem is solved by finding a self-adjoint operator A of which P_α is a spectral projection, so that the sample space is taken to be the spectrum $\sigma(A)$ of A, with $\alpha \subset \sigma(A)$. Given P_α, the choice of A is by no means unique, of course; different choices may lead to different and incompatible sample spaces. In practice, one usually starts from A and derives the P_α as its spectral projections $P_\alpha = \int \lambda dP(\lambda)$, given that the spectral resolution of A is $A = \int \lambda dP(\lambda) \lambda$. Subsequently, one may then either coarse-grain or fine-grain this sample space. The former is done by finding a partition $\sigma(A) = \bigsqcup_i \alpha_i$ (disjoint union), and only admitting elements of the σ-algebra generated by the α_i as events (along with the associated spectral projection P_{α_i}), instead of all (measurable) subsets of $\sigma(A)$. To perform fine-graining, one supplements A by operators that commute with A as well as with each other, so that the new sample space is the joint spectrum of the ensuing family of mutually commuting operators.

In any case, in what follows it turns out to be convenient to work with the projections P_α instead of the subsets α of the sample space; the above discussion then amounts to extending the given projection on \mathcal{H} to some

324See also [Zurek, 2005] for a novel derivation of the Born rule, as well as the ensuing discussion in [Schlosshauer, 2004].
Boolean sublattice of the lattice $\mathcal{P}(\mathcal{H})$ of all projections on \mathcal{H}.325 Any state ρ then defines a probability measure on this sublattice in the usual way [Beltrametti and Cassinelli, 1984].

3. Generalizing this to the multi-time case is not a trivial task, somewhat facilitated by the following device (Isham, 1994). Put $\mathcal{H}^N = \otimes^N \mathcal{H}$, where N is the cardinality of the set of all times t_i relevant to the histories in the given collection,326 and, for a given history \mathbb{H}_A, define

\begin{equation}
C_A = P_{\alpha_1}(t_1) \otimes \cdots \otimes P_{\alpha_n}(t_n).
\end{equation}

Here $P_{\alpha_i}(t_i)$ acts on the copy of \mathcal{H} in the tensor product \mathcal{H}^N labeled by t_i, so to speak. Note that C_A is a projection on \mathcal{H}^N (whereas C_A in (6) is generally not a projection on \mathcal{H}). Furthermore, given a density matrix ρ on \mathcal{H} as above, define the decoherence functional d as a map from pairs of histories into \mathbb{C} by

\begin{equation}
d(\mathbb{H}_A, \mathbb{H}_B) = \text{Tr} (C_A \rho C_B^*) .
\end{equation}

The main point of the consistent histories approach may now be summarized as follows: a collection $\{\mathbb{H}_A\}_{A \in A}$ of histories can be regarded as a sample space on which a state ρ defines a probability measure via (5), which of course amounts to

\begin{equation}
p(\mathbb{H}_A) = d(\mathbb{H}_A, \mathbb{H}_A),
\end{equation}

provided that:

(a) The operators $\{C_A\}_{A \in A}$ form a Boolean sublattice of the lattice $\mathcal{P}(\mathcal{H}^N)$ of all projections on \mathcal{H}^N;

(b) The real part of $d(\mathbb{H}_A, \mathbb{H}_B)$ vanishes whenever \mathbb{H}_A is disjoint from \mathbb{H}_B.327

In that case, the set $\{\mathbb{H}_A\}_{A \in A}$ is called consistent. It is important to realize that the possible consistency of a given set of histories depends (trivially) not only on this set, but in addition on the dynamics and on the initial state. Consistent sets of histories generalize families of commuting projections at a single time. There is no great loss in replacing the second condition by the vanishing of $d(\mathbb{H}_A, \mathbb{H}_B)$ itself, in which case the histories \mathbb{H}_A and \mathbb{H}_B are

325 This sublattice is supposed to the unit of $\mathcal{P}(\mathcal{H})$, i.e. the unit operator on \mathcal{H}, as well as the zero projection. This comment also applies to the Boolean sublattice of $\mathcal{P}(\mathcal{H}^N)$ discussed below.

326 See the mathematical references above for the case $N = \infty$.

327 This means that $C_A C_B = 0$; equivalently, $P_{\alpha_i}(t_i) P_{\beta_i}(t_i) = 0$ for at least one time t_i. This condition guarantees that the probability (10) is additive on disjoint histories.
said to *decohere*.\^328 For example, in the double slit experiment the pair of histories \(\{ H_A, H_B \} \) where \(\alpha_1 = \beta_1 \) is the particle’s launch at the source at \(t_1 \), \(\alpha_2 (\beta_2) \) is the particle passing through the upper (lower) slit at \(t_2 \), and \(\alpha_3 = \beta_3 \) is the detection of the particle at some location \(L \) at the screen, is not consistent. It becomes consistent, however, when the particle’s passage through either one of the slits is recorded (or measured) *without the recording device being included in the histories* (if it is, nothing would be gained). This is reminiscent of the von Neumann chain in quantum measurement theory, which indeed provides an abstract setting for decoherence (cf. item 1 in the preceding subsection). Alternatively, the set can be made consistent by omitting \(\alpha_2 \) and \(\beta_2 \). See [Griffiths, 2002] for a more extensive discussion of the double slit experiment in the language of consistent histories.

More generally, coarse-graining by simply leaving out certain properties is often a promising attempt to make a given inconsistent set consistent; if the original history was already consistent, it can never become inconsistent by doing so. Fine-graining (by embedding into a larger set), on the other hand, is a dangerous act in that it may render a consistent set inconsistent.

4. What does it all mean? Each choice of a consistent set defines a “universe of discourse” within which one can apply classical probability theory and classical logic [Omnès, 1992]. In this sense the consistent historians are quite faithful to the Copenhagen spirit (as most of them acknowledge): *in order to understand it, the quantum world has to be looked at through classical glasses*. In our opinion, no convincing case has ever been made for the absolute necessity of this Bohrian stance (cf. Subsection 3.1), but accepting it, the consistent histories approach is superior to Copenhagen in not relying on measurement as an a priori ingredient in the interpretation of quantum mechanics.\^329 It is also more powerful than the decoherence approach in turning the notion of a system into a dynamical variable: different consistent sets describe different systems (and hence different environments, defined as the rest of the Universe); cf. item 6 in the previous subsection.\^330 In other words, the choice of a consistent set boils down to a choice of “relevant variables” against “irrelevant” ones omitted from the description. As indeed

\^328 Consistent historians use this terminology in a different way from decoherence theorists. By definition, any two histories involving only a single time are consistent (or, indeed, “decohere”) iff condition (a) above holds; condition (b) is trivially satisfied in that case, and becomes relevant only when more than one time is considered. However, in decoherence theory the reduced density matrix at some given time does not trivially “decohere” at all; the whole point of the (original) decoherence program was to provide models in which this happens (if only approximately) because of the coupling of the system with its environment. Having said this, within the context of models there are close links between consistency (or decoherence) of multi-time histories and decoherence of reduced density matrices, as the former is often (approximately) achieved by the same kind of dynamical mechanisms that lead to the latter.

\^329 See [Hartle, 2005] for an analysis of the connection between consistent histories and the Copenhagen interpretation and others.

\^330 Technically, as the commutant of the projections occurring in a given history.
stressed in the literature, the act of identification of a certain consistent set as a universe of discourse is itself nothing but a coarse-graining of the Universe as a whole.

5. But these conceptual successes come with a price tag. Firstly, consistent sets turn out not to exist in realistic models (at least if the histories in the set carry more than one time variable). This has been recognized from the beginning of the program, the response being that one has to deal with approximately consistent sets for which (the real part of) \(d(\mathbb{H}_A, \mathbb{H}_B) \) is merely very small. Furthermore, even the definition of a history often cannot be given in terms of projections. For example, in Heisenberg’s cloud chamber example (see item 1 above), because of his very own uncertainty principle it is impossible to write down the corresponding projections \(P_{\alpha} \). A natural candidate would be \(P_{\alpha} = Q_{\hbar}^B (\chi_\Delta) \), cf. (19) and (28), but in view of (21) this operator fails to satisfy \(P_{\alpha}^2 = P_{\alpha} \), so that it is not a projection (although it does satisfy the second defining property of a projection \(P_{\alpha}^* = P_{\alpha} \)). This merely reflects the usual property \(Q(f)^2 \neq Q(f^2) \) of any quantization method, and necessitates the use of approximate projections [Omnës, 1997]. Indeed, this point calls for a reformulation of the entire consistent histories approach in terms of positive operators instead of projections [Rudolph, 1996a,b].

These are probably not serious problems; indeed, the recognition that classicality emerges from quantum theory only in an approximate sense (conceptually as well as mathematically) is a profound one (see the Introduction), and it rather should be counted among its blessings that the consistent histories program has so far confirmed it.

6. What is potentially more troubling is that consistency by no means implies classicality beyond the ability (within a given consistent set) to assign classical probabilities and to use classical logic. Quite to the contrary, neither Schrödinger cat states nor histories that look classical at each time but follow utterly unclassical trajectories in time are forbidden by the consistency conditions alone [Dowker and Kent, 1996]. But is this a genuine problem, except to those who still believe that the earth is at the centre of the Universe and/or that humans are privileged observers? It just seems to be the case that — at least according to the consistent historians — the ontological landscape laid out by quantum theory is far more “inhuman” (or some would say “obscure”) than the one we inherited from Bohr, in the sense that most consistent sets bear no obvious relationship to the world that we observe. In attempting to make sense of these, no appeal to “complementarity” will do now: for one, the complementary pictures of the quantum world called for by Bohr were classical in a much stronger sense than generic consistent sets are, and on top of that Bohr asked us to only think about two such pictures, as opposed to the innumerable consistent sets offered to us. Our conclusion is that, much as decoherence does not solve the measurement problem but rather aggravates it (see item 2 in the preceding subsection), also consistent
histories actually make the problem of interpreting quantum mechanics more difficult than it was thought to be before. In any case, it is beyond doubt that the consistent historians have significantly deepened our understanding of quantum theory — at the very least by providing a good bookkeeping device!

7. Considerable progress has been made in the task of identifying at least some (approximately) consistent sets that display (approximate) classical behaviour in the full sense of the word [Gell-Mann and Hartle, 1993; Omnès, 1992; 1997; Halliwell, 1998; 2000; 2004; Brun and Hartle, 1999; Bosse and Hartle, 2005]. Indeed, in our opinion studies of this type form the main concrete outcome of the consistent histories program. The idea is to find a consistent set \(\{H_A\}_{A \in A}\) with three decisive properties:

(a) Its elements (i.e. histories) are strings of propositions with a classical interpretation;

(b) Any history in the set that delineates a classical trajectory (i.e. a solution of appropriate classical equations of motion) has probability (10) close to unity, and any history following a classically impossible trajectory has probability close to zero;

(c) The description is sufficiently coarse-grained to achieve consistency, but is sufficiently fine-grained to turn the deterministic equations of motion following from (b) into a closed system.

When these goals are met, it is in this sense (no more, no less) that the consistent histories program can claim with some justification that it has indicated (or even explained) ‘How the quantum Universe becomes classical’ [Halliwell, 2005].

Examples of propositions with a classical interpretation are quantized classical observables with a recognizable interpretation (such as the operators \(Q_A^B(\chi_A)\) mentioned in item 5), macroscopic observables of the kind studied in Subsection 6.1, and hydrodynamic variables (i.e. spatial integrals over conserved currents). These represent three different levels of classicality, which in principle are connected through mutual fine- or coarse-grainings.\(^{331}\) The first are sufficiently coarse-grained to achieve consistency only in the limit \(\hbar \to 0\) (cf. Section 5), whereas the latter two are already coarse-grained by their very nature. Even so, also the initial state will have to be “classical” in some sense in order to achieve the three targets (a) - (c).

All this is quite impressive, but we would like to state our opinion that neither decoherence nor consistent histories can stand on their own in explaining the appearance of the classical world. Promising as these approaches are, they have to

\(^{331}\)The study of these connections is relevant to the program laid out in this paper, but really belongs to classical physics per se; think of the derivation of the Navier–Stokes equations from Newton’s equations.
be combined at least with limiting techniques of the type described in Sections 5 and 6 — not to speak of the need for a new metaphysics! For even if it is granted that decoherence yields the disappearance of superpositions of Schrödinger cat type, or that consistent historians give us consistent sets none of whose elements contain such superpositions among their properties, this by no means suffices to explain the emergence of classical phase spaces and flows thereon determined by classical equations of motion. Since so far the approaches cited in Sections 5 and 6 have hardly been combined with the decoherence and/or the consistent histories program, a full explanation of the classical world from quantum theory is still in its infancy. This is not merely true at the technical level, but also conceptually; what has been done so far only represents a modest beginning. On the positive side, here lies an attractive challenge for mathematically minded researchers in the foundations of physics!

8 EPILOGUE

As a sobering closing note, one should not forget that whatever one’s achievements in identifying a “classical realm” in quantum mechanics, the theory continues to incorporate another realm, the pure quantum world, that the young Heisenberg first gained access to, if not through his mathematics, then perhaps through the music of his favourite composer, Beethoven. This world beyond ken has never been better described than by Hoffmann [1810] in his essay on Beethoven’s instrumental music, and we find it appropriate to end this paper by quoting at some length from it:

Should one, whenever music is discussed as an independent art, not always be referred to instrumental music which, refusing the help of any other art (of poetry), expresses the unique essence of art that can only be recognized in it? It is the most romantic of all arts, one would almost want to say, the only truly romantic one, for only the infinite is its source. Orpheus’ lyre opened the gates of the underworld. Music opens to man an unknown realm, a world that has nothing in common with the outer sensual world that surrounds him, a realm in which he leaves behind all of his feelings of certainty, in order to abandon himself to an unspeakable longing. (...)

Beethoven’s instrumental music opens to us the realm of the gigantic and unfathomable. Glowing rays of light shoot through the dark night of this realm, and we see gigantic shadows swaying back and forth, encircling us closer and closer, destroying us (...). Beethoven’s music moves the levers of fear, of shudder, of horror, of pain and thus awakens that infinite longing that is the essence of romanticism. Therefore, he is a purely romantic composer, and may it not be because of it, that

332 Translation copyright: Ingrid Schwaegermann [2001].
to him, vocal music that does not allow for the character of infinite longing — but, through words, achieves certain effects, as they are not present in the realm of the infinite — is harder?(...)

What instrumental work of Beethoven confirms this to a higher degree than his magnificent and profound Symphony in C-Minor. Irresistibly, this wonderful composition leads its listeners in an increasing climax towards the realm of the spirits and the infinite.(...)

Only that composer truly penetrates into the secrets of harmony who is able to have an effect on human emotions through them; to him, relationships of numbers, which, to the Grammarians, must remain dead and stiff mathematical examples without genius, are magic potions from which he lets a miraculous world emerge. (...)

Instrumental music, wherever it wants to only work through itself and not perhaps for a certain dramatic purpose, has to avoid all unimportant punning, all dallying. It seeks out the deep mind for premonitions of joy that, more beautiful and wonderful than those of this limited world, have come to us from an unknown country, and spark an inner, wonderful flame in our chests, a higher expression than mere words — that are only of this earth — can spark.

ACKNOWLEDGEMENTS

The author is indebted to Stephan de Bièvre, Jeremy Butterfield, Dennis Dieks, Jim Hartle, Gijs Tuynman, Steven Zelditch, and Wojciech Zurek for detailed comments on various drafts of this paper. The final version has greatly benefited from the 7 Pines Meeting on "The Classical-Quantum Borderland" (May, 2005); the author wishes to express his gratitude to Lee Gohliker and the Board of the 7 Pines Meetings for the invitation, and to the other speakers (M. Devoret, J. Hartle, E. Heller, G. 't Hooft, D. Howard, M. Gutzwiller, M. Janssen, A. Leggett, R. Penrose, P. Stamp, and W. Zurek) for sharing their insights with him.

BIBLIOGRAPHY

Between Classical and Quantum 547

This page intentionally left blank
QUANTUM INFORMATION AND COMPUTATION

Jeffrey Bub

1 INTRODUCTION

The subject of quantum information has its roots in the debate about conceptual issues in the foundations of quantum mechanics.

The story really begins with the dispute between Einstein and Bohr about the interpretation of quantum states, in particular the interpretation of so-called ‘entangled states’, which exhibit peculiar nonlocal statistical correlations for widely separated quantum systems. See, for example, [Bohr, 1949, 283] and Einstein’s reply in the same volume [Schilpp, 1949]. Einstein took the position that quantum mechanics is simply an incomplete theory. On the basis of a certain restricted set of correlations for a pair of systems in a particular entangled state, Einstein, Podolsky, and Rosen (EPR) argued in a seminal paper [Einstein et al., 1935] that the phenomenon of entanglement conflicts with certain basic realist principles of separability and locality that all physical theories should respect, unless we regard quantum states as incomplete descriptions.

Bohr’s view, which he termed ‘complementarity’, eventually became entrenched as the orthodox Copenhagen interpretation, a patchwork of reformulations by Heisenberg, Pauli, von Neumann, Dirac, Wheeler, and others. (For a discussion, see [Howard, 2004] and Landsman, this vol., ch. 5.) As Pauli put it in correspondence with Max Born [Born, 1971, 218], a ‘detached observer’ description of the sort provided by classical physics is precluded by the nature of quantum phenomena, and a quantum description of events is as complete as it can be (in principle). Any application of quantum theory requires a ‘cut’ between the observer and the observed, or the macroscopic measuring instrument and the measured system, so that the description is in a certain sense contextual, where the relevant context is defined by the whole macroscopic experimental arrangement. So, for example, a ‘position measurement context’ provides information about position but excludes, in principle, the possibility of simultaneously obtaining momentum information, because there is no fact of the matter about momentum in this context: the momentum value is indeterminate. The Copenhagen interpretation conflicts with Einstein’s realism, his ‘philosophical prejudice’, as Pauli characterized it in a letter to Born [Born, 1971, 221], that lies at the heart of the dispute between Einstein and Bohr about the significance of the transition from classical to quantum mechanics.
The 1990’s saw the development of a quantum theory of information, based on the realization that entanglement, rather than being a minor source of embarrassment for physics that need only concern philosophers, can actually be exploited as a nonclassical communication channel to perform information-processing tasks that would be impossible in a classical world. In a two-part commentary on the EPR paper, Schrödinger [1935, 555] identified entanglement as ‘the characteristic trait of quantum theory, the one that enforces its entire departure from classical lines of thought.’ This has led to an explosive surge of research among physicists and computer scientists on the application of information-theoretic ideas to quantum computation (which exploits entanglement in the design of a quantum computer, so as to enable the efficient performance of certain computational tasks), to quantum communication (new forms of ‘entanglement-assisted’ communication, such as quantum teleportation), and to quantum cryptography (the identification of cryptographic protocols that are guaranteed to be unconditionally secure against eavesdropping or cheating, by the laws of quantum mechanics, even if all parties have access to quantum computers).

Some milestones: Bell’s analysis [1964] turned the EPR argument on its head by showing that Einstein’s assumptions of separability and locality, applicable in classical physics and underlying the EPR incompleteness argument, are incompatible with certain quantum statistical correlations (not explicitly considered by EPR) of separated systems in EPR-type entangled states. Later experiments [Aspect et al., 1981; Aspect et al., 1982] confirmed these nonclassical correlations in set-ups that excluded the possibility of any sort of physically plausible, non-superluminal, classical communication between the separated systems.

In the 1980s, various authors, e.g., Wiesner, Bennett, and Brassard [Wiesner, 1983; Bennett and Brassard, 1984; Bennett et al., 1982] pointed out that one could exploit features of the measurement process in quantum mechanics to thwart the possibility of undetected eavesdropping in certain cryptographic procedures, specifically in key distribution — a procedure where two parties, Alice and Bob, who initially share no information end up each holding a secret random key which can be used to send encrypted messages between them. No third party, Eve, can obtain any information about the communications between Alice and Bob that led to the establishment of the key, without Alice and Bob becoming aware of Eve’s interference, because Eve’s measurements necessarily disturb the quantum states of the systems in the communication channel.

Bennett [1973] showed how to make a universal Turing machine reversible for any computation, a required step in the design of a quantum computer that evolves via unitary (and hence reversible) state transformations, and Benioff [1980] developed Hamiltonian models for computer computers. Feynman [1982] considered the problem of efficiently simulating the evolution of physical systems using quantum resources (noting that the classical simulation of a quantum process would be exponentially costly), which involves the idea of a quantum computation, but it was Deutsch [1985; 1989] who characterized the essential features of a universal quantum computer and formulated the first genuinely quantum algorithm.
Following Duetsch's work on quantum logic gates and quantum networks, several quantum algorithms were proposed for performing computational tasks more efficiently than any known classical algorithm, or in some cases more efficiently than any classical algorithm. The most spectacular of these is Shor's algorithm [1994; 1997] for finding the two prime factors of a positive integer \(N = pq \), which is exponentially faster than the best-known classical algorithm. Since prime factorization is the basis of the most widely used public key encryption scheme (currently universally applied in communications between banks and commercial transactions over the internet), Shor's result has enormous practical significance.

In the following, I present an account of some of the theoretical developments in quantum information, quantum communication, quantum cryptography, and quantum computation. I conclude by considering whether a perspective in terms of quantum information suggests a new way of resolving the foundational problems of quantum mechanics that were the focus of the debate between Einstein and Bohr.

My discussion is heavily indebted to Michael Nielsen and Isaac Chuang's illuminating and comprehensive *Quantum Computation and Quantum Information* [2000], and to several insightful review articles: 'The Joy of Entanglement' by Sandu Popescu and Daniel Rohrlich [1998], 'Quantum Information and its Properties' by Richard Jozsa [1998], and 'Quantum Computing' by Andrew Steane [1998].

2 CLASSICAL INFORMATION

2.1 Classical Information Compression and Shannon Entropy

In this section, I review the basic elements of classical information theory. In §2.1, I introduce the notion of the Shannon entropy of an information source and the fundamental idea of information compression in Shannon's source coding theorem (or noiseless channel coding theorem). In §2.2, I define some information-theoretic concepts relevant to Shannon's noisy channel coding theorem.

The classical theory of information was initially developed to deal with certain questions in the communication of electrical signals. Shannon's ground-breaking paper 'A Mathematical Theory of Communication' [Shannon, 1948] followed earlier work by people like Nyquist [1924] and Hartley [1928] in the 1920s. The basic problem was the representation of messages, selected from an ensemble generated by a stochastic process at the message source, in such a way as to ensure their efficient transmission over an electrical circuit such as a noisy telegraph wire.

A communication set-up involves a transmitter or source of information, a (possibly noisy) channel, and a receiver. The source produces messages in the form of sequences of symbols from some alphabet, which Shannon represented mathematically as sequences of values of independent, identically distributed random variables. In later idealizations, the source is represented as stationary, in the sense (roughly) that the probability of any symbol (or \(n \)-tuple of symbols) appearing at
any given position in a (very long) sequence, when that position is considered with respect to an ensemble of possible sequences, is the same for all positions in the sequence, and ergodic, in the sense that this ‘ensemble average’ probability is equal to the ‘time average’ probability, where the time average refers to the probability of a symbol (or n-tuple of symbols) in a given (very long) sequence.

The fundamental question considered by Shannon was how to quantify the minimal physical resources required to store messages produced by a source, so that they could be communicated via a channel without loss and reconstructed by a receiver. Shannon’s source coding theorem (or noiseless channel coding theorem) answers this question.

To see the idea behind the theorem, consider a source that produces long sequences (messages) composed of symbols from a finite alphabet \(a_1, a_2, \ldots, a_k\), where the individual symbols are produced with probabilities \(p_1, p_2, \ldots, p_k\). A given sequence of symbols is represented as a sequence of values of independent, identically distributed, discrete random variables \(X_1, X_2, \ldots\). A typical sequence of length \(n\), for large \(n\), will contain close to \(p_i n\) symbols \(a_i\), for \(i = 1, \ldots, n\). So the probability of a sufficiently long typical sequence (assuming independence) will be:

\[
(1) \quad p(x_1, x_2, \ldots, x_n) = p(x_1)p(x_2)\ldots p(x_n) \approx p_1^{p_1n} p_2^{p_2n} \ldots p_k^{p_kn}.
\]

Taking the logarithm of both sides (conventionally, in information theory, to the base 2) yields:

\[
(2) \quad \log p(x_1, \ldots, x_n) \approx n \sum_i p_i \log p_i := -nH(X)
\]

where \(H(X) := -\sum_i p_i \log p_i\) is the Shannon entropy of the source.

We can think about information in Shannon’s sense in various ways. We can take \(-\log p_i\), a decreasing function of \(p_i\) with a minimum value of 0 when \(p_i = 1\) for some \(i\), as a measure of the information associated with identifying the symbol \(a_i\) produced by an information source. Then \(H(X) = -\sum_i p_i \log p_i\) is the average information gain, or the expectation value of the information gain associated with ascertaining the value of the random variable \(X\). Alternatively, we can think of the entropy as a measure of the amount of uncertainty about \(X\) before we ascertain its value. A source that produces one of two distinguishable symbols with equal probability, such as the toss of a fair coin, is said to have a Shannon entropy of 1 bit: ascertaining which symbol is produced, or reducing one’s uncertainty about which symbol is produced, is associated with an amount of information equal to 1 bit.\(^1\) If we already know which symbol will be produced (so the probabilities are 1 and 0), the entropy is 0: there is no uncertainty, and no information gain.

Since

\[
(3) \quad p(x_1, \ldots, x_n) = 2^{-nH(X)}
\]

\(^1\)Note that the term ‘bit’ (for ‘binary digit’) is used to refer to the basic unit of classical information in terms of Shannon entropy, and to an elementary two-state classical system considered as representing the possible outputs of an elementary classical information source.
for sufficiently long typical sequences, and the probability of all the typical \(n \)-length sequences is less than 1, it follows that there are at most \(2^{nH(X)} \) typical sequences. In fact, if the \(p_i \) are not all equal, the typical sequences comprise an exponentially small set \(T \) (of equiprobable typical sequences) in the set of all sequences as \(n \to \infty \), but since the probability that the source produces an atypical sequence tends to zero as \(n \to \infty \), the set of typical sequences has probability close to 1. So each typical \(n \)-sequence could be encoded as a distinct binary number of \(nH(X) \) binary digits or bits before being sent through the channel to the receiver, where the original sequence could then be reconstructed by inverting the 1–1 encoding map. (The reconstruction would fail, with low probability, only for the rare atypical sequences, each of which could be encoded as, say, a string of 0’s.)

Notice that if the probabilities \(p_i \) are all equal (\(p_i = 1/k \) for all \(i \)), then \(H(X) = \log k \), and if some \(p_j = 1 \) (and so \(p_i = 0 \) for \(i \neq j \)), then \(H(X) = 0 \) (taking \(0 \log 0 = \lim_{x \to 0} x \log x = 0 \)). It can easily be shown that:

\[
(4) \quad 0 \leq H(X) \leq \log k.
\]

If we encoded each of the \(k \) distinct symbols as a distinct binary number, i.e., as a distinct string of 0’s and 1’s, we would need binary numbers composed of \(\log k \) bits to represent each symbol (\(2^{\log k} = k \)). So Shannon’s analysis shows that messages produced by a stochastic source can be compressed, in the sense that (as \(n \to \infty \) and the probability of an atypical \(n \)-length sequence tends to zero) \(n \)-length sequences can be encoded without loss of information using \(nH(X) \) bits rather than the \(n \log k \) bits required if we encoded each of the \(k \) symbols \(a_i \) as a distinct string of 0’s and 1’s: this is a compression, since \(nH(X) < n \log k \) except for equiprobable distributions.

More precisely, let \(\overline{X} = \frac{1}{n} (X_1 + X_2 + \ldots + X_n) \), where \(X_1, X_2, \ldots, X_n \) are \(n \) independent and identically distributed random variables with mean \(< X >\) and finite variance. The weak law of large numbers tells us that, for any \(\epsilon, \delta > 0 \),

\[
(5) \quad \Pr(|\overline{X} - < X > | \geq \delta) < \epsilon
\]

for sufficiently large \(n \).

Now consider a random variable \(X \) that takes values \(x \) in an alphabet \(\mathcal{X} \) with probabilities \(p(x) = \Pr(X = x), x \in \mathcal{X} \). 2 Let

\[
(6) \quad Z = -\log p(X)
\]

be a function of \(X \) that takes the value \(-\log p(x) \) when \(X \) takes the value \(x \). Then

\[
(7) \quad < Z > = -\sum_{x \in \mathcal{X}} p(x) \log p(x) = H(X)
\]

\(^2\)Note that \(p(x) \) is an abbreviation for \(p_X(x) \), so \(p(x) \) and \(p(y) \) refer to two different random variables. The expression \(\Pr(X \in S) = \sum_{x \in S} p(x) \) denotes the probability that the random variable \(X \) takes a value in the set \(S \), and \(\Pr(X = x) \) denotes the probability that \(X \) takes the value \(x \). The expression \(p(x_1, x_2, \ldots, x_n) \) denotes the probability that the sequence of random variables \(X_1, X_2, \ldots, X_n \) takes the sequence of values \((x_1, x_2, \ldots, x_n) \). The discussion here follows Cover and Thomas [1991] and I use their notation.
and for a sequence of \(n \) independent and identically distributed random variables \(X_1, X_2, \ldots, X_n \):

\[
-\frac{1}{n} \log p(X_1, \ldots, X_n) = \frac{1}{n} \sum_i \log p(X_i) = \frac{1}{n} (Z_1 + \ldots + Z_n) = \overline{Z}.
\]

(8)

So, by the weak law of large numbers, for \(\epsilon, \delta > 0 \) and sufficiently large \(n \):

\[
\Pr(|\overline{Z} - < Z > | \geq \delta) < \epsilon
\]

(9) i.e.,

\[
\Pr(\left| -\frac{1}{n} \log p(X_1, \ldots, X_n) - H(X) \right| \geq \delta) < \epsilon
\]

(10) or equivalently,

\[
\Pr(\left| -\frac{1}{n} \log p(X_1, \ldots, X_n) - H(X) \right| < \delta) \geq 1 - \epsilon
\]

(11) and hence, with probability greater than or equal to \(1 - \epsilon \):

\[
-n(H(X) + \delta) < \log p(X_1, \ldots, X_n) < -n(H(X) - \delta).
\]

(12)

A '\(\delta \)-typical \(n \)-length sequence' \((x_1, \ldots, x_n) \in \mathcal{X}^n \) of values of the random variables \(X_1, \ldots, X_n \) is defined as a sequence of symbols of \(\mathcal{X} \) satisfying:

\[
2^{-n(H(X) + \delta)} \leq p(x_1, \ldots, x_n) \leq 2^{-n(H(X) - \delta)}.
\]

(13) Denote the set of \(\delta \)-typical \(n \)-length sequences by \(T^{(n)}_\delta \) and the number of sequences in \(T^{(n)}_\delta \) by \(|T^{(n)}_\delta| \). Then, for sufficiently large \(n \),

\[
\Pr(\{X_1, \ldots, X_n\} \in T^{(n)}_\delta) \geq 1 - \epsilon;
\]

(14) and it can be shown that

\[
(1 - \epsilon)2^{n(H(X) - \delta)} \leq |T^{(n)}_\delta| \leq 2^{n(H(X) + \delta)}.
\]

(15) So, roughly, \(T^{(n)} \) contains \(2^{nH} \) equiprobable sequences, each having a probability of \(2^{-nH} \).

Shannon's source coding theorem applies the above result about typical sequences to show that the compression rate of \(H(X) \) bits per symbol produced by a source of independent and identically distributed random variables is optimal. The source produces \(n \)-length sequences of symbols \(x_1, x_2, \ldots, x_n \) with probability \(p(x_1, x_2, \ldots, x_n) = p(x_1)p(x_2) \ldots p(x_n) \), where each symbol is chosen from an alphabet \(\mathcal{X} \). If there are \(k \) symbols in \(\mathcal{X} \), these \(n \)-sequences can be represented as sequences of \(n \log k \) bits. Suppose there is a 'block coding' compression scheme
that encodes each ‘block’ or n-length sequence (for sufficiently large n) as a shorter sequence of nR bits, where $0 \leq R \leq \log k$. Suppose also that the receiver has a decompression scheme for decoding sequences of nR bits into sequences of n symbols. Then one speaks of a compression/decompression scheme of rate R.

The source coding theorem states that

if the Shannon entropy of a source is $H(X)$, then there exists a reliable compression/decompression scheme of rate R if and only if $R \geq H(X)$, where a scheme is said to be reliable if it reproduces the original sequence with a probability that tends to 1 as $n \to \infty$.

For reliable communication, we want the compression and decompression of a sequence of symbols to yield the original sequence, but in general there will be a certain probability, $q(x_1, \ldots, x_n)$, of decoding a given sequence of nR encoded bits received by the receiver as the original n-sequence produced by the source. The average fidelity\(^3\) of a compression/decompression scheme for n-length blocks is defined as:

\[
F_n = \sum_{\text{all } n\text{-sequences}} p(x_1, \ldots, x_n)q(x_1, \ldots, x_n)
\]

If all the probabilities $q(x_1, \ldots, x_n)$ are 1, $F_n = 1$; otherwise $F_n < 1$. In terms of the fidelity as a measure of reliability of correct decoding, the source coding theorem states that

for any $\epsilon, \delta > 0$: (i) there exists a compression/decompression scheme using $H(X) + \delta$ bits per symbol for n-length sequences produced by the source that can be decompressed by the receiver with a fidelity $F_n > 1 - \epsilon$, for sufficiently large n, and (ii) any compression/decompression scheme using $H(X) - \delta$ bits per symbol for n-length sequences will have a fidelity $F_n < \epsilon$, for sufficiently large n.

As a simple example of compression, consider an information source that produces sequences of symbols from a 4-symbol alphabet a_1, a_2, a_3, a_4 with probabilities $1/2, 1/4, 1/8, 1/8$. Each symbol can be represented by a distinct 2-digit binary number:

- $a_1 : 00$
- $a_2 : 01$
- $a_3 : 10$
- $a_4 : 11$

\(^3\)Note that this definition of fidelity is different from the definition proposed by Nielsen and Chuang [2000, 400] for the fidelity between two probability distributions $\{p_x\}$ and $\{q_x\}$ as a ‘distance measure’ between the distributions. They define $F_{NC}(p_x, q_x) := \sum_x \sqrt{p_x q_x}$, so $F_{NC}(p_x, q_x) = 1$ if $p_x = q_x$.
so without compression we need two bits per symbol of storage space to store the output of the source. The Shannon entropy of the source is \(H(X) = -\frac{1}{2} \log \frac{1}{2} - \frac{1}{4} \log \frac{3}{4} - \frac{1}{8} \log \frac{1}{8} - \frac{1}{8} \log \frac{1}{8} = \frac{7}{4} \). Shannon’s source coding theorem tells us that there is a compression scheme that uses an average of \(7/4 \) bits per symbol rather than two bits per symbol, and that such a compression scheme is optimal. The optimal scheme is provided by the following encoding:

\[
\begin{align*}
 a_1 & : 0 \\
 a_2 & : 10 \\
 a_3 & : 110 \\
 a_4 & : 111
\end{align*}
\]

for which the average length of a compressed sequence is:

\[
\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = \frac{7}{4}
\]

bits per symbol.

The significance of Shannon’s source coding theorem lies in showing that there is an optimal or most efficient way of compressing messages produced by a source (assuming a certain idealization) in such a way that they can be reliably reconstructed by a receiver. Since a message is abstracted as a sequence of distinguishable symbols produced by a stochastic source, the only relevant feature of a message with respect to reliable compression and decompression is the sequence of probabilities associated with the individual symbols: the nature of the physical systems embodying the representation of the message through their states is irrelevant to this notion of compression (provided only that the states are reliably distinguishable), as is the content or meaning of the message. The Shannon entropy \(H(X) \) is a measure of the minimal physical resources, in terms of the average number of bits per symbol, that are necessary and sufficient to reliably store the output of a source of messages. In this sense, it is a measure of the amount of information per symbol produced by an information source.

The essential notion underlying Shannon’s measure of information is compressibility: information as a physical resource is something that can be compressed, and the amount of information produced by an information source is measured by its optimal compressibility.

2.2 Conditional Entropy, Mutual Information, Channel Capacity

The analysis so far assumes a noiseless channel between the source and the receiver. I turn now to a brief sketch of some concepts relevant to a noisy channel, and a statement of Shannon’s noisy channel coding theorem.

An information channel maps inputs consisting of values of a random variable \(X \) onto outputs consisting of values of a random variable \(Y \), and the map will generally not be 1-1 if the channel is noisy. Consider the conditional probabilities \(p(y|x) \) of obtaining an output value \(y \) for a given input value \(x \), for all \(x, y \). From the probabilities \(p(x) \) we can calculate \(p(y) \) as:

\[
p(y) = \sum_x p(y|x)p(x)
\]
and we can also calculate \(p(x|y) \) by Bayes' rule from the probabilities \(p(y|x) \) and \(p(x) \), for all \(x, y \), and hence the Shannon entropy of the conditional distribution \(p(x|y) \), for all \(x \) and a fixed \(y \), denoted by \(H(X|Y = y) \).

The quantity

\[
H(X|Y) = \sum_y p(y)H(X|Y = y)
\]

is known as the \textit{conditional entropy}. It is the expected value of \(H(X|Y = y) \) for all \(y \). If we think of \(H(X) \), the entropy of the distribution \(\{p(x) : x \in X\} \), as a measure of the uncertainty of the \(X \)-value, then \(H(X|Y = y) \) is a measure of the uncertainty of the \(X \)-value, given the \(Y \)-value \(y \), and \(H(X|Y) \) is a measure of the average uncertainty of the \(X \)-value, given a \(Y \)-value.

Putting it differently, the number of input sequences of length \(n \) that are consistent with a given output sequence (as \(n \to \infty \)) is \(2^{nH(X|Y)} \), i.e., \(H(X|Y) \) is the number of bits per symbol of additional information needed, on average, to identify an input \(X \)-sequence from a given \(Y \)-sequence. This follows because there are \(2^{nH(X,Y)} \) typical sequences of pairs \((x, y) \), where the \textit{joint entropy} \(H(X, Y) \) is calculated from the joint probability \(p(x, y) \). So there are

\[
\frac{2^{nH(X,Y)}}{2^{nH(Y)}} = 2^n(H(X,Y) - H(Y)) = 2^nH(X|Y)
\]

typical \(X \)-sequences associated with a given \(Y \)-sequence.

The 'chain rule' equality

\[
H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) = H(Y, X)
\]

follows immediately from the logarithmic definitions of the quantities:

\[
H(X : Y) := -\sum_{x, y} p(x, y) \log p(x, y) = -\sum_{x, y} p(x)p(y|x) \log (p(x)p(y|x)) = -\sum_{x, y} p(x)p(y|x) \log p(x) - \sum_{x, y} p(x)p(y|x) \log p(y|x) = -\sum_x p(x) \log p(x) + \sum_x p(x) \left(-\sum_y p(y|x) \log p(y|x) \right)
\]

\[
H(X) + H(Y|X) = H(X) + H(Y, X)
\]

Note that \(H(X|Y) \neq H(Y|X) \).

The \textit{mutual information} measures the average amount of information gained about \(X \) by ascertaining a \(Y \)-value, i.e., the amount of information one random variable contains about another, or the reduction in uncertainty of one random variable obtained by measuring another.
Mutual information can be defined in terms of the concept of relative entropy, which is a measure of something like the distance between two probability distributions (although it is not a true metric, since it is not symmetric and does not satisfy the triangle inequality). The relative entropy between distributions \(p(x) \) and \(q(x) \) is defined as:

\[
(21) \quad D(p \parallel q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.
\]

The mutual information can now be defined as:

\[
H(X:Y) = D(p(x,y) \parallel p(x)p(y)) = \sum_x \sum_y p(x,y) \log \frac{p(x,y)}{p(x)p(y)}.
\]

It follows that

\[
(23) \quad H(X:Y) = H(X) - H(X|Y) = H(Y) - H(Y|X),
\]

i.e., the mutual information of two random variables represents the average information gain about one random variable obtained by measuring the other: the difference between the initial uncertainty of one of the random variables, and the average residual uncertainty of that random variable after ascertaining the value of the other random variable. Also, since \(H(X,Y) = H(X) + H(Y|X) \), it follows that

\[
(24) \quad H(X:Y) = H(X) + H(Y) - H(X,Y);
\]

i.e., the mutual information of two random variables is a measure of how much information they have in common: the sum of the information content of the two random variables, as measured by the Shannon entropy (in which joint information is counted twice), minus their joint information. Note that \(H(X:X) = H(X) \), as we would expect.

For a noisy channel, if \(X \) represents the input to the channel and \(Y \) represents the output of the channel, \(H(X:Y) \) represents the average amount of information gained about the input \(X \) by ascertaining the value of the output \(Y \). The capacity of a channel, \(C \), is defined as the supremum of \(H(X:Y) \) over all input distributions.

Shannon's noisy channel coding theorem shows, perhaps surprisingly, that up to \(C \) bits of information can be sent through a noisy channel with arbitrary low error rate. That is,

there exists an optimal coding for an information source with entropy \(H \leq C \) such that \(n \)-length sequences produced by the source can be transmitted faithfully over the channel: the error rate tends to zero as \(n \to \infty \). The probability of error tends to 1 if we attempt to transmit more than \(C \) bits through the channel.
This means that there are two ways of improving the transmission rate over a noisy channel such as a telephone cable. We can improve the channel capacity by replacing the cable with a faster one, or we can improve the information processing (the data compression).

3 QUANTUM INFORMATION

The physical notion of information, discussed in §2, is profoundly transformed by the transition from classical mechanics to quantum mechanics. The aim of this section is to bring out the nature of this transformation. In §3.1, I develop some core concepts of quantum mechanics relevant to quantum information: entangled states, the Schmidt decomposition, the density operator formalism for the representation of pure and mixed states, the ‘purification’ of mixed states, generalized quantum measurements in terms of positive operator valued measures (POVMs), and the evolution of open systems represented by quantum operations. I assume throughout Hilbert spaces of finite dimension (and so avoid all the technicalities of functional analysis required for the treatment of infinite-dimensional Hilbert spaces). In fact, there is no loss of generality here, since both classical and quantum information sources are considered to produce messages consisting of sequences of symbols from some finite alphabet, which we represent in terms of a finite set of classical or quantum states. Moreover, all the conceptual issues relevant to the difference between classical and quantum information show up in finite-dimensional Hilbert spaces. In §3.2, I introduce von Neumann’s generalization of the Shannon entropy and related notions for quantum information. In §3.3 and §3.4, I discuss some salient features that distinguish quantum information from classical information: §3.3 deals with the limitations on copying quantum information imposed by the ‘no cloning’ theorem, and §3.4 deals with the limited accessibility of quantum information defined by the Holevo bound. Finally, in §3.5 I show how the notion of compressibility applies to quantum information, and I outline Schumacher’s generalization of Shannon’s source coding theorem for quantum information, noting a distinction between ‘visible’ and ‘blind’ compression applicable to quantum information.

3.1 Some Relevant Quantum Mechanics

Entangled States

Consider a quantum system Q which is part of a compound system QE; E for ‘environment’, although E could be any quantum system of which Q is a subsystem. Pure states of QE are represented as rays or unit vectors in a tensor product Hilbert space $\mathcal{H}^Q \otimes \mathcal{H}^E$. A general pure state of QE is a state of the form:

$$\langle \Psi \rangle = \sum c_{ij} |q_i \rangle |e_j \rangle$$
where $|q_i\rangle \in \mathcal{H}^Q$ is a complete set of orthonormal states (a basis) in \mathcal{H}^Q and $|e_j\rangle \in \mathcal{H}^E$ is a basis in \mathcal{H}^E. If the coefficients c_{ij} are such that $|\Psi\rangle$ cannot be expressed as a product state $|Q\rangle|E\rangle$, then $|\Psi\rangle$ is called an entangled state.

For any state $|\Psi\rangle$ of QE, there exist orthonormal bases $|i\rangle \in \mathcal{H}^Q$, $|j\rangle \in \mathcal{H}^E$ such that $|\Psi\rangle$ can be expressed in a biorthogonal correlated form as:

$$ (26) \quad |\Psi\rangle = \sum_i \sqrt{p_i} |i\rangle|i\rangle $$

where the coefficients $\sqrt{p_i}$ are real and non-negative, and $\sum p_i = 1$. This representation is referred to as the Schmidt decomposition. The Schmidt decomposition is unique if and only if the p_i are all distinct.

An example is the biorthogonal EPR state4

$$ (27) \quad |\Psi\rangle = (|0\rangle|1\rangle - |1\rangle|0\rangle)/\sqrt{2}; $$

say, the singlet state of two spin-1/2 particles (the Schmidt form with positive coefficients is obtained by absorbing the relative phases in the definition of the basis vectors). In the singlet state, $|0\rangle$ and $|1\rangle$ can be taken as representing the two eigenstates of spin in the z-direction, but since the state is symmetric, $|\Psi\rangle$ retains the same form for spin in any direction. The EPR argument exploits the fact that spin measurements in the same direction on the two particles, which could be arbitrarily far apart, will yield outcomes that are perfectly anti-correlated for any spin direction. Bell's counterargument exploits the fact that when the spin is measured on one particle in a direction θ_1 to the z-axis, but on the other particle in a direction θ_2 to the z-axis, the probability of finding the same outcome for both particles (both 1 or both 0) is $\frac{1}{2} \sin^2(\theta_1 - \theta_2)$. It follows that the outcomes are perfectly correlated when $\theta_1 - \theta_2 = \pi$ and that 3/4 of the outcomes are the same when $\theta_1 - \theta_2 = 2\pi/3$. On the other hand, from Bell's inequality, derived under Einstein's realist assumptions of separability and locality, we see that the correlation for $\theta_1 - \theta_2 = 2\pi/3$ cannot exceed 2/3. See Dickson (this vol., ch. 4) for further discussion.

This means that the dynamical evolution of a quantum system can result in a state representing correlational information that no classical computer can simulate. That is, no classical computer can be programmed to perform the following task: for any pair of input angles, θ_1, θ_2, at different locations, output a pair of values (0 or 1) for these locations such that the values are perfectly correlated when $\theta_1 - \theta_2 = \pi$, perfectly anti-correlated when $\theta_1 = \theta_2$, and 75% correlated when $\theta_1 - \theta_2 = 2\pi/3$, where the response time between being given the input and producing the output in each case is less than the time taken by light to travel between the two locations.

4Einstein, Podolsky and Rosen considered a more complicated state entangled over position and momentum values. The spin example is due to Bohm [1951, pp. 611–623].
Notice that the four states:

\[(28) \quad |00\rangle = \frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle)\]
\[(29) \quad |01\rangle = \frac{1}{\sqrt{2}}(|0\rangle|1\rangle + |1\rangle|0\rangle)\]
\[(30) \quad |10\rangle = \frac{1}{\sqrt{2}}(|0\rangle|0\rangle - |1\rangle|1\rangle)\]
\[(31) \quad |11\rangle = \frac{1}{\sqrt{2}}(|0\rangle|1\rangle - |1\rangle|0\rangle)\]

form an orthonormal basis, called the Bell basis, in the 2 x 2-dimensional Hilbert space. Any Bell state can be transformed into any other Bell state by a local unitary transformation, \(X, Y,\) or \(Z\), where \(X, Y, Z\) are the Pauli spin matrices:

\[(32) \quad X = \sigma_x = |0\rangle\langle 1| + |1\rangle\langle 0| = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]
\[(33) \quad Y = \sigma_y = i|0\rangle\langle 1| - i|1\rangle\langle 0| = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \]
\[(34) \quad Z = \sigma_z = |0\rangle\langle 0| + |1\rangle\langle 1| = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

For example:

\[(35) \quad X \otimes I \cdot \frac{1}{\sqrt{2}}(|0\rangle\langle 1| - |1\rangle\langle 0|) = \frac{1}{\sqrt{2}}(|0\rangle\langle 0| - |1\rangle|1\rangle). \]

If \(QE\) is a closed system in an entangled pure state represented by

\[(36) \quad |\Psi\rangle = \sum_i \sqrt{p_i} |i\rangle |i\rangle \]

in the Schmidt decomposition, the expected value of any \(Q\)-observable \(A\) on \(\mathcal{H}^Q\) can be computed as:

\[
\langle A \rangle = \text{Tr}(|\Psi\rangle\langle \Psi| A \otimes I) = \text{Tr}_Q(\text{Tr}_E(|\Psi\rangle\langle \Psi| A)) = \text{Tr}_Q(\sum_i p_i |i\rangle\langle i| A) = \text{Tr}_Q(\rho A)
\]

where \(\text{Tr}_Q() = \sum_q \langle q_t | \cdot | q_t \rangle\), for any orthonormal basis in \(\mathcal{H}^Q\), is the partial trace over \(\mathcal{H}^Q\), \(\text{Tr}_E()\) is the partial trace over \(\mathcal{H}^E\), and \(\rho = \sum_i p_i |i\rangle\langle i| \in \mathcal{H}^Q\) is the reduced density operator of the open system \(Q\), a positive operator with unit trace.
Since the density operator ρ yields the statistics of all Q-observables via Eq. (37), ρ is taken as representing the quantum state of the system Q.

If QE is an entangled pure state, then the open system Q is in a mixed state ρ, i.e., $\rho \neq \rho^2$; for pure states, ρ is a projection operator onto a ray and $\rho = \rho^2$. A mixed state represented by a density operator $\rho = \sum \rho_i |i\rangle \langle i|$ can be regarded as a mixture of pure states $|i\rangle$ prepared with prior probabilities p_i, but this representation is not unique — not even if the states combined in the mixture are orthogonal. For example, the equal-weight mixture of orthonormal states $|0\rangle, |1\rangle$ in a 2-dimensional Hilbert space \mathcal{H}_2 has precisely the same statistical properties, and hence the same density operator $\rho = I/2$, as the equal weight mixture of any pair of orthonormal states, e.g., the states $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$, or the equal-weight mixture of nonorthogonal states $|0\rangle, \frac{1}{3}|0\rangle + \frac{\sqrt{2}}{3}|1\rangle, \frac{1}{3}|0\rangle - \frac{\sqrt{2}}{3}|1\rangle$ 120° degrees apart, or the uniform continuous distribution over all possible states in \mathcal{H}_2.

More generally, for any basis of orthonormal states $|e_i\rangle \in \mathcal{H}^E$, the entangled state $|\Psi\rangle$ can be expressed as:

$$|\Psi\rangle = \sum_{ij} c_{ij} |q_i\rangle |e_j\rangle = \sum_j \sqrt{w_j} |r_j\rangle |e_j\rangle$$

where the normalized states $|r_j\rangle = \sum_i \frac{c_{ij}}{\sqrt{w_j}} |q_i\rangle$ are relative states to the $|e_j\rangle$ ($\sqrt{w_j} = \sum_j |c_{ij}|^2$). Note that the states $|r_j\rangle$ are not in general orthogonal. Since the $|e_j\rangle$ are orthogonal, we can express the density operator representing the state of Q as:

$$\rho = \sum_i w_i |r_i\rangle \langle r_i|.$$

In effect, a measurement of an E-observable with eigenstates $|e_i\rangle$ will leave the composite system QE in one of the states $|r_i\rangle |e_i\rangle$ with probability w_i, and a measurement of an E-observable with eigenstates $|i\rangle$ (the orthogonal states of the Schmidt decomposition in (36) above) will leave the system QE in one of the states $|i\rangle |i\rangle$ with probability p_i. Since Q and E could be widely separated from each other in space, no measurement at E could affect the statistics of any Q-observable; or else measurements at E would allow superluminal signaling between Q and E. It follows that the mixed state ρ can be realized as a mixture of orthogonal states $|i\rangle$ (the eigenstates of ρ) with weights p_i, or as a mixture of non-orthogonal relative states $|r_j\rangle$ with weights w_j in infinitely many ways, depending on the choice of basis in \mathcal{H}^E:

$$\rho = \sum_i p_i |i\rangle \langle i| = \sum_j w_j |r_j\rangle \langle r_j|$$

and all these different mixtures with the same density operator ρ must be physically indistinguishable.
Note that any mixed state density operator $\rho \in \mathcal{H}^Q$ can be 'purified' by adding a suitable ancilla system E, in the sense that ρ is the partial trace of a pure state $|\Psi\rangle \in \mathcal{H}^Q \otimes \mathcal{H}^E$ over \mathcal{H}^E. A purification of a mixed state is, clearly, not unique, but depends on the choice of $|\Psi\rangle$ in \mathcal{H}^E. The Hughston-Jozsa-Wootters theorem [Hughston et al., 1993] shows that for any mixture of pure states $|r_i\rangle$ with weights w_i, where $\rho = \sum_j w_j |r_j\rangle \langle r_j|$, there is a purification of ρ and a suitable measurement on the system E that will leave Q in the mixture ρ. So an observer at E can remotely prepare Q in any mixture that corresponds to the density operator ρ (and of course all these different mixtures are physically indistinguishable). Similar results were proved earlier by Schrödinger [1936], Jaynes [1957] and Gisin [1989]. See Halvorson [2004] for a generalization to hyperfinite von Neuman algebras.

Measurement

A standard von Neumann 'yes-no' measurement is associated with a projection operator; so a standard observable is represented in the spectral representation as a sum of projection operators, with coefficients representing the eigenvalues of the observable. Such a measurement is the quantum analogue of the measurement of a property of a system in classical physics. Classically, we think of a property of a system as being associated with a subset in the state space (phase space) of the system, and determining whether the system has the property amounts to determining whether the state of the system lies in the corresponding subset. In quantum mechanics, the counterpart of a subset in phase space is a closed linear subspace in Hilbert space. Just as the different possible values of an observable (dynamical quantity) of a classical system correspond to the subsets in a mutually exclusive and collectively exhaustive set of subsets covering the classical state space, so the different values of a quantum observable correspond to the subspaces in a mutually exclusive (i.e., orthogonal) and collectively exhaustive set of subspaces spanning the quantum state space. (For further discussion, see Dickson, this vol., ch 4, [Mackey, 1963], and [Bub, 1997].)

In quantum mechanics, and especially in the theory of quantum information (where any read-out of the quantum information encoded in a quantum state requires a quantum measurement), it is useful to consider a more general class of measurements than the projective measurements associated with the determination of the value of an observable. It is common to speak of generalized measurements and generalized observables. But in fact this terminology is more misleading than illuminating, because a generalized measurement is not a procedure that reveals whether or not a quantum system has some sort of generalized property. Rather, the point of the generalization is to exploit the difference between quantum and classical states for new possibilities in the representation and manipulation of information.

To clarify the idea, I will follow the excellent discussion by Nielsen and Chuang [2000, §2.2.3–2.2.6]. A quantum measurement can be characterized, completely generally, as a certain sort of interaction between two quantum systems, Q (the
measured system) and M (the measuring system). We suppose that Q is initially in a state $|\psi\rangle$ and that M is initially in some standard state $|0\rangle$, where $|m\rangle$ is an orthonormal basis of 'pointer' eigenstates in \mathcal{H}^M. The interaction is defined by a unitary transformation U on the Hilbert space $\mathcal{H}^Q \otimes \mathcal{H}^M$ that yields the transition:

$$\tag{41} |\psi\rangle|0\rangle \xrightarrow{U} \sum_{m} M_m |\psi\rangle|m\rangle$$

where $\{M_m\}$ is a set of linear operators (the Kraus operators) defined on \mathcal{H}^Q satisfying the completeness condition:

$$\tag{42} \sum_{m} M_m^\dagger M_m = I.$$

(The symbol \dagger denotes the adjoint or Hermitian conjugate.) The completeness condition guarantees that this evolution is unitary, because it guarantees that U preserves inner products, i.e.

$$\langle \phi | (0) U^\dagger U | \psi \rangle |0\rangle = \sum_{m,m'} \langle m | \langle \phi | M_m^\dagger M_{m'} | \psi \rangle |m'\rangle$$

$$= \sum_{m} \langle \phi | M_m^\dagger M | \psi \rangle$$

$$\tag{43} = \langle \phi | \psi \rangle$$

from which it follows that U, defined as above by Eq. (41) for any product state $|\psi\rangle|0\rangle$ (for any $|\psi\rangle \in \mathcal{H}^Q$) can be extended to a unitary operator on the Hilbert space $\mathcal{H}^Q \otimes \mathcal{H}^M$. Accordingly, any set of linear operators $\{M_m\}$ defined on the Hilbert space of the system Q satisfying the completeness condition defines a measurement in this general sense, with the index m labeling the possible outcomes of the measurement, and any such set is referred to as a set of measurement operators.

If we now perform a standard projective measurement on M to determine the value m of the pointer observable, defined by the projection operator

$$P_m = I_Q \otimes |m\rangle\langle m|$$

then the probability of obtaining the outcome m is, by (37)5:

$$p(m) = \langle 0 | \langle \psi | U^\dagger P_m U | \psi \rangle |0\rangle$$

$$= \sum_{m'm''} \langle m' | \langle \psi | M_{m'}^\dagger (I_Q \otimes |m\rangle\langle m|) M_{m''} | \psi \rangle |m''\rangle$$

$$= \sum_{m'm''} \langle \psi | M_{m'}^\dagger (m'|m\rangle |m''\rangle M_{m''} | \psi \rangle$$

$$\tag{44} = \langle \psi | M_m^\dagger M_m | \psi \rangle;$$

5The expected value of a projection operator, which is an idempotent observable with eigenvalues 0 and 1, is equal to the probability of obtaining the eigenvalue 1. Here the eigenvalue 1 corresponds to the outcome m.

and, more generally, if the initial state of Q is a mixed state ρ, then

$$p(m) = \text{Tr}_Q(M \rho M^\dagger).$$

The final state of QM after the projective measurement on M yielding the outcome m is:

$$\frac{P_m U|\psi\rangle|0\rangle}{\sqrt{\langle\psi|U^\dagger PU|\psi\rangle}} = \frac{M_m|\psi\rangle|m\rangle}{\sqrt{\langle\psi|M_m^\dagger M_m|\psi\rangle}}.$$

So the final state of M is $|m\rangle$ and the final state of Q is:

$$\frac{M_m|\psi\rangle}{\sqrt{\langle\psi|M_m^\dagger M_m|\psi\rangle}};$$

and, more generally, if the initial state of Q is a mixed state ρ, then the final state of Q is:

$$\frac{M_m \rho M_m^\dagger}{\text{Tr}_Q(M_m \rho M_m^\dagger)}.$$

Note that this general notion of measurement covers the case of standard projective measurements. In this case $\{M_m\} = \{P_m\}$, where $\{P_m\}$ is the set of projection operators defined by the spectral measure of a standard quantum observable represented by a self-adjoint operator. It also covers the measurement of ‘generalized observables’ associated with positive operator valued measures (POVMs). Let

$$E_m = M_m^\dagger M_m$$

then the set $\{E_m\}$ defines a set of positive operators (‘effects’) such that

$$\sum E_m = I$$

A POVM can be regarded as a generalization of a projection valued measure (PVM), in the sense that Eq. (48) defines a ‘resolution of the identity’ without requiring the PVM orthogonality condition:

$$P_m P_{m'} = \delta_{mm'} P_m.$$

Note that for a POVM:

$$p(m) = \langle\psi|E_m|\psi\rangle.$$

Given a set of positive operators $\{E_m\}$ such that $\sum E_m = I$, measurement operators M_m can be defined via

$$M_m = U \sqrt{E_m},$$
where U is a unitary operator, from which it follows that
\begin{equation}
\sum_m M_m^\dagger M_m = \sum E_m = I
\end{equation}

As a special case, of course, we can take $U = 1$ and $M_m = \sqrt{E_m}$. Conversely, given a set of measurement operators $\{M_m\}$, there exist unitary operators U_m such that $M_m = U_m \sqrt{E_m}$, where $\{E_m\}$ is a POVM. (This follows immediately from [Nielsen and Chuang, 2000, Theorem 2.3, p. 78]; see [Nielsen and Chuang, 2000, Exercise 2.63, p. 92].)

Except for the standard case of projective measurements, one might wonder why it might be useful to single out such unitary transformations, and why in the general case such a process should be called a measurement of Q. The following example, taken from [Nielsen and Chuang, 2000, 92], is illuminating. Suppose we know that a system with a 2-dimensional Hilbert space is in one of two nonorthogonal states:
\begin{align*}
|\psi_1\rangle & = |0\rangle \\
|\psi_2\rangle & = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)
\end{align*}

It is impossible to reliably distinguish these states by a quantum measurement, even in the above generalized sense. Here ‘reliably’ means that the state is identified correctly with zero probability of error.

To see this, suppose there is such a measurement, defined by two measurement operators M_1, M_2 satisfying the completeness condition. Then we require
\begin{equation}
p(1) = \langle \psi_1 | M_1^\dagger M_1 | \psi_1 \rangle = 1,
\end{equation}
to represent reliability if the state is $|\psi_1\rangle$; and
\begin{equation}
p(2) = \langle \psi_2 | M_2^\dagger M_2 | \psi_2 \rangle = 1
\end{equation}
to represent reliability if the state is $|\psi_2\rangle$. By the completeness condition we must have
\begin{equation}
\langle \psi_1 | M_1^\dagger M_1 + M_2^\dagger M_2 | \psi_1 \rangle = 1
\end{equation}
from which it follows that $\langle \psi_1 | M_2^\dagger M_2 | \psi_1 \rangle = 0$, i.e., $M_2 |\psi_1\rangle = M_2 |0\rangle = 0$. Hence
\begin{equation}
M_2 |\psi_2\rangle = M_2 \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}}M_2 |1\rangle
\end{equation}
and so
\begin{equation}
p(2) = \langle \psi_2 | M_2^\dagger M_2 | \psi_2 \rangle = \frac{1}{2} \langle 1 | M_2^\dagger M_2 | 1 \rangle.
\end{equation}
But by the completeness condition we also have
\begin{equation}
\langle 1 | M_2^\dagger M_2 | 1 \rangle \leq \langle 1 | M_1^\dagger M_1 + M_2^\dagger M_2 | 1 \rangle = \langle 1 | 1 \rangle = 1
\end{equation}
from which it follows that

\[(59) \quad p(2) \leq \frac{1}{2}\]

which contradicts Eq. (54).

However, it is possible to perform a measurement in the generalized sense, with \textit{three} possible outcomes, that will allow us to correctly identify the state some of the time, i.e., for two of the possible outcomes, while nothing about the identity of the state can be inferred from the third outcome.

Here’s how: The three operators

\[
E_1 = \frac{\sqrt{2}}{1 + \sqrt{2}} \left(|0\rangle - |1\rangle \right) \left(\langle 0 | - \langle 1 | \right)
\]

\[
E_2 = \frac{\sqrt{2}}{1 + \sqrt{2}} |1\rangle \langle 1|
\]

\[
(60) \quad E_3 = I - E_1 - E_2
\]

are all positive operators and \(E_1 + E_2 + E_3 = I\), so they define a POVM. In fact, \(E_1, E_2, E_3\) are each multiples of projection operators onto the states

\[
|\phi_1\rangle = |\psi_2\rangle^\perp
\]

\[
|\phi_2\rangle = |\psi_1\rangle^\perp
\]

\[
|\phi_3\rangle = \frac{(1 + \sqrt{2})|0\rangle + |1\rangle}{\sqrt{2}\sqrt{2}(1 + \sqrt{2})}
\]

with coefficients \(\frac{\sqrt{2}}{1 + \sqrt{2}}, \frac{\sqrt{2}}{1 + \sqrt{2}}, \frac{1}{1 + \sqrt{2}}\) respectively. The measurement involves a system \(M\) with three orthogonal pointer states \(|1\rangle, |2\rangle, |3\rangle\). The appropriate unitary interaction \(U\) results in the transition, for an input state \(|\psi\rangle\):

\[
(62) \quad |\psi\rangle|0\rangle \xrightarrow{U} \sum_m M_m |\psi\rangle|m\rangle
\]

where \(M_m = \sqrt{E_m}\).

If the input state is \(|\psi_1\rangle = |0\rangle\), we have the transition:

\[
|\psi_1\rangle|0\rangle \xrightarrow{U} \sqrt{E_1}|0\rangle|1\rangle + \sqrt{E_3}|0\rangle|3\rangle
\]

\[
= \alpha|\phi_1\rangle|1\rangle + \beta|\phi_3\rangle|3\rangle
\]

(because \(\sqrt{E_2}|\psi_1\rangle = \sqrt{E_2}|0\rangle = 0\)). And if the input state is \(|\psi_2\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\), we have the transition:

\[
|\psi_2\rangle|0\rangle \xrightarrow{U} \frac{\sqrt{E_2}}{\sqrt{2}} \frac{|0\rangle + |1\rangle}{\sqrt{2}} + \frac{\sqrt{E_3}}{\sqrt{2}} \frac{|0\rangle + |1\rangle}{\sqrt{2}} |3\rangle
\]

\[
= \gamma|\phi_2\rangle|2\rangle + \delta|\phi_3\rangle|3\rangle
\]
(because $\sqrt{E_1} |\psi_2\rangle = \sqrt{E_1} \frac{|0\rangle + |1\rangle}{\sqrt{2}} = 0$), where $\alpha, \beta, \gamma, \delta$ are real numerical coefficients.

We see that a projective measurement of the pointer of M that yields the outcome $m = 1$ indicates, with certainty, that the input state was $|\psi_1\rangle = |0\rangle$. In this case, the measurement leaves the system Q in the state $|\phi_1\rangle$. A measurement outcome $m = 2$ indicates, with certainty, that the input state was $|\psi_2\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$, and in this case the measurement leaves the system Q in the state $|\phi_2\rangle$. If the outcome is $m = 3$, the input state could have been either $|\psi_1\rangle = |0\rangle$ or $|\psi_2\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$, and Q is left in the state $|\phi_3\rangle$.

Quantum Operations

When a closed system QE evolves under a unitary transformation, Q can be shown to evolve under a *quantum operation*, i.e., a completely positive linear map:

$$\mathcal{E} : \rho \rightarrow \rho'$$

where

$$\mathcal{E}(\rho) = \text{Tr}_E(U\rho \otimes \rho_E U^\dagger)$$

(See [Nielsen and Chuang, 2000, 356 ff.]) The map \mathcal{E} is linear (or convex-linear) in the sense that $\mathcal{E}(\sum_i p_i \rho_i) = \sum_i p_i \mathcal{E}(\rho_i)$, positive in the sense that \mathcal{E} maps positive operators to positive operators, and completely positive in the sense that $\mathcal{E} \otimes I$ is a positive map on the extension of \mathcal{H}^Q to a Hilbert space $\mathcal{H}^Q \otimes \mathcal{H}^E$, associated with the addition of any ancilla system E to Q.

Every quantum operation (i.e., completely positive linear map) on a Hilbert space \mathcal{H}^Q has a (non-unique) representation as a unitary evolution on an extended Hilbert space $\mathcal{H}^Q \otimes \mathcal{H}^E$, i.e.,

$$\mathcal{E}(\rho) = \text{Tr}_E(U(\rho \otimes \rho_E) U^\dagger)$$

where ρ_E is an appropriately chosen initial state of an ancilla system E (which we can think of as the environment of Q). It turns out that it suffices to take ρ_E as a pure state, i.e., $|0\rangle \langle 0|$, since a mixed state of E can always be purified by enlarging the Hilbert space (i.e., adding a further ancilla system). So the evolution of a system Q described by a quantum operation can always be modeled as the unitary evolution of a system QE, for an initial pure state of E.

Also, every quantum operation on a Hilbert space \mathcal{H}^Q has a (non-unique) operator sum representation intrinsic to \mathcal{H}^Q:

$$\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger$$

where $E_i = \langle i | U | 0 \rangle$ for some orthonormal basis $\{|i\rangle\}$ of E. (See [Nielsen and Chuang, 2000, Theorem 8.1, p. 368.]) If the operation is trace-preserving (or nonselective), then $\sum_i E_i^\dagger E_i = I$. For operations that are not trace-preserving (or
selective), $\sum_i E_i^\dagger E_i \leq 1$. This corresponds to the case where the outcome of a measurement on QE is taken into account (selected) in the transition $E \rightarrow \mathcal{E}(\rho)$.

If there is no interaction between Q and E, then $\epsilon(\rho) = U_Q \rho U_Q^\dagger$, $U_Q U_Q^\dagger = I$, i.e., there is only one operator in the sum. In this case, $U = U_Q \otimes U_E$ and

\begin{align*}
(69) \quad & \mathcal{E}(\rho) = \text{Tr}_E(U_Q \otimes U_E(\rho \otimes |0\rangle\langle 0|)U_Q^\dagger \otimes U_E^\dagger) \\
(70) \quad & = U_Q \rho U_Q^\dagger.
\end{align*}

So unitary evolution is a special case of the operator sum representation of a quantum operation and, of course, another special case is the transition $E \rightarrow \mathcal{E}(\rho)$ that occurs in a quantum measurement process, where $E_i = M_i$. A trace-preserving operation corresponds to a non-selective measurement:

\begin{equation}
(71) \quad \mathcal{E}(\rho) = \sum_i M_i \rho M_i^\dagger;
\end{equation}

while an operation that is not trace-preserving corresponds to a selective measurement, where the state 'collapses' onto the corresponding measurement outcome:

\begin{equation}
(72) \quad M_i \rho M_i^\dagger / \text{Tr}(M_i \rho M_i^\dagger).
\end{equation}

The operator sum representation applies to quantum operations between possibly different input and output Hilbert spaces, and characterizes the following general situation: a quantum system in an unknown initial state ρ is allowed to interact unitarily with other systems prepared in standard states, after which some part of the composite system is discarded, leaving the final system in a state ρ'. The transition $\rho \rightarrow \rho'$ is defined by a quantum operation. So a quantum operation represents, quite generally, the unitary evolution of a closed quantum system, the nonunitary evolution of an open quantum system in interaction with its environment, and evolutions that result from a combination of unitary interactions and selective or nonselective measurements.

As we have seen, the creed of the Church of the Larger Hilbert Space is that every state can be made pure, every measurement can be made ideal, and every evolution can be made unitary – on a larger Hilbert space.\(^\text{6}\)

3.2 Von Neumann Entropy

In this section, I define the von Neumann entropy of a mixture of quantum states (von Neumann's generalization of the Shannon entropy of a classical probability distribution characterizing a classical information source) and the corresponding notions of conditional entropy and mutual information.

Information in Shannon's sense is a quantifiable resource associated with the output of a (suitably idealized) stochastic source of symbolic states, where the physical nature of the systems embodying these states is irrelevant to the amount

\(^\text{6}\) The Creed originates with John Smolin. I owe this formulation to Ben Schumacher. See his *Lecture Notes on Quantum Information Theory* [1998].
of classical information associated with the source. The quantity of information associated with a stochastic source is defined by its optimal compressibility, and this is given by the Shannon entropy. The fact that some feature of the output of a stochastic source can be optimally compressed is, ultimately, what justifies the attribution of a quantifiable resource to the source.

Information is represented physically in the states of physical systems. The essential difference between classical and quantum information arises because of the different distinguishability properties of classical and quantum states. As we will see below, only sets of orthogonal quantum states are reliably distinguishable (i.e., with zero probability of error), as are sets of different classical states (which are represented by disjoint singleton subsets in a phase space, and so are orthogonal as subsets of phase space in a sense analogous to orthogonal subspaces of a Hilbert space).

Classical information is that sort of information represented in a set of distinguishable states — states of classical systems, or orthogonal quantum states — and so can be regarded as a subcategory of quantum information, where the states may or may not be distinguishable. The idea behind quantum information is to extend Shannon's notion of compressibility to a stochastic source of quantum states, which may or may not be distinguishable. For this we need to define a suitable measure of information for probability distributions of quantum states — mixtures — as a generalization of the notion of Shannon entropy.

Consider a system QE in an entangled state $|\Psi\rangle$. Then the subsystem Q is in a mixed state ρ, which can always be expressed as:

$$\rho = \sum_i p_i |i\rangle \langle i|$$

where the p_i are the eigenvalues of ρ and the pure states $|i\rangle$ are orthonormal eigenstates of ρ. This is the spectral representation of ρ, and any density operator — a positive (hence Hermitian) operator — can be expressed in this way. The representation is unique if and only if the p_i are all distinct. If some of the p_i are equal, there is a unique representation of ρ as a sum of projection operators with the distinct values of the p_i as coefficients, but some of the projection operators will project onto multi-dimensional subspaces.

Since ρ has unit trace, $\sum p_i = 1$, and so the spectral representation of ρ represents a classical probability distribution of orthogonal, and hence distinguishable, pure states. If we measure a Q-observable with eigenstates $|i\rangle$, then the outcomes can be associated with the values of a random variable X, where $\Pr(X = i) = p_i$. Then

$$H(X) = -\sum p_i \log p_i$$

is the Shannon entropy of the probability distribution of measurement outcomes. Now,

$$-\text{Tr}(\rho \log \rho) = -\sum p_i \log p_i$$
(because the eigenvalues of $\rho \log \rho$ are $p_i \log p_i$ and the trace of an operator is the sum of the eigenvalues), so a natural generalization of Shannon entropy for any mixture of quantum states with density operator ρ is the von Neumann entropy7:

$$S := -\text{Tr}(\rho \log \rho)$$

which coincides with the Shannon entropy for measurements in the eigenbasis of ρ. For a completely mixed state $\rho = I/d$, where $\dim \mathcal{H}^Q = d$, the d eigenvalues of ρ are all equal to $1/d$ and $S = \log d$. This is the maximum value of S in a d-dimensional Hilbert space. The von Neumann entropy S is zero, the minimum value, if and only if ρ is a pure state, where the eigenvalues of ρ are 1 and 0. So $0 \leq S \leq \log d$, where d is the dimension of \mathcal{H}^Q.

Recall that we can think of the Shannon entropy as a measure of the average amount of information gained by identifying the state produced by a known stochastic source. Alternatively, the Shannon entropy represents the optimal compressibility of the information produced by an information source. The von Neumann entropy does not, in general, represent the amount of information gained by identifying the quantum state produced by a stochastic source characterized as a mixed state, because nonorthogonal quantum states in a mixture cannot be reliably identified. However, as we will see in §3.5, the von Neumann entropy can be interpreted in terms of compressibility via Schumacher's source coding theorem Schumacher's source coding theorem for quantum information [Schumacher, 1995], a generalization of Shannon's source coding theorem for classical information. For an elementary two-state quantum system with a 2-dimensional Hilbert space considered as representing the output of an elementary quantum information source, $S = 1$ for an equal weight distribution over two orthogonal states (i.e., for the density operator $\rho = I/2$), so Schumacher takes the basic unit of quantum information as the 'qubit.' By analogy with the term 'bit', the term 'qubit' refers to the basic unit of quantum information in terms of the von Neumann entropy, and to an elementary two-state quantum system considered as representing the possible outputs of an elementary quantum information source.

The difference between quantum information as measured by von Neumann entropy S and classical information as measured by Shannon entropy H can be brought out by considering the quantum notions of conditional entropy and mutual information (cf. §2.2), and in particular the peculiar feature of inaccessibility associated with quantum information.

For a composite system AB, conditional von Neumann entropy and mutual information are defined in terms of the joint entropy $S(AB) = -\text{Tr}(\rho^{AB} \log \rho^{AB})$ by analogy with the corresponding notions for Shannon entropy (cf. Eqs. (19),

7Von Neumann first defined this quantity on the basis of a thermodynamic argument in [1955, 379].
(23), (24)):

\begin{align}
(77) \quad S(A|B) &= S(A, B) - S(B) \\
(78) \quad S(A:B) &= S(A) - S(A|B) \\
(79) \quad &= S(B) - S(B|A) \\
(80) \quad &= S(A) + S(B) - S(A, B)
\end{align}

The joint entropy satisfies the subadditivity inequality:

\begin{equation}
(81) \quad S(A, B) \leq S(A) + S(B)
\end{equation}

with equality if and only if \(A \) and \(B \) are uncorrelated, i.e., \(\rho^{AB} = \rho^A \otimes \rho^B \).

Now, \(S(A|B) \) can be negative, while the conditional Shannon entropy is always positive or zero. Consider, for example, the entangled state \(|\Psi\rangle = (|00\rangle + |11\rangle) / \sqrt{2} \). Since \(|\Psi\rangle \) is a pure state, \(S(A, B) = 0 \). But \(S(A) = S(B) = 1 \). So \(S(A|B) = S(A, B) - S(A) = -1 \). In fact, for a pure state \(|\Psi\rangle \) of a composite system \(AB \), \(S(A|B) < 0 \) if and only if \(|\Psi\rangle \) is entangled.

For a composite system \(AB \) in a product state \(\rho \otimes \sigma \), it follows from the definition of joint entropy that:

\begin{equation}
(82) \quad S(A, B) = S(\rho \otimes \sigma) = S(\rho) + S(\sigma) = S(A) + S(B).
\end{equation}

If \(AB \) is in a pure state \(|\Psi\rangle \), it follows from the Schmidt decomposition theorem that \(|\Psi\rangle \) can be expressed as

\begin{equation}
(83) \quad |\Psi\rangle = \sum_i \sqrt{p_i} |i\rangle \langle i|
\end{equation}

from which it follows that

\begin{align}
(84) \quad \rho_A &= \text{Tr}_B(|\psi\rangle \langle \psi|) = \sum_i |i\rangle \langle i| \\
\rho_B &= \text{Tr}_A(|\psi\rangle \langle \psi|) = \sum_i |i\rangle \langle i|
\end{align}

and so:

\begin{equation}
(85) \quad S(A) = S(B) = -\sum_i p_i \log p_i.
\end{equation}

Consider a mixed state prepared as a mixture of states \(\rho_i \) with weights \(p_i \). It can be shown that

\begin{equation}
(86) \quad S(\sum_i p_i \rho_i) \leq H(p_i) + \sum_i p_i S(\rho_i)
\end{equation}

with equality if and only if the states \(\rho_i \) have support on orthogonal subspaces (see [Nielsen and Chuang, 2000, Theorem 11.10, p. 518]). The entropy \(H(p_i) \) is referred to as the entropy of preparation of the mixture \(\rho \).

If the states \(\rho_i \) are pure states, then \(S(\rho) \leq H(p_i) \). For example, suppose \(\mathcal{H}^Q \) is 2-dimensional and \(p_1 = p_2 = 1/2 \), then \(H(p_i) = 1 \). So if we had a classical information source producing the symbols 1 and 2 with equal probabilities, no
compression of the information would be possible. However, if the symbols 1 and 2 are encoded as nonorthogonal quantum states \(|r_1 \rangle \) and \(|r_2 \rangle \), then \(S(\rho) < 1 \). As we will see in §3.5, according to Schumacher's source coding theorem, since \(S(\rho) < 1 \), quantum compression is possible, i.e., we can transmit long sequences of qubits reliably using \(S < 1 \) qubits per quantum state produced by the source.

Note that if \(AB \) is prepared in a mixture of states \(\rho_i \otimes |i\rangle \langle i| \) with weights \(p_i \), where the \(\rho_i \) are any density operators, not necessarily orthogonal, then it follows from (86), (82), and the fact that \(S(|i\rangle \langle i|) = 0 \) that

\[
S(\sum_i p_i \rho_i \otimes |i\rangle \langle i|) = H(p_i) + \sum_i p_i S(\rho_i \otimes |i\rangle \langle i|) = H(p_i) + \sum_i p_i S(\rho_i).
\]

(87)

The von Neumann entropy of a mixture of states \(\rho_i \) with weights \(p_i \), \(\sum p_i \rho_i \), is a concave function of the states in the distribution, i.e.,

\[
S(\sum_i p_i \rho_i) \geq \sum_i p_i S(\rho_i).
\]

(88)

To see this, consider a composite system \(AB \) in the state

\[
\rho^{AB} = \sum p_i \rho_i \otimes |i\rangle \langle i|.
\]

(89)

We have

\[
S(A) = S(\sum_i p_i \rho_i)
\]

(90)

\[
S(B) = S(\sum_i p_i |i\rangle \langle i|) = H(p_i)
\]

(91)

and

\[
S(A, B) = H(p_i) + \sum_i p_i S(\rho_i)
\]

(92) by equation (87). By subadditivity \(S(A) + S(B) \geq S(A, B) \), so:

\[
S(\sum_i p_i \rho_i) \geq \sum_i p_i S(\rho_i).
\]

(93)

It turns out that projective measurements always increase entropy, i.e., if \(\rho' = \sum_i P_i \rho P_i \), then \(S(\rho') \geq S(\rho) \), but generalized measurements can decrease entropy. Consider, for example, the generalized measurement on a qubit in the initial state \(\rho \) defined by the measurement operators \(M_1 = |0\rangle \langle 0| \) and \(M_2 = |0\rangle \langle 1| \). (Note that
these operators do define a generalized measurement because $M_1^\dagger M_1 + M_2^\dagger M_2 = |0\rangle\langle 0| + |1\rangle\langle 1| = I$. After the measurement

\[\rho' = |0\rangle\langle 0|\rho|0\rangle\langle 0| + |0\rangle\langle 1|\rho|1\rangle\langle 0| \]

\[= \text{Tr}(\rho)|1\rangle\langle 1| \]

(94) \[= |1\rangle\langle 1|. \]

So $S(\rho') = 0 \leq S(\rho)$.

3.3 The 'No Cloning' Theorem

In § 3.1 we saw that two nonorthogonal quantum states cannot be reliably distinguished by any measurement. A 'no cloning' theorem establishes that nonorthogonal quantum states cannot be copied. To see this, suppose there were a device D that could copy any input quantum state of a system Q with states in H^Q. Suppose the initial ready state of the device D is $|0\rangle \in H^D$. Then we require, for any orthonormal set of input states $\{ |i\rangle \}$:

(95) \[|i\rangle|0\rangle \xrightarrow{U} |i\rangle|i\rangle \]

where U is the unitary transformation that implements the copying process. By linearity, it then follows that for any input state $\sum_i c_i |i\rangle$:

(96) \[(\sum_i c_i |i\rangle)|0\rangle \xrightarrow{U} \sum_i c_i |i\rangle|i\rangle \]

But for copying we require that:

(97) \[(\sum_i c_i |i\rangle)|0\rangle \xrightarrow{U} (\sum_i c_i |i\rangle)(\sum_i c_i |i\rangle) \]

and

(98) \[\sum_i c_i |i\rangle|i\rangle \neq (\sum_i c_i |i\rangle)(\sum_i c_i |i\rangle) = \sum_{ij} c_i c_j |i\rangle|j\rangle \]

unless $c_i c_j = \delta_{ij}$, which means that the device could not copy any states that are not in the orthonormal set $|i\rangle$.

Alternatively, one might note that if two states $|\psi\rangle$ and $|\phi\rangle$ could be copied, then

(99) \[|\psi\rangle|0\rangle \xrightarrow{U} |\psi\rangle|\psi\rangle \]

(100) \[|\phi\rangle|0\rangle \xrightarrow{U} |\phi\rangle|\phi\rangle \]

Since unitary transformations preserve inner products, we require that

(101) \[\langle \psi|\phi\rangle = \langle \psi|\phi\rangle\langle \psi|\phi\rangle \]
which is possible if and only if \(\langle \psi | \phi \rangle = 1 \) or 0. That is: for cloning to be possible, either the states are identical, or they are orthogonal.

The 'no cloning' theorem was proved independently by Dieks [1982] and Wootters and Zurek [1982]. An important extension of this result to mixtures is due to Barnum, Caves, Fuchs, Jozsa, and Schumacher [1996a]. In a cloning process, a ready state \(\sigma \) of a system \(B \) and the state to be cloned \(\rho \) of a system \(A \) are transformed into two copies of \(\rho \). In a more general broadcasting process, a ready state \(\sigma \) and the state to be broadcast \(\rho \) are transformed to a new state \(\omega \) of \(AB \), where the marginal state \(\omega \) with respect to both \(A \) and \(B \) is \(\rho \), i.e.,

\[
(102) \quad \rho_A = \text{Tr}_B(\omega) = \rho
\]

\[
(103) \quad \rho_B = \text{Tr}_A(\omega) = \rho
\]

The 'no cloning' theorem states that a set of pure states can be cloned if and only if the states are mutually orthogonal. The 'no broadcasting' theorem states that an arbitrary set of states can be broadcast if and only if they are represented by mutually commuting density operators. Classically, since all pure states are, in a formal sense, orthogonal and all operators (representing real-valued functions on phase space) commute, both cloning and broadcasting are possible. Note that broadcasting reduces to cloning for pure states.

Of course, it is always possible to build a special-purpose device to clone a given (known) quantum state \(|\psi\rangle \), because this would simply be a device that prepares the state \(|\psi\rangle \). The 'no cloning' theorem, from another perspective, is just the statement of the quantum measurement problem (see §7): measurements, in the classical sense of reproducing in a second system a copy of the state of the first system (or, more generally, a 'pointer state' that represents the state of the first system), are impossible in quantum mechanics, except for measurements restricted to orthogonal sets of input states.

A modification of the argument leading to Eqs. (99)–(101) shows that no information gain about the identity of nonorthogonal states is possible without disturbing the states. Suppose the device \(D \) acts as a measuring device that records some information about the identity of the input state, i.e., the output state of the device is different for different input states \(|\psi\rangle, |\phi\rangle \); and that the device does not disturb the input states. Then

\[
(104) \quad |\psi\rangle|0\rangle \xrightarrow{U} |\psi\rangle|\psi'\rangle
\]

\[
(105) \quad |\phi\rangle|0\rangle \xrightarrow{U} |\phi\rangle|\phi'\rangle
\]

from which it follows that

\[
(106) \quad \langle \psi | \phi \rangle = \langle \psi | \phi \rangle \langle \psi' | \phi' \rangle
\]

and so

\[
(107) \quad \langle \psi' | \phi' \rangle = 1
\]
since \(\langle \psi | \phi \rangle \neq 0 \) if \(|\psi\rangle \) and \(|\phi\rangle \) are nonorthogonal. In other words, if there is no disturbance to the nonorthogonal input states, there can be no information gain about the identity of the states. So, for example, an eavesdropper, Eve, could gain no information about the identity of nonorthogonal quantum states communicated between Alice and Bob without disturbing the states, which means that passive eavesdropping is impossible for quantum information.

The observation that a set of pure states can be cloned if and only if they are mutually orthogonal is equivalent to the observation that a set of pure states can be reliably distinguished if and only if they are mutually orthogonal. For if we could distinguish a pair of states \(|\psi\rangle \) and \(|\phi\rangle \), then we could copy them by simply preparing the states with special-purpose preparation devices for \(|\psi\rangle \) and \(|\phi\rangle \). And if we could copy the states, then we could prepare as many copies as we liked of each state. Because the product states \(|\psi\rangle^{\otimes n} \) and \(|\phi\rangle^{\otimes n} \) become orthogonal in the limit as \(n \to \infty \), these states are certainly distinguishable, and so the possibility of cloning the states \(|\psi\rangle \) and \(|\phi\rangle \) would provide a means of distinguishing them.

Note also that, by a similar argument, cloning would allow different mixtures associated with the same density operator to be distinguished. The equal-weight mixture of qubit states \(|\uparrow_z\rangle = |0\rangle, |\downarrow_z\rangle = |1\rangle \) (the eigenstates of the spin observable \(Z = \sigma_z \)) has the same density operator, \(I/2 \), as the equal-weight mixture of states \(|\uparrow_z\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle), |\downarrow_z\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \) (the eigenstates of \(X = \sigma_x \)). Since the cloned states \(|\uparrow_z\rangle^{\otimes n}, \ |\downarrow_z\rangle^{\otimes n} \) become distinguishable from the cloned states \(|\uparrow_z\rangle^{\otimes n}, \ |\downarrow_z\rangle^{\otimes n} \), cloning would allow the two mixtures to be distinguished.

This possibility would also allow superluminal signalling. For suppose Alice and Bob shared the entangled state \(\frac{1}{\sqrt{2}} (|0\rangle|1\rangle - |1\rangle|0\rangle) \). If Alice measured \(X \) or \(Z \) on her qubit, she would steer Bob’s qubit into the mixture \(\frac{1}{2} |\uparrow_z\rangle \langle \uparrow_z | + \frac{1}{2} |\downarrow_z\rangle \langle \downarrow_z | \) or the mixture \(\frac{1}{2} |\uparrow_z\rangle \langle \uparrow_z | + \frac{1}{2} |\downarrow_z\rangle \langle \downarrow_z | \). If Bob could distinguish these mixtures by cloning, in a shorter time than the time taken for light to travel between Alice and Bob, he would be able to ascertain whether Alice measured \(X \) or \(Z \), so 1 bit of information would be transferred from Alice to Bob superluminally.

3.4 Accessible Information

The ability to exploit quantum states to perform new sorts of information-processing tasks arises because quantum states have different distinguishability properties than classical states. Of course, it is not the mere lack of distinguishability of quantum states that is relevant here, but the different sort of distinguishability enjoyed by quantum states. This indistinguishability is reflected in the limited accessibility of quantum information.

To get a precise handle on this notion of accessibility, consider a classical information source in Shannon’s sense, with Shannon entropy \(H(X) \). Suppose the source produces symbols represented as the values \(x \) (in an alphabet \(\mathcal{X} \)) of a random variable \(X \), with probabilities \(p_x \), and that the symbols are encoded as quantum states \(\rho_x, x \in X \). The mutual information \(H(X : Y) \) (as defined by Eqs. (22), (23), (24)) is a measure of how much information one gains, on average,
about the value of the random variable X on the basis of the outcome Y of a measurement on a given quantum state. The accessible information is defined as:

\[(108) \text{Sup } H(X:Y)\]

over all possible measurements.

The Holevo bound on mutual information provides an important upper bound to accessible information:

\[(109) H(X:Y) \leq S(\rho) - \sum_x p_x S(\rho_x)\]

where $\rho = \sum_x p_x \rho_x$ and the measurement outcome Y is obtained from a measurement defined by a POVM $\{E_y\}$. Since $S(\rho) - \sum_x p_x S(\rho_x) \leq H(X)$ by Eq. (86), with equality if and only if the states ρ_x have orthogonal support, we have:

\[(110) H(X:Y) \leq H(X)\]

Note that X can be distinguished from Y if and only if $H(X:Y) = H(X)$. If the states ρ_x are orthogonal pure states, then in principle there exists a measurement that will distinguish the states, and for such a measurement $H(X:Y) = H(X)$. In this case, the accessible information is the same as the entropy of preparation of the quantum states, $H(X)$. But if the states are nonorthogonal, then $H(X:Y) < H(X)$ and there is no measurement, even in the generalized sense, that will enable the reliable identification of X.

Note, in particular, that if the values of X are encoded as the pure states of a qubit, then $H(X:Y) \leq S(\rho)$ and $S(\rho) \leq 1$. It follows that at most 1 bit of information can be extracted from a qubit by measurement. If X has k equiprobable values, $H(X) = \log k$. Alice could encode these k values into a qubit by preparing it in an equal-weight mixture of k nonorthogonal pure states, but Bob could only extract at most 1 bit of information about the value of X. For an n-state quantum system associated with an n-dimensional Hilbert space, $S(\rho) \leq \log n$. So even though Alice could encode any amount of information into such an n-state quantum system (by preparing the state as a mixture of nonorthogonal states), the most information that Bob could extract from the state by measurement is $\log n$, which is the same as the maximum amount of information that could be encoded into and extracted from an n-state classical system. It might seem, then, that the inaccessibility of quantum information as quantified by the Holevo bound would thwart any attempt to exploit quantum information to perform nonclassical information-processing tasks. In the following sections, we shall see that this is not the case: surprisingly, the inaccessibility of quantum information can actually be exploited in information-processing tasks that transcend the scope of classical information.

For an insightful derivation of the Holevo bound (essentially reproduced below), see [Nielsen and Chuang, 2000, Theorem 12.1, p. 531]. The basic idea is the following: Suppose Alice encodes the distinguishable symbols of a classical
information source with entropy $H(X)$ as quantum states ρ_x (not necessarily orthogonal). That is, Alice has a quantum system P, the preparation device, with an orthonormal pointer basis $|x\rangle$ corresponding to the values of the random variable X, which are produced by the source with probabilities p_x. The preparation interaction correlates the pointer states $|x\rangle$ with the states ρ_x of a quantum system Q, so that the final state of P and Q after the preparation interaction is:

$$\rho_{PQ} = \sum_x p_x |x\rangle \langle x| \otimes \rho_x.$$

Alice sends the system Q to Bob, who attempts to determine the value of the random variable X by measuring the state of Q. The initial state of P, Q, and Bob’s measuring instrument M is:

$$\rho_{PQM} = \sum_x p_x |x\rangle \langle x| \otimes \rho_x \otimes |0\rangle \langle 0|$$

where $|0\rangle \langle 0|$ is the initial ready state of M. Bob’s measurement can be described by a quantum operation \mathcal{E} on the Hilbert space $\mathcal{H}_Q \otimes \mathcal{H}_M$ that stores a value of y, associated with a POVM $\{E_y\}$ on \mathcal{H}_Q, in the pointer state $|y\rangle$ of M, i.e., \mathcal{E} is defined for any state $\sigma \in \mathcal{H}_Q$ and initial ready state $|0\rangle \in \mathcal{H}_M$ by:

$$\sigma \otimes |0\rangle \langle 0| \xrightarrow{\mathcal{E}} \sum_y \sqrt{E_y} \sigma \sqrt{E_y} \otimes |y\rangle \langle y|.$$

We have (recall the definition of quantum mutual information in Eqs. (78)–(80)):

$$S(P:Q) = S(P:Q,M)^8$$

because M is initially uncorrelated with PQ and

$$S(P':Q',M') \leq S(P:Q,M)$$

because it can be shown ([Nielsen and Chuang, 2000, Theorem 11.15, p. 522]) that quantum operations never increase mutual information (primes here indicate states after the application of \mathcal{E}). Finally:

$$S(P':Q',M')$$

because discarding systems never increases mutual information ([Nielsen and Chuang, 2000, Theorem 11.15, p. 522]), and so:

$$S(P':M') \leq S(P:Q)$$

which (following some algebraic manipulation) is the statement of the Holevo bound, i.e., (117) reduces to (109).

To see this, note (from (111)) that

$$\rho_{PQ} = \sum_x p_x |x\rangle \langle x| \otimes \rho_x$$
So $S(P) = H(p_x)$, $S(Q) = S(\sum_p p_x \rho_x) = S(\rho)$ and, by (87),

$$
S(P, Q) = H(p_x) + \sum_x p_x S(\rho_x)
$$

since the states $|x\rangle\langle x| \otimes \rho_x$ have support on orthogonal subspaces in $\mathcal{H}^P \otimes \mathcal{H}^Q$. It follows that

$$
S(P : Q) = S(P) + S(Q) - S(P, Q)
$$

(120) \quad = S(\rho) - \sum_x p_x S(\rho_x)

which is the right hand side of the Holevo bound.

For the left hand side:

$$
\rho^{P'M'} = \text{Tr}_{Q'}(\rho^{P'Q'M'})
$$

(121) \quad = \text{Tr}_{Q'}(\sum_{xy} p_x |x\rangle\langle x| \otimes \sqrt{E_y} \rho_x \sqrt{E_y} \otimes |y\rangle\langle y|)

(122) \quad = \sum_{xy} p_x \text{Tr}(E_y \rho_x E_y) |x\rangle\langle x| \otimes |y\rangle\langle y|

(123) \quad = \sum_{xy} p(x, y) |x\rangle\langle x| \otimes |y\rangle\langle y|,

since $p(x, y) = p_x p(y | x) = p_x \text{Tr}(\rho_x E_y) = p_x \text{Tr}(\sqrt{E_y} \rho_x \sqrt{E_y})$, and so $S(P' : M') = H(X : Y)$.

The Holevo bound limits the representation of classical bits by qubits. Putting it another way, the Holevo bound characterizes the resource cost of encoding classical bits as qubits: one qubit is necessary and sufficient. Can we represent qubits by bits? If so, what is the cost of a qubit in terms of bits? This question is answered by the following result [Barnum et al., 2001]: A quantum source of nonorthogonal signal states can be compressed with arbitrarily high fidelity to α qubits per signal plus any number of classical bits per signal if and only if α is at least as large as the von Neumann entropy S of the source. This means that a generic quantum source cannot be separated into a classical and quantum part: quantum information cannot be traded for any amount of classical information.

3.5 Quantum Information Compression

As pointed out in §3.2, Shannon’s source coding theorem (noiseless channel coding theorem) and the core notion of a typical sequence can be generalized for quantum sources. This was first shown by Jozsa and Schumacher [1994] and Schumacher [1995]. See also [Barnum et al., 1996b].

For a classical information bit source, where the output of the source is given by a random variable X with two possible values x_1, x_2 with probabilities p_1, p_2, the Shannon entropy of the information produced by the source is $H(X) = H(p_1, p_2)$.
So by Shannon’s source coding theorem the information can be compressed and communicated to a receiver with arbitrarily low probability of error by using $H(X)$ bits per signal, which is less than one bit if $p_1 \neq p_2$.

Now suppose the source produces qubit states $|\psi_1\rangle, |\psi_2\rangle$ with probabilities p_1, p_2. The Shannon entropy of the mixture $\rho = p_1 |\psi_1\rangle\langle \psi_1| + p_2 |\psi_2\rangle\langle \psi_2|$ is $S(\rho)$. Schumacher’s generalization of Shannon’s source coding theorem shows that the quantum information encoded in the mixture ρ can be compressed and communicated to a receiver with arbitrarily low probability of error by using $S(\rho)$ qubits per signal, and $S(\rho) < 1$ if the qubit states are nonorthogonal.

Note that the signals considered here are qubit states. What Schumacher’s theorem shows is that we can reliably communicate the sequence of qubit states produced by the source by sending less than one qubit per signal. Note also that since $S(\rho) < H(p_1, p_2)$ if the qubit states are nonorthogonal, the quantum information represented by the sequence of qubit states can be compressed beyond the classical limit of the classical information associated with the entropy of preparation of ρ (i.e., the Shannon entropy of the random variable whose values are the labels of the qubit states).

Since the individual states in a mixture are not in general distinguishable, there are two distinct sorts of compression applicable to quantum information that do not apply to classical information. In blind compression, the sequence of quantum states produced by a source is compressed via a compression scheme that depends only on the identities of the quantum states and their probabilities, i.e., the input to the compression scheme is the density operator associated with the distribution. In visible compression, the identity of each individual quantum state produced by the source is assumed to be known, i.e., the input to the compression scheme is an individual quantum state in the sequence produced by the source, and the compression of the state is based on the probability distribution of such states.

An example: an inefficient visible compression scheme of the above qubit source ($|\psi_1\rangle, |\psi_2\rangle$ with probabilities p_1, p_2) would simply involve sending the classical information of the quantum state labels, compressed to $H(p_1, p_2)$ bits per signal, to the receiver, where the original qubit states could then be prepared after decompression of the classical information. This scheme is not optimal by Schumacher’s theorem (for nonorthogonal qubit states) because $S(\rho) < H(p_1, p_2)$. Of course, Schumacher’s theorem refers to a compression rate of $S(\rho)$ qubits per quantum signal, while the application of Shannon’s theorem here refers to $H(p_2, p_2)$ bits per classical signal. But note that the communication of one classical bit requires the same physical resource as the communication of one qubit, prepared in one of two orthogonal basis states. Note also that sending the (nonorthogonal) qubit states themselves, which would require one qubit per signal, would not convey the identity of the states in the sequence to the transmitter. So the classical information about the individual state labels in the sequence (which would be bounded by $\log n$ per signal if we considered a source producing n qubit states) is really redundant if the aim is to communicate the quantum information associated with the sequence of qubit states.
Remarkably, Schumacher’s theorem shows that the optimal compressibility of the quantum information associated with a sequence of quantum pure states is \(S(\rho) \) qubits per signal, for blind or visible compression.

To see the general idea, consider a source of (possibly nonorthogonal) qubits \(|\psi_1\rangle, |\psi_2\rangle \) with probabilities \(p_1, p_2 \). The density operator of the probability distribution is \(\rho = p_1 |\psi_1\rangle \langle \psi_1 | + p_2 |\psi_2\rangle \langle \psi_2 | \).

An \(n \)-sequence of states produced by the source is represented by a state

\[
(125) |\Psi_{i_1 \ldots i_n}\rangle = |\psi_{i_1}\rangle \ldots |\psi_{i_n}\rangle
\]

in \(\mathcal{H}_2^{\otimes n} \). Each such state has a probability \(p_{i_1 \ldots i_n} = p_{i_1} \ldots p_{i_n} \). The \(n \)-sequences span the \(2^n \)-dimensional Hilbert space \(\mathcal{H}_2^{\otimes n} \), but as \(n \to \infty \) it turns out that the probability of finding an \(n \)-sequence in a ‘typical subspace’ (in a measurement, on an \(n \)-sequence produced by the source, of the projection operator onto the subspace) tends to 1. That is, for any \(\epsilon, \delta > 0 \), there is a subspace \(T_\delta^{(n)} \) of dimension between \(2^{n(S(\rho)-\delta)} \) and \(2^{n(S(\rho)+\delta)} \), with projection operator \(P_\delta^{(n)} \), such that:

\[
(126) \sum_{\text{all sequences}} p_{i_1 \ldots i_n} \text{Tr}(|\Psi_{i_1 \ldots i_n}\rangle \langle \Psi_{i_1 \ldots i_n}| P_\delta^{(n)}) = \text{Tr}(\rho^{\otimes n} P_\delta^{(n)}) \geq 1 - \epsilon.
\]

Here \(\rho^{\otimes n} = \rho \otimes \ldots \otimes \rho \), the \(n \)-fold tensor product of \(\rho \) with itself, is the density operator of \(n \)-sequences of states produced by the source:

\[
(127) \rho^{\otimes n} = \sum_{\text{all } n\text{-sequences}} p_{i_1 \ldots i_n} |\Psi_{i_1 \ldots i_n}\rangle \langle \Psi_{i_1 \ldots i_n}|
\]

\[
(128) = \sum_{\text{all } n\text{-sequences}} p_{i_1} \ldots p_{i_n} |\psi_{i_1}\rangle \langle \psi_{i_1} | \otimes \ldots \otimes |\psi_{i_n}\rangle \langle \psi_{i_n} |
\]

where each state \(|\psi_{i_j}\rangle \) is one of \(k \) possible states in a \(d \)-dimensional Hilbert space. Recall that the statistical properties of such \(n \)-sequences of states, for all possible measurements, is given by \(\rho^{\otimes n} \) and does not depend on the representation of \(\rho^{\otimes n} \) as a particular mixture of states. Since \(S(\rho) \leq 1 \) for a qubit source, the dimension of \(T_\delta^{(n)} \) decreases exponentially in \(\mathcal{H}_2^{\otimes n} \) as \(n \to \infty \), i.e., the typical subspace is exponentially small in \(\mathcal{H}_2^{\otimes n} \) for large \(n \).

Note that this does not mean that almost all \(n \)-sequences of states produced by the source lie in the typical subspace. Rather, almost all \(n \)-sequences produced by the source are such that a measurement of \(P_\delta^{(n)} \) on the sequence will yield the value 1, i.e., almost all \(n \)-sequences produced by the source will answer ‘yes’ in a measurement of the projection operator onto the typical subspace. So, in this sense, most sequences produced by the source will be found to lie in the typical subspace on measurement, and for any subspace \(\mathcal{V} \) of dimension less than \(2^{n(S(\rho)-\delta)} \) it can be shown that the average probability of finding an \(n \)-sequence produced by the source in \(\mathcal{V} \) is less than any pre-assigned \(\epsilon \) for sufficiently large \(n \).
Consider now the general case where the source produces \(k \) states \(|\psi_1\rangle, \ldots, |\psi_k\rangle \in \mathcal{H}_d \) (not necessarily orthogonal) with probabilities \(p_1, \ldots, p_k \). Here the density operator associated with the source is \(\rho = \sum_{i=1}^{k} p_i |\psi_i\rangle\langle\psi_i| \). Sequences of length \(n \) span a subspace of \(d^n = 2^{n \log d} \) dimensions and the typical subspace \(T_{\delta}^{(n)} \) has dimension between \(2^{n(S(\rho) - \delta)} \) and \(2^{n(S(\rho) + \delta)} \), which is again exponentially small in \(\mathcal{H}_d^\otimes n \) because \(S(\rho) \leq \log d \).

For comparison with Shannon’s theorem, we write \(\rho \) in the spectral representation as:

\[
(129) \quad \rho = \sum_x p(x) |x\rangle\langle x|
\]

where \(\{p(x)\} \) is the set of non-zero eigenvalues of \(\rho \) and \(\{|x\rangle\} \) is an orthonormal set of eigenstates of \(\rho \). If \(\rho \) has eigenvalues \(p(x) \) and eigenstates \(|x\rangle \), then \(\rho^\otimes n \) has eigenvalues \(p(x_1)p(x_2)\ldots p(x_n) \) and eigenstates \(|x_1\rangle|x_2\rangle\ldots|x_n\rangle \).

A \(\delta \)-typical state is defined as a state \(|x_1\rangle|x_2\rangle\ldots|x_n\rangle \) for which the sequence \(x_1, x_2, \ldots, x_n \) is a \(\delta \)-typical sequence, in the sense that (cf. Eq. (13)):

\[
(130) \quad 2^{-n(S(\rho) + \delta)} < p(x_1\ldots x_n) < 2^{-n(S(\rho) - \delta)}.
\]

The \(\delta \)-typical subspace \(T_{\delta}^{(n)} \) is the subspace spanned by all the \(\delta \)-typical states. Denote the projection operator onto \(T_{\delta}^{(n)} \) by:

\[
(131) \quad P_{\delta}^{(n)} = \sum_{\delta \text{-typical states}} |x_1\rangle\langle x_1| \otimes |x_2\rangle\langle x_2| \ldots |x_n\rangle\langle x_n|
\]

Then, for a fixed \(\delta > 0 \), it can be shown that for any \(\epsilon > 0 \) and sufficiently large \(n \)

\[
(132) \quad \text{Tr}(P_{\delta}^{(n)} \rho^\otimes n) \geq 1 - \epsilon;
\]

and the dimension of \(T_{\delta}^{(n)} \) (\(= \text{Tr}(P_{\delta}^{(n)}) \)) satisfies

\[
(133) \quad (1 - \epsilon)2^{n(S(\rho) - \delta)} \leq \dim T_{\delta}^{(n)} \leq 2^{n(S(\rho) + \delta)}.
\]

That is, the dimension of \(T_{\delta}^{(n)} \) is roughly \(2^{nS(\rho)} \), which is exponentially smaller than the dimension of \(\mathcal{H}_d^\otimes n \), as \(n \to \infty \).

It follows that the density operator \(\rho^\otimes n \) can be replaced with a density operator \(\tilde{\rho}^\otimes n \) with support on the typical subspace (take \(\rho^\otimes n \) in the spectral representation, where the matrix is diagonal with \(2^{n \log d} \) eigenvalues \(p(x_1\ldots x_n) = p(x_1)\ldots p(x_n) \), and replace all \(p(x_1\ldots x_n) \) that do not correspond to typical sequences with zeros).

Before considering a compression/decompression scheme for quantum information, we need a measure of the reliability of such a scheme in terms of the fidelity, as in the case of classical information. The following definition generalizes the classical notion of fidelity in §2 (see [Jozsa, 1998, 70]): If \(|\psi\rangle \) is any pure quantum state and \(\rho \) any mixed state, the fidelity between \(\rho \) and \(|\psi\rangle \) is:

\[
(134) \quad F(\rho, |\psi\rangle) = \text{Tr}(\rho|\psi\rangle\langle\psi|) = |\langle\psi|\rho|\psi\rangle|
\]
which is the probability that a measurement of the projection operator $|\psi\rangle\langle\psi|$ in the state ρ yields the outcome 1, i.e., it is the probability that ρ passes a test of being found to be $|\psi\rangle$ on measurement. Note that for a pure state $\rho = |\psi\rangle\langle\psi|$, $F(|\phi\rangle, |\psi\rangle) = |\langle\psi|\phi\rangle|^2$. The fidelity between two mixed states ρ and σ is defined as:

$$F(\rho, \sigma) = \max |\langle\psi|\phi\rangle|^2 = (\text{Tr}(\sqrt{\rho^{1/2}\sigma\rho^{1/2}}))^2.$$

for all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of σ. Note that in spite of appearances, $F(\rho, \sigma)$ is symmetric in ρ and σ.

In the case of a source of n-sequences of quantum states $|\Psi_{i_1...i_n}\rangle = |\Psi_{i_1}\rangle...|\Psi_{i_n}\rangle$ with prior probabilities $p_{i_1...i_n} = p_{i_1}...p_{i_n}$, a compression/decompression scheme will in general yield a mixed state $\rho_{i_1...i_n}$. The average fidelity of a compression-decompression scheme for an n-sequence of quantum states is defined as:

$$F_n = \sum_{\text{all } n\text{-sequences}} p_{i_1...i_n} \text{Tr} (\rho_{i_1...i_n} |\Psi_{i_1...i_n}\rangle \langle\Psi_{i_1...i_n}|)$$

Schumacher’s quantum source coding theorem (or quantum noiseless channel coding theorem) for a quantum source that produces quantum states $|\psi_1\rangle...|\psi_n\rangle \in \mathcal{H}_d$ with probabilities $p_1...p_n$ (so the density operator corresponding to the output of the source is $\rho = \sum p_i |\psi_i\rangle\langle\psi_i|$), states that

for any $\epsilon, \delta > 0$: (i) there exists a compression/decompression scheme using $S(\rho) + \delta$ qubits per state for n-length sequences produced by the source that can be decompressed by the receiver with fidelity $F_n > 1 - \epsilon$, for sufficiently large n, and (ii) any compression/decompression scheme using $S(\rho) - \delta$ qubits per state for n-length sequences will have a fidelity $F_n < \epsilon$, for sufficiently large n.

A compression/decompression scheme for such a quantum source would go as follows: The transmitter applies a unitary transformation U in $\mathcal{H}_d^\otimes n$ (dimension $= d^n = 2^{n\log d}$) which maps any state in the typical subspace onto a linear superposition of sequences of $n \log d$ qubits, where all but the first $nS(\rho)$ qubits are in the state $|0\rangle$, and then transmits the first $nS(\rho)$ qubits to the receiver. So the transmitter compresses $n \log d$ qubits to $nS(\rho)$ qubits. The receiver adds $n \log d - nS(\rho)$ qubits in the state $|0\rangle$ and applies the unitary transformation U^{-1}. Since the initial $nS(\rho)$ qubits will in general be slightly entangled with the remaining $n \log d - nS(\rho)$ qubits, discarding these qubits amounts to tracing over the associated dimensions, so replacing these qubits with the state $|0\rangle$ will produce a mixed state $\hat{\rho}_n$. The state $U^{-1}\hat{\rho}_n$ will pass a test of being found to be the original state $|\Psi_{i_1...i_n}\rangle$ with fidelity greater than $1 - \epsilon$.

Note that Nielsen and Chuang [2000, 409] define the fidelity $F(\rho, \sigma)$ as the square root of the quantity defined here. If ρ and σ commute, they can be diagonalized in the same basis. The definition then reduces to their definition of the classical fidelity between two probability distributions defined by the eigenvalues of ρ and σ in footnote 3 in §2.1.
4 ENTANGLEMENT ASSISTED QUANTUM COMMUNICATION

In this section I show how entanglement can be exploited as a channel for the reliable transmission of quantum information. I discuss two related forms of entanglement assisted communication: quantum teleportation in §4.1 and quantum dense coding in §4.2.

4.1 Quantum Teleportation

As mentioned in §1, Schrödinger introduced the term ‘entanglement’ to describe the peculiar nonlocal correlations of the EPR-state in an extended two-part commentary [1935; 1936] on the Einstein-Podolsky-Rosen argument [Einstein et al., 1935]. Schrödinger regarded entangled states as problematic because they allow the possibility of what he called ‘remote steering’, which he regarded as a mathematical artefact of the Hilbert space theory and discounted as a physical possibility. As it turns out, quantum teleportation is an experimentally confirmed application of remote steering between two separated systems. This was first pointed out in a paper by Bennett, Brassard, Crépeau, Jozsa, Peres, and Wootters [1993] and later experimentally confirmed by several groups using a variety of different techniques [Bouwmeester et al., 1997; Boschi et al., 1998; Furusawa et al., 1998; Nielsen et al., 1998].

In the 1935 paper, Schrödinger considered pure entangled states with a unique biorthogonal decomposition, as well as cases like the EPR-state, where a biorthogonal decomposition is non-unique. He showed that suitable measurements on one system can fix the (pure) state of the entangled distant system, and that this state depends on what observable one chooses to measure, not merely on the outcome of that measurement. In the second paper, he showed that a ‘sophisticated experimenter’, by performing a suitable local measurement on one system, can ‘steer’ the distant system into any mixture of pure states represented by its reduced density operator. So the distant system can be steered (probabilistically, depending on the outcome of the local measurement) into any pure state in the support of the reduced density operator, with a nonzero probability that depends only on the pure state. For a mixture of linearly independent states of the distant system, the steering can be done by performing a local standard projection-valued measurement in a suitable basis. If the states are linearly dependent, the experimenter performs a generalized measurement (associated with a POVM), which amounts to enlarging the experimenter’s Hilbert space by adding an ancilla, so that the dimension of the enlarged Hilbert space is equal to the number of linearly independent states. As indicated in §3.1, Schrödinger’s analysis anticipated the later result by Hughston, Jozsa, and Wootters [1993].

Suppose Alice and Bob, the traditional protagonists in any two-party communication protocol, each holds one of a pair of qubits in the entangled state:

\[(137) \Psi = \frac{1}{\sqrt{2}}(|0\rangle_A |1\rangle_B - |1\rangle_A |0\rangle_B)\]
Bob’s qubit separately is in the mixed state $\rho_B = I/2$, which can be interpreted as an equal weight mixture of the orthogonal states $|0\rangle_B$, $|1\rangle_B$, or, equivalently, as an infinity of other mixtures including, to take a specific example, the equal weight mixture of the four nonorthogonal normalized states:

$$
|\phi_1\rangle_B = \alpha|0\rangle_B + \beta|1\rangle_B \\
|\phi_2\rangle_B = \alpha|0\rangle_B - \beta|1\rangle_B \\
|\phi_3\rangle_B = \beta|0\rangle_B + \alpha|1\rangle_B \\
|\phi_4\rangle_B = \beta|0\rangle_B - \alpha|1\rangle_B
$$

That is:

$$(138) \quad \rho_B = I/2 = \frac{1}{4}(|\phi_1\rangle\langle\phi_1| + |\phi_2\rangle\langle\phi_2| + |\phi_3\rangle\langle\phi_3| + |\phi_4\rangle\langle\phi_4|)$$

If Alice measures the observable with eigenstates $|0\rangle_A$, $|1\rangle_A$ on her qubit A, and Bob measures the corresponding observable on his qubit B, Alice’s outcomes will be oppositely correlated with Bob’s outcomes (0 with 1, and 1 with 0). If, instead, Alice prepares an ancilla qubit A' in the state $|\phi_1\rangle_{A'} = \alpha|0\rangle_{A'} + \beta|1\rangle_{A'}$ and measures an observable on the pair of qubits $A' + A$ in her possession with eigenstates:

$$(139) \quad |1\rangle = (|0\rangle_{A'}|1\rangle_A - |1\rangle_{A'}|0\rangle_A)/\sqrt{2}$$
$$(140) \quad |2\rangle = (|0\rangle_{A'}|1\rangle_A + |1\rangle_{A'}|0\rangle_A)/\sqrt{2}$$
$$(141) \quad |3\rangle = (|0\rangle_{A'}|0\rangle_A - |1\rangle_{A'}|1\rangle_A)/\sqrt{2}$$
$$(142) \quad |4\rangle = (|0\rangle_{A'}|0\rangle_A + |1\rangle_{A'}|1\rangle_A)/\sqrt{2}$$

(the Bell states defining the Bell basis in $\mathcal{H}^{A'} \otimes \mathcal{H}^A$), she will obtain the outcomes 1, 2, 3, 4 with equal probability of 1/4, and these outcomes will be correlated with Bob’s states $|\phi_1\rangle_B$, $|\phi_2\rangle_B$, $|\phi_3\rangle_B$, $|\phi_4\rangle_B$. That is, if Bob checks to see whether his particle is in the state $|\phi_i\rangle_B$ when Alice reports that she obtained the outcome i, he will find that this is always in fact the case. This follows because

$$(143) \quad |\phi_i\rangle_{A'}|\Psi\rangle = \frac{1}{2}(-|1\rangle|\phi_1\rangle_B - |2\rangle|\phi_2\rangle_B + |3\rangle|\phi_3\rangle_B - |4\rangle|\phi_4\rangle_B)$$

In this sense, Alice can steer Bob’s particle into any mixture compatible with his density operator $\rho_B = I/2$ by an appropriate local measurement.

What Schrödinger found problematic about entanglement was the possibility of remote steering in the above sense [1935, 556]:

It is rather discomforting that the theory should allow a system to be steered or piloted into one or the other type of state at the experimenter’s mercy in spite of his having no access to it.

Now, remote steering in this probabilistic sense is precisely what makes quantum teleportation possible. Suppose Alice and Bob share a pair of qubits in the entangled state (137) and Alice is given a qubit A' in an unknown state $|\phi_1\rangle$ that she
would like to send to Bob. There is no procedure by which Alice can determine
the identity of the unknown state, but even if she could, the amount of classical
information that Alice would have to send to Bob in order for him to prepare
the state \(|\phi_1\rangle\) is potentially infinite, since the precise specification of a general
normalized qubit state \(\alpha|0\rangle + \beta|1\rangle\) requires two real parameters (the number of
independent parameters is reduced from four to two because \(|\alpha|^2 + |\beta|^2 = 1\) and the
overall phase is irrelevant). Alice could send the qubit itself to Bob, but the quan-
tum information in the qubit state might be corrupted by transmission through a
possibly noisy environment.

Instead, for the cost of just two bits of classical information, Alice can succeed
in communicating the unknown quantum state \(|\phi_1\rangle\) to Bob with perfect reliability.
What Alice does is to measure the 2-qubit system \(A' + A\) in her possession in the
Bell basis. Depending on the outcome of her measurement, \(i = 1, 2, 3,\) or \(4\) with
equal probability, Bob’s qubit will be steered into one of the states \(|\phi_1\rangle_B, |\phi_2\rangle_B,
|\phi_3\rangle_B, |\phi_4\rangle_B\). If Alice communicates the outcome of her measurement to Bob
(requiring the transmission of two bits of classical information), Bob can apply
one of four local unitary transformations in his Hilbert space to obtain the state
\(|\phi_1\rangle_B\):

\[
\begin{align*}
i = 1: & \text{ do nothing, i.e., apply the identity transformation } I \\
i = 2: & \text{ apply the transformation } \sigma_x \\
i = 3: & \text{ apply the transformation } \sigma_x \\
i = 4: & \text{ apply the transformation } i\sigma_y
\end{align*}
\]

where \(\sigma_x, \sigma_y, \sigma_z\) are the Pauli spin matrices.

The trick that results in the communication of the state \(|\phi_1\rangle\) from Alice to Bob,
without the qubit \(A'\) literally traveling from Alice to Bob, is the ability afforded
Alice by the shared entangled state to correlate one of four measurement outcomes
(each occurring with probability \(1/4\)) with one of four states that together represen-
ta particular decomposition of Bob’s mixed state. The communication of the
state of \(A'\) is completed by Bob’s operation, which requires that Alice sends the
two bits of classical information about her measurement outcome to Bob. In the
teleportation protocol, the state of the particle \(A'\) is destroyed by Alice’s mea-
surement and re-created as the state of Bob’s particle by Bob’s operation — in
fact, the systems \(A\) and \(A'\) end up in an entangled state as the result of Alice’s
measurement. Note that if the state \(|\phi_1\rangle\) of \(A'\) were not destroyed there would be
two copies of the state, which would violate the quantum ‘no cloning’ theorem.
So neither Alice nor Bob, nor any other party, can gain any information about
the identity of the teleported state, because the recording of such information in
the state of another quantum system would amount to a partial copying of the
information in the teleported state.

Shared entanglement provides a secure and reliable channel for quantum com-
unication. This might be useful for the communication of quantum information
between parties in a cryptographic protocol, or for the transmission of quantum information between the processing components of a quantum computer. It is a feature of an entangled state shared by two parties that the entanglement is not affected by noise in the environment between them. So the reliability of the communication of quantum information by teleportation depends on the reliability of the required classical communication, which can be protected against noise by well-known techniques of error-correcting codes. An entangled state shared by two parties is also unaffected by changes in their relative spatial location. So Alice could teleport a quantum state to Bob without even knowing Bob’s location, by broadcasting the two bits of information.

4.2 Quantum Dense Coding

We know from the Holevo bound (see §3.4) that the maximum amount of classical information that can be reliably communicated by encoding the information in the quantum state of a qubit is one bit, even though an arbitrarily large amount of classical information can be encoded in the state of a qubit (by encoding symbols as nonorthogonal quantum states). Quantum dense coding is a procedure, first pointed out by Bennett and Wiesner [1992], for exploiting entanglement to double the amount of classical information that can be communicated by a qubit.

Consider again the Bell states:

\begin{align*}
(144) \ket{1} &= \frac{\left(\ket{0}\ket{1} - \ket{1}\ket{0}\right)}{\sqrt{2}} \\
(145) \ket{2} &= \frac{\left(\ket{0}\ket{1} + \ket{1}\ket{0}\right)}{\sqrt{2}} \\
(146) \ket{3} &= \frac{\left(\ket{0}\ket{0} - \ket{1}\ket{1}\right)}{\sqrt{2}} \\
(147) \ket{4} &= \frac{\left(\ket{0}\ket{0} + \ket{1}\ket{1}\right)}{\sqrt{2}}
\end{align*}

Suppose Alice and Bob share a pair of qubits in the state

\begin{align*}
(148) \ket{1} = \frac{\left(\ket{0}_A\ket{1}_B - \ket{1}_A\ket{0}_B\right)}{\sqrt{2}}
\end{align*}

By performing one of four local operations on the qubit in her possession defined by the unitary transformations in \(\mathcal{H}^A \):

\begin{align*}
(149) \quad U_1 &= I \\
(150) \quad U_2 &= \sigma_x \\
(151) \quad U_3 &= \sigma_x \\
(152) \quad U_4 &= i\sigma_y
\end{align*}

Alice can transform the state \(\ket{1} \) of the qubit pair into any Bell state. For example:

\begin{align*}
(153) \quad I \ket{1} &= \ket{1} \\
(154) \quad \sigma_x \ket{1} &= \ket{2} \\
(155) \quad \sigma_x \ket{1} &= \ket{3} \\
(156) \quad i\sigma_y \ket{1} &= \ket{4}
\end{align*}
So to communicate two classical bits to Bob, Alice applies one of the four operations above to her qubit and sends the qubit to Bob. Bob then performs a measurement on the two qubits in the Bell basis. Since these are orthogonal states, he can distinguish the states and identify Alice’s operation.

5 QUANTUM CRYPTOGRAPHY

Over the past few years, quantum cryptography as emerged as perhaps the most successful area of application of quantum information theoretic ideas. The main results have been a variety of provably secure protocols for key distribution, following an original proposal by Bennett and Brassard [1984], and an important ‘no go’ theorem by Mayers [1996b; 1997] and Lo and Chau [1998]: the impossibility of unconditionally secure two-party quantum bit commitment. The quantum bit commitment theorem generalizes previous results restricted to one-way communication protocols by Mayers [1996a] and by Lo and Chau [1997] and applies to quantum, classical, and quantum-classical hybrid schemes (since classical information, as we have seen, can be regarded as quantum information subject to certain constraints). The restriction to two-party schemes excludes schemes that involve a trusted third-party or trusted channel properties, and the restriction to schemes based solely on the principles of quantum mechanics excludes schemes that exploit special relativistic signalling constraints, or schemes that might involve time machines or the thermodynamics of black holes, etc.

In §5.1, I show how the security of quantum key distribution depends on features of quantum information — no cloning, no information gain without disturbance, entanglement — that prevent an eavesdropper from secretly gaining information about the quantum communication between two parties, i.e., completely undetectable eavesdropping is in principle impossible for quantum communication. In §5.2, I discuss quantum bit commitment and show why unconditionally secure quantum bit commitment is impossible.

5.1 Key Distribution

Quantum Key Distribution Protocols

In a quantum key distribution protocol, the object is for two parties, Alice and Bob, who initially share no information, to exchange information via quantum and classical channels, so as to end up sharing a secret key which they can then use for encryption, in such a way as to ensure that any attempt by an eavesdropper, Eve, to gain information about the secret key will be detected with non-zero probability.

The one-time pad provides a perfectly secure way for Alice and Bob to communicate classical information, but this is also the only way that two parties can achieve perfectly security classical communication. The one-time pad is, essentially, a random sequence of bits. If Alice and Bob both have a copy of the one-time pad, Alice can communicate a message to Bob securely by converting
the message to an n-bit binary number (according to some scheme known to both Alice and Bob), and adding (bitwise, modulo 2) the sequence of bits in the binary number to an n-length sequence of bits from the top of the one-time pad. Alice sends the encrypted sequence to Bob, which Bob can then decrypt using the same sequence of bits from his copy of the one-time pad. Since the encrypted message is random, it is impossible for Eve to decrypt the message without a copy of the one-time pad. It is essential to the security of the scheme that the n random bits used to encrypt the message are discarded once the message is transmitted and decrypted, and that a unique random sequence is used for each distinct message — hence the term ‘one-time pad.’

This procedure guarantees perfect privacy, so long as Alice and Bob, and only Alice and Bob, can each be assumed to possess a copy of an arbitrarily long one-time pad. But this means that in order for two parties to communicate secretly, they must already share a secret: the random key. The key distribution problem is the problem of how to distribute the key securely in the first place without the key being secretly intercepted during transmission and copied, and the key storage problem is the problem of how to store the key securely without it being secretly copied. We would like a procedure that can be guaranteed to be secure against passive eavesdropping, so that Alice and Bob can be confident that their communications are in fact private.

The key idea in quantum cryptography is to exploit the indistinguishability of nonorthogonal quantum states, which we saw in §3.3 entails that any information gained by Eve about the identity of such states will introduce some disturbance of the states that can be detected by Alice and Bob, and the ‘no cloning’ theorem, which makes it impossible for Eve to copy quantum communications between Alice and Bob and store them for later analysis (perhaps using, in addition, intercepted classical communications between Alice and Bob).

A large variety of quantum key distribution schemes have been proposed following the original Bennett and Brassard protocol [1984], now known as BB84. The core idea there was for Alice to send Bob a sequence of qubits, prepared with equal probability in one of the states $|0\rangle, |1\rangle, |+\rangle, |-\rangle$, where the pair of orthogonal states $|0\rangle, |1\rangle$ are nonorthogonal to the pair of orthogonal states $|+\rangle, |-\rangle$. Bob measures each qubit randomly in either the basis $|0\rangle, |1\rangle$ or the basis $|+\rangle, |-\rangle$. Following his measurements, he publicly broadcasts the basis he used for each qubit in the sequence, and Alice publicly broadcasts which of these bases is the same as the basis she used to prepare the qubit. Alice and Bob then discard the qubits for which their bases disagree. Since the outcome states of Bob’s measurements are the same as the states Alice prepared, Alice and Bob share a random key on the remaining qubits. They can then sacrifice a portion of these qubits to detect eavesdropping. Alice publicly announces the qubit state she prepared and Bob checks his measurement outcome to confirm this. If they agree on a sufficient number of qubit states (depending on the expected error rate), they conclude that there has been no eavesdropping and use the remaining portion as the secret key. If they don’t agree, they conclude that the qubits have been disturbed by eavesdropping,
in which case they discard all the qubits and begin the procedure again. The actual protocol involves further subtleties in which a perfectly secure secret key is distilled from the 'raw key' obtained in this way by techniques of error correction and privacy amplification.

The BB84 scheme solves the key distribution problem, in the sense that Alice and Bob, who initially share no secrets, can end up sharing a secret key via a key distribution protocol that excludes the possibility of eavesdropping, with arbitrarily high reliability (since the length of the sequence of qubits sacrificed to detect eavesdropping can be arbitrarily long). Clearly, it does not solve the key storage problem, since the output of the key distribution protocol is stored as classical information, which is subject to passive eavesdropping.

A scheme proposed by Ekert [1991] allows Alice and Bob to create a shared random key by performing measurements on two entangled qubits. Suppose Alice and Bob share many copies of an entangled pure state of two qubits, say the Bell state \(\frac{1}{\sqrt{2}} (|0\rangle |1\rangle - |1\rangle |0\rangle) \) (perhaps emitted by a common source of entangled pairs between Alice and Bob). Alice and Bob agree on three observables that they each measure on their qubits, where the measurements are chosen randomly and independently for each qubit. After a sequence of measurements on an appropriate number of pairs, Alice and Bob announce the directions of their measurements publicly and divide the measurements into two groups: those in which they measured the spin in different directions, and those in which they measured the spin in the same direction. They publicly reveal the outcomes of the first group of measurements and use these to check that the singlet states have not been disturbed by eavesdropping. Essentially, they calculate a correlation coefficient: any attempt by an eavesdropper, Eve, to monitor the particles will disturb the entangled state and result in a correlation coefficient that is bounded by Bell’s inequality and is therefore distinguishable from the correlation coefficient for the entangled state. If Alice and Bob are satisfied that no eavesdropping has occurred, they use the second group of oppositely correlated measurement outcomes as the key.

Quantum Key Distribution via Pre- and Post-Selection

The Ekert scheme solves the key distribution problem as well as the key storage problem, because a new key is generated for each message from the stored entangled states, and there is no information about the key in the entangled states. Here I describe a key distribution protocol that also involves entangled states (see [Bub, 2001b]), but with a different type of test for eavesdropping. Instead of a statistical test based on Bell’s theorem, the test exploits conditional statements about measurement outcomes generated by pre- and post-selected quantum states.

The peculiar features of pre- and post-selected quantum states were first pointed out by Aharonov, Bergmann, and Lebowitz [1964]. If:

(i) Alice prepares a system in a certain state \(|\text{pre} \rangle \) at time \(t_1 \),

(ii) Bob measures some observable \(M \) on the system at time \(t_2 \),
(iii) Alice measures an observable of which |post⟩ is an eigenstate at time \(t_3\), and post-selects for |post⟩,

then Alice can assign probabilities to the outcomes of Bob’s \(M\)-measurement at \(t_2\), conditional on the states |pre⟩ and |post⟩ at times \(t_1\) and \(t_3\), respectively, as follows [Aharonov et al., 1964; Vaidman et al., 1987]:

\[
(157) \quad \text{prob}(q_k) = \frac{|\langle \text{pre} | P_k | \text{post} \rangle|^2}{\sum_i |\langle \text{pre} | P_i | \text{post} \rangle|^2}
\]

where \(P_i\) is the projection operator onto the \(i\)’th eigenspace of \(M\). Notice that (157) — referred to as the ‘ABL-rule’ (Aharonov-Bergmann-Lebowitz rule) in the following — is time-symmetric, in the sense that the states |pre⟩ and |post⟩ can be interchanged.

If \(M\) is unknown to Alice, she can use the ABL-rule to assign probabilities to the outcomes of various hypothetical \(M\)-measurements. The interesting peculiarity of the ABL-rule, by contrast with the usual Born rule for pre-selected states, is that it is possible — for an appropriate choice of observables \(M, M', \ldots\), and states |pre⟩ and |post⟩ — to assign unit probability to the outcomes of a set of mutually noncommuting observables. That is, Alice can be in a position to assert a conjunction of conditional statements of the form: ‘If Bob measured \(M\), then the outcome must have been \(m_i\), with certainty, and if Bob measured \(M'\), then the outcome must have been \(m'_j\), with certainty, \ldots’, where \(M, M', \ldots\) are mutually noncommuting observables. Since Bob could only have measured at most one of these noncommuting observables, Alice’s conditional information does not, of course, contradict quantum mechanics: she only knows the eigenvalue \(m_i\) of an observable \(M\) if she knows that Bob in fact measured \(M\).

Vaidman, Aharonov, and Albert [1987] discuss a case of this sort, where the outcome of a measurement of any of the three spin observables \(X = \sigma_x, Y = \sigma_y, Z = \sigma_z\) of a spin-\(\frac{1}{2}\) particle can be inferred from an appropriate pre- and post-selection. Alice prepares the Bell state

\[
(158) \quad |\text{pre}\rangle = \frac{1}{\sqrt{2}} (|\uparrow_z\rangle_A |\uparrow_z\rangle_C + |\downarrow_z\rangle_A |\downarrow_z\rangle_C)
\]

where |\uparrow_z⟩⟩ and |\downarrow_z⟩⟩ denote the \(\sigma_z\)-eigenstates. Alice sends one of the particles — the channel particle, denoted by the subscript \(C\) — to Bob and keeps the ancilla, denoted by \(A\). Bob measures either \(X, Y,\) or \(Z\) on the channel particle and returns the channel particle to Alice. Alice then measures an observable \(R\) on the pair of
particles, where R has the eigenstates (the subscripts A and C are suppressed):

\[
\begin{align*}
(159) \left| r_1 \right> &= \frac{1}{\sqrt{2}} \left(\left| \uparrow_z \right> \left| \uparrow_z \right> + \frac{1}{2} \left(\left| \uparrow_z \right> \left| \downarrow_z \right> e^{i\pi/4} + \left| \downarrow_z \right> \left| \uparrow_z \right> e^{-i\pi/4} \right) \\
(160) \left| r_2 \right> &= \frac{1}{\sqrt{2}} \left(\left| \uparrow_z \right> \left| \uparrow_z \right> - \frac{1}{2} \left(\left| \uparrow_z \right> \left| \downarrow_z \right> e^{i\pi/4} + \left| \downarrow_z \right> \left| \uparrow_z \right> e^{-i\pi/4} \right) \\
(161) \left| r_3 \right> &= \frac{1}{\sqrt{2}} \left(\left| \downarrow_z \right> \left| \downarrow_z \right> + \frac{1}{2} \left(\left| \uparrow_z \right> \left| \downarrow_z \right> e^{-i\pi/4} + \left| \downarrow_z \right> \left| \uparrow_z \right> e^{i\pi/4} \right) \\
(162) \left| r_4 \right> &= \frac{1}{\sqrt{2}} \left(\left| \downarrow_z \right> \left| \downarrow_z \right> - \frac{1}{2} \left(\left| \uparrow_z \right> \left| \downarrow_z \right> e^{-i\pi/4} + \left| \downarrow_z \right> \left| \uparrow_z \right> e^{i\pi/4} \right)
\end{align*}
\]

Note that:

\[
\begin{align*}
(163) \left| \text{pre} \right> &= \frac{1}{\sqrt{2}} (\left| \uparrow_x \right> \left| \uparrow_x \right> + \left| \downarrow_x \right> \left| \downarrow_x \right>) \\
(164) &= \frac{1}{\sqrt{2}} (\left| \uparrow_x \right> \left| \uparrow_x \right> + \left| \downarrow_x \right> \left| \downarrow_x \right>) \\
(165) &= \frac{1}{\sqrt{2}} (\left| \uparrow_y \right> \left| \uparrow_y \right> + \left| \downarrow_y \right> \left| \downarrow_y \right>) \\
(166) &= \frac{1}{2} (\left| r_1 \right> + \left| r_2 \right> + \left| r_3 \right> + \left| r_4 \right>)
\end{align*}
\]

Alice can now assign values to the outcomes of Bob’s spin measurements via the ABL-rule, whether Bob measured $X, Y,$ or Z, based on the post-selections $\left| r_1 \right>, \left| r_2 \right>, \left| r_3 \right>, \text{ or } \left| r_4 \right>$, according to Table 1 (where 0 represents the outcome \uparrow and 1 represents the outcome \downarrow) [Vaidman et al., 1987]:

<table>
<thead>
<tr>
<th></th>
<th>σ_x</th>
<th>σ_y</th>
<th>σ_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>r_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>r_3</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r_4</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1. σ_x, σ_y, σ_z measurement outcomes correlated with eigenvalues of R

This case can be exploited to enable Alice and Bob to share a private random key in the following way: Alice prepares a certain number of copies (depending on the length of the key and the level of privacy desired) of the Bell state $\left| \text{pre} \right>$ in Eq. (158). She sends the channel particles to Bob in sequence and keeps the ancillas. Bob measures X or Z randomly on the channel particles and returns the particles, in sequence, to Alice. Alice then measures the observable R on the ancilla and channel pairs and divides the sequence into two subsequences: the subsequence S_{14} for which she obtained the outcomes r_1 or r_4, and the subsequence S_{23} for which she obtained the outcomes r_2 or r_3. The sequence of operations can be implemented on a quantum circuit; see [Metzger, 2000].
To check that the channel particles have not been monitored by Eve, Alice now publicly announces (broadcasts) the indices of the subsequence S_{23}. As is evident from Table 1, for this subsequence she can make conditional statements of the form: ‘For channel particle i, if X was measured, the outcome was 1 (0), and if Z was measured, the outcome was 0 (1),’ depending on whether the outcome of her R-measurement was r_2 or r_3. She publicly announces these statements as well. If one of these statements, for some index i, does not agree with Bob’s records, Eve must have monitored the i’th channel particle. (Of course, agreement does not entail that the particle was not monitored.)

For suppose Eve measures a different spin component observable than Bob on a channel particle and Alice subsequently obtains one of the eigenvalues r_2 or r_3 when she measures R. Bob’s measurement outcome, either 0 or 1, will be compatible with just one of these eigenvalues, assuming no intervention by Eve. But after Eve’s measurement, both of these eigenvalues will be possible outcomes of Alice’s measurement. So Alice’s retrodictions of Bob’s measurement outcomes for the subsequence S_{23} will not necessarily correspond to Bob’s records. In fact, one can show that if Eve measures X or Z randomly on the channel particles, or if she measures a particular one of the observables X, Y, or Z on the channel particles (the same observable on each particle), the probability of detection in the subsequence S_{23} is $3/8$.

In the subsequence S_{14}, the 0 and 1 outcomes of Bob’s measurements correspond to the outcomes r_1 and r_4 of Alice’s R-measurements. If, following their public communication about the subsequence S_{23}, Alice and Bob agree that there has been no monitoring of the channel particles by Eve, they use the subsequence S_{14} to define a shared raw key.

Note that even a single disagreement between Alice’s retrodictions and Bob’s records is sufficient to reveal that the channel particles have been monitored by Eve. This differs from the eavesdropping test in the Ekert protocol. Note also that Eve only has access to the channel particles, not the particle pairs. So no strategy is possible in which Eve replaces all the channel particles with her own particles and entangles the original channel particles, treated as a single system, with an ancilla by some unitary transformation, and then delays any measurements until after Alice and Bob have communicated publicly. There is no way that Eve can ensure agreement between Alice and Bob without having access to the particle pairs, or without information about Bob’s measurements.

The key distribution protocol as outlined above solves the key distribution problem but not the key storage problem. If Bob actually makes the random choices, measures X or Z, and records definite outcomes for the spin measurements before Alice measures R, as required by the protocol, Bob’s measurement records — stored as classical information — could in principle be copied by Eve without detection. In that case, Eve would know the raw key (which is contained in this information), following the public communication between Alice and Bob to verify the integrity of the quantum communication channel.

To solve the key storage problem, the protocol is modified in the following way:
Instead of actually making the random choice for each channel particle, measuring one of the spin observables, and recording the outcome of the measurement, Bob keeps the random choices and the spin measurements 'at the quantum level' until after Alice announces the indices of the subsequence S_{23} of her R measurements. To do this, Bob enlarges the Hilbert space by entangling the quantum state of the channel particle via a unitary transformation with the states of two ancilla particles that he introduces. One particle is associated with a Hilbert space spanned by two eigenstates, $|d_X\rangle$ and $|d_Z\rangle$, of a choice observable or 'quantum die' observable D. The other particle is associated with a Hilbert space spanned by two eigenstates, $|p_1\rangle$ and $|p_\downarrow\rangle$, of a pointer observable P. (See §5.2 for a discussion of how to implement the unitary transformation on the enlarged Hilbert space.)

On the modified protocol (assuming the ability to store entangled states indefinitely), Alice and Bob share a large number of copies of an entangled 4-particle state. When they wish to establish a random key of a certain length, Alice measures R on an appropriate number of particle pairs in her possession and announces the indices of the subsequence S_{23}. Before Alice announces the indices of the subsequence S_{23}, neither Alice nor Bob have stored any classical information. So there is nothing for Eve to copy. After Alice announces the indices of the subsequence S_{23}, Bob measures the observables D and P on his ancillas with these indices and announces the eigenvalue $|p_1\rangle$ or $|p_\downarrow\rangle$ as the outcome of his X or Z measurement, depending on the eigenvalue of D. If Alice and Bob decide that there has been no eavesdropping by Eve, Bob measures C and P on his ancillas in the subsequence S_{14}. It is easy to see that the ABL-rule applies in this case, just as it applies in the case where Bob actually makes the random choice and actually records definite outcomes of his X or Z measurements before Alice measures R. In fact, if the two cases were not equivalent for Alice — if Alice could tell from her R-measurements whether Bob had actually made the random choice and actually performed the spin measurements, or had merely implemented these actions 'at the quantum level' — the difference could be exploited to signal superluminally.

5.2 Bit Commitment

Some History

In a bit commitment protocol, one party, Alice, supplies an encrypted bit to a second party, Bob. The information available in the encrypted bit should be insufficient for Bob to ascertain the value of the bit, but sufficient, together with further information supplied by Alice at a subsequent stage when she is supposed to reveal the value of the bit, for Bob to be convinced that the protocol does not allow Alice to cheat by encrypting the bit in a way that leaves her free to reveal either 0 or 1 at will.

To illustrate the idea, suppose Alice claims the ability to predict the outcomes of elections. To substantiate her claim without revealing valuable information (perhaps to a potential employer, Bob) she suggests the following demonstration: She proposes to record her prediction about whether a certain candidate will win
or lose by writing a 0 (for ‘lose’) or a 1 (for ‘win’) on a note a month before the election. She will then lock the note in a safe and hand the safe to Bob, but keep the key. After the election, she will announce the bit she chose and prove that she in fact made the commitment at the earlier time by handing Bob the key. Bob can then open the safe and read the note.

Obviously, the security of this procedure depends on the strength of the safe walls or the ingenuity of the locksmith. More generally, Alice can send (encrypted) information to Bob that guarantees the truth of an exclusive classical disjunction (equivalent to her commitment to a 0 or a 1) only if the information is biased towards one of the alternative disjuncts (because a classical exclusive disjunction is true if and only if one of the disjuncts is true and the other false). No principle of classical mechanics precludes Bob from extracting this information, so the security of a classical bit commitment protocol can only be a matter of computational complexity.

The question is whether there exists a quantum analogue of this procedure that is unconditionally secure: provably secure as a matter of physical law (according to quantum theory) against cheating by either Alice or Bob. Note that Bob can cheat if he can obtain some information about Alice’s commitment before she reveals it (which would give him an advantage in repetitions of the protocol with Alice). Alice can cheat if she can delay actually making a commitment until the final stage when she is required to reveal her commitment, or if she can change her commitment at the final stage with a very low probability of detection.

Bennett and Brassard originally proposed a quantum bit commitment protocol in [1984]. The basic idea was to associate the 0 and 1 commitments with two different mixtures represented by the same density operator. As they showed in the same paper, Alice can cheat by adopting an ‘EPR attack’ or cheating strategy: she prepares entangled pairs of qubits, keeps one of each pair (the ancilla) and sends the second qubit (the channel particle) to Bob. In this way she can fake sending one of two equivalent mixtures to Bob and reveal either bit at will at the opening stage by effectively steering Bob’s particle into the desired mixture by an appropriate measurement. Bob cannot detect this cheating strategy.

In a later paper, Brassard, Crépeau, Josza, and Langlois [1993] proposed a quantum bit commitment protocol that they claimed to be unconditionally secure. The BCJL scheme was first shown to be insecure by Mayers [1996a]. Subsequently, Mayers [1996b; 1997] and Lo and Chau [1997; 1998] independently showed that the insight of Bennett and Brassard in [1984] can be extended to a proof that a generalized version of the EPR cheating strategy can always be applied, if the Hilbert space is enlarged in a suitable way by introducing additional ancilla particles.

The impossibility of unconditionally secure quantum bit commitment came as something of a surprise to the community of quantum cryptologists and has profound consequences. Indeed, it would not be an exaggeration to say that the significance of the quantum bit commitment theorem for our understanding of quantum mechanics is comparable to Bell’s theorem [Bell, 1964]. Brassard and Fuchs have speculated ([Brassard, 2000; Fuchs, 1997; Fuchs, 2000; Fuchs and Ja-
cobs, 2002]) that quantum mechanics can be derived from two postulates about quantum information: the possibility of secure key distribution and the impossibility of secure bit commitment. We shall see in §7 what this means for the foundations of quantum mechanics.

Perhaps because of the simplicity of the proof and the universality of the claim, the quantum bit commitment theorem is continually challenged in the literature, on the basis that the proof does not cover all possible procedures that might be exploited to implement quantum bit commitment (see, e.g., Yuen [2005]). There seems to be a general feeling that the theorem is ‘too good to be true’ and that there must be a loophole.

In fact, there is no loophole. While Kent [1999a; 1999b] has shown how to implement a secure classical bit commitment protocol by exploiting relativistic signalling constraints in a timed sequence of communications between verifiably separated sites for both Alice and Bob, and Hardy and Kent [2004] and Aharonov, Tatoshma, Vazirani, and Yao [2005] have investigated the security of ‘cheat-sensitive’ or ‘weak’ versions of quantum bit commitment, these results are not in conflict with the quantum bit commitment theorem. In a bit commitment protocol as usually understood, there is a time interval of arbitrary length, where no information is exchanged, between the end of the commitment stage of the protocol and the opening or unveiling stage, when Alice reveals the value of the bit. Kent’s ingenious scheme effectively involves a third stage between the commitment state and the unveiling stage, in which information is exchanged between Bob’s sites and Alice’s sites at regular intervals until one of Alice’s sites chooses to unveil the originally committed bit. At this moment of unveiling the protocol is not yet complete, because a further sequence of unveilings is required between Alice’s sites and corresponding sites of Bob before Bob has all the information required to verify the commitment at a single site. If a bit commitment protocol is understood to require an arbitrary amount of free time between the end of the commitment stage and the opening stage (in which no step is to be executed in the protocol), then the quantum bit commitment theorem covers protocols that exploit special relativistic signalling constraints.10

A Key Observation

The crucial insight underlying the proof of the quantum bit commitment theorem is that any step in a quantum bit commitment protocol that requires Alice or Bob to make a definite choice (whether to perform one of a number of alternative measurements, or whether to implement one of a number of alternative unitary transformations) can always be replaced by an EPR cheating strategy in the generalized sense, assuming that Alice and Bob are both equipped with quantum computers. That is, a classical disjunction over definite possibilities — this operation or that operation — can always be replaced by a quantum entanglement and a subsequent measurement (perhaps at a more convenient time for the cheater)

10I am indebted to Dominic Mayers for clarifying this point.
in which one of the possibilities becomes definite. Essentially, the classical disjunction is replaced by a quantum disjunction. This cheating strategy cannot be detected. Similarly, a measurement can be 'held at the quantum level' without detection: instead of performing the measurement and obtaining a definite outcome as one of a number of possible outcomes, a suitable unitary transformation can be performed on an enlarged Hilbert space, in which the system is entangled with a 'pointer' ancilla in an appropriate way, and the procedure of obtaining a definite outcome can be delayed. The key point is the possibility of keeping the series of transactions between Alice and Bob at the quantum level by enlarging the Hilbert space, until the final exchange of classical information when Alice reveals her commitment.

Any quantum bit commitment scheme will involve a series of transactions between Alice and Bob, where a certain number, \(n \), of quantum systems — the 'channel particles' — are passed between them and subjected to various quantum operations (unitary transformations, measurements, etc.), possibly chosen randomly. These operations can always be replaced, without detection, by entangling a channel particle with one or more ancilla particles that function as 'pointer' particles for measurements or 'die' particles for random choices. In effect, this is the (generalized) EPR cheating strategy.

To illustrate: Suppose, at a certain stage of a quantum bit commitment protocol, that Bob is required to make a random choice between measuring one of two observables, \(X \) or \(Y \), on each channel particle he receives from Alice. For simplicity, assume that \(X \) and \(Y \) each have two eigenvalues, \(x_1, x_2 \) and \(y_1, y_2 \). After recording the outcome of the measurement, Bob is required to return the channel particle to Alice. When Alice receives the \(i \)'th channel particle she sends Bob the next channel particle in the sequence. We may suppose that the measurement outcomes that Bob records form part of the information that enables him to confirm Alice's commitment, once she discloses it (together with further information), so he is not required to report his measurement outcomes to Alice until the final stage of the protocol when she reveals her commitment.

Instead of following the protocol, Bob can construct a device that entangles the input state \(|\psi\rangle_C \) of a channel particle with the initial states, \(|d_0\rangle_B \) and \(|p_0\rangle_B \), of two ancilla particles that he introduces, the first of which functions as a 'quantum die' for the random choice and the second as a 'quantum pointer' for the measurement. It is assumed that Bob's ability to construct such a device — in effect, a special purpose quantum computer — is restricted only by the laws of quantum mechanics.

The entanglement is implemented by a unitary transformation in the following way:\(^{11}\) Define two unitary transformations, \(U_X \) and \(U_Y \), that implement the \(X \) and \(Y \) measurements 'at the quantum level' on the tensor product of the Hilbert space of the channel particle, \(\mathcal{H}_C \), and the Hilbert space of Bob's pointer ancilla,

\(^{11}\)Note that there is no loss of generality in assuming that the channel particle is in a pure state. If the channel particle is entangled with Alice's ancillas, the device implements the entanglement via the transformation \(I \otimes \cdots \), where \(I \) is the identity operator in the Hilbert space of Alice's ancillas.
\(\mathcal{H}_{B_D}:
\)
\[\ket{x_1}_C\ket{p_0}_B \xrightarrow{U_X} \ket{x_1}_C\ket{p_1}_B\]
(167) \[\ket{x_2}_C\ket{p_0}_B \xrightarrow{U_X} \ket{x_2}_C\ket{p_2}_B\]
and
\[\ket{y_1}_C\ket{p_0}_B \xrightarrow{U_Y} \ket{y_1}_C\ket{p_1}_B\]
(168) \[\ket{y_2}_C\ket{p_0}_B \xrightarrow{U_Y} \ket{y_2}_C\ket{p_2}_B\]
so that
\[\ket{\psi}_C\ket{p_0}_B \xrightarrow{U_X} \braket{x_1|\psi}\ket{x_1}_C\ket{p_1}_B + \braket{x_2|\psi}\ket{x_2}_C\ket{p_2}_B\]
and
\[\ket{\psi}_C\ket{p_0}_B \xrightarrow{U_Y} \braket{y_1|\psi}\ket{y_1}_C\ket{p_1}_B + \braket{y_2|\psi}\ket{y_2}_C\ket{p_2}_B\]

The random choice is defined similarly by a unitary transformation \(V\) on the tensor product of the Hilbert space of Bob’s die ancilla, \(\mathcal{H}_{B_D}\), and the Hilbert space \(\mathcal{H}_C \otimes \mathcal{H}_{B_P}\). Suppose \(\ket{d_X}\) and \(\ket{d_Y}\) are two orthogonal states in \(\mathcal{H}_{B_D}\) and that \(\ket{d_0} = \frac{1}{\sqrt{2}}\ket{d_X} + \frac{1}{\sqrt{2}}\ket{d_Y}\). Then (suppressing the obvious subscripts) \(V\) is defined by:
\[\ket{d_X} \otimes \ket{\psi}\ket{p_0} \xrightarrow{V} \ket{d_X} \otimes U_X\ket{\psi}\ket{p_0}\]
(171) \[\ket{d_Y} \otimes \ket{\psi}\ket{p_0} \xrightarrow{V} \ket{d_Y} \otimes U_Y\ket{\psi}\ket{p_0}\]
so that
\[\ket{d_0} \otimes \ket{\psi}\ket{p_0} \xrightarrow{V}\]
(172) \[\frac{1}{\sqrt{2}}\ket{d_X} \otimes U_X\ket{\psi}\ket{p_0} + \frac{1}{\sqrt{2}}\ket{d_Y} \otimes U_Y\ket{\psi}\ket{p_0}\]
where the tensor product symbol has been introduced selectively to indicate that \(U_x\) and \(U_y\) are defined on \(\mathcal{H}_C \otimes \mathcal{H}_{B_P}\).

If Bob were to actually choose the observable \(X\) or \(Y\) randomly, and actually perform the measurement and obtain a particular eigenvalue, Alice’s density operator for the channel particle would be:
\[\frac{1}{2}(\braket{x_1|\psi}|^2\ket{x_1}\bra{x_1} + \braket{x_2|\psi}|^2\ket{x_2}\bra{x_2})\]
(173) \[\frac{1}{2}(\braket{y_1|\psi}|^2\ket{y_1}\bra{y_1} + \braket{y_2|\psi}|^2\ket{y_2}\bra{y_2})\]
assuming that Alice does not know what observable Bob chose to measure, nor what outcome he obtained. But this is precisely the same density operator generated by tracing over Bob’s ancilla particles for the state produced in (172). In other words, the density operator for the channel particle is the same for Alice,
whether Bob randomly chooses which observable to measure and actually performs the measurement, or whether he implements an EPR cheating strategy with his two ancillas that produces the transition (172) on the enlarged Hilbert space.

If Bob is required to eventually report what measurement he performed and what outcome he obtained, he can at that stage measure the die ancilla for the eigenstate $|d_X\rangle$ or $|d_Y\rangle$, and then measure the pointer ancilla for the eigenstate $|p_1\rangle$ or $|p_2\rangle$. In effect, if we consider the ensemble of possible outcomes for the two measurements, Bob will have converted the 'improper' mixture generated by tracing over his ancillas to a 'proper' mixture. But the difference between a proper and improper mixture is undetectable by Alice since she has no access to Bob's ancillas, and it is only by measuring the composite system consisting of the channel particle together with Bob's ancillas that Alice could ascertain that the channel particle is entangled with the ancillas.

In fact, if it were possible to distinguish between a proper and improper mixture, it would be possible to signal superluminally: Alice could know instantaneously whether or not Bob performed a measurement on his ancillas by monitoring the channel particles in her possession. Note that it makes no difference whether Bob or Alice measures first, since the measurements are of observables in different Hilbert spaces, which therefore commute.

Clearly, a similar argument applies if Bob is required to choose between alternative unitary operations at some stage of a bit commitment protocol. Perhaps less obviously, an EPR cheating strategy is also possible if Bob is required to perform a measurement or choose between alternative operations on channel particle $i+1$, conditional on the outcome of a prior measurement on channel particle i, or conditional on a prior choice of some operation from among a set of alternative operations. Of course, if Bob is in possession of all the channel particles at the same time, he can perform an entanglement with ancillas on the entire sequence, considered as a single composite system. But even if Bob only has access to one channel particle at a time (which he is required to return to Alice after performing a measurement or other operation before she sends him the next channel particle), he can always entangle channel particle $i+1$ with the ancillas he used to entangle channel particle i.

For example, suppose Bob is presented with two channel particles in sequence. He is supposed to decide randomly whether to measure X or Y on the first particle, perform the measurement, and return the particle to Alice. After Alice receives the first particle, she sends Bob the second particle. If Bob measured X on the first particle and obtained the outcome x_1, he is supposed to measure X on the second particle; if he obtained the outcome x_2, he is supposed to measure Y on the second particle. If he measured Y on the first particle and obtained the outcome y_1, he is supposed to apply the unitary transformation U_1 to the second particle; if he obtained the outcome y_2, he is supposed to apply the unitary transformation U_2. After performing the required operation, he is supposed to return the second particle to Alice.

It would seem at first sight that Bob has to actually perform a measurement
on the first channel particle and obtain a particular outcome before he can apply
the protocol to the second particle, given that he only has access to one channel
particle at a time, so an EPR cheating strategy is excluded. But this is not so.
Bob’s strategy is the following: He applies the EPR strategy discussed above for
two alternative measurements to the first channel particle. For the second channel
particle, he applies the following unitary transformation on the tensor product
of the Hilbert spaces of his ancillas and the channel particle, where the state of
the second channel particle is denoted by $|\phi\rangle$, and the state of the pointer ancilla
for the second channel particle is denoted by $|q_0\rangle$ (a second die particle is not
required):

$$
|d_X\rangle|p_1\rangle|\phi\rangle|q_0\rangle \xrightarrow{U_D} |d_X\rangle|p_1\rangle \otimes U_X|\phi\rangle|q_0\rangle
$$

$$
|d_X\rangle|p_2\rangle|\phi\rangle|q_0\rangle \xrightarrow{U_D} |d_X\rangle|p_2\rangle \otimes U_Y|\phi\rangle|q_0\rangle
$$

$$
|d_Y\rangle|p_1\rangle|\phi\rangle|q_0\rangle \xrightarrow{U_D} |d_Y\rangle|p_1\rangle \otimes U_1|\phi\rangle|q_0\rangle
$$

$$(174) \quad |d_Y\rangle|p_2\rangle|\phi\rangle|q_0\rangle \xrightarrow{U_D} |d_Y\rangle|p_2\rangle \otimes U_2|\phi\rangle|q_0\rangle$$

Proof of the Quantum Bit Commitment Theorem

Since an EPR cheating strategy can always be applied without detection, the
proof of the quantum bit commitment theorem assumes that at the end of the
commitment stage the composite system consisting of Alice’s ancillas, the n
channel particles, and Bob’s ancillas will be represented by some composite entangled
state $|0\rangle$ or $|1\rangle$, depending on Alice’s commitment,\footnote{More precisely, depending on whether Alice intends to reveal 0 or 1 — since we are assuming that Alice will apply an EPR cheating strategy whenever this is relevant.} on a Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$, where \mathcal{H}_A is the Hilbert space of the particles in Alice’s possession at that stage (Alice’s ancillas and the channel particles retained by Alice, if any), and \mathcal{H}_B is
the Hilbert space of the particles in Bob’s possession at that stage (Bob’s ancillas
and the channel particles retained by Bob, if any).

Now, the density operators $W_B(0)$ and $W_B(1)$, characterizing the information
available to Bob for the two alternative commitments, are obtained by tracing the
states $|0\rangle$ and $|1\rangle$ over \mathcal{H}_A. If these density operators are the same, then Bob
will be unable to distinguish the 0-state from the 1-state without further information
from Alice. In this case, the protocol is said to be ‘concealing.’ What the proof
establishes, by an application of the biorthogonal decomposition theorem, is that if
$W_B(0) = W_B(1)$ then there exists a unitary transformation in \mathcal{H}_A that will transform
$|0\rangle$ to $|1\rangle$. That is, if the protocol is ‘concealing’ then it cannot be ‘binding’
on Alice: she can always follow the protocol (with appropriate substitutions of an
EPR strategy) to establish the state $|0\rangle$. At the final stage when she is required
to reveal her commitment, she can choose to reveal the alternative commitment,
depending on circumstances, by applying a suitable unitary transformation in her
own Hilbert space to transform $|0\rangle$ to $|1\rangle$ without Bob being able to detect this
move. So either Bob can cheat by obtaining some information about Alice's choice before she reveals her commitment, or Alice can cheat.

The essentials of the proof can be sketched as follows: In the Schmidt decomposition, the states $|0\rangle$ and $|1\rangle$ can be expressed as:

$$|0\rangle = \sum_i \sqrt{p_i}|a_i\rangle|b_i\rangle$$

(175) $$|1\rangle = \sum_j \sqrt{p'_j}|a'_j\rangle|b'_j\rangle$$

where $\{|a_i\rangle\}, \{|a'_j\rangle\}$ are two orthonormal sets of states in \mathcal{H}_A, and $\{|b_i\rangle\}, \{|b'_j\rangle\}$ are two orthonormal sets in \mathcal{H}_B.

The density operators $W_B(0)$ and $W_B(1)$ are defined by:

$$W_B(0) = Tr_A|0\rangle\langle 0| = \sum_i p_i|b_i\rangle\langle b_i|$$

(176) $$W_B(1) = Tr_A|1\rangle\langle 1| = \sum_j p'_j|b'_j\rangle\langle b'_j|$$

Bob can't cheat if and only if $W_B(0) = W_B(1)$. Now, by the spectral theorem, the decompositions:

$$W_B(0) = \sum_i p_i|b_i\rangle\langle b_i|$$

$$W_B(1) = \sum_j p'_j|b'_j\rangle\langle b'_j|$$

are unique for the nondegenerate case, where the p_i are all distinct and the p'_j are all distinct. The condition $W_B(0) = W_B(1)$ implies that for all k:

$$p_i = p'_i$$

(177) $$|b_i\rangle = |b'_i\rangle$$

and so

$$|0\rangle = \sum_i \sqrt{p_i}|a_i\rangle|b_i\rangle$$

(178) $$|1\rangle = \sum_i \sqrt{p_i}|a'_i\rangle|b_i\rangle$$

It follows that there exists a unitary transformation $U \in \mathcal{H}_A$ such that

(179) $\{|a_k\rangle\} \xrightarrow{U} \{|a'_k\rangle\}$

and hence

(180) $|0\rangle \xrightarrow{U} |1\rangle$
As we shall see in §5.2, instead of transforming $|0\rangle$ to $|1\rangle$ by a unitary transformation, Alice could achieve the same effect by preparing the state $|0\rangle$ and measuring in either of two bases, depending on whether she intends to reveal 0 or 1.

The degenerate case can be handled in a similar way. Suppose that $p_1 = p_2 = p'_1 = p'_2 = p$. Then $|b_1\rangle$, $|b_2\rangle$ and $|b'_1\rangle$, $|b'_2\rangle$ span the same subspace \mathcal{H} in \mathcal{H}_B, and hence (assuming the coefficients are distinct for $k > 2$):

$$|0\rangle = \sqrt{p}(|a_1\rangle |b_1\rangle + |a_2\rangle |b_2\rangle) + \sum_{k>2} \sqrt{p_k} |a_k\rangle |b_k\rangle$$

$$|1\rangle = \sqrt{p}(|a'_1\rangle |b'_1\rangle + |a'_2\rangle |b'_2\rangle) + \sum_{k>2} \sqrt{p_k} |a'_k\rangle |b_k\rangle$$

(181) $$= \sqrt{p}(|a'_{1}\rangle |b_{1}\rangle + |a'_{2}\rangle |b_{2}\rangle) + \sum_{k>2} \sqrt{p_k} |a'_{k}\rangle |b_{k}\rangle$$

where $|a'_{1}\rangle$, $|a'_{2}\rangle$ are orthonormal states spanning \mathcal{H}. Since $\{|a'_{1}\rangle, |a'_{2}\rangle, |a_{3}\rangle, \ldots \}$ is an orthonormal set in \mathcal{H}_A, there exists a unitary transformation in \mathcal{H}_A that transforms $\{|a_{k}\rangle; k = 1, 2, 3, \ldots \}$ to $\{|a'_{1}\rangle, |a'_{2}\rangle, |a_{3}\rangle, \ldots \}$, and hence $|0\rangle$ to $|1\rangle$.

The extension of the theorem to the nonideal case, where $W_B(0) \approx W_B(1)$, so that there is a small probability that Bob could distinguish the alternative commitments, shows that Alice has a correspondingly large probability of cheating successfully: there exists a unitary transformation U in \mathcal{H}_A that will transform $W_B(0)$ sufficiently close to $W_B(1)$ so that Alice can reveal whichever commitment she chooses, with a corresponding small probability of Bob being able to detect this move.

How the Theorem Works: An Example

The following example by Asher Peres (private communication) is a beautiful illustration of how the theorem works. (My analysis of the example owes much to correspondence with Adrian Kent and Dominic Mayers.)

Suppose Alice is required to send Bob a channel particle C in an equal weight mixture of the qubit states:

(182) $|c_0\rangle = |0\rangle$

(183) $|c_2\rangle = -\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$

(184) $|c_4\rangle = -\frac{1}{2}|0\rangle - \frac{\sqrt{3}}{2}|1\rangle$

if she commits to 0, and an equal weight mixture of the qubit states:

(185) $|c_1\rangle = |1\rangle$

(186) $|c_3\rangle = \frac{\sqrt{3}}{2}|0\rangle - \frac{1}{2}|1\rangle$

(187) $|c_5\rangle = -\frac{\sqrt{3}}{2}|0\rangle - \frac{1}{2}|1\rangle$
if she commits to 1. Note that these two mixtures have the same density operator:

\(\rho_0 = \rho_1 = I/2 \)

Suppose Alice tries to implement an EPR cheating strategy by preparing the entangled state of a system \(AC \):

\[
(189) \ |0\rangle = \frac{1}{\sqrt{3}} (|a_0\rangle|c_0\rangle + |a_2\rangle|c_2\rangle + |a_4\rangle|c_4\rangle)
\]

where \(\{|a_0\rangle, |a_2\rangle, |a_4\rangle\} \) is an orthonormal basis in the 3-dimensional Hilbert space \(\mathcal{H}^A \) of a suitable ancilla system \(A \). If Alice could transform the state \(|0\rangle\) to the state:

\[
(190) \ |1\rangle = \frac{1}{\sqrt{3}} (|a_1\rangle|c_1\rangle + |a_3\rangle|c_3\rangle + |a_5\rangle|c_5\rangle)
\]

where \(\{|a_1\rangle, |a_3\rangle, |a_5\rangle\} \) is another orthonormal basis in \(\mathcal{H}^A \), by a local unitary transformation in \(\mathcal{H}^A \), she could delay her commitment to the opening stage. If, at that stage, she decides to commit to 0, she measures the observable with eigenstates \(\{|a_0\rangle, |a_2\rangle, |a_4\rangle\} \). If she decides to commit to 1, she performs the local unitary transformation taking the state \(|0\rangle\) to the state \(|1\rangle\) and measures the observable with eigenstates \(\{|a_1\rangle, |a_3\rangle, |a_5\rangle\} \).

Now, \(|0\rangle\) can be expressed as:

\[
(191) \ |0\rangle = \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} |a_0\rangle|c_3\rangle - |a_5\rangle\right) + \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} |a_2\rangle|c_1\rangle - |a_3\rangle\right) + \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} |a_4\rangle|c_5\rangle - |a_1\rangle\right)
\]

\[
(192) = \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} |a_2\rangle - |a_4\rangle\right)|c_1\rangle + \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} |a_0\rangle - |a_2\rangle\right)|c_3\rangle + \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} |a_4\rangle - |a_0\rangle\right)|c_5\rangle
\]

In this representation of \(|0\rangle\), the factor states \(\frac{1}{\sqrt{3}} |a_0\rangle - |a_2\rangle, \frac{1}{\sqrt{3}} |a_0\rangle - |a_4\rangle, \frac{1}{\sqrt{3}} |a_4\rangle - |a_0\rangle \) in \(\mathcal{H}^A \) are not orthogonal — in fact, they are coplanar:

\[
(193) |a_0\rangle - |a_2\rangle = - \left(|a_2\rangle - |a_4\rangle \right) - \left(|a_4\rangle - |a_0\rangle \right)
\]

So it seems that there cannot be a suitable unitary transformation that will map \(|0\rangle\) to \(|1\rangle\) and the EPR strategy is blocked!

Of course, this is not the case. To see that there is such a unitary transformation, note that \(|0\rangle\) and \(|1\rangle\) can be expressed in the Schmidt decomposition as:

\[
(194) \ |0\rangle = \frac{1}{\sqrt{2}} \left(\frac{2}{\sqrt{6}} |a_0\rangle - |a_2\rangle - |a_4\rangle |c_0\rangle + \frac{|a_2\rangle - |a_4\rangle}{\sqrt{2}} |c_1\rangle \right)
\]

\[
(195) \ |1\rangle = \frac{1}{\sqrt{2}} \left(\frac{|a_3\rangle - |a_5\rangle}{\sqrt{2}} |c_0\rangle + \frac{-2|a_1\rangle + |a_3\rangle + |a_5\rangle}{\sqrt{6}} |c_1\rangle \right)
\]

Clearly, now, there exists a unitary transformation \(U \) in \(\mathcal{H}^A \) such that:

\[
(196) \ |0\rangle \xrightarrow{U} |1\rangle
\]
It follows that:

\[(197) \{a_0, a_2, a_4\} \xrightarrow{U} \{a'_0, a'_2, a'_4\}\]

where \(\{a'_0, a'_2, a'_4\}\) is a basis in \(\mathcal{H}^A\), and so

\[(198) |1\rangle = \frac{1}{\sqrt{3}}(|a'_0|c_0 + |a'_2|c_2 + |a'_4|c_4)\]

\[(199) = \frac{1}{\sqrt{3}}(|a_1|c_1 + |a_3|c_3 + |a_5|c_5)\]

So Alice could implement the EPR cheating strategy by preparing the state \(|1\rangle\) and measuring in the basis \(\{a'_0, a'_2, a'_4\}\) for the 0-commitment, or in the basis \(\{a_1, a_3, a_5\}\) for the 1-commitment. Equivalently, of course, she could prepare the state \(|0\rangle\) and measure in two different bases, since the unitary transformation that takes \(|1\rangle\) to \(|0\rangle\) also takes the basis \(\{a_1, a_3, a_5\}\) to the basis \(\{a'_1, a'_3, a'_5\}\), and so:

\[(200) |0\rangle = \frac{1}{\sqrt{3}}(|a_0|c_0 + |a_2|c_2 + |a_4|c_4)\]

\[(201) = \frac{1}{\sqrt{3}}(|a'_1|c_1 + |a'_3|c_3 + |a'_5|c_5)\]

A calculation shows that:

\[(202) |a''_1\rangle = \frac{1}{3} \left(|a_0\rangle + (1 + \sqrt{3})|a_2\rangle + (1 - \sqrt{3})|a_4\rangle\right)\]

\[(203) |a''_3\rangle = \frac{1}{3} \left((1 + \sqrt{3})|a_0\rangle + (1 - \sqrt{3})|a_2\rangle + |a_4\rangle\right)\]

\[(204) |a''_5\rangle = \frac{1}{3} \left(1 - \sqrt{3})|a_0\rangle + |a_2\rangle + (1 + \sqrt{3})|a_4\rangle\right)\]

In effect, if Alice prepares the entangled state \(|0\rangle\) and measures the ancilla \(A\) in the \(\{a_0, a_2, a_4\}\) basis, she steers the channel particle into a mixture of nonorthogonal states \(\{c_0, c_2, c_4\}\). If she measures in the \(\{a''_1, a''_3, a''_5\}\) basis, she steers the channel particle into a mixture of nonorthogonal states \(\{c_1, c_3, c_5\}\).

It follows that Alice can implement the EPR cheating strategy without performing any unitary transformation — she simply entangles the channel particle with a suitable ancilla particle and performs one of two measurements at the opening stage, depending on her commitment. This shows that the unitary transformation required by the theorem is not in fact required. If a cheating strategy is possible in which Alice, at the opening stage, either makes a measurement on an entangled state for the 0-commitment, or transforms this entangled state to a different state by a local unitary transformation in her Hilbert space and then makes a measurement on the transformed state for the 1-commitment, then an equally good cheating strategy is available in which Alice prepares one entangled state for both commitments, and measures in two alternative bases at the opening stage, depending on her commitment.
A Final Worry Laid to Rest

The heart of the mathematical proof is the Schmidt decomposition theorem. But the essential conceptual insight is the possibility of enlarging the Hilbert space and implementing an EPR strategy without detection.

This raises the following question: Suppose Bob cannot cheat because \(W_B(0) = W_B(1) \), so by the theorem there exists a unitary transformation \(U \) in \(\mathcal{H}_A \) that will transform \(|0\rangle \) to \(|1\rangle \). Could there be a protocol in which Alice also cannot cheat because, although there exists a suitable unitary transformation \(U \), she cannot know what unitary transformation to apply? This is indeed the case, but only if \(U \) depends on Bob’s operations, which are unknown to Alice. But then Bob would have to actually make a definite choice or obtain a definite outcome in a measurement, and he could always avoid doing so without detection by applying an EPR strategy.

This raises a further question: How do we know that following an EPR strategy is never disadvantageous to the cheater? If so, Bob might choose to avoid an EPR strategy in a certain situation because it would be disadvantageous to him. Could there be a bit commitment protocol where the application of an EPR strategy by Bob at a certain stage of the protocol would give Alice the advantage, rather than Bob, while conforming to the protocol would ensure that neither party could cheat? If there were such a protocol, then Bob would, in effect, be forced to conform to the protocol and avoid the EPR strategy, and unconditionally secure bit commitment would be possible.

In fact, the impossibility of such a protocol follows from the theorem (see [Bub, 2001a]). Suppose there were such a protocol. That is, suppose that if Bob applies an EPR strategy then \(W_B(0) = W_B(1) \), so by the theorem there exists a unitary transformation \(U \) in Alice’s Hilbert space that will transform \(|0\rangle \) to \(|1\rangle \). Alice must know this \(U \) because it is uniquely determined by Bob’s deviation from the protocol according to an EPR strategy that keeps all disjunctions at the quantum level as linear superpositions. Suppose also that if, instead, Bob is honest and follows the protocol (so that there is a definite choice for every disjunction over possible operations or possible measurement outcomes), then \(W_B(0) = W_B(1) \), but the unitary transformation in Alice’s Hilbert space that allows her to transform \(|0\rangle \) to \(|1\rangle \) depends on Bob’s choices or measurement outcomes, which are unknown to Alice.

The point to note is that the information available in Alice’s Hilbert space must be the same whether Bob follows the protocol and makes determinate choices and obtains determinate measurement outcomes before Alice applies the unitary transformation \(U \) that transforms \(|0\rangle \) to \(|1\rangle \), or whether he deviates from the protocol via an EPR strategy in which he implements corresponding entanglements with his ancilllas to keep choices and measurement outcomes at the quantum level before Alice applies the transformation \(U \), and only makes these choices and measurement outcomes definite at the final stage of the protocol by measuring his ancilllas. There can be no difference for Alice because Bob’s measurements on his ancilllas and
any measurements or operations that Alice might perform take place in different Hilbert spaces, so the operations commute. If Alice’s density operator (obtained by tracing over Bob’s ancillas), which characterizes the statistics of measurements that Alice can perform in her part of the universe, were different depending on whether or not Bob actually carried out the required measurements, as opposed to keeping the alternatives at the quantum level by implementing corresponding entanglements with ancillas, then it would be possible to use this difference to signal superluminally. Actual measurements by Bob on his ancillas that selected alternatives in the entanglements as determinate would instantaneously alter the information available in Alice’s part of the universe.

It follows that in the hypothetical bit commitment protocol we are considering, the unitary transformation \(U \) in Alice’s Hilbert space that transforms \(|0\rangle \) to \(|1\rangle \) must be the same transformation in the honest scenario as in the cheating scenario. But we are assuming that the transformation in the honest scenario is unknown to Alice and depends on Bob’s measurement outcomes, while the transformation in the cheating scenario is unique and known to Alice. So there can be no such protocol: the deviation from the protocol by an EPR strategy can never place Bob in a worse position than following the protocol honestly.

The argument can be put formally in terms of the theorem as follows: The cheating scenario produces one of two alternative pure states \(|0\rangle_c \) or \(|1\rangle_c \) in \(\mathcal{H}_A \otimes \mathcal{H}_B \) (‘c’ for ‘cheating strategy’). Since the reduced density operators in \(\mathcal{H}_B \):

\[
W_B^c(0) = Tr_A |0\rangle \langle 0|_c
\]

(205) \[
W_B^c(1) = Tr_A |1\rangle \langle 1|_c
\]

are required by assumption to be the same:

(206) \[
W_B^c(0) = W_B^c(1)
\]

the states \(|0\rangle_c \) and \(|1\rangle_c \) can be expressed in biorthogonal decomposition as:

(207) \[
|0\rangle_c = \sum_i \sqrt{p_i} |a_i\rangle \langle b_i|
\]

where the reduced density operators in \(\mathcal{H}_A \):

(208) \[
W_A^c(0) = Tr_B |0\rangle \langle 0|_c = \sum_i p_i |a_i\rangle \langle a_i|
\]

(209) \[
W_A^c(0) \neq W_A^c(1)
\]

are different:
It follows that there exists a unitary operator \(U_c \in \mathcal{H}_A \) defined by the spectral representations of \(W_A^{(c)}(0) \) and \(W_A^{(c)}(1) \):

\[
(210) \{ |a_i\rangle \} \xrightarrow{U_c} \{ |a'_i\rangle \}
\]
such that:

\[
(211) |0\rangle_c \xrightarrow{U_c} |1\rangle_c
\]

The honest scenario produces one of two alternative pure states \(|0\rangle_h \) and \(|1\rangle_h \) in \(\mathcal{H}_A \otimes \mathcal{H}_B \) (‘\(h \)’ for ‘honest’), where the pair \(\{ |0\rangle_h, |1\rangle_h \} \) depends on Bob’s choices and the outcomes of his measurements.

By assumption, as in the cheating scenario, the reduced density operators \(W_B^{(h)}(0) \) and \(W_B^{(h)}(1) \) in \(\mathcal{H}_B \) are the same:

\[
(212) W_B^{(h)}(0) = W_B^{(h)}(1)
\]

which entails the existence of a unitary operator \(U_h \in \mathcal{H}_A \) such that:

\[
(213) |0\rangle_h \xrightarrow{U_h} |1\rangle_h
\]

where \(U_h \) depends on Bob’s choices and measurement outcomes.

Now, the difference between the honest scenario and the cheating scenario is undetectable in \(\mathcal{H}_A \), which means that the reduced density operators in \(\mathcal{H}_A \) are the same in the honest scenario as in the cheating scenario:

\[
W_A^{(h)}(0) = W_A^{(c)}(0) \\
W_A^{(h)}(1) = W_A^{(c)}(1)
\]

Since \(U_h \) is defined by the spectral representations of \(W_A^{(h)}(0) \) and \(W_A^{(h)}(1) \), it follows that \(U_h = U_c \). But we are assuming that \(U_h \) depends on Bob’s choices and measurement outcomes, while \(U_c \) is uniquely defined by Bob’s EPR strategy, in which there are no determinate choices or measurement outcomes. Conclusion: there can be no bit commitment protocol in which neither Alice nor Bob can cheat if Bob honestly follows the protocol, but Alice can cheat if Bob deviates from the protocol via an EPR strategy. If neither Bob nor Alice can cheat in the honest scenario, then Bob and not Alice must be able to cheat in the cheating scenario.

A similar argument rules out a protocol in which neither party can cheat if Bob is honest (as above), but if Bob follows an EPR strategy, then \(W_B(0) \approx W_B(1) \), so Bob has some probability of cheating successfully, but Alice has a greater probability of cheating successfully than Bob. Again, the unitary transformation \(U_c \) that would allow Alice to cheat with a certain probability of success if Bob followed an EPR strategy would also have to allow Alice to cheat successfully if Bob were honest. But the supposition is that Alice cannot cheat if Bob is honest, because the unitary transformation \(U_h \) in that case depends on Bob’s choices and measurement outcomes, which are unknown to Alice. It follows that there can be no such protocol.

So there is no loophole in the proof of the theorem. Unconditionally secure quantum bit commitment (in the sense of the theorem) really is impossible.
6 QUANTUM COMPUTATION

6.1 The Church-Turing Thesis and Computational Complexity

The classical theory of computation concerns the question of what can be computed, and how efficiently.

Various formal notions of computability by Alonzo Church, Kurt Gödel, and others can all be shown to be equivalent to Alan Turing's notion of computability by a Turing machine (see, e.g., [Lewis and Papadimitriou, 1981]). A Turing machine is an abstract computational device that can be in one of a finite set of possible states. It has a potentially infinite tape of consecutive cells to store information (0, 1, or blank in each cell) and a movable tape head that reads the information in a cell. Depending on the symbol in a cell and the state of the machine, the tape overwrites the symbol, changes the state, and moves one cell to the right or the left until it finally halts at the completion of the computation. A program for a Turing machine T (e.g., a program that executes a particular algorithm for finding the prime factors of an integer) is a finite string of symbols — which can be expressed as a binary number $b(T)$ — indicating, for each state and each symbol, a new state, new symbol, and head displacement. Turing showed that there exists a universal Turing machine U that can simulate the program of any Turing machine T with at most a polynomial slow-down, i.e., if we initialize U with $b(T)$ and the input to T, then U performs the same computation as T, where the number of steps taken by U to simulate each step of T is a polynomial function of $b(T)$. The Church-Turing thesis is the proposal to identify the class of computable functions with the class of functions computable by a universal Turing machine. Equivalently, one could formulate the Church-Turing thesis in terms of decision problems, which have yes-or-no answers (e.g., the problem of determining whether a given number is a prime number).

Intuitively, some computations are harder than others, and some algorithms take more time than others. The computational complexity of an algorithm is measured by the number of steps required by a Turing machine to run through the algorithm. A decision problem is said to be in complexity class P, hence easy or tractable if there exists an algorithm for solving the problem in polynomial time, i.e., in a number of steps that is a polynomial function of the size n of the input (the number of bits required to store the input). A problem is said to be hard or intractable if there does not exist a polynomial-time algorithm for solving the problem. A problem is in complexity class EXP if the most efficient algorithm requires a number of steps that is an exponential function of the size n of the input. The number of steps here refers to the worst-case running time, τ, which is of the order $\mathcal{O}(n^k)$ for a polynomial-time algorithm and of the order $\mathcal{O}(2^n)$ for an exponential-time algorithm.

Note that an exponential-time algorithm could be more efficient than a polynomial-time algorithm for some range of input sizes, so the above terminology should be understood with caution. Consider the following example (taken from [Barenco,
1998, 145]): $\tau_P(n) = 10^{-23}n^{1000} + 10^{23}/n \approx O(n^{1000})$ because, for sufficiently large n, the polynomial term dominates (i.e., $\tau_P(n) < cn^{1000}$ for a fixed factor c), and $\tau_E(n) = 10^{23}n^{1000} + 10^{-23}2^n \approx O(2^n)$ because, for sufficiently large n, the exponential term dominates (i.e., $\tau_E(n) < c2^n$ for a fixed factor c). But for small enough values of n, $\tau_E(n) < \tau_P(n)$.

A Turing machine as defined above is a deterministic machine. A nondeterministic or probabilistic Turing machine makes a random choice between multiple transitions (to a new symbol, new state, and head displacement) for each symbol and each state. For each sequence of choices, the sequence of transitions corresponds to a sequence of steps executed by a deterministic Turing machine. If any of these machines halts, the computation is regarded as completed. Evidently, a nondeterministic Turing machine cannot compute a function that is not computable by a deterministic Turing machine, but it is believed (but not proved) that certain problems can be solved more efficiently by nondeterministic Turing machines than by any deterministic Turing machine. The complexity class \textbf{NP} is the class of problems that can be solved in polynomial time by a nondeterministic Turing machine. This is equivalent to the class of problems for which proposed solutions can be verified in polynomial time by a deterministic Turing machine. For example, it is believed (but not proved) that the problem of factoring an integer into its prime factors is a 'hard' problem: there is no known polynomial-time algorithm for this problem. However, the problem of checking whether a candidate factor of an integer is indeed a factor can be solved in polynomial time, so factorizability is an \textbf{NP} problem.

Clearly $\textbf{P} \subseteq \textbf{NP}$, but it is an open problem in complexity theory whether $\textbf{P} = \textbf{NP}$. An \textbf{NP} problem is said to be \textbf{NP}-complete if every \textbf{NP} problem can be shown to have a solution with a number of steps that is a polynomial function of the number of steps required to solve the \textbf{NP}-complete problem. So if an \textbf{NP}-complete problem can be solved in polynomial time, then all \textbf{NP} problems can be solved in polynomial time, and $\textbf{P} = \textbf{NP}$. The problem of determining whether a Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ is satisfiable (i.e., whether there is a set of input values for which the function takes the value 1, or equivalently whether there is an assignment of truth values to the atomic sentences of a compound sentence of Boolean logic under which the compound sentence comes out true) is an \textbf{NP}-complete problem. Factorizability is an \textbf{NP} problem that is not known to be \textbf{NP}-complete.

Since a Turing machine can simulate any classical computing device with at most a polynomial slow-down, the complexity classes are the same for any model of computation. For example, a circuit computer computes the value of a function by transforming data stored in an input register, representing the input to the function, via Boolean circuits constructed of elementary Boolean gates connected by wires, to data in an output register representing the value of the function computed. The elementary Boolean gates are 1-bit gates (such as the NOT gate, which transforms 0 to 1, and conversely) and 2-bit gates (such as the AND gate, which takes two input bits to 1 if and only if they are both 1, otherwise to 0),
and it can be shown that a combination of such gates forms a 'universal set' that suffices for any transformation of \(n \) bits. In fact, it turns out that one of the sixteen possible 2-bit Boolean gates, the NAND gate (or NOT AND gate), which takes two input bits to 0 of and only if they are both 1, forms a universal set by itself.

In a circuit model of a quantum computer, the registers store qubits, which are then manipulated by elementary unitary gates. It can be shown (see [Nielsen and Chuang, 2000, 188]) that a set of single-qubit and two-qubit unitary gates — the CNOT gate, the Hadamard gate, the phase gate, and the \(\pi/8 \) gate — forms a universal set, in the sense that any unitary transformation of \(n \) qubits can be approximated to arbitrary accuracy by a quantum circuit consisting of these gates connected in some combination. The CNOT gate ('C' for 'controlled') has two input qubits, a 'control' qubit and a 'target' qubit. The gate functions so as to flip the target qubit if and only if the control qubit is \(|1\rangle \). The remaining three gates are single-qubit gates. The Hadamard gate transforms \(|0\rangle \) to \((|0\rangle + |1\rangle)/\sqrt{2} \) and \(|1\rangle \) to \((|0\rangle - |1\rangle)/\sqrt{2} \) and is sometimes referred to as the 'square root of NOT' gate because two successive applications transforms \(|0\rangle \) to \(|1\rangle \), and conversely. The phase gate leaves \(|0\rangle \) unchanged and transforms \(|1\rangle \) to \(i|1\rangle \). The \(\pi/8 \) gate leaves \(|0\rangle \) unchanged and transforms \(|1\rangle \) to \(e^{i\pi/4}|1\rangle \). (See [Nielsen and Chuang, 2000, 174] for a discussion and why the \(\pi/8 \) gate is so named.)

There are other models of quantum computation. In the 'cluster state' or 'one-way' quantum computer of Raussendorf and Briegel [2001b; 2001a], a fixed multi-qubit entangled state (called a 'cluster state'), independent of the computation, is prepared. Then a sequence of single-qubit measurements is performed on this state, where the choice of what observables to measure depends on the outcomes of the previous measurements. No unitary transformations are involved. Remarkably, it can be shown that any quantum circuit of unitary gates and measurements can be simulated by a cluster state computer with similar resources of qubits and time (see [Jozsa, 2005; Nielsen, 2003; Nielsen, 2005]).

The interesting question is whether a quantum computer can perform computational tasks that are not possible for a Turing machine, or perform such tasks more efficiently than any Turing machine. Since a Turing machine is defined by its program, and a program can be specified by a finite set of symbols, there are only countably many Turing machines. There are uncountably many functions on the natural numbers, so there are uncountably many uncomputable functions, i.e., functions that are not computable by any Turing machine. A quantum computer cannot compute a function that is not Turing-computable, because a Turing machine can simulate (albeit inefficiently, with an exponential slow-down [Feynman, 1982]) the dynamical evolution of any system, classical or quantum, with arbitrary accuracy. But there are computational tasks that a quantum computer can perform by exploiting entanglement that are impossible for any Turing machine. Recall the discussion of Bell's counterargument to the EPR argument in §3.1: a quantum computer, but no classical computer, can perform the task of rapidly producing pairs of values (0 or 1) for pairs of input angles at different locations,
with correlations that violate Bell's inequality, where the response time is less than the time taken by light to travel between the locations.

The current interest in quantum computers concerns the question of whether a quantum computer can compute certain Turing-computable functions more efficiently than any Turing machine. In the following section, I discuss quantum algorithms that achieve an exponential speed-up over any classical algorithm, or an exponential speed-up over any known classical algorithm. The most spectacular of these is Shor's factorization algorithm, and a related algorithm for solving the discrete log problem.13

The factorization algorithm has an important practical application to cryptography. Public-key distribution protocols such as RSA [Rivest et al., 1978] (widely used in commercial transactions over the internet, transactions between banks and financial institutions, etc.) rely on factoring being a 'hard' problem. (Preskill [2005] notes that currently the 65-digit factors of a 130-digit integer can be found in about a month using a network of hundreds of work stations implementing the best known classical factoring algorithm (the 'number sieve algorithm'). He estimates that factoring a 400-digit integer would take about 10^{10} years, which is the age of the universe.) To see the idea behind the RSA protocol, suppose Alice wishes to send a secret message to Bob. Bob's public key consists of two large integers, s and c. Alice encrypts the message m (in the form of a binary number) as $e = m^s \mod c$ and sends the encrypted message to Bob. Bob decrypts the message as $e^t \mod c$ where t is an integer known only to Bob. The integer t for which $m = e^t \mod c$ can easily be determined from s and the factors of c, but since $c = pq$ is the product of two large prime numbers known only to Bob, an eavesdropper, Eve, can read the message only if she can factor c into its prime factors. The cleverness of the scheme resides in the fact that no secret key needs to be distributed between Alice and Bob: Bob's key $\{s, c\}$ is public and allows anyone to send encrypted messages to Bob. If a quantum computer could be constructed that implemented Shor's algorithm, key distribution protocols that rely on the difficulty of factoring very large numbers would be insecure.

6.2 Quantum Algorithms

In the following three sections, I look at the information-processing involved in Deutsch's XOR algorithm [1985], Simon's period-finding algorithm [1994; 1997], and Shor's factorization algorithm [1994; 1997] in terms of the difference between the Boolean logic underlying a classical computation and the non-Boolean logic represented by the projective geometry of Hilbert space, in which the subspace structure of Hilbert space replaces the set-theoretic structure of classical logic. The three algorithms all turn out to involve a similar geometric formulation.

Basically, all three algorithms involve the determination of a global property of a function, i.e., a disjunctive property. The disjunction is represented as a sub-

13The discrete log of x with respect to a given prime integer p and an integer q coprime to p is the integer r such that $q^r = x \mod p$. See [Nielsen and Chuang, 2000, 238] for a discussion.
space in an appropriate Hilbert space, and alternative possible disjunctions turn out to be represented as orthogonal subspaces, except for intersections or overlaps. The true disjunction is determined as the subspace containing the state vector via a measurement. The algorithm generally has to be run several times because the state might be found in the overlap region. The essential feature of these quantum computations is that the true disjunction is distinguished from alternative disjunctions without determining the truth values of the disjuncts. In a classical computation, distinguishing the true disjunction would be impossible without the prior determination of the truth values of the disjuncts. More generally, a quantum computer computes a global property of a function without computing information that is redundant quantum mechanically, but essential for a classical computation of the global property.

There are other quantum algorithms besides these three, e.g., Grover's sorting algorithm [1997] which achieves a quadratic speed-up over any classical algorithm. For a discussion, see [Nielsen and Chuang, 2000], [Jozsa, 1999].

Deutsch's XOR Algorithm and the Deutsch-Jozsa Algorithm

Let \(B = \{0, 1\} \) be a Boolean algebra (or the additive group of integers mod 2). In Deutsch's XOR problem [1985], we are given a 'black box' or oracle that computes a function \(f : B \to B \) and we are required to determine whether the function is 'constant' (takes the same value for both inputs) or 'balanced' (takes a different value for each input). Classically, the only way to do this would be to consult the oracle twice, for the input values 0 and 1, and compare the outputs.

In a quantum computation of the Boolean function, a unitary transformation \(U_f : |x\rangle|y\rangle \to |x\rangle|y \oplus f(x)\rangle \) corresponding to the 'black box' correlates input values with corresponding output values. The computation proceeds as follows: The input and output registers are 1-qubit registers initialized to the state \(|0\rangle|0\rangle \) in a standard basis. A Hadamard transformation is applied to the input register, yielding a linear superposition of states corresponding to the two possible input values 0 and 1, and the transformation \(U_f \) is then applied to both registers, yielding the transitions:

\[
egin{align*}
(215) \quad |0\rangle|0\rangle \xrightarrow{H} \quad & \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle \\
(216) \quad & \xrightarrow{U_f} \frac{1}{\sqrt{2}}(|0\rangle|f(0)\rangle + |1\rangle|f(1)\rangle)
\end{align*}
\]

If the function is constant, the final composite state of both registers is one of

\(^{14}\)Note that two quantum registers are required to compute functions that are not 1-1 by a unitary transformation. Different input values, \(x \) and \(y \), to a function \(f \) are represented by orthogonal states \(|x\rangle, |y\rangle \). So if \(f(x) = f(y) \) for some \(x \neq y \), the transformation \(W_f : |x\rangle \to |f(x)\rangle \) could not be unitary, because the orthogonal states \(|x\rangle, |y\rangle \) would have to be mapped onto the same state by \(W_f \). The ability of unitary transformations, which are reversible, to compute irreversible functions is achieved by keeping a record of the input for each output value of the function.
the two orthogonal states:

\[
(217) |c_1\rangle = \frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|0\rangle)
\]

\[
(218) |c_2\rangle = \frac{1}{\sqrt{2}}(|0\rangle|1\rangle + |1\rangle|1\rangle)
\]

If the function is balanced, the final composite state is one of the two orthogonal states:

\[
(219) |b_1\rangle = \frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle)
\]

\[
(220) |b_2\rangle = \frac{1}{\sqrt{2}}(|0\rangle|1\rangle + |1\rangle|0\rangle)
\]

The states \(|c_1\rangle, |c_2\rangle\) and \(|b_1\rangle, |b_2\rangle\) span two planes \(P_c, P_b\) in \(\mathcal{H}^2 \otimes \mathcal{H}^2\), represented by the projection operators:

\[
(221) P_c = P_{|c_1\rangle + |c_2\rangle}
\]

\[
(222) P_b = P_{|b_1\rangle + |b_2\rangle}
\]

These planes are orthogonal, except for an intersection, so their projection operators commute. The intersection is the line (ray) spanned by the vector\(^{15}\):

\[
(223) \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|c_1\rangle + |c_2\rangle) = \frac{1}{\sqrt{2}}(|b_1\rangle + |b_2\rangle)
\]

In the ‘prime’ basis spanned by the states \(|0'\rangle = H|0\rangle, |1'\rangle = H|1\rangle\) the intersection is the state \(|0'\rangle|0'\rangle\), the ‘constant’ plane is spanned by \(|0'\rangle|0'\rangle, |0'\rangle|1'\rangle\), and the ‘balanced’ plane is spanned by \(|0'\rangle|0'\rangle, |1'\rangle|1'\rangle\). Note that:

\[
(224) |0'\rangle|1'\rangle = \frac{1}{\sqrt{2}}(|c_1\rangle - |c_2\rangle)
\]

\[
(225) |1'\rangle|1'\rangle = \frac{1}{\sqrt{2}}(|b_1\rangle - |b_2\rangle)
\]

In the usual formulation of the algorithm, to decide whether the function \(f\) is constant or balanced we measure the output register in the prime basis. If the outcome is \(0'\) (which is obtained with probability \(1/2\), whether the state ends up in the constant plane or the balanced plane), the computation is inconclusive, yielding no information about the function \(f\). If the outcome is \(1'\), then we measure the input register. If the outcome of the measurement on the input register is \(0'\), the function is constant; if it is \(1'\), the function is balanced.

Alternatively — and this will be relevant for the comparison with Simon’s algorithm and Shor’s algorithm — we could measure the observable with eigenstates \(|0'0'\rangle, |0'1'\rangle, |1'0'\rangle, |1'1'\rangle\). The final state is in the 3-dimensional subspace orthogonal to the vector \(|1'0'\rangle\), either in the constant plane or the balanced plane.

\(^{15}\)Here \(|00\rangle = |0\rangle|0\rangle\), etc.
If the state is in the constant plane, we will either obtain the outcome $0'0'$ with probability $1/2$ (since the final state is at an angle $\pi/4$ to $|0'0'><0'0'|$), in which case the computation is inconclusive, or the outcome $0'1'$ with probability $1/2$. If the state is in the balanced plane, we will again obtain the outcome $0'0'$ with probability $1/2$, in which case the computation is inconclusive, or the outcome $1'1'$ with probability $1/2$. So in either case, with probability $1/2$, we can distinguish in one run of the algorithm between the two quantum disjunctions ‘constant’ and ‘balanced’ represented by the planes:

\[
\begin{align*}
(226) \quad P_c &= P_{|0'0'><0'0'|} \\
(227) \quad P_b &= P_{|0'0'><1'1'|}
\end{align*}
\]

without finding out the truth values of the disjuncts in the computation (i.e., whether in the ‘constant’ case the function maps 0 to 0 and 1 to 0 or whether the function maps 0 to 1 and 1 to 1, and similarly in the ‘balanced’ case). Note that we could also apply a Hadamard transformation to the final states of both registers and measure in the computational basis, since $|0'0'><00\rangle \xrightarrow{H} |00\rangle$, etc.

Deutsch’s XOR algorithm was the first quantum algorithm with a demonstrated speed-up over any classical algorithm performing the same computational task. However, the algorithm has an even probability of failing, so the improvement in efficiency over a classical computation is only achieved if the algorithm succeeds, and even then is rather modest: one run of the quantum algorithm versus two runs of a classical algorithm. The following variation of Deutsch’s algorithm avoids this feature [Cleve et al., 1998].

We begin by initializing the two registers to $|0\rangle$ and $|1\rangle$, respectively (instead of to $|0\rangle$ and $|0\rangle$) and apply a Hadamard transformation to both registers, which yields the transition:

\[
(228) \quad |0\rangle|1\rangle \xrightarrow{H} \frac{|0\rangle + |1\rangle}{\sqrt{2}} |0\rangle - |1\rangle \frac{1}{\sqrt{2}}
\]

Since

\[
(229) \quad U_f|x\rangle|y\rangle = |x\rangle|y \oplus f(x)\rangle
\]

it follows that

\[
(230) \quad U_f|x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \begin{cases} |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}} & \text{if } f(x) = 0 \\ -|x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}} & \text{if } f(x) = 1 \end{cases}
\]

which can be expressed as

\[
(231) \quad U_f|x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}} = (-1)^{f(x)}|x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}}
\]
Notice that the value of the function now appears as a phase of the final state of the input register, a feature referred to as ‘phase kickback.’ For the input state $1/\sqrt{2}(|0\rangle + |1\rangle)$, we have:

$$\begin{align*}
(232) \quad U_f \frac{|0\rangle + |1\rangle}{\sqrt{2}} \frac{|0\rangle - |1\rangle}{\sqrt{2}} &= \frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}} \frac{|0\rangle - |1\rangle}{\sqrt{2}}
\end{align*}$$

which can be expressed as:

$$\begin{align*}
(233) \quad U_f \frac{|0\rangle + |1\rangle}{\sqrt{2}} \frac{|0\rangle - |1\rangle}{\sqrt{2}} &= \begin{cases}
\pm \frac{|0\rangle + |1\rangle}{\sqrt{2}} \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \pm |0\rangle |1\rangle & \text{if } f(0) = f(1) \\
\pm \frac{|0\rangle - |1\rangle}{\sqrt{2}} \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \pm |1\rangle |1\rangle & \text{if } f(0) \neq f(1)
\end{cases}
\end{align*}$$

Instead of the final state of the two registers ending up as one of two orthogonal states in the constant plane, or as one of two orthogonal states in the balanced plane, the final state now ends up as $\pm |0\rangle |1\rangle$ in the constant plane, or as $\pm |1\rangle |1\rangle$ in the balanced plane, and these states can be distinguished because they are orthogonal. So we can decide with certainty whether the function is constant or balanced after only one run of the algorithm. In fact, we can distinguish these two possibilities by simply measuring the input register in the prime basis. Note that if we perform a final Hadamard transformation on the input register (which takes $|0\rangle$ to $|0\rangle$ and $|1\rangle$ to $|1\rangle$), we can distinguish the two possibilities by measuring the input register in the computational basis. Note also that the state of the output register is unchanged: at the end of the process it is in the state $|1\rangle = H|1\rangle$ (as in (228)) and is not measured.

Deutsch’s XOR problem can be generalized to the problem (‘Deutsch’s problem’) of determining whether a Boolean function $f : B^n \rightarrow B$ is constant or whether it is balanced, where it is promised that the function is either constant or balanced. ‘Balanced’ here means that the function takes the values 0 and 1 an equal number of times, i.e., 2^{n-1} times each. The Deutsch-Jozsa algorithm [1992] decides whether f is constant or balanced in one run.

We begin by setting the input n-qubit register to the state $|0\rangle$ (an abbreviation for the state $|0 \cdots 0\rangle = |0\rangle \cdots |0\rangle$) and the output 1-qubit register to the state $|1\rangle$. We apply an n-fold Hadamard transformation to the input register and a Hadamard transformation to the output register, followed by the unitary transformation U_f to both registers, and finally an n-fold Hadamard transformation to the input register.

First note that

$$\begin{align*}
(234) \quad H|x\rangle &= \frac{1}{\sqrt{2}} \sum_{y \in \{0, 1\}} (-1)^{x \cdot y} |y\rangle
\end{align*}$$

so

$$\begin{align*}
(235) \quad H^\otimes n|x_1, \ldots, x_n\rangle &= \frac{1}{\sqrt{2^n}} \sum_{y_1, \ldots, y_n} (-1)^{x_1 y_1 + \cdots + x_n y_n} |y_1, \ldots, y_n\rangle
\end{align*}$$
This can be expressed as:

\[(236)\ H^\otimes n |x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}} (-1)^{x \cdot y} |y\rangle\]

where \(x \cdot y\) is the bitwise inner product of \(x\) and \(y\), mod 2.

The unitary transformations (Hadamard transformation, \(U_f\)) yield:

\[(237)\ |0\rangle^\otimes n |1\rangle \xrightarrow{H} \sum_{x \in \{0,1\}^n} \frac{|x\rangle |0\rangle - |1\rangle}{\sqrt{2}}\]

\[(238)\ U_f \sum_{x} (-1)^{f(x)} \frac{|x\rangle |0\rangle - |1\rangle}{\sqrt{2}}\]

\[(239)\ H \sum_{y} \sum_{x} \frac{(-1)^{x \cdot y + f(x)} |y\rangle |0\rangle - |1\rangle}{\sqrt{2^n} \sqrt{2^n} \sqrt{2}}\]

Now consider the state of the input register:

\[(240)\ \sum_{y} \sum_{x} \frac{(-1)^{x \cdot y + f(x)}}{2^n} |y\rangle = \sum_{x} \frac{(-1)^{f(x)}}{2^n} |0 \ldots 0\rangle + \ldots\]

Note that the coefficient (amplitude) of the state \(|0 \ldots 0\rangle\) in the linear superposition (238) is \(\sum_{x} \frac{(-1)^{f(x)}}{2^n}\). If \(f\) is constant, this coefficient is \(\pm 1\), so the coefficients of the other terms must all be 0. If \(f\) is balanced, \(f(x) = 0\) for half the values of \(x\) and \(f(x) = 1\) for the other half, so the positive and negative contributions to the coefficient of \(|0 \ldots 0\rangle\) cancel to 0. In other words, if \(f\) is constant, the state of the input register is \(|\pm 0 \ldots 0\rangle\); if \(f\) is balanced, the state is in the orthogonal subspace.

This is the usual way of describing how the algorithm works, which rather obscures the geometric picture. Consider, for simplicity, the case \(n = 2\). After the transformation \(U_f\), but before the final Hadamard transformation, the state of the input register is:

\[(241)\ \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle)\]

if the function is constant, or a state of the form:

\[(242)\ \frac{1}{2} (|\pm 00\rangle \pm |01\rangle \pm |10\rangle \pm |11\rangle)\]

if the function is balanced, where two of the coefficients are \(+1\) and two of the coefficients are \(-1\). Evidently, there are three (distinct) mutually orthogonal such balanced states, and they are all orthogonal to the constant state. So the three balanced states lie in a 3-dimensional subspace orthogonal to the constant state and can therefore be distinguished from the constant state. The final Hadamard transformation transforms the constant state:

\[(243)\ \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) \xrightarrow{H} \pm |00\rangle\]
and the three balanced states to states in the 3-dimensional subspace orthogonal to $|00\rangle$. So to decide whether the function is constant or balanced we need only measure the input register and check whether it is in the state $|00\rangle$.

Simon's Algorithm

The problem here is to find the period r of a periodic function $f : B^n \rightarrow B^n$, i.e., a Boolean function for which

$$f(x_i) = f(x_j) \text{ if and only if } x_j = x_i \oplus r,$$

for all $x_i, x_j \in B^n$.

Note that since $x \oplus r \oplus r = x$, the function is 2-to-1.

Simon's algorithm solves the problem efficiently, with an exponential speed-up over any classical algorithm (see [Simon, 1994; Simon, 1997]). The algorithm proceeds as in the Deutsch-Jozsa algorithm, starting with the input and output registers in the state $|0...0\rangle |0\rangle$ in the computational basis:

$$H |0...0\rangle |0\rangle \rightarrow \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle |0\rangle \quad (245)$$

$$U_f = \frac{1}{\sqrt{2^n}} \sum_x |x\rangle |f(x)\rangle \quad (246)$$

$$= \frac{1}{\sqrt{2^{n-1}}} \sum_{x_i} |x_i\rangle + |x_i \oplus r\rangle \frac{1}{\sqrt{2}} |f(x_i)\rangle \quad (247)$$

where U_f is the unitary transformation implementing the Boolean function as:

$$U_f : |x\rangle |y\rangle \rightarrow |x\rangle |y \oplus f(x)\rangle \quad (248)$$

The usual way to see how the algorithm works is to consider what happens if we measure the output register and keep the state of the input register,

$$\frac{|x_i\rangle + |x_i \oplus r\rangle}{\sqrt{2}} \quad (249)$$

This state contains the information r, but summed with an unwanted randomly chosen offset x_i that depends on the measurement outcome. A direct measurement of the state label would yield any $x \in B^n$ equiprobably, providing no information about r.

16 The measurement of the output register here is a pedagogical device for ease of conceptualization. Only the input register is actually measured. The input register is in a mixture of states, which we can think of as the mixture associated with the distribution of outcomes obtained by measuring the output register.
We now apply a Hadamard transform:

\[
(250) \quad \frac{|x_i\rangle + |x_i \oplus r\rangle}{\sqrt{2}} \xrightarrow{H} \frac{1}{\sqrt{2^n}} \sum_{y \in \mathbb{H}^n} (-1)^{x_i \cdot y} + (-1)^{(x_i \oplus r) \cdot y} |y\rangle
\]

\[
(251) \quad = \sum_{y: r \cdot y = 0} \frac{(-1)^{x_i \cdot y}}{\sqrt{2^{n-1}}} |y\rangle
\]

where the last equality follows because terms interfere destructively if \(r \cdot y = 1 \).

Finally, we measure the input register in the computational basis and obtain a value \(y \) (equiprobably) such that \(r \cdot y = 0 \). Then we repeat the algorithm sufficiently many times to find enough values \(y_i \) so that \(r \) can be determined by solving the linear equations \(r \cdot y_1 = 0, \ldots, r \cdot y_k = 0 \).

To see what is going on geometrically, consider the case \(n = 2 \). The possible values of the period \(r \) are: 01, 10, 11, and the corresponding states of the input and output registers after the unitary transformation \(U_f \) are:

\[
r = 01 : \frac{1}{\sqrt{2}} (|00\rangle + |01\rangle)|f(00)\rangle + \frac{1}{\sqrt{2}} (|10\rangle + |11\rangle)|f(10)\rangle
\]

\[
r = 10 : \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle)|f(00)\rangle + \frac{1}{\sqrt{2}} (|01\rangle + |11\rangle)|f(01)\rangle
\]

\[
r = 11 : \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)|f(00)\rangle + \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)|f(01)\rangle
\]

Notice that this case reduces to the same geometric construction as in Deutsch’s XOR algorithm. For \(r = 10 \) the input register states are \(|c_1\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) \) or \(|c_2\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |11\rangle) \), and for \(r = 11 \) the input register states are \(|b_1\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \) or \(|b_2\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) \), depending on the outcome of the measurement of the output register. So the three possible periods are associated with three planes in \(\mathcal{H}^2 \otimes \mathcal{H}^2 \), which correspond to the constant and balanced planes in Deutsch’s XOR algorithm, and a third plane, all three planes intersecting in the line spanned by the vector \(|00\rangle \). In the prime basis obtained by applying the Hadamard transformation, the planes are as follows:

\[
r = 01 : \text{plane spanned by } |00'\rangle, |10'\rangle
\]

\[
r = 10 : \text{plane spanned by } |00'\rangle, |01'\rangle \text{ (corresponds to ‘constant’ plane)}
\]

\[
r = 11 : \text{plane spanned by } |00'\rangle, |11'\rangle \text{ (corresponds to ‘balanced’ plane)}
\]

We could simply measure the input register in the prime basis to find the period. Alternatively, we could apply a Hadamard transformation (which amounts to dropping the primes in the above representation of the \(r \)-planes) and measure in the computational basis. The three planes are orthogonal, except for their intersection in the line spanned by the vector \(|00\rangle \). The three possible periods can therefore be distinguished by measuring the observable with eigenstates \(|00\rangle, |01\rangle, |10\rangle, |11\rangle \), except when the state of the register is projected by the measurement (‘collapses’).
onto the intersection state $|00\rangle$ (which occurs with probability $1/2$). So the algorithm will generally have to be repeated until we find an outcome that is not 00.

The $n = 2$ case of Simon's algorithm reduces to Deutsch's XOR algorithm. What about other cases? We can see what happens in the general case if we consider the case $n = 3$. There are now seven possible periods: 001, 010, 011, 100, 101, 110, 111. For the period $r = 001$, the state of the two registers after the unitary transformation U_f is:

$$\frac{1}{2\sqrt{2}}(|000\rangle + |001\rangle)|f(000)\rangle + \frac{1}{2\sqrt{2}}(|010\rangle + |011\rangle)|f(010)\rangle$$

$$+ \frac{1}{2\sqrt{2}}(|100\rangle + |101\rangle)|f(100)\rangle + \frac{1}{2\sqrt{2}}(|110\rangle + |111\rangle)|f(110)\rangle$$

If we measure the output register, the input register is left in one of four states, depending on the outcome of the measurement:

$$\frac{1}{\sqrt{2}}(|000\rangle + |001\rangle) = \frac{1}{2}(|000'0'0'\rangle + |001'0'0'\rangle + |100'0'0'\rangle + |101'0'0'\rangle)$$

$$\frac{1}{\sqrt{2}}(|010\rangle + |011\rangle) = \frac{1}{2}(|000'0'0'\rangle - |001'0'0'\rangle + |100'0'0'\rangle - |101'0'0'\rangle)$$

$$\frac{1}{\sqrt{2}}(|100\rangle + |101\rangle) = \frac{1}{2}(|000'0'0'\rangle + |001'0'0'\rangle - |100'0'0'\rangle - |101'0'0'\rangle)$$

$$\frac{1}{\sqrt{2}}(|110\rangle + |111\rangle) = \frac{1}{2}(|000'0'0'\rangle - |001'0'0'\rangle - |100'0'0'\rangle + |101'0'0'\rangle)$$

Applying a Hadamard transformation amounts to dropping the primes. So if the period is $r = 001$, the state of the input register ends up in the 4-dimensional subspace of $\mathcal{H}^2 \otimes \mathcal{H}^2 \otimes \mathcal{H}^2$ spanned by the vectors: $|000\rangle, |010\rangle, |100\rangle, |110\rangle$.

A similar analysis applies to the other six possible periods. The corresponding subspaces are spanned by the following vectors:

$r = 001$: $|000\rangle, |010\rangle, |100\rangle, |110\rangle$

$r = 010$: $|000\rangle, |001\rangle, |100\rangle, |101\rangle$

$r = 011$: $|000\rangle, |011\rangle, |100\rangle, |101\rangle$

$r = 100$: $|000\rangle, |001\rangle, |010\rangle, |011\rangle$

$r = 101$: $|000\rangle, |010\rangle, |101\rangle, |111\rangle$

$r = 110$: $|000\rangle, |001\rangle, |110\rangle, |111\rangle$

$r = 111$: $|000\rangle, |011\rangle, |101\rangle, |110\rangle$
These subspaces are orthogonal except for intersections in 2-dimensional planes. The period can be found by measuring in the computational basis. Repetitions of the measurement will eventually yield sufficiently many distinct values to determine in which subspace out of the seven possibilities the final state lies. In this case \(n = 3 \), it is clear by examining the above list that two values distinct from 000 suffice to determine the subspace, and these are just the values \(y_i \) for which \(y_i \cdot r = 0 \). Note that the subspaces correspond to quantum disjunctions. So determining the period of the function by Simon’s algorithm amounts to determining which disjunction out of the seven alternative disjunctions is true, i.e., which subspace contains the state, without determining the truth values of the disjuncts.

Shor’s Algorithm

Shor’s factorization algorithm exploits the fact that the two prime factors \(p, q \) of a positive integer \(N = pq \) can be found by determining the period of a function \(f(x) = a^x \mod N \), for any \(a < N \) which is coprime to \(N \), i.e., has no common factors with \(N \) other than 1. The period \(r \) of \(f(x) \) depends on \(a \) and \(N \). Once we know the period, we can factor \(N \) if \(r \) is even and \(a^{r/2} \neq -1 \mod N \), which will be the case with probability greater than 1/2 if \(a \) is chosen randomly. (If not, we choose another value of \(a \).) The factors of \(N \) are the greatest common factors of \(a^{r/2} \pm 1 \) and \(N \), which can be found in polynomial time by the Euclidean algorithm. (For these number-theoretic results, see [Nielsen and Chuang, 2000, Appendix 4].) So the problem of factorizing a composite integer \(N \) that is the product of two primes reduces to the problem of finding the period of a certain periodic function \(f : Z_s \to Z_N \), where \(Z_n \) is the additive group of integers mod \(n \) (rather than \(B^n \), the \(n \)-fold Cartesian product of a Boolean algebra \(B \), as in Simon’s algorithm). Note that \(f(x + r) = f(x) \) if \(x + r \leq s \). The function \(f \) is periodic if \(r \) divides \(s \) exactly, otherwise it is almost periodic.

Consider first the general form of the algorithm, as it is usually formulated. We begin by initializing the input register (\(s \) qubits) to the state \(|0\rangle \in \mathcal{H}^s \) and the output register (\(N \) qubits) to the state \(|0\rangle \in \mathcal{H}^N \). An \(s \)-fold Hadamard transformation is applied to the input register, followed by the unitary transformation \(U_f \) which implements the function \(f(x) = a^x \mod N \):

\[
\begin{align*}
(252) \; |0\rangle|0\rangle & \xrightarrow{H} \frac{1}{\sqrt{s}} \sum_{x=0}^{s-1} |x\rangle|0\rangle \\
(253) & \xrightarrow{U_f} \frac{1}{\sqrt{s}} \sum_{x=0}^{s-1} |x\rangle|x + a^x \mod N\rangle
\end{align*}
\]

Then we measure the output register in the computational basis\(^\text{17} \) and obtain a

\(^{17} \)As in the discussion of Simon’s algorithm, this measurement is purely hypothetical, introduced to simplify the analysis. Only the input register is actually measured.
state of the following form for the input register:

\[
(254) \frac{1}{\sqrt{s/r}} \sum_{j=0}^{s/r-1} |x_i + jr\rangle
\]

This will be the case if \(r \) divides \(s \) exactly. The value \(x_i \) is the offset, which depends on the outcome \(i \) of the measurement of the output register. The sum is taken over the values of \(j \) for which \(f(x_i + jr) = i \). When \(r \) does not divide \(s \) exactly, the analysis is a little more complicated. For a discussion, see [Barenco, 1998, 164], [Jozsa, 1997b]. Since the state label contains the random offset, a direct measurement of the label yields no information about the period.

A discrete Fourier transform for the integers mod \(s \) is now applied to the input register, i.e., a unitary transformation:

\[
(255) |x\rangle \xrightarrow{U_{DFT_s}} \frac{1}{\sqrt{s}} \sum_{y=0}^{s-1} e^{2\pi i \frac{xy}{s}} |y\rangle, \text{ for } x \in Z_s
\]

This yields the transition:

\[
(256) \frac{1}{\sqrt{s}} \sum_{j=0}^{s/r-1} |x_i + jr\rangle \xrightarrow{U_{DFT_s}} \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{2\pi i \frac{x_i+k}{r}} |ks/r\rangle
\]

and so shifts the offset into a phase factor and inverts the period as a multiple of \(s/r \). A measurement of the input register in the computational basis yields \(c = ks/r \). The algorithm is run a number of times until a value of \(k \) coprime to \(r \) is obtained. Cancelling \(c/s \) to lowest terms then yields \(k \) and \(r \) as \(k/r \).

Since we don’t know the value of \(r \) in advance of applying the algorithm, we do not, of course, recognize when a measurement outcome yields a value of \(k \) coprime to \(r \). The idea is to run the algorithm, cancel \(c/s \) to lowest terms to obtain a candidate value for \(r \) and hence a candidate factor of \(N \), which can then be tested by division into \(N \). Even when we do obtain a value of \(k \) coprime to \(r \), some values of \(a \) will yield a period for which the method fails to yield a factor of \(N \), in which case we randomly choose a new value of \(a \) and run the algorithm with this value. The point is that all these steps are efficient, i.e., can be performed in polynomial time, and since only a polynomial number of repetitions are required to determine a factor with any given probability \(p < 1 \), the algorithm is a polynomial-time algorithm, achieving an exponential speed-up over any known classical algorithm.

To see how the algorithm functions geometrically, consider the case \(N = 15, a = 7 \) and \(s = 64 \) discussed in [Barenco, 1998, 160]. In this case, the function \(f(x) = \)
\(a^2 \mod 15 \) is:

\[
\begin{align*}
7^0 \mod 15 &= 1 \\
7^1 \mod 15 &= 7 \\
7^2 \mod 15 &= 4 \\
7^3 \mod 15 &= 13 \\
7^4 \mod 15 &= 1 \\
\vdots \\
7^{63} \mod 15 &= 13
\end{align*}
\]

and the period is evidently \(r = 4 \).\(^{18}\) After the application of the unitary transformation \(U_f = a^x \mod N \), the state of the two registers is:

\[
\begin{align*}
\frac{1}{8}(|0][1] + |1][7] + |2][4] + |3][13) \\
+ |4][1] + |5][7] + |6][4] + |7][13) \\
\vdots \\
(257) + |60][1] + |61][7] + |62][4] + |63][13])
\end{align*}
\]

This is the state (253) for \(s = 64, a = 7 \). This state can be expressed as:

\[
\begin{align*}
\frac{1}{4}(|0 + |4 + |8 + \ldots + |60))|1) \\
+ \frac{1}{4}(|1 + |5 + |9 + \ldots + |61))|7) \\
+ \frac{1}{4}(|2 + |6 + |10 + \ldots + |62))|4) \\
(258) + \frac{1}{4}(|3 + |7 + |11 + \ldots + |63))|13)
\end{align*}
\]

If we measure the output register, we obtain (equiprobably) one of four states for the input register, depending on the outcome of the measurement: 1, 7, 4, or 13:

\[
\begin{align*}
(259) \frac{1}{4}(|0 + |4 + |8 + \ldots + |60)) \\
(260) \frac{1}{4}(|1 + |5 + |9 + \ldots + |61)) \\
(261) \frac{1}{4}(|2 + |6 + |10 + \ldots + |62)) \\
(262) \frac{1}{4}(|3 + |7 + |11 + \ldots + |63))
\end{align*}
\]

These are the states (254) for values of the offset \(x_1 = 0, x_7 = 1, x_4 = 2, x_{13} = 3 \). Application of the discrete Fourier transform yields:

\[
\begin{align*}
x_1 &= 0 : \frac{1}{2}(|0] + i[16] + [32] + i[48]) \\
x_7 &= 1 : \frac{1}{2}(|0] + i[16] - [32] - i[48]) \\
x_4 &= 2 : \frac{1}{2}(|0] - i[16] + [32] - i[48]) \\
x_{13} &= 3 : \frac{1}{2}(|0] - i[16] - [32] + i[48])
\end{align*}
\]

\(^{18}\)The factors 3 and 5 of 15 are derived as the greatest common factors of \(a^{r/2} - 1 = 48 \) and 15 and \(a^{r/2} + 1 = 50 \) and 15, respectively.
which are the states in (256). (Here \(s = 64, r = 4; \sqrt{\frac{s}{r}} = 4, \frac{s}{r} - 1 = 15.\) So for the period \(r = 4, \) the state of the input register ends up in the 4-dimensional subspace spanned by the vectors \(|0\rangle, |16\rangle, |32\rangle, |48\rangle.\)

Now consider all possible even periods \(r \) for which \(f(x) = a^x \mod 15, \) where \(a \) is coprime to 15. The other possible values of \(a \) are 2, 4, 8, 11, 13, 14 and the corresponding periods turn out to be 4, 2, 4, 2, 4, 2. So we need only consider \(r = 2.\) Note that different values of \(a \) with the same period affect only the labels of the output register (e.g., for \(a = 2, \) the labels are \(|1\rangle, |2\rangle, |4\rangle, |8\rangle\) instead of \(|1\rangle, |7\rangle, |4\rangle, |13\rangle\)).

For \(r = 2, \) if we measure the output register, we will obtain (equiprobably) one of two states for the input register, depending on the outcome of the measurement (say, \(a \) or \(b \)):

\[
\begin{align*}
(263) & \quad |0\rangle + |2\rangle + |4\rangle + \ldots + |62\rangle \\
(264) & \quad |1\rangle + |3\rangle + |5\rangle + \ldots + |63\rangle
\end{align*}
\]

After the discrete Fourier transform, these states are transformed to:

\[
\begin{align*}
x_a = 0 : & \quad |0\rangle + |32\rangle \\
x_b = 1 : & \quad |0\rangle - |32\rangle
\end{align*}
\]

In this case, the 2-dimensional subspace \(\mathcal{V}_{r=2} \) spanned by \(|0\rangle, |32\rangle\) for \(r = 2 \) is included in the 4-dimensional subspace \(\mathcal{V}_{r=4} \) for \(r = 4. \) A measurement can distinguish \(r = 4 \) from \(r = 2 \) reliably, i.e., whether the final state of the input register is in \(\mathcal{V}_{r=4} \) or \(\mathcal{V}_{r=2}, \) only if the final state is in \(\mathcal{V}_{r=4} - \mathcal{V}_{r=2}, \) the part of \(\mathcal{V}_{r=4} \) orthogonal to \(\mathcal{V}_{r=2}. \) What happens if the final state ends up in \(\mathcal{V}_{r=2}? \)

Shor's algorithm works as a randomized algorithm. As mentioned above, it produces a candidate value for the period \(r \) and hence a candidate factor of \(N, \) which can be tested (in polynomial time) by division into \(N. \) A measurement of the input register in the computational basis yields an outcome \(c = ks/r. \) The value of \(k \) is chosen equiprobably by the measurement of the output register. The procedure is to repeat the algorithm until the outcome yields a value of \(k \) coprime to \(r, \) in which case canceling \(c/s \) to lowest terms yields \(k \) and \(r \) as \(k/r. \)

For example, suppose we choose \(a = 7, \) in which case (unknown to us) \(r = 4. \) The values of \(k \) coprime to \(r \) are \(k = 1 \) and \(k = 3 \) (this is also unknown to us, because \(k \) depends on the value of \(r. \)) Then \(c/s \) cancelled to lowest terms is \(1/4 \) and \(3/4, \) respectively, both of which yield the correct period. From the geometrical perspective, these values of \(k \) correspond to finding the state after measurement in the computational basis to be \(|16\rangle \) or \(|48\rangle, \) both of which do distinguish \(\mathcal{V}_{r=4} \) from \(\mathcal{V}_{r=2}. \)

Suppose we choose a value of \(a \) with period \(r = 2 \) and find the value \(c = 32. \) The only value of \(k \) coprime to \(r \) is \(k = 1. \) Then \(c/s \) cancelled to lowest terms is \(1/2, \) which yields the correct period, and hence the correct factors of \(N. \) But \(c = 32 \)

\footnote{Every value of \(a \) except \(a = 14 \) yields the correct factors for 15. For \(a = 14, \) the method fails: \(r = 2, \) so \(a^{\frac{r}{2}} = -1 \mod 15. \)}
could also be obtained for $a = 7$, $r = 4$, and $k = 2$, which does not yield the correct period, and hence does not yield the correct factors of N. Putting it geometrically: the value $k = 1$ for $r = 2$ corresponds to the same state, $|32\rangle$, as the value $k = 2$ for $r = 4$. Once we obtain the candidate period $r = 2$ (by cancelling $c/s = 32/64$ to lowest terms), we calculate the factors of N as the greatest common factors of $a \pm 1$ and N and test these by division into N. If $a = 7$, these calculated factors will be incorrect. If $a = 2$, say, the factors calculated in this way will be correct.

We see that, with the added information provided by the outcome of a test division of a candidate factor into N, Shor's randomized algorithm again amounts to determining which disjunction among alternative disjunctions is true, i.e., which subspace contains the state, without determining the truth values of the disjuncts.

6.3 Where Does the Speed-Up Come From?

What, precisely, is the feature of a quantum computer responsible for the phenomenal efficiency over a classical computer? In the case of Simon's algorithm, the speed-up is exponential over any classical algorithm; in the case of Shor's algorithm, the speed-up is exponential over any known classical algorithm.

Steane [1998] remarks:

The period finding algorithm appears at first sight like a conjuring trick: it is not quite clear how the quantum computer managed to produce the period like a rabbit out of a hat. ...I would say that the most important features are contained in $|\psi\rangle = \frac{1}{\sqrt{2}} \sum_{x=0}^{r-1} |x\rangle |f(x)\rangle$. They are not only the quantum parallelism already mentioned, but also quantum entanglement, and, finally, quantum interference. Each value of $f(x)$ retains a link with the value of x which produced it, through entanglement of the x and y registers in $|\psi\rangle$. The 'magic' happens when a measurement of the y register produces the special state $\frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} |x_i + j\rangle$ in the x-register, and it is quantum entanglement which permits this (see also [Jozsa, 1997a]). The final Fourier transform can be regarded as an interference between the various superposed states in the x-register (compare with the action of a diffraction grating).

Interference effects can be used for computational purposes with classical light fields, or water waves for that matter, so interference is not in itself the essentially quantum feature. Rather, the exponentially large number of interfering states, and the entanglement, are features which do not arise in classical systems.

Jozsa points out [1997a] that the state space (phase space) of a composite classical system is the Cartesian product of the state spaces of its subsystems, while the state space of a composite quantum system is the tensor product of the state spaces of its subsystems. For n qubits, the quantum state space has 2^n dimensions. So the information required to represent a general state increases exponentially with n: even if we restrict the specification of the amplitudes to numbers of finite precision, a superposition will in general have $O(2^n)$ components. For a classical composite system of n two-level subsystems, the number of possible states grows exponentially with n, but the information required to represent a general state is just n times the information required to represent a single two-level system, i.e., the information grows only linearly with n because the state of a composite system is just a product state.
More formally, Jozsa and Linden [2002] have shown that a quantum algorithm operating on pure states can achieve an exponential speed-up over classical algorithms only if the quantum algorithm involves multi-partite entanglement that increases unboundedly with the input size. Similarly, Vidal [2003] has shown that a classical computer can simulate the evolution of a pure state of \(n \) qubits with computational resources that grow linearly with \(n \) and exponentially in multi-partite entanglement.

The essential feature of the quantum computations discussed above in §6.2 is the selection of a disjunction, representing a global property of a function, among alternative possible disjunctions without computing the truth values of the disjuncts, which is redundant information in a quantum computation but essential information classically. Note that a quantum disjunction is represented by a subspace of entangled states in the tensor product Hilbert space of the input and output registers. This is analogous to the procedure involved in the key observation underlying the proof of the quantum bit commitment theorem discussed in §5.2. The series of operations described by equations (167)–(172), in which the channel particle is entangled with ancilla systems and the ancillas are subsequently measured, effectively constitute a quantum computation.

The first stage of a quantum algorithm involves the creation of a state in which every input value to the function is correlated with a corresponding output value. This is referred to as 'quantum parallelism' and is sometimes cited as the source of the speed-up in a quantum computation. The idea is that a quantum computation is something like a massively parallel classical computation, for all possible values of a function. This appears to be Deutsch's view, with the parallel computations taking place in parallel universes. For a critique, see [Steane, 2003], who defends a view similar to that presented here. Of course, all these different values are inaccessible: a measurement in the computational basis will only yield (randomly) one correlated input-output pair. Further processing is required, including the final discrete Fourier transform for the three algorithms discussed in §6.2. It would be incorrect to attribute the efficiency of these quantum algorithms to the interference in the input register produced by the Fourier transform. The role of the Fourier transform is simply to allow a measurement in the computational basis to reveal which subspace representing the target disjunction contains the state.

One might wonder, then, why the discrete Fourier transform is even necessary. We could, of course, simply perform an equivalent measurement in a different basis. But note that a computation would have to be performed to determine this basis. This raises the question of precisely how to assess the speed-up of a quantum algorithm relative to a rival classical algorithm. What are the relevant computational steps to be counted in making this assessment for a quantum computation? Since any sequence of unitary transformations is equivalent to a single unitary transformation, and a unitary transformation followed by a measurement in a certain basis is equivalent to simply performing a measurement in a different basis, any quantum computation can always be reduced to just one step: a measurement in a particular basis!
Of course, this observation is hardly illuminating, since a computation at least as difficult as the original computation would have to be performed to determine the required basis, but it does indicate that some convention is required about what steps to count in a quantum computation. The accepted convention is to require the unitary transformations in a quantum computation to be constructed from elementary quantum gates that form a universal set (e.g., the CNOT gate, the Hadamard gate, the phase gate, and the $\pi/8$ gate discussed in §6.1) and to count each such gate as one step. In addition, all measurements are required to be performed in the computational basis, and these are counted as additional steps. The final discrete Fourier transforms in the Deutsch-Jozsa algorithm, Simon’s algorithm, and Shor’s algorithm are indispensable in transforming the state so that the algorithms can be completed by measurements in the computational basis, and it is an important feature of these algorithms that the Fourier transform can be implemented efficiently with elementary unitary gates. To claim that a quantum algorithm is exponentially faster than a classical algorithm is to claim that the number of steps counted in this way for the quantum algorithm is a polynomial function of the size of the input (the number of qubits required to store the input), while the classical algorithm involves a number of steps that increases exponentially with the size of the input (the number of bits required to store the input).

7 QUANTUM FOUNDATIONS FROM THE PERSPECTIVE OF QUANTUM INFORMATION

Does the extension of the classical theory of information to quantum states shed new light on the foundational problems of quantum mechanics underlying the Bohr-Einstein debate mentioned in §1, in particular the measurement problem? Researchers in the area of quantum information and quantum computation often suggest a positive answer to this question, with a promissory note for how the story is supposed to go. More fully worked-out (generally, rather different) positive responses have been proposed by various authors, notably Fuchs [2001b; 2002a; 2002b; 2001a] and Brukner and Zeilinger [2001; 2000]. For a very thorough analysis and critique of the Brukner-Zeilinger position, see [Timpson, 2004]. See also Hall [2000] and the response by Brukner and Zeilinger [2000]. Here I shall limit my discussion to the significance of a characterization theorem for quantum mechanics in terms of information-theoretic constraints by Clifton, Bub, and Halvorson (CBH) [2003].

7.1 The CBH Characterization Theorem

CBH showed that one can derive the basic kinematic features of a quantum description of physical systems from three fundamental information-theoretic constraints:

- the impossibility of superluminal information transfer between two physical
systems by performing measurements on one of them,

- the impossibility of perfectly broadcasting the information contained in an unknown physical state (which, for pure states, amounts to ‘no cloning’),

- the impossibility of communicating information so as to implement a bit commitment protocol with unconditional security (so that cheating is in principle excluded by the theory).

More precisely, CBH formulate these information-theoretic constraints in the general framework of C^*-algebras, which allows a mathematically abstract characterization of a physical theory that includes, as special cases, all classical mechanical theories of both wave and particle varieties, and all variations on quantum theory, including quantum field theories (plus any hybrids of these theories, such as theories with superselection rules). Within this framework, CBH show that the three information-theoretic constraints jointly entail three physical conditions that they take as definitive of what it means to be a quantum theory in the most general sense. Specifically, the information-theoretic constraints entail that:

- the algebras of observables pertaining to distinct physical systems commute (a condition usually called microcausality or, to use Summers’ term [Summers, 1990], \textit{kinematic independence}),

- any individual system’s algebra of observables is \textit{noncommutative},

- the physical world is \textit{nonlocal}, in that spacelike separated systems can occupy entangled states that persist as the systems separate.

CBH also partly demonstrated the converse derivation, leaving open a question concerning nonlocality and bit commitment. This remaining issue was later resolved by Hans Halvorson [2004], so the CBH theorem is a characterization theorem for quantum theory in terms of the three information-theoretic constraints.

Note that the C^*-algebraic framework is not restricted to the standard quantum mechanics of a system represented on a single Hilbert space with a unitary dynamics, but is general enough to cover cases of systems with an infinite number of degrees of freedom that arise in quantum field theory and the thermodynamic limit of quantum statistical mechanics (in which the number of microsystems and the volume they occupy goes to infinity, while the density defined by their ratio remains constant). The C^*-algebraic framework has even been applied to quantum field theory on curved spacetime and so is applicable to the quantum theoretical description of exotic phenomena such as Hawking radiation (black hole evaporation); see [Wald, 1984]. The Stone-von Neumann theorem, which guarantees the existence of a unique representation (up to unitary equivalence) of the canonical commutation relations for systems with a finite number of degrees of freedom, breaks down for such cases, and there will be many unitarily inequivalent representations of the canonical commutation relations.
One could, of course, consider weaker mathematical structures, but it seems that the C*-algebraic machinery suffices for all physical theories that have been found to be empirically successful to date, including phase space theories and Hilbert space theories [Landsman, 1998], and theories based on a manifold [Connes, 1994]. For further discussion of this point, see Halvorson and Bub [2005]. See also Halvorson (this vol., chap. 8), Emch (this vol., ch. 8), and Landsman (this vol., ch. 5).

A C*-algebra is essentially an abstract generalization of the structure of the algebra of operators on a Hilbert space. Technically, a (unital) C*-algebra is a Banach *-algebra over the complex numbers containing the identity, where the involution operation * and the norm are related by \(|A^*A| = \|A\|^2\). So the algebra \(\mathcal{B}(\mathcal{H})\) of all bounded operators on a Hilbert space \(\mathcal{H}\) is a C*-algebra, with * the adjoint operation and \(\|\cdot\|\) the standard operator norm.

In standard quantum theory, as discussed in §3.1, a state on \(\mathcal{B}(\mathcal{H})\) is defined by a density operator \(\rho\) on \(\mathcal{H}\) in terms of an expectation-valued functional \(\hat{\rho}(A) = \text{Tr}(\rho A)\) for all observables represented by self-adjoint operators \(A\) in \(\mathcal{B}(\mathcal{H})\). This definition of \(\hat{\rho}(A)\) in terms of \(\rho\) yields a positive normalized linear functional. So a state on a C*-algebra \(\mathcal{C}\) is defined, quite generally, as any positive normalized linear functional \(\hat{\rho} : \mathcal{C} \to \mathbb{C}\) on the algebra. Pure states can be defined by the condition that if \(\hat{\rho} = \lambda \hat{\rho}_1 + (1 - \lambda) \hat{\rho}_2\) with \(\lambda \in (0,1)\), then \(\hat{\rho} = \hat{\rho}_1 = \hat{\rho}_2\); other states are mixed. In the following, we drop the "*" in \(\hat{\rho}\), but note that a C*-algebraic state \(\rho\) is a positive linear functional on \(\mathcal{C}\), while the density operator of standard quantum mechanics is an element of \(\mathcal{C} = \mathcal{B}(\mathcal{H})\).

By Gleason's theorem [Gleason, 1957], every C*-algebraic state in this sense on a C*-algebra \(\mathcal{C} = \mathcal{B}(\mathcal{H})\) is given by a density operator on \(\mathcal{B}(\mathcal{H})\). However, because countable additivity is not presupposed by the C*-algebraic notion of state (and, therefore, Gleason's theorem does not apply in general), there can be pure states of \(\mathcal{B}(\mathcal{H})\) that are not representable by vectors in \(\mathcal{H}\). In fact, if \(A\) is any self-adjoint element of a C*-algebra \(\mathcal{A}\), and \(a \in \text{sp}(A)\), then there always exists a pure state \(\rho\) of \(\mathcal{A}\) that assigns a dispersion-free value of \(a\) to \(A\) [Kadison and Ringrose, 1997, Ex. 4.6.31]. Since this is true even when we consider a point in the continuous spectrum of a self-adjoint operator \(A\) acting on a Hilbert space, without any corresponding eigenvector, it follows that there are pure states of \(\mathcal{B}(\mathcal{H})\) in the C*-algebraic sense that cannot be vector states (nor, in fact, representable by any density operator \(\mathcal{H}\)).

As we saw in §3.1, the general evolution of a quantum system resulting from a combination of unitary interactions and selective or nonselective measurements can be described by a quantum operation, i.e., a completely positive linear map. Accordingly, a completely positive linear map \(T : \mathcal{C} \to \mathcal{C}\), where \(0 \leq T(I) \leq I\) is taken as describing the general evolution of a system represented by a C*-algebra of observables. The map or operation \(T\) is called selective if \(T(I) < I\) and nonselective if \(T(I) = I\). Recall that a yes-no measurement of some idempotent observable represented by a projection operator \(P\) is an example of a selective operation. Here, \(T(A) = PAP\) for all \(A\) in the C*-algebra \(\mathcal{C}\), and \(\rho^T\), the transformed ('collapsed') state, is the final state obtained after measuring \(P\) in the state \(\rho\) and ignoring
all elements of the ensemble that do not yield the eigenvalue 1 of \(P \) (so \(\rho^T(A) = \rho(T(A))/\rho(T(I)) \) when \(\rho(T(I)) \neq 0 \), and \(\rho^T = 0 \) otherwise). The time evolution in the Heisenberg picture induced by a unitary operator \(U \in \mathcal{C} \) is an example of a nonselective operation. Here, \(T(A) = UAU^{-1} \). Similarly, the measurement of an observable \(O \) with spectral measure \(\{P_i\} \), without selecting a particular outcome, is an example of a nonselective operation, with \(T(A) = \sum_{i=1}^{n} P_i A P_i \). As in the standard quantum theory of a system with a finite-dimensional Hilbert space (cf. Eq. (67) of §3.1), any completely positive linear map can be regarded as the restriction to a local system of a unitary map on a larger system.

A representation of a \(C^\ast \)-algebra \(\mathcal{C} \) is any mapping \(\pi : \mathcal{C} \to \mathcal{B}(\mathcal{H}) \) that preserves the linear, product, and * structure of \(\mathcal{C} \). The representation is faithful if \(\pi \) is one-to-one, in which case \(\pi(\mathcal{C}) \) is an isomorphic copy of \(\mathcal{C} \). The Gelfand-Naimark theorem says that every abstract \(C^\ast \)-algebra has a concrete faithful representation as a norm-closed *-subalgebra of \(\mathcal{B}(\mathcal{H}) \), for some appropriate Hilbert space \(\mathcal{H} \). As indicated above, in the case of systems with an infinite number of degrees of freedom (e.g., quantum field theory), there are inequivalent representations of the \(C^\ast \)-algebra of observables defined by the commutation relations.

Every classical phase space theory defines a commutative \(C^\ast \)-algebra. For example, the observables of a classical system of \(n \) particles — the real-valued continuous functions on the phase space \(\mathbb{R}^{6n} \) — can be represented as the self-adjoint elements of the \(C^\ast \)-algebra \(\mathcal{B}(\mathbb{R}^{6n}) \) of all continuous complex-valued functions \(f \) on \(\mathbb{R}^{6n} \). The phase space \(\mathbb{R}^{6n} \) is locally compact and can be made compact by adding just one point ‘at infinity’, or we can simply consider a bounded (and thus compact) subset of \(\mathbb{R}^{6n} \). The statistical states of the system are given by probability measures \(\mu \) on \(\mathbb{R}^{6n} \), and pure states, corresponding to maximally complete information about the particles, are given by the individual points of \(\mathbb{R}^{6n} \). The system’s state \(\rho \) in the \(C^\ast \)-algebraic sense is the expectation functional corresponding to \(\mu \), defined by \(\rho(f) = \int_{\mathbb{R}^{6n}} f \, d\mu \). Conversely [Kadison and Ringrose, 1997, Thm. 4.4.3], every commutative \(C^\ast \)-algebra \(\mathcal{C} \) is isomorphic to the set \(C(X) \) of all continuous complex-valued functions on a locally compact Hausdorff space \(X \) defined by the pure states of \(\mathcal{C} \). If \(\mathcal{C} \) has a multiplicative identity, the ‘phase space’ \(X \) is compact. In this ‘function representation’ of \(C \), the isomorphism maps an element \(C \in \mathcal{C} \) to the function \(\hat{C} \) (the Gelfand transformation of \(C \)) whose value at any \(\rho \) is just the (dispersion-free) value that \(\rho \) assigns to \(C \). So ‘behind’ every abstract commutative \(C^\ast \)-algebra there is a classical phase space theory defined by its function representation on the phase space \(X \). This representation theorem (and its converse) justifies characterizing a \(C^\ast \)-algebraic theory as classical just in case its algebra is commutative.

As we saw above, CBH identify quantum theories with a certain subclass of noncommutative \(C^\ast \)-algebras, where the condition of kinematic independence is satisfied by the algebras of observables of distinct systems and the states of spacelike separated systems are characterized by the sort of nonlocality associated with entanglement.
To clarify the rationale for this characterization and the significance of the information-theoretic constraints, consider a composite quantum system AB, consisting of two subsystems, A and B. For simplicity, assume the systems are indistinguishable, so their C^*-algebras \mathcal{A} and \mathcal{B} are isomorphic. The observables of the component systems A and B are represented by the self-adjoint elements of \mathcal{A} and \mathcal{B}, respectively. Let $\mathcal{A} \vee \mathcal{B}$ denote the C^*-algebra generated by \mathcal{A} and \mathcal{B}. The physical states of A, B, and AB, are given by positive normalized linear functionals on their respective algebras that encode the expectation values of all observables. To capture the idea that A and B are physically distinct systems, CBH make the assumption that any state of \mathcal{A} is compatible with any state of \mathcal{B}, i.e., for any state ρ_A of \mathcal{A} and ρ_B of \mathcal{B}, there is a state ρ of $\mathcal{A} \vee \mathcal{B}$ such that $\rho|_{\mathcal{A}} = \rho_A$ and $\rho|_{\mathcal{B}} = \rho_B$.

The sense of the ‘no superluminal information transfer via measurement’ constraint is that when Alice and Bob, say, perform local measurements, Alice’s measurements can have no influence on the statistics for the outcomes of Bob’s measurements, and conversely. That is, merely performing a local measurement cannot, in and of itself, convey any information to a physically distinct system, so that everything ‘looks the same’ to that system after the measurement operation as before, in terms of the expectation values for the outcomes of measurements. CBH show [2003, Thm. 1] that it follows from this constraint that A and B are kinematically independent systems if they are physically distinct in the above sense, i.e., every element of \mathcal{A} commutes pairwise with every element of \mathcal{B}. (More precisely, an operation T on $\mathcal{A} \vee \mathcal{B}$ conveys no information to Bob just in case $(T^*\rho)|_{\mathcal{B}} = \rho|_{\mathcal{B}}$ for all states ρ of \mathcal{B}, where T^* is the map on the states, i.e., the positive linear functionals on $\mathcal{A} \vee \mathcal{B}$, induced by T. Clearly, the kinematic independence of \mathcal{A} and \mathcal{B} entails that Alice’s local measurement operations cannot convey any information to Bob, i.e., $T(B) = \sum_{i=1}^{n} E_i^{1/2} B E_i^{1/2} = B$ for $B \in \mathcal{B}$ if T is implemented by a POVM in \mathcal{A}. CBH prove that if Alice cannot convey any information to Bob by performing local measurement operations, then \mathcal{A} and \mathcal{B} are kinematically independent.)

The ‘no broadcasting’ condition now ensures that the individual algebras \mathcal{A} and \mathcal{B} are noncommutative. Recall that for pure states, broadcasting reduces to cloning, and that in elementary quantum mechanics, neither cloning nor broadcasting is possible in general (see section 3.2). CBH show that broadcasting and cloning are always possible for classical systems, i.e., in the commutative case there is a universal broadcasting map that clones any pair of input pure states and broadcasts any pair of input mixed states [Clifton et al., 2003, Thm. 2]. Conversely, they show that if any two states can be (perfectly) broadcast, then any two pure states can be cloned; and if two pure states of a C^*-algebra can be cloned, then they must be orthogonal. So, if any two states can be broadcast, then all pure states are orthogonal, from which it follows that the algebra is commutative.

The quantum mechanical phenomenon of interference is the physical manifestation of the noncommutativity of quantum observables or, equivalently, the superposition of quantum states. So the impossibility of perfectly broadcasting the
information contained in an unknown physical state, or of cloning or copying the information in an unknown pure state, is the information-theoretic counterpart of interference.

Now, if \mathcal{A} and \mathcal{B} are noncommutative and mutually commuting, it can be shown that there are nonlocal entangled states on the C^*-algebra $\mathcal{A} \vee \mathcal{B}$ they generate (see [Landau, 1987; Summers, 1990; Bacciagaluppi, 1994], and — more relevantly here, in terms of a specification of the range of entangled states that can be guaranteed to exist — [Halvorson, 2004]). So it seems that entanglement — what Schrödinger [1935, 555] identified as ‘the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought’, as we saw in §4.1 — follows automatically in any theory with a noncommutative algebra of observables. That is, it seems that once we assume ‘no superluminal information transfer via measurement’, and ‘no broadcasting’, the class of allowable physical theories is restricted to those theories in which physical systems manifest both interference and nonlocal entanglement. But in terms of physical interpretation this conclusion is a bit too quick, since the derivation of entangled states depends on formal properties of the C^*-algebraic machinery. Moreover, we have no assurance that two systems in an entangled state will maintain their entanglement indefinitely as they separate in space, which is the case for quantum entanglement. But this is precisely what is required by the cheating strategy that thwarts secure bit commitment, since Alice will have to keep one system of such a pair and send the other system to Bob, whose degree of spatial separation from Alice is irrelevant, in principle, to the implementation of the protocol. In an information-theoretic characterization of quantum theory, the fact that entangled states of composite systems can be instantiated, and instantiated nonlocally so that the entanglement of composite system is maintained as the subsystems separate in space, should be shown to follow from some information-theoretic principle. The role of the ‘no bit commitment’ constraint is to guarantee the persistence of entanglement over distance, i.e., the existence of a certain class of nonlocal entangled states — hence it gives us nonlocality, not merely ‘holism.’

As shown in §5.2, unconditionally secure quantum bit commitment is impossible because a generalized version of the EPR cheating strategy can always be applied by introducing additional ancilla particles and enlarging the Hilbert space in a suitable way. That is, for a quantum mechanical system consisting of two (separated) subsystems represented by the C^*-algebra $\mathcal{B}(\mathcal{H}_1) \otimes \mathcal{B}(\mathcal{H}_2)$, any mixture of states on $\mathcal{B}(\mathcal{H}_2)$ can be generated from a distance by performing an appropriate generalized measurement on the system represented by $\mathcal{B}(\mathcal{H}_1)$, for an appropriate entangled state of the composite system. This is what Schrödinger called ‘remote steering’ and found so physically counterintuitive that he speculated [1936, 451] (wrongly, as it turned out) that experimental evidence would eventually show that this was simply an artefact of the theory, not instantiated in our world. He suggested that an entangled state of a composite system would almost instantaneously decay to a mixture as the component systems separated.\(^{20}\) There would still be

\(^{20}\) A similar possibility was raised and rejected by Furry [1936].
correlations between the states of the component systems, but remote steering would no longer be possible.

It seems worth noticing that the [EPR] paradox could be avoided by a very simple assumption, namely if the situation after separating were described by [the entangled state $\Psi(x, y) = \sum_k a_k g_k(x) f_k(y)$], but with the additional statement that the knowledge of the phase relations between the complex constants a_k has been entirely lost in consequence of the process of separation. This would mean that not only the parts, but the whole system, would be in the situation of a mixture, not of a pure state. It would not preclude the possibility of determining the state of the first system by suitable measurements in the second one or vice versa. But it would utterly eliminate the experimenters influence on the state of that system which he does not touch.

Schrödinger regarded the phenomenon of interference associated with noncommutativity in quantum mechanics as unproblematic, because he saw this as reflecting the fact that particles are wavelike. But he did not believe that we live in a world in which physical systems can exist nonlocally in entangled states, because such states would allow Alice to steer Bob's system into any mixture of pure states compatible with Bob's reduced density operator and he did not expect that experiments would bear this out. Of course, it was an experimental question in 1935 whether Schrödinger's conjecture was correct or not. We now know that the conjecture is false. A wealth of experimental evidence, including the confirmed violations of Bell's inequality [Aspect et al., 1981; Aspect et al., 1982] and the confirmations of quantum teleportation [Bouwmeester et al., 1997; Boschi et al., 1998; Furasaki et al., 1998; Nielsen et al., 1998], testify to this. The relevance of Schrödinger's conjecture here is this: it raises the possibility of a quantum-like world in which there is interference but no nonlocal entanglement. Can we exclude this possibility on information-theoretic grounds?

Now although unconditionally secure bit commitment is no less impossible for classical systems, in which the algebras of observables are commutative, than for quantum systems, the insecurity of a bit commitment protocol in a noncommutative setting depends on considerations entirely different from those in a classical commutative setting. As we saw in §5.2, the security of a classical bit commitment protocol is a matter of computational complexity and cannot be unconditional.

By contrast, if, as Schrödinger speculated, we lived in a world in which the algebras of observables are noncommutative but composite physical systems cannot exist in nonlocal entangled states, if Alice sends Bob one of two mixtures associated with the same density operator to establish her commitment, then she is, in effect, sending Bob evidence for the truth of an exclusive disjunction that is not based on the selection of a particular disjunct. (Bob's reduced density operator is associated ambiguously with both mixtures, and hence with the truth of the exclusive disjunction: '0 or 1'.) Noncommutativity allows the possibility of different mixtures associated with the same density operator. What thwarts the possibility
of using the ambiguity of mixtures in this way to implement an unconditionally secure bit commitment protocol is the existence of nonlocal entangled states between Alice and Bob. This allows Alice to cheat by preparing a suitable entangled state instead of one of the mixtures, where the reduced density operator for Bob is the same as that of the mixture. Alice is then able to steer Bob's systems remotely into either of the two mixtures associated with the alternative commitments at will.

So what would allow unconditionally secure bit commitment in a noncommutative theory is the absence of physically occupied nonlocal entangled states, or the spontaneous destruction of entanglement as systems separate. One can therefore take Schrödinger's remarks as relevant to the question of whether or not secure bit commitment is possible in our world. In effect, Schrödinger raised the possibility that we live in a quantum-like world in which unconditionally secure bit commitment is possible! It follows that the impossibility of unconditionally secure bit commitment entails that, for any mixed state that Alice and Bob can prepare by following some (bit commitment) protocol, there is a corresponding nonlocal entangled state that can be physically occupied by Alice's and Bob's particles and persists indefinitely as the particles move apart.

To sum up: the content of the CBH theorem is that a quantum theory — a C*-algebraic theory whose observables and states satisfy conditions of kinematic independence, noncommutativity, and nonlocality — can be characterized by three information-theoretic constraints: no superluminal communication of information via measurement, no (perfect) broadcasting, and no (unconditionally secure) bit commitment.

7.2 Quantum Mechanics as a Theory of Information

Consider Einstein's view,21 mentioned in §1, that quantum mechanics is incomplete. Essentially, Einstein based his argument for this claim on the demand that a complete physical theory should satisfy certain principles of realism (essentially, a locality principle and a separability principle), which amounts to the demand that statistical correlations between spatially separated systems should have a common causal explanation in terms of causal factors obtaining at the common origin of the systems. Roughly thirty years after the publication of the Einstein-Podolsky-Rosen paper [1935], John Bell [1964] showed that the statistical correlations of the entangled Einstein-Podolsky-Rosen state for spatially separated particles are inconsistent with any explanation in terms of a classical probability distribution over common causal factors originating at the source of the particles before they separate. But the fact that quantum mechanics allows the possibility of correlations that are not reducible to common causes is a virtue of the theory. It is precisely the nonclassical correlations of entangled states that underlie the possibility of an exponential speed-up of quantum computation over classical computation, the

21The following discussion is adapted from [Bub, 2004] and [Bub, 2005], but the argument here is developed somewhat differently.
possibility of unconditionally secure key distribution but the impossibility of unconditionally secure quantum bit commitment, and phenomena such as quantum teleportation and other nonclassical entanglement-assisted communication protocols.

While Einstein’s argument for incompleteness fails, there is another sense, also associated with entangled states, in which quantum mechanics might be said to be incomplete. In a typical (idealized) quantum mechanical measurement interaction, say an interaction in which the two possible values, 0 and 1, of an observable of a qubit in a certain quantum state become correlated with the two possible positions of a macroscopic pointer observable, \(p_0 \) and \(p_1 \), the final state is an entangled state, a linear superposition of the states \(|0\rangle|p_0\rangle \) and \(|1\rangle|p_1\rangle \) with coefficients derived from the initial quantum state of the qubit. To dramatize the problem, Schrödinger [1936] considered the case where \(|p_0\rangle \) and \(|p_1\rangle \) represent the states of a cat being alive and a cat being dead in a closed box, which is only opened by the observer some time after the measurement interaction. On the standard way of relating the quantum state of a system to what propositions about the system are determinately (definitely) true or false, and what propositions have no determinate truth value, some correlational proposition about the composite system (microsystem + cat) is true in this entangled state, but the propositions asserting that the cat is alive (and the value of the qubit observable is 0), or that the cat is dead (and the value of the qubit observable is 1), are assigned no determinate truth value. Moreover, if we assume that the quantum propositions form an algebraic structure isomorphic to the structure of subspaces of the Hilbert space of the composite system — the representational space for quantum states and observables — then it is easy to derive a formal contradiction from the assumption that the correlational proposition corresponding to the entangled state is true, and that the cat is either definitely alive or definitely dead.\(^{22}\) Schrödinger thought that it was absurd to suppose that quantum mechanics requires us to say that the cat in such a situation (a macrosystem) is neither alive nor dead (does not have a determinate macroproperty of this sort) until an observer opens the box and looks, in which case the entangled state ‘collapses’ non-linearly and stochastically, with probabilities given by the initial quantum state of the microsystem, onto a product of terms representing a definite state of the cat and a definite state of the microsystem. Einstein [1967, 39] concurred and remarked in a letter to Schrödinger: ‘If that were so then physics could only claim the interest of shopkeepers and engineers; the whole thing would be a wretched bungle.’

This is the standard ‘measurement problem’ of quantum mechanics. Admittedly, the formulation of the problem is highly idealized, but the fundamental problem arises from the way in which quantum mechanics represents correlations via entangled states and does not disappear entirely in less idealized formulations (even though the problem is somewhat altered by considering the macroscopic na-
ture of the instrument, and the rôle of the environment). (See Dickson, this vol., ch. 4, and [Bub, 1997] for further discussion.) I shall refer to this problem — the Schrödinger incompleteness of the theory — as Schrödinger’s problem. It is a problem about truth (or the instantiation of properties), as opposed to a distinct problem about probabilities.

Before formulating the probability problem, consider what was involved in the transition from classical to quantum mechanics. Quantum mechanics first appeared as Heisenberg’s matrix mechanics in 1925, following the ‘old quantum theory’, a patchwork of ad hoc modifications of classical mechanics to accommodate Planck’s quantum postulate. Essentially, Heisenberg modified the kinematics of classical mechanics by replacing certain classical dynamical variables, like position and momentum, with mathematical representatives — matrices — which do not commute. Shortly afterwards, Schrödinger developed a wave mechanical version of quantum mechanics and proved the formal equivalence of the two theories. It is common to understand the significance of the transition from classical to quantum mechanics in terms of ‘wave-particle duality’, the idea that a quantum system like an electron, unlike a classical system like a stone, manifests itself as a wave under certain circumstances and as a particle under other circumstances. This picture obscures far more than it illuminates. We can see more clearly what is going on conceptually if we consider the implications of Heisenberg’s move for the way we think about objects and their properties in the most general sense.

Heisenberg replaced the commutative algebra of dynamical variables of classical mechanics — position, momentum, angular momentum, energy, etc. — with a noncommutative algebra. Some of these dynamical variables take the values 0 and 1 only and correspond to properties. For example, we can represent the property of a particle being in a certain region of space by a dynamical variable that takes the value 1 when the particle is in the region and 0 otherwise. A dynamical variable like position corresponds to a set of such 2-valued dynamical variables or physical properties. In the case of the position of a particle, these are the properties associated with the particle being in region \(R \), for all regions \(R \). If, for all regions \(R \), you know whether or not the particle is in that region, you know the position of the particle, and conversely. The 2-valued dynamical variables or properties of a classical system form a Boolean algebra, a subalgebra of the commutative algebra of dynamical variables.

Replacing the commutative algebra of dynamical variables with a noncommutative algebra is equivalent to replacing the Boolean algebra of 2-valued dynamical variables or properties with a non-Boolean algebra. The really essential thing about the classical mode of representation of physical systems in relation to quantum mechanics is that the properties of classical systems are represented as having the structure of a Boolean algebra or Boolean lattice. Every Boolean lattice is isomorphic to a lattice of subsets of a set.\(^{23}\) To say that the properties of a classical

\(^{23}\) A lattice is a partially ordered set in which every pair of elements has a greatest lower bound (or infimum) and least upper bound (or supremum) with respect to the ordering, a minimum element (denoted by 0), and a maximum element (denoted by 1). A Boolean lattice is
system form a Boolean lattice is to say that they can be represented as the subsets of a set, the phase space or state space of classical mechanics. To say that a physical system has a certain property is to associate the system with a certain set in a representation space where the elements of the space — the points of the set — represent all possible states of the system. A state picks out a collection of sets, the sets to which the point representing the state belongs, as the properties of the system in that state. The dynamics of classical mechanics is described in terms of a law of motion describing how the state moves in the state space. As the state changes with time, the set of properties selected by the state changes. (For an elaboration, see [Hughes, 1995] and [Bub, 1997].)

So the transition from classical to quantum mechanics involves replacing the representation of properties as a Boolean lattice, i.e., as the subsets of a set, with the representation of properties as a certain sort of non-Boolean lattice. Dirac and von Neumann developed Schrödinger’s equivalence proof into a representation theory for the properties of quantum systems as subspaces in a linear vector space over the complex numbers: Hilbert space. The non-Boolean lattice in question is the lattice of subspaces of this space. Instead of representing properties as the subsets of a set, quantum mechanics represents properties as the subspaces of a linear space — as lines, or planes, or hyperplanes, i.e., as a projective geometry. Algebraically, this is the central structural change in the transition from classical to quantum mechanics — although there is more to it: notably the fact that the state space for quantum systems is a Hilbert space over the complex numbers, not the reals, which is reflected in physical phenomena associated with the possibility of superposing states with different relative phases.

Instead of talking about properties, we can talk equivalently about propositions. (We say that a given property is instantiated if and only if the corresponding proposition is true.) In a Boolean propositional structure, there exist 2-valued homomorphisms on the structure that correspond to truth-value assignments to the propositions. In fact, each point in phase space — representing a classical state — defines a truth-value assignment to the subsets representing the propositions: each subset to which the point belongs represents a true proposition or a property that is instantiated by the system, and each subset to which the point does not belong represents a false proposition or a property that is not instantiated by the system. So a classical state corresponds to a complete assignment of truth values to the propositions, or a maximal consistent ‘list’ of properties of the system, and all possible states correspond to all possible maximal consistent lists.

Probabilities can be introduced on such a classical property structure as measures on the subsets representing the properties. Since each phase space point

a complemented, distributive lattice, i.e., every element has a complement (the lattice analogue of set-theoretic complementation) and the distributive law holds for the infimum and supremum. The partial ordering in a Boolean lattice represented by the subsets of a set X corresponds to the partial ordering defined by set inclusion, so the infimum corresponds to set intersection, the supremum corresponds to set union, 0 corresponds to the null set, and 1 corresponds to the set x. A Boolean algebra, defined in terms of algebraic sum $(+)$ and product (\cdot) operations, is equivalent to a Boolean lattice defined as a partially ordered structure.
defines a truth-value assignment, the probability of a property is the measure of
the set of truth-value assignments that assign a 1 ('true') to the property — in
effect, we 'count' (in the measure-theoretic sense) the relative number of state
descriptions in which the property is instantiated (or the corresponding proposition
is true), and this number represents the probability of the property. So it makes
sense to interpret the probability of a property as a measure of our ignorance as
to whether or not the property is instantiated. Probability distributions over clas-
sical states represented as phase space points are sometimes referred to as 'mixed
states', in which case states corresponding to phase space points are distinguished
as 'pure states'.

The problem for a quantum property structure, represented by the lattice of
subspaces of a Hilbert space, arises because 2-valued homomorphisms do not exist
on these structures (except in the special case of a 2-dimensional Hilbert space).
If we take the subspace structure of Hilbert space seriously as the structural fea-
ture of quantum mechanics corresponding to the Boolean property structure or
propositional structure of classical mechanics, the non-existence of 2-valued ho-
omorphisms on the lattice of subspaces of a Hilbert space means that there is
no partition of the totality of properties of the associated quantum system into
two sets: the properties that are instantiated by the system, and the properties
that are not instantiated by the system; i.e., there is no partition of the totality of
propositions into true propositions and false propositions. (Of course, other ways
of associating propositions with features of a Hilbert space are possible, and other
ways of assigning truth values, including multi-valued truth value assignments and
contextual truth value assignments. Ultimately, the issue here concerns what we
take as the salient structural change involved in the transition from classical to
quantum mechanics.)

It might appear that, on the standard interpretation, a pure quantum state rep-
bresented by a 1-dimensional subspace in Hilbert space — a minimal element in the
subspace structure — defines a truth-value assignment on quantum propositions
in an analogous sense to the truth-value assignment on classical propositions de-
fined by a pure classical state. Specifically, on the standard interpretation, a pure
quantum state selects the propositions represented subspaces containing the state
as true, and the propositions represented by subspaces orthogonal to the state as
false. (Note that orthogonality is the analogue of set-complement, or negation,
in the subspace structure; the set-theoretical complement of a subspace is not in
general a subspace.)

There is, however, an important difference between the two situations. In the
case of a classical state, every possible property represented by a phase space
subset is selected as either instantiated by the system or not; equivalently, every
proposition is either true or false. In the case of a quantum state, the properties
represented by Hilbert space subspaces are not partitioned into two such mutu-
ally exclusive and collectively exhaustive sets: some propositions are assigned no
truth value. Only propositions represented by subspaces that contain the state
are assigned the value 'true', and only propositions represented by subspaces or-
thogonal to the state are assigned the value ‘false.’ This means that propositions represented by subspaces that are at some non-zero or non-orthogonal angle to the ray representing the quantum state are not assigned any truth value in the state, and the corresponding properties must be regarded as indeterminate or indefinite: according to the theory, there can be no fact of the matter about whether these properties are instantiated or not.

It turns out that there is only one way to assign (generalized) probabilities to quantum properties, i.e., weights that satisfy the usual Kolmogorov axioms for a probability measure on Boolean sublattices of the non-Boolean lattice of quantum properties. This is the content of Gleason’s theorem [Gleason, 1957]. For a quantum state ρ, a property p represented by a projection operator P is assigned the probability $\text{Tr}(\rho P)$. If ρ is a pure state $\rho = |\psi\rangle\langle\psi|$, the probability of p is $|\langle\psi_p|\psi\rangle|^2$, where $|\psi_p\rangle$ is the orthogonal projection of $|\psi\rangle$ onto the subspace P, i.e., the probability of p is the square of the cosine of the angle between the ray $|\psi\rangle$ and the subspace P. This means that properties represented by subspaces containing the state are assigned probability 1, properties represented by subspaces orthogonal to the state are assigned probability 0, and all other properties, represented by subspaces at a non-zero or non-orthogonal angle to the state are assigned a probability between 0 and 1. So quantum probabilities are not represented as measures over truth-value assignments and cannot be given an ignorance interpretation in the obvious way.

The question now is: what do these ‘angle probabilities’ or, perhaps better, ‘angle weights’ mean? The orthodox answer is that the probability assigned to a property of a system by a quantum state is to be understood as the probability of finding the property in a measurement process designed to ascertain whether or not that property obtains. A little thought will reveal that this proposal is very problematic. When the system is represented by a quantum state that assigns a certain property the probability 1/2, say, this property is indeterminate. Physicists would say that ascribing the property to the system in that state is ‘meaningless.’ But somehow it makes sense to design an experiment to ascertain whether or not the property is instantiated by the system. And in such a measurement, the probability is asserted to be 1/2 that the experiment will yield the answer ‘yes’, and 1/2 that the experiment will yield the answer ‘no.’ Clearly, a measurement process in quantum mechanics is not simply a procedure for ascertaining whether or not a property is instantiated in any straightforward sense. Somehow, a measurement process enables an indeterminate property, that is neither instantiated nor not instantiated by a system in a given quantum state, to either instantiate itself or not with a certain probability; or equivalently, a proposition that is neither true nor false can become true or false with a certain probability in a suitable measurement process.

The probability problem (as opposed to the truth problem, Schrödinger’s problem) is the problem of interpreting the ‘angle weights’ as probabilities in some sense (relative frequencies? propensities? subjective Bayesian betting probabilities?) that does not reduce to a purely instrumentalist interpretation of quantum
mechanics, according to which the theory is simply regarded as a remarkably accurate instrument for prediction. (Recall Einstein's remark about quantum mechanics being of interest only to shopkeepers and engineers on the Copenhagen interpretation.) The problem arises because of the unique way in which probabilities can be introduced in quantum mechanics, and because the notion of measurement or observation is utterly mysterious on the Copenhagen interpretation.

In classical theories, we measure to find out what we don't know, but in principle a measurement does not change what is (and even if it does change what is, this is simply a change or disturbance from one state of being to another that can be derived on the basis of the classical theory itself). In quantum mechanics, measurements apparently bring into being something that was indeterminate, not merely unknown, before, i.e., a proposition that was neither true nor false becomes true in a measurement process, and the way in which this happens according to the theory is puzzling, given our deepest assumptions about objectivity, change, and intervention.

Now, we know how to solve Schrödinger's problem, i.e., we know all the possible ways of modifying quantum mechanics to solve this problem. The problem arises because of the linear dynamics of the theory, which yields a certain entangled state as the outcome of a measurement interaction, and the interpretation of this entangled state as representing a state of affairs that makes certain propositions true, certain propositions false, and other propositions indeterminate. Either we change the linear dynamics in some way, or we keep the linear dynamics and say something non-orthodox about the relation between truth and indeterminateness and the quantum state. Both options have been explored in various ways and in great detail: we understand the solution space for Schrödinger's problem, and the consequences of adopting a particular solution.

'Collapse' theories, like the theory developed by Ghirardi, Rimini, and Weber (GRW), and extended by Pearle [Ghirardi, 2002], solve the problem by modifying the linear dynamics of quantum mechanics. (See Dickson, this vol., ch. 4, for an account.) In the modified theory, there is a certain very small probability that the wavefunction of a particle (the function defined by the components of the quantum state with respect to the position basis in Hilbert space) will spontaneously 'collapse' after being multiplied by a peaked Gaussian of a specified width. For a macroscopic system consisting of many particles, this probability can be close to 1 for very short time intervals. In effect, this collapse solution modifies the linear dynamics of standard quantum mechanics by adding uncontrollable noise. When the stochastic terms of the modified dynamics become important at the mesoscopic and macroscopic levels, they tend to localize the wave function in space. So measurement interactions involving macroscopic pieces of equipment (or cats) can be distinguished from elementary quantum processes, insofar as they lead to the almost instantaneous collapse of the wave function and the correlation of the measured observable with the position of a localized macroscopic pointer observable.

'No collapse' solutions are constrained by certain 'no go' theorems that restrict
the assignment of properties, or values to observables, under very general assumptions about the algebra of observables [Kochen and Specker, 1967], or restrict the assignment of values to observables under certain assumptions about how distributions of values are related to quantum probabilities [Bell, 1964]. A theorem by Bub and Clifton [1996] shows that if you assume that the set of definite-valued observables has a certain structure (essentially allowing quantum probabilities to be recovered as classical measures over distributions defined by different possible sets of values or properties), and the pointer observable in a measurement process belongs to the set of definite-valued observables, then the class of such theories — so-called ‘modal interpretations’ — is uniquely specified. More precisely, the sublattice associated with any single observable \(R \) is a Boolean lattice, \(\mathcal{B} \), and a quantum state \(|\psi\rangle \) defines a classical probability measure on \(\mathcal{B} \), in the sense that all the single and joint probabilities assigned by \(|\psi\rangle \) to elements in \(\mathcal{B} \) can be recovered as measures on a Kolmogorov probability space defined on the ‘phase space’ \(X \) of 2-valued homomorphisms on \(\mathcal{B} \). The Bub-Clifton theorem characterizes the maximal lattice extension, \(\mathcal{L} \), of any such Boolean sublattice associated with an observable \(R \) and a given quantum state \(|\psi\rangle \), under the assumption that \(\mathcal{L} \) is an ortholattice,\(^{24}\) invariant under lattice automorphisms that preserve \(R \) and \(|\psi\rangle \), for which the probabilities assigned by \(|\psi\rangle \) to elements in \(\mathcal{L} \) can be similarly recovered as measures on a Kolmogorov probability space defined on the ‘phase space’ \(Y \) of 2-valued homomorphisms on \(\mathcal{L} \). In this sense, the theorem characterizes the limits of classicality in a quantum propositional structure. It turns out that different modal interpretations can be associated with different ‘determinate sublattices’ \(\mathcal{L} \), i.e., with different choices of a ‘preferred observable’ \(R \). For standard quantum mechanics, \(R \) is the identity, and the determinate sublattice \(\mathcal{L} \) consists of all quantum propositions represented by subspaces containing the state \(|\psi\rangle \) (propositions assigned probability 1 by \(|\psi\rangle \)) and subspaces orthogonal to \(|\psi\rangle \) (propositions assigned probability 0 by \(|\psi\rangle \). Bohm’s hidden variable theory can be regarded as a modal interpretation in which the preferred observable is position in configuration space. (See Dickson, this vol., ch. 4, and Goldstein, 2001 for an account of Bohm’s theory.)

An alternative type of ‘no-collapse’ solution to the Schrödinger problem is provided by the Everett interpretation [Everett, 1957]. (See Dickson, this vol., ch. 4, for an account.) There are a variety of Everettian interpretations in the literature, the common theme being that all possible outcomes of a measurement are regarded as actual in some indexical sense, relative to different terms in the global entangled state (with respect to a certain preferred basis in Hilbert space), which are understood to be associated with different worlds or different minds, depending on the version. The most sophisticated formulation of Everett’s interpretation is probably the Saunders-Wallace version [Saunders, 1998; Wallace, 2003]. Here the preferred basis is selected by decoherence (see below), and probabilities are introduced as rational betting probabilities in the Bayesian sense via a decision-theoretic argument originally due to Deutsch [1999].

\(^{24}\)I.e., an orthogonal complement exists for every element of \(\mathcal{L} \).
To sum up: any solution to Schrödinger's measurement problem involves either modifying the linear dynamics of the theory ('collapse' theories), or taking some observable in addition to the identity as having a determinate value in every quantum state, and modifying what the standard theory says about what propositions are true, false, and indeterminate in a quantum state (modal interpretations, 'no collapse' hidden variable theories), so that at the end of a measurement interaction that correlates macroscopic pointer positions with possible values of a measured observable, the pointer propositions and propositions referring to measured values end up having determinate truth values. Alternatively (Everettian interpretations), we can interpret quantum mechanics so that every measurement outcome becomes determinate in some indexical sense (with respect to different worlds, or different minds, or different branches of the entangled state, etc.).

We know in considerable detail what these solutions look like, in terms of how quantum mechanics is modified. It was a useful project to explore these solutions, because we learnt something about quantum mechanics in the process, and perhaps there is more to learn by exploring the solution space further. But the point to note here is that all these solutions to the 'truth problem' of measurement distort quantum mechanics in various ways by introducing additional structural features that obscure rather than illuminate our understanding of the phenomena involved in information-theoretic applications of entanglement, such as quantum teleportation, the possibility and impossibility of certain quantum cryptographic protocols relative to classical protocols, the exponential speed-up of quantum computation algorithms relative to classical algorithms, and so on.

Consider again the Bohr-Einstein dispute about the interpretation of quantum mechanics. One might say that what separated Einstein (and Schrödinger) and Bohr was their very different answers to what van Fraassen [1991, 4] has called 'the foundational question par excellence: how could the world possibly be the way quantum theory says it is? This would be misleading. Einstein answered this question by arguing that the world couldn't be the way quantum theory says it is, unless the theory is not the whole story (so a 'completion' of the theory — perhaps Einstein's sought-after unified field theory — would presumably answer the question). But Bohr's complementarity interpretation is not intended to be an answer to this question. Rather, complementarity should be understood as suggesting an answer to a different question: why must the world be the way quantum theory says it is?

To bring out the difference between these two questions, consider Einstein's distinction between what he called 'principle' versus 'constructive' theories. Einstein introduced this distinction in an article on the significance of the special and general theories of relativity that he wrote for the London Times, which appeared in the issue of November 28, 1919 [1919]:

We can distinguish various kinds of theories in physics. Most of them are constructive. They attempt to build up a picture of the more complex phenomena out of the material of a relatively simple formal scheme from which they start out. Thus the kinetic theory of gases seeks to
reduce mechanical, thermal, and diffusional processes to movements of molecules — i.e., to build them up out of the hypothesis of molecular motion. When we say that we have succeeded in understanding a group of natural processes, we invariably mean that a constructive theory has been found which covers the processes in question.

Along with this most important class of theories there exists a second, which I will call 'principle theories.' These employ the analytic, not the synthetic, method. The elements which form their basis and starting-point are not hypothetically constructed but empirically discovered ones, general characteristics of natural processes, principles that give rise to mathematically formulated criteria which the separate processes or the theoretical representations of them have to satisfy. Thus the science of thermodynamics seeks by analytical means to deduce necessary conditions, which separate events have to satisfy, from the universally experienced fact that perpetual motion is impossible.

Einstein's point was that relativity theory is to be understood as a principle theory. He returns to this theme in his 'Autobiographical Notes' [1949, 51–52], where he remarks that he first tried to find a constructive theory that would account for the known properties of mater and radiation, but eventually became convinced that the solution to the problem was to be found in a principle theory that reconciled the constancy of the velocity of light in vacuo for all inertial frames of reference, and the equivalence of inertial frames for all physical laws (mechanical as well as electromagnetic):

Reflections of this type made it clear to me as long ago as shortly after 1900, i.e., shortly after Planck's trailblazing work, that neither mechanics nor electrodynamics could (except in limiting cases) claim exact validity. By and by I despaired of the possibility of discovering the true laws by means of constructive efforts based on known facts. The longer and the more despairingly I tried, the more I came to the conviction that only the discovery of a universal formal principle could lead us to assured results. The example I saw before me was thermodynamics. The general principle was there given in the theorem: the laws of nature are such that it is impossible to construct a perpetuum mobile (of the first and second kind). How, then, could such a universal principle be found?

A little later [1949, 57], he adds:

The universal principle of the special theory of relativity is contained in the postulate: The laws of physics are invariant with respect to the Lorentz-transformations (for the transition from one inertial system to any other arbitrarily chosen system of inertia). This is a restricting principle for natural laws, comparable to the restricting principle
for the non-existence of the *perpetuum mobile* which underlies thermodynamics.

According to Einstein, two very different sorts of theories should be distinguished in physics. One sort involves the reduction of a domain of relatively complex phenomena to the properties of simpler elements, as in the kinetic theory, which reduces the mechanical and thermal behavior of gases to the motion of molecules, the elementary building blocks of the constructive theory. The other sort of theory is formulated in terms of 'no go' principles that impose constraints on physical processes or events, as in thermodynamics ('no perpetual motion machines'). For an illuminating account of the role played by this distinction in Einstein's work, see the discussion by Martin Klein in [1967].

The special theory of relativity is a principle theory, formulated in terms of two principles: the equivalence of inertial frames for all physical laws (the laws of electromagnetic phenomena as well as the laws of mechanics), and the constancy of the velocity of light in vacuo for all inertial frames. These principles are irreconcilable in the geometry of Newtonian space-time, where inertial frames are related by Galilean transformations. The required revision yields Minkowski geometry, where inertial frames are related by Lorentz transformations. Einstein characterizes the special principle of relativity, that the laws of physics are invariant with respect to Lorentz transformations from one inertial system to another, as 'a restricting principle for natural laws, comparable to the restricting principle for the non-existence of the *perpetuum mobile* which underlies thermodynamics.' (In the case of the general theory of relativity, the group of allowable transformations includes all differentiable transformations of the space-time manifold onto itself.) By contrast, the Lorentz theory [Lorentz, 1909], which derives the Lorentz transformation from the electromagnetic properties of the aether, and assumptions about the transmission of molecular forces through the aether, is a constructive theory.

The question:

How could the world possibly be the way the quantum theory says it is?

is motivated by a difficulty in interpreting quantum mechanics as a constructive theory, and the appropriate response is some constructive repair to the theory that resolves the difficulty, or the demonstration that the puzzling features of quantum mechanics at the phenomenal level (the phenomena of interference and entanglement) can be derived from a physically unproblematic constructive theory.

The question:

Why must the world be the way the quantum theory says it is?

does not ask for a 'bottom-up' explanation of quantum phenomena in terms of a physical ontology and dynamical laws. Rather, the question concerns a 'top-down' derivation of quantum mechanics as a principle theory, in terms of operational
constraints on the possibilities of manipulating phenomena. In the case of quantum mechanics, the relevant phenomena concern information.

This shift in perspective between the two questions is highlighted in a remark by Andrew Steane in his review article on ‘Quantum Computing’ [1998, 119]:

Historically, much of fundamental physics has been concerned with discovering the fundamental particles of nature and the equations which describe their motions and interactions. It now appears that a different programme may be equally important: to discover the ways that nature allows, and prevents, information to be expressed and manipulated, rather than particles to move.

Steane concludes his review with the following proposal [1998, 171]:

To conclude with, I would like to propose a more wide-ranging theoretical task: to arrive at a set of principles like energy and momentum conservation, but which apply to information, and from which much of quantum mechanics could be derived. Two tests of such ideas would be whether the EPR-Bell correlations thus became transparent, and whether they rendered obvious the proper use of terms such as ‘measurement’ and ‘knowledge.’

A similar shift in perspective is implicit in Wheeler’s question ‘Why the quantum?’, one of Wheeler’s ‘Really Big Questions’ [1998]. Steane’s suggestion is to answer the question by showing how quantum mechanics can be derived from information-theoretic principles. A more specific proposal along these lines originates with Gilles Brassard and Chris Fuchs. As remarked in §5.2, Brassard and Fuchs [Brassard, 2000; Fuchs, 1997; Fuchs, 2000; Fuchs and Jacobs, 2002] speculated that quantum mechanics could be derived from information-theoretic constraints formulated in terms of certain primitive cryptographic protocols: specifically, the possibility of unconditionally secure key distribution, and the impossibility of unconditionally secure bit commitment.

The CBH theorem (motivated by the Brassard-Fuchs conjecture) shows that quantum mechanics can be regarded as a principle theory in Einstein’s sense, where the principles are information-theoretic constraints. So we have an answer to the question: why must the world be the way quantum mechanics says it is? The phenomena of interference and nonlocal entanglement are bound to occur in a world in which there are certain constraints on the acquisition, communication, and processing of information.

Consider, for comparison, relativity theory, the other pillar of modern physics. A relativistic theory is a theory with certain symmetry or invariance properties, defined in terms of a group of space-time transformations. Following Einstein’s formulation of special relativity as a principle theory, we understand this invariance to be a consequence of the fact that we live in a world in which natural processes are subject to certain constraints: roughly (as Hermann Bondi [1980] puts it), ‘no overtaking of light by light’, and ‘velocity doesn’t matter’ (for electromagnetic as
well as mechanical phenomena). Recall Einstein’s characterization of the special
principle of relativity as ‘a restricting principle for natural laws, comparable to the
restricting principle of the non-existence of the perpetuum mobile which underlies
thermodynamics.’) Without Einstein’s analysis, the transformations of Minkowski
space-time would simply be a rather puzzling algorithm for relativistic kinematics
and the Lorentz transformation, which is incompatible with the kinematics of
Newtonian space-time. What Einstein’s analysis provides is a rationale for taking
the structure of space and time as Minkowskian: we see that this is required for
the consistency of the two principles of special relativity.

A quantum theory is a theory in which the observables and states have a cer-
tain characteristic algebraic structure. Unlike relativity theory, quantum mechan-
ics was born as a recipe or algorithm for calculating the expectation values of
observables measured by macroscopic measuring instruments. A theory with a
commutative C*-algebra has a phase space representation — not necessarily the
phase space of classical mechanics, but a theory in which the observables of the
C*-algebra are replaced by ‘beables’ (Bell’s term, see [1987]), and the C*-algebraic
states are replaced by beable-states representing complete lists of properties (idem-
potent quantities). In this case, it is possible to extend the theory to include the
measuring instruments that are the source of the C*-algebraic statistics, so that
they are no longer ‘black boxes’ but constructed out of systems that are character-
ized by properties and states of the phase space theory. That is, the C*-algebraic
theory can be replaced by a ‘detached observer’ theory of the physical processes
underlying the phenomena, to use Pauli’s term [Born, 1971, 218], including the
processes involved in the functioning of measuring instruments. Note that this
depends on a representation theorem. In the noncommutative case, we are guar-
anteed only the existence of a Hilbert space representation of the C*-algebra, and
it is an open question whether a ‘detached observer’ description of the phenomena
is possible.

Solving Schrödinger’s problem — the truth problem — amounts to a proposal
to treat quantum mechanics as a failed or incomplete constructive theory in need
of constructive repair. In effect, the problem is how to account for quantum infor-
mation — the puzzling features of interference and nonlocal entanglement — in a
theoretical framework in which only classical information is meaningful in a funda-
mental sense. If we treat quantum mechanics as a principle theory of information,
the core foundational problem is the probability problem. From this perspective,
the problem is how to account for the appearance of classical information in a
quantum world characterized by information-theoretic constraints.

One might complain that treating quantum mechanics as a principle theory
amounts to simply postulating what is ultimately explained by a constructive
theory like the GRW theory or Bohm’s theory. This would amount to rejecting
the idea that a principle theory can be explanatory. From the perspective adopted
here, Bohm’s constructive theory in relation to quantum mechanics is like Lorentz’s
constructive theory of the electron in relation to special relativity. Cushing [1998,
204] quotes Lorentz (from the conclusion of the 1916 edition of The Theory of
Electrons) as complaining similarly that ‘Einstein simply postulates what we have deduced.’

I cannot speak here of the many highly interesting applications which Einstein has made of this principle [of relativity]. His results concerning electromagnetic and optical phenomena ... agree in the main with those which we have obtained in the preceding pages, the chief difference being that Einstein simply postulates what we have deduced, with some difficulty and not altogether satisfactorily, from the fundamental equations of the electromagnetic field. By doing so, he may certainly take credit for making us see in the negative result of experiments like those of Michelson, Rayleigh and Brace, not a fortuitous compensation of opposing effects, but the manifestation of a general and fundamental principle.

Yet, I think, something may also be claimed in favour of the form in which I have presented the theory. I cannot but regard the aether, which can be the seat of an electromagnetic field with its energy and its vibrations, as endowed with a certain degree of substantiality, however different it may be from all ordinary matter. In this line of thought, it seems natural not to assume at starting that it can never make any difference whether a body moves through the aether or not, and to measure distances and lengths of time by means of rods and clocks having a fixed position relative to the aether.

Note that Lorentz’s theory is constrained by the principles of special relativity, which means that the aether as a rest frame for electromagnetic phenomena must, in principle, be undetectable. So such a theory can have no excess empirical content over special relativity. Cushing [1998, 193] also quotes Maxwell as asking whether ‘it is not more philosophical to admit the existence of a medium which we cannot at present perceive, than to assert that a body can act at a place where it is not.’ Yes, but not if we also have to admit that, in principle, as a matter of physical law, if we live in a world in which events are constrained by the two relativistic principles, the medium must remain undetectable.

You can, if you like, tell a constructive story about quantum phenomena, but such an account, if constrained by the information-theoretic principles, will have no excess empirical content over quantum mechanics. Putting this differently, a solution to Schrödinger’s truth problem that has excess empirical content over quantum mechanics must violate one or more of the CBH information-theoretic constraints. So, e.g., a Bohmian theory of quantum phenomena is like an aether theory for electromagnetic fields. Just as the aether theory attempts to make sense of the behaviour of fields by proposing an aether that is a sort of sui generis mechanical system different from all other mechanical systems, so Bohm’s theory attempts to make sense of quantum phenomena by introducing a field (the quantum potential or guiding field) that is a sort of sui generis field different from other physical fields.

The crucial distinction here is between a constructive theory formulated in terms of a physical ontology and dynamical laws (‘bottom-up’) and a principle theory formulated in terms of operational constraints at the phenomenal level (‘top-down’). A constructive theory introduces an algebra of beables and beable-states. A principle theory introduces an algebra of observables and observable-states, which are essentially probability measures.

It seems clear that the algebra of observables will be non-trivially distinct from the algebra of beables if cloning is impossible. For if a constructive theory for a certain domain of phenomena allows dynamical interactions in which a beable of
one system, designated as the measuring instrument, can become correlated with a beable of another system, designated as the measured system, without disturbing the values of other beables of the measured system, we can take such an interaction as identifying the value of the beable in question (in the sense that the value of a beable of one system is recorded in the value of a beable of a second system). If this is possible, then it will be possible to simultaneously measure any number of beables of a system by concatenating measurement interactions, and so it will be possible in principle to identify any arbitrary beable state. If we assume that we can prepare any state, then the possibility of identifying an arbitrary state means that we can construct a device that could copy any arbitrary state. So if we cannot construct such a device, then measurement in this sense must also be impossible. It follows that a 'measurement' in the constructive theory will be something other than the mere identification of a beable value of a system, without disturbance, and the question of what the observables are in such a theory will require a non-trivial analysis.

Such an analysis is indeed given by Bohm in Part II of his two-part 1952 paper on hidden variables [1952], and a more careful and sophisticated analysis is given by [Dürr et al., 2003] for their 'Bohmian mechanics' version of Bohm's theory. As one would expect (given the equilibrium distribution assumption which ensures that Bohm's theory is empirically indistinguishable from quantum mechanics), while the beables are functions of position in configuration space (and form a commutative algebra), the observables of the theory are just the observables of quantum theory and form a noncommutative algebra.

The CBH theorem assumes that, for the theories we are concerned with, the observables form a C^*-algebra. The content of the CBH theorem is that, given certain information-theoretic constraints, the C^*-algebra of observables and observable states takes a certain form characteristic of quantum theories. The theorem says nothing about beables and beable-states, and does not address the measurement problem (Schrödinger's truth problem), let alone solve it. But from the perspective adopted here, the measurement problem is simply the observation that cloning is impossible, and a 'solution to the measurement problem' is the proposal of a physical ontology and dynamics and an analysis of measurement that yields the observables and observable-states of standard quantum mechanics. Such theories provide possible explanations for the impossibility of cloning. But since there are now a variety of such explanations available, and — assuming the CBH information-theoretic principles — there are no empirical constraints, in principle, that could distinguish these explanations, there seems little point in pursuing the question further. A constructive theory whose sole motivation is to 'solve the measurement problem' seems unlikely to survive fundamental advances in physics driven by other theoretical or experimental problems.

The probability problem — the core foundational problem for the interpretation of quantum mechanics as a principle theory of information — can be put this way: From the information-theoretic constraints, we get a noncommutative (or non-Boolean) theory of correlations for which there is no phase space representa-
tion. One can define, in a unique way (according to Gleason’s theorem) generalized ‘transition probabilities’ or ‘transition weights’ associated with certain structural features of the noncommutative structure: the angles between geometrical elements representing quantum ‘propositions.’ The problem is how to understand these weights as representing probabilities, without reducing the problem to a solution of the truth problem.

It seems clear that we need to take account of the phenomenon of decoherence (see Landsmann, this vol., ch. 5; Dickson, this vol., ch. 4; [Zurek, 2003; Olliver et al., 2004]): an extremely fast process that occurs in the spontaneous interaction between a macrosystem and its environment that leads to the virtually instantaneous suppression of quantum interference. What happens, roughly, is that a macrosystem like Schrödinger’s cat typically becomes correlated with the environment — an enormous number of stray dust particles, air molecules, photons, background radiation, etc. — in an entangled state that takes a certain form with respect to a preferred set of basis states, which remain stable as the interaction develops and includes more and more particles. It is as if the environment is ‘monitoring’ the system via a measurement of properties associated with the preferred states, in such a way that information about these properties is stored redundantly in the environment. This stability, or robustness, of the preferred basis, and the redundancy of the information in the environment, allows one to identify certain emergent structures in the overall pattern of correlations — such as macroscopic pointers and cats and information-gatherers in general — as classical-like: the correlational information required to reveal quantum interference for these structures is effectively lost in the environment. So it appears that the information-theoretic constraints are consistent with both (i) the conditions for the existence of measuring instruments as sources of classical information, and (ii) the existence of information-gatherers with the ability to use measuring instruments to apply and test quantum mechanics, given a characterization of part of the overall system as the environment. That is, decoherence provides an explanation for the emergence of classical information in a quantum correlational structure.

If something like the above account of decoherence is acceptable, then the probability problem reduces to showing that the probabilities assigned to measurement outcomes by these information-gatherers, in the subjective Bayesian sense, are just the Gleason generalized transition probabilities. That is, we need to show that, while quantum theory, at the fundamental level, is a noncommutative theory of correlations for which there is no phase space representation, it is also a theory of the probabilistic behavior of information-gatherers, certain emergent structures in the pattern of correlations when correlational information in their environment is ignored. For an argument along these lines, see [Pitowsky, 2002].

On the view proposed here, no measurement outcomes are certified as determinate by the theory. Rather, measuring instruments are sources of classical information, where the individual occurrence of a particular distinguishable event (‘symbol’) produced stochastically by the information source lies outside the theory. In this sense, a measuring instrument, insofar as it functions as a classical
information source, is still ultimately a 'black box' in the theory. So a quantum description will have to introduce a 'cut' between what we take to be the ultimate measuring instrument in a given measurement process and the quantum phenomenon revealed by the instrument. But this 'cut' is no longer ad hoc, or mysterious, or in some other way problematic, as it is in the Copenhagen interpretation (see Landsmann, this vol., ch. 5). For here the 'cut' just reflects the fundamental interpretative claim: that quantum mechanics is a theory about the representation and manipulation of information constrained by the possibilities and impossibilities of information-transfer in our world, rather than a theory about the ways in which nonclassical waves and particles move.

ACKNOWLEDGEMENTS

This chapter was written during the tenure of a University of Maryland General Research Board semester award in 2005. I thank the University of Maryland for research support and Jeremy Butterfield for extensive and very helpful comments on a preliminary version of the chapter.

BIBLIOGRAPHY

THE CONCEPTUAL BASIS OF QUANTUM FIELD THEORY

Gerard 't Hooft

1 INTRODUCTION TO THE NOTION OF QUANTIZED FIELDS

Quantum Field Theory is one of those cherished scientific achievements that have become considerably more successful than they should have, if one takes into consideration the apparently shaky logic on which it is based. With awesome accuracy, all known subatomic particles appear to obey the rules of one example of a quantum field theory that goes under the uninspiring name of "The Standard Model". The creators of this model had hardly anticipated such a success, and one can rightfully ask to what it can be attributed.

We have long been aware of the fact that, in spite of its successes, the Standard Model cannot be exactly right. Most quantum field theories are not asymptotically free, which means that they cannot be extended to arbitrarily small distance scales. We could try to cure the Standard Model, but this would not improve our understanding at all, because we know that, at those extremely tiny distance scales where the problems would become relevant, a force appears that we cannot yet describe unambiguously: the gravitational force. It would have to be understood first.

Perhaps this is the real strength of Quantum Field Theory: we know where its limits are, and these limits are far away. The gravitational force acting between two subatomic particles is tremendously weak. As long as we disregard that, the theory is perfect. And, as I will explain, its internal logic is not shaky at all.

Subatomic particles all live in the domain of physics where spins and actions are comparable to Planck's constant \(\hbar \). One obviously needs Quantum Mechanics to describe them. Since the energies available in sub-atomic interactions are comparable to, and often larger than, the rest mass energy \(mc^2 \) of these particles, they often travel with velocities close to that of light, \(c \), and so relativistic effects will also be important. Thus, in the first half of the twentieth century, the question was asked:

"How should one reconcile Quantum Mechanics with Einstein's theory of Special Relativity?"

As we shall explain, Quantum Field Theory is the answer to this question.
Our first intuitions would be, and indeed were, quite different [Pais, 1986; Crease and Mann, 1986]. One would set up abstract Hilbert spaces of states, each containing fixed or variable numbers of particles. Subsequently, one would postulate a consistent scheme of interactions. What would ‘consistent’ mean? In Quantum Mechanics, we have learned how to describe a process where we start with a certain number of particles that are all far apart but moving towards one another. This is the ‘in’ state $|\psi\rangle_{\text{in}}$. After the interaction has taken place, we end up with particles all moving away from one another, a state $|\psi'\rangle_{\text{out}}$. The probability that a certain in-state evolves into a given out-state is described by a quantum mechanical transition amplitude, $\langle \psi'|\psi\rangle_{\text{in}}$. The set of all such amplitudes in the vector spaces formed by all in- and out-states is called the scattering matrix. One can ask how to construct the scattering matrix in such a way that (i) it is invariant under Lorentz transformations, and (ii) obeys the strict laws of quantum causality. By ‘quantum causality’ we mean that under no circumstance a measurable effect may proceed with a velocity faster than that of light. In practice, this means that one must demand that any set of local operators $O_i(x, t)$ obeys commutation rules such that the commutators $[O_i(x, t), O_j(x', t')]$ vanish as soon as the vector $(x - x', t - t')$ is space-like. One can show that this implies that the scattering matrix must obey dispersion relations.

This is indeed how physicists started to think about their problem. But how should one construct such a scattering matrix? Does any systematic procedure exist?

A quantized field may seem to be something altogether different, yet it does appear to allow for the construction of an interacting medium that does obey the laws of Lorentz invariance and causality. The local operators can be constructed from the fields. All we then have to do is to set up schemes of relativistically covariant field equations, such as Maxwell’s laws. Even the introduction of non-linear terms in these equations appears to be straightforward, and if we were to subject such systems to a mathematically well-defined procedure called “quantization”, we would have candidates for a solution to the aforementioned problem.

Realizing that the energy in a quantized field comes in quantized energy packages, which in all respects behave like elementary particles, and, conversely, realizing that operators in the form of fields could be defined also when one starts up with Hilbert spaces consisting of elementary particles, it was discovered that quantized fields do indeed describe subatomic particles. Subsequently, it was discovered that, in a quantized field, the number of ways in which interactions can be introduced (basically by adding non-linear terms in the field equations), is quite limited. Quantization requires that all interactions can be given in the form of a Lagrange function \mathcal{L}; relativity requires this \mathcal{L} to be Lorentz-invariant, and, most strikingly, self-consistency of Quantum Field Theory then provides further restrictions, which leads to the possibility of writing down a complete list of all possible interactions. The Standard Model is just one element of this list.
The scope of this concise treatise on Quantum Field Theory is too limited to admit detailed descriptions of all technical details. Instead, special emphasis is put on the conceptual issues that arise when addressing the numerous questions and problems associated with this doctrine. One could use this text to learn Quantum Field Theory, but for many technical details, more literature must be consulted [de Wit and Smith, 1986; Aitchison and Hey, 1989; Ryder, 1985; Itzykson and Zuber, 1980; Cheng and Li, 1984] We also limited ourselves to applications of Quantum Field Theory in elementary particle physics. There are many examples in low-temperature physics where these and similar techniques are useful, but they will not be addressed here.

2 SCALAR FIELDS

2.1 Classical Theory: Feynman rules

A field is here taken to mean a physical variable that is a function of space-time coordinates \(x = (x, t) \). In order for our theories to be in accordance with special relativity, we will have to specify how a field transforms under a homogeneous Lorentz transformation,

\[
(1) \quad x' = Lx.
\]

If a field \(\phi \) transforms as

\[
(2) \quad \phi'(x) = \phi(x'),
\]

then \(\phi \) is called a scalar field. The improper Lorentz transformations, such as parity reflection \(P \) and time reversal \(T \), are of lesser importance since we know that Nature is not exactly invariant under those.

Let us first restrict ourselves to real scalar fields; generalization to the case where fields are denoted by complex numbers will be straightforward. Upon quantization, scalar fields will come in energy packets that behave as spinless Bose-Einstein particles, such as \(\pi^0, \pi^\pm \) and \(\eta^0 \). Conceptually, the scalar field is the easiest to work with, but in section 9 we shall find reasons why other kinds of fields can actually improve the internal consistency of our theories.

Lorentz-invariant field equations typically take the form

\[
(3) \quad (\partial^2_{\mu} - m^2_{(i)})\phi_i = F_i(\phi); \quad \partial^2_{\mu} \equiv \partial^2_x - \partial^2_t.
\]

\(^1\) We use summation convention: repeated indices that are not put between brackets are automatically summed over. Greek indices \(\mu \) are Lorentz indices taking 4 values, Latin indices \(i, j, \cdots \) run from 1 to 3. Our metric convention is \(g_{\mu\nu} = \text{diag}(-1, 1, 1, 1) \).
Here, the index i labels different possible species of scalar fields, and $F_i(\phi)$ could be any function of the field(s) $\phi_j(x)$. Usually, however, we assume that there is a potential function $V^{\text{int}}(\phi)$, such that $F_i(\phi)$ is the gradient of V^{int}, and furthermore we assume that V^{int} is a polynomial whose degree is at most four:

$$V^{\text{int}}(\phi) = \frac{1}{6} g_{ijk} \phi_i \phi_j \phi_k + \frac{1}{24} \lambda_{ijk\ell} \phi_i \phi_j \phi_k \phi_\ell;$$

$$F_i(\phi) = \frac{\partial V^{\text{int}}(\phi)}{\partial \phi_i} = \frac{1}{2} g_{ijk} \phi_j \phi_k + \frac{1}{6} \lambda_{ijk\ell} \phi_j \phi_k \phi_\ell,$$

where g and λ must be totally symmetric under all permutations of their indices. This is actually a limitation on the forms that $F_i(\phi)$ can take. Without this limitation, we would not have a conserved energy, and quantization of the theory would not be possible. Later, we will see why higher terms in the polynomial are not permitted (section 7).

In order to understand the general structure of the classical solutions to this set of equations, we temporarily add a function $-J_i(x)$ to $F_i(\phi)$ in Eq. (3). Subsequently, we expand the solution in powers of $J_i(x)$:

$$(m^2_{(i)} - \partial^2_{\mu}) \phi_i(x) = J_i(x) - \frac{\partial}{\partial \phi_i} V^{\text{int}}(\phi(x));$$

$$\phi_i(x) = \phi^{(1)}_i(x) + \phi^{(2)}_i(x) + \phi^{(3)}_i(x) + \cdots$$

$$= \int d^4y \ G_{ij}(x-y) \left(J_j(y) - F_j(\phi^{(1)}(y) + \phi^{(2)}(y) + \phi^{(3)}(y) + \cdots) \right). \quad (5)$$

The function $G_{ij}(x-y)$ is a solution to the equation

$$\left(m^2 - \partial^2_{\mu} \right) G_{ij}(x-y) = \delta_{ij} \delta(x-y),$$

while $\phi^{(2)}_i(x)$ is quadratic in $J_j(y)$ and $\phi^{(3)}(x)$ is cubic, and so on. Assembling terms of equal order in $J_j(y)$ we find a recursive procedure to solve the field equations (2.1). At the end of our calculation, we might set $J_i(x)$ equal to zero, or better, have J non-vanishing only in the far-away region where the particles originated, so that the J interaction is a simplified model for the machine that produced the particles in the past far. Indeed, in the quantum theory it will also turn out to be convenient to use J as a model for the particle detector at the end of the experiment.

We see that the solution to Eq. (2.1) can be written as the sum of a large number of terms. Each of these terms can be written in the form of a diagram, called a Feynman diagram. In these diagrams, we represent a space-time point as a dot, and the function $G_{ij}(x-y)$ as a line connecting x with y. The index i may be indicated at each line. A dot may either be associated with a term $J_i(y)$, or it is a three-point vertex associated with a coefficient g_{ijk} or a four-point vertex, going with a coefficient $\lambda_{ijk\ell}$. A typical Feynman diagram is sketched in Fig. 1.
Figure 1. Example of a Feynman diagram for classical scalar fields

Observe the general structure of these diagrams. There are factors $\frac{1}{2}$, $\frac{1}{6}$, etc., which can easily be read off from the symmetries of the diagram. By construction, there are no closed loops: the diagram is simply connected. This will be different in the quantized theory.

One important issue is to be addressed: the Green function, $G_{ij}(x - y)$ is not completely determined by the equation (6): one may add arbitrary combinations of the solutions of the homogeneous equation

$$(m_i^2 - \partial^2_p)G_{ij}(x - y) = 0. \quad (7)$$

In Fourier space, this ambiguity is reflected in the fact that one has some freedom in choosing the integration curve C in the solution\footnote{An inner product $k \cdot x$ stands for $\vec{k} \cdot \vec{x} - k^0 x^0$.}

$$(G_{ij}(x - y) = (2\pi)^{-4} \int_C d^4k e^{ik \cdot (x - y)} \frac{\delta_{ij}}{k^2 + m_i^2}. \quad (8)$$

Our choice can be indicated by shifting the pole by an infinitesimal imaginary number, after which we choose the contour C to be along the real axis of all integrands. A reasonable choice is

$$(G_{ij}^+(x - y) = (2\pi)^{-4} \int d^4k e^{ik \cdot (x - y)} \frac{\delta_{ij}}{k^2 - (k^0 + i\epsilon)^2 + m_i^2}, \quad (9)$$

where ϵ is an infinitesimal, positive number. With this choice, the integration contour in the complex k^0 plane can be shifted such that the imaginary part of k^0 can be given an arbitrarily large positive value, and from this one deduces that
the Green function will vanish as soon as the time difference, \(x^0 - y^0 \), is negative. This Green function, called the forward Green function, gives our expressions the desired causality structure: There are obviously no effects that propagate backwards in time, or indeed faster than light.

The converse choice, \(G^-(x - y) \), gives us the backward solution. However, in the quantized theory, we will often be interested in yet another choice, the Feynman propagator, defined as

\[
G^F_{ij}(x - y) = (2\pi)^{-4} \int \mathrm{d}^4k \frac{\delta_{ij}}{k^2 - k^0^2 + m_i^2 - i\varepsilon},
\]

where, again, the infinitesimal number \(\varepsilon > 0 \).

The rules to obtain the complete expansion of the solution can now be summarized as follows:

1) Each term can be depicted as a diagram consisting of points (vertices) connected by lines (called propagators). One end-point, \(\bullet \rightarrow \times \), corresponds to a point \(x \) where we want to know the field \(\phi \); the other end points, \(\bullet \rightarrow \times \), refer to factors \(J(y^{(i)}) \) for the corresponding points \(y^{(i)} \), see Fig. 1.

2) There are no "closed loops". i.e. the diagrams must be simply connected (this will be different in the quantum theory).

3) There are vertices with three prongs (3-vertices), \(i \rightarrow j \leftarrow k \), each being associated with a factor \(g_{ijk} \), and vertices with four prongs (4-vertices), \(i \rightarrow j \leftarrow k \rightarrow l \), each giving a factor \(\lambda_{ijk\ell} \).

4) Each line connecting two points \(x^{(1)} \) and \(x^{(2)} \), \(i \rightarrow j \leftarrow k \rightarrow l \), is associated with a factor \(G_{ij}(x^{(1)} - x^{(2)}) \) when we work in ordinary space-time (configuration space), or a factor

\[
\frac{\delta_{ij}}{k^2 + m_i^2 - i\varepsilon},
\]

in momentum space (the reason for this \(i\varepsilon \) choice will only become apparent in the quantized theory).

5) If we work in configuration space, we must integrate over all \(x \) values at each vertex except the one where \(\phi \) was defined; if we work in momentum space, we must integrate over the \(k \) values, subject to the restriction of momentum conservation at each vertex: \(k_\text{out} = \sum_{\text{in}} k_\text{in} \).

6) A 'combinatorial factor'. For the classical theories it is \(1/N \), where \(N \) is the number of permutations of the source vertices that leave the diagram unaltered.
It is not difficult to generalize the rules for the case of higher polynomials in the interactions, but this will not be needed for the time being.

2.2 *Spontaneous symmetry breaking: Goldstone modes*

In the classical theory, the Hamilton density is

\[\mathcal{H}(x, t) = \frac{1}{2} \dot{\phi}_i^2 + \frac{1}{2} (\bar{\phi}_i \phi_i)^2 + V(\phi); \quad V(\phi) = \frac{1}{2} m_i^2 \phi_i^2 + V^{\text{int}}(\phi). \]

The theory is invariant under the group of transformations

\[\phi'_i(x) = A_{ij} \phi_j(x), \]

if \(A \) is orthogonal and the potential function \(V(\phi) \) is invariant under that group. The simplest example is the transformation \(\phi \leftrightarrow -\phi \):

\[A = \pm 1; \quad V = V(\phi^2) = \frac{1}{2} a \phi^2 + \frac{\lambda}{24} \phi^4. \]

There are two cases to consider:

\(i) \ a > 0. \) In this case, \(\phi = 0 \) is the absolute minimum of \(V \). We write

\[a = m^2, \]

and find that \(m \) indeed describes the mass of the particle. All Feynman diagrams have an even number of external lines. Since, in the quantum theory, these lines will be associated with particles, we find that states with an odd number of particles can never evolve into states with an even number of particles, and *vice versa*. If we define the quantum number \(P_C = (-1)^N \), where \(N \) is the number of \(\phi \) particles, then we find that \(P_C \) is conserved during interactions.

\(ii) \ a < 0. \) In this case, we see that:

- trying to identify the mass of the particle using Eq. (15) yields the strange result that the mass would be purely imaginary. Such objects ("tachyons") are not known to exist and probably difficult to reconcile with causality, and furthermore:

- the configuration \(\phi = 0 \) does not correspond to the lowest energy configuration of the system. The lowest energy is achieved when

\[\phi = \pm F; \quad F^2 = -6a/\lambda. \]
It is now convenient to rewrite the potential V as

\begin{equation}
V = \frac{\lambda}{24} (\phi^2 - F^2)^2 - C ,
\end{equation}

where we did not bother to write down the value of the constant C, since it does not occur in the evolution equations (2.1). There are now two equivalent vacuum states, the minima of V. Choosing one of them, we introduce a new field variable $\tilde{\phi}$ to write

\begin{align*}
\phi & \equiv F + \tilde{\phi}; \\
(18) \quad V &= \frac{\lambda}{24} \tilde{\phi}^2 (2F + \tilde{\phi})^2 = \frac{\lambda F^2}{6} \tilde{\phi}^2 + \frac{\lambda F}{6} \tilde{\phi}^3 + \frac{\lambda}{24} \tilde{\phi}^4 ,
\end{align*}

and we see that

\begin{enumerate}
\item[a)] for the new field $\tilde{\phi}$, the mass-squared $\tilde{m}^2 = \lambda F^2/3$ is positive, and
\item[b)] a three-prong vertex appeared, with associated factor λF. The quantum number P_C is no longer apparently conserved.
\end{enumerate}

This phenomenon is called 'spontaneous symmetry breaking', and it plays an important role in Quantum Field Theory.

Next, let us consider the case of a continuous symmetry. The prototype example is the $U(1)$ symmetry of a complex field. The symmetry group consists of the transformations $A(\theta)$, where θ is an angle:

\begin{equation}
(19) \quad \Phi \equiv \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2) ; \quad \Phi' = A(\theta) \Phi = e^{i\theta} \Phi ,
\end{equation}

Again, the most general potential3 invariant under these transformations is

\begin{equation}
(20) \quad V(\Phi, \Phi^*) = a \Phi^*\Phi + \frac{1}{2} \lambda (\Phi^*\Phi)^2 - C ,
\end{equation}

In the case where the $U(1)$ symmetry is apparent, one can rewrite the Feynman rules to apply directly to the complex field Φ, noticing that one can write the potential V as a real function of the two independent variables Φ and Φ^*. With

\begin{equation}
(21) \quad \partial^2_{\mu} \Phi = \frac{\partial V(\Phi, \Phi^*)}{\partial \Phi^*} ,
\end{equation}

one notices that the Feynman propagators can be written with an arrow in them: an arrow points towards a point x where the function $\Phi(x)$ is called for, and away from a point x' where a factor $\Phi^*(x')$ is extracted from the potential V. At every

3Observe how we adjusted the combinatorial factors. The choices made here are the most natural ones to keep these coefficients as predictable as possible in future calculations.
vertex, as many arrows enter as they leave, and so, during an interaction, the total number of lines pointing forward in time minus the number of lines pointing backward is conserved. This is an additively conserved quantum number, to be interpreted as a 'charge' Q. According to Noether's theorem, every symmetry is associated to such a conservation law.

However, if $a < 0$, this $U(1)$ symmetry is spontaneously broken. Then we write

$$V = \frac{1}{2} \lambda (\Phi^* \Phi - F^2)^2 - C, \quad F^2 \equiv -a/\lambda.$$

This time, the stable vacuum states form a closed circle in the complex plane of Φ values. Let us write

$$\Phi \equiv F + \tilde{\Phi}; \quad \tilde{\Phi} \equiv \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2);$$

$$V = \frac{1}{2} \lambda \left(F(\tilde{\Phi}^* + \tilde{\Phi}) + \Phi^* \Phi \right)^2$$

$$= \lambda F \tilde{\phi}_1^2 + \frac{\lambda F}{\sqrt{2}} \phi_1 (\tilde{\phi}_2^2 + \tilde{\phi}_2^2) + \frac{\lambda}{8} (\tilde{\phi}_1^2 + \phi_2^2)^2.$$

The striking thing about this potential is that the mass term for the field $\tilde{\phi}_2$ is missing. The mass squared for the $\tilde{\phi}_1$ field is $\tilde{m}_1^2 = 2\lambda F$. The fact that one of the effective fields is massless is a fundamental consequence of the fact that we have spontaneous breakdown of a continuous symmetry. Quite generally, there is a theorem, called the Goldstone theorem:

If a continuous symmetry whose symmetry group has N independent generators, is broken down spontaneously into a (residual) symmetry whose group has N_1 independent generators, then $N - N_1$ massless effective fields emerge.

The propagators for massless fields obey Eq. (6) without the m^2 term, which gives these expressions an 'infinite range': such a Green's function drops off only slowly for large spatial or timelike separations. These massless oscillating modes are called 'Goldstone modes'.

2.3 Quantization of a classical theory

How does one "quantize" a field theory? In the old days of Quantum Mechanics, it was taught that "you take the Poisson brackets of the classical system, and replace these by commutators." Here and there, one had to readjust the order in which classical expressions emerge, when they are replaced by operators, but the rules appeared to leave no essential ambiguities. Indeed, if such a procedure is possible, one may get a quantum theory which reproduces the original classical system in the limit of vanishing \hbar. Also, the group of symmetry transformations under which the classical system was invariant, often re-emerges in the quantum system.
A field theory, however, has a strictly infinite set of physical degrees of freedom (the field values at every point in 3-space, or, the complete set of Fourier modes). More often than not, upon "quantization", this leads to infinities that render the theory ill-defined. One has to formulate the notion of "quantization" much more carefully, going through several intermediate steps. Since, today, the answers to our questions are so well known, it is often forgotten how these answers can be derived rigorously and why they take the form they have. What is the strictly logical sequence of arguments?

First of all, it is unreasonable to expect that every classical field theory should have a quantum mechanical counterpart. What we wish to do, is construct some quantum system, its Hilbert space and its Hamiltonian, such that in one or more special limits, it reproduces a known classical theory. We demand certain properties of the theory, such as Lorentz invariance and causality, but most of all we demand that it be internally logically impeccable, allowing us to calculate how in such a system particles interact, under all imaginable circumstances. We will, however, continue to use the phrase 'quantization', meaning that we attempt to construct a quantum theory with a given classical field theory as its $\hbar \to 0$ limit.

Often, authors forget to mention the first, very important, step in this logical procedure: replace the classical field theory one wishes to quantize by a strictly finite theory. Assuming that physical structures smaller than a certain size will not be important for our considerations, we replace the continuum of three-dimensional space by a discrete but dense lattice of points. In the differential equations, we replace all derivatives $\partial/\partial x^i$ by finite ratios of differences: $\Delta/\Delta x^i$, where $\Delta \phi$ stands for $\phi(x + \Delta x) - \phi(x)$. In Fourier space, this means that wave numbers \vec{k} are limited to a finite range (the Brillouin zone), so that integrations over \vec{k} can never diverge.

If this lattice is sufficiently dense, the solutions we are interested in will hardly depend on the details of this lattice, and so, the classical system will resume Lorentz invariance and the speed of light will be the practical limit for the velocity of perturbances. If necessary, we can also impose periodic boundary conditions in 3-space, and in that case our system is completely finite. Finite systems of this sort allow for 'quantization' in the old-fashioned sense: replace the Poisson brackets by commutators. Note that we did not (yet) discretize time, so the Hamiltonian of our theory has the form

$$H = T + V$$

$$= \sum_{x^a} \prod_{a=1}^3 (\Delta x^a) \left(\frac{1}{2} \sum_i (\partial \phi_i / \partial t)^2 + \frac{1}{2} \sum_{i,a} \left(\frac{\Delta \phi_i}{\Delta x^a} \right)^2 + V(\phi) \right). \quad (24)$$

The canonical momenta associated to the fields $\phi_i(x)$ are

$$p_i(x) = (\partial \phi_i / \partial t) \prod_{a=1}^3 (\Delta x^a), \quad (25)$$
and so, we will assume these to be operators obeying:

\[
(26) \quad [\phi_i(x), \phi_j(x')] = 0 \quad [p^i(x), p^j(x')] = 0 \quad [\phi_i(x), p^j(x')] = i\delta^j_i \delta_{x,x'}.
\]

Now, we have to wait and see what happens in the limit of an infinitely dense space-lattice. Will, like the classical theory, our quantum concoction turn out to be Lorentz-invariant? How do we perform Lorentz transformations on physical states? This question turns out to be far from trivial to answer, but the answer is known. We first need some useful technical tools.

2.4 The Feynman path integral

The Feynman path integral is often introduced as an "infinite dimensional" integral. Again, we insist on at first keeping everything finite. Label the generalized coordinates (here the \(\phi_i\) fields) as \(q_i\). The momenta are \(p_i\). The Hamiltonian (2.3) is of the conventional type (the volume elements \(\prod_{a=1}^{3}(\Delta x^a)\) act as masses). For future use, we need a slightly more general one, a Hamiltonian that also contains pieces linear in the momenta \(p_i\):

\[
(27) \quad H = T + V; \quad T = \sum_i \frac{(p_i - A_i(q))^2}{2m(i)}; \quad V = V(q).
\]

In principle, we keep the number \(n\) of coordinates and momenta finite, in which case there is no doubt that the differential equations in question have unique, finite solutions (assuming the functions \(A_i\) and \(V\) to be sufficiently smooth; indeed we will mostly work with polynomials). Consider the configuration states \(|q\rangle\) and the momentum states \(|p\rangle\). We have

\[
(28) \quad \langle q|q'\rangle = \delta^n(q - q'), \quad \langle p|p'\rangle = \delta^n(p - p'); \quad \langle q|p\rangle = (2\pi)^{-n/2}e^{ip\cdot q}.
\]

Taking the order of the operators into account, we write for the kinetic energy

\[
T = \sum_i \frac{p_i^2 - 2A_i(p_i + A_i^2)}{2m(i)} + iW(q);
\]

\[
(29) \quad W(q) = \sum_i \frac{[A_i(q), p_i]}{2i m(i)} = \sum_i \frac{\partial_i A_i(q)}{2m(i)}.
\]

This enables us to compute swiftly the matrix elements

\[
(30) \quad \langle q|H|p\rangle = \langle q|p\rangle(h(q,p) + iW(q));
\]

\[
(31) \quad \langle p|H|q\rangle = \langle p|q\rangle(h(q,p) - iW(q)).
\]
where \(h(q, p) \) is the classical Hamiltonian as a function of the two sets of variables \(q \) and \(p \).

The evolution operator \(U(t, \delta t) \) for a short time interval \(\delta t \) is

\[
U(t, \delta t) = e^{-iH(t)\delta t} = \mathbf{I} - iH\delta t + \mathcal{O}(\delta t)^2.
\]

Its matrix elements between states \(\langle p \rvert | q \rangle \) are easy to derive now:

\[
\langle p \rvert U(t, \delta t) \rvert q \rangle = \langle p \rvert q \rangle - i\delta t \langle p \rvert H \rvert q \rangle + \mathcal{O}(\delta t)^2
\]

\[
= (2\pi)^{-n/2} e^{-i p \cdot q} \left(1 - i\delta t \{ h(q, p) - iW(q) \} + \mathcal{O}(\delta t)^2 \right)
\]

\[
= (2\pi)^{-n/2} \exp \left(-i p \cdot q - i\delta t \{ h(q, p) - iW(q) \} + \mathcal{O}(\delta t)^2 \right).
\]

What makes this expression very useful is the fact that it does not become singular in the limit \(\delta t \downarrow 0 \). The momentum-momentum and the coordinate-coordinate matrix elements do become singular in that limit.

Next, let us consider a finite time interval \(T \). The evolution operator over that time interval can formally be viewed as a sequence of many evolution operators over short time intervals \(\delta t \), with \(T = N \delta t \). Using closure, both in \(p \) space and in \(q \) space, at all time intervals,

\[
\mathbf{I} = \int d^nq \langle q \rvert \langle q \rangle = \int d^np \langle p \rvert \langle p \rangle,
\]

we can write

\[
\langle \psi(q_N, T) \rangle = \langle q_N \rvert U(0, T) \rvert \psi(0) \rangle = \int d^nq_0 \int d^np_0 \cdots \int d^nq_{N-1} \int d^np_{N-1}
\]

\[
\langle q_N \rvert p_{N-1} \rangle \langle p_{N-1} \rvert U(t_{N-1}, \delta t) \rvert q_{N-1} \rangle \langle q_{N-1} \rvert p_{N-2} \rangle \cdots \langle p_0 \rvert U(0, \delta t) \rvert q_0 \rangle \langle q_0 \rvert \psi(0) \rangle.
\]

Plugging in Eq. (2.4), we see that

\[
\langle \psi(q_N, T) \rangle = \left(\prod_{\tau=0}^{N-1} \int d^nq_\tau \int d^np_\tau \frac{e^{-W(q_\tau)\delta t}}{(2\pi)^n} \right) \times
\]

\[
\exp \left\{ \sum_{\tau=0}^{N-1} \delta t \left(p_\tau \frac{q_{\tau+1} - q_\tau}{\delta t} - h(q_\tau, p_\tau, t_\tau) \right) \right\} \langle q_0 \rvert \psi(0) \rangle.
\]

Define

\[
\dot{q}_\tau \equiv \frac{q_{\tau+1} - q_\tau}{\delta t},
\]

\[
(37) \quad \dot{q}_\tau \equiv \frac{q_{\tau+1} - q_\tau}{\delta t},
\]
and

\[L(p, q, \dot{q}, t) = p \cdot \dot{q} - h(q, p, t), \]

and the measure

\[\prod_{\tau=0}^{N-1} \int d^n q_\tau \int d^n p_\tau \frac{e^{-W(q_\tau)\delta t}}{(2\pi)^n} = \int Dq Dp, \]

then we obtain an expression that seems to be easy to extend to infinitely fine grids in the time variable:

\[\langle q_N | \psi(T) \rangle = \int Dq Dp \left(\exp i \sum_{\tau=0}^{N-1} \delta t L(p, q, \dot{q}, t) \right) \langle q_0 | \psi(0) \rangle. \]

In these expressions, we actually allowed the parameters in the Hamiltonian \(H \) and the Lagrangian \(L \) to depend explicitly on time \(t \), so as to expose the physical structure of these expressions. Note that

\[L(p, q, \dot{q}, t) = -\sum_i \frac{(p_i - A_i - m_{(i)} \dot{q}_i)^2}{2m_{(i)}} - V(q) + \sum_i \left(A_i \dot{q}_i + \frac{1}{2} m_{(i)} \dot{q}_i^2 \right), \]

and the integrals over all momentum variables are easy to perform, giving some constant that only depends on the masses \(m_{(i)} \):

\[\langle q_N | \psi(T) \rangle = \int Dq \exp \left(i \sum_{\tau=0}^{M-1} \delta t L(q, \dot{q}, t) \right) \langle q_0 | \psi(0) \rangle, \]

with

\[L(q, \dot{q}, t) = T - V; \quad T = \sum_i \left(\frac{1}{2} m_{(i)} \dot{q}_i^2 + A_i \dot{q}_i \right); \]

\[Dq = e^{-\sum W(q_\tau)\delta t} \prod_{\tau=0}^{N-1} \left(d^n q_\tau \prod_i \left(\frac{m_{(i)}}{2\pi \delta t} \right)^{\frac{1}{2}} \right). \]

Actually, \(L(q, \dot{q}, t) \) is obtained from \(L(p, q, \dot{q}, t) \) by extremizing the latter with respect to \(p \):

\[\frac{\partial}{\partial p_i} L(p, q, \dot{q}, t) = 0; \quad \dot{q}_i = \frac{\partial h(q, p, t)}{\partial p_i}. \]
This is exactly the standard relation between Lagrangian and Hamiltonian of the classical theory. So, L is indeed the Lagrangian.

If the continuum limit exists, the exponent in Eq. (42) is exactly i times the classical action,

\begin{equation}
S = \int dt L(q, \dot{q}, t).
\end{equation}

It is tempting to assume that the $O(\delta t)^2$ terms in Eq. (32) disappear in the limit; after all, they are only multiplied by factors $N \approx C/\delta t$. In that case, the evolution operator in Eq. (42) clearly takes the form of an integral over all paths going from q_0 to q_N. This is Feynman's path integral. In the case of a field theory, one considers the field defined on a lattice in space, and since the path integral starts with a lattice in the time variable, we end up dealing with a lattice in space and time. In conclusion:

The evolution operator in a field theory is described by first rephrasing the theory on a dense lattice in space-time. Replacing partial derivatives by the corresponding finite difference ratios, one writes an expression for the action S of the theory. Normally, it can be written as an integral over a Lagrange density, $L(\phi, \partial_\mu \phi)$. The evolution operator of the theory is obtained by integrating e^{iS} over all field configurations $\phi(x,t)$ in a given space-time patch. The integration measure is defined from Eq. (43).

The A_i terms, linear in the time derivatives, do not play a role in scalar field theories but they do in vector theories, and the fact that they occur in the measure (43) is usually ignored. Indeed, in most cases, $W(q)$ vanishes, but we must be aware that it might cause problems in some special cases. We ignore the W term for the time being.

2.5 Feynman rules for the quantized theory

The Feynman rules for quantized field theories were first derived by careful analysis of perturbation theory. Writing the quantum Hamiltonian H as $H = H_0 + H^{\text{int}}$, one assembles all terms bilinear in the fields and their derivatives in H_0 and performs the perturbation expansion for small values of H^{int}. This leads to a set of calculation rules very similar to the rules derived for a classical theory, see subsection 2.1. Most of these rules (but not everything) can now most elegantly be derived from the path integral.

Let us first derive these rules for computing a finite dimensional integral of the type (42). Although often our action will not contain terms linear in the variables $q_i(t)$, we do need such terms now, so, if necessary, we add them by hand, only to
remove them at the end of the calculations. There is no need to indicate the
time variable t explicitly; we absorb it in the indices i. The action is then

$$S(q) = \sum_{x,t} \mathcal{L}(x,t)$$
$$= J_i q_i - \frac{1}{2} M_{ij} q_i q_j - \frac{i}{6} A_{ijk} q_i q_j q_k - \frac{1}{24} B_{ijkl} q_i q_j q_k q_l. \quad (46)$$

To calculate $\int d^N q \, e^{iS(q)}$, we keep only the bilinear part (the term with the
coefficients M_{ij}) inside the exponent, and expand the exponent of all other terms:

$$\begin{align*}
\text{out} \langle 0 | 0 \rangle_{\text{in}} &= C \int d^N q \left(\exp \left(-\frac{i}{2} M_{ij} q_i q_j \right) \right) \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{k! \ell! m!} \times \\
&\quad \left(i J_{i_1} a_{1_1} \right) \cdots \left(i J_{i_k} a_{1_k} \right) \left(-\frac{i}{6} A_{i_1 j_1 k_1} q_{i_1} q_{j_1} q_{k_1} \right) \cdots \left(-\frac{i}{6} A_{i_\ell j_\ell k_\ell} q_{i_\ell} q_{j_\ell} q_{k_\ell} \right) \\
&\quad \left(-\frac{i}{24} B_{i_1 j_1 k_1 l_1} q_{i_1} q_{j_1} q_{k_1} q_{l_1} \right) \cdots \left(-\frac{i}{24} B_{i_m j_m k_m l_m} q_{i_m} q_{j_m} q_{k_m} q_{l_m} \right).
\end{align*} \quad (47)$$

(C is a constant not depending on the coefficients, but only on their dimension-
ality).

We can calculate all of these integrals if we know how to do the J terms. These
however can be done to all orders since we know exactly how to do the Gaussian
integral

$$\int d^N q \exp i \left(-\frac{1}{2} M_{ij} q_i q_j + J_i q_i \right) = \frac{(2\pi)^{N/2}}{(\det(M))^{1/2}} \exp \left(\frac{1}{2} i J_{i} M^{-1}_{ij} J_{j} \right) =$$

$$C \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{1}{2} i J_{i_1} M^{-1}_{i_1 j_1} J_{j_1} \right) \cdots \left(\frac{1}{2} i J_{i_k} M^{-1}_{i_k j_k} J_{j_k} \right). \quad (48)$$

This expression tells us how to do the integrals in Eq. (47) by collecting terms that
go with given powers of J_i. The outcome of this calculation can be summarized
in a concise way:

1) Each term can be depicted as a diagram consisting of points (vertices) con-
 nected by lines (propagators). The lines may end at points i, x, which refer to factors J_i.

2) There are vertices with three prongs (3-vertices), $\langle i j \rangle_k$, each being asso-
 ciated with a factor A_{ijk}, and vertices with four prongs (4-vertices), $\langle i j \rangle_{kl}$,
 each giving a factor B_{ijkl}.

3) Each line connecting two points i and j, is associated with a factor M^{-1}_{ij}.

4) In contrast with the classical theory, however, the diagrams may contain disconnected pieces, or multiply connected parts: closed loops. See Fig. 2.

5) There are combinatorial factors arising from the coefficients such as \(k! \) in Eq. (47). One can gain experience in deriving these factors; they follow directly from the symmetry structure of a diagram. This technical detail will not be further addressed here.

Apparently nothing changes if one re-inserts the \((\mathbf{x}, t)\) dependence of these coefficients, when the variables \(q_i \) are replaced by the fields \(\phi_i(\mathbf{x}, t) \), and the action by that of a field theory:

\[
S = \int \! d^4x \mathcal{L}(\mathbf{x}, t);
\]

\[
\mathcal{L}(\mathbf{x}, t) = -\frac{1}{2} (\partial_{\mu} \phi_i)^2 - \frac{1}{2} m_i^2 \phi_i^2 - V(\phi) + J_i(x) \phi_i(x). \tag{49}
\]

The rules are as in Subsection 2.1, with the only real distinction that, in the quantum theory, diagrams with closed loops in them contribute. These diagrams may be regarded as the “quantum corrections” to the classical field theory. The disconnected diagrams mentioned under point (4), arise for technical reasons that we will not further elaborate; in practical calculations they may usually be ignored.

![Figure 2. Example of a Feynman diagram for quantized scalar fields](image)

At one point, however, we made an omission: the overall constant \(C \) was not computed. It comes from the cancellation of two coefficients (the one in the measure and the one coming from the Gaussian integrals) each of which tend to infinity in the limit of an infinitely dense grid. In most cases, we are not interested in this coefficient (it refers to vacuum-energy), but this does imply that more is needed to extract relevant physical information from these Feynman diagrams. Fortunately, this deficit is easy to cure. The “source insertions”, \(J_i(x) \phi_i(x) \) can serve as a model both for the production and for the detection of particles. Let both \(|0\rangle_{in} \) and \(|0\rangle_{out} \) be the vacuum, or ground state of the theory. At early times, the insertion \(-J(\mathbf{x}, t) \phi \) in the Hamiltonian acts on this vacuum state to excite it into the initial state we are interested in. By differentiating with respect to \(J \),
we can reach any initial state we want to consider. Similarly, at the end of the experiment, at late times, \(J \phi \) can link the particle state that we wish to detect to the final vacuum state. In short, differentiating with respect to \(J(x, t) \) gives us any matrix element that we wish to study. This is easier than one might think: \(J_i \) refers to particles of type \(i \), and if we give it the same space-time dependence as the wave function of the particle we want to see (put it on the ‘mass shell’ of that particle), then we can be sure that there will be no contamination from unwanted particle states. One only has to check the normalization, but also that is not hard: we adjust the 1-particle to 1-particle amplitude to be one; a single particle cannot scatter (it could be unstable, but that is another matter). The constant \(C \) always drops out of these calculations.

An important point is the ambiguity of the inverse matrix \(M^{-1} \). As in the classical case, there are homogeneous solutions, so, if we work in momentum space, there will be the question how to integrate around the poles of the propagator. The \(i\varepsilon \) prescription mentioned in subsection 2.1 is now imperative. This is explained as follows. Consider the propagator in position space, and choose its poles situated as follows:

\[
(50) \quad \int d^4 k \frac{e^{i k \cdot x - i k^0 t}}{m^2 + k^2 - k^0^2 - i\varepsilon} ; \quad \varepsilon \downarrow 0 .
\]

The poles are at \(k^0 = \pm (\sqrt{m^2 + k^2} - i\varepsilon) \). Now consider this propagator at time \(t = -T + i\beta \) with both \(T \) and \(\beta \) large. Since \(\beta \) is large, the choice of the contour at negative \(k^0 \) is immaterial, since the exponential there is very small. At positive \(k^0 \), we choose the contour to go above the pole, so the imaginary part of \(k^0 \) is chosen positive. We see that then the exponential vanishes rapidly at negative time. In short, our propagator tends to zero if the time \(t \) tends to \(-T + i\beta \) when both \(T \) and \(\beta \) are large and positive. The same holds for \(t \to +T - i\beta \). Indeed, we want our evolution operator to be dominated by the empty diagram in these two limits. Write:

\[
(51) \quad \langle \psi' | U(0, +T - i\beta) | \psi \rangle = \sum_E \langle \psi | E \rangle \exp(-iET - \beta E) \langle E | \psi' \rangle ,
\]

where \(|E\rangle \) are the energy eigenstates. At large \(\beta \), the vacuum state should dominate. Conversely, if we consider evolution backwards in time, the other \(i\varepsilon \) prescription is needed. One then works with the Feynman rules for the inverse, or the complex conjugate, of the scattering matrix.

Now, we are in a position to add the prescription how to identify the external lines (the lines sticking out of the diagram) with in- and out-going particles. For an ingoing particle, we use a source function \(J(x) \) whose Fourier components emit a positive amount of energy \(k^0 \). For an out-going particle the source emits a negative \(k^0 \). According to the rules formulated above, these sources would be connected to the rest of the diagram by propagators, in Fourier space \((k^2 + m^2 - i\varepsilon)^{-1}\). Since
the in- and out-going particles have $k^2_\mu + m^2 = 0$, we must take the residue of the pole. In practice, this means that we have to remove the external propagators, a procedure called 'amputation'. One then still has to establish a normalization factor. This factor is most easily obtained by checking unitarity of the scattering matrix, using the optical theorem. At first sight, this seems to be just a simple numerical coefficient, but there is a slight complication at higher orders, when self-energy corrections affect the propagator. These corrections also remove unstable particles from the physical scattering matrix. We return to this in Section 6. The complete Feynman rules are listed in subsection 4.5.

3 SPINOR FIELDS

3.1 The Dirac equation

The fields introduced in the previous section can only be used to describe particles with spin 0. In a quantum theory, particles can come in any representation of the little group, which is the subgroup of the inhomogeneous Lorentz group that leaves the 4-momentum of a particle unaffected. For massive particles in ordinary space, this is the group of rotations of a three-vector, $SO(3)$. Its representations are labelled by either an integer ≥ 0, or an integer $+\frac{1}{2}$, representing the total spin of a particle. So, next in line are the particles with spin $\frac{1}{2}$. The wave function for such a particle has two components, one for spin up and one for spin down. Therefore, to describe a relativistic theory with such particles, we should use a two-component field obeying a relativistically covariant field equation. Paul Dirac was the first to find an appropriate relativistically covariant equation for a free particle with spin $\frac{1}{2}$:

\begin{equation}
(m + \sum_\mu \gamma^\mu \partial_\mu)\psi(x) = 0,
\end{equation}

but the field $\psi(x,t)$ has four complex components. Here, γ^μ, $\mu = 0, 1, 2, 3$, are four 4×4 matrices, obeying

\begin{equation}
\{\gamma^\mu, \gamma^\nu\} = \gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2g^{\mu\nu}; \quad \gamma^\dagger_\mu = g_{\mu\nu} \gamma^\nu.
\end{equation}

In contrast to the scalar case, the Dirac equation is first order in the space- and time-derivatives, and furthermore, one could impose a 'reality condition' (Majorana condition) on the fields, of the form

\begin{equation}
\psi(x) = C\psi^*(x), \quad \gamma^\mu C = C(\gamma^\mu)^*, \quad \mu = 0, 1, 2, 3.
\end{equation}

These two features combined give the Dirac field the same multiplicity as two scalar fields. Usually, we do not impose the Majorana condition, so that the Dirac
field is truly complex, having a conserved $U(1)$ charge much like two complex scalar fields.

We briefly recapitulate the most salient features of the Dirac equation. The 4×4 Dirac matrices can conveniently be expressed in terms of two commuting sets of Pauli matrices, σ_a and τ_a. Define

$$
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
$$

and similarly for the τ matrices, except that they act in different spaces: a Dirac index is then viewed as a pair $(i\alpha)$ of indices i and α, such that the matrices σ_a act on the first index i, and the matrices τ_A act on the indices α. We have:

$$
\sigma_a \sigma_b = \delta_{ab} + i \varepsilon_{abc} \sigma_c, \quad \tau_A \tau_B = \delta_{AB} + i \varepsilon_{ABC} \tau_C, \quad [\sigma_a, \tau_B] = 0.
$$

Define (with the convention $g_{\mu\nu} = \text{diag}(-1,1,1,1)$)

$$
\gamma^1 = \sigma_1 \tau_1, \quad \gamma^2 = \sigma_2 \tau_1, \quad \gamma^3 = \sigma_3 \tau_1, \quad \gamma^0 = -i \tau_3.
$$

The matrix C in Eq. (54) is then:

$$
C = \gamma_2 \gamma_4.
$$

In the non-relativistic limit, the Dirac equation reads

$$
(m + i \gamma^\mu k^\mu)\psi \approx (m - i \gamma^0 k^0)\psi \approx m(1 - \tau_3)\psi = 0,
$$

so that only two of the four field components survive (those with $\tau_3 |\psi\rangle = |\psi\rangle$). This continues to be the case for relativistic particles, simply because of Lorentz-invariance.

3.2 Fermi-Dirac statistics

At this point, we could now attempt to pursue our fundamental quantization program: produce the Poisson brackets of the system, replace these by commutators, rewrite the Hamiltonian of the system in operator form, and solve the resulting Schrödinger equation.

Unfortunately, if one uses ordinary (commuting) numbers, this does not work. The Lagrangian associated to the Dirac equation will read

$$
L = \int d^3x \mathcal{L}(x); \quad \mathcal{L}(x) = -\bar{\psi}(x)(m + \sum_{\mu=0}^4 \gamma^\mu \partial_\mu)\psi(x),
$$
and the canonical procedure would give as momentum fields:

\[(61) \quad p_\psi(x) = \frac{\partial L}{\partial (\partial_\psi(x))} = \overline{\psi}(x) \gamma^0, \quad p_\overline{\psi}(x) = 0.\]

From this, one finds the Hamiltonian:

\[(62) \quad H = \int d^3x \mathcal{H}(\bar{x}); \quad \mathcal{H}(\bar{x}) = p_\psi \overline{\psi} - L(x) = \overline{\psi}(x)(m + \sum_{i=1}^{3} \gamma^i \partial_i)\psi(x).\]

Here, the index \(i\) is a spatial one, running from 1 to 3. This, however, is not bounded from below! Such a quantum theory would not possess a vacuum state, and hence be unsuitable as a model for Nature.

For a better understanding of the situation, we strip the Dirac equation to its bare bones. After diagonalizing it, we find that the Lagrangian consists of elementary units of the form

\[(63) \quad L = \bar{\psi}(i\partial_\tau \psi - M\psi); \quad p_\psi = i\bar{\psi}; \quad H = \bar{\psi}M\psi.\]

If we were using ordinary numbers, the only way to obtain a lower bound on \(H\) would be by identifying \(\bar{\psi}\) with \(\psi\). Then, however, the kinetic part of the Lagrangian would become a time-derivative:

\[(64) \quad \bar{\psi}\partial_\tau \psi \rightarrow \frac{1}{2} \partial_\tau (\bar{\psi} \psi),\]

so that it could not contribute to the action. One concludes that, only in the space of \textit{anticommuting numbers}, can the Lagrangian (63) make sense. Thus, one replaces the Poisson brackets for \(\psi\) and \(\bar{\psi}\) by \textit{anticommutators}:

\[(65) \quad \{\bar{\psi}, \psi\} \equiv \bar{\psi} \psi + \psi \bar{\psi} = 1; \quad \{\psi, \psi\} = 0; \quad \{\bar{\psi}, \bar{\psi}\} = 0.\]

The elementary representation of this algebra is in a 'Hilbert space' consisting of just two states (the empty state and the one-particle state), in which the operators \(\psi\) and \(\bar{\psi}\) act as annihilators and creators:

\[(66) \quad \psi = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \quad \bar{\psi} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}; \quad H = \begin{pmatrix} 0 & 0 \\ 0 & M \end{pmatrix}.\]

Returning to the non-diagonalized case, we can keep the Lagrangian (60) and Hamiltonian (62) when the commutation rules (65) are replaced by

\[
\{\overline{\psi}^i(x), \psi_j(x')\} = \delta^i_j \delta(x - x');
\]

\[(67) \quad \{\psi_i(x), \psi_j(x')\} = 0; \quad \{\overline{\psi}^i(x), \overline{\psi}^j(x')\} = 0.\]
The commutation rules (67) turn Dirac particles into fermions. It appears to be a condition for any Lorentz-invariant quantum theory to be consistent, that integer spin particles must be *bosons* and particles whose spin is an integer $+\frac{1}{2}$ must be *fermions*.

3.3 The path integral for anticommuting fields

Let us now extend the notion of path integrals to include Dirac fields. This means we have to integrate over anticommuting numbers, to be called θ_i, where i is some index (possibly including ∞). They are numbers, not operators, so all anticommutators vanish. Consider the Taylor expansion of a function of a variable θ. Since $\theta^2 = 0$, this expansion has only two coefficients:

(68) \[f(\theta) = f(0) + f'(0)\theta . \]

So, this is the most general function of θ that one can have. It is generally agreed that one should define integrals for anticommuting numbers θ by postulating

(69) \[\int d\theta 1 \equiv 0 ; \quad d\theta \theta \equiv 1 . \]

The reason for this definition is that one can manipulate these expressions in the same way as integrals over ordinary numbers:

(70) \[\int d\theta f(\theta + \alpha) = \int d\theta f(\theta) ; \quad \int \theta \frac{\partial f(\theta)}{\partial \theta} = 0 , \]

e tc.

Now, consider the Hamiltonian for just one fermionic degree of freedom, (66), which we write as

(71) \[H = M b^\dagger b ; \quad \{ b , b^\dagger \} = 1 ; \quad b^2 = (b^\dagger)^2 = 0 , \]

and a wave function $\psi = \begin{pmatrix} \psi_0 \\ \psi_1 \end{pmatrix}$. Define the following function of θ:

(72) \[\psi(\theta) \equiv \psi_0 \theta + \psi_1 , \]

This now serves as our wave function. It is not hard to derive how the annihilation operator b and the creation operator b^\dagger act on these wave functions:

(73) \[\text{if } \phi = b \psi \text{ then } \phi(\theta) = \theta \psi(\theta) , \]
or:

\begin{equation}
 b = \theta; \quad b^t = \frac{\partial}{\partial \theta}.
\end{equation}

We now wish to express the evolution of a fermionic wave function in terms of a path integral, just as in subsection 2.4. Consider a short time interval \(\delta t \). Then, ignoring all terms of order \((\delta t)^2\), one derives

\begin{align*}
 e^{-i\delta t H} \psi(\theta_1) &= \psi_0 \theta_1 + (1 - iM \delta t)\psi_1 \\
 &= \int d\theta_0 (-\theta_1 + \theta_0 - iM \delta t \theta_0) (\psi_0 \theta_0 + \psi_1) \\
 &= \int d\theta_0 \int d\bar{\theta} \left(1 + \bar{\theta} (-\theta_1 + \theta_0 - iM \delta t \theta_0)\right) \psi(\theta_0) \\
 &= \int d\theta_0 \int d\bar{\theta} e^{\bar{\theta} (-\theta_1 + \theta_0 - iM \delta t \theta_0)} \psi(\theta_0).
\end{align*}

\begin{equation}
(75)
\end{equation}

Repeating this procedure over many infinitesimal time intervals, with \(T = N \delta t \), one arrives at the formal expression

\begin{equation}
\psi(\theta_T) = \int d\theta_T \cdots d\theta_0 \exp \sum_{\tau=0}^{N-1} \delta t \left(\bar{\theta}_\tau \left(\frac{-\theta_{\tau+1} + \theta_\tau}{\delta t} - iM \theta_\tau \right) \right) \psi(\theta_0).
\end{equation}

The exponential tends to

\begin{equation}
(77)
i \int dt L(t).
\end{equation}

Thus, as in the bosonic case, the evolution operator is formally the path integral of \(e^{iS} \) over all (anticommuting) fields \(\psi_i(x, t) \), where the action \(S \) is the time integral of the Lagrangian \(L \), and indeed the space-time integral of the Lagrange density \(L(x, t) \).

In some applications, careful considerations of the boundary conditions for Dirac's equation, require an extra boundary term to be added to the action (77). In our present treatment this is of no consequence.

\section{The Feynman rules for Dirac fields}

Let \(M_{ij} \) be any matrix that can be diagonalized. Using Eqs. (69), we find the integral

\begin{equation}
(78) \prod \int d\theta_i \int d\bar{\theta}_i e^{\bar{\theta}_i M_{ij} \theta_j} = \det(M),
\end{equation}
which can be easily checked by diagonalizing \(M \), and writing

\[
(79) \quad \int d\theta \int d\bar{\theta} e^{\bar{\theta} M \theta} = \int d\theta \int d\bar{\theta} (1 + \bar{\theta} M \theta) = M .
\]

Thus, a Gaussian integral over anticommuting numbers gives a result very similar to that over commuting numbers, except that we get \(\det(M) \) rather than \(C/\det(M) \). Writing

\[
M = M_0 + \delta M ; \\
\det(M) = e^{\text{Tr}(\log M)} \\
= 1 + \text{Tr} \log M + \frac{1}{2} (\text{Tr} \log M)^2 + \cdots \\
\text{Tr} \log(M) = \text{Tr} \log(M_0) + \text{Tr}(1 + M_0^{-1} \delta M) ,
\]

we see that this can be obtained from \(\det(M^{-1}) \) by switching the signs of all odd terms in this expansion. Since the \(N \)th term corresponds to a Feynman diagram with \(N \) closed fermionic loops, one derives that the Feynman rules can be read off from the ones for ordinary commuting fields, by switching a sign whenever a closed fermionic loop is encountered.

We have

\[
(81) \quad -\text{Tr} \log M = -\text{Tr} \log M_0 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{Tr}(M_0^{-1} \delta M)^n .
\]

Here, as in the bosonic case, \(-M_0\) is the propagator of the theory, and \(\delta M \) represents the contribution from any perturbation. Thus, if our Lagrangian, including possible interaction terms, is

\[
(82) \quad \mathcal{L} = -\bar{\psi}_i (m_{(i)} + \gamma^\mu \partial_\mu) \psi_i + \bar{\psi}_i g_{ij}(\phi) \psi_j ,
\]

then the propagator, in Fourier space, is

\[
(83) \quad (m_{(i)} + i \gamma^\mu k_\mu)^{-1} = \frac{m_{(i)} - i \gamma^\mu k_\mu}{m_{(i)}^2 + k^2 - i\varepsilon} ,
\]

while \(g_{ij}(\phi) \) generates the interaction vertices of a Feynman diagram. The \(i\varepsilon \) term is chosen as in bosonic theories, for the same reason as there: the vacuum state must be the state with lowest energy.

The poles in the propagator can be used to define in- and out-going particles, by adding source terms to the Lagrangian:

\[
(84) \quad \delta \mathcal{L} = \bar{\eta}(x) \psi + \bar{\psi} \eta(x) ,
\]
where \(\eta(x) \) and \(\bar{\eta}(x) \) are kept fixed, as anticommuting numbers. We could proceed to derive the precise rules for in- and out-going particles with spin up or down, but it is more convenient to postpone this until we discuss the unitarity property of the \(S \)-matrix, where these rules are required explicitly, and where we find the precise prescription for the normalization of these states (section 6).

Note that our Lagrangian is always kept to be bilinear in the anticommuting fields. This is because we insist that \(\mathcal{L} \) itself must be a commuting number and, furthermore, terms that are quartic in the fermionic fields have too high a dimension. We will see in the following section why such terms have to be avoided.

4 GAUGE FIELDS

4.1 Renormalizability

We continue to search for elementary fields, whose Lorentz covariant field equations can be subject to our quantization program. In principle, such fields could come as any arbitrary representation of the Poincaré algebra, that is, we might consider any kind of tensor field, \(A_{\mu\nu\lambda\cdots}(x,t) \). It turns out, however, that tensors with more than one Lorentz index cannot be used. This is because we wish the energy density of a field to be bounded from below, and in addition, we wish the dimensionality of the interactions to be sufficiently low, such that all coupling strengths have mass dimension zero or positive.

A theory is called "renormalizable" if all of its interaction parameters \(\lambda_i \) (that is, all parameters with respect to which we need to make a perturbation expansion) have a mass-dimensionality that is positive or zero. In practice, the dimensionality of coupling coefficients is easy to establish; this is further explained in Section 7, Renormalization. Coupling strengths with mass dimension less than zero give rise to unacceptably divergent expressions for the contributions of the interactions at short scales. A prime example of a field one would like to include is the gravitational field described by the metric \(g_{\mu\nu}(x) \), but its only possible interaction is the gravitational one, whose coupling strength, Newton’s constant \(G_N \), has the wrong dimension. The non-renormalizable theories one then obtains are the subject of intense investigations but fall outside the scope of this paper (see C. Rovelli’s contribution in this book).

So, only spin-one fields \(A_\mu^a(x) \) are left for consideration. Here, \(\mu \) is a Lorentz index, while the number of field types is counted by the index \(a = 1, \cdots, N_V \). These fields should describe the creation and annihilation of spin-one particles. When at rest, such a particle will be in one of three possible spin states. Yet, to be Lorentz-invariant, a vector field \(A_\mu \) should have four components. One of these, at least, should therefore be unphysical, although one might think of accepting an extra, spinless particle to be associated to the vector particles. More important
therefore is the consideration that, in the corresponding classical theory, the energy should be bounded from below.

This then rules out the treatment of a four-vector field as if we had four scalar fields, because the Lorentz-invariant product has an indefinite metric. Can we construct a Lagrangian for a vector field that gives a Hamiltonian that is bounded from below?

Let us look at the high-momentum limit for one of these vector fields. The only two terms in a Lagrangian that can survive there are:

\[
L = -\frac{1}{2} \alpha (\partial_{\mu} A_{\nu})^2 + \frac{1}{2} \beta \partial_{\mu} A_{\mu} \partial_{\nu} A_{\nu},
\]

since other terms of this dimensionality can be reduced to these ones by partial integration of the action, while mass terms (terms without partial derivatives) become insignificant. We have for the canonical momentum fields

\[
E^i = \frac{\partial L}{\partial \partial_0 A_i} = \alpha \partial_0 A_i \quad (i = 1, 2, 3);
\]

\[
E^0 = \frac{\partial L}{\partial \partial_0 A_0} = (\beta - \alpha) \partial_0 A_0 - \beta \partial_i A_i.
\]

Now, consider the Hamiltonian density \(H = E^\mu \partial_0 A_\mu - L \). It must be bounded from below for all field configurations \(A_\mu(x, t) \). Let us first consider the case when the spacelike components \(A_i \) and all spacelike derivatives \(\partial_i \) are negligible compared to \(\partial_0 A_0 \):

\[
H \rightarrow \frac{1}{2} (\beta - \alpha)(\partial_0 A_0)^2,
\]

then, when \(A_0 \) and all time-derivatives are negligible:

\[
H \rightarrow \frac{1}{2} \alpha (\partial_i A_j)^2 - \frac{1}{2} \beta (\partial_i A_i)^2.
\]

These must all be bounded from below. Eq. (87) dictates that \(\beta \geq \alpha \), while Eq. (88) dictates that \(\alpha \geq \beta \). We conclude that \(\alpha = \beta \), which we can both normalize to one. Since total derivatives in the Lagrangian do not count, we can then rewrite the original Lagrangian (85) as

\[
L \rightarrow -\frac{1}{4} F^a_{\mu \nu} F^a_{\mu \nu}, \quad F^a_{\mu \nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu.
\]

Realizing that this is the Lagrangian for ordinary QED, we know that its energy-density is properly bounded from below. We conclude that every vector field theory must have a Lagrangian that approaches Eq. (89) at high energies and momenta.

We do note, that with the choice \(\alpha = \beta \), both (87) and (88) tend to zero. Indeed, any field \(A^a_\mu \) that can be written as a space-time gradient, \(A^a_\mu = \partial_\mu \Lambda^a(x, t) \), has
$F_{\mu \nu}^a = 0$, and hence contributes neither to the Lagrangian nor to the Hamiltonian. Such fields could be arbitrarily strong, yet carry zero energy. They would represent particles and forces without energy. This is unacceptable in a decent Quantum Field Theory. How do we protect our theory against such features?

There is exactly one way to do this. We must make sure that field replacements of the type

\begin{equation}
A^a_\mu \rightarrow A^a_\mu + \partial_\mu \Lambda^a(x) + \cdots ,
\end{equation}

do not affect at all the physical state that we are describing. This is what we call a local gauge transformation. We must insist that our theory is invariant under local gauge transformations. The ellipses in Eq. (90) indicate that we allow extra terms that do not contribute to the bilinear part of the Lagrangian (89). Thus, we arrive at Yang-Mills field theory.

4.2 The Yang-Mills equations

Our conclusion from the above is that every vector field is associated to a local gauge symmetry. The dimensionality of the local gauge group must be equal to N_V, the number of vector fields present. Besides the vector fields, the local symmetry transformations may also affect the scalar and spinor fields. In short, the vector fields must be Yang-Mills fields. We here give a brief summary of Yang-Mills theory [Yang and Mills, 1954].

We have a local Lie group with elements $\Omega(x)$ at the point x. Let the matrices $T^a, \ a = 1, \cdots, N_V$ be its infinitesimal generators:

\begin{equation}
\Omega(x) = 1 + i \sum_a \Lambda^a(x)T^a; \quad T^a = (T^a)^\dagger.
\end{equation}

Characteristic for the group are its structure constants f_{abc}:

\begin{equation}
[T^a, T^b] = if_{abc}T^c.
\end{equation}

As is well-known in group theory, one can choose the normalization of T^a in such a way that the f_{abc} are totally antisymmetric:

\begin{equation}
f_{abc} = -f_{bac} = f_{bca}.
\end{equation}

Usually, the spinor fields $\psi(x)$ and scalar fields $\phi(x)$ are introduced in such a way that they transform as (sets of irreducible) representations of the gauge group. A local gauge transformation is then:

\begin{equation}
\psi'(x) = \Omega(x)\psi(x); \quad \phi'(x) = \Omega(x)\phi(x),
\end{equation}
and in infinitesimal form:

\[\psi'(x) = \psi(x) + i \Lambda^a(x) T^a \psi(x) + \mathcal{O}(\Lambda)^2, \]

and similarly for \(\phi(x) \). The dimension of the irreducible representation can be different for different field types. So, scalar and spinor fields usually form gauge-vectors of various dimensionalities. In these, and in the subsequent expressions, the indices labelling the various components of the fields \(\psi, \Omega \) and \(T^a \) have been suppressed.

Our vector fields \(A^a_\mu(x) \) are most conveniently introduced by demanding the possibility of constructing gauge-covariant gradients of these fields:

\[D_\mu \psi(x) \equiv (\partial_\mu + ig A^a_\mu(x) T^a) \psi(x), \]

where \(g \) is a freely adjustable coupling parameter. The repeated indices \(a \), denoting the different species of vector fields, are to be summed over. By demanding the transformation rule

\[(D_\mu \psi(x))' = \Omega(x) D_\mu \psi(x) = D_\mu \psi(x) + i \Lambda^a(x) T^a D_\mu \psi(x) + \mathcal{O}(\Lambda)^2, \]

one easily derives the transformation rule for the vector fields \(A^a_\mu(x) \):

\[ig A^a_\mu'(x) T^a = \Omega(x) \left(\partial_\mu + ig A^a_\mu(x) T^a \right) \Omega^{-1}(x) \]

\[= ig A^a_\mu(x) T^a - i \partial_\mu \Lambda^a(x) T^a + g[T^a, T^b] \Lambda^a(x) A^b_\mu(x) \quad (98) \]

(omitting the \(\mathcal{O}(\Lambda)^2 \) terms). With Eq. (92), this becomes

\[A^a_\mu'(x) = A^a_\mu(x) - \frac{1}{g} \partial_\mu \Lambda^a(x) + f_{abc} \Lambda^b(x) A^c_\mu(x). \quad (99) \]

If we ensure that all gradients used are covariant gradients, we can directly construct the general expressions for Lagrangians for scalar and spinor fields that are locally gauge-invariant:

\[L_{\text{scalar}}^{\text{inv}}(x) = -\frac{1}{2} (D_\mu \phi)^2 - V(\phi^2); \]
\[L_{\text{Dirac}}^{\text{inv}}(x) = -\bar{\psi}(\gamma^\mu D_\mu + m) \psi, \]

and in addition other possible invariant local interaction terms without derivatives.

The commutator of two covariant derivatives is

\[[D_\mu, D_\nu] \psi(x) = ig F^a_{\mu\nu}(x) T^a \psi(x); \]
\[F^a_{\mu\nu}(x) = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + gf_{abc} A^b_\mu A^c_\nu. \quad (102) \]
Unlike $A^a_\mu(x)$ or the direct gradients of $A^a_\mu(x)$, this Yang-Mills field $F^a_{\mu\nu}(x)$ transforms as a true adjoint representation of the local gauge group:

\[(103) \, F^a_{\mu\nu}'(x) = F^a_{\mu\nu}(x) + f_{abc}A^b(x)F^c_{\mu\nu}(x).\]

This allows us to construct a locally gauge invariant Lagrangian for the vector field:

\[(104) \, \mathcal{L}_{\text{YM}}^{\text{inv}}(x) = -\frac{1}{4}F^a_{\mu\nu}(x)F^a_{\mu\nu}(x).\]

The structure constants f_{abc} in the definition 102 of the field $F_{\mu\nu}$ implies the presence of interaction terms in the Yang-Mills Lagrangian 104. If f_{abc} is non-vanishing, we talk of a non-Abelian gauge theory.

There is one important complication in the case of fermions: the Dirac matrix $\gamma^5 \equiv \gamma^1\gamma^2\gamma^3\gamma^4$ can be used to project out the chiral sectors:

\[(105) \, \psi \equiv \psi_L + \psi_R; \quad \psi_L = \frac{1}{2}(1 + \gamma^5)\psi; \quad \psi_R = \frac{1}{2}(1 - \gamma^5)\psi.\]

Since the kinetic part of a Dirac Lagrangian can be split according to

\[(106) \, \mathcal{L}_{\text{Dirac}} = -\bar{\psi}_L(\gamma D)\psi_L - \bar{\psi}_R(\gamma D)\psi_R,\]

we may choose the left-handed fields ψ_L to be in representations different from the right-handed ones, ψ_R. However, since a mass term joins left to right:

\[(107) -m\bar{\psi}\psi = -m\bar{\psi}_L\psi_R - m\bar{\psi}_R\psi_L,\]

such terms would then be forbidden, hence such chiral fields must be massless. Second, not all combinations of chiral fermions are allowed. An important restriction is discussed in section 8. The fields ψ_L turn out to describe spin-$\frac{1}{2}$ massless particles with only the left-rotating helicity, while their antiparticles, described by $\bar{\psi}_L$, have only the right-rotating helicity.

4.3 The need for local gauge-invariance

In the early days of Gauge Theory, it was thought that local gauge-invariance could be an ‘approximate’ symmetry. Perhaps one could add mass terms for the vector field that violate local symmetry, but make the model look more like the observed situation in particle physics. We now know, however, that such models suffer from a serious defect: they are non-renormalizable. The reason is that renormalizability requires our theory to be consistent up to the very tiniest distance scales. A mass term would, at least in principle, turn the field configurations described by the $\Lambda(x)$ contributions in Eq. (99) into physically observable fields (the Lagrangian
now does depend on $\Lambda(x)$). But, since the kinetic term for $\Lambda(x)$ is lacking, violently oscillating Λ fields carry no sizeable amount of energy, so they would not be properly suppressed by energy conservation. Uncontrolled short distance oscillations are the real, physical cause for a theory being non-renormalizable.

It is similar uncontrolled short-distance fluctuations of the space-time metric that cause the quantized version of General Relativity ("Quantum Gravity") to be non-renormalizable. Drastic measures (String Theory?) are needed to repair such a theory.

Since renormalizability provides the required coherence of our theories, local gauge symmetry, described by Eqs. (94) and (99), must be an exact, not an approximate symmetry of any Quantum Field Theory.\(^4\) Obviously, the fact that most vector particles in the sub-atomic world do carry mass must be explained in some other way. It is here that the Brout-Englert-Higgs mechanism comes to the rescue, see Section 5.

4.4 Gauge fixing

The longitudinal parts of the vector fields do not occur directly in the Yang-Mills Lagrangian (104), exactly because of its invariance under transformations of the form (99). Yet if we wish to describe solutions, we need to choose a longitudinal component. This is why we wish to impose some additional constraint, the so-called gauge condition, on our description of the solutions, both in the classical and in the quantized theory. In electrodynamics, we usually impose a constraint such as $\partial_\mu A_\mu(x) = 0$ or $A_0 = 0$. In a Yang-Mills theory, such a constraint is needed for each value of the index a. A gauge fixing term is indicated by a field $C^a(x)$ which is put equal to zero:

\[
\begin{align*}
(108) \quad C^a(x) &= 0; \quad a = 1, \cdots, N_V; \quad \text{where} \\
(109) \text{either} \quad C^a(x) &= \partial_\mu A_\mu^a(x) \quad \text{(Feynman gauge)}, \\
(110) \text{or} \quad C^a(x) &= A_0^a(x) \quad \text{(timelike gauge)},
\end{align*}
\]

or other possible gauge choices. It is always possible to find a $\Lambda^a(x)$ that obeys one of such conditions. For instance, to obtain the Feynman gauge (109), all one has to do is extremize an integral under variations of the gauge group:

\[
(111) \delta \int d^4 x \left(A_\mu^a(x) \right)^2 = 0 \quad \rightarrow \quad \partial_\mu A_\mu^a(x) = 0.
\]

For the classical theory, the most elegant way to impose such a gauge condition

\(^4\)One apparent exception could be the case where the longitudinal component decouples completely, which happens in massive QED. But even in that case, it is better to view the longitudinal photon as a Higgs field, see section 5.
is by adding a Lagrange multiplier term to the Lagrangian:

\begin{equation}
(112) \quad \mathcal{L}(x) = \mathcal{L}^{\text{inv}}(x) + \lambda^a(x)C^a(x),
\end{equation}

where $C^a(x)$ is any of the possible gauge fixing terms and $\lambda^a(x)$ a free kinematical variable. Here, \mathcal{L}^{inv} stands for the collection of all gauge-invariant terms in the Lagrangian. The Euler-Lagrange equations of the theory then automatically yield the Yang-Mills field equations plus the constraint, apart from a minor detail: the boundary condition. Varying the gauge transformations, one finds, since \mathcal{L}^{inv} does not vary, $D_\mu \lambda^a(x) = 0$. We need to impose the stricter equation $\lambda^a(x) = 0$, which is obtained by imposing $\lambda^a(x) = 0$ at the boundaries of our system.

Alternatively, one can replace the invariant Lagrangian by

\begin{equation}
(113) \quad \mathcal{L}(x) = \mathcal{L}^{\text{inv}}(x) - \frac{1}{2} \left(C^a(x) \right)^2,
\end{equation}

which has the advantage that, after partial integration, the bilinear part becomes very simple: $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} (\partial_\mu A^\mu)^2 \rightarrow -\frac{1}{2} (\partial_\mu A^\nu)^2$, so that the vector field can be treated as if it were just 4 scalars. Again, varying the gauge transformation $\Lambda^a(x)$, one finds $D_\mu C^a(x) = 0$, which must be replaced by the more stringent condition $C^a(x) = 0$ by adding the appropriate boundary condition.

Note that the Lagrange-Hamilton formalism could give the wrong sign to the energy of some field components; we should continue to use the energy deduced before imposing the gauge constraint. If we use the timelike gauge (110), the energy is correct, but the theory appears to lack Lorentz invariance. Lorentz transformations must now be accompanied by gauge transformations.

How is the gauge constraint to be handled in the quantized theory? This problem was solved by B.S. DeWitt [1964; 1967a; 1967b] and by Faddeev and Popov [1967; 1969; 1984]. The gauge constraint is to be imposed in the integrand of the functional integral:

\begin{equation}
(114) \quad Z = \int DA(x) \int D\phi(x) \cdots e^{i \int d^4x \mathcal{L}^{\text{inv}}(x)} \prod_{a,x} \delta(C^a(x)) \Delta\{A, \phi\}.
\end{equation}

Thus, we integrate only over those field configurations that obey the gauge condition. $\Delta\{A, \phi\}$ is a Jacobian factor, which we will discuss in a moment. The formal delta function can be replaced by a Lagrange multiplier:

\begin{equation}
(115) \quad \int D\lambda^a(x) e^{i \int d^4x \lambda^a(x) C^a(x)},
\end{equation}

and indeed, if $\lambda^a(x)$ is simply added to the list of dynamical field variables of the theory, the Feynman rules can be derived unambiguously as they were for the scalar and the spinor case.
There is, however, a problem. It appears to be difficult to prove gauge-invariance. More precisely: we need to ascertain that, if we make the transition to a different gauge fixing function \(C^a(x) \), the physical contents of the theory, in particular the scattering matrix, remains the same. The difficulty has to do with the measure of the integral. It is not gauge-invariant, unless we add the extra term \(\Delta \{ A, \phi \} \) in Eq. (114). This term is associated to the volume of an infinitesimal gauge transformation. Suppose that the field combination \(C^a(x) \) transforms under a gauge transformation as

\[
(116) \quad C^a(x') = C^a(x) + \frac{\partial C^a(x)}{\partial \Lambda^b(x')} \Lambda^b(x'),
\]

then the required volume term is the Jacobian

\[
(117) \quad \Delta \{ A, \phi \} = \det \left(\frac{\partial C^a(x)}{\partial \Lambda^b(x')} \right).
\]

The determinant is computed elegantly by using the observation in subsection 3.4 that a Gaussian integral over anticommuting variables gives a determinant (Eq. (78)). So, we introduce anticommuting scalar fields \(\eta \) and \(\bar{\eta} \), and then write

\[
(118) \quad (117) = \int \mathcal{D}\eta^a(x) \int \mathcal{D}\bar{\eta}^a(x) \exp \left(\bar{\eta}^a(x) \frac{\partial C^a(x)}{\partial \Lambda^b(x')} \eta^b(x') \right).
\]

This is called the Faddeev-Popov term in the action. Taking everything together, we arrive at the following action for a Yang-Mills theory:

\[
(119) \quad \mathcal{L}(x) = \mathcal{L}^{\text{inv}}(x) + \lambda^a(x)C^a(x) + \bar{\eta}^a(x) \frac{\partial C^a(x)}{\partial \Lambda^b(x')} \eta^b(x').
\]

It is also possible to find the quantum analogue for the classical Lagrangian (113). First, replace \(C^a(x) \) by \(C^a(x) - F^a(x) \), where \(F^a(x) \) is a fixed but \(x \)-dependent quantity in the functional integral (119). Physical effects should be completely independent of \(F^a(x) \). Therefore, we can functionally integrate over \(F^a(x) \), using any weight factor we like. Choose the weight factor \(e^{-\frac{1}{2} \int d^d x (F^a(x))^2} \). The Lagrange multiplier \(\lambda^a(x) \) now simply forces \(C^a(x) \) to be equal to \(F^a(x) \). We end up with the effective Lagrangian\(^5\)

\[
(120) \quad \mathcal{L}(x) = \mathcal{L}^{\text{inv}}(x) - \frac{1}{2} \left(C^a(x) \right)^2 + \bar{\eta}^a(x) \frac{\partial C^a(x)}{\partial \Lambda^b(x')} \eta^b(x').
\]

This is the most frequently used Lagrangian for gauge theories. In contrast to the Lagrangians for scalar and spinor fields, not all fields here represent physical particles. The longitudinal part of the vector fields, and the fermionic yet scalar fields \(\bar{\eta} \) and \(\eta \) are "ghosts".

\(^5\)One usually absorbs the factor \(1/g \) of Eq. (99) into the definition of the \(\bar{\eta} \) field.
4.5 Feynman rules

The Feynman rules, needed for the computation of the scattering matrix elements using perturbation theory, can be read off directly from the gauge-fixed Lagrangian (119) or (120). In both cases, we first split off the bilinear parts\(^6\), writing the Lagrangian as

\[(121) \mathcal{L} = -A_\alpha(x) \tilde{M}_{\alpha\beta} A_\beta(x) - \bar{\psi}_\alpha(x) \hat{D}_{\alpha\beta} \psi_\beta(x) + \mathcal{L}^{\text{int}},\]

where \(\mathcal{L}^{\text{int}}\) contains all trilinear and quadrilinear terms. Here, \(A_\alpha(x)\) is short for all bosonic (scalar and vector) fields, and \(\bar{\psi}\) and \(\psi\) for both the Dirac fermions and the Faddeev-Popov fermions. The coefficients \(\tilde{M}_{\alpha\beta}, \hat{D}_{\alpha\beta}\) and the trilinear coefficients may contain the gradient operator \(\partial/\partial x^\mu\). After Fourier expansion, this will turn into a factor \(i k_\mu\).

- The propagators \(\hat{P}_{\alpha\beta}\) and \(\hat{P}_{\alpha\beta}^{\text{ferm}}\) will be the inverse of the coefficients \(\tilde{M} - i \varepsilon\) and \(\hat{D} - i \varepsilon\), so, for instance

\[
\begin{align*}
\text{if } \tilde{M}_{\alpha\beta} = (m_\alpha - \partial_\mu^2) \delta_{\alpha\beta} & \text{ then } \hat{P}_{\alpha\beta} = \frac{\delta_{\alpha\beta}}{m_\alpha^2 + k^2 - i \varepsilon}; \\
\text{if } \hat{D}_{\alpha\beta} = (m_\alpha + \gamma^\mu \partial_\mu) \delta_{\alpha\beta} & \text{ then } \hat{P}_{\alpha\beta}^{\text{ferm}} = \frac{(m_\alpha - i \gamma^\mu k_\mu) \delta_{\alpha\beta}}{m_\alpha^2 + k^2 - i \varepsilon}. \tag{122}
\end{align*}
\]

- The vertices are generated by the trilinear and quadrilinear terms of \(\mathcal{L}^{\text{int}}\), just as in subsection 2.5. If we have source terms such as \(J^a(x) \phi_\alpha(x), \bar{\eta}^i(x) \psi_i(x)\) or \(\bar{\psi}(x) \eta_k(x)\), then these correspond to propagators ending into points, where the momentum \(k\) has to match a given Fourier component of the source. All this can be read off neatly from formal expansions of the functional integral such as (47).

- There is an overall minus sign for every fermionic closed loop.

- Every diagram comes with canonical coefficients such as \(1/k!\) and \((2\pi)^{-4N}\) where \(k!\) is the dimension of the diagram’s internal symmetry group, and \(N\) counts the number of loop integrations. These coefficients can be obtained by comparing functional integrals with ordinary integrals.

- There is a normalization coefficient for every external line, depending on the wave function chosen for the in- and out-going particles. We return to this in section 6.

\(^6\)One may decide to leave small corrections to the bilinear parts of the Lagrangian to be treated together with the higher order terms as if they were ‘two-point vertices’.
Note that any terms in the Lagrangian that can be written as a gradient of some (locally defined) field configuration can be replaced by zero. This is because (under sufficiently carefully chosen boundary conditions) such terms do not contribute to the total action \(S = \int \! d^4 x \mathcal{L}(x) \).

4.6 BRST symmetry

As the reader may have noted, we departed from our original intention, to keep space and time on a lattice and only turn to the continuum limit at the very end of a calculation. We have not even started doing calculations, and already the Feynman rules were formulated as if the fields lived on a space-time continuum. Indeed, we should have kept space and time discrete, so that the functional integral is nothing but an ordinary integral in a space with very many, but still a finite number of, dimensions. In practice, however, the continuum is a lot easier to handle, so, often we do not explicitly mention the finite size meshes of space and time.

Our first attempt to formulate the continuum limit will be in section 7. We will then see that the coefficients in the Lagrangian (120) have to be renormalized. The following question then comes up:

If we see a Lagrangian that looks like (120), how can we check that its coefficients are those of a genuine gauge theory?

The answer to this question is that the gauge-fixed Lagrangians (4.35) and (4.36) possess a symmetry. The first attempts to identify the symmetry in question gave negative results, because the ghost field is fermionic while the gauge fixing terms are bosonic. In the early days we thought that the required relation between the gauge fixing terms and the ghost terms had to be checked by inspection [t Hooft and Veltman, 1972a]. But the complete answer was discovered by Becchi, Rouet and Stora [1975; 1976], and independently by Tyutin [Tyutin, 1975]. The symmetry, called BRST symmetry, is a supersymmetry. For the Lagrangian (120), which is slightly more general than (119), the transformation rules are

\[
A'_\alpha(x) = A_\alpha(x) + \bar{\epsilon} \frac{\partial A_\alpha(x)}{\partial \bar{A}^b(x')} \eta^b(x') \; ; \quad (a)
\]

(123)

\[
\eta^{a'}(x) = \eta^a(x) + \frac{1}{2} \bar{\epsilon} f_{abc} \eta^b(x) \eta^c(x) \; ; \quad (b)
\]

\[
\bar{\eta}^{a'}(x) = \bar{\eta}^a(x) + \bar{\epsilon} C^a(x) \; , \quad (c)
\]

where the anticommuting number \(\bar{\epsilon} \) is the infinitesimal generator of this (global) supersymmetry transformation.

The invariance of the Lagrangian (120) under this supersymmetry transformation is easy to check, except perhaps the cancellation of the variation of the last
term against the contribution of (123 b):

$$\bar{\eta}^a \frac{\partial C^a}{\partial \Lambda^b} \frac{1}{2} f_{bcd} \eta^c \eta^d + \bar{\eta} \gamma_5 \frac{\partial C^a}{\partial \Lambda^c} \frac{\partial C^a}{\partial \Lambda^d} \eta^c \eta^d = \ldots.$$

Substituting some practical examples for the gauge constraint function C^a, one discovers that these terms always cancel out. The reason for (124) to vanish is the fact that gauge transformations form a group, implying the Jacobi identity:

$$(125) f_{asb} f_{scd} + f_{asc} f_{sdb} + f_{asd} f_{sbc} = 0.$$

The converse is more difficult to prove: If a theory is invariant under a transformation of the form (123) (BRST invariance), then it is a gauge-fixed local gauge theory. What is really needed in practice, is to show that the ghost particles do not contribute to the S-matrix. This indeed follows from BRST invariance, via the so-called Slavnov-Taylor identities [Slavnov, 1972; Taylor, 1971], relations between amplitudes that follow from this symmetry.

5 THE BROUT-ENGLERT-HIGGS MECHANISM

The way it is described above, Yang-Mills gauge theory does not appear to be suitable to describe massive particles with spin one. However, in our approach we concentrated only on the high-energy, high-momentum limit of theories for vector particles, by assuming the Lagrangian to take the form (85) there. Mass terms dominate in the infra-red, or low energy domain. Here, one may note that we have not yet exploited all possibilities.

We need to impose exact local gauge-invariance, as explained in subsection 4.3. So our theory must be constructed along the lines expounded in subsection 4.2. All scalar and spinor fields must come as representations of the gauge group. So, what did we overlook?

In our description of the most general, locally gauge-invariant Lagrangian, it was tacitly assumed that the minimum of the scalar potential function $V(\phi)$ occurs at $\phi = 0$, so that, as one may have in global symmetries, the symmetry is evident in the particle spectrum: physical particles come as representations of the full local symmetry group. But, as we have seen in the case of a global symmetry, in subsection 2.2, the minimum of the potential may occur at other values of ϕ. If these values are not invariant under the gauge group, then they form a non-trivial representation of the group, invariant only under a subgroup of the gauge group. It is the invariant subgroup, if at all non-trivial, of which the physical particles will form representations, but the rest of the symmetry is hidden. Indeed, if we switch off the coupling to the vector fields, we obtain again the situation described in subsection 2.2. As was emphasized there, the particle spectrum then contains
massless particles, the Goldstone bosons. These Goldstone bosons represent the field excitations associated to a global symmetry transformation, which does not affect the energy: hence the absence of mass.

But, global gauge Goldstone bosons do carry a kinetic term. Therefore, they do carry away energy when moving with the speed of light. This is because a global symmetry only dictates the Goldstone field to carry no energy if the field is space-time independent.

In contrast, local gauge symmetries demand that Goldstone fields also carry no energy when they do depend on space and time. In the case of a local symmetry, therefore, Goldstone modes are entirely in the ghost sector of the theory; Goldstone particles then are unphysical. Let us see how this happens in an example.

5.1 The SO(3) case

As a prototype, we take the group $SO(3)$ as our local gauge group, and for simplicity we ignore the contributions of loop diagrams, which represent the higher order quantum corrections to the field equations. Let the scalar field ϕ_a be in the 3-representation. The invariant part of the Lagrangian is then:

$$\mathcal{L}_{\text{inv}}^{\text{inv}} = -\frac{1}{4} (F_{\mu\nu}^a)^2 - \frac{1}{2} (D_\mu \phi_a)^2 - V(\phi); \quad V(\phi) = \frac{1}{8} \lambda \left((\phi_a)^2 - F^2 \right)^2.$$

Here, D_μ stands for the covariant derivative: $D_\mu \phi_a = \partial_\mu \phi_a + g \varepsilon_{abc} A_{\mu}^b \phi_c$. As in section 2.2, Eq. (18), we define shifted fields $\tilde{\phi}_a$ by

$$\phi_a \equiv \tilde{\phi}_a + \begin{pmatrix} 0 \\ 0 \\ F \end{pmatrix}; \quad V(\tilde{\phi}) = \frac{1}{2} \lambda F^2 \tilde{\phi}_3^2 + \frac{1}{2} \lambda F \tilde{\phi}_1 \tilde{\phi}_3 + \frac{1}{8} \lambda (\tilde{\phi}_3^2)^2.$$

The shift must also be carried out in the kinetic term for ϕ:

$$D_\mu \phi_a = D_\mu \tilde{\phi}_a + g F \begin{pmatrix} A_{\mu}^2 \\ -A_{\mu}^1 \end{pmatrix}; \quad -\frac{1}{2} (D_\mu \phi_a)^2 =$$

$$-\frac{1}{2} (D_\mu \tilde{\phi}_a)^2 - g F \left(A_{\mu}^2 D_\mu \tilde{\phi}_1 - A_{\mu}^1 D_\mu \tilde{\phi}_2 \right) - \frac{1}{2} g^2 F^2 \left(A_{\mu}^{12} + A_{\mu}^{21} \right).$$

Defining the complex fields

$$\tilde{\Phi} = \frac{1}{\sqrt{2}} (\tilde{\phi}_1 + i \tilde{\phi}_2); \quad A_{\mu} = \frac{1}{\sqrt{2}} (A_{\mu}^1 + i A_{\mu}^2);$$

$$D_\mu \tilde{\Phi} = (\partial_\mu + i A_{\mu}) \tilde{\Phi} - i A_{\mu} \tilde{\phi}_3,$$

(129)
we see that the Lagrangian (126) becomes

\[
\mathcal{L}^{\text{inv}} = -\frac{1}{4}(F_{\mu\nu}^a)^2 - \frac{1}{2}(D_\mu \tilde{\phi}_3)^2 - D_\mu \tilde{\Phi}^* D_\mu \tilde{\Phi}
- \frac{1}{2} M_H^2 \tilde{\phi}_3^2 - M_V^2 A_\mu^* A_\mu + M_V \Im(A_\mu^* D_\mu \tilde{\Phi}) - V^{\text{int}}(\tilde{\phi}) ,
\]

(130) where \(M_H = \sqrt{\lambda} F ; \quad M_V = g F , \)
and \(V^{\text{int}} \) is the remainder of the potential term. \(\Im \) stands for imaginary part.

Thus, the 'neutral' component of the scalar field, the Higgs particle, gets a mass \(M_H \) (see Eq. 127) and the 'charged' components of the vector field receive a mass term with mass \(M_V \). The mechanism that removes (some of) the Goldstone bosons and generates mass for the vector particles, is called the Brout-Englert-Higgs (BEH) mechanism [Englert and Brout, 1964; Higgs, 1964b; Higgs, 1964a; Higgs, 1966]. In every respect, the neutral, massless component of the vector field behaves like an electromagnetic vector potential, and the complex vector particle is electrically charged.

5.2 Fixing the gauge

If one would try to use the rules of Subsection 4.5 to derive the Feynman rules directly from \(\mathcal{L}^{\text{inv}} \), one would find that the matrix \(\tilde{M} \) describing the bilinear part of the Lagrangian has no inverse. This is because the gauge must first be fixed. Choosing \(\partial_\mu A_\mu^a(x) = 0 \) has the advantage that the somewhat awkward term \(\Im(A_\mu^* \partial_\mu \tilde{\Phi}) \) can be put equal to zero by partial integration. The vector propagator (in momentum space) is then easily computed to be

\[
P^{ab}_{\mu\nu}(k) = \frac{\delta_{\mu\nu} - k_\mu k_\nu/(k^2 - i\varepsilon)}{k^2 + m_{(a)}^2 - i\varepsilon} \delta_{ab} ,
\]

where \(m_{(a)} = M_V \) for the charged vector field and 0 for the neutral one.

This indeed appears to describe a vector particle with mass \(m_{(a)} \) and an additional transversality constraint. One can do something smarter, though. If, in the gauge-fixed lagrangian (120), we choose

\[
C^3 = \partial_\mu A_\mu^3 ; \quad C^1 = \partial_\mu A_\mu^1 - M_V \tilde{\phi}_2 ; \quad C^2 = \partial_\mu A_\mu^2 + M_V \tilde{\phi}_1 ,
\]

then we find that the scalar-vector mixing terms cancel out, but now also the \((\partial_\mu A_\mu)^2\) term cancels out, so that the vector propagator looses its \(k_\mu k_\nu \) term. The vector propagator is then

\[
P^{ab}_{\mu\nu}(k) = \frac{\delta_{\mu\nu} \delta_{ab}}{k^2 + m_{(a)}^2 - i\varepsilon} ,
\]

(133)
and the charged scalar ghost gets a mass M_V. The physical field $\tilde{\phi}_3$ is unaffected.

It is instructive to compute the Faddeev-Popov ghost Lagrangian in this gauge. One easily finds it to be

\begin{equation}
L^\text{ghost} = \bar{\eta}^a \partial^2 \eta^a - M_V^2 (\bar{\eta}^1 \eta^1 + \bar{\eta}^2 \eta^2) + \text{interaction terms}.
\end{equation}

As can be confirmed by more explicit calculations, the theory has physical, charged vector particles with masses M_V, a neutral (massless) photon and a neutral scalar particle with mass M_H. The latter is called the Higgs particle of this theory. All other fields in the Lagrangian describe ghost fields. Apparently, in the gauge described above, all 'unphysical' charged particles, the ghosts, the timelike components of the vector fields, as well as the Goldstone bosons, have the same mass M_V. The unphysical neutral particles all have mass zero.

One concludes that the symmetry pattern of this example is as follows: the local gauge group, $SO(3)$, is broken by the Brout-Englert-Higgs mechanism into its subgroup $SO(2)$ (the rotations about a fixed axis, formed by the vacuum value of ϕ_a), or equivalently, $U(1)$. Therefore two of the three vector bosons obtain a mass, while one massless $U(1)$ photon remains. At the same time, two of the three scalars turn into ghosts, the third into a Higgs particle.

The Brout-Englert-Higgs mechanism does not alter the total number of independent physical states in the particle spectrum. In our example, two of the three scalar particles disappeared, but the two massive spin-1 particles now each have three spin helicities, whereas the massless photons only had two.

5.3 Coupling to other fields

The shift (127) in the definition of the fields, gives all interactions an asymmetric appearance. This is why, in the literature, one talks of "spontaneous breaking of the local symmetry". Actually, this is something of a misnomer. In the case of a global symmetry, spontaneous breakdown means that the vacuum state is degenerate. After a global symmetry transformation, the vacuum state is transformed into a physically inequivalent vacuum state, which is not realized in the system. The existence of a massless Goldstone boson testifies to that. In the case of a local symmetry, nothing of the sort happens. There is only one vacuum state, and it is invariant under the local symmetry, always. This is why the Goldstone boson became unphysical. In fact, all physical states are formally invariant under local gauge transformations. Apparent exceptions to this rule are, of course, the charged particles in QED, but this is because we usually wish to ignore their interactions with the vector potential at infinity. In reality a full discussion of charged particles is obscured by their long-range interactions.

In view of all of this, it is better not to say that a local symmetry is spontaneously broken, but, rather, to talk of the *Brout-Englert-Higgs mechanism* [Englert
and Brout, 1964; Higgs, 1964b], which is the phenomenon that the spectrum of physical particles do not form a representation of the local symmetry group. The local symmetry can only be recognized by shifting the scalar fields back to their symmetric notation, the original fields ϕ. Local symmetry must not be regarded as a property of the physical states, but rather as a property of our way of describing the physical states.

If, however, we perform a perturbation expansion for small values of the gauge field coupling, we find that at vanishing gauge coupling a local symmetry is spontaneously broken. Therefore, it is still quite useful to characterize our perturbative description by listing the gauge groups and the subgroups into which they are broken.

Now, let us assume that there are other fields present, such as the Dirac fermions, ψ_i. In the symmetric notation, they must form a representation of the local gauge group. So, we have

$$(135) \ L^{\text{Dirac}} = -\bar{\psi}^i (\gamma_\mu D_\mu + m_{(i)}) \psi_i - \bar{\psi}^i g_Y t^a_{ij} \phi_a \psi_j,$$

where D_μ is the appropriate covariant derivative, containing those matrices T^a that are appropriate for the given representation (see 95 and 96), and g_Y stands for one or more Yukawa coupling parameters. The mass terms $m_{(i)}$ and coupling coefficients t^a_{ij} are invariant tensors of the gauge group (masses are only allowed if the fermions are not chiral, see the discussion following Eq. (106)).

Here, again, we started with the more transparent symmetric fields ϕ_a, but the physical fields $\tilde{\phi}$ are obtained by the shift $\phi_a = F_a + \tilde{\phi}_a$. Thus, the lowest order bilinear part of the Dirac Lagrangian becomes

$$(136) \ L^{\text{Dirac}} \to -\bar{\psi}^i \left((\gamma_\mu \partial_\mu + m_{(i)}) \delta_{ij} + g_Y t^a_{ij} F_a \right) \psi_j,$$

In particular, if the symmetry acts distinctly on the chiral parts of the fermion fields, the mass term $m_{(i)}$ is forbidden, but the less symmetric second term may generate masses and in any case mass differences for the fermions. Thus, not only do the vector and scalar particles no longer form representations of the original local gauge group, but neither do the fermions.

5.4 The Standard Model

What is presently called the 'Standard Model' is just an example of a Higgs theory. The gauge group is $SU(3) \times SU(2) \times U(1)$. This means that the set of vector fields falls apart into three groups: 8 associated to $SU(3)$, then 3 for $SU(2)$, and finally one for $U(1)$. The scalar fields ϕ_i form one two-dimensional, complex representation of two of the three groups: it is a doublet under $SU(2)$ and rotates as a particle with charge $\frac{1}{2}$ under $U(1)$.
Representing the Higgs scalar in terms of four real field components, the Brout-Englert-Higgs mechanism is found to remove three of them, leaving only one neutral, physical Higgs particle. $SU(2) \times U(1)$ is broken into a diagonal subgroup $U(1)$. Three of the four gauge fields gain a mass. The one surviving photon field is obtained after re-diagonalizing the vector fields; it is a linear composition of the original $U(1)$ field and one of the three components of the $SU(2)$ gauge fields.

The $SU(3)$ group is not affected by the Brout-Englert-Higgs mechanism, so one would expect all ‘physical’ particles to come in representations of $SU(3)$. What happens instead is further explained in section 11: only gauge-invariant combinations of fields are observable as particles in our detectors.

The fermions in the Standard Model form three ‘families’. In each family, we see the same pattern. The left handed fields, ψ_L, all form doublets under $SU(2)$, and a combination of a triplet (‘quarks’) and singlets (‘leptons’) under $SU(3)$. The right handed components, ψ_R, form the same representations under $SU(3)$, but form a pair of two singlets under $SU(2)$; so they do not couple to the $SU(2)$ vector fields. The $U(1)$ charges of the left-handed $SU(2)$ doublets are $-\frac{1}{3}$ for the leptons and $\frac{1}{6}$ for the quarks; the $U(1)$ charges of the right-handed singlets are -1 and 0 (for the leptons) or $-\frac{1}{3}$ and $\frac{2}{3}$ (for the quarks).

The Standard Model owes its structure to the various possible Yukawa interaction terms with the Higgs scalars. They are all of the form $\bar{\psi} \phi \psi$, and invariant under the entire gauge group, but since there are three families of fermions, each having left and right handed chiral components, there are still a fairly large number of such terms, each of which describes an interaction strength whose value is not dictated by the principles of our theory [Hoddeson et al., 1997].

6 UNITARITY

As we saw in subsection 4.5, the Feynman rules unambiguously follow from the expression one has for the Lagrangian of the theory. More precisely, what was derived there was the set of rules for the vacuum-to-vacuum amplitude in the presence of possible source insertions $J_i(x)$, including anticommuting sources $\eta_i, \bar{\eta}_i$. The overall multiplicative constant C in our Gaussian integrals such as (47) is completely fixed by the demand that, in the absence of sources, the vacuum-to-vacuum amplitude should be 1. By construction then, the resulting scattering matrix should turn out to be unitary.

In practice, however, things are not quite that simple. In actual calculations, one often encounters divergent, hence meaningless expressions. This happens when one makes the transition to the continuum limit too soon — remember that we insisted that space and time are first kept discrete. Unitarity of the S-matrix turns out to be a sensitive criterion to check whether we are performing the continuum limit correctly. It was one of our primary demands when we initiated the
program of constructing workable models for relativistic, quantized particles. Another demand, the validity of dispersion relations, can be handled the same way as unitarity; these two concepts will be shown to be closely related. The formalism described below is based on work by Cutkosky and others, but was greatly simplified by Veltman [‘t Hooft and Veltman, 1994].

Parts of this section are fairly technical and could be skipped at first reading.

6.1 The largest time equation

Let us start with the elementary Feynman propagator, \((k^2 + m^2 - i\varepsilon)^{-1}\), and its Fourier transform back to configuration space (omitting for simplicity a factor \((2\pi)^4\)):

\[
(137) \, \Delta^F(x) = -i \int d^4k \frac{e^{ikx}}{k^2 + m^2 - i\varepsilon}, \quad x = x^{(1)} - x^{(2)}.
\]

In addition, we define the on-shell propagators

\[
(138) \, \Delta^\pm(x) = 2\pi \int d^4k e^{ikx}\delta(k^2 + m^2)\theta(\pm k^0); \quad k \cdot x = \vec{k} \cdot \vec{x} - k^0x^0,
\]

and \(\theta\) is the Heaviside step function, \(\theta(x) = 1\) for \(x \geq 0\) and \(= 0\) otherwise. The integrals are over Minkowski variables \(\vec{k}, k^0\). The operators (138) propagate particles on mass shell with the given sign of the energy from \(x^{(2)}\) to \(x^{(1)}\), or back with the opposite sign. We have

\[
(139) \, \Delta^+(x) = (\Delta^-(x))^*; \quad \Delta^+(x) = \Delta^-(x^\circ).
\]

Our starting point is the decomposition of the propagator into forward and backward parts:

\[
(140) \, \Delta^F(x) = \theta(x^0)\Delta^+(x) + \theta(-x^0)\Delta^-(x).
\]

Obviously:

\[
(141) \, \Delta^{F*}(x) = \theta(x^0)\Delta^-(x) + \theta(-x^0)\Delta^+(x).
\]

One easily proves this by deforming the contour integration in the complex \(k^0\) plane.

Consider now a Feynman diagram with \(n\) vertices, where lines are attached with a given topological structure, which will be kept fixed. The external lines are assumed to be ‘amputated’: there are no propagators attached to them. The
Feynman rules are applied as described in Subsections 2.5 and 4.5. The diagram is then part of our calculation of an S-matrix element. We consider the diagram in momentum representation and in the coordinate representation. The expression we get in coordinate representation is called $F(x^{(1)}, x^{(2)}, \ldots, x^{(n)})$.

Next, we introduce an expression associated to the same diagram, but where some of the vertices are underlined:

$$F(x^{(1)}, x^{(2)}, \ldots, \underline{x}^{(i)}, \ldots, \underline{x}^{(j)}, \ldots, x^{(n)}) ,$$

where $x^{(i)}$ refer to the coordinates that must be integrated over when one elaborates the Feynman rules. The rules for computing this new amplitude are as follows:

1) A propagator $\Delta^{F}(x^{(i)} - x^{(j)})$ is used if neither $x^{(i)}$ nor $x^{(j)}$ are underlined.

2) A propagator $\Delta^{+}(x^{(i)} - x^{(j)})$ is used if $x^{(i)}$ but not $x^{(j)}$ is underlined.

3) A propagator $\Delta^{-}(x^{(i)} - x^{(j)})$ is used if $x^{(j)}$ but not $x^{(i)}$ is underlined.

4) A propagator $\Delta^{F^{*}}(x^{(i)} - x^{(j)})$ is used if both $x^{(i)}$ and $x^{(j)}$ are underlined.

5) A minus sign is added for every underlined vertex.

In all other respects, the rules for the calculation of the amplitude are unchanged.

![Diagram](image)

Figure 3. Diagram with underlined vertices, which are indicated by little circles

One now derives the largest time equation:

Let $x^{(k)}$ be the coordinate with the largest time:

$$x^{(k)0} \geq x^{(i)0} , \quad \forall i .$$

Then,
(142) \(F(x^{(1)}, x^{(2)}, \ldots, x^{(k)}, \ldots, x^{(n)}) = -F(x^{(1)}, x^{(2)}, \ldots, \underline{x}^{(k)}, \ldots, x^{(n)}) \),

where in both terms the points other than \(x^{(k)} \) are underlined or not in identical ways.

One easily proves this using Eqs. (140) and (141). One consequence of this theorem is

(143) \[\sum_{\text{all } 2^n \text{ possible underlinings}} F(\{x^{(i)}\}) = 0. \]

We now show that these are the diagrams contributing to the unitarity equation, or 'optical theorem':

(144) \[\sum_n S|n\rangle\langle n|S^\dagger = \mathbf{1}. \]

The diagrams for the matrix \(S \) are as described earlier. The diagrams for \(S^\dagger \) contain the complex conjugates of the propagators. Since also the vertices in the functional integral are all multiplied by \(i \), they must all change sign in \(S^\dagger \). Also the momenta \(k \) in \(e^{ikx} \) switch sign. In short, the diagrams needed for the computation of \(S^\dagger \) indeed are the underlined Green functions. Note that, in momentum space, the largest time equation (142) cannot be applied to individual vertices, since, while being integrated over, the vertex with largest time switches position. However, the summed equation (143) is valid. The identity \(\mathbf{1} \) on the r.h.s. of Eq. (144) comes from the one structure that survives: the diagram with no vertices at all.

We observe that unitarity may follow if we add all possible ways in which a diagram with given topology can be cut in two, as depicted in Fig. 3. The shaded line separates \(S \) from \(S^\dagger \).

The lines joining \(S \) to \(S^\dagger \) represent the intermediate states \(|n\rangle \) in Eq. (144). They are on mass shell and have positive energies, which is why we need the factors \(\delta(k^2 + m^2)\theta(k^0) \) there. If a propagator is equipped with some extra coefficients \(R_{ij} \):

(145) \[P_{ij}(k) = \frac{-i R_{ij}(k)}{k^2 + m^2 - i\varepsilon}, \]

then we can still use the same decomposition (140), provided \(R_{ij} \) is local: it must be a finite polynomial in \(k \). Writing

(146) \[R_{ij} = \sum_k f_i(k)f_j^*(k), \]
we can absorb the factors \(f_i(k) \) into the definition of \(S \), \textit{provided that all eigenvalues of} \(R_{ij} \) \textit{are non-negative}. Indeed, kinetic terms in the Lagrangian must all have the same sign.

Note that we are \textit{not} allowed to replace the terms in the Lagrangian by their complex conjugates. This implies that, for the unitarity proof, it is mandatory that the Lagrange density is a real function of the fields.

An important feature of these equations is the theta functions for \(k^0 \). They guarantee that the intermediate states contribute only if their total energy does not exceed the energy available in the given channel.

6.2 Dressed propagators

In the previous subsection, not all diagrams that contribute to \(S S^\dagger \) have yet been handled correctly. There is a complication when self-energy diagrams occur. If one of the lines at both sides of a self-energy blob is replaced by \(\Delta^\pm \), then the other propagator \(\Delta^F \) places a pole on top of that Dirac delta. In this case, we have to use a more sophisticated prescription. To see what happens, we must first sum the geometric series of propagator insertions, see Fig. 4(a). We obtain what is called the dressed propagator. In momentum space, let us write the contribution of a single blob in Fig. 4(a) as \(-i\delta M(k) \). It represents the summed contribution of all \textit{irreducible} diagrams, which are the diagrams with two external lines that cannot fall apart if one cuts one internal line. We need its real and imaginary parts: \(\delta M(k) \equiv \delta m^2(k) - i\Gamma(k) \). Write the full propagator as

\[
P^{\text{dr}}(k) = P^0(k) - P^0(k)i\delta M(k)P^0(k) + \cdots
\]

\[
= P^0(k) \sum_{n=0}^{\infty} (-i\delta M(k)P^0(k))^n
\]

\[
= \frac{P^0(k)}{1 + i\delta M(k)P^0(k)} ;
\]

if \(P^0(k) = -i(M(k) - i\varepsilon)^{-1} \)

then \(P^{\text{dr}}(k) = -i(M(k) + \delta M(k) - i\varepsilon)^{-1} \), \quad (147)

where \(P^0(k) \) is the unperturbed ('bare') propagator.

If we define the real part of the dressed propagator (in momentum space) to be

\[
(149) \Re(P^{\text{dr}}(k)) = \frac{\Gamma(k)}{(k^2 + M + \delta m^2)^2 + \Gamma^2} = \pi\theta(-k^2),
\]

then, by contour integration,

\[
(150) P^{\text{dr}}(k) = \int_0^\infty dm^2 \frac{\theta(m^2)}{k^2 + m^2 - i\varepsilon} ;
\]
we call this the Källen-Lehmann representation of the propagator. Later, it will be assured that \(\varrho(m^2) = 0 \) if \(m^2 < 0 \).

\[
\begin{align*}
\text{Figure 4. (a) The dressed propagator as a geometric series;} \\
\text{(b) Cutting the dressed propagator}
\end{align*}
\]

The best strategy now is to apply a largest time equation to the entire dressed propagator. Write, instead of Eqs. (140) and (141),

\[
\begin{align*}
P_{dr}^{\text{dr}}(x) &= \theta(x^0)\Delta_{\text{dr}}^{+}(x) + \theta(-x^0)\Delta_{\text{dr}}^{-}(x) \\
(151) \quad P_{dr}^{\text{dr}}(x)^* &= \theta(x^0)\Delta_{\text{dr}}^{-}(x) + \theta(-x^0)\Delta_{\text{dr}}^{+}(x).
\end{align*}
\]

Then,

\[
(152) \quad \Delta_{\text{dr}}^{\pm}(k) = 2\pi \int d^4k \, e^{ikx} \varrho(-k^2)\theta(\pm k^0).
\]

The imaginary part \(\Gamma(k) \) of the irreducible diagrams can itself again be found by applying the cutting rules. Writing \(S = \mathbb{1} + iT \), we find that unitarity for all non-trivial diagrams corresponds to \(i(T - T^\dagger) + TT^\dagger = 0 \), and the diagrams for \(TT^\dagger \) are depicted in Fig. 4b. They are exactly the diagrams needed for unitarity of the entire scattering matrix involving a single virtual particle in the channel of two external ones.

One observes that the function \(\varrho(-k^2) \) must be non-negative, and only nonvanishing for timelike \(k \). The latter is guaranteed by the theta functions in \(k^0 \). Only the delta peaks in \(\varrho \) are associated to stable particles that occur in the initial and final states of the scattering matrix. Resonances with finite widths contribute to the unitarity of the scattering matrix via their stable decay products.

6.3 Wave functions for in- and out-going particles

Many technical details would require too much space for a full discussion, so we have to keep this sketchy. In case we are dealing with vector or spinor particles, the residues \(R_{ij} \) of the propagators represent the summed absolute squares of the particle wave functions. We have seen in Eq. (145) how this comes about. If, for
example, a vector particle is described by a propagator

\[P_{\mu\nu} = -i\frac{\delta_{\mu\nu} + k_\mu k_\nu}{k^2 + M^2 - i\varepsilon}, \]

then we see that, first of all, the numerator is a polynomial in \(k \), as was required, and, if we go on mass shell, \(k^2 = -M^2 \), then we see that the field component proportional to \(k_\mu \) is projected out. In particular, if we put \(k = (0, 0, 0, iM) \), then \(R_{ij} = \delta_{ij} \) and its timelike components disappear, so indeed there are three independent states for the particle described.

For the fermions, the bare propagator is

\[P^{\text{Dirac}} = -i\frac{m - i\gamma k}{k^2 + m^2 - i\varepsilon}. \]

Before relating this to the renormalization of the wave functions, we must note that all \(\gamma^\mu \) are hermitean, while \(k_4 \) are real and \(k_4 \) is imaginary. We observe that the Feynman rules for \(S^\dagger \) are like those of \(S \), but with \(\gamma^4 \) replaced by \(-\gamma^4 \). Next, the arrows in the propagators must be reversed. This leads to an extra minus sign for every vector \(k_\mu \), while \(\gamma^\mu \) are replaced by \(\gamma^{\mu\dagger} \). All together, one requires that \(\gamma^i \to -\gamma^i \) while \(\gamma^4 \) remains unchanged. This amounts to the replacement \(\gamma^\mu \to \gamma^4 \gamma^\mu \gamma^4 \). One concludes that the rules for \(S^\dagger \) are like those for \(S \) if all fermion lines enter or leave the diagram with an extra factor \(\gamma^4 \). This means that the wave functions for external fermions in a diagram are to be normalized as

\[(m - i\gamma_4 k^4 + \gamma^4 k^0)\gamma^4 = \sum_{i=1}^{2} |\psi_i(k)\rangle\langle\psi_i(k)|, \quad (k^0 > 0); \]

while for the anti-fermions, we must demand

\[\gamma^4(m - i\gamma_4 k^4 - \gamma^4 k^0) = -\sum_{i=3}^{4} |\psi_i(k)\rangle\langle\psi_i(k)|, \quad (k^0 > 0). \]

The minus sign is necessary because the operator in (156) has two negative eigenvalues. One concludes that unitarity requires spin-\(\frac{1}{2} \) particles to carry one extra minus sign for each closed loop of these particles. This leads to the necessity of Fermi-Dirac statistics. Again, it is important that none of the higher order corrections ever affect the signs of the eigenvalues for these projection operators, since these can never be accommodated for by a renormalization of the particle wave function.

The conclusion of this section, that the scattering matrix is unitary in the space of physical particle states, should not come as a surprise because our theory has
been constructed to be that way. Yet it is important that we see here in what way the Feynman diagrams intertwine to produce unitarity explicitly.

We also see that unitarity is much more difficult to control when we have ghosts due to the gauge fixing procedure. Our vector particles then have propagators where Eq. (153) is replaced by expressions such as

\[(157) \quad P_{\mu\nu}^{\text{ren}} = \frac{-i g_{\mu\nu}}{k^2 + M^2 - i\varepsilon}. \]

We write here \(g_{\mu\nu} \) rather than \(\delta_{\mu\nu} \) in order to emphasize that our arguments are applied in Minkowski space, where clearly the time components 'carry the wrong sign'. The field components associated to that would correspond to particles that contribute negatively to the scattering probabilities. To correct this, one would have to replace \(|n\rangle \langle n| \) by \(-|n\rangle \langle n| \), which cannot be achieved by renormalizing the states \(|n\rangle \). Here, we use the BRST relations to show that all unphysical states can be transformed away. In practice, we use the fact that the scattering matrix does not depend on the choice of the gauge fixing function \(C^a(x) \), so we choose it such that all ghost particles have a mass exceeding some critical value \(\Lambda \). In the intermediate states, their projector operators \(\Delta^\pm(k) \) then only contribute if the total energy in the given channel exceeds \(\Lambda \). This then means that there are no ghosts in the intermediate states, so the scattering matrix is unitary in the space of physical particles only — an absolutely essential step in the argument that these theories are internally consistent. The required gauge fixing functions \(C^a(x) \) are not difficult to construct, but their existence is only needed to complete this formal argument. They are rather cumbersome to use in practical calculations.

6.4 Dispersion relations

The largest time equation can also be employed to derive very important dispersion relations for the diagrams. These imply that any diagram \(D \) can be regarded as a combination of two sets of diagrams \(D_i \) and \(D_i^\dagger \):

\[(158) \quad D = \sum_i \int_0^\infty \frac{dk^0}{-k^0 - i\varepsilon} D_i(k^0) D_i^\dagger(k^0). \]

Here, \(D_i(k^0) \) and \(D_i^\dagger(k^0) \) stand for amplitudes depending on various external momenta \(k \), where one of the timelike components, \(k^0 \), is integrated over. This, one derives by singling out two points, \(x^{(1)} \) and \(x^{(2)} \) in a diagram, and time-ordering them. The details of the derivation go beyond the scope of this paper (although they are not more difficult than the previous derivations in this section). Eq. (158) can be used to express diagrams with closed loops in terms of diagrams with fewer closed loops, and discuss the subtraction procedures needed for renormalization.
7 RENORMALIZATION

For a proper discussion of the renormalization concept, we must emphasize what our starting point was: first, replace the continuum of space by a dense lattice of points, and only at the very end of all calculations do we make an attempt to take the continuum limit. The path integral procedure, illuminated in subsection 2.4, implies that time, also, can be replaced by a lattice. In Fourier space, the space-time lattice leads to finite domains for the values of energies and momenta (the Brillouin zones), so that all ultra-violet divergences disappear. If we also wish to ensure the absence of infra-red divergences, we must replace the infinite volume of space and time by a finite box. This is often required if complications arise due to divergent contributions of soft virtual particles, typically photons. Nasty infra-red divergences occur in theories with confinement, to be discussed in section 11.

The instruments that we shall use for the ultra-violet divergences of a theory are as follows. We assume that all freely adjustable physical constants of the theory, referred to as the 'bare' parameters, such as the 'bare' mass and charge of a particle, should be carefully tuned to agree with observation, but the tuning process may depend critically on the mesh size \(a \) of the space-time lattice. Thus, while we vary \(a \), we allow all bare parameters, \(\lambda \) say, in the theories to depend on \(a \), often tending either to infinity or to zero as \(a \to 0 \). If this procedure is combined with a perturbation expansion, say in terms of a small coupling \(g \), we expect to find that observable features depend minimally on \(a \) provided that the bare couplings \(g(a) \) remain small in the limit \(a \to 0 \).

This will be an important condition for our theories to make sense at all. How do we know whether \(g(a) \) tends to zero or not? The simplest thing to look at, is the dimensionality of \(g \). All parameters of a field theory have a dimension of a length to some power. These dimensions usually depend on the dimensionality \(n \) of space-time. The rules to compute them are easy to obtain:

- An action \(S = \int d^n x \mathcal{L}(x) \) is dimensionless;

- The dimension of a Lagrange density \(\mathcal{L} \) is therefore \((\text{length})^{-n} = m^n \), where \(m \) is a mass.

- The dimension of the fields can be read off from the kinetic terms in the Lagrangian, because they contain no further parameters. A scalar field \(\phi \) has dimension \(m^{(n-2)/2} \), a fermionic field \(\psi \) has dimension \(m^{(n-1)/2} \).

- A gauge coupling constant \(g \) has dimension \(m^{(4-n)/2} \) and the coupling parameter \(\lambda \) in an interaction term of the form \(\lambda \phi^k \) has dimension \(m^{n+k-nk/2} \), and so on.
A theory is called power-counting renormalizable, if all expansion parameters have mass-dimension positive or zero.

This is why, in 4 space-time dimensions, we cannot accept higher than quartic interactions among scalars. In practice, in 4 space-time dimensions, most expansion parameters have dimension zero. In Section 9, we will see that dimensionless coupling parameters nevertheless depend on the size of a, but only logarithmically:

(159) $\lambda(a) \approx \lambda_0 + C\lambda_0^2 \log(a) + \text{higher orders}.$

Regardless of whether this tends to zero or to infinity in the continuum limit, one finds that, in the continuum theory, the perturbative corrections to the bare parameters λ diverge. This is nothing to be alarmed about. However, if λ itself is also a small parameter in terms of which we wish to perform a perturbation expansion, then clearly trouble is to be expected if its bare value tends to infinity. Indeed, we shall argue that, in general, such theories are inconsistent.

There are two very important remarks to be made:

— Theories can be constructed where all couplings really tend to zero in the continuum limit. These theories are called asymptotically free (Section 9), and they allow for accurate approximations in the ultra-violet. It is generally believed that such theories can be defined in a completely unambiguous fashion through their perturbation expansions in the ultra-violet; in any case, they allow for very accurate calculation of all their physical properties. QCD is the prime example.

— If a theory is not asymptotically free, but has only small coupling parameters, the perturbation expansion formally diverges, and the continuum limit formally does not exist. But the first N terms of perturbation expansion do make sense, where $N = \mathcal{O}(1/g)$. This means that uncontrollable margins of error are exponentially small, of order $e^{-C/g}$ or e^{-C/g^2}, which in practice is much smaller than other uncertainties in the theory, so they are of hardly any practical consequence. Thus, in such a case, our theory does have intrinsic inaccuracies, but these are exponentially suppressed. In practice, such theories are still highly valuable. The Standard Model is an example.

A useful approach is to substitute all numbers in a theory by formal series expansions, where the expansion parameter, a factor common to all coupling parameters of the theory, is formally kept infinitesimal. In that case, all perturbation coefficients are uniquely defined, though one has little direct knowledge concerning the convergence or divergence of the expansions.

In both the cases mentioned above, our theories are defined from their perturbation expansion; clearly, the perturbation expansion is not only a convenient device
for calculations, it is an essential ingredient in our theories. Let us therefore study how renormalization works, order-by-order in perturbation theory.

In a connected diagram, let the number of external lines be E, the number of propagators be P, and let V_n be the number of vertices with n prongs. By drawing two dots on each propagator and one on each external line, one finds that the number of dots is

\[(160) \ 2P + E = \sum_n nV_n = 3V_3 + 4V_4.\]

For tree diagrams (simply connected diagrams), one finds by induction, with V the number of vertices, $V = \sum_n V_n$,

\[(161) \ V = P + 1.\]

A diagram with L closed loops (an L-fold connected diagram) turns into a tree by cutting away L propagators. Therefore, one has

\[(162) \ P = V - 1 + L.\]

Combining Eqs. (160) and (162), one has

\[(163) \ E + 2L - 2 = \sum_n (n-2)V_n = V_3 + 2V_4.\]

Consequently, if every 3-vertex comes with a factor g and every 4-vertex with a factor λ, and if a diagram with a given number E of external lines, behaves as $g^{2n}\lambda^k$, it must have $L = n + k + 1 - \frac{1}{2}E$ closed loops. Perturbation expansion is therefore often regarded as an expansion in terms of the number of closed loops.

7.1 Regularization schemes

In a tree diagram, in momentum space, no integrations are needed to be done — the momentum flowing through every propagator is fixed by the momenta of the in- and out-going particles. But if there are L loops, one has to perform $4L$ integrations in momentum space. It is these integrations that often tend to diverge at large momenta.

Of course, these divergences are stopped if momentum space is cut off, as is the case in a finite lattice. However, since our lattice is not Lorentz-invariant and may lack other symmetries such as gauge-invariance, it is useful to find other ways to modify our theory so that UV divergences disappear. This is called 'regularization'. We give two examples.
Pauli-Villars regularization

Assume that a propagator of the form shown is replaced as follows:

\[\frac{A(k)}{k^2 + m^2 - i\epsilon} \rightarrow \sum_i e_i \frac{A(k)}{k^2 + \Lambda_i^2 - i\epsilon}; \quad \sum_i e_i = 0, \quad \sum_i e_i \Lambda_i^2 = 0. \]

If we take \(e_1 = 1, \Lambda_1 = m \), while all other \(\Lambda_i \) tend to \(+\infty\), we get back the original propagator. With finite \(\Lambda_i \), however, we can make all momentum integrations converge at infinity. Our theory is then finite. This is (a somewhat simplified version of) Pauli-Villars regularization.

However, the new propagators cannot describe ordinary particles. The ones with \(e_i < 0 \) contribute to the unitarity relation with the wrong sign! On the other hand, the \(i\epsilon \) prescription is as usual, so that these particles do carry positive energy. In any channel where the total energy is less than \(\Lambda_i \), the ‘Pauli-Villars ghosts’ do not contribute to the unitarity relation at all. So, in a theory where we put a limit to the total energy considered, Pauli-Villars regularization is physically acceptable. In practice, we will try to send all ghost masses \(\Lambda_i \) to infinity.

Dimensional regularization

Dimensional regularization ['t Hooft and Veltman, 1972b] consists of formally performing all loop integrations in \(4 - \epsilon \) dimensions, where \(\epsilon \) may be any (possibly complex) number. As long as \(\epsilon \) is irrational, all integrations can be replaced by finite expressions following an unambiguous prescription, to be explained below. If \(\epsilon = 0 \), one can also subtract the integrals, but the prescription is then often not unambiguous, so that anomalies might arise. This is why dimensional regularization will be particularly important whenever the emergence of anomalies is a problem one wishes to understand and control.

It is important to realize that also when \(\epsilon \neq 0 \), integrals may be divergent, but that, for irrational \(\epsilon \), unambiguous subtractions may be made. This needs to be explained, but first, one needs to define what it means to have non-integral dimensions. Such a definition is only well understood within the frame of the perturbation-, or loop-, expansion. Consider an irreducible diagram with \(L \) loops and \(N \) external lines, where we keep the external momenta \(p_{(1)}, \cdots, p_{(N)} \) fixed. It is obvious from the construction of the theory that the integrand is a purely rational function in \(L(4-\epsilon) \) variables. Observing that the external momenta span some \(N - 1 \) dimensional space, we now employ the fact that the integration in the remaining dimensions is rotationally invariant. There, we write the formula for the \(\ell \)-dimensional (Euclidean) sphere of radius \(r \) as

\[\int d^\ell k \delta(k^2 - r^2) = \frac{\pi^{\ell/2}}{\Gamma(\ell/2)} r^{\ell-2}. \]
Here, \(\Gamma \) stands for the Euler gamma function, \(\Gamma(z) = (z - 1)! \) for integral \(z \).

It is at this point where we can decide that this expression defines the integral for any, possibly complex, value for \(\ell \). It converges towards the usual values whenever \(\ell \) happens to be a positive integer. After having used Eq. (165), one ends up with an integral over \(s \) variables \(k_\mu \) of a function \(f(k) \), where \(s \) is an integer, but \(f(k) \) contains \(\epsilon \)-dependent powers of polynomials in \(k \).

Convergence or divergence of an integral can be read off from simple power counting arguments, and, at first sight, one sees hardly any improvement when \(\epsilon \) is close to zero. However, what is achieved is that infra-red divergences \((k_\mu \to 0) \) are separated from the ultra-violet divergences \((k_\mu \to \infty) \), and this allows us to define the "finite parts" of the integrals unambiguously:

- All integrals \(\int \, d^s k \, f(k) \) are replaced by functionals \(I(\{f(k)\}) \) that obey the same combinatorial rules as ordinary integrals:

\[
I(\alpha f_1 + \beta f_2) = \alpha I(f_1) + \beta I(f_2),
\]

\[
(166) \quad I(\{f(k + q)\}) = I(\{f(k)\}),
\]

- \(I(f) = \int \, d^s k \, f(k) \) if this converges.
- \(I(f) = 0 \) if \(f(k) = (k^2)^p \) when \(2p + s \) is not an integer.

This latter condition is usually fulfilled, if we started with \(\epsilon \) not integer.

These rules are sufficient to replace any integral one encounters in a Feynman diagram by some finite expression. Note, however, that complications arise if one wants to use these rules when \(2p + s \) is an integer, particularly when it is zero. In that case, the expression diverges in the ultra-violet and in the infra-red, so, in this case, it cannot be used to remove all divergences — it can only replace one by another. Consequently, our finite expressions tend to infinity as \(\epsilon \to 0 \).

It is important to verify that dimensional regularization fully respects unitarity and the dispersion relations discussed above. Therefore, the 'dimensionally regularized' diagrams correspond to solutions of the dispersion relations and the unitarity relations, providing some 'natural' subtraction.

\textit{Equivalence of regularization schemes}

The subtractions provided by the various regularization schemes discussed above, in general, are not the same. At any given order, they do all obey the same dispersion relations of the form (158). If we ask, which amplitudes can be added to one scheme to reproduce the other, or, what is the amplitude of the difference between the two schemes (after having eliminated these differences at the order where the subdiagrams \(D_i(k^0) \) had been computed), we find the following. This
difference must be a Lorentz-covariant expression; and it can only come from the dimensionally regularized contributions of the unphysical Pauli-Villars ghosts in Eq. (158). Because of their large masses, only very large values of k^0 in this equation contribute. The p^0-dependence then must reduce to being a polynomial one (p being the momenta of the fixed external lines), and because of Lorentz-invariance, the expression must be polynomial in all components of p_μ. This is exactly what can be achieved by putting a counter term inside the bare Lagrangian of the theory. This way, one derives that the various regulators differ from one another by different effective couplings in the bare Lagrangian.

It is then a question of taste which regulator one prefers. Since dimensional regularization often completely respects local gauge-invariance\(^7\), and also because it turned out to be very convenient and efficient in practice, one often prefers that. It should always be kept in mind, however, that dimensional regularization is something of a mathematical trick, and the physical expressions only make sense in the limit $\epsilon \to 0$.

7.2 Renormalization of gauge theories

Using the results from the previous Sections, we decide to treat quantum field theories in general, and gauge theories in particular, as follows: first, we regularize the theory, by using a ‘lattice cut-off’, or a Pauli-Villars cut-off, or by turning towards $n = 4 - \epsilon$ dimensions. All these procedures are characterized by a small parameter, such as ϵ, such that the physical theory is formally obtained in the limit $\epsilon \to 0$. These procedures are all equivalent, in the sense that by adding local interaction terms to the Lagrangian, one can map the results of one scheme onto those of another. Subsequently, we renormalize the theory. This means that all parameters in the Lagrangian are modified by finite corrections, which however may diverge in the limit $\epsilon \to 0$. If these counter terms have been chosen well, the theory may stay finite and well defined in this limit. In particular, we should have a unitary, causal theory.

Unitarity is only guaranteed if the theory is gauge-invariant. Therefore, one prefers regulator schemes that preserve gauge-invariance throughout. This is what dimensional regularization often does. In that case, the renormalization procedure respects BRST-invariance, see Subsect. 4.6.

8 ANOMALIES

The Sections that follow will (again) be too brief to form a complete text for learning Quantum Field Theory. Our aim is here to give a summary of the features

\(^7\)Only in one case, there is a complication, namely, when there are Adler-Bell-Jackiw anomalies; see Section 8.
that are all extremely important to understand the general structure of relativistic Quantum Field Theories.

If, for a given theory, no obviously gauge-invariant regularization procedure appears to exist, this might be for a reason: such a theory might not be renormalizable at all. In principle, this could be checked, as follows. One may always decide to use a regularization procedure that does not respect the symmetries one wants, provided that the symmetry can be restored in the limit where the physically observable effects of the regulator go away, such as $\varepsilon \to 0$, or $\Lambda_i \to \infty$, $i > 0$. If a gauge-invariant regulator does exist, but it hasn’t yet been explicitly constructed, then we know that it differs from any other regulator by a bunch of finite counter terms. To find such counter terms is not hard, in practice; just add all terms needed to restore BRST invariance of the amplitudes.

But, in case that regulator is not known, how can we then be sure that such terms exist at all? BRST invariance requires the validity of the Slavnov-Taylor identities, but they appear to overdetermine the subtraction terms. This is the way we originally phrased the problem in [’t Hooft, 1971]. In fact, indeed there may be a clash. If this happens, it is called an anomaly [Jackiw, 1995, Ch.1].

Actually, the incidence of such anomalies is limited, fortunately. This is because for most theories completely gauge-invariant regulator techniques were found. Dimensional regularization often works. The one case where it does not is when there are chiral fermions. Classically, one may separate any fermionic field into a left-handed and a right handed part, as was mentioned in Subsection 4.2:

$$\psi(x) = P_+ \psi_L(x) + P_- \psi_R(x); \quad P_\pm = \frac{1}{2} (1 \pm \gamma^5)$$

$$\gamma_5 = \frac{1}{24} \varepsilon_{\mu\nu\alpha\beta} \gamma^\mu \gamma^\nu \gamma^\alpha \gamma^\beta.$$ (167)

Indeed, since $(\gamma^5)^2 = 1$, the operators P_\pm are genuine projection operators: $P_\pm^2 = P_\pm$.

The left- and right sectors of the fermions, see Eq. (106), may be separately gauge-invariant, transforming differently under gauge transformations. This, however, requires γ^5 to anti-commute with all other γ^μ, $\mu = 1, \ldots, n$. But, as we see from their definition, Eq. (167), γ^5 only anti-commutes with four of the γ^μ, not all n. This is why the contributions from the $-\varepsilon$ remaining dimensions will not be gauge-invariant.

It was discovered by Bell and Jackiw [Bell and Jackiw, 1969], and independently by Adler [Adler, 1969; Adler and Bardeen, 1969; Bardeen, 1969], that no local counter term exists that obeys all symmetry conditions and has the desired dimensionality; Bell and Jackiw tried to use unconventional regulators, but those turned out not to be admissible. The basic culprit is the triangle diagram, Fig. 5(a), representing the matrix element of the axial vector current $\bar{\psi} \gamma^\mu \gamma^5 \gamma^\alpha \psi$ in the field of two photons, each being coupled to the vector current $\bar{\psi} i \gamma^\mu \gamma^5 \gamma^\alpha \psi$.

For simplicity, we assume here the fermions to be massless. Let us call this
amplitude then $\Gamma_{\mu}^{\alpha,\beta}(p,q)$. It is linearly divergent. Upon regularization, there are two counter terms, or subtraction terms, whose coefficients should be determined, in a correct combination with the finite parts of the amplitude. Limiting ourselves to the correct quantum numbers and dimensions, we find the two quantities,

\begin{align}
\delta_1 \Gamma_{\mu}^{\alpha,\beta}(p,q) &= \epsilon_{\mu\alpha\beta\gamma} p_\gamma; \\
(168) \delta_2 \Gamma_{\mu}^{\alpha,\beta}(p,q) &= \epsilon_{\mu\alpha\beta\gamma} q_\gamma.
\end{align}

We can determine their coefficients by applying the condition that the total amplitude be invariant under gauge transformations of the photon field. This implies that the expression must vanish when any of the two photons are longitudinal: $A_\mu = \partial_\mu \Lambda$, which means

\begin{align}
(169) p_\alpha \Gamma_{\mu}^{\alpha,\beta}(p,q) = 0; \quad q_\beta \Gamma_{\mu}^{\alpha,\beta}(p,q) = 0.
\end{align}

Since

\begin{align}
(170) \quad p_\alpha \delta_1 \Gamma_{\mu}^{\alpha,\beta}(p,q) = 0; \quad q_\beta \delta_1 \Gamma_{\mu}^{\alpha,\beta}(p,q) = A_{\mu,\alpha}; \\
A_{\mu,\alpha} &= \epsilon_{\mu\alpha\beta\gamma} p_\gamma q_\beta;
\end{align}

this fixes the coefficients in front of $\delta_1 \Gamma$ and $\delta_2 \Gamma$.

When now we investigate whether this amplitude is also transversal with respect to the axial vector current, we are struck by a surprise. The counter terms, fixed by condition (170), also contribute here:

\begin{align}
(171) k_\mu \delta_1 \Gamma_{\mu}^{\alpha,\beta}(p,q) = -k_\mu \delta_2 \Gamma_{\mu}^{\alpha,\beta}(p,q) = A_{\alpha,\beta},
\end{align}

but they do not cancel against the contribution of the finite part. After imposing gauge-invariance with respect to the two vector insertions, one finds (in the case
of a single chiral fermion)

\[(172) \ k_\mu \Gamma^\alpha_\mu_\beta(p, q) = (4\pi^2)^{-1} \epsilon_{\mu\alpha\beta\gamma} p_\mu q_\gamma,\]

and this can be rewritten as an effective divergence property of a vector current:

\[(173) \ \partial_\mu J^\mu_\mu = -\frac{iLe^2}{8\pi^2} F_{\mu\nu} \tilde{F}_{\mu\nu},\]

where \(\tilde{F}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} F_{\alpha\beta},\) \(L\) is the number of left-handed minus the number of right-handed fermions, and it was assumed that the photons couple with charges \(e.\)

What is surprising about this is, that the triangle diagram itself, Fig. 5a, appears to be totally symmetric under all permutations, since \(\gamma^5\) can be permuted to any of the other end-points. Imposing gauge-invariance at two of its three end-points implies breaking of the invariance at the third.

This result is very important. It implies an induced violation of a conservation law, apparently to be attributed to the regularization procedure. It also means that it is not possible to couple three gauge bosons to such a triangle graph, because this cannot be done in a gauge-invariant way. In most theories, however, we have couplings both to left-handed and to right-handed fermions. Their contributions are of opposite sign, which means that they can cancel out. Therefore, one derives an important constraint on gauge theories with chiral fermions: The triangle anomalies must cancel out.

Let the left handed chiral fermions be in representations of the total set of gauge groups that transform as

\[(174) \ \psi^i_L \to \psi^j_L + i\Lambda^{a_i}_L T^{a_i}_L \psi^j_L,\]

where \(\Lambda\) is infinitesimal, and \(T^a_L\) are the gauge generators for the left-handed fermions. Similarly for the right-handed \(\psi^j_R.\) Define

\[(175) \ d^{abc}_{L} = \text{Tr}(T^a_L T^b_L T^c_L + T^b_L T^a_L T^c_L) ,\]

and similarly \(d^{abc}_{R}.\) The anomaly constraint is then

\[(176) \ \sum d^{abc}_{L} = \sum d^{abc}_{R} ,\]

where the sum is over all fermion species in the theory. In the Standard Model, the only contributions could come if either one or all three indices of \(d^{abc}\) refer to the \(U(1)\) group. One quickly verifies that indeed the \(U(1)\) charges of the quarks and leptons are distributed in such a way that (176) is completely verified, but only if
the number of quark generations and lepton generations are equal. In Subsection 10.3, we will see the physical significance of this observation.

Note, that in the non-Abelian case, there are also anomalies in diagrams with 4 external legs, see Fig. 5(b). They arise from the trilinear terms in $F_{\mu\nu}\tilde{F}_{\mu\nu}$ (the quadrilinear terms cancel). These are the only cases where the regularization procedure may violate gauge invariance. In diagrams with more loops, or sub diagrams with more external lines, regularization procedures could be found that preserve gauge invariance.

9 ASYMPTOTIC FREEDOM

9.1 The Renormalization group

It was observed by Stueckelberg and Peterman [Stueckelberg and Peterman, 1953] in 1953, that, although the perturbative expansion of a theory depends on how one splits up the bare parameters in the Lagrangian into lowest order parameters, and counter terms required for the renormalization, the entire theory should not depend on this. This they interpreted as an invariance, and the action of replacing parameters from lowest order to higher order corrections as a group operation. One obtains the 'Renormalization Group'.

There is only one instance where such transformations really matter, and that is when one compares a theory at one mass- or distance-scale to the same theory at a different scale. A scale transformation must be associated with a replacement of counter terms. Thus, physicists began to identify the notion of a scale transformation as a 'renormalization group transformation'.

Gell-Mann and Low [Gell-Mann and Low, 1954] observed that this procedure can be used to derive the small-distance behavior of QED. One finds that the effective fine-structure constant depends on the scale μ, described by the equation

$$\frac{d}{d\mu^2} \alpha(\mu) = \beta(\alpha) = \frac{\alpha^2 N}{3\pi} + O(\alpha^3),$$

where N is the number of charged fermion types. As long as $\alpha(\mu)$ stays small, so that the $O(\alpha^3)$ terms can be neglected, we see that its μ-dependence is

$$\alpha(\mu) = \frac{\alpha_0}{1 - (\alpha_0 N/3\pi) \log(\mu^2/\mu_0^2)}, \quad \text{if} \quad \alpha(\mu_0) = \alpha_0.$$

Things run out of control when μ reaches values comparable to $\exp(3\pi/2N\alpha_0)$, but, at least in the case of QED, where $\alpha_0 \approx 1/137$, this mass scale is so large that in practice no problems are expected. The pole in Eq. (178) is called the Landau pole; Landau concluded that quantum field theories such as QED have no true
continuum limit because of this pole. Gell-Mann and Low suspected, however, that \(\beta(\alpha) \) might have a zero at some large value of \(\alpha \), so that, at high values of \(\mu \), \(\alpha \) approaches this value, but does not exceed this stationary point.

What exactly happens at or near the Landau pole, cannot be established using perturbation expansion alone, since this will depend on all higher order terms in Eq. (177); in fact, it is not even known whether Quantum Field Theory can be reformulated accurately enough to decide. The question, however, might be not as important as it seems, since the Landau pole will be way beyond the Planck mass, where we know that gravitational terms will take over; it will be more important to solve Quantum Gravity first.

An entirely different situation emerges in theories where the function \(\beta(\lambda) \) is negative. It was long thought that this situation can never arise, unless the coupling strength \(\lambda \) itself is given the wrong sign (the sign that would render the energy density of the classical theory unbounded from below), but this turns out only to be the case in theories that only contain scalar and spinor fields. If there is a non-Abelian Yang-Mills component in the theory, negative \(\beta \) functions do occur. In the simplest case, an SU(2) gauge theory with \(N_f \) fermions in the elementary doublet representation, the beta function is

\[
\frac{\mu^2}{\text{d} \mu^2} g^2(\mu) = \beta(g^2) = \frac{N_f - 11}{24\pi^2} g^4(\mu) + \mathcal{O}(g^6),
\]

so, as long as \(N_f < 11 \) we have that the coupling strength \(g(\mu) \) tends to zero, logarithmically, as \(\mu \to \infty \). This feature is called asymptotic freedom. In an SU\((N_c)\) gauge theory, the \(\beta \) function is proportional to \(N_f - \frac{11}{2} N_c \), so, with the present number of \(N_f = 6 \) quark flavors, QCD \((N_c = 3)\) is asymptotically free. In line with a notation often used, the subscript \(c \) here stands for "colour"; in QCD, the number of colours is \(N_c = 3 \).

9.2 An algebra for the beta functions

In theories with gauge fields, fermions, and scalars, the situation is more complex. A general algorithm for the beta functions has been worked out. The most compact notation for the general result can be given by writing how the entire Lagrange density \(\mathcal{L} \) scales under a scale transformation. Let the Lagrangian \(\mathcal{L} \) be

\[
\mathcal{L} = -\frac{1}{2} G_{\mu\nu} G^{\mu\nu} - \frac{1}{2} (D_\mu \phi_i)^2 - V(\phi) - \bar{\psi}_i \gamma^i D_\mu \psi_i
\]

\[
- \bar{\psi}_i \left(S_{ij}(\phi) + i\gamma_5 P_{ij}(\phi) \right) \psi_j ,
\]

where the covariant derivatives are defined as follows:\(^8\)

\[
(181) \quad D_\mu \phi_i \equiv \partial_\mu \phi_i + iT_{ij}^a A_\mu^a \phi_j ; \quad D_\mu \psi_i = \partial_\mu \psi_i + iU_{ij}^a A_\mu^a \psi_j ,
\]

\(^8\)\(T \) and \(U \) are hermitean, but since \(\phi \) is real, the elements of \(T \) must be imaginary.
and the structure constants f^{abc} are defined by

\[(182) \ [T^a, T^b] = -i f^{abc} T^c, \]

so that

\[(183) \ G_{\mu \nu}^a = \partial_\mu A_{\nu}^a - \partial_\nu A_{\mu}^a + f^{abc} A_{\mu}^b A_{\nu}^c. \]

We split the fermions into right- and left-handed representations, so that

\[(184) \ U^a = U_L^a P_L + U_R^a P_R; \quad P_L = \frac{1 + \gamma_5}{2}, \quad P_R = \frac{1 - \gamma_5}{2}. \]

The functions $S(\phi)$ and $P(\phi)$ are at most linear in ϕ and $V(\phi)$ is at most quartic. The Lagrangian (180) is the gauge-invariant part; we do not write the gauge-fixing part or the ghost; the final result will not depend on those details.

The result of an algebraical calculation is that

\[16\pi^2 \mu^2 \frac{dL}{d\mu^2} = \]

\[G_{\mu \nu}^a G_{\mu \nu}^b \left[-\frac{11}{12} C_1^{ab} + \frac{1}{24} C_2^{ab} + \frac{1}{6} C_3^{ab} \right] - \Delta V - \overline{\psi} (\Delta S + i \gamma_5 \Delta P) \psi, \]

in which

\[(186) \ C_1^{ab} = f^{apq} f^{bpq}, \]
\[(187) \ C_2^{ab} = \text{Tr} (T^a T^b), \]
\[(188) \ C_3^{ab} = \text{Tr} (U_L^a U_L^b + U_R^a U_R^b), \]
\[\Delta V = \frac{1}{4} V_{ij}^2 - \frac{3}{2} V_i (T^2 \phi)_i + \frac{3}{4} (\phi T^a T^b \phi)^2 \]
\[+ \phi_i V_j \text{Tr} (S_i S_j + P_i P_j) - \text{Tr} (S^2 + P^2)^2 + \text{Tr} [S, P]^2, \]

where

\[(190) \ V_i = \frac{\partial V(\phi)}{\partial \phi_i}; \quad S_i = \frac{\partial S}{\partial \phi_i}, \quad \text{etc.}, \]

and writing $S + IP = W$, one finds ΔS and ΔP from

\[\Delta W = \frac{1}{4} W_i W_i^* W + \frac{1}{4} W W_i^* W_i + W_i W_i^* W_i \]
\[\frac{3}{2} (U_R^2 W) - \frac{3}{2} W (U_L)^2 + W_i \phi_j \text{Tr} (S_i S_j + P_i P_j). \]

This expression does not include information on how fields ϕ_i and ψ_i transform under scaling. The fields are not directly observable.
This algebraic expression can be used to find how, in general, coupling strengths run under rescalings of the momenta. It is an interesting exercise to work out what the conditions are for asymptotic freedom, that is, for all coupling strengths to run to zero at infinite momentum. In general, one finds that scalar fields can only exist if there are also gauge fields and fermions present; the latter must be in sufficiently high representations of the gauge group.

10 TOPOLOGICAL TWISTS

The Lagrangian (180) is the most general one allowed if we wish to limit ourselves to coupling strengths that run logarithmically under rescalings of the momenta, see for instance Eq. (178). Such theories have a domain of validity that range over exponentially large values of the momenta (in principle over all momenta if the theory is asymptotically free). The most striking feature of this general Lagrangian is that it is topologically highly non-trivial. Locally stable field configurations may exist that have some topological twist in them. In particular, this can be made explicit in the case of a Brout-Englert-Higgs mechanism. Here, these twists can already be seen at the classical level (i.e., ignoring quantum effects).

If we say that a scalar field ϕ_i has a vacuum expectation value, then this means that we perform our perturbation expansion starting with a field value of the form $\phi_i = (F, 0, \cdots)$ in the vacuum, after which field fluctuations $\delta\phi$ around this value are assumed to be small. One assumes that the potential $V(\phi)$ has its minimum there. This may appear to violate gauge-invariance, if ϕ_i transform into each other under local gauge transformations, but strictly speaking the phrase "spontaneous breakdown of local gauge symmetry" is inappropriate, because it may also simply mean that we choose a gauge condition. It is however a fact that the spectrum of physical particles comes out to be altogether different if we perturb around $\phi_i = 0$, so this 'Higgs mode' is an important notion in any case.

10.1 Vortices

If the Higgs field has only two real components (such as when $U(1)$ is broken into the identity group), one may consider a configuration where this field makes a full twist over 360° when following a closed curve. Inside the curve there must be a zero. The zeros must form a curve themselves, and they cost energy. This is the Abrikosov vortex. Away from its center, one may transform ϕ_i back to a constant value, but this generates a vector potential $A_\mu(x)$, obeying

$$\int A_\mu \, dx^\mu = \frac{2\pi}{e},$$
which means that this vortex carries an amount of magnetic flux, of magnitude exactly $2\pi/e$. Apparently, in this model, magnetic field lines condense into locally stable vortices [Nielsen and Olesen, 1973]. This is also what happens to magnetic fields inside a superconductor.

10.2 Magnetic Monopoles

Something similar may happen if the Higgs field has three real components. In that case, one can map the S_2 sphere of minima of $V(\phi)$, onto a sphere in 3-space. There will be isolated zeros inside this sphere. These objects behave as locally stable particles. If one tries to transform the field locally to a constant value, one finds that a vector potential again may emerge.

If, for example, in an $SU(2)$ theory, a Higgs in the adjoint representation (which has 3 real components) breaks the gauge group down to $U(1)$, then one finds the vector potential of an isolated magnetic source inside the sphere. This means that the source is a magnetic monopole with magnetic charge $g_m = \frac{4\pi}{e}$, where e is the original coupling strength of the $SU(2)$ theory. Indeed, Dirac [1931; 1948] has derived, back in 1931, that magnetic charges g_m and electric charges q must obey the Dirac quantization condition

\[(193) \quad q g_m = 2\pi n.\]

Apparently, for the monopole in this model, $n = 2$. However, it is easy to introduce particles in the elementary representation, which have $q = \frac{1}{2}e$; these then saturate the Dirac condition (193).

Dirac could not say much about the mass of his magnetic monopoles. In the present theories, however, the mass is calculable. In general, the magnetic monopole mass turns out to be the mass of an ordinary particle divided by a number of the order of the gauge coupling strength squared.

Careful analysis of the existing Lie groups and the way they may be broken spontaneously into one or more subgroups $U(1)$, reveals a general feature: Only if the underlying gauge group is compact, and has a compact covering group, must electric charges in the $U(1)$ gauge groups be quantized (otherwise, it would not be forbidden to add arbitrary real numbers to the $U(1)$ charges), and whenever the covering group of the underlying gauge group is compact, magnetic monopole solutions can be constructed. Apparently, whenever the gauge group structure provides for a compelling reason for electric charges to be quantized, the existence of magnetic monopole solutions is guaranteed. Thus, assuming that Nature has compelling reasons for the charge units of electrons and protons to be equal, and quantized into multiples of e, we must assume that magnetic monopole solutions must exist. However, in most 'Grand Unification Schemes', the relevant mass scale is many orders of magnitude higher than the mass scale of particles studied today,
so the monopoles, whose mass is that divided by a coupling strength squared, are even heavier.

From the structure of the Higgs field of a monopole, one derives that the system is invariant under rotations provided that rotations are associated with gauge rotations. A consequence of this is, that elementary particles with half-odd isospin, when bound to a monopole, produce bound states with half-odd integer orbital angular momentum [Hasenfratz and 't Hooft, 1976]. What is strange about this, is that such particles should develop Dirac statistics. Indeed, one can derive that both the spin and the statistics of bound states of electric and magnetic charges, flip from Bose-Einstein to Fermi-Dirac or back [Goldhaber, 1976] if they form odd values of the Dirac quantum n (Eq. 193).

10.3 Instantons

A Higgs field with two real components gives rise to vortices, a Higgs with three components gives magnetic monopoles, so what do we get if a Higgs field has four real components? This is the case if, for instance, $SU(2)$ is broken spontaneously into the identity by a Higgs in the fundamental representation (two complex = 4 real components). The topologically stable objects one finds are stable points in four-dimensional space-time. They represent events, and, referring to their particle-like appearance, the resulting solutions (in Euclidean space) were called 'instantons'. Because this Higgs field, in the case of $SU(2)$, breaks the gauge symmetry completely, one can argue that this solution is also topologically stable in pure gauge theories, without a Higgs mechanism at all. Far from the origin, the vector potential field is described as a local gauge rotation of the value $A^a_\mu(x) = 0$. The gauge rotation in question, $\Omega(x)$, is described by noting that the $SU(2)$ matrices form an S_3 space, i.e., the three dimensional surface of a sphere in four dimensions. Mapping this S_3 one-to-one onto the boundary of some large region in (Euclidean) space-time, gives the field configuration of an instanton.

It was noted by Belavin, Polyakov, Schwarz and Tyupkin [Belavin et al., 1975] (who also were the first to write down this solution) that this solution has a non-vanishing value of

\[(194) \int d^4x F^a_{\mu\nu} F_{\mu\nu}^a = \frac{32\pi^2}{g^2}. \]

The integrand is the divergence of a current:

\[(195) F^a_{\mu\nu} F_{\mu\nu}^a = \partial_\mu K_\mu; \quad K_\mu = 2\varepsilon_{\mu\nu\alpha\beta} A^a_\nu (\partial_\alpha A^a_\beta + \frac{1}{3}gf^{abc} A^b_\alpha A^c_\beta), \]

the so-called Chern-Simons current. This current, however, is not gauge-invariant, which is why it does not vanish at infinity. It does vanish after the gauge transformation $\Omega(x)$ that replaces A^a_μ at infinity by 0. Eq. (194) is most easily derived
by using this Chern-Simons current. It so happens that the instanton is also a solution of the equation

\[(196) \ F_{\mu\nu} = \tilde{F}_{\mu\nu}, \]

so that we also find the action to be given by \(-8\pi^2/g^2\).

In a pure gauge theory (one without fermions), instantons can be interpreted as representing tunneling transitions. In ordinary Quantum Mechanics, tunneling is an exponentially suppressed transition. The exponential suppression is turned into an oscillating expression if we replace time \(t\) by an imaginary quantity \(i\tau\). The oscillating exponent is the action of a classical transition in imaginary time. One may also say that a tunneling transition can be described by a classical mechanical transition if the potential \(V(\vec{q})\) is replaced by \(2E - V(\vec{q})\), where \(E\) is the energy. The classical action then represents the quantity in the exponent of the (exponentially suppressed) tunneling transition.

The above substitution is exactly what one gets by replacing time \(t\) by \(i\tau\). In relativistic Quantum Field Theory, this is also exactly the Wick rotation from Minkowski space-time into Euclidean space-time. In short, instantons represent tunneling that is associated with the suppression factor \(e^{-8\pi^2/\sigma^2}\).

The transition can be further understood by formulating a gauge theory in the temporal gauge, \(A_0 = 0\). In this gauge, there is a residual invariance under gauge transformations \(\Lambda(x)\) that are time-independent. All 'physical states', therefore, come as representations of this local gauge group. Normally, however, we restrict ourselves to the trivial representation, \(\Omega|\psi\rangle = |\psi\rangle\), where \(\Omega = e^{i\int \Lambda(x)dx}\), because this configuration is conserved in time, and because any other choice would violate Lorentz invariance. However, closer analysis shows that one only has to impose this constraint for those gauge transformations that can be continuously reached from the identity transformation. This is not the case for transformations obtained by mapping the \(S_3\) space of the \(SU(2)\) transformations non-trivially onto three-space \(\mathbb{R}^3\). These transformations form a discrete set, characterized by the integers \(k = 0, \pm 1, \pm 2, \ldots\). Writing

\[(197) \ \Omega_k(x) = \Omega_1(x)^k, \quad \Omega_k|\psi\rangle = e^{i\theta_k}|\psi\rangle, \]

we find that the tunneling transitions described by instantons cause an exponentially suppressed \(\theta\) dependence of physical phenomena in the theory. Since, under parity transformations \(P\), the angle \(\theta\) turns into \(-\theta\), a non-vanishing \(\theta\) also implies an explicit parity (eventually, \(PC\)) violation of the strong interactions.

In the presence of fermions, the situation is altogether different. Due to the chiral anomaly, we have for the current of chiral fermions \(J^5_\mu(x)\), the equation (173). The total number of chiral fermions, \(Q^5 = \int d^3x J^5_\mu(x)\) changes by one unit due to an instanton: \(\Delta Q^5 = \pm 1\). This can be understood by noting that the Dirac
equation for massless, chiral fermions has one localized solution in the Euclidean space of an instanton. In Minkowski space-time, this solution turns into a state that describes a chiral fermion either disappearing into the Dirac sea, or emerging from it, so that, indeed, the number of particles minus anti-particles changes by one unit for every chiral fermion species. If left- and right handed fermions are coupled the same way to the gauge field, as in QCD, the instanton removes a left-handed fermion and creates a right-handed one, or, in other words, it flips the chirality. This $\Delta Q^5 = \pm 2$ event has exactly the quantum numbers of a mass term for the Goldstone boson that would be associated to the conservation of chiral charge, the η particle. This explains why the η particle is considerably heavier than the pions, which have lost most of their mass due to chiral symmetry of the quarks ["t Hooft, 1986].

What one concludes from the study of instantons is that QCD, the theory for the strong interactions, neatly explains the observed symmetry structure of the hadron spectrum, including the violation of chiral charge conservation that accounts for the η mass.

In the electro-weak sector, one also has instantons. We now see that the cancellation of the anomalies in the quark and the lepton sector implies an important property of the electro-weak theory: since the anomalies do not respect gauge-invariance of the quark sector alone, quarks can be shown not to be exactly conserved. One finds that instantons induce baryon number violating events: three baryons (nine different quarks all together) may transmute into three anti-leptons, or vice versa.

11 CONFINEMENT

An important element in the Standard Model is the gauge theory for the strong interactions, based on the gauge group $SU(3)$. Quarks are fermions in the elementary representation of $SU(3)$. The observed hadronic particles all are bound states of quarks and/or anti-quarks, in combinations that are gauge-invariant under $SU(3)$. An important question is: what is the nature of the forces that binds these quarks together? We have seen that vortex solutions can be written down that would cause an interesting force pattern among magnetic monopoles: in a Higgs theory with magnetic monopoles, these monopoles could be bound together with Abrikosov vortices.

Indeed, this would be a confining force: every magnetic monopole must be the end point of a vortex, whose other end point is a monopole of opposite magnetic charge. Indeed, the confinement would be absolute: isolated monopoles cannot exist. It was once thought that, therefore, quarks must be magnetic monopoles. This, however, would be incompatible with the finding that quarks only interact weakly at small distances, magnetic charges being always quite strong. A more elegant idea is that the binding force forms electric rather than magnetic vortices.
An electric vortex can be understood as the dual transformation of a magnetic vortex. It comes about when the Brout-Englert-Higgs mechanism affects freely moving magnetically charged particles. Further analytic arguments, as well as numerical investigations, have revealed that indeed such objects are present in QCD, and that the Higgs mechanism may occur in this sector. Let us briefly explain the situation in words.

11.1 The maximally Abelian gauge

A feature that distinguishes non-Abelian gauge theories from Abelian ones, is that a reference frame for the gauge choice, the gauge condition, can partly be fixed locally in terms of the pure gauge fields alone; noticing that the covariant field strengths $G_{\mu\nu}$ transform as the adjoint representation, one may choose the gauge such that one of these components, say G_{12}, is diagonal. This then removes the non-Abelian part of the gauge group, but the diagonal part, called the Cartan subgroup, remains. In this way, a non-Abelian gauge theory turns into an Abelian one. A slightly smarter, but non-local gauge that does the same is the condition that $\sum_{i\neq j} (A_{i,j})^2$ is minimized. It is called the maximally Abelian gauge.

However, such a gauge choice does produce singularities. These typically occur when two eigenvalues of G_{12} coincide. It is not difficult to convince oneself that these singularities behave as particles, and that these particles carry magnetic charges with respect to the Cartan subgroup. Absolute confinement occurs as soon as these magnetically charged particles undergo a Brout-Englert-Higgs mechanism.

Although this still is the preferred picture explaining the absolute nature of the quark confining force, it may be noted that the magnetically charged particles do not have to be directly involved with the confinement mechanism. Rather, they are indicators. This, we deduce from the fact that confinement also occurs in theories with a very large number N_c of colors; in the limit $N_c \to \infty$, magnetically charged particles appear to be suppressed in the perturbative regime, but the electric vortices are nevertheless stable. The strength of a vortex is determined by its finite width, and this width is controlled by the lightest gluonic state, the 'glueball'. At distance scales large compared to the inverse mass of the lightest glueball, an electric vortex cannot break.

Confinement is a condensation phase that is a logical alternative of the Brout-Englert-Higgs phase. In some cases, however, these two phases may coexist. An example of such a coexistence is the $SU(2)$ sector of the Standard Model. Conventionally, this sector is viewed as a prototype of the Higgs mechanism, but it so happens that the $SU(2)$ sector of the Standard Model can be treated exactly like the colour $SU(3)$ sector: as if there is confinement. To see this, one must observe that the Higgs doublet field can be used to fix the $SU(2)$ sector of the gauge group unambiguously. This means that all physical particles can be connected to gauge-invariant sources by viewing them as gauge-invariant bound states of the Higgs
particle with the other elementary doublets of the model. For instance, writing
the Higgs doublet as \(\phi_a = \begin{pmatrix} F \\ 0 \end{pmatrix} + \tilde{\phi}_a \), and the lepton doublet as \(\psi_a \), the electron
is seen to be associated to the 'baryonic' field \(\varepsilon^{ab} \phi_a \psi_b \), the neutrino is \(\phi^{*a} \psi_a \), the
\(Z_0 \) boson is \(\phi^{*a} D_\mu \phi_a \), and so on.

Theories in which the confinement phase is truly distinct from the Higgs phase
are those where the Higgs field is not a one-to-one representation of the gauge
group, such as the adjoint representation of \(SU(2) \).

12 OUTLOOK

Quantum Field Theory has reached a respectable status as an accurate and well-
studied description of sub-atomic particles. From a purely mathematical point
of view, there are some inherent limitations to the accuracy by which it defines
the desired amplitudes, but in nearly all conceivable circumstances, its intrinsic
accuracy is much higher than what can be reached in experiments. This does
not mean that we can reach such accuracy in real calculations, which more often
than not suffer from technical limitations, particularly where the interactions are
strong, as in QCD. In this domain, there is still a need for considerable technical
advances.

12.1 Naturalness

When the Standard Model, as known today, is extrapolated to energy domains
beyond approximately 1 TeV, a difficulty is encountered that is not of a mathe-
matical nature, but rather a physical one: it becomes difficult to believe that it
represents the real world. The bare Lagrangian, when considered on a very fine
lattice, is required to have parameters that must be tuned very precisely in order
to produce particles such as the Higgs particle and the weak vector bosons, whose
masses are much less than 1 TeV. This fine-tuning is considered to be unnatural.
In a respectable physical theory, such a coincidence is not expected. With some
certainty, one can state that the fundamental laws of Nature must allow for a more
elegant description at high energies than a lattice with such fine-tuning. What is
generally expected is either a new symmetry principle or possibly a new regime
with an altogether different set of physical fields.

A candidate for a radically different regime is the so-called technicolour theory,
a repetition of QCD but with a typical energy scale of a TeV rather than a GeV.
The quarks, leptons and Higgs particles of the Standard Model would then all turn
out to be the hadrons of this technicolour theory. Different gauge groups could
replace \(SU(3) \) here. However, according to this scheme, a new strong interaction
regime would be reached, where perturbation expansions used in the weak sector
of the Standard Model would have to break down. As precision measurements and
calculations continue to confirm the reliability of these perturbation expansions, the technicolour scenario is considered to be unlikely.

12.2 Supersymmetry

A preferred scenario is a simple but beautiful enhancement of the symmetries of the Standard Model: supersymmetry. This symmetry, which puts fermions and bosons into single multiplets, does not really modify the fundamental aspects of the theory. But it does bring about considerable simplifications in the expressions for the amplitudes, not only in the perturbative sector, but also, in many cases, it allows us to look deeper into the non-perturbative domains of the theories. There is a vast amount of literature on supersymmetry, but some aspects of it are still somewhat obscure. We would like to know more about the physical origin and meaning of supersymmetry, as well as the mechanism(s) causing it to be broken — and made almost invisible — at the domain of the Standard Model that is today accessible to experimental observation.

12.3 Resummation of the Perturbation Expansion

The perturbation expansion in Quantum Field Theory is almost certain to be divergent for any value of the coupling parameter(s). A simple argument for its divergence has been put forward by Dyson [Dyson, 1952]: imagine that in the theory of QED there were a bound \(\varepsilon \) such that, whenever \(|\alpha| < \varepsilon \), where \(\alpha \) is the fine-structure constant, perturbation expansions would converge. Then it would converge for some negative real value of \(\alpha \). However, one can easily ascertain that for any negative value of \(\alpha \), the vacuum would be unstable: vacuum fluctuations would allow large numbers of electrons to be pair-created, and since like charges attract, highly charged clouds of electrons could have negative energies.

Theories with asymptotic freedom may allow for a natural way to re-sum the perturbation series, by first solving the theory at high energy with extreme precision, after which one has to integrate the Schrödinger equation to obtain the physical amplitudes at lower energy. Such a program has not yet been carried out, because integrating these Schrödinger equations is beyond our present capabilities, but one may suspect that, as a matter of principle, it should be possible. Theories that are not asymptotically free may perhaps allow for more precise treatments if an ultra-violet fixed point can be established.

The extent of the divergence of the perturbation expansion can be studied or predicted. This one does using the Borel resummation technique. An amplitude

\[
(198) \quad \Gamma(\lambda) = \sum_{n=1}^{\infty} a_n \lambda^n ,
\]
can be rewritten as

\[\Gamma(\lambda) = \int_0^\infty B(z) e^{-z/\lambda} \, dz, \]

(199) \[B(z) = \sum_{k=0}^{\infty} a_{k+1} z^k / k!. \]

The series for \(B(z) \) is generally expected to have a finite radius of convergence. If \(B(z) \) can be analytically extended to the domain \(0 \leq z < \infty \), then that (re-) defines our amplitude. In general, however, one can derive that \(B(z) \) must have singularities on the real axis, for instance where \(z \) corresponds to the action of instantons or instanton pairs. In addition, singularities associated to the infrared and/or ultraviolet divergences of the theory are expected. Sometimes, these different singularities interfere.

12.4 General Relativity and Superstring Theory

It is dubious, however, whether the issue of convergence or divergence of the perturbation expansion is of physical relevance. We know that Quantum Field Theory cannot contain the entire truth concerning the sub-atomic world; the gravitational force is guaranteed not to be renormalizable, so at those scales where this force becomes comparable to the other forces, the so-called Planck scale, a radically new theory is called for. Superstring Theory is presently holding the best promise to evolve into such a theory. With this theory, physicists are opening a new chapter, where we leave conventional Quantum Field Theory, as described in this paper, behind. In its present form, Superstring Theory appears to have turned into a collection of wild ideas called \(M \)-theory, whose foundations are still extremely shaky. Some of the best minds of the world are competing to turn this theory into something that can be used to provide for reliable predictions and that can be taught in a text book, but this has not yet been achieved.

BIBLIOGRAPHY

This page intentionally left blank
INTRODUCTION

From the title of this Chapter, one might suspect that the subject is some idiosyncratic approach to quantum field theory (QFT). The approach is indeed idiosyncratic in the sense of demographics: only a small proportion of those who work on QFT work on algebraic QFT (AQFT). However, there are particular reasons why philosophers, and others interested in foundational issues, will want to study the "algebraic" approach.

In philosophy of science in the analytic tradition, studying the foundations of a theory T has been thought to presuppose some minimal level of clarity about the referent of T. (Moreover, to distinguish philosophy from sociology and history, T is not taken to refer to the activities of some group of people.) In the early twentieth century, it was thought that the referent of T must be a set of axioms of some formal, preferably first-order, language. It was quickly realized that not many interesting physical theories can be formalized in this way. But in any case, we are no longer in the grip of axiomania, as Feyerabend called it. So, the standards were loosened somewhat — but only to the extent that the standards were simultaneously loosened within the community of professional mathematicians. There remains an implicit working assumption among many philosophers that studying the foundations of a theory requires that the theory has a mathematical description. (The philosopher's working assumption is certainly satisfied in the case of statistical mechanics, special and general relativity, and nonrelativistic quantum mechanics.) In any case, whether or not having a mathematical description is mandatory, having such a description greatly facilitates our ability to draw inferences securely and efficiently.

So, philosophers of physics have taken their object of study to be theories, where theories correspond to mathematical objects (perhaps sets of models). But it is not so clear where "quantum field theory" can be located in the mathematical universe. In the absence of some sort of mathematically intelligible description of QFT, the philosopher of physics has two options: either find a new way to understand the task of interpretation, or remain silent about the interpretation of quantum field theory.¹

It is for this reason that AQFT is of particular interest for the foundations of quantum field theory. In short, AQFT is our best story about where QFT lives

¹For the first option, see [Wallace, forthcoming].
in the mathematical universe, and so is a natural starting point for foundational inquiries.

1 ALGEBRAIC PROLEGOMENA

This first section provides a minimal overview of the mathematical prerequisites of the remainder of the Chapter.

1.1 von Neumann algebras

The standard definition of a von Neumann algebra involves reference to a topology, and it is then shown (by von Neumann's double commutant theorem) that this topological condition coincides with an algebraic condition (condition 2 in the Definition 2). But for present purposes, it will suffice to take the algebraic condition as basic.

DEFINITION 1. Let \mathcal{H} be a Hilbert space. Let $\mathcal{B}(\mathcal{H})$ be the set of bounded linear operators on \mathcal{H} in the sense that for each $A \in \mathcal{B}(\mathcal{H})$ there is a smallest nonnegative number $\|A\|$ such that $\langle Ax, Ax \rangle^{1/2} \leq \|A\|$ for all unit vectors $x \in \mathcal{H}$. Subsequently we use $\| \cdot \|$ ambiguously for the norm on \mathcal{H} and the norm on $\mathcal{B}(\mathcal{H})$. We use juxtaposition AB to denote the composition of two elements A, B of $\mathcal{B}(\mathcal{H})$. For each $A \in \mathcal{B}(\mathcal{H})$ we let A^* denote the unique element of $\mathcal{B}(\mathcal{H})$ such that $\langle A^*x, y \rangle = \langle x, Ay \rangle$, for all $x, y \in \mathcal{H}$.

DEFINITION 2. Let \mathcal{R} be a \ast-subalgebra of $\mathcal{B}(\mathcal{H})$, the bounded operators on the Hilbert space \mathcal{H}. Then \mathcal{R} is a von Neumann algebra if

1. $I \in \mathcal{R}$,
2. $(\mathcal{R}')' = \mathcal{R}$,

where $\mathcal{R}' = \{ B \in \mathcal{B}(\mathcal{H}) : [B, A] = 0, \forall A \in \mathcal{R} \}$.

DEFINITION 3. We will need four standard topologies on the set $\mathcal{B}(\mathcal{H})$ of bounded linear operators on \mathcal{H}. Each of these topologies is defined in terms of a family of seminorms — see [Kadison and Ringrose, 1997, Chaps. 1,5] for more details.

- The uniform topology on $\mathcal{B}(\mathcal{H})$ is defined in terms of a single norm:

$$\|A\| = \sup \{ \|Av\| : v \in \mathcal{H}, \|v\| \leq 1 \},$$

where the norm on the right is the given vector norm on \mathcal{H}. Hence, an operator A is a limit point of the sequence $(A_i)_{i \in \mathbb{N}}$ iff $(\|A_i - A\|)_{i \in \mathbb{N}}$ converges to 0.

- The weak topology on $\mathcal{B}(\mathcal{H})$ is defined in terms of the family $\{ p_{u,v} : u, v \in \mathcal{H} \}$ of seminorms where

$$p_{u,v}(A) = \langle u, Av \rangle.$$
The resulting topology is not generally first countable, and so the closure of a subset \(S \) of \(\mathfrak{B}(\mathcal{H}) \) is generally larger than the set of all limit points of sequences in \(S \). Rather, the closure of \(S \) is the set of limit points of generalized sequences (nets) in \(S \) — see [Kadison and Ringrose, 1997, Chap. 1] for more details. A net \((A_i)_{i \in I} \) in \(\mathfrak{B}(\mathcal{H}) \) converges weakly to \(A \) just in case \((p_{u,v}(A_i))_{i \in I} \) converges to \(p_{u,v}(A) \) for all \(u, v \in \mathcal{H} \).

- The strong topology on \(\mathfrak{B}(\mathcal{H}) \) is defined in terms of the family \(\{p_v : v \in \mathcal{H}\} \) of seminorms where
 \[p_v(A) = \|Av\|. \]
 Thus, a net \((A_i)_{i \in I} \) converges strongly to \(A \) iff \((p_v(A_i))_{i \in I} \) converges to \(p_v(A) \), for all \(v \in \mathcal{H} \).

- The ultraweak topology on \(\mathfrak{B}(\mathcal{H}) \) is defined in terms of the family \(\{p_\rho : \rho \in T(\mathcal{H})\} \) where \(T(\mathcal{H}) \) is the set of positive, trace 1 operators ("density operators") on \(\mathcal{H} \) and
 \[p_\rho(A) = \text{Tr}(\rho A). \]
 Thus a net \((A_i)_{i \in I} \) converges ultraweakly to \(A \) just in case \((\text{Tr}(\rho A_i))_{i \in I} \) converges to \(\text{Tr}(\rho A) \), for all \(\rho \in T(\mathcal{H}) \).

FACT 4. The topologies are ordered as follows:

\[
\begin{array}{c}
\text{norm} \\
\cup \\
\text{ultraweak} \\
\cup \\
\text{strong} \\
\cup \\
\text{weak}
\end{array}
\]

Since closed sets are just the complements of open sets, this means that a weakly closed set is ultraweakly closed, and an ultraweakly closed subset is norm closed. Furthermore, the four topologies on \(\mathfrak{B}(\mathcal{H}) \) coincide iff \(\mathcal{H} \) is finite dimensional.

FACT 5. If \(S \) is a bounded, convex subset of \(\mathfrak{B}(\mathcal{H}) \), then the weak, ultraweak, and strong closures of \(S \) are the same.

FACT 6. For a \(*\)-algebra \(\mathfrak{A} \) on \(\mathcal{H} \) that contains \(I \), the following are equivalent: (i) \(\mathfrak{A} \) is weakly closed; (ii) \(\mathfrak{A}' = \mathfrak{A} \). This is von Neumann’s double commutant theorem.

DEFINITION 7. Let \(\mathfrak{A} \) be a subset of \(\mathfrak{B}(\mathcal{H}) \). A vector \(x \in \mathcal{H} \) is said to be cyclic for \(\mathfrak{A} \) just in case \([\mathfrak{A}x] = \mathcal{H} \), where \([\mathfrak{A}x] = \{Ax : A \in \mathfrak{A}\} \), and \([\mathfrak{A}x] \) is the closed linear span of \(\mathfrak{A}x \). A vector \(x \in \mathcal{H} \) is said to be separating for \(\mathfrak{A} \) just in case \(Ax = 0 \) and \(A \in \mathfrak{A} \) entails \(A = 0 \).

FACT 8. Let \(\mathfrak{A} \) be a von Neumann algebra on \(\mathcal{H} \), and let \(x \in \mathcal{H} \). Then \(x \) is cyclic for \(\mathfrak{A} \) iff \(x \) is separating for \(\mathfrak{A}' \).
DEFINITION 9. A \emph{normal} state of a von Neumann algebra \(\mathfrak{A} \) is an ultraweakly continuous state. We let \(\mathfrak{A}_* \) denote the normal state space of \(\mathfrak{A} \).

1.2 \(\textbf{C}^* \)-algebras and their representations

DEFINITION 10. A \(\textbf{C}^* \)-algebra is a pair consisting of a \(* \)-algebra \(\mathfrak{A} \) and a norm \(\| \cdot \| : \mathfrak{A} \rightarrow \mathbb{R} \) such that
\[
\|AB\| \leq \|A\| \cdot \|B\|, \quad \|A^*A\| = \|A\|^2,
\]
for all \(A, B \in \mathfrak{A} \). We usually use \(\mathfrak{A} \) to denote the algebra and its norm.

In this Chapter, we will only use \(\textbf{C}^* \)-algebras that contain a multiplicative identity \(I \).

DEFINITION 11. A state \(\omega \) on \(\mathfrak{A} \) is a linear functional such that \(\omega(A^*A) \geq 0 \) for all \(A \in \mathfrak{A} \), and \(\omega(I) = 1 \).

DEFINITION 12. A state \(\omega \) of \(\mathfrak{A} \) is said to be \emph{mixed} if \(\omega = \frac{1}{2}(\omega_1 + \omega_2) \) with \(\omega_1 \neq \omega_2 \). Otherwise \(\omega \) is said to be \emph{pure}.

DEFINITION 13. Let \(\mathfrak{A} \) be a \(\textbf{C}^* \)-algebra. A \emph{representation} of \(\mathfrak{A} \) is a pair \((\mathcal{H}, \pi) \), where \(\mathcal{H} \) is a Hilbert space and \(\pi \) is a \(* \)-homomorphism of \(\mathfrak{A} \) into \(\mathfrak{B}(\mathcal{H}) \). A representation \((\mathcal{H}, \pi) \) is said to be \emph{irreducible} if \(\pi(\mathfrak{A}) \) is weakly dense in \(\mathfrak{B}(\mathcal{H}) \). A representation \((\mathcal{H}, \pi) \) is said to be \emph{faithful} if \(\pi \) is an isomorphism.

DEFINITION 14. Let \((\mathcal{H}, \pi) \) and \((\mathcal{K}, \phi) \) be representations of a \(\textbf{C}^* \)-algebra \(\mathfrak{A} \). Then \((\mathcal{H}, \pi) \) and \((\mathcal{K}, \phi) \) are said to be:

1. \emph{unitarily equivalent} if there is a unitary \(U : \mathcal{H} \rightarrow \mathcal{K} \) such that \(U\pi(A) = \phi(A)U \) for all \(A \in \mathfrak{A} \).

2. \emph{quasiequivalent} if the von Neumann algebras \(\pi(\mathfrak{A})'' \) and \(\phi(\mathfrak{A})'' \) are \(* \)-isomorphic.

3. \emph{disjoint} if they are not quasiequivalent.

DEFINITION 15. A representation \((\mathcal{K}, \phi) \) is said to be a \emph{subrepresentation} of \((\mathcal{H}, \pi) \) just in case there is an isometry \(V : \mathcal{K} \rightarrow \mathcal{H} \) such that \(\pi(A)V = V\phi(A) \) for all \(A \in \mathfrak{A} \).

FACT 16. Two representations are quasiequivalent iff they have unitarily equivalent subrepresentations.

The famous Gelfand-Naimark-Segal (GNS) theorem shows that every \(\textbf{C}^* \)-algebraic state can be represented by a vector in a Hilbert space.

THEOREM 17 (GNS). Let \(\omega \) be a state of \(\mathfrak{A} \). Then there is a representation \((\mathcal{H}, \pi) \) of \(\mathfrak{A} \), and a unit vector \(\Omega \in \mathcal{H} \) such that:

1. \(\omega(A) = \langle \Omega, \pi(A)\Omega \rangle \), for all \(A \in \mathfrak{A} \);

2. \(\pi(\mathfrak{A})\Omega \) is dense in \(\mathcal{H} \).
Furthermore, the representation \((\mathcal{H}, \pi)\) is the unique one (up to unitarily equivalence) satisfying the two conditions.

Since we will later need to invoke the details of the GNS construction, we sketch the outlines of its proof here.

Sketch of proof. We construct the Hilbert space \(\mathcal{H}\) from equivalence classes of elements in \(\mathfrak{A}\), and the representation \(\pi\) is given by the action of left multiplication. In particular, define a bounded sesquilinear form on \(\mathfrak{A}\) by setting

\[
\langle A, B \rangle_\omega = \omega(A^*B), \quad A, B \in \mathfrak{A}.
\]

Let \(\mathcal{H}_0\) be the quotient of \(\mathfrak{A}\) induced by the norm \(\|A\|_\omega = \langle A, A \rangle_\omega^{1/2}\). Let \(\mathcal{H}\) be the unique completion of the pre-Hilbert space \(\mathcal{H}_0\). Thus there is an inclusion mapping \(j : \mathfrak{A} \to \mathcal{H}\) with \(j(\mathfrak{A})\) dense in \(\mathcal{H}\). Define the operator \(\pi(A)\) on \(\mathcal{H}\) by setting

\[
\pi(A)j(B) = j(AB), \quad B \in \mathfrak{A}.
\]

One must verify that \(\pi(A)\) is well-defined, and extends uniquely to a bounded linear operator on \(\mathcal{H}\). One must also then verify that \(\pi\) is a \(*\)-homomorphism. Finally, if we let \(\Omega = j(I)\), then \(\Omega\) is obviously cyclic for \(\pi(\mathfrak{A})\).

PROPOSITION 18. Let \(\omega\) be a state of \(\mathfrak{A}\). The GNS representation \((\mathcal{H}, \pi)\) of \(\mathfrak{A}\) induced by \(\omega\) is irreducible iff \(\omega\) is pure.

Notes: Standard references on \(C^*-\)algebras include [Kadison and Ringrose, 1997] and [Takesaki, 2002].

1.3 Type classification of von Neumann algebras

Definition 19. Two projections \(E, F\) in a von Neumann algebra \(\mathfrak{R}\) are said to be **equivalent**, written \(E \sim F\) just in case there is a \(V \in \mathfrak{R}\) such that \(V^*V = E\) and \(VV^* = F\).

Note 20. If we were being really careful, we would replace “equivalent” in the previous definition with “equivalence modulo \(\mathfrak{R}\)”, and similarly “\(\sim\)” with “\(\sim_{\mathfrak{R}}\).” But we will not run into trouble by omitting the reference to \(\mathfrak{R}\). The operator \(V\) in the previous definition is called a **partial isometry** with **initial projection** \(E\) and **final projection** \(F\).

Definition 21. For von Neumann algebras \(\mathfrak{R}_1\) and \(\mathfrak{R}_2\), we let \(\mathfrak{R}_1 \wedge \mathfrak{R}_2 = \mathfrak{R}_1 \cap \mathfrak{R}_2\). We let \(\mathfrak{R}_1 \vee \mathfrak{R}_2\) denote the von Neumann algebra generated by \(\mathfrak{R}_1\) and \(\mathfrak{R}_2\), i.e. the intersection of all von Neumann algebras containing \(\mathfrak{R}_1\) and \(\mathfrak{R}_2\).

Definition 22. \(Z(\mathfrak{R}) = \mathfrak{R} \wedge \mathfrak{R}'\) is called the **center** of the von Neumann algebra \(\mathfrak{R}\). A von Neumann algebra \(\mathfrak{R}\) is called a **factor** just in case \(Z(\mathfrak{R}) = \mathcal{C}I\), equivalently, \(\mathfrak{R} \vee \mathfrak{R}' = \mathcal{B}(\mathcal{H})\). A projection \(E \in Z(\mathfrak{R})\) is called a **central projection** in \(\mathfrak{R}\).
DEFINITION 23. Let $E \in \mathfrak{A}$ be a projection, and let $E\mathfrak{A}E = \{EAE : A \in \mathfrak{A}\}$. Then clearly, $E\mathfrak{A}E$ is a linear subspace of \mathfrak{A}. Furthermore, since for $A, B \in \mathfrak{A}$, $AEB \in \mathfrak{A}$ and $A^* \in \mathfrak{A}$, it follows that $E\mathfrak{A}E$ is closed under products, as well as under \ast. It is also not difficult to see that $E\mathfrak{A}E$ is weakly closed, and hence is a von Neumann algebra on $E\mathcal{H}$.

DEFINITION 24. Let \mathfrak{A} be a von Neumann algebra. A projection $E \in \mathfrak{A}$ is said to be:

1. $\textbf{minimal}$ just in case \mathfrak{A} contains no proper subprojection of E.
2. $\textbf{abelian}$ just in case the algebra $E\mathfrak{A}E$ is abelian.
3. $\textbf{infinite}$ just in case there is a projection $E_0 \in \mathfrak{A}$ such that $E_0 < E$ and $E \sim E_0$.
4. \textbf{finite} just in case it is not infinite.
5. $\textbf{properly infinite}$ just in case E is infinite and for each central projection P of \mathfrak{A}, either $PE = 0$ or PE is infinite.

FACT 25. We have the following relations for projections:

$$\text{minimal} \Rightarrow \text{abelian} \Rightarrow \text{finite} \quad \text{properly infinite} \Rightarrow \text{infinite} \Leftrightarrow \neg\text{finite}$$

For factors, the first arrows on both lines can be reversed.

We now give the Murray-von Neumann type classification of factors (for more on this, see [Kadison and Ringrose, 1997, Chap. 7] or [Sunder, 1987, Chap. 1]).

DEFINITION 26. A von Neumann factor \mathfrak{A} is said to be:

1. $\textbf{type I}$ if it contains an abelian projection;
2. $\textbf{type II}$ if it contains a finite projection, but no abelian projection;
3. $\textbf{type III}$ if it is neither type I nor type II.

The type I factors were already completely classified by Murray and von Neumann: for each cardinal number κ there is a unique (up to isomorphism) type I_κ factor, namely $\mathfrak{B}(\mathcal{H})$ where \mathcal{H} is a Hilbert space of dimension κ. The type II factors can be further subdivided according to whether or not the identity projection I is finite (type II$_1$) or infinite (type II$_\infty$). The type III factors can be subdivided into types III$_\lambda$ with $\lambda \in [0, 1]$, although the basis for this subclassification depends on Tomita-Takesaki modular theory (see Section 1.4).

For general von Neumann algebras, the type classification must be just a bit more sophisticated: a type I algebra is defined as an algebra that has an abelian projection E such that no nontrivial projection in $Z(\mathfrak{A})$ majorizes E. Similarly, a
type II algebra is defined as an algebra having a finite projection E such that no nontrivial projection in $Z(\mathcal{A})$ majorizes E. Thus we have:

Proposition 27. Let \mathcal{A} be a von Neumann algebra. Then $\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_{II} \oplus \mathcal{A}_{III}$, where \mathcal{A}_X is type X for $X=I,II,III$.

Proof. See [Kadison and Ringrose, 1997, Thm. 6.5.2].

We will soon see that the local algebras in QFT are "typically" type III, and this has many interesting implications. The fact that type III algebras do not have abelian projections is connected to questions of locality in Section 3.3. The fact that the state space of type III_1 factors is homogeneous is also connected to questions of locality in Section 3.3. The fact that type III algebras do not contain representatives of their states (i.e. density operators) is connected to the modal interpretation of QFT in Section 5.

The following classification of von Neumann algebras is also natural, but it cuts across the Murray-von Neumann classification.

Definition 28. A von Neumann algebra \mathcal{A} is said to be:

- of *infinite type* if I is infinite in \mathcal{A};
- *properly infinite* if I is properly infinite in \mathcal{A}.
- *semi-finite* if the central projection E_{III} in \mathcal{A} (defined in Prop. 27) is zero.

The finite factors include the type I_n and type II_1 factors. The infinite factors include the type I_∞ factors as well as the type II_∞ and III factors. The distinction between finite and infinite factors coincides with the existence of a tracial state.

Definition 29. A faithful normalized trace on a von Neumann algebra \mathcal{A} is a state ρ on \mathcal{A} such that:

1. ρ is tracial; i.e. $\rho(AB) = \rho(BA)$, for all $A, B \in \mathcal{A}$,
2. ρ is faithful; i.e. $\rho(A^*A) = 0$ only if $A = 0$.

Fact 30. A von Neumann factor \mathcal{A} is finite iff there is a faithful normal tracial state ρ on \mathcal{A}. A von Neumann factor \mathcal{A} is semifinite iff there is a "faithful normal semifinite trace" on \mathcal{A}; but we do not pause here to define this notion.

1.4 Modular theory

We state here without proof some of the basic facts about Tomita-Takesaki modular theory. These facts are necessary in order to understand the classification of type III von Neumann algebras, which in turn is essential to understanding the mathematical structure of AQFT.
DEFINITION 31. Let \(\mathcal{R} \) be a von Neumann algebra acting on a Hilbert space \(\mathcal{H} \), and suppose that \(\Omega \in \mathcal{H} \) is cyclic and separating for \(\mathcal{R} \). In such a case, we say that \((\mathcal{R}, \Omega) \) is \textit{in standard form}. Define an operator \(S_0 \) on \(\mathcal{H} \) by setting

\[
S_0 A \Omega = A^* \Omega, \quad A \in \mathcal{R}.
\]

Then \(S_0 \) extends to a closed anti-linear operator \(S \) on \(\mathcal{H} \). Let \(S = J \Delta^{1/2} \) be the polar decomposition of \(S \), so that \(\Delta \) is positive (but generally unbounded), and \(J \) is anti-unitary. (Recall that a positive operator has spectrum in \(\mathbb{R}^+ \).) We call \(\Delta \) the \textit{modular operator} and \(J \) the \textit{modular conjugation} associated with the pair \((\mathcal{R}, \Omega) \).

THEOREM 32. Let \(\mathcal{R} \) be a von Neumann algebra with cyclic and separating vector \(\Omega \). Then \(J \Omega = \Omega = \Delta \Omega \) and

\[
\Delta^{it} \mathcal{R} \Delta^{-it} = \mathcal{R}, \quad \forall t \in \mathbb{R},
\]

\[
J \mathcal{R} J = \mathcal{R}'.
\]

Proof. See [Kadison and Ringrose, 1997, Thm. 9.2.9], or [Sunder, 1987, Thm. 2.3.3]. ■

DEFINITION 33. Let \((\mathcal{R}, \Omega) \) be in standard form, and let \(\omega \) be the state of \(\mathcal{R} \) induced by \(\Omega \). For each \(t \in \mathbb{R} \), define the \textit{modular automorphism} \(\sigma_t^\omega \) of \(\mathcal{R} \) by

\[
\sigma_t^\omega(A) = \Delta^{it} A \Delta^{-it}, \quad A \in \mathcal{R},
\]

for all \(A \in \mathcal{R} \). Define a * anti-isomorphism \(\gamma : \mathcal{R} \to \mathcal{R}' \) by setting \(\gamma(A) = JA^*J \), for all \(A \in \mathcal{R} \).

DEFINITION 34. If \(\mathfrak{A} \) is a \(C^* \)-algebra, we let \(\text{Inn} \mathfrak{A} \) denote the group of inner automorphisms of \(\mathfrak{A} \); i.e. \(\alpha \in \text{Inn} \mathfrak{A} \) just in case there is a unitary \(U \in \mathfrak{A} \) such that \(\alpha(A) = UAU^* \) for all \(A \in \mathfrak{A} \).

The spectrum of the modular operator \(\Delta \) gives a rough measure of the periodicity of the modular automorphism group \((\sigma_t^\omega)_{t \in \mathbb{R}} \); i.e. the smaller the spectrum of \(\Delta \), the closer the automorphism \(\sigma_t^\omega \) is to the identity \(\iota : \mathcal{R} \to \mathcal{R} \). In the extreme case, if \(\text{sp} \Delta = \{1\} \), then \(\sigma_t^\omega = \iota \) for all \(t \in \mathbb{R} \). Conversely, as \(\Delta \) goes up to \(\mathbb{R}^+ \), the group \((\sigma_t^\omega)_{t \in \mathbb{R}} \) tends toward being ergodic (i.e. having no fixed points).

DEFINITION 35. Define the \textit{modular spectrum} \(S(\mathcal{R}) \) of \(\mathcal{R} \) by

\[
S(\mathcal{R}) = \bigcap_\omega \text{sp}(\Delta_\omega),
\]

where \(\omega \) runs over the family of faithful normal states of \(\mathcal{R} \), and \(\Delta_\omega \) are the corresponding modular operators.

PROPOSITION 36. Let \(\mathcal{R} \) be a von Neumann factor with cyclic and separating vector \(\Omega \). Then the following are equivalent:

1. \(\mathcal{R} \) is a von Neumann algebra with cyclic and separating vector \(\Omega \).
2. \(\mathcal{R} \) is a von Neumann factor with cyclic and separating vector \(\Omega \).
3. \(\mathcal{R} \) is a von Neumann factor with cyclic and separating vector \(\Omega \).
4. \(\mathcal{R} \) is a von Neumann factor with cyclic and separating vector \(\Omega \).
1. \mathcal{R} is semifinite.

2. For all $t \in \mathbb{R}$, the modular automorphism σ_t^ω is inner; i.e. there is a unitary $U \in \mathcal{R}$ such that $\sigma_t^\omega(A) = UAU^*$ for all $A \in \mathcal{R}$.

3. $S(\mathcal{R}) = \{1\}$.

We now proceed to Connes' subclassification of the type III factors. This subclassification uses the notion of the "period of the flow of weights" (where a weight is a generalization of the notion of a state). However, in order to bypass some background material, we use the following (provably equivalent) definition.

DEFINITION 37. A factor \mathcal{R} of type III is said to be:

1. Type III_0 if $S(\mathcal{R}) = \{0, 1\}$.

2. Type III_λ, $\lambda \in (0, 1)$, if $S(\mathcal{R}) = \{\lambda^n : n \in \mathbb{Z}\} \cup \{0\}$.

3. Type III_1 if $S(\mathcal{R}) = \mathbb{R}^+$.

The conditions in Defn. 37 do not bear their physical interpretation on their sleeve. That is, it is not immediately clear how the physics of type III_λ algebras differs (if at all) from that of type III_μ algebras, for $\lambda \neq \mu$. However, a result of Connes and Størmer [1978] cashes out some of the significance of the distinctions between different types of factors.

DEFINITION 38. Let \mathcal{R} be a von Neumann algebra, and let \mathcal{R}_* be its normal state space. We define the diameter of the state orbit space $d(\mathcal{R})$ by

$$d(\mathcal{R}) = \sup \left\{ \inf \left\{ \| (\omega_1 \circ \alpha) - \omega_2 \| : \alpha \in \text{Inn}\mathcal{R} \right\} : \omega_1, \omega_2 \in \mathcal{R}_* \right\}.$$

Alternatively, let $[\omega]$ denote the norm closure of $\{\omega \circ \alpha : \alpha \in \text{Inn}\mathcal{R}\}$ (the orbit of the state under inner automorphisms), and let K denote the quotient of the normal state space \mathcal{R}_*. Then $d(\mathcal{R})$ is the diameter of K relative to the induced metric

$$\overline{d}([\omega_1], [\omega_2]) = \inf \{ \| \omega_1' - \omega_2' \| : \omega_1' \in [\omega_1] \}.$$

Clearly $d(\mathcal{R}) \in [0, 2]$, with $d(\mathcal{R}) = 0$ iff the orbit of every state is dense in the normal state space. If \mathcal{R} is not a factor, then there are states ω_1, ω_2 such that $\| \omega_1 \circ \alpha - \omega_2 \| = 2$ for all $\alpha \in \text{Inn}\mathcal{R}$, and so $d(\mathcal{R}) = 2$. For type I_n factors, the distance between normal states is the same as the trace norm distance of the corresponding density operators. In this case, we have

$$d(\mathcal{R}) = 2 \left(1 - \frac{1}{n} \right) = \| \tau - \omega \|,$$
where τ is the trace and ω is any pure state. We also have $d(\mathfrak{A}) = 2$ for factors of type I_∞ and of type II [Takesaki, 2003, p. 430].

If $d(\mathfrak{A})$ gives some sort of measure of "how noncommutative" the algebra \mathfrak{A} is, then type III_1 factors are the most noncommutative.

DEFINITION 39. A von Neumann algebra \mathfrak{A} is said to be *countably decomposable* just in case any family of mutually orthogonal projection operators in \mathfrak{A} is countable.

PROPOSITION 40. If \mathfrak{A} is a countably decomposable factor of type III_λ, then

$$d(\mathfrak{A}) = 2 \frac{1 - \lambda^{1/2}}{1 + \lambda^{1/2}}.$$

Proof. See [Connes and Størmer, 1978] and [Takesaki, 2003, p. 427].

The function $f(\lambda) = 2(1 - \lambda^{1/2})/(1 + \lambda^{1/2})$ is monotonically decreasing on $[0, 1]$. In particular, $f(1) = 0$ so that, for type III_1 factors, the orbit of any normal state ω is norm dense in the state space. According to Connes [1994, p. 473] this means that "one cannot distinguish between two states of a factor of type III_1 by means of a property that is closed and invariant under inner automorphisms." In particular, since two unitarily equivalent states must be considered to be "equally mixed," there are no distinctions to be drawn in terms of the mixedness of states of a type III_1 factor.

Notes: For an overview of modular theory, see [Summers, ND] or [Connes, 1994]. For a full treatment, see [Takesaki, 2003]. For a detailed exposition of applications of modular theory in QFT, see [Borchers, 2000].

2 STRUCTURE OF THE NET OF OBSERVABLE ALGEBRAS

2.1 Nets of algebras, basic properties

AQFT proceeds by isolating some structural assumptions that hold in most known QFT models. It formalizes these structural assumptions, and then uses "abstract but efficient nonsense" to derive consequences of these assumptions.

The basic formalism of AQFT is a "net of local observable algebras" over spacetime. Although this formalism can be applied to a very wide class of spacetimes, we restrict attention in this Chapter mostly to Minkowski spacetime.

An open double cone in Minkowski spacetime is the intersection of the causal future of a point x with the causal past of a point y to the future of x. Let \mathcal{K} be the set of open double cones in Minkowski spacetime, and let $O \mapsto \mathfrak{A}(O)$ be a mapping from \mathcal{K} to C^*-algebras. We assume that all our C^*-algebras are unital, i.e. have a multiplicative identity. We assume that the set $\{\mathfrak{A}(O) : O \in \mathcal{K}\}$ of C^*-algebras (called a *net of observable algebras over Minkowski spacetime*) is an inductive system in the sense that:
If \(O_1 \subseteq O_2 \), then there is an embedding (i.e. an isometric \(*\)-homomorphism)
\[\alpha_{12} : \mathcal{A}(O_1) \to \mathcal{A}(O_2). \]

ASSUMPTION 41 (Isotony). The mapping \(O \mapsto \mathcal{A}(O) \) is an inductive system.

The isotony assumption is sometimes motivated by the idea that an observable measurable in a region \(O_1 \) is a *for to* measurable in any region \(O_2 \) containing \(O_1 \). But the isotony axiom is also justified by its utility: for, if \(\{ \mathcal{A}(O) : O \in \mathcal{K} \} \) is an inductive system, then there is an inductive limit \(C^* \)-algebra \(\mathcal{A} \) generated by all the local algebras. We call \(\mathcal{A} \) the *quasilocal* algebra, because it contains observables that can be uniformly approximated by local observables.

NOTE 42. In some spacetimes, the set of double cones is not directed. In many such cases, it is still possible to define the quasilocal algebra by means of more sophisticated techniques [Fredenhagen, 1993].

Now we turn to the main *relativistic* assumption of AQFT.

ASSUMPTION 43 (Microcausality). A net \(\mathcal{A} \) of \(C^* \)-algebras is said to satisfy *microcausality* just in case if \(O_1, O_2 \) are spacelike separated double cones, then
\[[\mathcal{A}(O_1), \mathcal{A}(O_2)] = \{0\}. \]

This assumption is thought to reflect the constraints on spacetime structure imposed by the theory of relativity.

NOTE 44. It is *not* a tenet of AQFT that quantities that are associated to spacelike separated regions must be represented by commuting operators. In fact, Fermi field operators assigned to spacelike separated regions will anticommute. So, AQFT has need of a distinction between observable (represented by elements of \(\mathcal{A}(O) \)) and unobservable quantities (represented by "field operators"). For more on this distinction, see Sections 7.2 and following on DHR superselection theory.

In this Chapter, we will not attempt to justify or to dispute the microcausality assumption. However, we will briefly discuss its connection to issues of locality in Section 3.

2.2 Existence/uniqueness of vacuum states/representations

The existence of translation-invariant states

In this section, we inquire concerning the existence and uniqueness of vacuum states and representation. For this, recall that an *affine space* (e.g. Minkowski spacetime) is a triple consisting of a set \(S \), a vector space \(V \), and a map \(+ : S \times V \to S\) satisfying certain properties. In this case, \(V \) is called the *translation group*.

ASSUMPTION 45 (Translation Covariance). If \(\mathcal{A} \) is a net of operator algebras on an affine space, then we assume that there is a faithful, continuous representation \(x \mapsto \alpha_x \) of the translation group in the group Aut\(\mathcal{A} \) of automorphisms of \(\mathcal{A} \), and
\[\alpha_x(\mathcal{A}(O)) = \mathcal{A}(O + x), \]
for any double cone O, and translation x.

NOTE 46. For the case of Minkowski spacetime, the translation group is a subgroup of the Poincaré group. In many cases of physical interest, $x \to \alpha_x$ extends to a representation of the full Poincaré group in the group $\text{Aut}\mathfrak{A}$ of automorphisms of \mathfrak{A}. But we will only need that fact for one result (Prop. 132).

Translation invariance has traditionally been thought to be a necessary condition on a vacuum state.

FACT 47. If there is an action α of the translation group on \mathfrak{A}, then translation-invariant states of \mathfrak{A} exist. Indeed, since the translation group is abelian, it has an invariant mean μ — i.e. a translation invariant, positive linear functional on the algebra $L^\infty(G)$ of essentially bounded measurable (with respect to the Haar measure) functions on the group G. Given a state ω of \mathfrak{A}, we can then define an averaged state ρ by

$$\rho(A) := \int \omega(\alpha_x A) d\mu(x).$$

The state ρ is translation invariant. (See Emch, this volume, Section 3.5.)

NOTE 48. The preceding argument cannot be used to show the existence of Lorentz invariant states. The Lorentz group is not amenable, and so does not admit an invariant mean. Hence, we cannot use these general methods to prove the existence of Lorentz invariant states. Of course, in concrete models (e.g. free Bose and Fermi fields) there are other way to establish the existence of such states.

Let G be a group acting by automorphisms on \mathfrak{A}. A generalization of the GNS theorem shows that a G-invariant state ω of \mathfrak{A} gives rise to a GNS Hilbert space \mathcal{H} that carries a unitary representation U of G, and the GNS vector Ω is invariant under the G-action on \mathcal{H}.

FACT 49. Let α be a strongly continuous action of the group G by automorphisms of \mathfrak{A}. If ω is a G-invariant state of \mathfrak{A}, then the GNS representation (\mathcal{H}, π) of \mathfrak{A} induced by ω is G-covariant in the sense that there is a strongly continuous representation U of G in the unitary group of $\mathfrak{B}(\mathcal{H})$ such that

1. $U(g) \pi(A) U(g)^* = \pi(\alpha_g(A))$, for all $A \in \mathfrak{A},$

2. $U(g) \Omega = \Omega$ for all $g \in G$.

Only one vacuum per Hilbert space

NOTE 50. When considering the group $\text{Aut}\mathfrak{A}$ of automorphisms of a C^*-algebra, we take as our standard topology the strong topology on the set $L(\mathfrak{A})$ of bounded linear mappings on \mathfrak{A} (considered as a Banach space). That is, α_i converges to α just in case for each $A \in \mathfrak{A}$, $\alpha_i(A)$ converges to $\alpha(A)$ in the norm on \mathfrak{A}.

DEFINITION 51. We use the GNS representation theorem (Thm. 17) to transfer terminology about representations (Defn. 14) to terminology about states. So, e.g., we say that two states are disjoint if their GNS representations are disjoint.

A vacuum state should be at least translation invariant. Furthermore, the microcausality assumption on the net \mathfrak{A} entails that any two observables commute "in the limit" where one is translated out to spacelike infinity. That is, for any $A, B \in \mathfrak{A}$, and for any spacelike vector x,

$$\lim_{t \to \infty} \|[\alpha_{tx}(A), B]\| = 0.$$

This in turn entails that G acts on \mathfrak{A} as a large group of automorphisms in the following sense:

If ω is a G-invariant state and (\mathcal{H}, π) is the GNS representation of \mathfrak{A} induced by ω, then for any $A \in \mathfrak{A}$,

$$\overline{\text{conv}}\{\pi(\alpha_g(A)) : g \in G\},$$

has nonempty intersection with $\pi(\mathfrak{A})'$. Here we use $\overline{\text{conv}}S$ to denote the weakly closed convex hull of S. (See [Størmer, 1970] for the relevant proofs.) Note however that we would also expect the same to be true in a non-relativistic setting, because we would expect observables associated with disjoint regions of space to commute. (We have not invoked the fact that any vector in Minkowski spacetime is the sum of two spacelike vectors.)

Thanks to extensive research on "C^*-dynamical systems," much is known about G-invariant states when G acts as a large group of automorphisms of \mathfrak{A}. In particular, the set of G-invariant states is convex and closed (in the weak* topology), hence the set has extreme points, called extremal invariant states. (Obviously if a pure state of \mathfrak{A} is G-invariant, then it is extremal invariant.) Furthermore, we also have the following result concerning the disjointness of G-invariant states.

PROPOSITION 52. Let ω be a G-invariant state of \mathfrak{A}, let \mathcal{H} be its GNS Hilbert space, and let Ω be the GNS vector. Then the following are equivalent:

1. ω is clustering in the sense that

$$\lim_{t \to \infty} \omega(\alpha_{tx}(A)B) = \omega(A)\omega(B).$$

2. ω is extremal invariant.

3. If a G-invariant state ρ is quasiequivalent to ω, then $\rho = \omega$. In other words, no other G-invariant state is quasiequivalent to ω.

4. The ray spanned by Ω is the unique (up to scalar multiples) G-invariant subspace of \mathcal{H}.
Proof. See [Størmer, 1970]. For related details, see also [Emch, 1972, pp. 183, 287] and Emch, this volume, Section 3.

So, if a (vacuum) state is clustering, then no other translation invariant state is in its folium (i.e. the set of states that are quasiequivalent to that state). Similarly, if a state is extremal invariant (a fortiori if it is pure) then it is the unique translation invariant state in its folium.

NOTE 53. The existence of disjoint vacua is related to spontaneous symmetry breaking. See Section 10.7.

NOTE 54. Prop. 52 plays a central role in the proof of “Haag’s theorem” given in [Emch, 1972, p. 248]. In particular, the uniqueness of extremal \(G\)-invariant states is equated with the nonexistence of “vacuum polarization.”

2.3 The Reeh-Schlieder Theorem

We have assumed that a vacuum state is translation invariant. But we expect a vacuum state to obey a stronger constraint that reflects the relativistic nature of the theory. In particular, the unitary representation defined in Fact 49 is generated infinitesimally by the four momentum operator \(P\). (The idea of a four momentum operator can be made precise in the “SNAG [Stone-Naimark-Ambrose-Gelfand] Theorem,” which generalizes Stone’s theorem on the existence of self-adjoint operators generating one-parameter unitary groups.) We require that the energy is positive in every Lorentz frame, equivalently, that the spectrum of \(P\) lies in the forward light cone.

We now generalize this requirement by abstracting away from the details of the forward lightcone. The forward lightcone \(G_+\) has the following property: \(G_+ \cap (-G^+) = \{0\}\) where \(-G_+ = \{-g : g \in G_+\}\). So, the spectrum condition only requires that the unitary representation of the translation group has spectrum in a set that is asymmetric under taking additive inverses.

ASSUMPTION 55 (Spectrum Condition). Let \(G\) be the translation group, and let \(\omega\) be a \(G\)-invariant state of \(\mathfrak{A}\). We say that the pair \((\mathfrak{A}, \omega)\) satisfies the spectrum condition just in case: there is a subset \(G_+\) of \(G\) such that \(G_+ \cap (-G_+) = \{0\}\), and in the GNS representation \((\mathcal{H}, \pi)\) of \(\mathfrak{A}\) induced by \(\omega\), the spectrum \(\text{sp}(U)\) of the induced unitary representation of \(G\), is contained in \(G_+\).

The Reeh-Schlieder Theorem shows that the spectrum condition entails that the vacuum vector \(\Omega\) is cyclic for every local algebra. For this theorem, we suppose that a translation invariant vacuum state \(\omega\) on \(\mathfrak{A}\) has been chosen, and that \((\mathcal{H}, \pi)\) is the GNS representation of \(\mathfrak{A}\) induced by \(\omega\). We then define a corresponding net \(\mathfrak{A}\) of von Neumann algebras on \(\mathcal{H}\) by

\[O \mapsto \mathfrak{A}(O) \equiv \pi(\mathfrak{A}(O))''\).

If the net \(\mathfrak{A}\) satisfies microcausality, then so will \(\mathfrak{A}\). Since \(\Omega\) is cyclic for \(\pi(\mathfrak{A})\), the set \(\{\mathfrak{A}(O)\Omega : O \in \mathcal{K}\}\) is dense in \(\mathcal{H}\).
To prove the theorem, we need one additional assumption.

Assumption 56. The net \(O \mapsto \mathcal{A}(O) \) is said to satisfy *additivity* just in case for any double cone \(O \), the set \(\{ \mathcal{A}(O + x) : x \in G \} \) generates \(\mathcal{A} \) as a \(C^* \)-algebra. (Here again, \(G \) denotes the translation group.)

The additivity assumption is sometimes justified on the grounds that there should be no smallest length scale in the theory — i.e. any observable is generated by taking products, sums, etc. of observables from arbitrarily small regions.

Theorem 57 (Reeh-Schlieder). Suppose that the net \(O \mapsto \mathcal{A}(O) \) satisfies the spectrum condition and additivity. Then for all double cones \(O, \Omega \) is cyclic for \(\mathcal{A}(O) \). If the net \(\mathcal{A} \) also satisfies microcausality, then \(\Omega \) is separating for every local algebra.

The Reeh-Schlieder (RS) Theorem has been one of the more intensely studied issues in the foundations of relativistic QFT. In a pair of articles [Redhead, 1995a; Redhead, 1995b], Redhead shows that the RS Theorem entails that the vacuum state displays nonlocal correlations. (See also [Halvorson and Clifton, 2000]). Redhead also points out since the vacuum is separating for each local algebra, every local event has a nonzero probability of occurring in the vacuum state; in particular, there can be no local number operators (since they would have the vacuum state as an eigenvector). Finally, [Fleming, 2000] argues that RS Theorem entails a pernicious sort of nonlocality, worse than the nonlocality in non-relativistic QM, and so indicates a need to revise the standard formulation of AQFT. (For one possible reply, see [Halvorson, 2001].)

Due to the use of the spectrum condition, it would seem that RS Theorem is a "purely relativistic result," without analogue in non-relativistic QM or QFT (see [Saunders, 1992]). Furthermore, we might expect that many other results of relativistic QFT that are derived from RS Theorem would fail for non-relativistic theories. Indeed, non-relativistic QFT does admit local number operators. However, a version of the spectrum condition, and consequently a version of RS Theorem has been shown to hold for non-relativistic theories [Requardt, 1986].

Notes: The original Reeh-Schlieder Theorem was formulated in the axiomatic approach to QFT, and can be found in [Reeh and Schlieder, 1961]. More up-to-date presentations of the theorem can be found in [Horuzhy, 1990; D'Antoni, 1990; Baumgärtel and Wollenberg, 1992], and [Araki, 1999].

2.4 The funnel property

Definition 58. Let \(\mathcal{A}_1, \mathcal{A}_2 \) be von Neumann algebras on \(\mathcal{H} \) such that \(\mathcal{A}_1 \subseteq \mathcal{A}_2 \). If there is a vector \(\Omega \in \mathcal{H} \) that is cyclic and separating for \(\mathcal{A}_1, \mathcal{A}_2 \), and \(\mathcal{A}_1' \cap \mathcal{A}_2 \), then the pair \((\mathcal{A}_1, \mathcal{A}_2) \) is said to be a *standard inclusion* of von Neumann algebras.

Note 59. Let \(O \mapsto \mathcal{A}(O) \) be a net of von Neumann algebras on Minkowski spacetime. Suppose that the Reeh-Schlieder property holds for \(\Omega \), i.e. for each
double cone O, Ω is cyclic and separating for $\mathcal{A}(O)$. Then if O_1, O_2 are double cones such that the closure \overline{O}_1 of O_1 is contained in O_2, then the pair $(\mathcal{A}(O_1), \mathcal{A}(O_2))$ is a standard inclusion of von Neumann algebras.

DEFINITION 60. Let $\mathfrak{A}_1, \mathfrak{A}_2$ be von Neumann algebras on \mathcal{H} such that $\mathfrak{A}_1 \subseteq \mathfrak{A}_2$. The pair $(\mathfrak{A}_1, \mathfrak{A}_2)$ is said to be a \emph{split inclusion} if there is a type I factor \mathfrak{N} such that $\mathfrak{A}_1 \subseteq \mathfrak{N} \subseteq \mathfrak{A}_2$.

ASSUMPTION 61 (Funnel Property). The net $O \mapsto \mathcal{A}(O)$ of von Neumann algebras is said to satisfy the \emph{funnel property} if for any double cones O_1, O_2 with \overline{O}_1 contained in O_2, the pair $(\mathcal{A}(O_1), \mathcal{A}(O_2))$ is a split inclusion.

NOTE 62. A type I factor \mathfrak{N} is countably decomposable iff \mathfrak{N} is isomorphic to $\mathcal{B}(\mathcal{H})$ with \mathcal{H} separable iff \mathfrak{N} is separable in the ultraweak topology (see [Kadison and Ringrose, 1997, Exercise 5.7.7]).

In our discussion of superselection theory (Sections 7.2–11), at one crucial juncture (Prop. 243, p. 813) we will have to invoke the assumption that the vacuum Hilbert space is separable. This will be the only place in the Chapter where we need to assume that a Hilbert space is separable. In particular, the separability assumption is needed to establish the correspondence between two notions of superselection sectors, one of which is physically motivated, and one of which is mathematically useful. The following result is the only attempt we will make to connect the separability assumption to something with (perhaps) more clear physical significance. (In general, we are highly suspicious of the physical warrant for the separability assumption; compare with Section 6, and with [Halvorson, 2004].)

PROPOSITION 63. Let \mathcal{A} be a net of von Neumann algebras on \mathcal{H}, and suppose that $\Omega \in \mathcal{H}$ is cyclic and separating for all local algebras. If the net satisfies the funnel property, then \mathcal{H} is separable.

\textbf{Proof.} (Compare with Prop. 1.6 of [Doplicher and Longo, 1984].) Let O_1, O_2 be double cones with $\overline{O}_1 \subseteq O_2$. Let \mathfrak{N} be a type I factor such that $\mathcal{A}(O_1) \subseteq \mathfrak{N} \subseteq \mathcal{A}(O_2)$, and let ω be the state of \mathfrak{N} induced by Ω. Recall that \mathfrak{N} is isomorphic to $\mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K}. Since $\mathfrak{N} \subseteq \mathcal{A}(O_2)$ and Ω is separating for $\mathcal{A}(O_2)$, ω is faithful and normal. Hence \mathcal{K} is separable, and there is a countable set \mathfrak{M}_0 that is ultraweakly dense in \mathfrak{N}. Since $\mathcal{A}(O_1) \subseteq \mathfrak{N}$ and Ω is cyclic for $\mathcal{A}(O_1)$ it follows that $[\mathfrak{M}_0\Omega] = [\mathfrak{N}\Omega] = \mathcal{H}$. Hence \mathcal{H} is separable.

If one wanted to justify an assumption that the vacuum Hilbert space is separable, Prop. 63 shows that it is enough to justify the funnel property. There are concrete models where the funnel property demonstrably does \emph{not} hold [Horuzhny, 1990, p. 23]. But the physical significance of these models is not clear, and there are a couple of other considerations that might favor the funnel property: (i): In Section 3.3, we show that connection of the funnel property with issues about nonlocality. (ii): Buchholz and Wichmann [1986] argue that the funnel property is a \emph{sufficient} condition for a particle interpretation of QFT. Of course, the interpreter of QFT will want to critically examine Buchholz and Wichmann's notion
of a "particle interpretation." (Compare with Section 4.5, where particle interpretations are discussed further. Compare also with Section 6.2, which hints at connections between nonseparable Hilbert space and field interpretations of QFT.)

NOTE 64. The funnel property for free fields is shown in [Buchholz, 1974].

2.5 Type of local algebras

We now collect the currently known information on the type of local algebras in physically relevant representations of the net of local observable algebras.

DEFINITION 65. Let \mathcal{A}_1 and \mathcal{A}_2 be nets of von Neumann algebras on a Hilbert space \mathcal{H}. We say that \mathcal{A}_1 and \mathcal{A}_2 are locally quasi-equivalent just in case for each double cone O there is an isomorphism $\varphi_O : \mathcal{A}_1(O) \to \mathcal{A}_2(O)$.

NOTE 66. Although it is not an "axiom" of AQFT, there are good reasons to believe that representations of physical interest (in particular for elementary particle physics) are locally quasi-equivalent to some vacuum representation, where a vacuum representation is the GNS representation of some privileged (e.g. perhaps translation invariant) state. For example local quasi-equivalence holds between any two physical representations according to the selection criterion of Doplicher-Haag-Roberts (see Section 7.2 and following), and according to the more liberal selection criterion of [Buchholz and Fredenhagen, 1982]. Thus, any conclusion we draw concerning the structure of local algebras in a vacuum representation can be inferred to hold as well for these other representations.

Local algebras are properly infinite

Some relatively simple results narrow down the possible options for the type of local algebras. For this, we define the important "property B," because it is a consequence of plausible assumptions (viz. additivity and the spectrum condition), because it also makes sense in situations where there is no translation group (unlike the spectrum condition), and because it is all we need to infer various results, in particular that local algebras are properly infinite.

DEFINITION 67. Let $O \to \mathcal{A}(O)$ be a net of von Neumann algebras on some Hilbert space \mathcal{H}. We say that the net \mathcal{A} satisfies property B just in case for any two double cones O_1 and O_2 such that $\overline{O}_1 \subseteq O_2$, if $E \in \mathcal{A}(O_1)$ is a nonzero projection, then E is equivalent in $\mathcal{A}(O_2)$ to the identity projection I; i.e. there is an isometry $V \in \mathcal{A}(O_2)$ such that $VV^* = E$.

NOTE 68. If for each O, the algebra $\mathcal{A}(O)$ is type III, then the net \mathcal{A} satisfies property B.

We expect property B to hold for a net of observable algebras because it follows from the physically motivated postulates of weak additivity and the spectrum condition.
PROPOSITION 69. Let $O \mapsto \mathcal{A}(O)$ be a net of von Neumann algebras satisfying microcausality, the spectrum condition, and weak additivity. Then the net $O \mapsto \mathcal{A}(O)$ satisfies property B.

Proof. For the original proof, see [Borchers, 1967]. For a recent exposition, see [D'Antoni, 1990].

ASSUMPTION 70 (Nontriviality). A net $O \mapsto \mathcal{A}(O)$ of C^*-algebras is said to satisfy non-triviality just in case for each double cone O, $\mathcal{A}(O) \neq CI$.

PROPOSITION 71. Let $O \mapsto \mathcal{A}(O)$ be a net of von Neumann algebras that satisfies microcausality, property B, and non-triviality. Then for every double cone O, the von Neumann algebras $\mathcal{A}(O)$ and $\mathcal{A}(O)'$ are properly infinite.

Proof. We first show that $\mathcal{A}(O)$ is properly infinite; that is, that every central projection in $\mathcal{A}(O)$ is infinite. Let C be a central projection in $\mathcal{A}(O)$. Choose a nontrivial double cone O_1 whose closure is contained in O. Then by property B, for each nonzero projection $E \in \mathcal{A}(O_1)$, E is equivalent to I modulo $\mathcal{A}(O)$. Since $\mathcal{A}(O_1) \neq CI$, there is a projection $E \in \mathcal{A}(O_1)$ such that $E \sim (I - E) \sim I$ modulo $\mathcal{A}(O)$. It then follows that $EC \sim (I - E)C \sim C$ modulo $\mathcal{A}(O)$. It is clear that $EC = CEC \leq C$. If $EC = C$ then $(I - E)C = 0$, a contradiction. Therefore $EC < C$ and $EC \sim C$ modulo $\mathcal{A}(O)$. That is, C is an infinite projection in $\mathcal{A}(O)$, and $\mathcal{A}(O)$ is properly infinite. By microcausality, $\mathcal{A}(O_1) \subseteq \mathcal{A}(O)'$; thus the preceding argument also shows that $\mathcal{A}(O)'$ is properly infinite.

In particular, the preceding proposition rules out the cases of type I, and type II, von Neumann algebras. Already this result has implications for questions about nonlocality; see Prop. 102 in Section 3.3. However, the previous proposition leaves open the possibility that local algebras might be type III factors, and it also leaves open the case that local algebras might be direct sums of heterogeneous types of von Neumann algebras.

Local algebras are hyperfinite

We will shortly see that the best results we have point toward the fact that local algebras are type III, which were originally thought to be unruly anomalies with no relevance for physics. However, we first show that under some physically plausible conditions, local algebras are approximated by finite-dimensional algebras (i.e. they are "hyperfinite"), which shows that after all they are not so unruly.

DEFINITION 72. Let \mathcal{A} be a von Neumann algebra. Then \mathcal{A} is said to be hyperfinite just in case there is a family $(\mathcal{A}_a)_{a \in A}$ of finite dimensional von Neumann algebras in \mathcal{A} such that $\mathcal{A} = (\bigcup_{a \in A} \mathcal{A}_a)''$.

Hyperfiniteness turns out to be an extremely useful condition for mathematical purposes. Indeed, hyperfiniteness is intimately linked to the existence of normal conditional expectations (see [Kadison and Ringrose, 1997, Chap. 8]), and there
is a unique type Π_1 hyperfinite factor, and a unique type Π_1 hyperfinite factor. From a physical/foundational point of view, one might also think that a failure of hyperfiniteness for \mathcal{A} might make it difficult to find a correspondence between elements of the algebra \mathcal{A} and real-life laboratory procedures which can only involve a finite number of tasks.

FACT 73. Every type I von Neumann algebra is hyperfinite. See [Kadison and Ringrose, 1997, Exercise 8.7.26].

ASSUMPTION 74 (Inner/Outer Continuity). A net $O \mapsto \mathcal{A}(O)$ of von Neumann algebras is said to be *inner continuous* if for any monotonically increasing net $(O_a)_{a \in A}$ with least upper bound O, we have

$$\bigvee_{a \in A} \mathcal{A}(O_a) = \mathcal{A}(O),$$

where $\mathcal{A}_1 \vee \mathcal{A}_2$ denotes the von Neumann algebra generated by \mathcal{A}_1 and \mathcal{A}_2. Outer continuity is defined by taking a decreasing net of regions, and the intersection of the corresponding von Neumann algebras.

NOTE 75. The condition that the net \mathcal{A} be continuous from the inside is satisfied whenever \mathcal{A} is the “minimal” net constructed in the standard way from underlying Wightman fields. See [Buchholz et al., 1987]. Similarly, the maximal net satisfies outer continuity.

PROPOSITION 76. Suppose that the net $O \mapsto \mathcal{A}(O)$ satisfies the funnel property and either inner or outer continuity. Then for each double cone O, $\mathcal{A}(O)$ is hyperfinite.

Sketch of proof. (Compare [Buchholz et al., 1987, p. 134].) We just look at the case where the net is inner continuous. By the funnel property there is a type I factor \mathcal{M}_i interpolating between $\mathcal{A}(O_i)$ and $\mathcal{A}(O)$. It then follows that the union of the ascending sequence \mathcal{M}_i of hyperfinite factors is dense in $\mathcal{A}(O)$, hence $\mathcal{A}(O)$ is hyperfinite.

Local algebras are type Π_1 factors

A series of results, accumulated over a period of more than thirty years, indicates that the local algebras of relativistic QFT are type III von Neumann algebras, and more specifically, hyperfinite type Π_1 factors. We gather some of these results in this section. The first result, due to Longo [1979], improved on some earlier results by Driessler.

PROPOSITION 77. Let \mathcal{A} be a von Neumann algebra acting on \mathcal{H}, $\Omega \in \mathcal{H}$ a separating unit vector for \mathcal{A}, G a locally compact abelian group with dual Γ, and U a continuous unitary representation of G on \mathcal{H} such that $U\Omega = \Omega$ and the ray $\mathbb{C}\Omega$ is the unique $U(G)$ invariant subspace of \mathcal{H}. Suppose that there exist subsets $G_+ \subseteq G$ and $\Gamma_+ \subseteq \Gamma$ such that
1. \(G_+ \cup (-G_+) = G \) and \(U(g)R U(g)^* \subseteq \mathcal{R} \), for all \(g \in G_+ \).

2. \(\Gamma_+ \cap (-\Gamma_+) = \{0\} \) and \(\text{sp}(U) \subseteq \Gamma_+ \).

Then either \(\mathcal{R} = CI \) or \(\mathcal{R} \) is a type \(III_1 \) factor.

Sketch of proof. (See [Longo, 1979, p. 203] for details.) Let \(\omega \) be the state of \(\mathcal{R} \) given by \(\omega(A) = \langle \Omega, A\Omega \rangle \). The proof of this result proceeds by showing that \(\mathcal{R}_\omega = CI \), where \(\mathcal{R}_\omega \) is the centralizer of the state \(\omega \). In particular, let \(E \) be a projection in \(\mathcal{R}_\omega \), and define the function \(f : G \to \mathbb{C} \) by

\[
f(g) = \langle \Omega, EU(g)E\Omega \rangle = \langle \Omega, EU(g)EU(-g)\Omega \rangle.
\]

Using the constraint on \(\text{sp}(U) \), it can be shown that \(f \) is constant, and hence \(U(g)EU = EU \) for all \(g \in G \). Since \(\mathbb{C} \Omega \) is the unique invariant subspace under \(U(G) \), it follows that \(EU = \Omega \), and since \(\Omega \) is separating for \(\mathcal{R} \), \(E = 0 \) or \(E = I \).

The preceding proposition applies to algebras of the form \(\pi(\mathfrak{A}(W))'' \), where \(W \) is a wedge region, and \(\pi \) is a vacuum representation of the quasilocal algebra \(\mathfrak{A} \). Indeed, we can take \(G_+ \) to be a one-parameter semi-group of lightlike translations with origin at the apex of \(W \), in which case \(\mathcal{R} = G_+ \cup (-G_+) \). Let \(\omega \) be a translation invariant state on \(\mathfrak{A} \) such that \((\mathfrak{A}, \omega) \) satisfies that spectrum condition (Assumption 55). We then have that the dual group \(\Gamma \) of \(G \in \mathbb{R}^4 \) is also a lightlike line, and hence the spectrum condition entails that there is a subset \(\Gamma_+ \) of \(\Gamma \), namely those vectors that point toward the future, such that \(\Gamma_+ \cap (-\Gamma_+) = \{0\} \). Finally, we saw in Section 2.2 that when \(\omega \) is extremal invariant, the ray \(\mathbb{C} \Omega \) is the unique \(U(G) \) invariant subspace of \(\mathcal{H} \).

For results relevant to local algebras, we must impose one further condition on the net \(\mathcal{R} \). The first result ([Buchholz et al., 1987]) requires reference to axiomatic QFT with unbounded operators smeared by test-functions (see [Streater and Wightman, 1964]). That is, we must assume that the net \(\mathcal{R} \) arises from an underlying Wightman field theory that satisfies a certain condition — asymptotic scale invariance.

Recall that in the axiomatic approach, fields are essentially self-adjoint operators of the form \(\Phi(f) \), where \(f \) is a test-function on spacetime. The presence of these test-functions allows the definition of a notion of asymptotic scale invariance.

DEFINITION 78. Let \(N : \mathbb{R}^+ \to \mathbb{R}^+ \) be a monotone function. Then a scaling transformation of the test-functions is given by \(f \mapsto f_\lambda \), where \(f_\lambda(x) = N(\lambda)f(\lambda^{-1}x) \). Let \(\Phi_\alpha \) be a set of Wightman fields generating the net \(O \mapsto \mathcal{R}(O) \). We say that the fields satisfy *asymptotic scale invariance* just in case there is some field \(\Phi \) with vanishing vacuum expectation values:

\[
\langle \Omega, \Phi(f)\Omega \rangle = 0,
\]

and for a suitable choice of \(N(\lambda) \), the scaled field operators \(\Phi(f_\lambda) \) have the following properties:
1. The expectation values $\langle \Omega, \Phi(f_\lambda)\Phi(f_\lambda)^*\Omega \rangle$ converge for all test-functions in the limit $\lambda \to 0$, and are nonzero for some f;

2. The norms $\|\Phi(f_\lambda)\Phi(f_\lambda)^*\Omega\|$ and $\|\Phi(f_\lambda)^*\Phi(f_\lambda)\Omega\|$ stay bounded in this limit.

When a net of von Neumann algebras arises from a Wightman theory with asymptotic scale invariance, it follows that local algebras are hyperfinite type III_1 factors.

PROPOSITION 79 ([Buchholz et al., 1987]). Let \mathfrak{A} be a net of von Neumann algebras that satisfies microcausality, the spectrum condition, and the funnel property. Suppose also that \mathfrak{A} can be constructed from an underlying Wightman theory that satisfies asymptotic scale invariance. Then for each double cone O, $\mathfrak{A}(O) = \mathfrak{M} \otimes \mathfrak{Z}$, where \mathfrak{M} is the unique type III_1 hyperfinite factor and \mathfrak{Z} is the center of $\mathfrak{A}(O)$.

NOTE 80. In [Buchholz et al., 1987], the funnel property is derived from a more basic postulate called “nuclearity,” which imposes bounds on the number of local degrees of freedom.

Of course, one wishes for a result that is more intrinsic to AQFT. Such a result is provided in [Buchholz and Verch, 1995], using the method of scaling algebras that allows the computation of the short distance (scaling) limit of a net \mathfrak{A} of local observables. (For a short exposition of scaling algebras, we refer the reader to [Buchholz, 1998].) In summary, besides the basic assumptions on the net, the only additional assumption needed to derive the type III_1 property is that the net has a nontrivial scaling limit.

NOTE 81. In some concrete models, it can be shown directly that local algebras are the unique type III_1 hyperfinite factor. For example, for the free Bose field of mass $m = 0$ (in the Minkowski vacuum representation), local algebras are isomorphic to algebras for wedge regions. Thus Prop. 77 shows that local algebras are type III_1 factors. Furthermore, the free Bose field of mass $m > 0$ is locally quasiequivalent to the case of $m = 0$, and so its local algebras are also type III_1 hyperfinite factors. See [Horuzhy, 1990, p. 254].

The derivation of the type III_1 property is one of the most surprising and interesting results of contemporary mathematical physics. But what is the foundational significance of the result? How would the world be different if local algebras were, say, type $\text{III}_{1/2}$, or even more radically different, if they were type Π_∞? For one, there is a crucial difference between the structure of states on familiar type I algebras, and the structure of states on type III algebras: since type III algebras have no atomic projections, and the support projection of a pure normal state is atomic, it follows that type III algebras have no pure normal states. (But of course the same is true for type Π algebras.) As pointed out in [Clifton and Halvorson, 2001b] and [Ruetzsche, 2004], this absence of pure states is a further obstacle to an ignorance interpretation of quantum probabilities. (See also Section 3.4.)
Yngvason [2005] makes several interesting claims about the conceptual importance of type III algebras, especially in relation to questions of nonlocality. First, according to Yngvason, “type I intuitions” can lead to paradoxes, such as that encountered in Fermi’s famous two-atom system. However, claims Yngvason, these paradoxes disappear if we model these situation appropriately with type III algebras. Second, Yngvason claims that the homogeneity of the state space of a type III₁ factor R can be interpreted as saying that for any states ω_1, ω_2 on R, ω_2 can be prepared from ω_1 (within arbitrarily good accuracy) via a unitary operation. Such an operation is, of course, nonselective, and so does not change the statistics of measurements of observables in R'. So, in one sense, an observer with a type III algebra has more control over his state space than an observer with a type I algebra.

3 NONLOCALITY AND OPEN SYSTEMS IN AQFT

NOTE 82. For this section, we use the following notational conventions: uppercase roman letters for algebras, lowercase roman letters for operators, and $\mathbb{1}$ for the multiplicative identity in an algebra.

It is a basic assumption of AQFT that the observable algebras $A(O_1)$ and $A(O_2)$ are mutually commuting when O_1 and O_2 are spacelike separated. This requirement — which we have called “microcausality” — is sometimes also called “Einstein causality,” because of a suggested connection between the commutativity of the algebras $A(O_1), A(O_2)$ and the relativistic prohibition on “superluminal signaling.” Implicit in this connection is a claim that if $[a, b] \neq 0$ for $a \in A(O_1)$ and $b \in A(O_2)$, then a measurement of a could change the statistics of a measurement of b.

Despite the fact that nonrelativistic QM makes no reference to spacetime, it has a footprint of the relativistic prohibition of superluminal signalling. In particular, the state space of two distinct objects is a tensor product $H_1 \otimes H_2$, and their joint algebra of observables is $B(H_1) \otimes B(H_2)$. In this tensor product construction we represent observables for system A as simple tensors $a \otimes \mathbb{1}$ and observables of system B as $\mathbb{1} \otimes b$. Thus, we have a version of microcausality. But we also have stronger independence properties. For example, for every state φ_1 of system A and state φ_2 of system B, there is a state φ of $A \otimes B$ such that $\varphi|_A = \varphi_1$ and $\varphi|_B = \varphi_2$.

In this section, we investigate the extent to which two local algebras $A(O_1), A(O_2)$ can be thought to represent distinct, independent parts of reality. In Sections 3.1 and 3.2, we discuss the relations between microcausality and other independence assumptions for the algebras $A(O_1), A(O_2)$. In Section 3.3, we summarize some results concerning violation of Bell’s inequality in AQFT. Finally, in Section 3.4 we ask whether a local algebra $A(O)$ can be isolated from the influences of its environment.
3.1 Independence of C^* and von Neumann algebras

We first consider notions of independence between a general pair of von Neumann or C^*-algebras.

DEFINITION 83. If e, f are projection operators on a Hilbert space \mathcal{H}, then we let $e \wedge f$ denote the projection onto the closed subspace $e(\mathcal{H}) \cap f(\mathcal{H})$.

FACT 84. Let R be a von Neumann algebra acting on \mathcal{H}. If $e, f \in R$ then $e \wedge f \in R$.

DEFINITION 85 (Schlieder Property). Let R_1, R_2 be von Neumann algebras acting on the Hilbert space \mathcal{H}. We say that the pair (R_1, R_2) satisfies the Schlieder property just in case if $e \in R_1$ and $f \in R_2$ are nonzero projections, then $e \wedge f \neq 0$.

The Schlieder property entails that for $e \in R_1, f \in R_2$, if $e, f \neq 0$ and $e, f \neq 1$ then:

$$e \wedge f \neq 0, \quad \neg e \wedge \neg f \neq 0, \quad e \wedge \neg f \neq 0, \quad \neg e \wedge f \neq 0,$$

where $\neg x = 1 - x$ is the projection onto the orthogonal complement of $x(\mathcal{H})$.

Hence if "\wedge" is the analogue of conjunction in classical logic, then the Schlieder property is the analogue of logical independence.

DEFINITION 86. If A, B are C^*-subalgebras of some C^*-algebra C, we let $A \vee B$ denote the C^*-algebra generated by $A \cup B$.

DEFINITION 87 (C^*-Independence). Let A, B be C^*-algebras. We say that the pair (A, B) is C^*-independent just in case for any state ω_1 of A and any state ω_2 of B, there is a state ω of $A \vee B$ such that $\omega|_A = \omega_1$ and $\omega|_B = \omega_2$. In other words, each state of A is compatible with each state of B.

The C^*-independence assumption has an obvious operationalist motivation: if Alice is an observer at O_1 and Bob is an observer at O_2, then C^*-independence amounts to the claim that Alice's choice to prepare a state cannot in any way obstruct Bob's ability to prepare a state. Indeed, [Summers and Buchholz, 2005] claim that a failure of C^*-independence could be detected by local observers. On the other hand, C^*-independence could also be regarded as an explication of the notion of the independence of objects:

Two objects A, B are truly independent just in case any state of A is compatible with any state of B; i.e. there are no logical relations between predications of states to A and B.

Unfortunately, C^*-independence does not imply microcausality.

EXAMPLE 88. We show that C^*-independence does not entail microcausality. (Compare with [Napiórkowski, 1972].) Consider the finite dimensional $*$-algebra $C(\mathbb{Z}_4) \oplus M_2$, where $C(\mathbb{Z}_4)$ is the abelian $*$-algebra of dimension 4, and M_2 is the 2 \times 2 matrices over \mathbb{C}. The projection lattice of $C(\mathbb{Z}_4)$ is the Boolean algebra with two atoms; hence it contains logically independent elements e_1, e_2. Now choose two projections $f_1, f_2 \in M_2$ such that $[f_1, f_2] \neq 0$, and let R_i be the abelian $*$-subalgebra of $C(\mathbb{Z}_4) \oplus M_2$ generated by the projection $e_i \oplus f_i$.
To see that \((R_1, R_2)\) is \(C^*\)-independent, let \(\omega_i\) be states on the \(R_i\), and let \(\lambda_i = \omega_i(e_i \oplus f_i)\). By the logical independence of \(e_1, e_2\), there is a state \(\rho\) of \(C(Z_4)\) such that \(\rho(e_i) = \lambda_i\). Then the state \(\rho \oplus 0\) on \(C(Z_4) \oplus M_2\) is a common extension of the \(\omega_i\) since

\[
(\rho \oplus 0)(e_i + f_i) = \rho(e_i) = \lambda_i,
\]

and a state’s value on \(e_i \oplus f_i\) determines its value on \(R_i\). Therefore, \((R_1, R_2)\) is \(C^*\)-independent. On the other hand, \([e_1 + f_1, e_2 + f_2] = [f_1, f_2] \neq 0\), whence \((R_1, R_2)\) does not satisfy microcausality.

In the previous example, the algebras \(R_1\) and \(R_2\) share a common superselection sector: each commutes with the projection \(p = 1 \oplus 0\). However, the reduced algebras \(pR_1p\) are not \(C^*\)-independent. In fact, the diagnosis of this example can be generalized into the following result.

Proposition 89. Let \(R_1\) and \(R_2\) be von Neumann algebras acting on a Hilbert space \(\mathcal{H}\). If for every projection \(e \in Z(R_1 \vee R_2)\), the pair \((eR_1e, eR_2e)\) is \(C^*\)-independent, then \([R_1, R_2] = \{0\}\).

Proof. See [Summers and Buchholz, 2005].

Definition 90 (Split Property). Let \(R_1\) and \(R_2\) be von Neumann algebras on \(\mathcal{H}\) such that \(R_1 \subseteq R_2\). Then the pair \((R_1, R_2)\) is said to satisfy the split property just in case there is a type I factor \(M\) such that \(R_1 \subseteq M \subseteq R_2\).

Remark 91. (i): It is clear that the previous definition is equivalent to saying that \((R_1, R_2')\) is a ‘split inclusion’ as per Definition 60.

(ii): If \((R_1, R_2)\) satisfies the split property, then under some fairly standard conditions (e.g. \(R_2\) is type III), there is a natural \(\ast\)-isomorphism \(\alpha\) between \(R_1 \vee R_2\) and the von Neumann algebra tensor product \(R_1 \bar{\otimes} R_2\); by saying that \(\alpha\) is ‘natural’, we mean that it extends the map \(AB \mapsto A \otimes B\). Furthermore, the \(\ast\)-isomorphism \(\alpha\) is spatial, i.e. there is a unitary operator \(u\) such that \(\alpha(x) = u xu^*\). See [Summers, 1990, p. 212].

(iii): On the other hand, suppose that \(R\) is a factor, so that \(R \cup R'\) generates \(B(\mathcal{H})\) as a von Neumann algebra, i.e. \(\overline{R \vee R'} = B(\mathcal{H})\). Then \(R'\) is of the same type (I, II, or III) as \(R\) [Kadison and Ringrose, 1997, Thm. 9.1.3], and so the von Neumann algebra tensor product \(R \bar{\otimes} R'\) is of the same type as \(R\) [Kadison and Ringrose, 1997, p. 830]. So if \(R\) is type II or III, then \(\overline{R \vee R'}\) is strictly larger than, and not isomorphic to \(R \bar{\otimes} R'\).

Definition 92 (W*-Independence). Let \(R_1\) and \(R_2\) be von Neumann algebras acting on \(\mathcal{H}\). The pair \((R_1, R_2)\) is said to be W*-independent just in case for every normal state \(\varphi_1\) of \(R_1\) and for every normal state \(\varphi_2\) of \(R_2\), there is a normal state \(\varphi\) of \(R_1 \vee R_2\) such that \(\varphi|_{R_i} = \varphi_i\).

With the assumption of the mutual commutativity of \(R_1\) and \(R_2\) (i.e. microcausality), we have the following implications (see [Summers, 1990, p. 222]):
\[\text{Split property} \downarrow \quad W^*-\text{independence} \downarrow \quad C^*-\text{independence} \iff \text{Schlieder property} \]

3.2 Independence of local algebras

We now consider which independence properties hold between pairs of algebras associated with spacelike separated regions. In general, not much can be said about the independence of such algebras. In order to get such results off the ground, we need a stronger notion of spacelike separation.

DEFINITION 93. Two double cones \(O_1, O_2 \) are said to be *strictly spacelike separated* just in case there is a neighborhood \(N \) of zero such that \(O_1 + x \) is spacelike separated from \(O_2 \) for all \(x \in N \).

PROPOSITION 94. Suppose that the net \(O \mapsto R(O) \) satisfies microcausality, weak additivity, and the spectrum condition. If \(O_1 \) and \(O_2 \) are strictly spacelike separated, then \((R(O_1), R(O_2)) \) satisfies the Schlieder property.

Proof. See [Schlieder, 1969].

In terms of logical strength, the following concept lies between spacelike separation and strict spacelike separation; furthermore, this concept makes sense for spacetimes without a translation group.

DEFINITION 95. Two double cones \(O_1 \) and \(O_2 \) are said to be *strongly spacelike separated* just in case there are double cones \(\tilde{O}_i \) such that \(\overline{O}_i \subseteq \tilde{O}_i \), and \(\tilde{O}_1, \tilde{O}_2 \) are spacelike.

FACT 96. If \(O_1 \) and \(O_2 \) are strictly spacelike separated, then they are strongly spacelike separated.

Of course, the assumptions of Proposition 94 (microcausality, additivity, spectrum) are precisely what is used to derive property B for the net (Proposition 69). So, it is perhaps illustrative to give a simple derivation of the Schlieder property from property B. (Such a result also applies in contexts — e.g. QFT on curved spacetime — where the spectrum condition does not make sense.)

PROPOSITION 97. Suppose that the net \(O \mapsto R(O) \) of von Neumann algebras satisfies microcausality and property B. If \(O_1 \) and \(O_2 \) are strongly spacelike separated, then \((R(O_1), R(O_2)) \) satisfies the Schlieder property.

Proof. Let \(O_1 \) and \(O_2 \) be strongly spacelike separated, and let \(e_i \in \mathcal{R}(O_i) \) be projections. Then there are regions \(\tilde{O}_i \) such that \(\overline{O}_i \subseteq \tilde{O}_i \), and \(\tilde{O}_1 \) is spacelike to \(\tilde{O}_2 \). By property B, there are isometries \(v_i \in R(\tilde{O}_i) \) such that \(v_i v_i^* = e_i \).
Furthermore, \([v_1, v_2] = 0\) and hence \(e_1 e_2 = v_1 v_2(v_1 v_2)^*\). But \(v_1 v_2\) is an isometry, and so \(v_1 v_2(v_1 v_2)^* \neq 0\).

The split property clearly does not hold for \((R(W), R(W'))\) where \(W\) is a wedge region and \(W'\) is its causal complement. Indeed, since \(R(W)\) and \(R(W')\) are type III\(_1\) factors, there can be no *-isomorphism between \(R(W) \boxtimes R(W')\) and \(R(W) \vee R(W') = B(H)\). However, if the funnel property holds for the net \(O \mapsto R(O)\), then \((R(O_1), R(O_2))\) satisfies the split property when \(O_1\) and \(O_2\) are strictly spacelike separated double cones.

3.3 Bell correlation between von Neumann algebras

We first define a generalized notion of Bell type measurements for a pair of von Neumann algebras.

DEFINITION 98. Let \(A\) and \(B\) be mutually commuting \(C^*\)-subalgebras of some \(C^*\)-algebra \(C\). Then we set

\[
\mathbb{B}(A, B) \equiv \left\{ \left(1/2 \right) \left[a_1(b_1 + b_2) + a_2(b_1 - b_2) \right] : a_i = a_i^* \in A, b_i = b_i^* \in B, \right. \\
\left. -1 \leq a_i, b_i \leq 1 \right\}.
\]

Elements of \(\mathbb{B}(A, B)\) are called *Bell operators* for \((A, B)\).

Let \(r\) be a Bell operator for \((A, B)\). It can be shown that \(|\varphi(r)| \leq \sqrt{2}\) for each state \(\varphi\) on \(C\) [Summers and Werner, 1987]. It is also straightforward to check that if \(\varphi\) is a separable state (i.e. a mixture of product states) then \(|\varphi(r)| \leq 1\). Indeed, the Bell measurement correlations in the state \(\varphi\) can be reproduced by a local hidden variable model iff \(|\varphi(r)| \leq 1\) [Summers and Werner, 1987; Baez, 1987].

DEFINITION 99. Define the Bell correlation coefficient of a state \(\varphi\) of \(A \vee B\) by

\[
\beta(\varphi, A, B) = \sup\{ |\varphi(r)| : r \in \mathbb{B}(A, B) \}.
\]

If \(|\beta(\varphi, A, B)| \geq 1\), then \(\varphi\) is said to *violate a Bell inequality*, or to be *Bell correlated*.

It is a straightforward exercise to show that if \(R_1\) is an abelian von Neumann algebra and \(R_1 \subseteq R_2\), then for any state \(\varphi\), \(\beta(\varphi, R_1, R_2) \leq 1\). For a sort of converse, Landau [1987] shows that if \(R_1\) and \(R_2\) are nonabelian von Neumann algebras such that \(R_1 \subseteq R_2\), and if \((R_1, R_2)\) satisfies the Schieder property, then there is some state \(\varphi\) that violates Bell's inequality maximally relative to \((R_1, R_2)\). Similarly, Bacciagaluppi [1994] shows that if \(A\) and \(B\) are \(C^*\)-algebras, then some state violates a Bell inequality for \(A \otimes B\) iff both \(A\) and \(B\) are nonabelian.

When \(A\) and \(B\) have further properties, we can derive even stronger results. For present purposes, we will simply apply a couple of the known results to the case of AQFT. (See [Summers, 1990] for many more details.)
PROPOSITION 100. Let R be a type III_1 factor acting on a separable Hilbert space \mathcal{H}. Then every normal state φ of $B(\mathcal{H})$ is maximally Bell correlated across (R, R'), that is $\beta(\varphi, R, R') = \sqrt{2}$.

Proof. See [Summers and Werner, 1988; Summers and Werner, 1995].

NOTE 101. Prop. 77 tells us that under quite generic conditions, the wedge algebra $R(W)$ is a type III_1 factor. In this case, Prop. 100 tells us that the vacuum is maximally Bell correlated across $(R(W), R(W)')$.

PROPOSITION 102. Suppose that R_1 and R_2 are von Neumann algebras on \mathcal{H} such that $R_1 \subseteq R_2'$, and (R_1, R_2) satisfies the Schlieder property. If R_1 and R_2 are properly infinite, then there is a dense set of vectors in \mathcal{H} that induce Bell correlated states across (R_1, R_2).

Proof. See [Halvorson and Clifton, 2000].

NOTE 103. If a net $O \mapsto R(O)$ of von Neumann algebras on \mathcal{H} satisfies property B and nontriviality, then the hypotheses of Prop. 102 apply to algebras $R(O_1)$ and $R(O_2)$ when O_1 and O_2 are strongly spacelike separated.

Notes: For a comprehensive review of pre-1990 results on independence of local algebras in AQFT, see [Summers, 1990]. For some more recent results, see [Summers, 1997; Florig and Summers, 1997; Rédei, 1998; Halvorson and Clifton, 2000; Summers and Buchholz, 2005].

3.4 Intrinsically entangled states

According to Clifton and Halvorson [2001b], the type III property of local algebras in AQFT shows that it is impossible to disentangle local systems from their environment. To see the argument, recall that it is a standard (perhaps somewhat justified) assumption that the general form of a dynamical evolution T of observables, represented by self-adjoint elements of a C^*-algebra A is given by a completely positive (CP) linear mapping T of A such that $T(1) = 1$. (Such an assumption is certainly commonplace in, say, quantum information theory.) Here we recall the pertinent definition.

DEFINITION 104. Let A be a C^*-algebra. A linear map T of A is said to be positive if $T(a^*a) \geq 0$ for each $a \in A$. T is said to be completely positive if for each $n \in \mathbb{N}$, the map $T \otimes \text{id}_n : A \otimes M_n \rightarrow A \otimes M_n$ defined on elementary tensors by

$$(T \otimes \text{id}_n)(a \otimes b) = T(a) \otimes b,$$

is positive. Here M_n is the C^*-algebra of $n \times n$ matrices over \mathbb{C}.

NOTE 105. If $T : \mathcal{A} \rightarrow \mathcal{A}$ is positive and $T(1) = 1$, then for each state ω of \mathcal{A}, we define $T^*(\omega)$ by $T^*(\omega)(a) = \omega(T(a))$. It follows that T^* is an affine mapping of the state space into itself.
For type I factors, Kraus' theorem [Kraus, 1983] shows that CP maps are “inner.”

THEOREM 106 (Kraus Representation). If R is a type I_n factor then the following are equivalent for a linear map $T : R \rightarrow R$.

1. T is completely positive and $T(1) = 1$.

2. T is the restriction of an automorphism $x \mapsto uxu^*$ on an algebra of the form $R \otimes B(H)$.

3. There are positive operators $a_1, \ldots, a_n \in R$ such that $\sum_{i=1}^{n} a_i = 1$ and

$$T(x) = \sum_{i=1}^{n} a_i^{1/2} x a_i^{1/2}.$$

One special case of Eqn. (1) is the Lüders rule with projection operators e and $1-e$:

$$T_e(x) = exe + (1-e)x(1-e).$$

Furthermore, if the algebra R is type I, we can choose $e \in R$ to be an abelian projection. We have the following result:

If the local algebra R is a type I factor, then there is a universal disentangling operation T_e. That is, no matter what the initial state, the outcome of applying T_e is that the final state is separable.

However, suppose that R has no abelian projections (e.g. R is type III). Then for each nonzero projection $e \in R$, the algebras eRe and $eR'e$ are nonabelian, and hence there is some entangled state φ for the pair $(eRe, eR'e)$. This entangled state is the image under the operation $(T_e)^*$ of some state on $R \vee R'$. Hence, the operation T_e does not disentangle all states.

This heuristic argument can be tightened up into a “proof” that no operation on R can disentangle the states of $R \vee R'$. See [Clifton and Halvorson, 2001b] for details.

NOTE 107. (i): The Kraus representation theorem is not valid as it stands for type III algebras. Indeed, the Kraus representation theorem is a special case of the Stinespring decomposition theorem [Stinespring, 1955].

(ii): A CP operation on a von Neumann algebra is typically also assumed to be ultraweakly continuous. The continuity of T might be justified on the grounds that it is necessary if T^* is to map normal states to normal states. For objections to the continuity requirement, see [Srinivas, 1980].

4 PROSPECTS FOR PARTICLES

The main application of relativistic QFT is to fundamental particle physics. But it is not completely clear that fundamental particle physics is really about particles.
Indeed, despite initial signs that QFT permits a particle interpretation (via Fock space), there are many negative signs concerning the possibility of particle ontology of relativistic QFT. This section is devoted to assessing the status of particles from the point of view of AQFT.

4.1 Particles from Fock space

We begin our investigation of particles with the “story from mother’s knee” about how to give QFT a particle interpretation. (See [Teller, 1995] for one philosopher’s interpretation of this story.) The story begins with a special Hilbert space, called Fock space. Now Fock space is just another separable infinite dimensional Hilbert space (and so isomorphic to all its separable infinite dimensional brothers). But the key is writing it down in a fashion that suggests a particle interpretation. In particular, suppose that H is the one-particle Hilbert space, i.e. the state space for a single particle. Now depending on whether our particle is a Boson or a Fermion, the state space of a pair of these particles is either $E_s(H \otimes H)$ or $E_a(H \otimes H)$, where E_s is the projection onto the vectors invariant under the permutation $\Sigma_{H,H}$ on $H \otimes H$, and E_a is the projection onto vectors that change signs under $\Sigma_{H,H}$. For present purposes, we ignore these differences, and simply use $H \otimes H$ to denote one possibility or the other. Now, proceeding down the line, for n particles, we have the Hilbert space $H^n \equiv H \otimes \cdots \otimes H$, etc..

A state in H^n is definitely a state of n particles. To get disjunctive states, we make use of the direct sum operation “\oplus” on Hilbert spaces. So we define the Fock space $\mathcal{F}(H)$ over H as the infinite direct sum:

$$\mathcal{F}(H) = C \oplus H \oplus (H \otimes H) \oplus (H \otimes H \otimes H) \oplus \cdots.$$

So, the state vectors in Fock space include a state where there are no particles (the vector lies in the first summand), a state where there is one particle, a state where there are two particles, etc.. Furthermore, there are states that are superpositions of different numbers of particles.

One can spend time worrying about what it means to say that particle numbers can be superposed. But that is the “half empty cup” point of view. From the “half full cup” point of view, it makes sense to count particles. Indeed, the positive (unbounded) operator

$$N = 0 \oplus 1 \oplus 2 \oplus 3 \oplus 4 \oplus \cdots,$$

is the formal element of our model that permits us to talk about the number of particles.

NOTE 108. In the category of Hilbert spaces, all separable Hilbert spaces are isomorphic — there is no difference between Fock space and the single particle space. If we are not careful, we could become confused about the bearer of the name “Fock space.”
The confusion goes away when we move to the appropriate category. According to Wigner's analysis [Wigner, 1939], a particle corresponds to an irreducible unitary representation of the identity component \mathcal{P} of the Poincaré group. Then the single particle space and Fock space are distinct objects in the category of representations of \mathcal{P}. The underlying Hilbert spaces of the two representations are both separable (and hence isomorphic as Hilbert spaces); but the two representations are most certainly not equivalent (one is irreducible, the other reducible).

4.2 Fock space from the algebra of observables

The Fock space story is not completely abandoned within the algebraic approach to QFT. In fact, when conditions are good, Fock space emerges as the GNS Hilbert space for some privileged vacuum state of the algebra of observables. We briefly describe how this emergence occurs before proceeding to raise some problems for the naive Fock space story. (We look here only at the symmetric — Bosonic — case. A similar treatment applies to the antisymmetric — Fermionic — case.)

The algebraic reconstruction of Fock space arises from the algebraic version of canonical quantization. Suppose that S is a real vector space (equipped with some suitable topology), and that σ is a symplectic form on S. So, S represents a classical phase space (see Butterfield, this volume). The \emph{Weyl algebra} $\mathfrak{A}[S,\sigma]$ is a specific C^*-algebra generated by elements of the form $W(f)$, with $f \in S$ and satisfying the canonical commutation relations in the Weyl-Segal form:

$$W(f)W(g) = e^{-i\sigma(f,g)/2}W(f+g).$$

Suppose that there is also some notion of spacetime localization for elements of S, i.e. a mapping $O \mapsto S(O)$ from double cones in Minkowski spacetime to subspaces of S. Then, if certain constraints are satisfied, the pair of mappings

$$O \mapsto S(O) \mapsto \mathfrak{A}(O) \equiv C^*\{W(f) : f \in S(O)\},$$

can be composed to give a net of C^*-algebras over Minkowski spacetime. (Here C^*X is the C^*-algebra generated by the set X.)

Now if we are given some dynamics on S, then we can — again, if certain criteria are satisfied — define a corresponding dynamical automorphism group α_t on $\mathfrak{A}[S,\sigma]$. There is then a unique dynamically stable pure state ω_0 of $\mathfrak{A}[S,\sigma]$, and we consider the GNS representation (\mathcal{H},π) of $\mathfrak{A}[S,\sigma]$ induced by ω_0. To our delight, we find that the infinitesimal generators $\Phi(f)$ of the one-parameter groups \{$\pi(W(f))\}_{t \in \mathbb{R}}$ behave just like the field operators in the old-fashioned Fock space approach. Furthermore (now speaking non-rigorously), if we define operators

$$a(f) = 2^{-1/2}(\Phi(f) + i\Phi(Jf)),$$

$$a^*(f) = 2^{-1/2}(\Phi(f) - i\Phi(Jf)),$$

we find that they behave like creation and annihilation operators of particles. (Here J is the unique "complex structure" on S that is compatible with the dynamics.)
In particular, by applying them to the vacuum state \(\Omega \), we get the entire GNS Hilbert space \(\mathcal{H} \). Finally, if we take an orthonormal basis \(\{ f_i \} \) of \(\mathcal{S} \), then the sum

\[
\sum_{i=1}^{\infty} a^*(f_i)a(f_i),
\]

is the number operator \(N \). Thus, the traditional Fock space formalism emerges as one special case of the GNS representation of a state of the Weyl algebra.

NOTE 109. The Minkowski vacuum representation \((\mathcal{H}_0, \pi_0)\) of \(\mathfrak{A} \) is Poincaré covariant, i.e. the action \(\alpha_{(a, \Lambda)} \) of the Poincaré group by automorphisms on \(\mathfrak{A} \) is implemented by unitary operators \(U(a, \Lambda) \) on \(\mathcal{H} \). When we say that \(\mathcal{H} \) is isomorphic to Fock space \(\mathcal{F}(H) \), we do not mean the trivial fact that \(\mathcal{H} \) and \(\mathcal{F}(H) \) have the same dimension. Rather, we mean that the unitary representation \((\mathcal{H}, U)\) of the Poincaré group is a Fock representation.

Notes: See [Bratteli and Robinson, 1997, Section 5.2] for a detailed account of the reconstruction of Fock space from the Weyl algebra. See also [Clifton and Halvorson, 2001a] and [Halvorson, 2001] for shorter expositions.

4.3 Nonuniqueness of particle interpretations

If we have a representation \((\mathcal{H}, \pi)\) of the quasilocal algebra \(\mathfrak{A} \) such that \(\mathcal{H} \) is isomorphic to Fock space, then we can make sense of talk about particles. Furthermore, such representations exist, e.g., the GNS representation of the Minkowski vacuum state \(\omega_0 \) of the free Bose field. So, in the most simple cases (e.g. free fields on flat spacetime), there is no problem concerning the existence of particle interpretations of the theory.

But there is a problem about *uniqueness*: there are unitarily inequivalent representations of \(\mathfrak{A} \), each of which is isomorphic to Fock space. Furthermore, a result from [Chaiken, 1967; Chaiken, 1968] shows that two inequivalent Fock representations correspond to two number operators that cannot be thought of as notational variants of the same description of reality. Indeed, there are no states of \(\mathfrak{A} \) that assign sharp values to both number operators. Hence, the particle interpretations provided by the two Fock representations are mutually exclusive.

The issue of inequivalent Fock representations is treated in depth in [Clifton and Halvorson, 2001a]. For present purposes, we simply note that this worry about nonuniqueness is tied in to a more general worry about inequivalent representations of the quasilocal \(C^* \)-algebra \(\mathfrak{A} \). But this more general issue cannot be resolved without reference to recent developments in the theory of superselection sectors (see Sections 7.2 and following). We return to this question in Section 7.

4.4 Problems for localized particles

Suppose that we have settled the uniqueness problem that is raised in the previous subsection — e.g. we have found a good reason for preferring a particular Fock
representation \((\mathcal{H}, \pi)\) of \(\mathfrak{A}\), and so we have a preferred global number operator \(N\) on \(\mathcal{H}\). The next question is whether relativistic QFT is consistent with an ontology of localized particles — that is, whether it makes sense to talk about the number of particles in a bounded region \(O\) of space.

As pointed out in Section 2.3, the Reeh-Schlieder (RS) Theorem entails that the local algebras of AQFT do not contain operators that annihilate the vacuum. Hence if a number operator has the vacuum as an eigenstate, then there are no local number operators. That is perhaps enough to convince most readers that localized particles are not possible in relativistic QFT. Nonetheless, there have been attempts to bypass the RS Theorem, most notably the proposal of Newton and Wigner (recently resurrected in [Fleming, 2000]). It has been argued that such attempts are not promising [Halvorson, 2001]. Furthermore, it can be shown independently of the full framework of AQFT, and without the RS Theorem, that a positive energy condition combined with microcausality rules out local number operators [Halvorson and Clifton, 2002].

Despite the various No Go results for localized particles in relativistic QFT, the interpretation of experiments in high energy physics seems to require a notion of something causing clicks in detectors, and that a "detector" is fairly well localized in some bounded region of spacetime. A detector corresponds to a positive operator \(C\) in \(\mathfrak{A}\), and is "completely reliable" only if it registers 0 identically in the vacuum state, i.e. \(C\Omega = 0\). Hence the Reeh-Schlieder Theorem entails that \(C\) is not contained in any local algebra. Nonetheless, a notion of approximate localization of \(C\) can be salvaged: choose some \(A \in \mathfrak{A}(O)\) with \(0 \leq A \leq I\), and set

\[
C = \int f(x)\alpha_x(A)dx,
\]

where \(f\) is a smooth function whose Fourier transform has support in the complement of the forward light cone. (The function \(f\) automatically has unbounded support.) Then \(C\Omega = 0\), and the function \(f\) can also be chosen so that \(C\) is "close" in the norm topology to an operator in \(\mathfrak{A}(O)\).

The notion of approximately localized detectors is employed extensively in Haag-Ruelle scattering theory and recent developments thereof, to which we now turn.

4.5 Particle interpretations generalized: Scattering theory and beyond

It is not true that a representation \((\mathcal{K}, \pi)\) of \(\mathfrak{A}\) must be a Fock representation in order for states in the Hilbert space \(\mathcal{K}\) to have an interpretation as particle states. Indeed, one of the central tasks of "scattering theory," is to provide criteria — in the absence of full Fock space structure — for defining particle states. These criteria are needed in order to describe scattering experiments which cannot be described in a Fock representation, but which need particle states to describe the input and output states.
Haag and Swieca [1965] propose to pick out the \(n \)-particle states by means of localized detectors; we call this the detector criterion:

A state with at least \(n \)-particles is a state that would trigger \(n \) detectors that are far separated in space.

Philosophers might worry that the detector criterion is too operationalist. Indeed, some might claim that detectors themselves are made out of particles, and so defining a particle in terms of a detector would be viciously circular.

If we were trying to give an analysis of the concept of a particle, then we would need to address such worries. However, scattering theory does not end with the detector criterion. Indeed, the goal is to tie the detector criterion back to some other more intrinsic definition of particle states. The traditional intrinsic definition of particle states is in terms of Wigner's symmetry criterion:

A state of \(n \) particles (of spins \(s_i \) and masses \(m_i \)) is a state in the tensor product of the corresponding representations of the Poincaré group.

Thus, scattering theory — as originally conceived — needs to show that the states satisfying the detector criterion correspond to an appropriate representation of the Poincaré group. In particular, the goal is to show that there are isometries \(\Omega^\text{in}, \Omega^\text{out} \) that embed Fock space \(\mathcal{F}(H) \) into \(\mathcal{K} \), and that intertwine the given representations of the Poincaré group on \(\mathcal{F}(H) \) and \(\mathcal{K} \).

Based on these ideas, detailed models have been worked out for the case where there is a mass gap. Unfortunately, as of yet, there is no model in which \(\mathcal{H}^\text{in} = \mathcal{H}^\text{out} \), which is a necessary condition for the theory to have an S-matrix, and to define transition probabilities between incoming and outgoing states. (Here \(\mathcal{H}^\text{in} \) is the image of Fock space in \(\mathcal{K} \) under the isometry \(\Omega^\text{in} \), and similarly for \(\mathcal{H}^\text{out} \).)

Recently, Buchholz and collaborators have claimed that Wigner's symmetry criterion is too stringent — i.e. there is a more general definition of particle states. They claim that it is only by means of this more general criterion that we can solve the "infraparticles" problem, where massive particles carry a cloud of photons (see [Buchholz et al., 1991]).

Note: For a review of progress in scattering theory in AQFT, see [Haag, 1996, Chapter 6] and [Buchholz and Summers, ND].

5 THE PROBLEM OF VALUE-DEFINITENESS IN AQFT

The "measurement problem" of nonrelativistic QM shows that the standard approach to the theory is impaled on the horns of a dilemma: either (i) one must make ad hoc adjustments to the dynamics ("collapse") when needed to explain the results of measurements, or (ii) measurements do not, contrary to appearances, have outcomes (see Dickson, this volume, Section 5).

There are two main responses to the dilemma: On the one hand, some suggest that we abandon the unitary dynamics of QM in favor of stochastic dynamics that
accurately predicts our experience of measurement outcomes. On the other hand, some suggest that we maintain the unitary dynamics of the quantum state, but that certain quantities (e.g. position of particles) have values even though these values are not specified by the quantum state. (See Dickson, this volume, Section 5.5 for a more nuanced discussion of the possible responses.)

Both approaches — the approach that alters the dynamics, and the approach with additional values — are completely successful as responses to the measurement problem in nonrelativistic QM. But both approaches run into obstacles when it comes to synthesizing quantum mechanics with relativity. In particular, the additional values approach (e.g. the de Broglie–Bohm pilot-wave theory) appears to require a preferred frame of reference to define the dynamics of the additional values (see [Cushing, 1994, pp. 188–191, 196–198], [Holland, 1995], and [Bohm and Hiley, 1995, Chaps. 11 & 12]), and in this case it would fail the test of Lorentz invariance.

The “modal” interpretation of quantum mechanics is similar in spirit to the de Broglie–Bohm theory, but begins from a more abstract perspective on the question of assigning definite values to some observables. (Following [Bell, 1987], we might call these the “beables” of the theory.) Rather than making an intuitively physically motivated choice of the determinate values (e.g. particle positions), the modal interpretation makes the mathematically motivated choice of the spectral decomposition of the quantum state (i.e. the density operator) as determinate. (See [Dieks and Vermaas, 1998; Vermaas, 1999] for reviews of the modal interpretation; see [Clifton, 1995] for motivation.)

Unlike the de Broglie–Bohm theory, it is not obvious that the modal interpretation must violate the spirit or letter of relativistic constraints, e.g. Lorentz invariance [Dickson and Clifton, 1998, p. 9]. So, it seems that there should be some hope of developing a modal interpretation within the framework of AQFT. This is the starting point for Dieks’ [2000] proposal for a modal interpretation of AQFT. Rather than expound Dieks’ original proposal, we move directly to the criticism in [Clifton, 2000], to which we also refer the reader for further elaboration.

5.1 Clifton-Kitajima classification of modal algebras

Clifton’s critique of the modal interpretation of AQFT is based on a remarkable theorem which classifies all possible “modal subalgebras” of a local von Neumann algebra $\mathcal{A}(O)$ relative to a state ρ. According to Clifton — and the modal interpreters seem to agree on this point — the algebra $\mathcal{D}, \mathcal{D} \subseteq \mathcal{A}(O)$ of definite local observables should satisfy the following constraints relative to a given state ρ of $\mathcal{A}(O)$:

DEFINITION 110. Let \mathcal{A} be a von Neumann algebra, and let ρ be a state of \mathcal{A}. Then a von Neumann subalgebra \mathcal{D} of \mathcal{A} is said to be a modal algebra for (\mathcal{A}, ρ) just in case:

1. (Value definiteness) The restricted state $\rho|_{\mathcal{D}}$ is a mixture of dispersion-free
states. (Definition: A state is dispersion free iff it assigns each projection operator either 0 or 1.)

2. (Definability) \(\mathcal{D} \) is left invariant under all symmetries of \(\mathcal{R} \) that leave the state \(\rho \) invariant.

3. (Maximality) \(\mathcal{D} \) is maximal, subject to the first two conditions.

The last requirement is imposed simply to rule out trivial counterexamples to uniqueness — e.g. one could always pick the algebra \(CI \) of scalar multiples of the identity. The second requirement is supposed to explicate the idea that \(\mathcal{D} \) is “picked out by” (i.e. is definable in terms of) the state \(\rho \). We have left the notion of a “symmetry” vague (and we will return to this question in the next subsection), but Clifton takes the symmetries to coincide with the \(* \)-automorphisms of \(\mathcal{R} \), and this is needed for the main result (Theorem 114).

To state this result, we need to define the notion of the centralizer of a state. The following proposition establishes the equivalence of two possible definitions of the centralizer.

PROPOSITION 111. Let \(\mathcal{R} \) be a von Neumann algebra, let \(\omega \) be a faithful normal state of \(\mathcal{R} \), and let \(\sigma_t^\omega \) be the modular automorphism group of \(\mathcal{R} \). Then the following two sets are coextensive:

1. \(\{ A \in \mathcal{R} : \sigma_t^\omega(A) = A, \forall t \in \mathcal{R} \} \)

2. \(\{ A \in \mathcal{R} : \omega(AB) = \omega(BA), \forall B \in \mathcal{R} \} \)

The proof of Prop. 111 depends on the full apparatus of modular theory. We refer the reader to [Takesaki, 2003, Chap. 8] for details.

DEFINITION 112. It is clear that the set defined in the previous proposition is in fact a von Neumann subalgebra of \(\mathcal{R} \). We call this subalgebra the centralizer of \(\omega \) in \(\mathcal{R} \), and we denote it by \(\mathcal{R}_\omega \).

EXAMPLE 113. Let \(\mathcal{R} = \mathcal{B}(\mathcal{H}) \), and let \(\omega \) be a faithful normal state of \(\mathcal{R} \). Then \(\omega \) has the form

\[\omega(A) = \text{Tr}(DA), \quad A \in \mathcal{R}, \]

for some density operator \(D \in \mathcal{R} \). Then \(\mathcal{R}_\omega = \{ D \}' \), and \(Z(\mathcal{R}_\omega) \) is the abelian von Neumann algebra \(\{ D \}'' \). In particular, if \(\omega \) is the maximally mixed state of a type I\(_n\) factor, then \(\mathcal{R}_\omega = \mathcal{B}(\mathcal{H}) \), and \(Z(\mathcal{R}_\omega) = CI \).

The Clifton-Kitajima Theorem shows that there is a unique modal algebra for \((\mathcal{R}, \omega) \), and in the case that the state \(\omega \) is faithful, it is \(Z(\mathcal{R}_\omega) \), the center of the centralizer of \(\omega \).

THEOREM 114 (Clifton-Kitajima). Let \(\mathcal{R} \) be a von Neumann algebra acting on a Hilbert space \(\mathcal{H} \), and let \(\omega \) be a normal state of \(\mathcal{R} \).

1. If \(\omega \) is faithful then \(Z(\mathcal{R}_\omega) \) is the unique modal algebra for \((\mathcal{R}, \omega) \).
2. Generally, the unique modal algebra for (\mathcal{R}, ω) is $\mathcal{R} \oplus Z(\mathcal{R}_\omega)E$, where E is the smallest projection in \mathcal{R} such that $\omega(E) = 1$, and \mathcal{R} is the algebra of all bounded operators on $(I - E)(\mathcal{H})$.

The result is proven for the case where ω is faithful in [Clifton, 2000], and for the general case in [Kitajima, 2004].

As pointed out by Clifton [2000], Thm. 114 spells trouble for a modal interpretation of AQFT, because there are many cases where the algebra $Z(\mathcal{R}_\omega)$ is trivial. (See [Ruetsche and Earman, 2005] for further development of this point.)

1. Let W be a wedge region in Minkowski spacetime, and let Ω be the vacuum state. Then there are no fixed points in $\mathcal{R}(W)$ of the modular automorphism group σ^ω_t (see the proof of Proposition 77, and also [Driessler, 1975]). Hence, $\mathcal{R}_\omega = CI$, and $Z(\mathcal{R}_\omega) = CI$.

2. In relativistic QFT, local algebras are the type III$\,_1$ hyperfinite factor \mathcal{R} (see Section 2.5). But \mathcal{R} has a dense set of ergodic states — states with trivial centralizer. For all these states, $Z(\mathcal{R}_\omega) = CI$.

Thus, it makes an enormous difference — at least for the feasibility of the modal interpretation — that local algebras are type III$\,_1$. For if local algebras were either type I∞ or III$\,_0$, then there would be good news for the modal interpretation.

PROPOSITION 115. Let \mathcal{R} be a type I∞ factor. Then for every normal state ω of \mathcal{R}, the unique modal algebra \mathcal{D}_ω is nontrivial.

Proof. We have $\mathcal{D}_\omega = Z(\mathcal{R}_\omega) = \{D\}''$, where D is the density operator, i.e. the positive operator in \mathcal{R} that implements the state ω via the trace formula. Furthermore, when \mathcal{R} is type I∞, D cannot be a multiple of the identity. ■

PROPOSITION 116. Let \mathcal{R} be a type III$\,_0$ factor. Then for every faithful normal state ω of \mathcal{R}, the unique modal algebra \mathcal{D}_ω is nontrivial.

Proof. Prop. 3.15 in [Takesaki, 2003, p. 402] entails that \mathcal{D}_ω has no atomic projections, and hence is infinite dimensional. ■

5.2 What is a symmetry in AQFT?

We note here just one problem with application of the Clifton-Kitajima theorem to AQFT: the notion of symmetry invoked might be too liberal for the setting where we have a net of algebras over spacetime, as opposed to a single von Neumann algebra. Clifton's application of the theorem assumes that any automorphism of \mathcal{R} is a symmetry. However, if $\mathcal{R} = \mathcal{R}(O)$ is just one algebra of an entire net $O \mapsto \mathcal{R}(O)$, then it is not clear that every automorphism of \mathcal{R} is a symmetry of the relevant system. What we need is a notion of a symmetry of the net $O \mapsto \mathcal{R}(O)$.

NOTE 117. A partially ordered set \mathcal{K} can be regarded as a category where for $x, y \in \mathcal{K}$, $\text{Hom}(x, y) = \{(x, y)\}$ if $x \leq y$, and otherwise $\text{Hom}(x, y) = \emptyset$. Let C^*
be the category with \(C^* \)-algebras as objects and \(* \)-homomorphisms as arrows. On this conception, a net of \(C^* \)-algebras on Minkowski spacetime is a functor \(\mathcal{A} : \mathcal{K} \to C^* \) where \(\mathcal{K} \) is the category of double cones in Minkowski spacetime, ordered by inclusion, and such that \(\mathcal{A}(\text{Hom}(O_1, O_2)) \) is an isometry when \(\text{Hom}(O_1, O_2) \) is not empty. (For definitions of functors and natural transformations, see p. 866.)

DEFINITION 118. Let \(\mathcal{K} \) be a partially ordered set (e.g. regions in some manifold ordered by inclusion). Let \(O \mapsto \mathcal{A}(O) \) and \(O \mapsto \mathcal{B}(O) \) be nets of \(C^* \)-algebras over \(\mathcal{K} \). A net morphism \(\alpha : \mathcal{A} \to \mathcal{B} \) is a natural transformation between the functors. That is, \(\alpha \) consists of a collection of morphisms

\[
\{ \alpha_O : \mathcal{A}(O) \to \mathcal{B}(O) : O \in \mathcal{K} \},
\]

that is natural in \(O \). In other words, for each \(f \in \text{Hom}(O_1, O_2) \), \(\alpha_{O_2} \circ \mathcal{A}(f) = \mathcal{B}(f) \circ \alpha_{O_1} \), which just means that the following diagram commutes

\[
\begin{array}{ccc}
\mathcal{A}(O_1) & \xrightarrow{\alpha_{O_1}} & \mathcal{B}(O_1) \\
\mathcal{A}(f) \downarrow & & \downarrow \mathcal{B}(f) \\
\mathcal{A}(O_2) & \xrightarrow{\alpha_{O_2}} & \mathcal{B}(O_2)
\end{array}
\]

FACT 119. Net automorphisms correspond to automorphisms of the quasilocal algebra that leave each local subalgebra globally invariant. To state this precisely, let \(\mathcal{A} \) denote the functor from \(\mathcal{K} \) into \(C^* \), and let \(\mathcal{B} \) denote the inductive limit of \(\mathcal{A} \). We identify \(\mathcal{A}(O) \) with its image in \(\mathcal{B} \). Then \(\alpha \) is a net automorphism of \(\mathcal{A} \) iff there is an automorphism \(\beta \) of \(\mathcal{B} \) such that

\[
\beta|_{\mathcal{A}(O)} = \alpha_O.
\]

Now, given a net \(\mathcal{A} \) with inductive limit \(\mathcal{B} \), what should we consider as a symmetry of \(\mathcal{B} \)?

PROPOSAL 120. A symmetry of the net \(\mathcal{A} \) corresponds to a net automorphism \(\alpha \); i.e. a natural transformation of \(\mathcal{A} \). That is, a symmetry of \(\mathcal{A} \) corresponds to an automorphism of the quasilocal algebra that leaves each local subalgebra globally invariant.

This first proposal is surely too strict, because it excludes the case of symmetries induced by underlying symmetries of the spacetime. But if \(\mathcal{K} \) consists of an appropriate set of regions of spacetime \(M \) (i.e. a set that is closed under symmetries of the spacetime), then a symmetry of \(M \) will induce an order-preserving bijection \(F \) on \(\mathcal{K} \). Note that since \(F \) is a functor, \(\mathcal{A} \circ F \) is also a functor. Thus, we consider the following liberalized definition.
PROPOSAL 121. A symmetry of the net \mathcal{A} consists of a pair (F, α) where F is an order-preserving bijection of \mathcal{K}, and α is a net morphism (natural transformation) from \mathcal{A} to $\mathcal{A} \circ F$.

If we accept this proposal, then we must replace Clifton’s definability condition with the following modified condition:

Definability-2: Given $O \in \mathcal{K}$, let \mathcal{K}_0 be the full subcategory of \mathcal{K} with objects $\{O_0 : O_0 \leq O\}$, and let \mathcal{A}_O denote the restriction of the von Neumann algebra valued functor \mathcal{A} to \mathcal{K}_0. Then the algebra \mathcal{D} must be left invariant by all symmetries of \mathcal{A}_O that preserve the state ρ on $\mathcal{A}(O)$.

Since not all automorphisms of $\mathcal{A}(O)$ are symmetries of the net \mathcal{A}_O, the new definability condition is weaker than the old one: there will typically be more candidates for the role of \mathcal{D}.

The Clifton-Kitajima Theorem does not apply under the revised definition of symmetries of $\mathcal{A}(O)$. On the other hand, we are not aware of a positive result showing the existence and uniqueness of subalgebras of $\mathcal{A}(O)$ that are definite in the state ω and invariant under all net automorphisms that preserve ω. There are suggestive hints such as the result in [Doplicher and Longo, 1984]:

PROPOSITION 122. Let $(\mathcal{A}_1 \subseteq \mathcal{A}_2, \omega)$ be a standard split inclusion of von Neumann algebras. Then there is a unique type I factor \mathcal{N} such that: (i) $\mathcal{A}_1 \subseteq \mathcal{N} \subseteq \mathcal{A}_2$, and (ii) \mathcal{N} is invariant under all automorphisms of \mathcal{A}_2 that preserve both \mathcal{A}_1 and the state ω.

Of course, the algebra \mathcal{N} itself does not have dispersion-free states, and so cannot be the algebra of definite observables. However, the state $\omega|_{\mathcal{N}}$ is normal, and since \mathcal{N} is a type I factor, there is a density operator $D \in \mathcal{N}$ that induces the state in the sense that $\omega(A) = \text{Tr}(DA)$, for all $A \in \mathcal{N}$. Then assuming that \mathcal{A}_1 must for some reason be left invariant under symmetries of \mathcal{A}_2, the algebra $\mathcal{D} = \{D\}''$ looks like a good candidate for the modal interpreter’s set of definite-value observables in \mathcal{A}_2 in the state ω.

To apply Prop. 122 to AQFT with $\mathcal{A}_i = \mathcal{A}(O_i)$, and $O_1 \subseteq O_2$, we would have to assume that the split property holds. Although the split property does not hold in every model, failure of the split property implies a sort of pathology, and it might not be too surprising if there were certain physically pathological cases where the modal interpretation yields a trivial set of definite quantities.

Notes: For recent discussions of adapting the modal interpretation to a relativistic setting, see [Myrvold, 2002; Ruetsche and Earman, 2005].

6 QUANTUM FIELDS AND SPACETIME POINTS

In standard/heuristic presentations of QFT, the fundamental physical quantities (observables, or more generally quantum fields) are operators indexed by space-
time points: \(\Phi(x) \) (see \'t Hooft, this volume). Based on this fact, at least one philosopher ([Teller, 1995]) describes the ontology of QFT in terms of the idea a field of operators and their expectation values. On the other hand, the mathematical approach to QFT (e.g. the Wightman approach) eschews the use of operators at points in favor of operators smeared over space(time) by test-functions: \(\Phi(f) \). According to Arntzenius [2003], this fact supports the view that spacetime has no pointlike events, and a fortiori that there are no field values at spacetime points.

As QFT became more mathematically rigorous, an intuition developed that it is not only difficult to define the value of a field at a point, but that it is impossible to do so — such quantities simply do not exist. (Compare von Neumann’s critique of Dirac’s delta functions and the notion of pointlike localized particles.) This intuition has sometimes been buttressed by heuristic and operationalist arguments — e.g. Bohr and Petersen’s [1950] argument that it is impossible to measure field strengths at a point. For example, Haag [1996, p. 58] claims that, “a quantum field \(\Phi(x) \) at a point cannot be a proper observable.” Even philosophers can be found claiming that, “field operators need to be ‘smeared’ in space” [Huggett, 2000, p. 631, fn. 8].

But the arguments against field operators at a point often confuse questions of measurability with questions of existence, and rarely rise to a level of rigor that is acceptable for drawing metaphysical conclusions. In this section, we review some of the rigorous arguments that exist for and against field quantities at points. We will see that these results do not decisively rule out field quantities at points, but they clarify the interpretive tradeoffs that must be made.

6.1 No Go theorems

In the following three subsections, we review No Go theorems for field operators at spacetime points.

Translation covariance rules out operators at a point

The first no go theorem shows that if there is a continuous unitary representation of the translation group, then for any fixed time \(t \), the field configuration operators \(\phi(x, t) \) commute with the field momentum operators \(\pi(x', t) \), even when these operators are associated with the same point. This result is a serious problem, because \(\phi(x, t) \) and \(\pi(x, t) \) are supposed to be canonically conjugate (see [Ryder, 1996, p. 131], [Huggett, 1999]):

\[
[\phi(x, t), \pi(x', t)] = i\delta(x - x').
\]

Moreover, this bad outcome cannot be blamed on any sort of “conflict” between quantum mechanics and relativity, because the bad outcome also holds for non-relativistic theories.
THEOREM 123. Let $\phi(x, t)$ and $\pi(y, t)$ be fields of operators, either bounded or unbounded and self-adjoint, such that

$$[\phi(x, t), \pi(y, t)] = 0,$$

when $x \neq y$. (In the unbounded case, we mean that $\phi(x, t)$ and $\pi(y, t)$ are defined on a common dense set D, and they commute on this set.) If $y \mapsto U(y)$ is a continuous representation of the translation group such that $U(y)\pi(x, t)U(y)^\ast = \pi(x + y, t)$, for all $x, y \in \mathbb{R}^3$, then

$$[\phi(x, t), \pi(x, t)] = 0,$$

for all $x \in \mathbb{R}^3$.

Proof. Since this proof only uses field operators on the same time slice, we will suppress reference to t. Suppose first that $\phi(x)$ and $\pi(y)$ are bounded operators. In this case, the mapping:

$$f(y) := [\phi(x), \pi(x + y)] = [\phi(x), U(y)\pi(x)U(y)^\ast],$$

is a weak-operator continuous function from \mathbb{R}^3 into the bounded operators on \mathcal{H}. Choose a sequence $(y_n)_{n \in \mathbb{N}}$ of nonzero vectors that converges to 0. Since f is continuous, and $f(y_n) = 0$ for all $n \in \mathbb{N}$,

$$[\phi(x), \pi(x)] = f(0) = \lim_{n \to \infty} f(y_n) = 0.$$

Now suppose that $\phi(x)$ and $\pi(y)$ are unbounded but self-adjoint. Then replace $\pi(x)$ with one of its spectral projections $E_S(x)$, where S is a Borel subset of \mathbb{R}, and replace $\pi(x)$ with one of its spectral projections $F_{S'}(y)$, where S' is a Borel subset of \mathbb{R}. By the preceding argument, $E_S(x)$ and $F_{S'}(y)$ commute. Since this is true for all such pairs of spectral projections, it follows that the spectral projections of $\phi(x)$ commute pairwise with the spectral projections of $\pi(x)$. Hence $\phi(x)$ and $\pi(x)$ are defined on a common dense set D in \mathcal{H}, and they commute on this dense set.

Poincaré covariance rules out operators at a point

For our next two no go theorems, we will need to gather a couple of classic results.

DEFINITION 124. A function $f : \mathbb{R}^n \to \mathbb{C}$ is said to be of positive type just in case for each $c_1, \ldots, c_n \in \mathbb{C}$, and each $x_1, \ldots, x_n \in \mathbb{R}^n$, we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \bar{c}_j c_i f(x_i - x_j) \geq 0.$$

THEOREM 125 (Bochner). Let $f : \mathbb{R}^n \to \mathbb{C}$ be a continuous function of positive type. Then the Fourier transform of f is a bounded measure on \mathbb{R}^n.
Proof. For a proof of Bochner’s theorem, see [Rudin, 1991, p. 303] and [Folland, 1995, p. 95].

NOTE 126. Only the group structure of \(\mathbb{R}^n \) is really needed for Bochner’s theorem. So, we are not making any mistake by thinking of Minkowski spacetime as \(\mathbb{R}^4 \) in this context.

We will need the following key lemma in all of our subsequent results.

Lemma 127. Let \(f \) be a continuous positive definite function on \(\mathbb{R}^n \). Then \(f \) is the constant 1 function if and only if the Fourier transform of \(f \) is the probability measure with support \(\{0\} \).

The proof of the above lemma is trivial: the Fourier transform of the measure \(\mu \) with support \(\{0\} \) is the function \(f \) defined by

\[
 f(x) = \int_{\mathbb{R}^n} e^{i(x \cdot p)} d\mu(p) = e^{i(x \cdot 0)} = 1.
\]

But the Fourier transformation is a bijection between complex Radon measures on \(\mathbb{R}^n \) and bounded continuous functions on \(\mathbb{R}^n \).

Definition 128. We say that a measure \(\mu \) on Minkowski spacetime is Lorentz invariant just in case \(\mu(\Lambda(S)) = \mu(S) \) for each Borel subset \(S \) of \(M \), and each homogeneous Lorentz transformation \(\Lambda \), where \(\Lambda(S) = \{ \Lambda(x) : x \in S \} \).

Clearly, the only Lorentz invariant probability measure on Minkowski spacetime is the measure supported on \(\{0\} \) (the unique fixed point of the homogeneous Lorentz group). The following result is the “Fourier transformed” version of that fact.

Lemma 129. Let \(M \) be Minkowski spacetime. If \(f : M \to \mathbb{C} \) is a continuous function of positive type such that \(f(\Lambda x) = f(x) \) for each Lorentz transformation \(\Lambda \), then \(f \) is constant.

Sketch of proof. By Bochner’s theorem, if \(f : M \to \mathbb{C} \) is a continuous function of positive type, then \(f \) is the Fourier transform of a bounded measure \(\mu \) on \(M \). It is straightforward to verify that if \(f \) is Lorentz invariant then so is \(\mu \). But a bounded, Lorentz invariant measure is supported on \(\{0\} \). By Lemma 127, the Fourier transform of \(\mu \) is a constant function. Therefore, \(f = 1 \) is constant.

Fact 130. Let \(U \) be a unitary representation of the translation group on a Hilbert space \(\mathcal{H} \). Then the following are equivalent:

1. The spectrum of the representation \(U \) is \(\Delta \);
2. For every \(u, v \in \mathcal{H} \), the function \(f : \mathbb{R}^n \to \mathbb{C} \) given by

\[
 f(x) = \langle u, U(x)v \rangle, \quad x \in \mathbb{R}^n,
\]

has Fourier transform with support in \(\Delta \).
Finally, the following is our core lemma for the next two results.

Lemma 131. Let \(A : M \to \mathfrak{B}(\mathcal{H}) \) be an operator valued function, and let \(U \) be a unitary representation of the translation group on \(\mathcal{H} \) such that \(U(x)A(0)U(x)^* = A(-x) \) for all \(x \in M \). Define a function \(f : M \to \mathbb{C} \) by

\[
f(x) = \langle \Omega, A(x)A(0)\Omega \rangle = \langle \Omega, U(x)^*A(0)U(x)A(0)\Omega \rangle.
\]

If \(f \) is constant, then there is a \(c \in \mathbb{C} \) such that \(A(x)\Omega = c\Omega \) for each \(x \in M \).

Proof. Let \(\psi = A(0)\Omega \). Then \(f(x) = f(0) \) is expressed as

\[
\langle \psi, U(x)\psi \rangle = \langle \psi, \psi \rangle = \|\psi\|^2.
\]

But we also have \(\|\psi\| = \|U(x)\psi\| \) since \(U(x) \) is unitary. Hence

\[
\langle \psi, U(x)\psi \rangle = \|\psi\| \cdot \|U(x)\psi\|,
\]

and the Cauchy-Schwartz inequality entails that \(U(x)\psi = \psi \) for all \(x \). That is, \(U(x)A(0)\Omega = A(0)\Omega \). Note in addition that \(U(x)A(y)\Omega = U(x + y)A(0)\Omega = A(0)\Omega \). Hence all vectors \(A(x)\Omega \) are invariant under the translation group. \(\blacksquare \)

Now, the second no go theorem (due to [Wizimirski, 1966]) shows that there is no nontrivial Poincaré covariant field of bounded operators on Minkowski spacetime.

Theorem 132. Suppose that \(A : M \to \mathfrak{B}(\mathcal{H}) \) is an operator-valued function, and \(U \) is a continuous unitary representation of the Poincaré group on \(\mathcal{H} \) such that:

1. \(U(y, \Lambda)A(x)U(y, \Lambda)^* = A((\Lambda x) - y) \), for all \((y, \Lambda) \in \mathcal{P} \) and \(x \in M \);

2. There is a unique (up to scalar multiples) translation-invariant vector \(\Omega \in \mathcal{H} \).

Then there is a \(c \in \mathbb{C} \) such that \(A(x)\Omega = c\Omega \) for all \(x \in M \).

Note 133. (i): The assumption of the uniqueness of \(\Omega \) might seem unwarranted. But under some fairly standard conditions, this assumption can be derived. See Section 2.2. (ii): This theorem makes no assumption about commutation relations between operators \(A(x) \) and \(A(y) \).

Proof [of Theorem 132.] Define a function \(f : M \to \mathbb{C} \) by

\[
f(x) = \langle \Omega, A(x)^*A(0)\Omega \rangle, \quad x \in M.
\]

By condition 2 we have \(U(x)\Omega = \Omega \). Hence by condition 1 we have \(A(x)^* = U(x)A(0)^*U(x)^* \), and hence

\[
f(x) = \langle A(0)\Omega, U(x)^*A(0)\Omega \rangle,
\]

which is obviously positive definite. Furthermore, since \(x \mapsto U(x)^* \) is weakly continuous, \(f \) is continuous.
Now we establish that $f(\Lambda(x)) = f(x)$ for all $x \in M$ and all Lorentz transformations Λ. We have

\[
\begin{align*}
 f(\Lambda x) &= \langle \Omega, A(\Lambda x)^*A(0)\Omega \rangle \\
 &= \langle \Omega, U(0,\Lambda)A^*(x)U(0,\Lambda)^{-1}A(0)\Omega \rangle \\
 &= \langle U(0,\Lambda)^{-1}\Omega, A(x)^*U(0,\Lambda)^{-1}A(0)U(0,\Lambda)\Omega \rangle \\
 &= \langle \Omega, A(x)^*A(\Lambda(0))\Omega \rangle \\
 &= \langle \Omega, A(x)^*A(0)\Omega \rangle \\
 &= f(x).
\end{align*}
\]

Thus, Lemma 129 entails that f is constant, and Lemma 131 entails that there is a $c \in \mathbb{C}$ such that $A(x)\Omega = c\Omega$ for all $x \in M$.

Microcausality and Spectrum Condition rule out operators at a point

The final no go theorem, originally by Wightman [1964] invokes both microcausality and the spectrum condition. (See [Horuzhy, 1990, p. 46] and [Baumgärtel and Wollenberg, 1992, p. 115] for alternative proofs.)

THEOREM 134. Suppose that $A : M \to \mathfrak{B}(\mathcal{H})$ is an operator valued function, and U is a continuous unitary representation of the translation group on \mathcal{H} such that:

1. $[A(x), A(y)] = 0$ when x and y are spacelike separated;
2. $U(x)A(y)U(x)^* = A(y - x)$, for all $x, y \in M$;
3. U satisfies the spectrum condition.
4. There is a unique translation invariant vector $\Omega \in \mathcal{H}$.

Then there is a $c \in \mathbb{C}$ such that $A(x)\Omega = c\Omega$ for all $x \in M$.

Proof. As above, define $f : M \to \mathbb{C}$ by

\[
f(x) = \langle \Omega, A(x)A(0)\Omega \rangle,
\]

$x \in M$.

Fix a nonzero spacelike vector x. Then by condition 1,

\[
U(x)^*A(0)U(x)A(0) = A(x)A(0) = A(0)A(x) = A(0)U(x)^*A(0)U(x).
\]

Therefore,

\[
\begin{align*}
f(x) &= \langle \Omega, U(x)^*A(0)U(x)A(0)\Omega \rangle = \langle \Omega, A(0)U(x)^*A(0)\Omega \rangle \\
 &= \langle \Omega, A(0)U(-x)A(0)\Omega \rangle = f(-x).
\end{align*}
\]

Now consider the function $F : \mathbb{R} \to \mathbb{C}$ given by $F(t) = f(tx)$, so that $F(t) = F(-t)$. By condition 3, the Fourier transform of f is supported in the forward
light cone. Hence, the Fourier transform of \(F \) is supported in \([0, +\infty)\). But since \(F(t) = F(-t) \), the Fourier transform of \(F \) is also supported in \((-\infty, 0]\). Therefore, the Fourier transform of \(F \) is the point mass at \(\{0\} \). By Lemma 129, \(F \) is constant. Finally, since any two points in \(M \) can be connected by two spacelike vectors, we can apply the previous procedure twice to show that \(f \) is constant. Therefore, by Lemma 131, there is a \(c \in \mathbb{C} \) such that \(A(x)\Omega = c\Omega \) for all \(x \in M \).}

\[\bigcap_{\{O \in \mathcal{K} : x \in O\}} \mathcal{A}(O) = \mathbb{C}I. \]

Proof. Fix \(x \in M \), and fix a double cone \(x \in O \). Choose an arbitrary operator, denoted by \(A(x) \), in

\[\bigcap_{\{O \in \mathcal{K} : x \in O\}} \mathcal{A}(O). \]

Now for general \(y \in M \), define

\[A(y) = U(x - y)A(x)U(x - y)^*, \]

so that the mapping \(A : M \rightarrow \mathcal{B}(\mathcal{H}) \) automatically satisfies condition 2 of Theorem 134. Furthermore, since the net \(\mathcal{A} \) satisfies microcausality, and the unitary group \(U \) implements the translations on \(\mathcal{A} \), the mapping \(A \) satisfies condition 1 of Theorem 134. It then follows that there is a \(c \in \mathbb{C} \) such that \(A(x) = cI \). Since \(x \) was an arbitrary element of \(M \), the result is proven.

6.2 Go theorems

Why should we care if \(\Phi(x) \) cannot be taken to denote any non-trivial operator on Hilbert space? Does this have any implications for the interpretation of QFT? After all, for any neighborhood \(O \) of \(x \), we can find a test-function \(f \) that is supported in \(O \), and we can replace the non-denoting term "\(\Phi(x) " \) with the denoting term "\(\Phi(f) " \). In fact, couldn't we think of "\(\Phi(x) " \) as a name for the sequence \(\{\Phi(f_n)\}_{n=1}^{\infty} \), where \(\{f_n\}_{n=1}^{\infty} \) is a sequence of test-functions that converges to the delta-function at \(x \)? More precisely, it seems that we could even attempt to define an expectation value for the pseudo-operator \(\Phi(x) \) as follows: If \(\rho \) is a state of the quantum field, define:

\[\rho(\Phi(x)) := \lim_{n \to \infty} \rho(\Phi(f_n)). \]
In this section, we make this idea precise in two Go Theorems for field quantities at points. The first result we report from the work of Rehberg and Wollenberg [Rehberg and Wollenberg, 1986; Wollenberg, 1986] (see also [Fredenhagen and Hertel, 1981], [Bostelmann, 2000; Bostelmann, 2004]). This result shows that within the Wightman framework, a quantum field at a point can be represented by a sesquilinear form. The second result shows that if we drop the requirement of continuity on our representation of the translation group, then quantum fields at points can be represented by self-adjoint operators.

Quantum fields as sesquilinear forms

DEFINITION 136. Let \mathcal{H} be a Hilbert space. A *sesquilinear form* on \mathcal{H} is a linear subspace $D(t)$ of \mathcal{H} and a mapping $t : D(t) \times D(t) \to \mathbb{C}$ that is antilinear in the first argument, and linear in the second argument. The form t is said to be *densely defined* just in case $D(t)$ is dense in \mathcal{H}. The form t said to be *symmetric* just in case $t(\varphi, \psi) = t(\psi, \varphi)$ for all $\varphi, \psi \in D(t)$. The form t is said to be *positive* just in case $t(\psi, \psi) \geq 0$ for all $\psi \in D(t)$.

DEFINITION 137. If t is a sesquilinear form on \mathcal{H} then we define the associated *quadratic form* by $t(\psi) = t(\psi, \psi)$ for all $\psi \in D(t)$. A positive quadratic form t is said to be *closed* just in case for any sequences $(\psi_n)_{n \in \mathbb{N}}$ in $D(t)$ if $\psi_n \to \psi$ and $t(\psi_n - \psi_m) \to 0$, then $\psi \in D(t)$ and $t(\psi_n - \psi) \to 0$.

NOTE 138. A densely defined, symmetric sesquilinear form is a *prima facie* candidate to represent a physical quantity or an observable. Since t is symmetric, the corresponding quadratic form is real-valued. Hence, for each unit vector $\psi \in D(t)$, we might say that the "expectation value" of t in state ψ is $t(\psi)$. Indeed, at first glance, the expectation value mapping $t \mapsto t(\psi)$ seems to have all the same properties as the corresponding expectation mapping for operators.

THEOREM 139. Let $\Phi(\cdot)$ be a Wightman field on the Hilbert space \mathcal{H}. That is, Φ maps elements of a test-function space $S(\mathbb{R}^4)$ to unbounded operators on \mathcal{H} with some common dense domain D. Let $(\delta_n)_{n \in \mathbb{N}}$ be a sequence of test-functions whose support shrinks to the point x. Then for each $u, v \in D$, the sequence

$$\langle u, \Phi(\delta_1)v \rangle, \langle u, \Phi(\delta_2)v \rangle, \langle u, \Phi(\delta_3)v \rangle, \ldots,$$

converges to a finite complex number, which we denote by $\langle u, \Phi(x)v \rangle$. The map $u, v \mapsto \langle u, \Phi(x)v \rangle$ is a sesquilinear form with domain D, which we denote by $\Phi(x)$.

Proof. See [Baumgärtel and Wollenberg, 1992, p. 332] and [Rehberg and Wollenberg, 1986; Wollenberg, 1986].

NOTE 140. One naturally wishes to have a version of this theorem in a more purely algebraic setting. Such a result might be available in the context of the scaling algebras of [Buchholz and Verch, 1995; Buchholz, 1998].
The result is surprising for a couple of reasons. We might have thought that the reason $\Phi(x)$ is not an operator is because the expectation values $\langle u, \Phi(\delta_n) u \rangle$ grow without bound as the test-functions δ_n shrink to a point — i.e. there is some sort of divergence. But Theorem 139 shows that conjecture to be false. The obstruction to $\Phi(x)$'s becoming an operator must lie somewhere else.

So, we have several No Go Theorems against quantum fields as operators (even unbounded operators), and one Go Theorem for quantum fields as sesquilinear forms. What should we conclude from these apparently conflicting results? Should we say that there is a field quantity at the point x, or not?

To answer this question we need to think harder about the relation between operators on a Hilbert space and physical quantities. Why was it that we thought that physical quantities correspond to operators? If we suppose that an unbounded operator can represent a quantity, then must that operator be self-adjoint (i.e. must A coincide with A^* on a common dense domain), or does it suffice to satisfy some weaker condition? Does any symmetric sesquilinear form have all the features necessary to represent a physical quantity? In order to get clear on these questions, it might help to get clear on the mathematical details of the relationship between sesquilinear forms and operators. Fortunately, there are quite a few results in this direction.

Clearly, every linear (possibly unbounded) operator T on \mathcal{H} defines a sesquilinear form with domain $D(T)$ via the equation

$$t(\psi, \varphi) = \langle \psi, T\varphi \rangle.$$

On the other hand, it is less clear when an arbitrary form t corresponds to an operator via Eqn. (6).

Definition 141. A sesquilinear form t on \mathcal{H} is said to be bounded just in case there is an $n \in \mathbb{N}$ such that $|t(\varphi, \psi)| \leq n$ whenever $\varphi, \psi \in D(t)$ with $\|\varphi\|, \|\psi\| \leq 1$.

Proposition 142. There is a one-to-one correspondence between densely defined, bounded sesquilinear forms on \mathcal{H} and elements of $\mathfrak{B}(\mathcal{H})$. In particular, if t is bounded sesquilinear form on \mathcal{H} then there is a unique operator $T \in \mathfrak{B}(\mathcal{H})$ such that $t(\varphi, \psi) = \langle \varphi, T\psi \rangle$ for all $\varphi, \psi \in \mathcal{H}$. Furthermore, t is symmetric iff T is self-adjoint.

Proof. See [Kadison and Ringrose, 1997, Theorem 2.4.1].

Proposition 143. If t is a densely defined, positive, closed, quadratic form, then there exists a unique positive operator T on \mathcal{H} such that the domain of $T^{1/2}$ is $D(t)$ and

$$t(\varphi, \psi) = \langle T^{1/2} \varphi, T^{1/2} \psi \rangle,$$

for all $\varphi, \psi \in D(t)$. In particular, $t(\varphi, \psi) = \langle \varphi, T\psi \rangle$ for all $\varphi, \psi \in D(t)$.

Note 144. The previous Proposition is useful in showing when a number operator N can be defined in a representation of the Weyl algebra $\mathfrak{A}[S, \sigma]$. For details, see [Clifton and Halvorson, 2001a] and [Bratteli and Robinson, 1997, p. 27].
The previous two propositions do not apply to the sesquilinear form $\Phi(x)$ because it is neither bounded nor positive. Furthermore, there is no known (to the author) characterization of when a symmetric sesquilinear form admits a representation as an operator — although there are some partial results in this direction (see [McIntosh, 1970]). It is clear that $\Phi(x)$ is not an operator; it is unclear what features operators have that $\Phi(x)$ lacks, and whether these features are necessary for a mathematical object to represent a quantity. Accordingly, it is unclear whether or not $\Phi(x)$ represents an element of reality.

Quantum fields as operators on non-separable Hilbert space

Our second Go result for quantum field operators at a point is really just a sketch of an example. We take a nonseparable Hilbert space H that can represent states of particles with point positions (compare with [Halvorson, 2004]). We then apply the standard second quantization procedure — which does not depend on the one-particle space being separable — to obtain a Fock space $\mathcal{F}(H)$, and self-adjoint field operators $\phi(x), \pi(x)$ indexed by points in \mathbb{R}.

Let $H = l_2(\mathbb{R})$ be the Hilbert space of square-summable sequences over \mathbb{R}; i.e. an element f of $l_2(\mathbb{R})$ is a mapping from \mathbb{R} into \mathbb{C} such that f vanishes at all but countably many points, and $\sum_{x \in \mathbb{R}} |f(x)|^2 < \infty$. The inner product on $l_2(\mathbb{R})$ is given by

$$ \langle f, g \rangle = \sum_{x \in \mathbb{R}} \overline{f(x)}g(x). \quad (7) $$

Let $\mathcal{F}(H)$ be the Fock space over H. For each $x \in \mathbb{R}$, we let $\delta_x \in l_2(\mathbb{R})$ denote the characteristic function of $\{x\}$; the set $\{\delta_x : x \in \mathbb{R}\}$ is an (uncountably infinite) orthonormal basis for $l_2(\mathbb{R})$. For any $x \in \mathbb{R}$, we define the creation operator $a(x)$ by:

$$ a(x)(f_1 \otimes \cdots \otimes f_n) := \delta_x \otimes f_1 \otimes \cdots \otimes f_n. \quad (8) $$

As in the standard case, we verify that $a^-(x) + ia^+(x)$ and $a^+(x) - ia^-(x)$ are preclosed, i.e. that the closure of the graph of these operators are graphs of linear operators (see [Kadison and Ringrose, 1997, p. 155]), which we denote by

$$ \phi(x) = \overline{a^-(x)} + ia^+(x), \quad (9) $$

$$ \pi(x) = a^+(x) - ia^-(x). \quad (10) $$

It then follows that $\phi(x)$ and $\pi(x)$ are self-adjoint, and on a dense domain \mathcal{D} in $\mathcal{F}(H)$, we have

$$ [\pi(x), \phi(x')] = i \langle \delta_x, \delta'_x \rangle = i \delta_0(x - x'), \quad (11) $$

where now δ_0 is a completely legitimate mathematical object — viz. the probability measure supported on $\{0\}$.
Consider the (discontinuous) representation \(x \mapsto V(x) \) of the translation group on \(l_2(\mathbb{R}) \) defined on the basis elements \(\{ \delta_y : y \in \mathbb{R} \} \) by

\[
(12) \quad V(x)\delta_y = \delta_{y-x}.
\]

Let \(\Gamma \) be the 'Fock functor'; i.e. \(\Gamma \) maps a unitary operator \(V \) on the single particle space \(H \) to the corresponding operator

\[
I \oplus V \oplus (V \otimes V) \oplus \cdots ,
\]

on \(\mathcal{F}(H) \). Then \(x \mapsto U(x) := \Gamma(V(x)) \) is a discontinuous representation of the translation group on \(\mathcal{F}(H) \), and

\[
(13) \quad U(x)^*\phi(y)U(x) = \Phi(y-x).
\]

Thus, \((\phi(\cdot), \pi(\cdot), \mathcal{F}(H), U)\) is a field system over \(l_2(\mathbb{R}) \), where \(x \mapsto U(x) \) is a discontinuous unitary representation. We could then use the field system to define a net \(O \mapsto \mathfrak{A}(O) \) of von Neumann algebras on \(\mathcal{F}(H) \). But this net of course fails the spectrum condition, because the representation of the translation group is not continuous.

The model just described is probably too unwieldy to be of much use in describing real physical situations. Furthermore, there is no good reason to think that the procedure we followed generalizes to the case of interacting theories, where pointlike localized operators are needed to make sense of products of field operators. However, we hoped to show that it is conceivable that we can get by without some of the technical assumptions of the No Go Theorems. So, we should think very carefully before we try to use these theorems to draw conclusions about how QFT must be interpreted.

6.3 Field interpretations of QFT

In Section 4, we saw that there are severe obstacles to a particle interpretation of QFT. One might argue then, by a process of elimination, that we should adopt a “field interpretation” of QFT (see e.g. [Teller, 1995; Huggett, 2000]). But if we examine the field interpretation on its own merits, its not clear that it is better off than the particle interpretation.

In constructing canonical free theories (e.g. the free Bose and Fermi fields), one begins with a Hilbert space \(H \) which can be interpreted either as a “single particle space” (i.e. space of wavefunctions of a single quantum mechanical particle) or as a space of configurations of a classical field. Corresponding to these two interpretations, there are two ways to construct the Hilbert space of the quantum field theory:

1. Second quantization: the Hilbert space of the quantum field is the Fock space \(\mathcal{F}(H) \) over \(H \). (See Section 4.1).
2. Field quantization: the Hilbert space of the quantum field is is space \(L_2(H, d) \) of 'square integrable' functions from \(H \) into \(\mathbb{C} \) relative to the isonormal distribution \(d \) on \(H \).

(In a rigorous treatment, elements of \(L_2(H, d) \) are not really functions. See [Baez et al., 1992, Section 1.3] for details.) The free field theories constructed by these two methods are known to be unitarily equivalent. However, the field quantization approach lends itself more naturally to a field interpretation. Indeed, in a recent survey of the foundations of QFT [Huggett, 2000], one finds the suggestive notation:

\[
\Psi(\phi), \quad \phi \in L_2(\mathbb{R}^{3n}),
\]

for a function on the space \(H := L_2(\mathbb{R}^{3n}) \) of wavefunctions. Thus, it seems that a quantum field state can be interpreted as a superposition of classical field configurations in the same sense that a wavefunction of \(n \) particles can be interpreted as a superposition of classical configurations of \(n \) particles.

However, there are difficulties with this approach. First, the field operators \(\Phi(x) \) on \(L_2(H, d) \) are the precise analogues of the position operators \(Q_i \) for a system of particles. That is, there is a natural interpretation of a function \(\Psi \in L_2(H, d) \) as a probability distribution over the family \(\{ \Phi(x) : x \in M \} \) of mutually commuting operators. But the No Go theorems for the operators \(\Phi(x) \) militate against interpreting \(\Psi \) as a probability distribution over classical field configurations. More directly, since \(d \) assigns zero measure to points in \(H \) (i.e. to individual field configurations), characteristic functions of singleton subsets of \(H \) — i.e. determinate field configurations — are identified with the zero vector in \(L_2(H, d) \). That is, there is no state of the quantum field in which it is in a definite configuration.

It follows from the preceding considerations that the No Go theorems for fields operators at a point undermine the field interpretation of QFT in the same way that No Go theorems for number operators undermine the particle interpretation. Thus, we should be wary of arguments for field interpretations based on problems with particle interpretations.

6.4 Points of time?

The preceding results were aimed at answering the question of whether there can be field operators at a spacetime point. Suppose that we concede that there cannot be, and we proceed with the standard mathematically rigorous approach to, say, the free Bose field, where field operators are smeared over space by test functions (see e.g. [Araki, 1963]). In this case, quantities are not tied to spacetime points, but they are tied to pointlike times. However, some claim that in general, the quantities will also have to be fuzzy in time. For example, according to Haag,

Renormalization theory suggests that it is essential to smear out \(\Phi \) both in space and time, in contrast to the case of free fields, where an averaging over 3-dimensional space at a fixed time is sufficient. Due to
the stronger singularities, one cannot assume well-defined commutation relations of fields at equal time. [Haag, 1996, p. 59]

But such claims are speculative — we know of no theorems that prove that interacting fields must be smeared out in time. So, at the present time we have no particularly good reason to conclude that time is pointless.

7 THE PROBLEM OF INEQUIVALENT REPRESENTATIONS

The philosophy of local quantum physics (in Haag’s terminology) is that the theoretical parts of QFT (e.g. unobservable fields, gauge group) should not count as part of the given data. Instead, the abstract net \mathfrak{A} of observable algebras should be taken as the primitive. Following the terminology in [Ruetsche, 2002], we define ‘Algebraic Imperialism’ as the position that:

The physical content of a quantum field theory is encoded in the net $\mathcal{O} \mapsto \mathfrak{A}(\mathcal{O})$, the subgroup of $\text{Aut}(\mathfrak{A})$ corresponding to physical symmetries (including dynamics), and the states on the quasilocal algebra \mathfrak{A}. A representation (\mathcal{H}, π) of \mathfrak{A} may be an aid to calculation, but has no ontological significance.

Such an attitude might seem incomprehensible to those steeped in the traditional Hilbert space formalism of QM. Indeed, where is the Hamiltonian, where are the transition probabilities, and how do we describe measurements? The very abstractness and generality of the algebraic formalism seems to empty it of a great deal of the content we expect in a physical theory.

However, some of these worries about lack of content of the abstract algebraic formalism are ill founded. Indeed, the GNS theorem (Thm. 17) shows that all the Hilbert spaces we will ever need are hidden inside the algebra itself. Furthermore, much of the vocabulary one learns to speak in elementary QM can be defined within this purely abstract setting. For example, for a definition of transition probabilities between states, see [Roberts and Roepstorff, 1968]; and for a definition of measurement probabilities, see [Wald, 1994].

But it is not true — at least on the face of it — that all pieces the traditional vocabulary of QFT can be reproduced in the algebraic setting. For example, the quasilocal algebra does not contain a number operator, and probability distributions over the spectrum of the number operator cannot be defined in terms of expectation values on \mathfrak{A} (see [Clifton and Halvorson, 2001a]). What is perhaps even worse is that by beginning with a net $\mathcal{O} \mapsto \mathfrak{A}(\mathcal{O})$ of observable algebras, we have effectively closed our eyes to the existence of unobservable fields, which do not generally commute with each other at spacelike separation. Thus, we seem to have no way to account for deep theoretical facts of QFT such as the connection between spin (commutation relations of field operators) and statistics.

Worries such as these might push us towards the second main position on the issue of representations, which Ruetsche [2002] calls Hilbert Space Conservatism:
The theory is not the net $O \mapsto \mathcal{A}(O)$, but the net plus one specific representation (\mathcal{H}, π).

In fact, Hilbert Space Conservatism might be thought of as the default view of most workers in mainstream (Lagrangian) QFT, since the abstract algebra (and its representations) do not play a central role there.

But as with many realist views, the Conservative view faces epistemological difficulties: How do we decide which is the correct representation? In this case, the difficulty is particularly severe, because it can be proven mathematically that the predictions of states within any one representation can be reproduced to arbitrarily high accuracy by the states in any other representation.\(^{2}\) (This is due to the fact that since \mathcal{A} is simple, Fell’s theorem implies that the states in any folium are weak* dense in the state space.)

Nonetheless, it is tempting to think that the algebraic formalism is creating an interpretive problem. That is, it is tempting to think that if we stick to the old-fashioned way of doing QFT, the issue of inequivalent representations does not arise, and so neither does this interpretive dilemma. So, are inequivalent representations telling us something of foundational importance, or are they just mathematical playthings?

The motivating arguments for the algebraic approach have included the existence of inequivalent representations of the canonical commutation relations, as well as physical effects associated with Rindler-Fulling quanta. Nonetheless, these arguments have been resisted for various reasons, e.g. there is a suspicion that the Rindler vacuum representation is inferior, as a description of reality, to the Minkowski vacuum representation. So, in the following sections, we discuss another motivating argument for the algebraic approach — viz. superselection rules. It is in the analysis of superselection rules that the algebraic approach most clearly displays its beauty, utility, and foundational importance.

7.1 Superselection rules

In a now famous paper, Wick, Wightman, and Wigner [1952] argue that there is a physical system with state space \mathcal{H}, and state vectors $\psi_1, \psi_2 \in \mathcal{H}$ such that the linear combinations

\[
2^{-1/2} (\psi_1 + e^{i\theta} \psi_2), \quad \theta \in [0, 2\pi),
\]

give rise to ‘empirically indistinguishable’ states. When this occurs, Wick et al. say that there is a ‘superselection rule’ between ψ_1 and ψ_2; alternatively, ψ_1 and ψ_2 lie in different ‘superselection sectors.’ We put ‘empirically indistinguishable’ in scare quotes, because the literature has been anything but clear about the nature

\(^{2}\)This way of stating the problem is biased, and depends on taking “predictions of a representation” to mean expectation values of observables in the abstract algebra. If we also include expectation values of observables in the weak closure $\pi(\mathcal{A})^\ast$, and expectation values of unbounded operators on \mathcal{H}, then the story becomes more complicated. Compare with [Clifton and Halvorson, 2001b].
of the relation between the states in Eqn. (14). Are the states in Eqn. (14) merely \textit{empirically} indistinguishable, or is there a stronger sense in which these two states are equivalent? If the indistinguishability is empirical, how strong is the modal force? Do these states predict the same empirical phenomena in all physically possible worlds, or is their indistinguishability due to some special features (e.g. initial conditions) in our world? In this paper, we will not attempt to resolve these important questions about the nature of superselection rules. Rather, we will content ourselves with explaining the proposal of Doplicher, Haag, and Roberts (DHR) for making Wick et al.’s notion precise within the context of AQFT.

The first approaches to superselection rules involved an \textit{ad hoc} butchery of the state space and of the algebra of observables, with a resulting confusion about what should count as the states and observables (or quantities) of the resulting theory. One begins with a Hilbert space H with unit vectors giving pure states, and with self-adjoint elements of $B(H)$ as observables (or quantities). One then gives a heuristic argument for the claim that a superselection rule holds between the state vectors in some subspace H_1 and the state vectors in the complementary subspace $H_2 := (H_1)^\perp$. On the basis of this argument, the state space H is reduced to the union of H_1 and H_2; that is, a linear combination of a vector in H_1 and H_2 is no longer thought to be a possible (pure state) of the theory; the pure state vectors lie in either H_1 or H_2. Equivalently, the algebra of observables $B(H)$ is reduced to $B(H_1) \oplus B(H_2)$. The operators in $B(H_1 \oplus H_2)$ that could distinguish between the states in Eqn. (14) are denoted to the status of “unobservable.” Thus, the algebra of observables is actually $B(H_1) \oplus B(H_2)$, and not $B(H_1 \oplus H_2)$.

Now, the algebraic approach provides two inversely related approaches to superselection rules.

1. First, we can follow the original “state space butchery” approach in a slightly more principled fashion: suppose that we are given some fields acting as operators on some big Hilbert space \mathcal{H}. Let \mathfrak{F} denote the algebra of field operators. [Here \mathfrak{F} is the analogue of the algebra $B(H_1 \oplus H_2)$, and \mathcal{H} is the analogue of $H_1 \oplus H_2$. In this case, however, we are not given an \textit{a priori} decomposition of \mathcal{H} into a direct sum.] Suppose that we are also given a gauge group G that acts on the fields. We then \textit{define} the observables as the gauge invariant fields. Let \mathfrak{A} denote the algebra of observables. We also define the physical pure states as those vectors in \mathcal{H} that transform irreducibly under the gauge group. A series of mathematical results (partially described in Section 9) shows then that \mathcal{H} decomposes into a direct sum $\mathcal{H} \oplus \mathcal{H}_\xi$ of subspaces that transform irreducibly under the gauge group; and each subspace \mathcal{H}_ξ corresponds to an irreducible representation of the algebra of observables \mathfrak{A}. We sketch this “top down” approach to superselection rules

\footnote{Superselection rules are also of foundational interest because they have been thought to help with the measurement problem — see e.g. [Beltrametti and Cassinelli, 1981, p. 74], [Landsman, 1995], [van Fraassen, 1991, pp. 264–272] — and more generally because of their connection with the emergence of a classical realm [Giulini, 2003]. However, we do not take up those specific issues in this Chapter.}
in Section 9.

2. Instead of beginning with the field algebra \mathcal{F} and deriving the superselection structure (i.e. the set of physically interesting representations of the algebra \mathcal{A} of observables), we can begin with \mathcal{A} and consider its set of physical representations. What is a 'physical' representation of \mathcal{A}? According to the criterion proposed by Doplicher, Haag, and Roberts (the DHR selection criterion), the physical representations are those that differ observably from the vacuum representation only in local regions. In this case, we still have the notion of superselection sectors, but we do not yet have a notion of fields or of a gauge group. It is not immediately clear that we have enough structure to explain the phenomena.

However, it is at this point that the deep mathematical analysis begins. First, one proves that the category of DHR representations corresponds precisely to the set Δ of localized transportable endomorphisms of the observable algebra \mathcal{A} (see Section 8.2). Second, one proves that the set Δ naturally has the structure of a symmetric tensor \ast-category (see Section 8). Finally, the Doplicher-Roberts Reconstruction Theorem shows that the unobservable fields \mathcal{F} and gauge group G can be uniquely reconstructed from the category Δ.

The following sections outline some of the most important insights that have been gained in the study of superselection rules, and how this analysis bears on the foundational questions about the role of inequivalent representations. In short, our conclusion is that inequivalent representations are not irrelevant, and nor are they a problem. Rather, it is the structure of the category of representations that provides the really interesting theoretical content of QFT.

7.2 Minimal assumptions about the algebra of observables

For our discussion of superselection theory we need only a considerably pared down set of assumptions about the net of observable algebras. So, we now effectively cancel all assumptions we made about the net in Section 2. We begin with a tabula rasa, and add only those assumptions that we will need in the following sections.

By calling \mathcal{A} a "net," we are assuming that if $O_1 \subseteq O_2$ then $\mathcal{A}(O_1) \subseteq \mathcal{A}(O_2)$. But we do not promote this to the status of an Assumption.
ASSUMPTION 145 (Microcauuality). If O_1 and O_2 are spacelike separated then $[\mathcal{A}(O_1), \mathcal{A}(O_2)] = \{0\}$.

ASSUMPTION 146 (Property B). The net $O \rightarrow \mathcal{R}_0(O) \equiv \pi_0(\mathcal{A}(O))''$ of von Neumann algebras satisfies property B, where (\mathcal{H}_0, π_0) is the GNS representation of \mathcal{A} induced by ω_0.

ASSUMPTION 147 (Duality). The pair (\mathcal{A}, ω_0) satisfies Haag duality, i.e.

$$\pi_0(\mathcal{A}(O'))' = \pi_0(\mathcal{A}(O))'',$$

for each double cone O, where (\mathcal{H}_0, π_0) is the GNS representation of \mathcal{A} induced by ω_0.

ASSUMPTION 148 (Separability). The vacuum Hilbert space \mathcal{H}_0 is separable.

ASSUMPTION 149 (Nontriviality). For each double cone O, $\pi_0(\mathcal{A}(O))$ contains an operator that is not a multiple of the identity; i.e. $\pi_0(\mathcal{A}(O)) \neq CI$.

A few remarks on these assumptions: (i) The first assumption is about the net \mathcal{A}, but the remaining assumptions apply to a pair (\mathcal{A}, ω_0), where \mathcal{A} is the quasilocal algebra and ω_0 is some fixed state. (ii) The duality assumption states that not only are the observables in $\mathcal{R}_0(O')$ compatible with the observables in $\mathcal{R}_0(O)$, but that $\mathcal{R}_0(O')$ contains all observables that are compatible with the collection of observables in $\mathcal{R}_0(O)$. We will assume in the following two sections (on DHR superselection theory) that the net \mathcal{A} satisfies duality relative to some privileged vacuum state ω_0. But, it does not follow from this that the net satisfies duality relative to every physical representation. In fact, a representation satisfies duality iff that sector has normal (Bose/Fermi) statistics; and every representation satisfies duality iff the gauge group is abelian. (iii) Duality in the vacuum sector is equivalent to the non-existence of spontaneously broken gauge symmetries. For the case of broken symmetries, we would impose a weaker requirement: essential duality. cf. Section 10.7. (iv) The separability assumption will only be invoked once — to show all superselection sectors induced by local fields are strongly locally equivalent (Prop. 243).

To be clear, note that we are now making no assumptions about the following: (i) No assumptions about the action of spacetime symmetries (e.g. translation symmetries, Lorentz symmetries) on the algebra \mathcal{A}; (ii) No assumptions to the effect that the vacuum state ω_0 is translation invariant; (iii) No assumptions about the action of spacetime symmetries on the vacuum Hilbert space; (iv) No assumptions about the spectrum condition.
8 THE CATEGORY Δ OF LOCALIZED TRANSPORTABLE ENDMORPHISMS

In this Section we study the category $\Delta(\mathfrak{A})$ of localized transportable endomorphisms of the observable algebra \mathfrak{A}. Since the physical motivation for this study might not be initially clear, we pause to note the relation between endomorphisms and representations.

Suppose that π_0 is a fixed representation of \mathfrak{A} of some physical significance — e.g. the vacuum representation. Then for any endomorphism ρ of \mathfrak{A}, the composition $\pi_0 \circ \rho$ is also a representation of \mathfrak{A}. Thus, endomorphisms of \mathfrak{A} correspond naturally to representations of \mathfrak{A}, and we can hope to gain insight into the structure of the representations of \mathfrak{A} by studying the endomorphisms of \mathfrak{A}. However, the set $\text{End}\mathfrak{A}$ of endomorphisms of \mathfrak{A} has more intrinsic structure than the set $\text{Rep}\mathfrak{A}$ of representations of \mathfrak{A} — e.g., there is a product (viz. composition) operation on $\text{End}\mathfrak{A}$, and some endomorphisms have inverses. Thus, besides the traditional notions of equivalence and disjointness of representations, there are additional relations of physical importance on the set of representations of the form $\pi_0 \circ \rho$ with $\rho \in \text{End}\mathfrak{A}$.

If the problem of Lagrangian QFT is that there is only one Hilbert space, the problem of AQFT is that there are too many Hilbert spaces! Surely, not all of the representations of \mathfrak{A} are physical. In Section 9, we look at the problem from a more traditional point of view. In particular, we begin with a field algebra \mathfrak{F} of operators acting on a Hilbert space \mathcal{H}, and a gauge group G of unitary operators on \mathcal{H}. (We may suppose that G is the image of some representation of a fundamental symmetry group, e.g. $SU(2)$.) We also suppose that \mathcal{H} contains a vacuum state Ω. We then define the observable algebra \mathfrak{A} as the gauge invariant fields. But then we are again in the domain of AQFT; we have a reducible representation π of \mathfrak{A} on \mathcal{H}, and the irreducible subrepresentations of π are the superselection sectors that can be reached from the vacuum sector by the action of local (unobservable) fields. Not all representations of \mathfrak{A} appear in the decomposition of π — those that do not are surplus structure. However, all representations that appear in the decomposition of π are of the form $\pi_0 \circ \rho$, with ρ an endomorphism from the category $\Delta(\mathfrak{A})$!

So, the motivation for studying these endomorphisms is that they correspond to representations that arise in this traditional, physically motivated way by acting on the vacuum representation with (unobservable) fields.4

There is yet another motivation for studying the DHR category: we want to understand the nature of gauge symmetries, and the DR Reconstruction Theorem provides crucial insight. In particular, the Theorem shows that DHR categories are in duality (in a mathematically precise sense) with compact groups. So, wherever there is a compact group, there is a DHR category, and vice versa. The study

4The DHR representations do not include those that can be reached from the vacuum by nonlocal fields, and so the domain of DHR superselection theory does not include theories with long range forces. But the case of local fields is already complicated enough, and is good training for the more general case.
of DHR categories and the study of compact gauge groups are one and the same; or, to take a more controversial stance, the structure of the category of physical representations of \(\mathfrak{A} \) explains why there is a compact gauge group (see [Roberts, 1975]).

We now define the category \(\Delta = \Delta(\mathfrak{A}) \) and uncover some of its natural structures. As stated above, the objects of our category \(\Delta \) will be a subset of the set \(\text{End}\mathfrak{A} \) of \(*\)-endomorphisms of \(\mathfrak{A} \).

DEFINITION 150. Let \(\rho \) be a \(*\)-endomorphism of \(\mathfrak{A} \), i.e. \(\rho : \mathfrak{A} \to \mathfrak{A} \) is a \(*\)-homomorphism (not necessarily surjective). Let \(O \) be a double cone in (Minkowski) spacetime. Then \(\rho \) is said to be localized in \(O \) just in case \(\rho(A) = A \), for all \(A \in \mathfrak{A}(O') \), where \(O' \) is the spacelike complement of \(O \). We say that \(\rho \) is localized just in case there is a double cone \(O \) in which it is localized.

NOTE 151. By definition, a localized endomorphism satisfies \(\rho(I) = I \), where \(I \) is the identity in \(\mathfrak{A} \).

DEFINITION 152. If \(\rho \) is localized in \(O \) then \(\rho \) is said to be transportable just in case for any other double cone \(O_1 \), there is a morphism \(\rho_1 \) localized in \(O_1 \) and a unitary operator \(U \in \mathfrak{A} \) such that \(U\rho(A) = \rho_1(A)U \) for all \(A \in \mathfrak{A} \).

DEFINITION 153. For each double cone \(O \in \mathcal{K} \), we let \(\Delta(O) \) denote the set of transportable morphisms that are localized in \(O \), and we let \(\Delta = \bigcup_{O \in \mathcal{K}} \Delta(O) \). Elements of \(\Delta \) are the objects of the DHR category.

We must now define arrows between the objects.

DEFINITION 154. Let \(\rho, \rho' \in \Delta \). We define the set \(\text{Hom}(\rho, \rho') \) of arrows between \(\rho \) and \(\rho' \) as follows:

\[
\text{Hom}(\rho, \rho') := \{ T \in \mathfrak{A} : T\rho(A) = \rho'(A)T, \forall A \in \mathfrak{A} \}.
\]

If \(T \in \text{Hom}(\rho, \rho') \) and \(S \in \text{Hom}(\rho', \sigma) \) then we define \(S \circ T = ST \), which is obviously in \(\text{Hom}(\rho, \sigma) \).

Obviously, the identity \(I \in \mathfrak{A} \) functions as the identity arrow for all objects; i.e. \(I = \text{id}_\rho \in \text{End}(\rho) \) for all \(\rho \in \text{Obj}(\Delta) \). Occasionally, we will write \(I_\rho \) to indicate that we are considering \(I \) as the identity of \(\text{End}(\rho) \).

LEMMA 155. Suppose that \(\rho_i \in \Delta(O_i) \) for \(i = 1,2 \), and that \(T \in \text{Hom}(\rho_1, \rho_2) \). Then for any double cone \(O \) containing \(O_1 \cup O_2 \), we have \(T \in \mathfrak{A}(O) \).

Proof. Let \(B \in \mathfrak{A}(O') \). Then

\[
TB = T\rho_1(B) = \rho_2(B)T = BT.
\]

Hence \(T \in \mathfrak{A}(O') \). By duality in the vacuum sector, \(T \in \mathfrak{A}(O) \).

PROPOSITION 156. With the definition of hom-sets given above, \(\Delta \) is a category.

Proof. Completely straightforward.
So, we have shown that Δ is a category. In the remainder of this Section, we uncover more structure on Δ. We first show that Δ is a C^*-category; this involves showing that Δ has direct sums (an \oplus operation), subobjects, and the hom-sets of Δ are vector spaces with a $*$-operation and norm $\| \cdot \|$ that obey the appropriate analogue of the C^*-algebra norm property. We then drop reference to the norms on the hom-sets, and show that there is a product operation \otimes on Δ such that (Δ, \otimes, ι) is a tensor $*$-category.

DEFINITION 157. A category \mathcal{C} is said to be a linear category over the complex field \mathbb{C}, or a \mathbb{C}-linear category, just in case for all $X, Y \in \text{Obj}(\mathcal{C})$, $\text{Hom}(X, Y)$ is a complex vector space, and the composition \circ of morphisms is bilinear. When speaking of \mathbb{C}-linear categories, we stipulate that all functors should be \mathbb{C}-linear.

DEFINITION 158. An $*$-operation on a \mathbb{C}-linear category \mathcal{C} is a map which assigns to an arrow $s \in \text{Hom}(X, Y)$ another arrow $s^* \in \text{Hom}(Y, X)$. This map has to be antilinear, involutive ($s^{**} = s$), and contravariant ($((s \circ t)^* = t^* \circ s^*)$. A $*$-operation is positive iff $s^* \circ s = 0$ implies $s = 0$. A $*$-category is a \mathbb{C}-linear category with a positive $*$-operation.

NOTE 159. If \mathcal{C} is a $*$-category, then for each $X \in \text{Obj}(\mathcal{C})$, $\text{End}(X)$ is a $*$-algebra.

DEFINITION 160. A $*$-category is called a C^*-category if for all $X, Y \in \text{Obj}(\mathcal{C})$, there is a norm $\| \cdot \|_{X,Y}$ on $\text{Hom}(X, Y)$ such that $(\text{Hom}(X, Y), \| \cdot \|_{X,Y})$ is a Banach space and

$$
\|s \circ t\|_{X,Z} \leq \|s\|_{Y,Z} \cdot \|t\|_{X,Y}, \quad \forall s \in \text{Hom}(Y, Z), \forall t \in \text{Hom}(X, Y)
$$

$$
\|s^* \circ s\|_{X,X} = \|s\|^2_{X,Y}, \quad \forall s \in \text{Hom}(X, Y).
$$

We borrow some definitions from the theory of $*$-algebras.

DEFINITION 161. Let \mathcal{C} be a $*$-category. An arrow $f \in \text{Hom}(X, Y)$ is said to be an isometry just in case $f^* \circ f = \text{id}_X$. An arrow $f \in \text{Hom}(X, Y)$ is said to be unitary just in case f and f^* are isometries. An arrow $p \in \text{End}(Y) = \text{Hom}(Y, Y)$ is said to be a projection if $p = p^*$ and $p \circ p = p$.

NOTE 162. If $s \in \text{Hom}(Y, X)$ is an isometry then the arrow $p \equiv s \circ s^* \in \text{End}(X)$ is a projection.

DEFINITION 163. Let \mathcal{C} be a $*$-category. If $X, Y \in \text{Obj}(\mathcal{C})$, then X is said to be a subobject of Y just in case there is an isometry $f \in \text{Hom}(X, Y)$. (Roughly speaking, there is an isometric embedding of X into Y.) The $*$-category \mathcal{C} is said to have subobjects just in case for each $Y \in \text{Obj}(\mathcal{C})$ and projection $g \in \text{End}(Y)$, there is an $X \in \text{Obj}(\mathcal{C})$ and an isometry $f \in \text{Hom}(X, Y)$ such that $f \circ f^* = g$. The $*$-category \mathcal{C} is said to have direct sums just in case for any two objects X, Y in \mathcal{C}, there is an object Z in \mathcal{C} and isometries $f \in \text{Hom}(X, Z)$, $g \in \text{Hom}(Y, Z)$ such that $f \circ f^* + g \circ g^* = \text{id}_Z$.

We begin by verifying that the DHR category Δ is a $*$-category, i.e. the hom sets are vector spaces over \mathbb{C}, and there is a positive $*$-operation.
LEMMA 164. The DHR category Δ is a $*$-category. That is, if $\rho, \sigma \in \text{Obj}(\Delta)$, then $\text{Hom}(\rho, \sigma)$ is a vector space over \mathbb{C} with the operations inherited from \mathfrak{A} (which is a vector space over \mathbb{C}), and the composition of arrows is bilinear. Furthermore, the $*$-operation inherited from \mathfrak{A} is antilinear, involutive, contravariant, and positive.

Proof. Completely straightforward. ■

PROPOSITION 165. The DHR category Δ has direct sums.

Proof. Let $\rho_1 \in \Delta(O_1)$, and let $\rho_2 \in \Delta(O_2)$. Choose a double cone O such that $(O_1 \cup O_2)^- \subseteq O$. Let E be a projection in $\mathfrak{A}(O_1)$. By property B, there are isometries $V_1, V_2 \in \mathfrak{A}(O)$ such that $V_1V_1^* + V_2V_2^* = I$. Define $\rho : \mathfrak{A} \to \mathfrak{A}$ by

$$\rho(A) = V_1\rho_1(A)V_1^* + V_2\rho_2(A)V_2^*, \quad \forall A \in \mathfrak{A}.$$

Since $V_iV_j = \delta_{ij}I$, and $\sum_i V_iV_i^* = I$, it follows that ρ is a morphism. Since ρ_1, ρ_2 are localized in O, and $V_1, V_2 \in \mathfrak{A}(O)$, it follows that ρ is localized in O.

To see that ρ is transportable, let \bar{O} be another double cone. Since the ρ_i are transportable, there are endomorphisms ρ'_i localized in \bar{O}, and unitary operators $U_i \in \text{Hom}(\rho_i, \rho'_i)$. As before, choose isometries V'_1, V'_2 in $\mathfrak{A}(\bar{O})$, and set $\rho' = V'_1\rho'_1V'_1^* + V'_2\rho'_2V'_2^*$. Then ρ' is localized in \bar{O} and

$$V'_1U_1V_1^* \in \text{Hom}(\rho, \rho'), \quad V'_2U_2V_2^* \in \text{Hom}(\rho, \rho').$$

If we set $W = V'_1U_1V_1^* + V'_2U_2V_2^*$, then $W \in \text{Hom}(\rho, \rho')$ since it is a vector space. Furthermore,

$$W^*W = [V'_1U_1V_1^* + V'_2U_2V_2^*][V'_1U_1V_1^* + V'_2U_2V_2^*] = [V_1U_1^*V'_1^* + V_2U_2^*V'_2^*][V'_1U_1V_1^* + V'_2U_2V_2^*] = V_1V_1^* + V_2V_2^* = I,$$

and similarly for WW^*. Therefore W is a unitary operator in $\text{Hom}(\rho, \rho')$, showing that ρ is transportable. ■

DEFINITION 166. If $\rho_1, \rho_2 \in \Delta$, we denote their direct sum by $\rho_1 \oplus \rho_2$.

PROPOSITION 167. The DHR category Δ has subobjects.

Proof. Let $\rho \in \Delta(O)$, and let E be a projection in $\text{End}(\rho)$; i.e. $E\rho(A) = \rho(A)E$, for all $A \in \mathfrak{A}$. Then for all $A \in \mathfrak{A}(O')$,

$$EA = E\rho(A) = \rho(A)E = AE.$$

Therefore, by duality in the vacuum sector $E \in \mathfrak{A}(O)$. Choose O_1 such that $O^- \subseteq O_1$. By property B, there is an isometry $V \in \mathfrak{A}(O_1)$ such that $VV^* = E$. Now define $\rho' : \mathfrak{A} \to \mathfrak{A}$ by

$$\rho'(A) = V^*\rho(A)V, \quad \forall A \in \mathfrak{A}.$$
The isometry V embeds ρ' into ρ. Indeed,

$$\rho'(A)V^* = V^*\rho(A)VV^* = V^*\rho(A)E = V^*\rho(A).$$

and V is an isometry in $\text{Hom}(\rho', \rho)$ such that $VV^* = E \in \text{End}(\rho)$.

To see that ρ' is transportable, suppose that O_2 is an arbitrary double cone. Choose a double cone O_3 such that $O_3 \subseteq O_2$. Since ρ is transportable, there is a morphism σ localized in O_3 and a unitary $U \in \text{Hom}(\rho, \sigma)$. It then follows that $U\text{End}(\rho)U^* = \text{End}(\sigma)$, thus $E' = UEU^*$ is a projection in $\text{End}(\sigma)$. Using property B, there is an isometry $V' \in \mathfrak{A}(O_1)$ such that $V'V'^* = E'$. Let $\sigma' = V'^*\sigma V'$. Clearly σ' is localized in O_1, and $W = V'^*UV \in \text{Hom}(\rho', \sigma')$. Finally, W is unitary:

$$W^*W = V^*U^*V'^*UV = V^*U^*E'UV = V^*EV = V^*VV^*V = I,$$

and similarly for WW^*. Thus σ' is equivalent to ρ'. Since O_2 was an arbitrary double cone, $\rho' \in \Delta$. ■

DEFINITION 168. Suppose that C is a \mathbb{C}-linear category. An object X in C is said to be irreducible if it is nonzero and $\text{End}(X) = \text{Cid}_X$.

NOTE 169. Let ι be the identity endomorphism of \mathfrak{A}. Then $\iota \in \text{Obj}(\Delta)$, and since the vacuum representation of \mathfrak{A} is irreducible, ι is an irreducible object.

We now define a bifunctor $\otimes = (\otimes, \times)$ on the DHR category Δ, and verify that (Δ, \otimes, ι) is a tensor $*$-category. But first we recall the pertinent definitions.

DEFINITION 170. A bifunctor on a category C consists of two mappings $F : \text{Obj}(C) \times \text{Obj}(C) \to \text{Obj}(C)$ and $F : \text{Hom}(C) \times \text{Hom}(C) \to \text{Hom}(C)$, such that for $s \in \text{Hom}(X, Y)$ and $t \in \text{Hom}(X', Y')$, $F(s,t) \in \text{Hom}(F(X, X'), F(Y, Y'))$, and

$$F(s_1 \circ s_2, t) = F(s_1, t) \circ F(s_2, t),$$

$$F(s, t_1 \circ t_2) = F(s, t_1) \circ F(s, t_2),$$

$$F(id_X, id_{X'}) = id_{F(X, X')}.$$

If C is a $*$-category, then a bifunctor F is also required to be bilinear and to commute with the $*$-operation. That is, for $s_i \in \text{Hom}(X, X')$, $t_i \in \text{Hom}(Y, Y')$ and $c \in \mathbb{C}$, we have

$$F(s_1 + s_2, t) = F(s_1, t) + F(s_2, t),$$

$$F(s, t_1 + t_2) = F(s, t_1) + F(s, t_2),$$

$$F(cs, t) = cF(s, t) = F(s, ct),$$

and

$$F(s, t)^* = F(s^*, t^*).$$
DEFINITION 171. Let $\otimes = (\otimes, \times)$ be a bifunctor on the category \mathcal{C}, and let $1 \in \text{Obj}(\mathcal{C})$. Then $(\mathcal{C}, \otimes, 1)$ is said to be a tensor category just in case \otimes is associative up to a natural isomorphisms, and 1 is a two sided identity up to natural isomorphisms. The object 1 is called the monoidal unit. To be precise, to say that \otimes is 'associative up to a natural isomorphisms' means that for each $X, Y, Z \in \text{Obj}(\mathcal{C})$, there is an isomorphism $\alpha_{X,Y,Z} : X \otimes (Y \otimes Z) \to (X \otimes Y) \otimes Z$ that is 'natural' for all X, Y, Z; i.e. if $s : X \to X'$ then

$$((s \otimes \text{id}_Y) \otimes \text{id}_Z) \circ \alpha_{X,Y,Z} = \alpha_{X',Y,Z} \circ (s \otimes (\text{id}_Y \otimes \text{id}_Z)),$$

and similarly for Y and Z. Furthermore, α is required to make the pentagonal diagram commute:

To say that $1 \in \mathcal{C}$ is a two sided identity up to natural isomorphisms means that for each object $X \in \text{Obj}(\mathcal{C})$, there are isomorphisms $\lambda_X \in \text{Hom}(1 \otimes X, X)$ and $\rho_X \in \text{Hom}(X \otimes 1, X)$ such that:

1. λ_X and ρ_X are natural in X; i.e. for any $s : X \to Y$,

$$s \circ \lambda_X = \lambda_Y \circ (\text{id}_1 \otimes s),$$

$$s \circ \rho_X = \rho_Y \circ (s \otimes \text{id}_1).$$

In other words, the following two diagrams commute:
2. λ_X and ρ_X make the triangular diagram commute:

$$
\begin{align*}
1 \otimes X & \xrightarrow{\lambda_X} X \\
id_1 \otimes s & \downarrow \\
1 \otimes Y & \xrightarrow{\lambda_Y} Y \\
X \otimes 1 & \xrightarrow{\rho_X} X \\
s \otimes \operatorname{id}_1 & \downarrow s \\
Y \otimes 1 & \xrightarrow{\rho_Y} Y
\end{align*}
$$

If \mathcal{C} is also a \ast-category, there are two further requirements: (a.) the bifunctor \otimes must be compatible with the operations of $+ \ast$ (as required in the definition of bifunctor), and (b.) the monoidal unit 1 must be irreducible, i.e. $\text{End}(1) = \text{Cid}_1$. For a \mathcal{C}^\ast-category \mathcal{C} we require in addition that $\|s \times t\|_{X \otimes Y, X' \otimes Y'} \leq \|s\|_{X, X'} \cdot \|t\|_{Y, Y'}$.

Mac Lane's coherence theorem shows that we can without danger ignore the natural isomorphisms $\alpha, \lambda, \text{ and } \rho$. That is, we can treat $X \otimes (Y \otimes Z)$ and $(X \otimes Y) \otimes Z$ as the same object, and we can treat X, $1 \otimes X$, and $X \otimes 1$ as the same object. To be more precise, we define:

DEFINITION 172. A tensor category \mathcal{C} is said to be strict if $\alpha_{X, Y, Z}, \lambda_X, \rho_X$ are identity morphisms for all $X, Y, Z \in \text{Obj}(\mathcal{C})$.

For example, the tensor category $(\text{Vect}, \otimes, \mathbb{C})$ of vector spaces is not strict, since e.g. $V \otimes \mathbb{C}$ is not literally the same vector space as V. On the other hand, a commutative monoid M can be thought of as a strict tensor category with one object and with arrows corresponding to elements of M. The coherence theorem can then be formulated as follows.

THEOREM 173 (Coherence Theorem). Every tensor category is equivalent to a strict tensor category.

Proof. See [Mac Lane, 1998].

DEFINITION 174. If \mathcal{C} is a tensor category, then we let \mathcal{C}^\ast denote its strictification.

With these definitions in hand, we proceed now to define a bifunctor on Δ, and to verify that it satisfies all of the relevant properties. Our product \otimes of objects in Δ will be just the composition of endomorphisms.

PROPOSITION 175. If $\rho, \sigma \in \text{Obj}(\Delta)$ then $\rho \sigma \in \text{Obj}(\Delta)$.

Proof. It is clear that if ρ is localized in O_1 and σ is localized in O_2, then $\rho \sigma$ is localized in any double cone that contains $O_1 \cup O_2$.

To see that $\rho \sigma$ is transportable, let O_3 be an arbitrary double cone. Since ρ and σ are transportable, there are $\rho', \sigma' \in \Delta(O_3)$ and unitaries $U \in \text{Hom}(\rho, \rho')$ and $V \in \text{Hom}(\sigma, \sigma')$. Then $\rho' \sigma'$ is localized in O_3 and $U \rho(V)$ is a unitary in $\text{Hom}(\rho \sigma, \rho' \sigma')$. Therefore, $\rho \sigma$ is transportable. \blacksquare

DEFINITION 176. Define $\otimes : \text{Obj}(\Delta) \times \text{Obj}(\Delta) \to \text{Obj}(\Delta)$ by $\rho \otimes \sigma = \rho \sigma$.

The product \times of arrows is slightly more complicated.

PROPOSITION 177. If $S \in \text{Hom}(\rho, \rho')$ and $T \in \text{Hom}(\sigma, \sigma')$ then $S \rho(T) \in \text{Hom}(\rho \otimes \sigma, \rho' \otimes \sigma')$.

Proof. Since $S \rho(T) = \rho'(T) S$, it follows that for any $A \in \mathcal{A}$,

$$
(S \rho(T)) \rho \sigma(A) = S \rho(T \sigma(A)) = \rho'(T \sigma(A)) S = \rho'(\sigma'(A) T) S
= \rho'(\sigma'(A) (\rho'(T) S) = \rho'(\sigma'(A) (S \rho(T)) .
$$

Therefore $S \rho(T) \in \text{Hom}(\rho \sigma, \rho' \sigma')$. \blacksquare

DEFINITION 178. Define $\times : \text{Hom}(\Delta) \times \text{Hom}(\Delta) \to \text{Hom}(\Delta)$ by: for $S \in \text{Hom}(\rho, \rho')$ and $T \in \text{Hom}(\sigma, \sigma')$, we set $S \times T = S \rho(T) \in \text{Hom}(\rho \otimes \sigma, \rho' \otimes \sigma')$.

In the remainder of this section, we verify that (Δ, \otimes, ι) is a tensor $*$-category.

\otimes is a bifunctor on Δ

PROPOSITION 179. For $S_1, S_2, T_1, T_2 \in \text{Obj}(\Delta)$, if the source of T_i is the target of S_i (so that $T_i \circ S_i$ is defined) then

$$(T_1 \times T_2) \circ (S_1 \times S_2) = (T_1 \circ S_1) \times (T_2 \circ S_2).$$

Proof. Straightforward calculation. \blacksquare

We must now check that \times is compatible with $*$

PROPOSITION 180. For all $S, T \in \text{Hom}(\Delta)$,

$$(S \times T)^* = S^* \times T^* .$$

Proof. Straightforward calculation. \blacksquare

ι is a monoidal unit

For each $\rho \in \text{Obj}(\Delta)$, $\iota \otimes \rho$ must be naturally isomorphic to $\rho \otimes \iota$ and to ρ (as expressed in the monoidal unit diagrams). But in the present case, $\iota \otimes \rho = \rho \otimes \iota = \rho$, so this natural isomorphism holds trivially.
Natural associativity of \otimes

Next, the product operation $\otimes = (\otimes, \times)$ must be associative up to natural isomorphisms, as expressed by the pentagonal diagram. But this is trivial in the present case, because associativity holds strictly; that is:

Proposition 181. For all $\rho_1, \rho_2, \rho_3 \in \text{Obj}(\Delta)$,

$$\rho_1 \otimes (\rho_2 \otimes \rho_3) = (\rho_1 \otimes \rho_2) \otimes \rho_3,$$

and for all $T_1, T_2, T_3 \in \text{Hom}(\Delta)$,

$$T_1 \times (T_2 \times T_3) = (T_1 \times T_2) \times T_3.$$

Proof. The first claim follows trivially from the fact that composition of endomorphisms is associative. The second claim can be verified by a straightforward calculation.

Lemma 182. (Δ, \otimes, ι) is a C^*-tensor category with the norms inherited from \mathcal{A}.

Proof. We must verify that $\text{Hom}(\rho, \sigma)$ is closed in the norm on \mathcal{A}. But this follows immediately from the fact that

$$\text{Hom}(\rho, \sigma) = \{T \in \mathcal{A} : T \rho(A) = \sigma(A)T, \forall A \in \mathcal{A}\}.$$

It's clear that $\|s \circ t\| \leq \|s\| \|t\|$. Furthermore,

$$\|S \times T\| = \|S \rho(T)\| \leq \|S\| \cdot \|\rho(T)\| \leq \|S\| \cdot \|T\|.$$

To this point we have shown that (i): Δ is a C^*-category, and (ii): Δ is a tensor $*$-category. The following five Subsections are not linearly ordered. Subsection 8.1 shows how to define the canonical braiding $\varepsilon_{\rho_1, \rho_2}$ on (Δ, \otimes, ι) such that it is a ‘braided’ tensor $*$-category. Then in Subsection 8.2 we make good our claims about the motivation for studying the category Δ: we prove that there is a functorial correspondence between Δ and the category of representations that satisfy the DHR selection criterion. We then pick up some technical information about tensor $*$-categories that is essential for the physical interpretation of the corresponding representations. In Subsection 8.3 we see how to define a notion of the ‘dimension’ of an object in a tensor $*$-category, and we define the notion of ‘conjugate’ objects. In Subsection 8.4 we take a detour to talk about the relation of spacetime symmetries to the DHR representations. Finally, in Subsection 8.5 we give the intrinsic statistical classification of objects of Δ_f that corresponds to the intuitive distinction between Bosons and Fermions, or Bose fields and Fermi fields.
8.1 Δ is a braided tensor $*$-category

In this Subsection we define the canonical braiding on Δ; this gives us a grasp on what happens if we change the order in products, say $\rho \otimes \sigma$ versus $\sigma \otimes \rho$. We will also see that there is a remarkable connection between spacetime dimension and the properties of this braiding: if the spacetime has three or more dimensions, the braiding is a symmetry. We first recall the pertinent definitions.

DEFINITION 183. If $(\mathcal{C}, \otimes, 1)$ is a tensor category then a braiding on \mathcal{C} is a family of isomorphisms

$$\{c_{X,Y} \in \text{Hom}(X \otimes Y, Y \otimes X) : X, Y \in \text{Obj}(\mathcal{C})\},$$

satisfying the following two conditions:

1. $c_{X,Y}$ is natural in X and Y; i.e. for any $f \in \text{Hom}(X, X')$ and $g \in \text{Hom}(Y, Y')$,

$$ (g \times f) \circ c_{X,Y} = c_{X',Y'} \circ (f \times g). \quad (18) $$

2. $c_{X,Y}$ makes the following two hexagonal diagrams commute:
That is, suppressing the associativity isomorphisms, \(c_{X \otimes Y, Z} \) is expressed in terms of \(c_{X, Y} \) and \(c_{X, Z} \) as:

\[
c_{X \otimes Y, Z} = (\text{id}_Y \otimes c_{Z, X})^{-1} \circ (\text{id}_X \otimes c_{Y, Z}),
\]

and \(c_{X, Y \otimes Z} \) is expressed in terms of \(c_{X, Y} \) and \(c_{Z, X} \) as:

\[
c_{X, Y \otimes Z} = (\text{id}_Y \otimes c_{Z, X})^{-1} \circ (c_{X, Y} \otimes \text{id}_Z).
\]

Definition 184. A braiding \(c_{X, Y} \) is called a *symmetry* if \((c_{X, Y})^{-1} = c_{Y, X} \) for all \(X, Y \in \text{Obj}(\mathcal{C}) \).

Definition 185. A tensor category with a privileged braiding (symmetry) is called a *braided (symmetric) tensor category*.

In order to find our braiding on \(\Delta \), we will need the following technical lemma.

Lemma 186. If \(\rho \in \Delta(O_1) \) and \(\sigma \in \Delta(O_2) \) where \(O_1 \) and \(O_2 \) are spacelike separated, then \(\rho \sigma = \sigma \rho \).

Proof. Since the union of \(\{ \mathfrak{A}(O) : O_1 \cup O_2 \subseteq O \} \) is dense in \(\mathfrak{A} \), it suffices to show that \(\rho \sigma(A) = \sigma \rho(A) \) whenever \(\tilde{A} \in \mathfrak{A}(O) \) with \(O_1 \cup O_2 \subseteq O \). Choose \(O_3, O_4 \) that are spacelike to \(O \) and such that \(O_1 \cup O_3 \) is spacelike to \(O_2 \cup O_4 \). (This may always be done, even in two dimensional spacetime.) Since \(\rho, \sigma \) are transportable, there are \(\rho', \sigma' \) localized in \(O_3 \) and \(O_4 \) respectively and unitary operators \(U_1 \in \text{Hom}(\rho, \rho') \) and \(U_2 \in \text{Hom}(\sigma, \sigma') \). Then

\[
\sigma(A) = U_2 \sigma'(A) U_2^* = U_2^* A U_2.
\]

Furthermore, \(U_2 \in \mathfrak{A}(O_1') \) by duality in the vacuum sector. Hence \(\rho(U_2) = U_2 \); and

\[
\rho \sigma(A) = U_2 U_1 A U_1^* U_2^*.
\]

Since \(U_2 U_1 = U_1 U_2 \), it follows that \(\rho \sigma(A) = \sigma \rho(A) \).

We will not be able to define the braiding \(\varepsilon_{\rho_1, \rho_2} \) in one shot. Rather, we first define arrows

\[
\varepsilon_{\rho_1, \rho_2}(U_1, U_2) \in \text{Hom}(\rho_1 \otimes \rho_2, \rho_2 \otimes \rho_1),
\]

that depend on the choice of “spectator morphisms” \(\tilde{\rho}_1, \tilde{\rho}_2 \), and unitary intertwiners \(U_i \in \text{Hom}(\rho_i, \tilde{\rho}_i) \). We will then show that this definition is independent of the spectator morphisms and unitary intertwiners. (But, interestingly, when spacetime is two dimensional, the definition depends on the choice of a spatial orientation.)

Definition 187. Suppose that \(\rho_1 \in \Delta(O_1) \) and \(\rho_2 \in \Delta(O_2) \). Let \(\tilde{O}_1 \) and \(\tilde{O}_2 \) be spacelike separated double cones. Since \(\rho_1 \) and \(\rho_2 \) are transportable, there are \(\tilde{\rho}_i \in \Delta(\tilde{O}_i) \) and unitary operators \(U_i \in \text{Hom}(\rho_i, \tilde{\rho}_i) \). Thus \(U_1 \times U_2 \in \text{Hom}(\rho_1 \otimes \rho_2, \tilde{\rho}_1 \otimes \tilde{\rho}_2) \), and \(U_2^* \times U_1^* \in \text{Hom}(\tilde{\rho}_2 \otimes \tilde{\rho}_1, \rho_2 \otimes \rho_1) \). Since \(\tilde{O}_1 \) is spacelike to \(\tilde{O}_2 \),
Lemma 186 entails that \(\tilde{\rho}_1 \otimes \tilde{\rho}_2 = \tilde{\rho}_2 \otimes \tilde{\rho}_1 \). Thus, we may define \(\varepsilon_{\rho_1,\rho_2}(U_1,U_2) \in \text{Hom}(\rho_1 \otimes \rho_2, \rho_2 \otimes \rho_1) \) by
\[
(19) \quad \varepsilon_{\rho_1,\rho_2}(U_1,U_2) := (U_2 \times U_1)^* \circ (U_1 \times U_2) = \rho_2(U_1^*)U_2^*U_1\rho_1(U_2).
\]

NOTE 188. Since endomorphisms preserve unitarity, \(\varepsilon_{\rho_1,\rho_2}(U_1,U_2) \) is unitary.

To show that \(\varepsilon_{\rho_1,\rho_2}(U_1,U_2) \) is independent of \(U_1 \) and \(U_2 \), we need the following Lemma, which shows that \(\varepsilon_{\rho_1,\rho_2}(U_1,U_2) \) does not change under certain "perturbations" of \(U_1 \) and \(U_2 \).

LEMMA 189. For \(i = 1,2 \), let \(\rho_i \in \Delta(O_i) \), let \(\tilde{O}_1 \) and \(\tilde{O}_2 \) be spacelike separated, let \(\tilde{\rho}_i \in \Delta(\tilde{O}_i) \), and let \(U_i \in \text{Hom}(\rho_i,\tilde{\rho}_i) \). Then \(\varepsilon_{\rho_1,\rho_2}(U_1,U_2) \) depends only on neighborhoods of \(U_1, U_2 \) in the following sense: if \(W_1, W_2 \) are unitaries such that \(W_1 \in \mathfrak{A}(\tilde{O}_2') \), \(W_2 \in \mathfrak{A}(O_1') \), and \(W_1W_2 = W_2W_1 \), then
\[
\varepsilon_{\rho_1,\rho_2}(W_1U_1,W_2U_2) = \varepsilon_{\rho_1,\rho_2}(U_1,U_2).
\]

Proof. We must show that
\[
(20) \quad (W_2U_2 \times W_1U_1)^* \circ (W_1U_1 \times W_2U_2) = (U_2^* \times U_1^*) \circ (U_1 \times U_2).
\]

For any two unitary operators, \(W_1, W_2 \in \mathfrak{A} \), we have
\[
W_iU_i \times W_jU_j = W_iU_i\rho_i(W_j)\rho_i(U_j) = W_i\tilde{\rho}_i(W_j)(U_i \times U_j).
\]

Since \(W_1 \in \mathfrak{A}(\tilde{O}_2') \) and \(\tilde{\rho}_2 \) is localized in \(\tilde{O}_2 \), \(\tilde{\rho}_2(W_1) = W_1 \); and similarly, \(\tilde{\rho}_1(W_2) = W_2 \). Hence, the left hand side of Eqn. 20 becomes
\[
[(U_2 \times U_1)^*\tilde{\rho}_2(W_1^*)W_2^*][W_1\tilde{\rho}_1(W_2)(U_1 \times U_2)] = (U_2 \times U_1)^*W_1^*W_2^*W_1W_2(U_1 \times U_2)
\]
\[
= (U_2 \times U_1)^*(U_1 \times U_2),
\]

where we used \(W_1W_2 = W_2W_1 \) for the second equality.

LEMMA 190. Let \(\rho_i \in \Delta(O_i) \), \(i = 1,2 \), and let \(T \in \text{Hom}(\rho_1,\rho_2) \). Then \(T \in \mathfrak{A}(O) \) for any double cone containing \(O_1 \cup O_2 \).

Proof. Let \(O \) be a double cone containing \(O_1 \cup O_2 \), and let \(A \in \mathfrak{A}(O') \). Then \(\rho_1(A) = \rho_2(A) = A \), and so
\[
TA = T\rho_1(A) = \rho_2(A)T = AT.
\]

Hence \(T \in \mathfrak{A}(O')' \), and by duality in the vacuum sector, \(T \in \mathfrak{A}(O) \).

Now we can show that \(\varepsilon_{\rho_1,\rho_2}(U_1,U_2) \) depends only on the localization regions of the spectator morphisms.

PROPOSITION 191. \(\varepsilon_{\rho_1,\rho_2}(U_1,U_2) \) is definable in terms of \(\rho_1, \rho_2 \), and the regions \(\tilde{O}_1, \tilde{O}_2 \); and does not change if the latter are replaced by double cones \(\tilde{\tilde{O}}_1, \tilde{\tilde{O}}_2 \) such that \(\tilde{\tilde{O}}_1 \subseteq \tilde{O}_1 \) and \(\tilde{\tilde{O}}_2 \subseteq \tilde{O}_2 \).
Proof. (1.) We show first that for a given pair \((\tilde{O}_1, \tilde{O}_2)\) of spacelike separated double cones, the definition \(\varepsilon_{\rho_1,\rho_2}(U_1, U_2)\) is independent of spectator morphisms \((\tilde{\rho}_1, \tilde{\rho}_2)\), and unitary intertwiners \((U_1, U_2)\). So, suppose that \(\tilde{\rho}_i \in \Delta(\tilde{O}_i)\), and \(U_i' \in \text{Hom}(\rho_i, \tilde{\rho}_i)\). Let \(W_i = U_i'U_i^* \in \text{Hom}(\tilde{\rho}_i, \tilde{\rho}_2)\), so that \(U_i' = W_iU_i\). Since \(W_i\) has left and right support in \(\tilde{O}_i\), \(W_i \in \mathbb{A}(\tilde{O}_i) \subseteq \mathbb{A}(\tilde{O}_j)'\). Thus, \(W_1W_2 = W_2W_1\), and the hypotheses of Lemma 189 are satisfied. Therefore \(\varepsilon_{\rho_1,\rho_2}(U_1, U_2) = \varepsilon_{\rho_1,\rho_2}(U_1', U_2')\).

(2.) Now let \(\tilde{\tilde{O}}_1\) and \(\tilde{\tilde{O}}_2\) be double cones such that \(\tilde{\tilde{O}}_1 \perp \tilde{\tilde{O}}_2\), and \(\tilde{\tilde{O}}_i \subseteq \tilde{O}_i\), for \(i = 1, 2\). Choose \(\tilde{\tilde{\rho}}_i \in \Delta(\tilde{\tilde{O}}_i)\), and unitaries \(U_i' \in \text{Hom}(\rho_i, \tilde{\tilde{\rho}}_i)\). But we also have \(\tilde{\rho}_i \in \Delta(\tilde{\tilde{O}}_i) \subseteq \Delta(\tilde{O}_i)\). And the first part of the proof shows that for fixed support regions \((\tilde{O}_1, \tilde{O}_2)\), the definition of \(\varepsilon_{\rho_1,\rho_2}\) is independent of the choice of spectator morphisms and unitary intertwiners. Therefore \(\varepsilon_{\rho_1,\rho_2}(U_1, U_2) = \varepsilon_{\rho_1,\rho_2}(U_1', U_2')\). \(\blacksquare\)

NOTE 192. We can always choose the spectator morphisms to be localized in strictly spacelike separated regions. Indeed, given \(\tilde{O}_1\) and \(\tilde{O}_2\) that are spacelike separated, choose \(\tilde{\tilde{O}}_1\) such that \((\tilde{\tilde{O}}_1)^{-} \subseteq \tilde{O}_1\). But then the Lemma implies (by switching \(\tilde{O}_1\) with \(\tilde{\tilde{O}}_1\), and setting \(\tilde{O}_2 = \tilde{O}_2\)) that we get the same definition from using \(\tilde{O}_1\) or \(\tilde{\tilde{O}}_1\). More generally, since \(\rho_1\) is transportable, the regions \(\tilde{O}_i\) can be chosen arbitrarily small.

NOTE 193. The previous note shows that a definition of \(\varepsilon_{\rho_1,\rho_2}(U_1, U_2)\) is always equivalent to a definition using spectator morphisms localized in strictly spacelike separated regions. That is, there is a neighborhood \(N\) of zero such that \(\tilde{O}_1 + x \subseteq \tilde{O}_2'\) for all \(x \in N\). Again, since \(\tilde{O}_1\) and \(\tilde{O}_1 + x\) are contained in a double cone \(\tilde{O}_1 \subseteq \tilde{O}_2'\), the previous Lemma (applied twice) entails that the pairs \((\tilde{O}_1, \tilde{O}_2)\) and \((\tilde{O}_1 + x, \tilde{O}_2)\) yield the same definition of \(\varepsilon_{\rho_1,\rho_2}\).

By also shrinking \(\tilde{O}_2\) if necessary, and repeating the above construction, we see that for any vector \(x\), the pairs \((\tilde{O}_1 + x, \tilde{O}_2 + x)\) and \((\tilde{O}_1, \tilde{O}_2)\) yield the same definition of \(\varepsilon_{\rho_1,\rho_2}\).

NOTE 194. In what follows, by “one dimensional spacetime”, we mean one dimensional space with zero dimensional time. In this case, a double cone is just an open interval, and “spacelike separated” means disjoint.

PROPOSITION 195. For spacetime of dimension two or less, \(\varepsilon_{\rho_1,\rho_2}(U_1, U_2)\) is definable in terms of \(\rho_1, \rho_2\) and the spatial orientation of \(\tilde{O}_1\) with respect to \(\tilde{O}_2\). That is, \(\varepsilon_{\rho_1,\rho_2}(U_1, U_2)\) is independent of the choice of \((\tilde{O}_1, \tilde{O}_2)\), subject to the constraint of having the same spatial orientation.

Proof. Let \(\tilde{\tilde{O}}_1, \tilde{\tilde{O}}_2\) be given such that \(\tilde{\tilde{O}}_1 \perp \tilde{\tilde{O}}_2\), \(\tilde{\tilde{\tilde{O}}}_1 \perp \tilde{\tilde{O}}_2\), and \(\tilde{\tilde{O}}_1\) is oriented with respect to \(\tilde{\tilde{O}}_2\) as \(\tilde{O}_1\) is with respect to \(\tilde{O}_2\). Recall that translations of \((\tilde{O}_1, \tilde{O}_2)\) do not change \(\varepsilon_{\rho_1,\rho_2}(U_1, U_2)\); nor does replacement of \(\tilde{O}_1\) with a double cone either containing it or contained in it, and spacelike to \(\tilde{O}_2\). But \((\tilde{O}_1, \tilde{O}_2)\) can be replaced by \((\tilde{\tilde{O}}_1, \tilde{\tilde{O}}_2)\) in a series of such moves. \(\blacksquare\)
DEFINITION 196. For spacetime of two dimensions or less, fix a spatial orientation, and use \(O_1 < O_2 \) to indicate that \(O_1 \) is to the left of \(O_2 \).

LEMMA 197. For spacetimes of dimension two or less, if the spatial orientation of \(\tilde{O}_1 \) with respect to \(\tilde{O}_2 \) is the opposite of the spatial orientation of \(\tilde{O}_1 \) with respect to \(\tilde{O}_2 \), then
\[
\varepsilon_{\rho_1, \rho_2}(U_1, U_2) = [\varepsilon_{\rho_2, \rho_1}(U'_2, U'_1)]^*.
\]

Proof. For defining \(\varepsilon_{\rho_1, \rho_2}(U_1, U_2) \), we can choose \(\tilde{O}_1 = O_1 \), \(\tilde{O}_2 < O_1 \), \(\tilde{p}_1 = \rho_1 \), and \(U_1 = I_{\rho_1} = I \in \text{Hom}(\rho_1, \rho_1) \). In this case, the definition simplifies to
\[
\varepsilon_{\rho_1, \rho_2}(I, U_2) = U_2^* \rho_1(U_2), \quad (\tilde{O}_2 < \tilde{O}_1).
\]

Using the same spectator morphisms, we have
\[
\varepsilon_{\rho_2, \rho_1}(U_2, I) = \rho_1(U_2^*) U_2, \quad (\tilde{O}_2 < \tilde{O}_1).
\]

This latter expression uses the opposite spatial orientation. By the definability of \(\varepsilon_{\rho_1, \rho_2}(U_1, U_2) \) in terms of spatial orientation (Prop. 195), we see that \(\varepsilon_{\rho_2, \rho_1}(U_1, U_2) = [\varepsilon_{\rho_2, \rho_1}(U'_2, U'_1)]^* \) when the opposite spatial orientations are used for the two definitions.

DEFINITION 198 (The Canonical Braiding on \(\Delta \)). For spacetimes of dimension two or less, we implement the convention that \(\varepsilon_{\rho_1, \rho_2} = \varepsilon_{\rho_1, \rho_2}(U_1, U_2) \) with \(\tilde{O}_2 < \tilde{O}_1 \). The previous Lemma shows that if we define \(\varepsilon_{\rho_1, \rho_2} \) with the opposite convention, then \(\varepsilon_{\rho_1, \rho_2} = (\varepsilon_{\rho_2, \rho_1})^* \). For spacetimes of dimension three or more, we define \(\varepsilon_{\rho_1, \rho_2} = \varepsilon_{\rho_1, \rho_2}(U_1, U_2) \) with \(\tilde{O}_1 \) and \(\tilde{O}_2 \) spacelike separated.

We now verify that \(\varepsilon_{\rho_1, \rho_2} \) is a braiding on \((\Delta, \otimes, \iota) \).

PROPOSITION 199. \(\varepsilon_{\rho, \sigma} \) is a braiding on the DHR category \((\Delta, \otimes, \iota) \).

Proof. (1) We first show that \(\varepsilon_{\rho, \sigma} \) is natural in \(\rho \) and \(\sigma \). For this it suffices to show that if \(T \in \text{Hom}(\rho, \rho') \) then
\[
(21) \quad (I_\sigma \times T) \circ \varepsilon_{\rho, \sigma} = \varepsilon_{\rho', \sigma} \circ (T \times I_\sigma),
\]
\[
(22) \quad \varepsilon_{\sigma, \rho'} \circ (I_\sigma \times T^*) = (T^* \times I_\sigma) \circ \varepsilon_{\sigma, \rho'}.
\]

Let \(O_1, O_2, O_3 \) be double cones such that \(\rho \in \Delta(O_1) \), \(\sigma \in \Delta(O_2) \), and \(\rho' \in \Delta(O_3) \). Choose a double cone \(O_4 \) that is spacelike to \(O_i \), \(i = 1, 2, 3 \); and if the spacetime dimension is less than three, choose \(O_4 \) to the left of all three. Choose \(\sigma' \in \Delta(O_4) \), and \(U \in \text{Hom}(\sigma, \sigma') \). Then \(\varepsilon(\rho, \sigma) = U^* \rho(U) \) and \(\varepsilon(\rho', \sigma) = U^* \rho'(U) \). Since \(T \in \text{Hom}(\rho, \rho') \subseteq \mathbb{A}(O_4) \), it follows that \(\sigma'(T) = T \). Thus,
\[
\sigma(T) U^* \rho(U) = U^* \sigma'(T) \rho(U) = U^* T \rho(U) = U^* \rho'(U) T.
\]
This establishes Eqn. 21. The second equation can be established by a similar calculation.

(2) Now we show that $\varepsilon_{\rho,\sigma}$ makes the hexagonal diagrams commute. Since Δ is strict monoidal, we can omit the associativity isomorphisms. That is, it suffices to show that

\begin{align*}
(23) \quad \varepsilon_{\rho \otimes \sigma, \tau} &= (\varepsilon_{\rho, \tau} \otimes I_{\sigma}) \circ (I_{\rho} \otimes \varepsilon_{\sigma, \tau}), \\
(24) \quad \varepsilon_{\rho, \sigma \otimes \tau} &= (I_{\sigma} \times \varepsilon_{\rho, \tau}) \circ (\varepsilon_{\rho, \sigma} \times I_{\tau}).
\end{align*}

Choose $\tau' \in \Delta$ such τ' is supported in a region that is spacelike to the support regions of ρ, σ, τ; for spacetimes of one or two dimensions, choose the support region of τ' to the left. Let $U \in \text{Hom}(\tau, \tau')$. Then $\varepsilon_{\rho, \tau} = U^* \rho(U)$, $\varepsilon_{\sigma, \tau} = U^* \sigma(U)$, and $\varepsilon_{\rho \otimes \sigma, \tau} = U^* \rho \sigma(U)$. Furthermore,

$$U^* \rho(U) \rho[U^* \sigma(U)] = U^* \rho[UU^* \sigma(U)] = U^* \rho \sigma(U),$$

establishing Eqn. 23. The second equation is proven analogously.

\[\Box\]

PROPOSITION 200. For spacetimes of dimension two or less, $\varepsilon_{\rho_1, \rho_2}$ is the unique braiding on (Δ, \otimes, ι) such that $\varepsilon_{\rho_1, \rho_2} = I$ when $\rho_i \in \Delta(O_i)$ with $O_2 < O_1$. For spacetimes of dimension three or more, $\varepsilon_{\rho_1, \rho_2}$ is the unique braiding on (Δ, \otimes, ι) such that $\varepsilon_{\rho_1, \rho_2} = I$ when $\rho_i \in \Delta(O_i)$ with O_1 and O_2 spacelike separated.

Proof. Choosing \tilde{O}_2 to the left of O_1 we can set $\varepsilon_{\rho_1, \rho_2} = \varepsilon_{\rho_1, \rho_2}(I, U_2) = U_2^* \rho_1(U_2)$ where $U_2 \in \text{Hom}(\rho_2, \rho'_2)$. Now let c_{σ_1, σ_2} be another braiding on (Δ, \otimes, ι) such that $c_{\sigma_1, \sigma_2} = I$ whenever σ_1 is localized in a region to the right of the localization region of σ_2. Then since c_{ρ_1, ρ_2} is natural in ρ_1 and ρ_2 and $c_{\rho_1, \rho_2} = I$,

$$c_{\rho_1, \rho_2} = (U_2^* \times I_{\rho_1}) \circ c_{\rho_1, \rho_2}' \circ (I_{\rho_1} \times U_2) = U_2^* \rho_1(U_2) = \varepsilon_{\rho_1, \rho_2}.$$

The proof for the higher dimensional case is structurally identical.

\[\Box\]

PROPOSITION 201. For spacetime of dimension three or more, $\varepsilon_{\rho_1, \rho_2} = (\varepsilon_{\rho_2, \rho_1})^{-1}$, hence $\varepsilon_{\rho_1, \rho_2}$ is a symmetry on (Δ, \otimes, ι).

Proof. We first show that $\varepsilon_{\rho_1, \rho_2}(U_1, U_2)$ is independent of the choice $(\tilde{O}_1, \tilde{O}_2)$ of supports for the spectator morphisms. (Compare the proof of Prop. 195.) Since the spacetime has at least three dimensions, there is a sequence of double cones O_i, $i = 1, \ldots, n$, such that: $O_1 = \tilde{O}_2$, for each i, $O_i \cup O_{i+1}$ is contained in a double cone spacelike to \tilde{O}_1, and O_n has the opposite spatial orientation to \tilde{O}_1 as did \tilde{O}_2. Applying Prop. 191 repeatedly, we conclude that $\varepsilon_{\rho_1, \rho_2}(U_1, U_2) = \varepsilon_{\rho_2, \rho_1}(U_1, U'_2)$, where $\tilde{\rho}_2 \in \Delta(O_n)$ and $U'_2 \in \text{Hom}(\rho_2, \tilde{\rho}_2)$. Thus, $\varepsilon_{\rho_1, \rho_2}$ does not depend on the relative spatial orientation of \tilde{O}_1 and \tilde{O}_2. Prop. 195 shows that $\varepsilon_{\rho_1, \rho_2}(U_1, U_2)$ can depend on $(\tilde{O}_1, \tilde{O}_2)$ only through their relative spatial orientation. Therefore, $\varepsilon_{\rho_1, \rho_2}(U_1, U_2)$ is independent of $(\tilde{O}_1, \tilde{O}_2)$.
We can choose \(\tilde{O}_1 = O_1, \tilde{O}_2 \perp O_1, \tilde{\rho}_1 = \rho_1, \) and \(U_1 = I_{\rho_1} = I \in \text{Hom}(\rho_1, \rho_1) \) so that
\[
\varepsilon_{\rho_1, \rho_2} = U^* \rho_1(U_2).
\]
But given the independence of \(\varepsilon_{\rho_1, \rho_2} \) from the orientation of \((\tilde{O}_1, \tilde{O}_2)\), we also have
\[
\varepsilon_{\rho_2, \rho_1} = \rho_1(U_2)^* U_2 = (\varepsilon_{\rho_1, \rho_2})^*.
\]
Since \(\varepsilon_{\rho_1, \rho_2} \) is unitary, \(\varepsilon_{\rho_1, \rho_2} = (\varepsilon_{\rho_2, \rho_1})^{-1} \).

NOTE 202. The preceding Proposition is the first place where we invoked the dimension of the underlying spacetime. We will be clear when subsequent results depend on assumptions about dimension.

DEFINITION 203. Let \(\varepsilon_\rho := \varepsilon(\rho, \rho) \in \text{End}(\rho \otimes \rho) \).

8.2 Relation between localized endomorphisms and representations

While the categories \(\Delta \) and \(\Delta_f \) defined in this section have very remarkable properties, their physical and philosophical relevance is certainly not obvious. We therefore relate the category \(\Delta \) to a certain category of representations of the net \(\mathfrak{A} \):

DEFINITION 204. Let \(O \mapsto \mathfrak{A}(O) \) be a net of observables and \(\pi_0 : \mathfrak{A} \to B(H_0) \) a vacuum representation. Then a DHR-representation (w.r.t. the vacuum representation \(\pi_0 \)) is a \(*\)-representation \(\pi : \mathfrak{A} \to B(H) \) such that \(\pi|\mathfrak{A}(O') \cong \pi_0|\mathfrak{A}(O') \) for any double cone \(O \). I.e., upon restriction to \(\mathfrak{A}(O') \), the representations \(\pi \) and \(\pi_0 \) are unitarily equivalent. The category whose objects are DHR-representations of \(\mathfrak{A} \) with bounded intertwining operators is denoted by \(DHR(\mathfrak{A}) \). It clearly is a \(C^* \)-category.

DEFINITION 205. Let \(\mathfrak{A} \) be a net that is Poincaré covariant w.r.t. the positive energy representation \(U_0 : \mathcal{P} \to \mathcal{U}(H_0) \). A representation \((H, \pi)\) of \(\mathfrak{A} \) is called covariant (with positive energy) if it is equipped with a strongly continuous unitary representation \(U_\pi : \hat{\mathcal{P}} \to \mathcal{U}(H) \) (with \(\text{spec} P^\mu \subset V_+ \)) of the universal covering of the Poincaré group such that \(\text{Ad} U_\pi(h) \circ \pi = \pi \circ \alpha_h \) for all \(h \in \hat{\mathcal{P}} \), where, omitting the covering map \(\hat{\mathcal{P}} \to \mathcal{P} \) from the notation, \(\alpha_h = \text{Ad} U_0(h) \).

Note that the definition implies that the representation space \(H \) of a DHR representation must have the same dimension as the vacuum Hilbert space \(H_0 \).

PROPOSITION 206. There is a functor \(F : \Delta \to DHR(\mathfrak{A}) \) of \(C^* \)-categories such that \(F(\rho) = \pi_0 \circ \rho \) for the objects and \(F(s) = \pi_0(s) \) for \(s \in \text{Hom}_\Delta(\rho, \sigma) \) for morphisms. This functor is an equivalence.

Proof. We first note that these definitions make sense: \(\rho \in \text{Obj}(\Delta) \) maps \(\mathfrak{A} \) into itself and can therefore be composed with the representation \(\pi_0 \), defining a new
representation. Furthermore, if S is an arrow in Δ, then Lemma 155 gives $S \in \mathfrak{A}$, thus $F(S) = \pi_0(S)$ makes sense. With $S \in \text{Hom}_\Delta(\rho, \rho')$ we have

\[
F(S)F(\rho)(A) = \pi_0(S)\pi_0(\rho(A)) = \pi_0(S\rho(A)) = \\
\pi_0(\rho'(A)S) = F(\rho')(A)F(S) \quad \forall A \in \mathfrak{A},
\]

thus $F(S) \in \text{Hom}(F(\rho), F(\rho'))$. Since id_ρ is the unit of \mathfrak{A}, we have $F(id_\rho) = I_{H_0} = id_{F(\rho)}$. The property $F(S \circ T) = F(S) \circ F(T)$ is obvious. Since π_0 is faithful, F is faithful. We must show that the representation $F(\rho) = \pi_0 \circ \rho$ satisfies the DHR criterion. Since $\rho \in \Delta$ is transportable, for every double cone O there exist $\rho_0 \in \Delta$ localized in O and a unitary $U_O : \rho \to \rho_0$. Since ρ_0 is localized in O, the representation $F(\rho_0) = \pi_0 \circ \rho_0$ coincides with π_0 on $\mathfrak{A}(O')$. Since $F(U_O) : F(\rho) \to F(\rho_0)$ is unitary, we have

\[
F(\rho)|_{\mathfrak{A}(O')} \cong F(\rho')|_{\mathfrak{A}(O')} = \pi_0|_{\mathfrak{A}(O')},
\]

implying $F(\rho) = \pi_0 \circ \rho \in \text{DHR}(\mathfrak{A})$. Now let $\rho, \rho' \in \text{Obj}(\Delta)$ and $\tilde{S} \in \text{Hom}(F(\rho), F(\rho'))$. If O is a double cone containing the localization regions of ρ, ρ',

\[
\tilde{S}\pi_0(A) = \tilde{S}\pi_0(\rho(A)) = \tilde{S}F(\rho)(A) = F(\rho')(A)S = \pi_0(\rho'(A))\tilde{S} = \pi_0(A)\tilde{S}
\]

for all $A \in \mathfrak{A}(O')$. Therefore, by Haag duality for π_0, $\tilde{S} \in \pi_0(\mathfrak{A}(O'))'$ $= \pi_0(\mathfrak{A}(O))$. Thus there exists $S \in \text{Hom}_\Delta(\rho, \rho')$ such that $\tilde{S} = F(S)$. This proves that the functor F is full. Finally, let $\pi \in \text{DHR}(\mathfrak{A})$ be a DHR representation on a Hilbert space H. Choose any double cone O. Then the DHR criterion implies the existence of a unitary $U : H \to H_0$ such that $U\pi(A) = \pi_0(A)U$ for all $A \in \mathfrak{A}(O')$. Define a new representation π' of \mathfrak{A} on the vacuum Hilbert space H_0 by $\pi'(\cdot) = U\pi(\cdot)U^*$. By the very definition, we have $\pi'(A) = \pi_0(A)$ for all $A \in \mathfrak{A}(O')$. If now \tilde{O} is any double cone containing O, and $A \in \mathfrak{A}(\tilde{O}')$ and $B \in \mathfrak{A}(\tilde{O})$ then

\[
\pi'(B)\pi_0(A) = \pi'(BA) = \pi'(AB) = \pi'(A)\pi'(B) = \pi_0(A)\pi'(B),
\]

implying $\pi'(\mathfrak{A}(\tilde{O})) \subset \pi_0(\mathfrak{A}(\tilde{O}'))' = \pi_0(\mathfrak{A}(O))$ by Haag duality for π_0. Thus π' maps the quasilocal algebra \mathfrak{A} into $\pi_0(\mathfrak{A})$. Since π_0 is injective, we can define an endomorphism ρ of \mathfrak{A} by $\rho = \pi_0^{-1} \circ \pi'$. By construction, ρ is localized in O, and we have $\pi' = \pi_0 \circ \rho = F(\rho)'. \text{Repeating the argument with a different double cone } \tilde{O}, \text{we see that } \rho \text{ is transportable, thus } \rho \in \Delta. \text{Since } \pi \cong \pi' = F(\rho), \text{we have proven that every DHR representation is unitarily equivalent to one of the form } F(\rho) \text{ where } \rho \in \Delta. \text{Thus the functor } F \text{ is essentially surjective, and therefore, cf. Appendix A an equivalence of categories.}\]

\[\text{\qedsymbol}\]

\text{NOTE 207. The significance of Proposition 206 is twofold. On the one hand, it provides an interpretation of the category Δ in terms of a class of representations of \mathfrak{A}. If one accepts for a moment that the category $\text{DHR}(\mathfrak{A})$ is worth studying, the above equivalence is a powerful tool. Namely, it permits us to pull the symmetric monoidal structure on Δ over to $\text{DHR}(\mathfrak{A})$ – which as defined initially is just a category – such as to make the functor $F : \Delta \to \text{DHR}(\mathfrak{A})$ an equivalence of categories.}\]
symmetric tensor C^*-categories. But once this is understood, it is much more convenient to work just with the category Δ rather than with $DHR(\mathfrak{A})$, since the tensor structure on $DHR(\mathfrak{A})$ will not be strict.

As to the physical motivation of the DHR condition, we give three arguments:

1. By an increasing sequence of double cones we mean a sequence $O_1 \subset O_2 \subset \cdots$ of double cones such that $\cup_i O_i = \mathbb{R}^d$ (typically $d = 4$). In the appendix of [Doplicher et al., 1971], the following result (the converse of which is trivial) is proven:

THEOREM 208. Let ω be a state on \mathfrak{A} such that

$$\lim_{n \to \infty} \| (\omega - \omega_0) | \mathfrak{A}(O'_n) \| = 0$$

and the GNS-representation π_ω associated with ω satisfies property B. Then there is a double cone O such that $\pi_\omega | \mathfrak{A}(O') \cong \pi_0 | \mathfrak{A}(O')$.

2. In Section 9 we will show that the DHR criterion is satisfied by superselection sectors that are connected to the vacuum sector by a field net satisfying Bose-Fermi commutation relations. (See Section 9 for precise definitions and statements.) Conversely, in Section 10 we will prove that every DHR representation with finite dimension arises in this way. Together these results imply that DHR superselection sectors are precisely those induced by (graded) local fields. We refer to Sections 9-10 for further discussion.

3. Let (H, π) be a Poincaré covariant representation (in the sense of Definition 205) of \mathfrak{A} such that H is separable and the spectrum $\text{sp} P^\mu \subset \mathbb{R}^d$ of the momentum operator P^μ has an isolated mass shell $\{ p | p^2 = m^2 \}$ at its bottom, where $m > 0$. (Such a representation is called a massive one-particle representation.) Then, as proven in [Buchholz and Fredenhagen, 1982], for every ‘spacelike cone’ C one has a unitary equivalence $\pi | \mathfrak{A}(C') \cong \pi_0 | \mathfrak{A}(C')$. (For the definition of spacelike cones cf. [Buchholz and Fredenhagen, 1982].) Despite the fact that this localization property is weaker than the one imposed by the DHR criterion, the category of representations that are localized in spacelike cones still can be equipped with a braided monoidal structure, cf. [Buchholz and Fredenhagen, 1982]. (The purely representation theoretic part of this theory was considerably simplified in [Doplicher and Roberts, 1990, Section 4].) In this theory, the dimension of spacetime must be $\geq 3 + 1$ in order for the braiding to be a symmetry! On the technical side the mathematical treatment is more complicated for the following reason: If π is a representation such that $\pi | \mathfrak{A}(C') = \pi_0 | \mathfrak{A}(C')$, then Haag duality implies $\pi(\mathfrak{A}(C)) \subset \pi(\mathfrak{A}(C))''$, but due to the weak closure the right hand side is not contained in the algebra \mathfrak{A}. The construction of a field net that we discuss in Section 10 can nevertheless be generalized to charges localized in spacelike cones, cf. [Doplicher and Roberts, 1990, Section 5]. On the grounds of the
cited results it seems evident that the cone-localized superselection sectors are physically better motivated than the more restrictive DHR sectors. The D(H)R theory expounded in Sections 7-10 remains useful as a technically easier 'mathematical laboratory'.

8.3 Dimension theory in tensor *-categories

For any tensor *-category, we can define a notion of "conjugates." The following is a simplified version of this definition for the case of a strict tensor *-category.

DEFINITION 209. Let \(\mathcal{C} \) be a strict tensor *-category and \(X \in \text{Obj}(\mathcal{C}) \). A solution of the conjugate equations is a triple \((\overline{X}, r, \overline{r})\), where \(\overline{X} \in \text{Obj}(\mathcal{C}) \) and \(r : 1 \to \overline{X} \otimes X, \overline{r} : 1 \to X \otimes \overline{X} \) satisfy

\[
(r^* \otimes \text{id}_X) \circ (\text{id}_X \otimes r) = \text{id}_X,
\]

\[
(r^* \otimes \text{id}_{\overline{X}}) \circ (\text{id}_{\overline{X}} \otimes \overline{r}) = \text{id}_{\overline{X}}.
\]

A strict tensor *-category \(\mathcal{C} \) has conjugates if there is a solution of the conjugate equations for every \(X \in \mathcal{C} \).

EXAMPLE 210. The definition of conjugates is exemplified in the (strictification of the) category \(\text{Rep}_f G \) of finite dimensional representations of a compact group. In particular, it is well known that for each representation \((H, \pi)\) of \(G \), there is a conjugate representation \((\overline{H}, \overline{\pi})\) of \(G \). (There are several different constructions of this conjugate representation; see e.g. [Simon, 1996, p. 30].) In terms of universal properties, \((\overline{H}, \overline{\pi})\) is the unique irreducible representation of \(G \) such that \((H \otimes \overline{H}, \pi \otimes \overline{\pi})\) contains a copy of the trivial representation of \(G \).

NOTE 211. Suppose that \((\overline{X}, r, \overline{r})\) is a conjugate for \(X \), and that the tensor unit 1 is irreducible. Then \(r^* \circ r \in \text{End}(1) = \mathbb{C} \text{id}_1 \). Thus up to a scalar, \(r \) is an isometry, and therefore 1 is a direct summand of \(\overline{X} \otimes X \). Furthermore, as can be shown using the conjugate equations, the map \(\text{End}(X) \to \text{Hom}(1, \overline{X} \otimes X) \), defined by \(s \mapsto (\text{id}_{\overline{X}} \otimes s) \circ r \), is an isomorphism of vector spaces. Therefore, if \(X \) is irreducible, the direct summand 1 appears with multiplicity 1 in \(\overline{X} \otimes X \).

DEFINITION 212. Let \(\mathcal{C} \) be a tensor *-category and \(X \in \text{Obj}(\mathcal{C}) \). A solution \((\overline{X}, r, \overline{r})\) of the conjugate equations relative to \(X \) is called normalized if

\[
r^* \circ r = \overline{r}^* \circ \overline{r},
\]

and standard if

\[
r^* \circ (\text{id}_{\overline{X}} \otimes a) \circ r = \overline{r}^* \circ (a \otimes \text{id}_{\overline{X}}) \circ \overline{r},
\]

for all \(a \in \text{End}(X) \).

NOTE 213. If \(X, Y \) have (standard) conjugates, then \(X \otimes Y \) and \(X \oplus Y \) also have (standard) conjugates. If an object has a conjugate, then it has a standard conjugate. For more details, see the appendix.
DEFINITION 214. If an object \(X \in \text{Obj}(\mathcal{C}) \) has a standard conjugate \((\overline{X}, r, \overline{r}) \), we define its dimension \(d(X) \) by
\[
d(X)\text{id}_1 = r^* \circ r.
\]
If an object \(X \) does not have a conjugate, we formally say \(d(X) = +\infty \).

NOTE 215. For all \(X \in \text{Obj}(\mathcal{C}) \), \(d(X) \geq 0 \). Furthermore, if \(X, Y \in \text{Obj}(\mathcal{C}) \) have conjugates then
\[
d(\overline{X}) = d(X), \quad d(X \otimes Y) = d(X) \cdot d(Y), \quad d(X \oplus Y) = d(X) + d(Y),
\]
and \(d(1) = 1 \). (See the appendix for the discussion of these facts.)

DEFINITION 216. Let \(\Delta \) be the DHR category. We define the full subcategory \(\Delta_f \) of objects with finite dimension:
\[
\text{Obj}(\Delta_f) = \{ \rho \in \text{Obj}(\Delta) : d(\rho) < +\infty \}.
\]

NOTE 217. By definition, \(\Delta_f \) is a category with conjugates. It is closed under tensor products, direct sums and subobjects. In any \(C^* \)-tensor category with conjugates, the dimension of any object takes values in \([1, \infty)\), and in the interval \([1, 2]\) only values of the form \(2\cos(\pi/n) \), \(n \geq 3 \) can appear, cf. [Longo and Roberts, 1997]. In a symmetric \(C^* \)-tensor category, all dimensions are integers, as is proven in the Appendix.

PROPOSITION 218. For each \(X, Y \in \text{Obj}(\Delta_f) \), \(\text{Hom}(X, Y) \) is a finite dimensional vector space. Every object \(X \in \text{Obj}(\Delta_f) \) is a finite direct sum of irreducible objects; i.e. the category \(\Delta_f \) is semisimple.

Proof. See the appendix. ■

NOTE 219. There is an important connection, discovered by Longo [1989] and explored further in [Longo and Roberts, 1997], between the dimension of a DHR sector \(\rho \in \Delta \) and subfactor theory. Among many other things, the latter associates to any inclusion \(N \subset M \) of factors an index \([M : N] \in [1, \infty] \). In order to apply this theory to AQFT we need to assume (or prove) that the local von Neumann algebras \(\mathcal{A}(O) \) are factors. (This is automatic, e.g., in conformally covariant theories.) If \(\rho \in \Delta \) is localized in \(O \), it restricts to a normal \(*\)-homomorphism of \(\mathcal{A}(O) \) into itself, giving rise to an inclusion \(\rho(\mathcal{A}(O)) \subset \mathcal{A}(O) \). The index of this subfactor is related to the categorically defined dimension \(d(\rho) \) by
\[
(25) \quad [\mathcal{A}(O) : \rho(\mathcal{A}(O))] = d(\rho)^2.
\]

Longo’s result allows to give a very direct formula for the dimension of (the localized endomorphisms associated to) a DHR representation. Namely, all endomorphisms \(\rho \in \Delta \) for which \(\pi \cong \pi_0 \circ \rho \) have the same categorical dimension, justifying to write \(d(\pi) \), and for any double cone \(O \) we have
\[
d(\pi) = [\pi(\mathcal{A}(O'))' : \pi(\mathcal{A}(O))]^{1/2}.
\]
This is seen as follows: \(\pi \) is unitarily equivalent to a representation \(\pi' = \pi_0 \circ \rho \),
where \(\rho \in \Delta \) is localized in \(O \). Then the inclusion \(\pi(\mathfrak{A}(O)) \subset \pi(\mathfrak{A}(O'))' \) is unitarily equivalent to \(\pi'(\mathfrak{A}(O)) \subset \pi(\mathfrak{A}(O'))' \), which equals \(\pi_0(\rho(\mathfrak{A}(O))) \subset \pi_0(\mathfrak{A}(O)) \). Now the claim follows by Eqn. (25) and the fact that the index is invariant under unitary transformations: \([UMU^* : UNU^*] = [M : N]\).

Another comment seems in order: The categorical definition of dimension of an object requires the existence of a conjugate object. On the other hand, assuming factorizability of the local algebras, the expressions \([\mathfrak{A}(O) : \rho(\mathfrak{A}(O))]\) (for an endomorphism localized in \(O \)) and \([\pi(\mathfrak{A}(O'))' : \pi(\mathfrak{A}(O))]\) (whose independence of \(O \) follows from mild additional axioms) do not presuppose the existence of a conjugate. In fact, one can show that finiteness of these subfactor indices implies the existence of a conjugate DHR representation, cf. [Guido and Longo, 1992].

8.4 Covariant representations

Since we decided to work with the category \(\Delta \) of localized transportable endomorphisms rather than directly with DHR representations, we need the following

DEFINITION 220. Let \(\mathfrak{A} \) be a Poincaré covariant net with covariant vacuum representation \((H_0, \pi_0)\). An endomorphism \(\rho \in \Delta(\mathfrak{A}) \) is called covariant if there exists a strongly continuous positive energy representation \(\pi_\rho : \widehat{\mathcal{P}} \rightarrow U(H_0) \) such that

\[
(26) \quad \text{Ad} \ U_\rho(h) \circ \pi_0 \circ \rho = \pi_0 \circ \rho \circ \beta_h \quad \forall h \in \widehat{\mathcal{P}}.
\]

The full subcategory of \(\Delta(\mathfrak{A}) \) consisting of the covariant morphisms is denoted by \(\Delta_c(\mathfrak{A}) \).

NOTE 221. For \(\rho \in \Delta, \ h \in \mathcal{P} \) we define \(\rho_h = \beta_h \circ \rho \circ \beta_h^{-1} \). If \(\rho \) is localized in the double cone \(O \) then \(\rho_h \) is localized in \(hO \). If \(\rho \in \Delta_c \) then Eqn. (26) can be restated as

\[
\text{Ad}(U(h)U_\rho(h)^*) \circ \pi_0 \circ \rho = \pi_0 \circ \beta_h \circ \rho \circ \beta_h^{-1} = \pi_0 \circ \rho_h \quad \forall h \in \widehat{\mathcal{P}}.
\]

Since \(\rho \) and \(\rho_h \) are both localized, it follows that \(X_\rho(h) \equiv U(h)U_\rho(h)^* \in \text{Hom}(\rho, \rho_h) \), thus \(X_\rho(h) \in \mathfrak{A} \). This \(\mathfrak{A} \)-valued cocycle is very convenient since expressions like \(\rho(U(h)) \) don't make sense, whereas \(\rho(X_\rho(h)) \) does. It satisfies the following cocycle equation:

\[
X_\rho(gh) = U(gh)U_\rho(gh)^* = U(g)U(h)U_\rho(h)^*U_\rho(g)^* = \beta_g(U(h)U_\rho(h)^*)U(g)U_\rho(g)^* = \beta_g(X_\rho(h))X_\rho(g).
\]

The same computation implies that, if \(\rho \in \Delta \) and \(h \mapsto X_\rho(h) \in \mathfrak{A} \) satisfies \(X_\rho(gh) = \beta_g(X_\rho(h))X_\rho(g) \) for all \(g, h \in \mathcal{P} \), then \(U_\rho(h) := X_\rho(h)^*U(h) \) is a representation of \(\mathcal{P} \) and Eqn. 26 holds, i.e. \(\rho \in \Delta_c \).

PROPOSITION 222. \(\Delta_c \) is closed under tensor products, direct sums and subobjects.
Proof. Let $\rho, \rho' \in \Delta_c$ with associated cocycles $X_\rho, X_{\rho'}$. Then
\begin{equation}
X_{\rho\rho'}(h) = X_\rho(h) \otimes X_{\rho'}(h) = X_\rho(h)\rho(X_{\rho'}(h)) \in \text{Hom}(\rho \otimes \rho', \rho_h \otimes \rho'_h)
\end{equation}
clearly satisfies the cocycle equation, thus $\rho \rho'$ is covariant. The proof for direct sums and subobjects is omitted, cf. [Roberts, 1990].

If $T \in \text{Hom}(\rho, \rho')$ then
\[
\beta_h(T)\rho_h(A) = \beta_h(T\rho \beta^{-1}_h(A)) = \beta_h(\rho' \beta^{-1}_h(A)T) = \rho'_h(A)\beta_h(T),
\]
thus $\beta_h(T) \in \text{Hom}(\rho_h, \rho'_h)$.

Now we explore some consequences of finite dimensionality:

Proposition 223. Let $\rho, \rho' \in \Delta_{f_c} := \Delta_f \cap \Delta_c$. Then

(i) If $T \in \text{Hom}(\rho, \rho')$ then $TU_\rho(h) = U_{\rho'}(h)T$ for all $h \in \hat{\mathcal{P}}$.

(ii) Every $\rho \in \Delta_{f_c}$ is covariant w.r.t. a unique representation U_ρ.

(iii) If $\rho, \rho' \in \Delta_{f_c}$ and $T \in \text{Hom}(\rho, \rho')$ then
\begin{equation}
\beta_h(T)X_\rho(h) = X_{\rho'}(h)T \quad \forall h \in \hat{\mathcal{P}}.
\end{equation}

(iv) Δ_{f_c} is closed under conjugates.

Proof. (i) For $h \in \hat{\mathcal{P}}$ define $T_h = U_{\rho'}(h)TU_\rho(h)^*$. For any $A \in \mathfrak{A}$ we have
\[
T_h\rho(A) = U_{\rho'}(h)TU_\rho(h)^*\rho(A) = U_{\rho'}(h)T\rho(\beta^{-1}_h(A))U_\rho(h)^* = U_{\rho'}(h)\rho'(\beta^{-1}_h(A))TU_\rho(h)^* = \rho'(A)U_{\rho'}(h)TU_\rho(h)^* = T_h\rho'(A),
\]
thus $T_h \in \text{Hom}(\rho, \rho')$. By assumption, ρ, ρ' have conjugates and thus $\text{Hom}(\rho, \rho')$ is finite dimensional by Proposition 218. Thus $(h, T) \mapsto T_h$ is a finite dimensional representation of the Poincaré group \mathcal{P}. The claim $TU_\rho(h) = U_{\rho'}(h)T$ is equivalent to triviality of this representation. This triviality follows from the non-existence of finite dimensional unitary representations of $\hat{\mathcal{P}}$ as soon as one produces a positive definite $\hat{\mathcal{P}}$-invariant inner product on $\text{Hom}(\rho, \rho')$. For this last step we refer, e.g., to [Roberts, 1990].

(ii) Apply (i) to $\rho' = \rho$, $U_{\rho'}(h) = \tilde{U}_\rho(h)$, $T = id_\rho = 1_{H_0}$ to conclude $U_\rho = \tilde{U}_\rho$.

(iii) Using (i) we compute
\[
\beta_h(T)X_\rho(h) = (U(h)TU(h))^*(U(h)U_\rho(h)^*) = U(h)TU_\rho(h^{-1}) = U(h)U_{\rho'}(h^{-1})T = X_{\rho'}(h)T,
\]

(iv) See [Roberts, 1990].

Note 224. Under weak additional assumptions on the net \mathfrak{A}, it is shown in [Guido and Longo, 1992, Theorem 5.2] that every localized endomorphism of finite dimension is automatically covariant with positive energy! Equivalently, $\Delta_f \subset \Delta_c$, and therefore $\Delta_{f_c} = \Delta_f$.

8.5 Statistics in braided tensor \ast-categories

DEFINITION 225. Let $(\mathcal{C}, \otimes, 1)$ be a tensor \ast-category with unitary braiding $c_{X,Y}$, and suppose that each $X \in \text{Obj}(\mathcal{C})$ has a conjugate. For each $X \in \text{Obj}(\mathcal{C})$, we define the twist of X, $\Theta_X \in \text{End}(X)$, by

$$\Theta_X = (\overline{r} \otimes \text{id}_X) \circ (\text{id}_{\overline{X}} \otimes c_{X,X}) \circ (\overline{r} \otimes \text{id}_X),$$

where $(\overline{X}, r, \overline{r})$ is a standard conjugate for X.

NOTE 226. For each $X \in \text{Obj}(\mathcal{C})$, Θ_X is unitary. When X is irreducible, $\text{End}(X) = \text{Cid}_X$, and so $\Theta_X = \omega_X \text{id}_X$, where ω_X is a complex number of unit modulus (called the statistics phase). In the case that $c_{X,Y}$ is a symmetry, then $(c_{X,Y})^\ast = c_{X,Y}$, and so $(\Theta_X)^\ast = \Theta_X$. Together with unitarity, this implies that $(\Theta_X)^2 = \text{id}_X$.

DEFINITION 227. Let $(\mathcal{C}, \otimes, 1)$ be a tensor \ast-category with unitary symmetry $c_{X,Y}$. If $X \in \text{Obj}(\mathcal{C})$ is irreducible, we say that X is a Bosonic object if $\omega_X = 1$, and we say that X is a Fermionic object if $\omega_X = -1$.

NOTE 228. We give a number of justifications for our focus on the category Δ_f of DHR representations with finite dimension.

(i): In the heuristic interpretation of the (unitary equivalence classes) of irreducible DHR representations as corresponding to the types of particles in a QFT, the conjugate $\overline{\rho}$ of a DHR representation ρ corresponds to the antiparticle. It may happen that a particle is its own antiparticle, i.e. $\rho \cong \overline{\rho}$; but the existence of antiparticles seems to be an integral part of relativistic quantum field theories.

(ii): The DHR sectors admitting a conjugate in the above sense are (rough) analogues in the operator algebraic approach to AQFT of Wightman fields with finitely many components. In the Wightman framework [Streater and Wightman, 1964] it is well known that infinite components behave ‘pathologically’ in that the PCT and spin-statistics theorems do not apply to them, and can in fact be violated. In algebraic QFT, these results are reflected in the fact that we cannot even define Bosonic and Fermionic objects that have dimension ∞, in the sense that they have no conjugates.

(iii): In [Fredenhagen, 1981] it was shown that every massive one-particle representation (cf. Note 207(iii)), which by the mentioned result of [Buchholz and Fredenhagen, 1982] is localizable in space-like cones, has a conjugate in the C^\ast-tensor category of cone-localizable representations. It therefore seems natural to require existence of conjugates also in the more restrictive setting of double cone localizable representations.

(iv): As pointed out in Note 224, DHR endomorphisms of finite dimension are automatically covariant, provided one accepts the additional conditions on the net \mathcal{A} needed for this result. Even if one doesn’t wish to appeal to this result, finite dimensionality of the objects is needed (via finite dimensionality of the hom-sets) for the proof of Proposition 223. The latter will be crucial for lifting the Poincaré action from \mathcal{A} to the field theory \mathcal{F} in Section 10.
9 FROM FIELDS TO REPRESENTATIONS

In the current section we take the ‘top down’ approach to superselection rules. That is, we are given a field algebra \(\mathfrak{F} \) and a gauge group \(G \) acting concretely on a Hilbert space \(\mathcal{H} \). We then define the observables as the gauge invariant elements of \(\mathfrak{F} \). The representation of \(\mathfrak{F} \) on \(\mathcal{H} \) then gives us a preferred set of representations of \(\mathfrak{A} \); viz. those that can be ‘created from the vacuum representation by the action of local fields.’ Our main mathematical objective in the current section is to show that these representations satisfy the DHR selection criterion. Thus, all superselection sectors that arise in the traditional way — viz. by acting on the vacuum with fields — fall within the purview of DHR superselection theory. (But note: We are restricting attention to local fields.)

DEFINITION 229. Let \(\omega_0 \) be a state on \(\mathfrak{A} \), and let \((\mathcal{H}_0, \pi_0)\) be the corresponding GNS representation. A field system with gauge symmetry for \((\mathfrak{A}, \omega_0)\) is a quadruple \((\pi, \mathcal{H}, \mathfrak{F}, (G, k))\), where \((\mathcal{H}, \pi)\) is a representation of \(\mathfrak{A} \), \(O \mapsto \mathfrak{F}(O) \) is a net of von Neumann algebras acting irreducibly on \(\mathcal{H} \), \(G \) is a strongly compact group of unitary operators on \(\mathcal{H} \), \(k \) is a central element of \(G \) such that \(k^2 = e \), and such that:

\[
\begin{align*}
\alpha) & \quad (\mathcal{H}_0, \pi_0) \text{ is a subrepresentation of } (\mathcal{H}, \pi), \text{ i.e. there is an isometry } V : \mathcal{H}_0 \rightarrow \mathcal{H} \text{ such that } V \pi_0 = \pi V; \\
\beta) & \quad V \text{ maps } \mathcal{H}_0 \text{ into the subspace of } G\text{-invariant vectors of } \mathcal{H}; \\
\gamma) & \quad \text{the } U \in G \text{ induce automorphisms that leave each } \mathfrak{F}(O) \text{ globally fixed, and } \pi(\mathfrak{A}(O))'' \subseteq \mathfrak{F}(O) \text{ is the set of fixed points under the action of } G \text{ on } \mathfrak{F}(O); \\
\delta) & \quad \text{for each } O \in \mathcal{K}, V(\mathcal{H}_0) \text{ is cyclic for } \mathfrak{F}(O); \\
\varepsilon) & \quad \text{the fields are local relative to the observables, i.e. } \mathfrak{F}(O_1) \text{ and } \pi(\mathfrak{A}(O_2)) \text{ commute elementwise whenever } O_1 \text{ and } O_2 \text{ are spacelike separated.}
\end{align*}
\]

A few remarks on the definition of a field system: the fact that \(\mathfrak{F} \) is generated by local algebras \(\{\mathfrak{F}(O) : O \in \mathcal{K}\} \) means that elements of \(\mathfrak{F} \) represent local fields — i.e., fields whose excitations can be localized within a bounded spacetime region. Furthermore:

\(\delta\) is the Reeh-Schlieder Condition: it states that each local region \(O \) carries a full set of fields in the sense that these local fields can reach each sector from the vacuum sector. (But note that Condition \(\delta \) only guarantees that sectors in \(\mathcal{H} \) can be reached from the vacuum sector. A stronger notion of
completeness would rely on some intrinsic criterion for physical sectors of \(\mathfrak{A} \), and would require that all these sectors be contained in \(\mathcal{H} \); see Definition 246.]

\(\gamma \) can be interpreted as saying that the group \(G \) is an internal symmetry group of the field: it does not change the spacetime localization region of field operators.

\(\varepsilon \) is the Relative Locality Condition. Since fields need not be observable, the field algebra is not required to satisfy microcausality. However, in the typical situation (i.e. normal commutation relations), field operators localized in one spacetime region either commute or anticommute with field operators localized in a spacelike separated region. Condition (\(\varepsilon \)) is a weakening of the requirement of normal (Bose/Fermi) commutation relations.

Since \(G \) is a compact group of unitary operators acting on \(\mathcal{H} \), we can apply all of the apparatus of the theory of unitary representations of compact groups (see e.g. [Folland, 1995]). In particular, \(\mathcal{H} \) decomposes into a direct sum of orthogonal subspaces \(\mathcal{H}_\xi \) which reduce the action of \(G \). Thus the reduced unitary representation \(U_\xi \) of \(G \) on \(\mathcal{H}_\xi \) is factorial, i.e. the von Neumann algebra generated by the operators \(\{g|_{\mathcal{H}_\xi} : g \in G\} \) is a factor. The representation \(U_\xi \) decomposes into a direct sum of unitarily equivalent irreducible representations of \(G \). So, there is a privileged direct sum decomposition of \(\mathcal{H} \):

\[
\mathcal{H} = \bigoplus_{\xi} \mathcal{H}_\xi,
\]

where the subspace \(\mathcal{H}_\xi \) is generated by the vectors in \(\mathcal{H} \) that transform according to the character \(\xi \) (unitary equivalence class of irreducible representations) of \(G \).

In the present section our primary objectives are:

1. Show that the subspaces \(\mathcal{H}_\xi \) reduce the action of the observable algebra \(\mathfrak{A} \). So, the representation of \(\mathfrak{A} \) on \(\mathcal{H} \) decomposes into a direct sum \(\bigoplus_{\xi} \pi_\xi \) of representations on the subspaces \(\mathcal{H}_\xi \).

2. Show that each representation \((\mathcal{H}_\xi, \pi_\xi) \) of \(\mathfrak{A} \) is factorial, so that the irreducible subrepresentations of \((\mathcal{H}_\xi, \pi_\xi) \) are mutually equivalent. (Hence each character \(\xi \) of \(G \) labels an equivalence class of irreducible representations of \(\mathfrak{A} \).)

3. Show that \(V(\mathcal{H}_0) \) is precisely the subspace of \(G \)-invariant vectors in \(\mathcal{H} \). (Hence the character 1 of \(G \) labels the equivalence class of the vacuum representation of \(\mathfrak{A} \).)

4. Show that each subrepresentation of \((\mathcal{H}, \pi) \) is a DHR representation. In slogan form, the sectors that can be reached from the vacuum by application of local fields correspond to DHR representations (i.e. representations that are equivalent, modulo any local region, to the vacuum representation).
Regarding objectives (1) and (2), it will suffice to show that $\pi(\mathfrak{A})'' = G'$, because then the von Neumann algebras $\pi(\mathfrak{A})''$ and G'' share the same central projections.

PROPOSITION 230. If $(\pi, \mathcal{H}, \mathfrak{F}, (G, k))$ is a field system with gauge symmetry for (\mathfrak{A}, ω_0) then $\pi(\mathfrak{A})' = G''$.

Our notation will henceforth be simplified if we use g and $U(g)$ ambiguously to denote elements of the unitary group G on \mathcal{H}. That is, we think of $g \rightarrow U(g)$ as the identity representation of G on \mathcal{H}.

Proof. Define $M : \mathfrak{B}(\mathcal{H}) \rightarrow G'$ by

$$M(A) = \int_G U(g) A U(g)^* \, d\mu(g),$$

where μ is the Haar measure on G. Then M is a faithful, normal projection of norm one from $\mathfrak{B}(\mathcal{H})$ onto G'. Since M is weakly continuous on the unit ball of $\mathfrak{B}(\mathcal{H})$, we have

$$G' = M(\mathfrak{B}(\mathcal{H})) = M(\mathfrak{F}) = \overline{M(\mathfrak{F})} = \overline{\pi(\mathfrak{A})}.$$

Thus, $G'' = \pi(\mathfrak{A})'$.

It follows then that the factorial subrepresentations of the representation (\mathcal{H}, π) of \mathfrak{A} are in one to one correspondence with the factorial subrepresentations of the action of G on \mathcal{H}.

NOTE 231. Since G is compact each irreducible representation of G is finite dimensional. Let \hat{G} be the set of characters (equivalence class of irreducible representations) of G, and for $\xi \in \hat{G}$, let $d(\xi)$ be the dimension of the underlying Hilbert space. Then the previous result gives a nice intuitive picture of the representation (\mathcal{H}, π) of \mathfrak{A}. For each $\xi \in \hat{G}$, select an irreducible subrepresentation $(\mathcal{H}_\rho, \pi_\rho)$ of the factorial representation $(\mathcal{H}_\xi, \pi_\xi)$. Then we have

$$\pi(A) = \bigoplus_{\xi \in \hat{G}} d(\xi) \pi_\rho(A) = \bigoplus_{\xi \in \hat{G}} (\pi_\rho(A) \otimes I_\rho),$$

where $d(\xi)\pi_\rho(A) = \pi_\rho(A) \oplus \cdots \oplus \pi_\rho(A)$, $d(\xi)$ times, and I_ρ is the identity on an $d(\xi)$-dimensional Hilbert space.

LEMMA 232. Let $(\pi, \mathcal{H}, \mathfrak{F}, (G, k))$ be a field system with gauge symmetry for (\mathfrak{A}, ω_0). Then \mathcal{H}_0 is separating for \mathfrak{F}.

Proof. Let $F \in \mathfrak{F}$. If $F\mathcal{H}_0 = \{0\}$ then $\mathcal{F}(F^* F)\mathcal{H}_0 = \{0\}$. Since $\mathcal{F}(F^* F) \in \pi(\mathfrak{A})$ and π_0 is faithful, $\mathcal{F}(F^* F) = 0$. Since \mathcal{F} is faithful, $F = 0$. Therefore, \mathcal{H}_0 is separating for \mathfrak{F}.

To obtain further information about the field system $(\pi, \mathcal{H}, \mathfrak{F}, (G, k))$, we identify "tensors under the action of G" in the field algebra \mathfrak{F}. To make sense of this idea, forget momentarily that \mathfrak{F} has a product operation, and consider it merely
as a Banach space. The map \(U \mapsto \text{Ad}U \) is a (strongly) continuous representation of the compact group \(G \) in \(\text{Aut}\mathcal{F} \), which is of course a subset of the invertible linear operators on \(\mathcal{F} \). As in the case of a representation of a compact group on a Hilbert space \(H \), the representation of \(G \) on \(\mathcal{F} \) decomposes into a direct sum of disjoint representations. An operator \(F \in \mathcal{F} \) is said to transform according to a representation \(\rho \) of \(G \) just in case it is contained in a linear subspace \(\mathcal{H}_\rho \) of \(\mathcal{F} \) carrying the corresponding representation of \(G \). In fact, we will show that the irreducible subspaces in \(\mathcal{F} \) have a special algebraic property: they have support \(I \).

Lemma 233. Let \((\pi, \mathcal{H}, \mathcal{F}, (G, k)) \) be a field system with gauge symmetry for \((\mathcal{A}, \omega_0)\), and suppose that \(\mathcal{A} \) satisfies property \(B \) relative to \(\omega_0 \). Then the net \(O \mapsto \pi(\mathcal{A}(O))'' \) satisfies property \(B \).

Proof. We first establish that \(\pi_0|_{\mathcal{A}(O')} \) is quasiequivalent to \(\pi|_{\mathcal{A}(O')} \) for each double cone \(O \).

By the Relative Locality Condition \((\varepsilon)\), \(\mathcal{F}(O) \subseteq \pi(\mathcal{A}(O'))' \). By the Reeh-Schlieder Condition \((\delta)\), \(\mathcal{H}_0 \) is a cyclic subspace for \(\mathcal{F}(O) \). Thus,

\[
\mathcal{H} = [\mathcal{F}(O)\mathcal{H}_0] \subseteq [\pi(\mathcal{A}(O'))'\mathcal{H}_0].
\]

Let \(E_0 \) be the orthogonal projection onto \(\mathcal{H}_0 \). The central support of \(E_0 \) in \(\pi(\mathcal{A}(O'))' \) is the projection onto \([\pi(\mathcal{A}(O'))'E_0(\mathcal{H})] \) [Kadison and Ringrose, 1997, Prop. 5.5.2]. Thus \(E_0 \) has central support \(I \) in \(\pi(\mathcal{A}(O'))' \), and therefore \((\pi_0|_{\mathcal{A}(O')}, \mathcal{H}_0) \) and \((\pi|_{\mathcal{A}(O')}, \mathcal{H}) \) are quasiequivalent [Kadison and Ringrose, 1997, Thm. 10.3.3].

Let \(O_1 \) be a double cone whose closure is contained in \(O \), and let \(E \) be a nonzero projection in \(\pi(\mathcal{A}(O_1))'' \). Choose a double cone \(O_2 \) that is spacelike separated from \(O \). The preceding argument shows that there is a \(*\)-isomorphism \(\varphi \) from \(\pi_0(\mathcal{A}(O_2))'' \) to \(\pi(\mathcal{A}(O_2))'' \) such that \(\varphi(\pi_0(A)) = \pi(A) \) for all \(A \in \mathcal{A} \). This isomorphism \(\varphi \) preserves the net structure: \(\varphi[(\pi_0(\mathcal{A}(O_3)))] = \pi(\mathcal{A}(O_3))'' \) for any double cone \(O_3 \) contained in \(O_2 \). Further, since \(\varphi \) is ultraweakly continuous [Kadison and Ringrose, 1997, Cor. 7.1.16], \(\varphi[\pi_0(\mathcal{A}(O_3))'] = \pi(\mathcal{A}(O_3))'' \). In particular, \(\varphi(E) \) is a projection in \(\pi_0(\mathcal{A}(O_1))'' \). By property \(B \) for \(\pi_0 \), there is an isometry \(V \in \pi_0(\mathcal{A}(O))'' \) such that \(VV^* = \varphi(E) \). Thus, \(W := \varphi^{-1}(V) \in \pi(\mathcal{A}(O))'' \) is an isometry such that \(WW^* = E \). Therefore the net \(O \mapsto \pi(\mathcal{A}(O))'' \) satisfies property \(B \).

Definition 234. Consider the ordered \(n \)-tuple \((F_1, \ldots, F_n)\) of elements in \(\mathcal{F} \). We say that this \(n \)-tuple transforms under the action of \(G \) according to character \(\xi \) just in case:

1. \(F_i^*F_j = 0 \) if \(i \neq j \); and

2. \(\alpha_g(F_i) = \sum_{j=1}^n u_{ij}^\xi(g)F_j \), where \(u_{ij}^\xi \) is a set of matrix elements for \(\xi \). That is, for some representation \((H, \rho)\) of \(G \) of class \(\xi \), and orthonormal basis \(\{e_1, \ldots, e_n\} \) for \(H \), \(u_{ij}(g) := \langle e_i, \rho(g)e_j \rangle_H \).
NOTE 235. If (F_1, \ldots, F_n) is a tensor in \mathcal{F} transforming according to ξ, then we can always replace the F_i's with partial isometries V_i with orthogonal ranges. Indeed, let $V_i |F_i|$ be the polar decomposition of F_i. When $i \neq j$, $F_i^* F_j = 0$, and so F_i^* and F_j^* have orthogonal ranges. Recall that if $F = V |F|$, then V annihilates the orthogonal complement of $r(F^*) = r(|F|)$ (see [Kadison and Ringrose, 1997, Thm. 6.1.2]). Thus $V_j |F_i| = \delta_{ij} F_j$, and

$$\left(\sum_j u_{ij}(g) V_j \right) |F_i| = \sum_j u_{ij}(g) V_j |F_j| = \sum_j u_{ij}(g) F_j = F_i.$$

By the uniqueness of the polar decomposition, $\sum_j u_{ij}(g) V_j = V_i$. Hence (V_1, \ldots, V_n) is a tensor transforming according to ξ.

DEFINITION 236. Given $\varphi, \psi \in \mathcal{H}_\xi$, define a map $M^\xi_{\varphi, \psi} : \mathcal{F} \to \mathcal{F}$ by

$$M^\xi_{\varphi, \psi}(F) = \int_G \langle \varphi, U(g) \psi \rangle \alpha_g(F) \, d\mu(g),$$

where μ is the Haar measure on G.

FACT 237. Due to the invariance of μ we have $\alpha_g \circ M^\xi_{\varphi, \psi}(F) = M^\xi_{U(g)\varphi, \psi}(F)$.

LEMMA 238. Let (F_1, \ldots, F_n) be a tensor in $\mathcal{F}(O)$ transforming as a unitary representation of class ξ. Then $F_i(\mathcal{H}_O) \subseteq \mathcal{H}_\xi$, where \mathcal{H}_ξ is the subspace of vectors of \mathcal{H} that transform according to ξ.

Sketch of proof. Let $\varphi \in \mathcal{H}_O$, and let $g \in G$. Then

$$U(g)[M^\xi_{\varphi, \psi}(F) \varphi] = U(g)M^\xi_{\varphi, \psi}(F)U(g)^* \varphi = M^\xi_{U(g)\varphi, \psi}(F) \varphi.$$

Then a straightforward calculation using matrix elements for ξ establishes the result. \[\square \]

LEMMA 239. Let ξ be a character of G that occurs nontrivially in the decomposition of the action of G on \mathcal{H}. Then for each double cone O, there is a tensor (F_1, \ldots, F_n) in $\mathcal{F}(O)$ that transforms as a unitary representation of class ξ.

Sketch of proof. Let (ψ_1, \ldots, ψ_n) be an orthonormal basis from a G-irreducible subspace of \mathcal{H}_ξ. Let φ be a unit vector in this same subspace. Since \mathcal{H}_O is cyclic for $\mathcal{F}(O)$, and $\mathcal{F}(O)$ is a von Neumann algebra, there is an $F \in \mathcal{F}(O)$ and a vector $\varphi_0 \in \mathcal{H}_O$ such that $F \varphi_0 = \varphi$. Let $F_i = M^\xi_{\psi_i, \varphi}(F)$. One verifies then that (F_1, \ldots, F_n) is the required tensor. \[\square \]

LEMMA 240. Let $F_1, \ldots, F_n \in \mathcal{F}(O)$ such that (F_1, \ldots, F_n) transforms according to the character ξ. Then if $\overline{O} \subseteq O_1$, there are $X_1, \ldots, X_n \in \mathcal{F}(O_1)$ such that (X_1, \ldots, X_n) transforms according to ξ and

$$\sum_{i=1}^n X_i^* X_i = I.$$

Proof. First replace F_1, \ldots, F_n with partial isometries V_1, \ldots, V_n, then let $V = \sum_{i=1}^{n} V_i$. Since the V_i have orthogonal ranges, V is a partial isometry, and $V^*V = \sum_{i=1}^{n} V_i^*V_i$. A straightforward calculation shows that $\alpha_g(V^*V) = V^*V$ for all $g \in G$. Thus, $E = V^*V$ is a projection in $\mathcal{F}(O) \cap G' = \pi(\mathfrak{A}(O))''$. By Lemma 233, $O \mapsto \pi(\mathfrak{A}(O))''$ satisfies property B. Thus, there is an isometry $W \in \pi(\mathfrak{A}(O_1))''$ with $WW^* = E$. For $i = 1, \ldots, n$, let $X_i = V_iW$. Then the tensor (X_1, \ldots, X_n) transforms according to ξ, and

$$\sum_{i=1}^{n} X_i^*X_i = W^* \left(\sum_{i=1}^{n} V_i^*V_i \right) W = I.$$

\[\square\]

Lemma 241. Let $\mathcal{H}_\xi \subseteq \mathcal{H}$ be the range of a central projection in $\pi(\mathfrak{A})''$. Then for each double cone O, \mathcal{H}_ξ is cyclic for $\mathcal{F}(O)$.

Proof. Let O_1 be a double cone such that $\overline{O}_1 \subseteq O$. By the Reeh-Schlieder Condition, \mathcal{H}_0 is cyclic for $\mathcal{F}(O_1)$. By Lemma 239, there is a tensor (F_1, \ldots, F_n) in $\mathcal{F}(O_1)$ that transforms according to the representation (\mathcal{H}, ρ) of G. By Lemma 240, there is a tensor (X_1, \ldots, X_n) in $\mathcal{F}(O)$ that transforms that same way, and such that $\sum_{i=1}^{n} X_i^*X_i = I$. Then

$$\mathcal{F}(O)\mathcal{H}_0 = \mathcal{F}(O) \sum_{i=1}^{n} X_i^*X_i\mathcal{H}_0 \subseteq \mathcal{F}(O)\mathcal{H}_\xi,$$

where the final inclusion follows by Lemma 238. Therefore \mathcal{H}_ξ is cyclic for $\mathcal{F}(O)$.

\[\square\]

Definition 242. Let $\text{Rep}_\mathcal{F}\mathfrak{A}$ be the category of subrepresentations of the representation (\mathcal{H}, π) of \mathfrak{A}. We mean to take $\text{Rep}_\mathcal{F}\mathfrak{A}$ as a full subcategory of the category of all representations of \mathfrak{A}, i.e. the hom-sets between representations in $\text{Rep}_\mathcal{F}\mathfrak{A}$ are the same as the hom-sets in the larger category.

Proposition 243. Let $(\pi, \mathcal{H}, \mathcal{F}, (G, k))$ be a field system with gauge symmetry for (\mathfrak{A}, ω_0). Then there is a faithful functor $\mathcal{F} : \text{Rep}_\mathcal{F}\mathfrak{A} \to \text{DHR}(\mathfrak{A})$.

Proof. Suppose that (\mathcal{H}', π') is an object of $\text{Rep}_\mathcal{F}\mathfrak{A}$. That is, there is an isometry $V : \mathcal{H}' \to \mathcal{H}$ such that $V\pi' = \pi V$. We subsequently identify \mathcal{H}' with its image in \mathcal{H}, and treat π' as mapping into $\mathfrak{B}(\mathcal{H})$. We must show that (\mathcal{H}', π') is in $\text{DHR}(\mathfrak{A})$; that is, for any double cone O, $(\mathcal{H}', \pi'|_{\mathcal{F}(O')})$ is unitarily equivalent to $(\mathcal{H}_0, \pi_0|_{\mathcal{F}(O')})$.

Let $\overline{\pi} = \pi'|_{\mathcal{F}(O')}$. Since $E_i, E_\xi \in \pi(\mathfrak{A}') \subseteq \pi(\mathfrak{A}(O'))^+$, E_i and E_ξ reduce $\overline{\pi}$. We first establish that E_i and E_ξ have the same central support in $\pi(\mathfrak{A}(O'))^-$, from which it follows that $E_i\overline{\pi}$ and $E_\xi\overline{\pi}$ are quasiequivalent [Kadison and Ringrose, 1997, Thm. 10.3.3].
By the Relative Locality Condition \((\varepsilon)\), \(\mathcal{F}(O) \subseteq \pi(\mathfrak{A}(O'))'\). By the Reeh-Schlieder Condition \((\delta)\), \(E_e\mathcal{H}\) is a cyclic subspace for \(\mathcal{F}(O)\). Thus,

\[
\mathcal{H} = [\mathcal{F}(O)E_e(\mathcal{H})] \subseteq [\pi(\mathfrak{A}(O'))'E_e(\mathcal{H})].
\]

Similarly, Lemma 241 entails that \(E_\xi\mathcal{H}\) is a cyclic subspace for \(\mathcal{F}(O)\), and so
\[
[\pi(\mathfrak{A}(O'))'E_\xi(\mathcal{H})] = \mathcal{H}. \text{ However, the central support of } E_e \text{ in } \pi(\mathfrak{A}(O'))' \text{ is the projection onto } [\pi(\mathfrak{A}(O'))'E_0(\mathcal{H})], \text{ and similarly for } E_\xi \text{ [Kadison and Ringrose, 1997, Prop. 5.5.2]. Thus, } E_e \text{ and } E_\xi \text{ have central support } I \text{ in } \pi(\mathfrak{A}(O'))'. \text{ Therefore, } (\pi_0|_{\mathfrak{A}(O')}, \mathcal{H}_0) \text{ and } (\pi_\xi|_{\mathfrak{A}(O')}, \mathcal{H}_\xi) \text{ are quasiequivalent, i.e. there is a } *\text{-isomorphism } \varphi : \pi_0(\mathfrak{A}(O')) \to \pi_\xi(\mathfrak{A}(O')) \text{ such that } \varphi(\pi_0(A)) = \pi_\xi(A) \text{ for all } A \in \mathfrak{A}(O').
\]

The previous reasoning also shows (by replacing \(O\) with a spacelike separated double cone) that for each double cone \(O, (\pi_0|_{\mathfrak{A}(O')}, \mathcal{H}_0)\) is quasiequivalent to \((\pi_\xi|_{\mathfrak{A}(O')}, \mathcal{H}_\xi)\). Thus, in particular, since the net \(O \to \pi_0(\mathfrak{A}(O)))''\) of von Neumann algebras satisfies property \(B\) (by assumption), so does the net \(O \to \pi_\xi(\mathfrak{A}(O)))''\).

To establish that \((\pi_0|_{\mathfrak{A}(O')}, \mathcal{H}_0)\) and \((\pi_\xi|_{\mathfrak{A}(O')}, \mathcal{H}_\xi)\) are unitarily equivalent, we will use the following result ([Kadison and Ringrose, 1997, Theorem 7.2.9]):

\[
\text{Let } \mathfrak{A}, j = 1, 2, \text{ be von Neumann algebras acting on Hilbert spaces } \mathcal{H}_j \text{ respectively. Suppose that for } j = 1, 2, \text{ there is a vector } x_j \in \mathcal{H}_j \text{ that is cyclic and separating for } \mathfrak{A}_j. \text{ If } \alpha : \mathfrak{A}_1 \to \mathfrak{A}_2 \text{ is a } *\text{-isomorphism then there is a unitary operator } U \text{ from } \mathcal{H}_1 \text{ to } \mathcal{H}_2 \text{ that implements } \alpha.
\]

in conjunction with the fact ([Kadison and Ringrose, 1997, Exercise 9.6.32]):

\[
\text{If } \mathfrak{A} \text{ is a von Neumann algebra acting on a separable Hilbert space } \mathcal{H}, \text{ and if } \mathfrak{A}' \text{ is properly infinite, then there is vector } x \in \mathcal{H} \text{ that is cyclic and separating for } \mathfrak{A}.
\]

By Proposition 71, \(\pi_0(\mathfrak{A}(O'))'\) and \(\pi_\xi(\mathfrak{A}(O'))'\) are properly infinite. By assumption, \(\mathcal{H}_0\) is separable. Thus, it will suffice to show that \(\mathcal{H}_\xi\) is separable. Since \(\pi_\xi\) is irreducible, each non-zero vector \(x \in \mathcal{H}_\xi\) is cyclic for \(\pi_\xi(\mathfrak{A})\). Thus, \(\mathcal{H}_\xi\) is the closure of the union of \(\pi_\xi(\mathfrak{A}(O_n))x\) for an increasing sequence \(O_n\) of double cones. Hence it suffices to show that \(\pi_\xi(\mathfrak{A}(O))x\) is separable for each \(O \in \mathcal{K}\). Since \(\mathcal{H}_0\) is separable, the unit ball of \(\mathfrak{B}(\mathcal{H}_0)\) is compact metrizable [Kadison and Ringrose, 1997, Thm. 5.1.3; Exercise 5.7.7]. Since the unit ball of \(\pi_0(\mathfrak{A}(O))''\) is a closed subset of the unit ball of \(\mathfrak{B}(\mathcal{H}_0)\), it is also compact metrizable. But \(\pi_\xi(\mathfrak{A}(O))''\) is * isomorphic, hence ultraweakly homeomorphic, to \(\pi_0(\mathfrak{A}(O))''\). Therefore, the unit ball of \(\pi_\xi(\mathfrak{A}(O))''\) is compact metrizable, hence separable, in the weak operator topology. It follows that \(\pi_\xi(\mathfrak{A}(O))''x\) is separable.

In Proposition 206 it was shown that there is a faithful, essentially surjective functor \(F'\) from the category \(\mathfrak{DHR}(\mathfrak{A})\) of DHR representations to the category \(\Delta\) of localized transportable morphisms of \(\mathfrak{A}\). So, the previous Proposition entails that \(F'' \circ F\) is a faithful functor from \(\text{Rep}_\mathfrak{A}\) into \(\Delta\). We subsequently replace \(F' \circ F\) with just \(F\).
Recall that Δ_f is the full subcategory of Δ of objects with conjugates. The final thing we need to show in this Section is that the image of each object in $\text{Rep}_F \mathfrak{A}$ under F is isomorphic to an object in Δ_f. That is, we need to show that the image object has a conjugate.

Sketch of proof. One shows that the subrepresentations of G on H are closed under taking conjugates. This can be proven by noting a correspondence between the action of G on H and the action of G on \mathcal{F}. Then use the fact that \mathcal{F} is a $*$-algebra. Thus, for each irreducible subrepresentation π_ρ of π, there is an irreducible subrepresentation $\pi_{\rho'}$ of π. Verify that $(F' \circ F)(\pi_{\rho'})$ is a conjugate for $(F' \circ F)(\pi_\rho)$. □

Therefore, $F' \circ F$ is a faithful functor from $\text{Rep}_F \mathfrak{A}$ into Δ_f. So we have shown:

Each representation of \mathfrak{A} that arises from its being taken as the gauge invariant part of a field algebra is a representation of the form $\pi_0 \circ \rho$ with $\rho \in \text{Obj}(\Delta_f)$.

Thus, the study of Δ_f encompasses the study of representations that arise from the approach that begins with a field algebra.

We said above that in the “normal” situation, field operators in $\mathcal{F}(O_1)$ with either commute or anticommute with field operators in $\mathcal{F}(O_2)$ when O_1 and O_2 are spacelike separated. To be more precise, we would expect for a Bose field operator to commute both with other Bose field operators, as well as with Fermi field operators; and we would expect for a pair of Fermi field operators to anticommute. But what are Bose and Fermi field operators? The distinction between the two is defined in terms of the privileged element k of the gauge group G.

DEFINITION 244. If $\alpha_k(F) = F$ then F is said to be a **Bose field operator**; and if $\alpha_k(F) = -F$ then F is said to be a **Fermi field operator**.

We define a Bosonic sector in H to be a subspace H_ξ such that $U(k)|_{H_\xi} = I$, and a Fermionic sector in H to be a subspace H_ξ such that $U(k)|_{H_\xi} = -I$. It then follows that Bosonic field operators create Bosonic sectors from the vacuum, and Fermionic field operators create Fermionic sectors from the vacuum.

We can now make sense of the notion of normal commutation relations: Bose field operators should commute with each other and commute with Fermionic field operators. Fermionic field operators should anticommute with each other.

DEFINITION 245. A local operator algebra system of fields $(\pi, (G, k), \mathcal{F})$ is said to satisfy normal commutation relations just in case the local field algebras satisfy graded local commutativity: If O_1 and O_2 are spacelike, and $F_\sigma \in \mathcal{F}(O_1)$, $F'_\sigma \in \mathcal{F}(O_2)$ are such that $\alpha_k(F_\sigma) = \sigma F_\sigma$ and $\alpha_k(F'_\sigma) = \sigma F'_\sigma$, ($\sigma = \pm$), then

\[F_+ F'_+ = F'_+ F_+, \quad F_+ F'_- = F'_- F_+, \quad F_- F'_- = -F'_- F_. \]
10 FROM REPRESENTATIONS TO FIELDS

The preceding section derives properties of representations of \mathfrak{A}, given that these representations are created from the vacuum representation by the action of local fields on the vacuum. But such an approach will seem at best heuristic to the Algebraic Imperialist. From the Imperialist’s point of view, the entire content of the theory is contained in the abstract net \mathfrak{A} of observable algebras.

On the one hand, the Imperialist might be an eliminativist about fields and gauge group. On the other hand, the Imperialist might claim that the fields and gauge group are physically significant, but only because they can be ‘reconstructed’ from the net of observable algebras. In order to justify this latter stance, the Imperialist would need to accomplish the following:

Task: Try to reconstruct, in a mathematically rigorous fashion, the entire apparatus of QFT — fields, gauge groups, etc. — from the net of observable algebras.

A quixotic task indeed! For one, philosophers seemed to have settled that theory is always underdetermined by data; and so we should not expect to be able to find the full theoretical apparatus hidden within the net of observable algebras. But there is a surprise in store: the Task was undertaken, and was achieved. The DR Reconstruction Theorem shows in a fully rigorous and precise way that the DHR category encodes all the information needed to reconstruct, uniquely, the fields and the gauge group. This section provides the details of the reconstruction.

DEFINITION 246. A field system with gauge symmetry $(\pi, \mathcal{H}, \mathfrak{F}, (G, k))$ for (\mathfrak{A}, ω_0) is said to be *complete* if the representation π of \mathfrak{A} contains copies of all representations in the DHR category $DHR(\mathfrak{A})$ of \mathfrak{A}.

DEFINITION 247. Two field systems with gauge symmetry $(\pi_1, \mathcal{H}_1, \mathfrak{F}_1, G_1)$ and $(\pi_2, \mathcal{H}_2, \mathfrak{F}_2, G_2)$ for (\mathfrak{A}, ω_0) are said to be *equivalent* if there exists a unitary operator $W : \mathcal{H}_1 \to \mathcal{H}_2$ such that:

\[
W\pi_1(A) = \pi_2(A)W, \quad \forall A \in \mathfrak{A},
\]
\[
WU(G_1) = U(G_2)W,
\]
\[
W\mathfrak{F}_1(O) = \mathfrak{F}_2(O)W, \quad \text{for each double cone } O.
\]
Doplicher-Roberts Reconstruction Theorem. Let \((\mathcal{A}, \omega_0)\) be a net of observable algebras satisfying duality and property B relative to a privileged 'vacuum' state \(\omega_0\). Then there exists a field system with gauge symmetry \((\pi, \mathcal{H}, \mathcal{F}, (G, k))\) for \((\mathcal{A}, \omega_0)\) that is complete, and that has normal commutation relations. Any complete, normal field system for \((\mathcal{A}, \omega_0)\) is equivalent to \((\pi, \mathcal{H}, \mathcal{F}, (G, k))\).

The proof of the reconstruction theorem is contained in [Doplicher and Roberts, 1989] and [Doplicher and Roberts, 1990]. In this article, we give an alternative proof, based on Deligne's embedding theorem [Deligne, 1990], and results obtained by Roberts [Roberts, ND] prior to obtaining the full proof of the reconstruction theorem.

In outline, the theorem shows first — as was essentially established in [Doplicher et al., 1971] — that the DHR superselection sectors naturally have the structure of a braided tensor \(*\)-category with conjugates — and when the spacetime dimension is three or greater, we can replace "braided" with "symmetric." Now, until the late 1980's, this first result was merely suggestive: it is known that the category \(\text{Rep}_f G\) of representations of a compact group \(G\) on finite dimensional (super) Hilbert spaces is a symmetric tensor \(*\)-category with conjugates. Hence, the category of DHR superselection sectors seems to have all the structure of \(\text{Rep}_f G\) for some compact \(G\). By the classical Tannaka-Krein duality theorem, it is possible to reconstruct \(G\) from \(\text{Rep}_f G\). Furthermore, Roberts [Roberts, ND] proved the conditional claim that if the category of superselection sectors was equivalent to the category \(\text{Rep}_f G\) for some compact \(G\), then the field algebra \(\mathcal{F}\) could be reconstructed.

But there is a crucial difference between the category of superselection sectors and the category \(\text{Rep}_f G\). The category \(\text{Rep}_f G\) is "concrete" — it comes with an embedding into the category of Hilbert spaces, namely the forgetful functor, and hence its objects can be regarded as structured sets. It is also precisely the existence of such an embedding that is needed to construct a field algebra, because one needs the objects in the category to have "internal structure," as, for example, an object in the category \(\mathcal{H}\) of Hilbert spaces is a structured set. Before we state the embedding theorem, whose proof is given in the Appendix, we need some preparatory definitions concerning 'supermathematics'.

10.1 Supermathematics and the embedding theorem

Definition 248. A *super vector space*, alternatively a \(\mathbb{Z}_2\)-graded vector space, is a vector space \(V\) with a distinguished decomposition \(V = V_+ \oplus V_-\). The subspace \(V_+\) is called the *even* subspace, and \(V_-\) is called the *odd* subspace. Elements of \(V_+ \cup V_- =: V_h\) are called *homogeneous*. Define the parity function \(\omega\) on the
homogeneous elements by setting $\omega(v) = \pm 1$ if $v \in V_{\pm}$. A morphism between two super vector spaces is a linear mapping $T : V \to W$ such that $T(V_{\pm}) \subseteq W_{\pm}$. We let SVect denote the category of super vector spaces. A super Hilbert space is a super vector space V with a positive definite inner product such that $V_+ \perp V_-$. We use SH to denote the category of super Hilbert spaces.

We now define operations that make SVect into a symmetric tensor category. It is straightforward to verify that the set $\text{Mor}(V, W)$ of morphisms between two super vector spaces is a linear subspace of $\text{B}(V, W)$. Thus, SVect is a linear category.

If V and W are super vector spaces, then their direct sum is the vector space $V \oplus W$ with even subspace $V_+ \oplus W_+$ and odd subspace $V_- \oplus W_-$. We define the monoidal product in SVect as the vector space $V \otimes W$ whose even and odd subspaces are defined by

$$(V \otimes W)_\sigma = \bigoplus_{\sigma' \sigma'' = \sigma} V_{\sigma'} \otimes W_{\sigma''},$$

where $\sigma = \pm$. Thus,

$$(V \otimes W)_+ = (V_+ \otimes W_+) \oplus (V_- \otimes W_-),$$

$$(V \otimes W)_- = (V_+ \otimes W_-) \oplus (V_- \otimes W_+).$$

The monoidal unit is \mathbb{C}, with even subspace \mathbb{C}.

DEFINITION 249. For two super vector spaces V, W, we define the symmetry isomorphism

$$c_{V,W} : V \otimes W \to W \otimes V,$$

by setting

$$c_{V,W}(v \otimes w) = (-1)^{(1-\omega(v))(1-\omega(w))/4} w \otimes v, \quad \forall v \in V_h, \forall w \in W_h.$$

on homogeneous simple tensors, and then by extending linearly.

PROPOSITION 250. Both $(\text{SVect}, \otimes, \mathbb{C}, c_{V,W})$ and $(\text{SH}, \otimes, \mathbb{C}, c_{V,W})$ are symmetric tensor $*$-categories.

NOTE 251. By the coherence theorem SH is equivalent to a strict symmetric tensor $*$-category, which we will also denote by SH.

DEFINITION 252. A supergroup is a pair (G, k) where G is a group and k is a central element in G such that $k \cdot k = e$. A morphism between two supergroups (G_1, k_1) and (G_2, k_2) is a group homomorphism $\varphi : G_1 \to G_2$ such that $\varphi(k_1) = k_2$.

DEFINITION 253. A (unitary) representation π of a supergroup (G, k) is a super Hilbert space $V = V_+ \oplus V_-$ together with a (unitary) representation π of G on V such that $\pi(k)|_{V_{\pm}} = \pm \text{id}_{V_{\pm}}$. The representations $\text{Rep}(G, k)$ of (G, k) form a symmetric tensor $*$-category with tensor product and symmetry inherited from SH, and monoidal unit the trivial representation of (G, k) on \mathbb{C}.
NOTE 254. Let \mathcal{SH}_f be the full subcategory of finite dimensional super Hilbert spaces. For a supergroup (G, k) we denote by $\text{Rep}_f(G, k)$ the full subcategory of finite dimensional representations of (G, k). The categories \mathcal{SH}_f and $\text{Rep}_f(G, k)$ are semisimple and have conjugates (see the Appendix for more on this terminology). Also, there is a canonical forgetful functor $K : \text{Rep}_f(G, k) \to \mathcal{SH}_f$.

We now move on to the statement of the Embedding Theorem, which will be required for the reconstruction of the field algebra and gauge group. For more on supermathematics, we refer the reader to [Varadarajan, 2004; Deligne and Morgan, 1999]. (But note that DHR superselection theory is not concerned with supersymmetry in the sense of a symmetry transforming Bosonic and Fermionic fields into each other. Also, our definition of a supergroup is idiosyncratic.)

The Embedding Theorem. Let \mathcal{SH}_f be the category of finite-dimensional super Hilbert spaces over \mathbb{C}. Let $(C, \otimes, 1, c_{X,Y})$ be a tensor C^*-category with unitary symmetry $c_{X,Y}$, conjugates, direct sums, subobjects, and irreducible monoidal unit 1. (Such a category is called an STC* in the Appendix.) Then

1. There is a faithful symmetric tensor $*$-functor $E : C \to \mathcal{SH}_f$.

2. There is a compact supergroup (G, k), where G is the group of unitary natural monoidal transformations of E, and an equivalence $F : C \to \text{Rep}_f(G, k)$ of symmetric tensor $*$-categories such that $E = F \circ K$, where $K : \text{Rep}_f(G, k) \to \mathcal{SH}_f$ is the forgetful functor.

NOTE 255. The embedding theorem is proven in Appendix B. In its proof we assume the tensor category C to be strict and we will work with the strictification \mathcal{SH} of the category of super Hilbert spaces. In view of the coherence theorem for symmetric tensor categories the strictness assumptions do not limit the generality of the result. The tensor functor $F : C \to \mathcal{SH}_f$ that we construct will, however, not be a strict tensor functor. In the construction of the field net below we do pretend for notational simplicity that F is strict. We will comment on this issue again at the end of this section.

10.2 Construction of the field net, algebraic aspects

We now apply the Embedding Theorem to the case of the DHR category Δ_f of localized transportable morphisms with finite dimension. In particular, we show that given an embedding $E : \Delta_f \to \mathcal{SH}_f$, it is possible to construct a local system of field algebras $(\pi, \mathcal{H}, \mathcal{F}, (G, k))$. This strategy of reconstruction is based on the unpublished manuscript [Roberts, ND], which assumes the existence of an embedding (or fiber) functor. The actual existence theorem for the embedding
functor — which is based on the work of Tannaka and Deligne, but incorporates more recent simplifications — can be found in the Appendix.

DEFINITION 256. As a set, the field algebra \mathcal{F}_0 consists of equivalence classes of triples (A, ρ, ψ), with $A \in \mathfrak{A}$, $\rho \in \text{Obj}(\Delta_f)$, and $\psi \in E(\rho)$, modulo the equivalence relation

$$(AT, \rho, \psi) = (A, \rho', E(T)\psi),$$

for $T \in \text{Hom}(\rho, \rho')$. Since $E(\lambda \text{id}_\rho) = \lambda \text{id}_{E(\rho)}$ we have $(\lambda A, \rho, \psi) = (A, \rho, \lambda \psi)$. Subsequently, we do not distinguish notationally between a triple (A, ρ, ψ) and its equivalence class.

PROPOSITION 257. \mathcal{F}_0 is a complex vector space under the operations:

(30) \hspace{1em} $\lambda(A, \rho, \psi) := (\lambda A, \rho, \psi)$, \hspace{1em} $\lambda \in \mathbb{C}$,

and

(31) \hspace{1em} $(A_1, \rho_1, \psi_1) + (A_2, \rho_2, \psi_2) := (A_1W_1^* + A_2W_2^*, \rho, E(W_1)\psi_1 + E(W_2)\psi_2),$

where $\psi_i \in E(\rho_i)$ and $W_i \in \text{Hom}(\rho_i, \rho)$ are isometries with

(32) \hspace{1em} $W_1W_1^* + W_2W_2^* = \text{id}_\rho$.

In addition,

$$(A_1, \rho, \psi) + (A_2, \rho, \psi) = (A_1 + A_2, \rho, \psi)$$

$$(A, \rho, \psi_1) + (A, \rho, \psi_2) = (A, \rho, \psi_1 + \psi_2).$$

Therefore, identifying \mathfrak{A} with $\{(A, \iota, 1) : A \in \mathfrak{A}, 1 \in \mathbb{C} \equiv E(\iota)\}$, \mathfrak{A} becomes a linear subspace of \mathcal{F}_0; and identifying $E(\rho)$ with $\{(I, \rho, \psi) : \psi \in E(\rho)\}$, $E(\rho)$ becomes a linear subspace of \mathcal{F}_0.

Proof. We first verify that the operations are well defined. Scalar multiplication is well defined since for any $T \in \text{Hom}(\rho, \rho')$, $(\lambda A, \rho', E(T)\psi) = ((\lambda A)T, \rho, \psi) = (\lambda(AT), \rho, \psi)$. To show that addition is well defined, we first establish that Eqn. (31) is independent of the choice of W_1 and W_2. If $W_i' \in \text{Hom}(\rho_i, \rho')$ is another such choice then

$$
\left(A_1W_1^* + A_2W_2^*, \rho', E(W_1')\psi_1 + E(W_2')\psi_2 \right)
= \left(A_1W_1^* + A_2W_2^*(W_1W_1'^* + W_2W_2'^*), \rho', E(W_1')\psi_1 + E(W_2')\psi_2 \right)
= \left(A_1W_1^* + A_2W_2^*, \rho, E(W_1W_1'^* + W_2W_2'^*)E(W_1')\psi_1 + E(W_2')\psi_2 \right)
= \left(A_1W_1^* + A_2W_2^*, \rho, E(W_1)\psi_1 + E(W_2)\psi_2 \right).
$$
To see that addition is independent of equivalence classes, let \(T_i \in \text{Hom}(\rho_i, \rho'_i) \), \(W_i \) isometries in \(\text{Hom}(\rho_i, \rho) \), and \(W'_i \) isometries in \(\text{Hom}(\rho'_i, \rho) \). Then,

\[
(A_1 T_1, \rho_1, \psi_1) + (A_2 T_2, \rho_2, \psi_2) = \left(A_1 T_1 W'_1^* + A_2 T_2 W'_2^*, \rho, E(W_1)\psi_1 + E(W_2)\psi_2 \right)
\]

\[
= \left((A_1 W'_1^* + A_2 W'_2^*)(W'_1 T_1 W_1^* + W'_2 T_2 W_2^*), \rho, E(W_1)\psi_1 + E(W_2)\psi_2 \right)
\]

\[
= \left(A_1 W'_1^* + A_2 W'_2^*, \rho, E(W'_1)E(T_1)\psi_1 + E(W'_2)E(T_2)\psi_2 \right)
\]

\[
= (A_1, \rho'_1, E(T_1)\psi_1) + (A_2, \rho'_2, E(T_2)\psi_2).
\]

To prove additivity in the first argument, choose \(\sigma = \rho \oplus \rho \), and \(W_i \in \text{Hom}(\rho, \sigma) \) the corresponding isometries. Then

\[
(A_1, \rho, \psi) + (A_2, \rho, \psi) = (A_1 W'_1^* + A_2 W'_2^*, \sigma, (E(W_1) + E(W_2))\psi)
\]

\[
= (A_1 W'_1^* + A_2 W'_2^*, \sigma, E(W_1 + W_2)\psi)
\]

\[
= ((A_1 W'_1^* + A_2 W'_2^*)(W_1 + W_2), \rho, \psi)
\]

\[
= (A_1 + A_2, \rho, \psi).
\]

Finally, to prove additivity in the second argument, choose \(\sigma = \rho \oplus \rho \), and \(W_i \in \text{Hom}(\rho, \sigma) \) the corresponding isometries. Then

\[
(A, \rho, \psi_1) + (A, \rho, \psi_2) = (AW'_1^* + AW'_2^*, \sigma, E(W_1)\psi_1 + E(W_2)\psi_2)
\]

\[
= (A(W'_1^* + W'_2^*), \sigma, E(W_1)\psi_1 + E(W_2)\psi_2)
\]

\[
= (A, \rho, E(W'_1^* + W'_2^*)(E(W_1)\psi_1 + E(W_2)\psi_2))
\]

\[
= (A, \rho, \psi_1 + \psi_2).
\]

\[\square\]

Proposition 258. The complex linear space \(\mathcal{F}_0 \) becomes an algebra if we define

\[
(33) \quad (A_1, \rho_1, \psi_1)(A_2, \rho_2, \psi_2) := \left(A_1 \rho_1(A_2), \rho_1 \otimes \rho_2, \psi_1 \otimes \psi_2 \right),
\]

where \(\psi_i \in E(\rho_i), i = 1, 2 \). Furthermore, \(\mathcal{A} \) is a subalgebra of \(\mathcal{F}_0 \), and the equivalence class of \((I, \iota, 1) \) is a multiplicative identity, where \(I \) is the multiplicative identity of \(\mathcal{A} \), and \(1 \in E(\iota) = \mathbb{C} \).

Proof. We first verify that Eqn. (33) is well-defined on \(\mathcal{F}_0 \). Let \(T_i \in \text{Hom}(\rho_i, \rho'_i) \). Recalling that \(T_1 \times T_2 = \rho'_1(T_2)T_1 \), we have

\[
(A_1 T_1, \rho_1, \psi_1)(A_2 T_2, \rho_2, \psi_2) = (A_1 T_1 \rho_1(A_2 T_2), \rho_1 \otimes \rho_2, \psi_1 \otimes \psi_2)
\]

\[
= (A_1 \rho'_1(A_2 T_2)T_1, \rho_1 \otimes \rho_2, \psi_1 \otimes \psi_2)
\]

\[
= (A_1 \rho'_1(A_2 T_2)T_1, \rho_1 \otimes \rho_2, \psi_1 \otimes \psi_2)
\]

\[
= (A_1 \rho'_1(A_2)(T_1 \times T_2), \rho_1 \otimes \rho_2, \psi_1 \otimes \psi_2)
\]

\[
= (A_1 \rho'_1(A_2), \rho'_1 \otimes \rho'_2, E(T_1 \times T_2)(\psi_1 \otimes \psi_2))
\]

\[
= (A_1 \rho'_1(A_2), \rho'_1 \otimes \rho'_2, E(T_1)\psi_1 \otimes E(T_2)\psi_2)
\]

\[
= (A_1, \rho'_1, E(T_1)\psi_1)(A_2, \rho'_2, E(T_2)\psi_2).
\]
A straightforward calculation shows that multiplication is associative. For distributivity, let \(W_i \in \text{Hom}(\rho_i, \rho) \). Then,

\[
\begin{align*}
\left[(A_1, \rho_1, \psi_1) + (A_2, \rho_2, \psi_2) \right] (A_3, \rho_3, \psi_3) &= ((A_1 W_1^* + A_2 W_2^*) \rho(A_3), \rho \otimes \rho_3, (E(W_1) \psi_1 + E(W_2) \psi_2) \otimes \psi_3) \\
&= (A_1 \rho_1(A_3) W_1^* + A_2 \rho_2(A_3) W_2^*, \rho \otimes \rho_3, (E(W_1) \psi_1) \otimes \psi_3 + (E(W_2) \psi_2) \otimes \psi_3) \\
&= (A_1 \rho_1(A_3)(W_1^* \times I_{\rho_3}) + A_2 \rho_2(A_3)(W_2^* \times I_{\rho_3}), \rho \otimes \rho_3, (E(W_1) \psi_1) \otimes \psi_3 + (E(W_2) \psi_2) \otimes \psi_3) \\
&= (A_1, \rho_1, \psi_1)(A_3, \rho_3, \psi_3) + (A_2, \rho_2, \psi_2)(A_3, \rho_3, \psi_3).
\end{align*}
\]

We will need the following basic lemma from linear algebra.

DEFINITION 259. If \(H, H' \) are Hilbert spaces and \(S \in \text{Hom}(H \otimes H', \mathbb{C}) \), then we define an antilinear mapping \(\mathcal{J} S : H \to H' \) by setting

\[
(\mathcal{J} S x, x') = S(x \otimes x'), \quad \forall x \in H, \forall x' \in H'.
\]

LEMMA 260.

1. \(\mathcal{J} \) is antilinear: \(\mathcal{J}(\lambda S) = \overline{\lambda}(\mathcal{J} S) \), and \(\mathcal{J}(S_1 + S_2) = \mathcal{J} S_1 + \mathcal{J} S_2 \).

2. If \(T \in \text{Hom}(H', H) \) then

\[
T \circ (\mathcal{J} S) = \mathcal{J}(S \circ (I_H \otimes T^*)) , \quad (\mathcal{J} S) \circ T = \mathcal{J}(S \circ (T \otimes I_{H'})).
\]

3. If \(S' \in \text{Hom}(H' \otimes H'', \mathbb{C}) \) then \((\mathcal{J} S') \circ (\mathcal{J} S) = (S \otimes I_{H''}) \circ (I_H \otimes S'^*) \).

4. Let \(S_1 \in \text{End}(H_1 \otimes H_1', \mathbb{C}) \) and \(S_2 \in \text{End}(H_2 \otimes H_2', \mathbb{C}) \). Then

\[
(\mathcal{J} S_2 \otimes \mathcal{J} S_1) \circ \Sigma_{H_1, H_2} = \mathcal{J}[S_1 \circ (I_{H_1} \otimes S_2 \otimes I_{H_1'})].
\]

Proof. Straightforward. A nice exercise in basic linear algebra.

NOTE 261. We will apply the previous Lemma to super Hilbert spaces. But we will take \(\Sigma_{H,H'} \) to be the ordinary symmetry on the category \(\mathcal{H}_f \) of finite dimensional Hilbert spaces.

LEMMA 262. Let \(T \in \text{Hom}(\rho, \rho') \) and pick solutions \((\overline{p}, R, \overline{R}) \) and \((\overline{p}', R', \overline{R}') \) of the conjugate equations with respect to \(\rho \) and \(\rho' \); that is, \(R \in \text{Hom}(\iota, \rho \otimes \overline{p}), \overline{R} \in \text{Hom}(\iota, \rho \otimes \overline{p}) \) such that \((\overline{R}^* \times I_{\rho}) \circ (I_{\rho} \times R) = I_{\rho}, (R^* \times I_{\rho'}) \circ (I_{\rho'} \times \overline{R}) = I_{\rho'} \), and analogously for \(R' \) and \(\overline{R} \). Set

\[
\overline{T} := (I_{\rho} \times \overline{R}^* \times I_{\rho'}) \circ (R \times \overline{R}^* \times I_{\rho'} \times 1_{\rho'} \otimes \overline{R}) = \overline{p}(\overline{R}^* \times T) R.
\]
Then $\bar{T} \in \text{Hom}(\bar{\rho}', \bar{\rho})$ and

$$(34) \quad (\bar{I}_\bar{\rho} \times T) \circ R = (\bar{T} \times I_{\bar{\rho}'}) \circ R',$$

$$(35) \quad (I_\rho \times \bar{T}^*) \circ \bar{R} = (T^* \times I_{\rho'}) \circ \bar{R}'. \quad \text{Proof. For Eqn. (34), we have}$$

$$(\bar{T} \times I_{\rho'}) \circ R' = \bar{T}R' = \bar{\rho}(\bar{R}^*T)RR' = \bar{\rho}(\bar{R}^*T\rho(R'))R$$

$$= \bar{\rho}(\bar{R}^*\rho'(R')T)R,$$

where we used the definition of \times for the first equality, the definition of \bar{T} for the second equality, $R \in \text{Hom}(\iota, \bar{\rho} \otimes \rho)$ for the third equality, and $T \in \text{Hom}(\rho, \rho')$ for the fourth equality. But by the conjugate equations, $\bar{R}^*\rho'(R') = (\bar{R}^* \times I_{\rho'}) \circ (I_{\rho'} \times R') = I_{\rho'} = I$, and hence $(\bar{T} \times I_{\rho'}) \circ R' = \bar{\rho}(T)R = (I_{\bar{\rho}} \times T) \circ \bar{R}$. For Eqn. (35), we have

$$(36) \quad (I_\rho \times \bar{T}^*) \circ \bar{R} = \rho(T^*)\bar{R} = \rho(R^*)\bar{\rho}(T^*\bar{R}')\bar{R} = \rho(R^*)\bar{\rho}(T^*\bar{R})\bar{R},$$

where we used the definition of \bar{T} for the second equality, and $\bar{R} \in \text{Hom}(\iota, \rho \otimes \bar{\rho})$ for the third equality. But by the conjugate equations $\rho(R^*)\bar{R} = (I_\rho \times R^*) \circ (\bar{R} \times I_\rho) = I_\rho$, and hence $(I_\rho \times \bar{T}^*) \circ \bar{R} = T^*\bar{R}' = (T^* \times I_{\rho'}) \circ \bar{R}'. \quad \blacksquare$

PROPOSITION 263. The algebra \mathfrak{g}_0 becomes a $*$-algebra if we define

$$(37) \quad (A, \rho, \psi)^* := (R^*\bar{\rho}(A)^*, \bar{\rho}, \mathcal{J}E(\bar{R}^*)\psi),$$

where $\psi \in E(\rho)$, and $(\bar{\rho}, R, \bar{R})$ is a conjugate to ρ.

Proof. We first show that the definition of $*$ is independent of the choice of conjugate to ρ. For this, let $(\bar{\rho}_1, R_1, \bar{R}_1)$ be any other choice. Define $W \in \text{Hom}(\bar{\rho}, \bar{\rho}_1)$ by

$$(38) \quad W := (R^* \times I_{\bar{\rho}_1}) \circ (I_\rho \times \bar{R}_1) = R^*\bar{\rho}(\bar{R}_1)$$

we have by the conjugate equations

$$W^{-1} := (R_1^* \times I_{\bar{\rho}_1}) \circ (I_\rho \times \bar{R}) = R_1^*\bar{\rho}_1(\bar{R}).$$

Moreover,

$$\begin{align*}
(R_1^*\bar{\rho}_1(A)^*, \bar{\rho}_1, \mathcal{J}E(\bar{R}_1^*)\psi) &= (R^*W^{-1}\bar{\rho}_1(A)^*, \bar{\rho}_1, \mathcal{J}E(\bar{R}^*(I_\rho \times W^*))\psi) \\
&= (R^*\bar{\rho}(A)^*, \bar{\rho}, E(W^{-1})\mathcal{J}E(\bar{R}^*(I_\rho \times W^*))\psi) \\
&= (R^*\bar{\rho}(A)^*, \bar{\rho}, \mathcal{J}E(\bar{R}^*)\psi),
\end{align*}$$

where we used Lemma 260.3 for the final equality.
To see that the definition of \ast is independent of equivalence classes, suppose that $T \in \text{Hom}(\rho, \rho')$ and $\psi \in E(\rho)$. Then

\[(AT, \rho, \psi)^\ast = (R^*\bar{\rho}(T^*A^*), \bar{\rho}, \mathcal{J}E(R^*)\psi) = (R^*\bar{T}^*\bar{\rho}(A^*), \bar{\rho}, \mathcal{J}E(R^*)\psi) = (R^*\bar{\rho}'(A^*)\bar{T}^*, \bar{\rho}, \mathcal{J}E(R^*)\psi) = (R^*\bar{\rho}'(A^*), \bar{\rho}', E(T^*)\mathcal{J}E(R^*)\psi) = (R^*\bar{\rho}'(A^*), \bar{\rho}', \mathcal{J}E(R^*) \circ (I_\rho \times \bar{T}))\psi) = (R^*\bar{\rho}'(A^*), \bar{\rho}', \mathcal{J}E(R^*) \circ (T \times I_{\rho'}))\psi) = (R^*\bar{\rho}'(A^*), \bar{\rho}', \mathcal{J}E(R^*)E(T)\psi) = (A, \rho', E(T)\psi)^\ast,
\]

where we used Eqn. (34) for the second equality, the fact that $\bar{T}^* \in \text{Hom}(\bar{\rho}, \bar{\rho}')$ for the third equality, Lemma 260.2 for the fifth equality, and Eqn. (35) for the sixth equality.

We verify that \ast is involutive:

\[(A, \rho, \psi)^{\ast\ast} = (R^*\bar{\rho}(A^*), \bar{\rho}, \mathcal{J}E(R^*)\psi)^\ast = (R^*\bar{\rho}(A^*), \bar{\rho}, \mathcal{J}E(R^*)\psi) = (A, \rho, \mathcal{J}E((R^* \times I_{\rho'})(I_\rho \times \bar{R}))\psi) = (A, \rho, \psi),
\]

where we used Lemma 260.3 for the penultimate equality, and the conjugate equations for the final equality.

To verify that \ast is antilinear, let $W_i \in \text{Hom}(\rho_i, \rho)$. Then,

\[
[(A_1, \rho_1, \psi_1) + (A_2, \rho_2, \psi_2)]^\ast = (A_1W_1^* + A_2W_2^*, \rho, E(W_1)\psi_1 + E(W_2)\psi_2)^\ast
\]

(39) = $(R^*\bar{\rho}(W_1A_1^* + W_2A_2^*), \bar{\rho}, \mathcal{J}E(R^*)E(W_1)\psi_1 + E(W_2)\psi_2)).$

But we may take $R = (W_1 \times W_1) \circ R_1 + (W_2 \times W_2) \circ R_2$, $\bar{R} = (W_1 \times \bar{W}_1) \circ \bar{R}_1 + (W_2 \times \bar{W}_2) \circ \bar{R}_2$, where $\bar{W}_i \in \text{Hom}(\bar{\rho}_i, \bar{\rho})$ are isometries, $\bar{W}_1W_1^* + \bar{W}_2W_2^* = I_{\bar{\rho}}$. Then Eqn. (39) becomes

\[
[[A_1, \rho_1, \psi_1] + [A_2, \rho_2, \psi_2]]^\ast
\]

\[= (R^*\bar{\rho}_1(A_1^*)W_1^* + R^*\bar{\rho}_2(A_2^*)W_2^*, \bar{\rho}, \mathcal{J}E(R^*)I_{\rho_1} \times \bar{W}_1^*)\psi_1 + \mathcal{J}E(R^*)I_{\rho_2} \times \bar{W}_2^*)\psi_2) \]

\[= (R^*\bar{\rho}_1(A_1^*)\bar{W}_1^* + R^*\bar{\rho}_2(A_2^*)\bar{W}_2^*, \bar{\rho}, E(W_1)\mathcal{J}E(R^*)\psi_1 + E(W_2)\mathcal{J}E(R^*)\psi_2) \]

\[= (A_1, \rho_1, \psi_1)^\ast + (A_2, \rho_2, \psi_2)^\ast,
\]

using Lemma 260 for the second equality.
Finally, we show that \([(A_1, \rho_1, \psi_1)(A_2, \rho_2, \psi_2)]^* = (A_2, \rho_2, \psi_2)^*(A_1, \rho_2, \psi_1)^*\). If \(\rho = \rho_1 \otimes \rho_2\) and \(\rho' = \rho_1' \otimes \rho_2'\), then we may take \(R = (I_{\rho_2} \times R_1 \times I_{\rho_2}) \circ R_2\) and \(\overline{R} = (I_{\rho_1} \times \overline{R}_2 \times I_{\rho_1}) \circ \overline{R}_1\). Thus,

\[
[(A_1, \rho_1, \psi_1)(A_2, \rho_2, \psi_2)]^* = (A_1 \rho_1(A_2), \rho_1 \otimes \rho_2, \psi_1 \otimes \psi_2)^*
\]

\[
= (R_2^* \rho_2(R_1^* \rho_1 \rho_1')(A_2^* A_1^*)), \overline{\rho}_2 \otimes \overline{\rho}_1, J E(R_1^* \circ (I_{\rho_1} \times \overline{R}_2^* \times I_{\rho_1})) \psi_1 \otimes \psi_2
\]

\[
= (R_2^* \rho_2(A_2^*), \overline{\rho}_2 \overline{R}_1^* \overline{\rho}_1(A_1^*)), \overline{\rho}_2 \otimes \overline{\rho}_1, J E(\overline{R}_2^*) \psi_2 \otimes J E(\overline{R}_1^*) \psi_1
\]

\[
= (R_2^* \rho_2(A_2^*), \overline{\rho}_2, J E(\overline{R}_2^*) \psi_2)(R_1^* \overline{\rho}_1(A_1^*), \overline{\rho}_1, J E(\overline{R}_1^*) \psi_1)
\]

\[
= (A_2, \rho_2, \psi_2)^*(A_1, \rho_1, \psi_1)^*,
\]

where the third equality follows from the fact that \(R_1^* \in \text{Hom}(\overline{\rho}_1 \otimes \rho_1, 1)\), and the fourth equality follows by Lemma 260.4.

PROPOSITION 264. Let \(E : \Delta_f \rightarrow \mathcal{SH}_f\) be the embedding functor from the DHR category \(\Delta_f\) into the strictified category \(\mathcal{SH}_f\) of finite dimensional super Hilbert spaces. Then the formula

\[
(40) \quad \alpha_g(A, \rho, \psi) = (A, \rho, g\rho \psi), \quad A \in \mathfrak{A}, \psi \in E(\rho).
\]

defines a group isomorphism \(g \mapsto \alpha_g\) from the intrinsic group \(G\) of \(E\) into \(\text{Aut}_\mathfrak{A} \mathfrak{F}_0\), the group of \(*\)-automorphisms of \(\mathfrak{F}_0\) leaving \(\mathfrak{A}\) pointwise fixed.

Proof. Since \(g\) is a natural monoidal transformation, \(g_i = \text{id}_{E(\iota)} = \text{id}_\mathbb{C}\). For any \(g \in G\), \(\alpha_g\) is well defined on \(\mathfrak{F}_0\) since \(S \in \text{Hom}(\rho, \rho')\),

\[
\alpha_g(AS, \rho, \psi) = (AS, \rho, g\rho \psi) = (A, \rho', E(S)g\rho \psi)
\]

\[
= (A, \rho', g(\rho')E(S)\psi) = \alpha_g(A, \rho', E(S)\psi).
\]

Since \(g_i = \text{id}_\mathbb{C}\), \(\alpha_g\) leaves \(\mathfrak{A} \subset \mathfrak{F}_0\) pointwise fixed. Each \(g\rho\) is linear so \(\alpha_g\) is linear.

\[
(A_1, \rho_1, g_1 \psi_1)(A_2, \rho_2, g_2 \psi_2) = (A_1 \rho_1(A_2), \rho_1 \otimes \rho_2, (g_1 \otimes g_2)(\psi_1 \otimes \psi_2)),
\]

but \(g_1 \otimes g_2 = g_1 \otimes g_2\) so

\[
(A_1, \rho_1, g_1 \psi_1)(A_2, \rho_2, g_2 \psi_2) = (A_1 \rho_1(A_2), \rho_1 \otimes \rho_2, g_1 \otimes g_2(\psi_1 \otimes \psi_2)).
\]

Thus,

\[
(41) \quad \alpha_g(F_1)\alpha_g(F_2) = \alpha_g(F_1 F_2).
\]

To show that \(\alpha_g\) is a \(*\)-homomorphism, recall that

\[
(42) \quad (A, \rho, g\rho \psi)^* = (R^* \overline{\rho}(A)^*, \overline{\rho}, J E(R^*) g\rho \psi).
\]

If \(\overline{\psi} \in E(\overline{\rho})\) then \(E(R^*) (g\rho \psi \otimes g\rho \overline{\psi}) = E(R^*) ((g\rho \otimes g\rho)(\psi \otimes \overline{\psi})).\) Furthermore,

\[
E(R^*) (g\rho \psi \otimes g\rho \overline{\psi}) = g_i E(R^*) (\psi \otimes \overline{\psi}) = E(R^*) (\psi \otimes \overline{\psi}).
\]
Hence $g^*_\rho \mathcal{J} E(\bar{R}^*) \rho = \mathcal{J} E(\bar{R}^*)$ and since g_ρ is unitary we get from (42),

$$(A, \rho, g_\rho \psi)^* = (\bar{R}^* g_\rho \psi^* \bar{p}, \mathcal{J} E(\bar{R}^*) \rho \psi) = (\bar{R}^* g_\rho \psi^* \bar{p}, \rho \psi),$$

so

$$(43) \quad \alpha_g(F^*) = \alpha_g(F)^*, \quad F \in \mathcal{F}.$$

Equations (41), (43) show that α_g is a \ast-homomorphism, its inverse is clearly $\alpha_{g^{-1}}$ so α_g defined by Eqn. (40) is an element of $\text{Aut}_\mathcal{F}_0$. The mapping $g \mapsto \alpha_g$ is clearly a homomorphism.

Since G is a compact group, for every $g \neq e$, there exists a $(H, \pi) \in \text{Rep}_J G$ such that $\pi(g) \neq \text{id}_H$. Since the functor E is an equivalence, in particular essentially surjective, there exists a $\rho \in \text{Obj}(\Delta_J)$ such that $E(\rho)$ is isomorphic to (H, π). Thus there exists $\psi \in E(\rho)$ such that

$$\pi(g)\psi = g_\rho \psi \neq \psi.$$

Defining $F = (I, \rho, \psi)$, we have $\alpha_g(F) \neq F$. This proves injectivity of $g \mapsto \alpha_g$.

It remains to show that $G \to \text{Aut}_\mathcal{F}_0$ is onto. Let $\alpha \in \text{Aut}_\mathcal{F}_0$, $A \in \mathcal{A}$ and $\psi \in E(\rho) \subset \mathcal{F}_0$. Let $\Psi = (I, \rho, \psi)$. Then

$$(\alpha(\Psi))A = \alpha(\Psi A) = \alpha(\rho(A)\Psi) = \rho(\alpha(\Psi)).$$

It is easily checked that this implies that $\alpha(\Psi)$ is of the form (I, ρ, ψ') with $\psi' \in E(\rho)$. Thus $\psi \mapsto \psi'$ is a linear map of $E(\rho)$ into $E(\rho)$ which we denote by g_ρ, and it remains to show that $g = (g_\rho)_{\rho \in \Delta_J}$ is monoidal natural transformation of E. For $S \in \text{Hom}(\rho, \rho')$, we have

$$(S, \rho, g_\rho \psi) = \alpha(S, \rho, \psi) = \alpha(I, \rho, E(S)\psi) = (I, \rho', g_\rho'E(S)\psi).$$

Hence

$$E(S)g_\rho \psi = g_\rho'E(S)\psi, \quad \psi \in E(\rho).$$

That is,

$$E(S)g_\rho = g_\rho'E(S),$$

and $g \in \text{Nat}_{E}$. To check monoidality, choose arbitrary $\psi_i \in E(\rho_i)$ and let $\Psi_i = (I, \rho_i, \psi_i)$. Then,

$$g_{\rho_1 \otimes \rho_2}(\psi_1 \otimes \psi_2) = \alpha(\Psi_1 \Psi_2) = \alpha(\Psi_1) \alpha(\Psi_2) = (g_{\rho_1} \otimes g_{\rho_2})(\psi_1 \psi_2).$$

Thus, $g \in \text{Nat}_{\otimes}E$. It remains to show that g is unitary. For $\psi, \psi' \in E(\rho)$ and $\Psi = (I, \rho, \psi)$, $\Psi' = (I, \rho, \psi')$ we have

$$\langle g_\rho \psi, g_\rho \psi' \rangle_{E(\rho)} I = \alpha(\Psi)^* \alpha(\Psi') = \alpha(\Psi^* \Psi') = \langle \psi, \psi' \rangle_{E(\rho)} I,$$

where the first and last equalities follow from Prop. 270. Hence g_ρ is unitary for each $\rho \in \text{Obj}(\Delta_J)$. Therefore every $\alpha \in \text{Aut}_\mathcal{F}_0$ is of the form α_g with $g \in G = \text{Nat}_{\otimes}E$.

DEFINITION 265. Given a double cone O, we define $\mathcal{F}_0(O)$ to consist of those elements F in \mathcal{F}_0 such that there exists $A \in \mathfrak{A}(O)$, $\rho \in \text{Obj}(\Delta_f)$ localized in O, and $\psi \in E(\rho)$ with $F = (A, \rho, \psi)$.

PROPOSITION 266. $\mathcal{F}_0(O)$ is a $*$-subalgebra of \mathcal{F}_0.

Proof. Let $F_1 = (A_1, \rho_1, \psi_1)$ and $F_2 = (A_2, \rho_2, \psi_2)$ be in $\mathcal{F}_0(O)$. Thus, the A_i can be chosen from $\mathfrak{A}(O)$ and the ρ_i can be chosen localized in O. Since $\rho_1(\mathfrak{A}(O)) \subset \mathfrak{A}(O)$, it follows that

$$F_1 F_2 = (A_1 \rho_1(A_2), \rho_1 \otimes \rho_2, \psi_1 \otimes \psi_2),$$

is also in $\mathcal{F}_0(O)$. By transportability, $\bar{\rho}$ can be chosen localized in O, and in this case $\bar{\rho} \otimes \rho$ is localized in O. By Lemma 155, $R \in \mathfrak{A}(O)$. Hence,

$$F^* = (R^* \rho(A)^*, \bar{\rho}, J E(R^*) \psi),$$

is in $\mathcal{F}_0(O)$. Similarly, $\mathcal{F}_0(O)$ is closed under the addition defined in Prop. 257 since ρ can also be chosen localized in O, and then the isometries W_1, W_2 are in $\mathfrak{A}(O)$ (by Lemma 155). □

PROPOSITION 267. The action of G on \mathcal{F}_0 leaves $\mathcal{F}_0(O)$ globally fixed.

Proof. If $F \in \mathcal{F}_0(O)$ then $F = (A, \rho, \psi)$ for some $A \in \mathfrak{A}(O)$ and ρ localized in O. Then clearly $\alpha_g(F) = (A, \rho, g_\rho \psi)$ is in $\mathcal{F}_0(O)$. □

NOTE 268. Having defined an action of the supergroup (G, k), the element $k \in G$ induces a \mathbb{Z}_2 grading on \mathcal{F}_0 and on the local algebras $\mathcal{F}_0(O)$.

PROPOSITION 269. The field net \mathcal{F}_0 satisfies normal commutation relations. That is, if O_1 and O_2 are spacelike, and $F_i \in \mathcal{F}(O_i)$ are such that

$$\alpha_k(F_i) = \sigma_i F_i,$$

then

$$F_1 F_2 = (-1)^{(1-\sigma_1)(1-\sigma_2)} F_2 F_1.$$

Proof. Choose $F_i = (A_i, \rho_i, \psi_i)$ with $A_i \in \mathfrak{A}(O_i)$ and ρ_i localized in O_i. Then $A_1 A_2 = A_2 A_1$, $\rho_1(A_2) = A_2$, $\rho_2(A_1) = A_1$, and $\epsilon_{\rho_1, \rho_2} = \text{id}_{\rho_1 \otimes \rho_2}$. In view of the way G acts on \mathcal{F}_0 we have

$$\sigma_i(A_i, \rho_i, \psi_i) = \alpha_k(A_i, \rho_i, \psi_i) = (A_i, \rho_i, k_{\rho_i} \psi_i),$$

and hence $k_{\rho_i} \psi_i = \sigma_i \psi_i$. That is, ψ_i is homogeneous and $\omega(\psi_i) = \sigma_i$. Furthermore, since E is a symmetric functor $E(\epsilon_{\rho_1, \rho_2}) = \Sigma_{E(\rho_1), E(\rho_2)}$, where $\Sigma_{H, H'}$ is the symmetry on $S\mathcal{H}_f$ and therefore

$$\Sigma_{H, H'}(\psi_1 \otimes \psi_2) = (-1)^{(1-\sigma_1)(1-\sigma_2)} (\psi_2 \otimes \psi_1).$$
Hence
\[F_1 F_2 = (A_1 \rho_1(A_2), \rho_1 \otimes \rho_2, \psi_1 \otimes \psi_2) \]
\[= (A_1 A_2 \varepsilon_{\rho_2, \rho_1}, \rho_1 \otimes \rho_2, \psi_1 \otimes \psi_2) \]
\[= (A_1 A_2, \rho_2 \otimes \rho_1, E(\varepsilon_{\rho_2, \rho_1})(\psi_1 \otimes \psi_2)) \]
\[= (A_2 \rho_2(A_1), \rho_2 \otimes \rho_1, E(\varepsilon_{\rho_2, \rho_1})(\psi_1 \otimes \psi_2)) \]
\[= (A_2 \rho_2(A_1), \rho_2 \otimes \rho_1, \Sigma_{E(\rho_2), E(\rho_1)}(\psi_1 \otimes \psi_2)) \]
\[= (-1)^{(1-\sigma_1)(1-\sigma_2)/4} (A_2 \rho_2(A_1), \rho_2 \otimes \rho_1, \psi_2 \otimes \psi_1) \]
\[= (-1)^{(1-\sigma_1)(1-\sigma_2)/4} F_2 F_1. \]

PROPOSITION 270. For all \(\Psi = (I, \rho, \psi), \Psi' = (I, \rho, \psi') \) with \(\psi, \psi' \in E(\rho) \) we have
\[(44) \quad \Psi A = \rho(A)\Psi, \]
\[(45) \quad \Psi^* \Psi' = \langle \psi, \psi' \rangle_{E(\rho)}. \]

For any orthonormal basis \(\{\psi_i : i = 1, \ldots, n\} \) of \(E(\rho) \), we have
\[(46) \quad \sum_{i=1}^{n} \Psi_i \Psi_i^* = I. \]

Proof.
\[(I, \rho, \psi)(A, \iota, 1) = (\rho(A), \rho, \psi) = (\rho(A), \iota, 1)(I, \rho, \psi), \]
whence (44). For (45), we check:
\[(I, \rho, \psi)^*(I, \rho, \psi') = (R^*, \bar{\rho} \otimes \rho, (J E(\bar{R}^*) \psi) \otimes \psi') \]
\[= (I, \iota, E(R^*)((J E(\bar{R}^*) \psi) \otimes \psi')). \]

Since \(J E(\bar{R}^*) : E(\rho) \to E(\bar{\rho}) \) and \(E(R^*) : E(\bar{\rho}) \otimes E(\rho) \to \mathbb{C} \), it follows that \(E(R^*)((J E(\bar{R}^*) \psi) \otimes \psi') \) is a complex number. In fact, by the definition of \(J \) and Lemma 260.3,
\[E(R^*)((J E(\bar{R}^*) \psi) \otimes \psi') = \langle J E(R^*) \circ J E(\bar{R}^*) \psi, \psi' \rangle_{E(\rho)} \]
\[= \langle J E((R^* \times I_{\rho}) \circ (I_{\rho} \times \bar{R}^*)) \psi, \psi' \rangle_{E(\rho)} \]
\[= \langle \psi, \psi' \rangle_{E(\rho)}, \]

where the final equality follows by the conjugate equations. So, combining the previous two equations we have
\[(I, \rho, \psi)^*(I, \rho, \psi') = (I, \iota, \langle \psi, \psi' \rangle_{E(\rho)}) = \langle \psi, \psi' \rangle_{E(\rho)}(I, \iota, 1). \]
For Eqn. (46), we have
\[\sum_i (I, \rho, \psi_i)(I, \rho, \psi_i)^* = (\rho(R)^*, \rho \otimes \bar{\rho}, \sum \psi_i \otimes JE(R^*)\psi_i) \]
\[= (\rho(R)^*, \rho \otimes \bar{\rho}, E(R)1) = (\rho(R)^*\bar{R}, 1, 1) = (I, \iota, 1), \]
where the second equality follows from the definition of \(J \) and the final equality follows by the conjugate equations.

10.3 Completion of the field net

We now construct a representation \((\mathcal{H}, \pi)\) of the \(*\)-algebra \(\mathcal{F}_0 \), and show that \(\pi|_{\mathcal{A}} \) has a nontrivial subrepresentation equivalent to the GNS representation induced by the vacuum state \(\omega_0 \). We do so by extending the state \(\omega_0 \) from \(\mathcal{A} \) to \(\mathcal{F}_0 \), and then by taking the GNS representation. In order to extend the state \(\omega_0 \) from \(\mathcal{A} \) to \(\mathcal{F}_0 \), it suffices to show that there is a positive linear map \(m : \mathcal{F}_0 \to \mathcal{A} \).

NOTE 271. Let \(\rho \in \text{Obj}(\Delta_f) \). Since \(\Delta_f \) is semisimple (see Prop. 218), \(\rho \) is a finite direct sum \(\rho = \rho_1 \oplus \cdots \oplus \rho_n \) of irreducible objects in \(\text{Obj}(\Delta_f) \). Therefore, there is a projection \(P_i^\rho \in \text{End}(\rho) \) onto the direct sum of those irreducibles in this decomposition that are isomorphic to \(\iota \).

PROPOSITION 272. Given \((A, \rho, \psi) \in \mathcal{F}_0\), define
\[(47)\quad m(A, \rho, \psi) := (AP_i^\rho, \rho, \psi). \]
Then \(m : \mathcal{F}_0 \to \mathcal{A} \) is a faithful positive linear projection from \(\mathcal{F}_0 \) onto \(\mathcal{A} \). Further,
\[(48)\quad m(AF) = Am(F), \quad A \in \mathcal{A}, F \in \mathcal{F}_0. \]

Proof. We first show that \(m \) is well defined. If \(T \in \text{Hom}(\rho, \rho') \) then \(TP_i^\rho = P_i^\rho' TP_i^\rho = P_i^\rho' T \), hence
\[m(AT, \rho, \psi) = (ATP_i^\rho, \rho, \psi) = (AP_i^\rho' T, \rho, \psi) = (AP_i^\rho', \rho', E(T)\psi) = m(A, \rho', E(T)\psi), \]
as required. \(m \) is clearly linear and satisfies Eqn. (48). We now show that \(m \) is positive. First, since \(\rho \) has finite dimension, \(\rho \) contains at most finitely many copies of the vacuum representation. Thus, \(P_i^\rho = \sum_i S_i S_i^* \) where \(S_i \in \text{Hom}(\iota, \rho) \) and \(S_i^* S_j = \delta_{ij} \text{id}_\iota \). Thus,
\[m(A, \rho, \psi) = (AP_i^\rho, \rho, \psi) = \sum_i (AS_i, \iota, E(S_i^*)\psi). \]
However, \(E(S_i^*)\psi = \lambda_i 1 \) so that
\[m(A, \rho, \psi) = \sum_i \lambda_i (AS_i, \iota, 1) \in \mathcal{A}. \]
Since each \(\rho \in \text{Obj}(\Delta_f) \) is a finite direct sum of irreducible objects (Prop. 218), any \(F \in \mathfrak{F}_0 \) may be written as a finite sum \(F = \sum_i F_i, \ F_i = (A_i, \rho_i, \psi_i) \), where \(\psi_i \in \mathcal{E}(\rho_i) \) with \(\rho_i \) irreducible and pairwise inequivalent. Thus,

\[
m(F^*F) = \sum_{i,j} m(F_i^*F_j) = \sum_i m(F_i^*F_i).
\]

Hence, to show that \(m \) is positive and faithful, it suffices to consider \(m(F^*F) \) with \(F = (A, \rho, \psi) \), \(\psi \in \mathcal{E}(\rho) \) and \(\rho \) irreducible. In this case,

\[
(A, \rho, \psi)^*(A, \rho, \psi) = (R^*\bar{\rho}(A^*A), \bar{\rho} \otimes \rho, J E(R^*)(\psi \otimes \psi)).
\]

Using \(P_{\mathfrak{F}}^{\mathfrak{F}_0} = \|R R^*\|^{-1} R R^* = d(\rho)^{-1} R R^* \), we have

\[
d(\rho)m(F^*F) = (R^* \bar{\rho}(A^*A) R R^*, \bar{\rho} \otimes \rho, J E(R^*) \psi \otimes \psi)
= (R^* \bar{\rho}(A^*A) R, \nu, E(R^*) J E(R^*) \psi \otimes \psi).
\]

Now,

\[
E(R^*) J E(R^*) \psi \otimes \psi = \langle J E(R^*) J E(R^*) \psi, \psi \rangle_{E(\rho)},
\]

hence by Lemma 260,

\[
d(\rho)m(F^*F) = R^* \bar{\rho}(A^*A) R \langle E((R^* \times I_{\rho}) \circ (I_{\rho} \times R)) \psi, \psi \rangle_{E(\rho)}
= R^* \rho(A^*A) R \langle \psi, \psi \rangle_{E(\rho)}.
\]

Thus, \(m(F^*F) \geq 0 \) and \(m(F^*F) = 0 \) implies \(\psi = 0 \) or \(\bar{\rho}(A) R = 0 \). But \(\bar{\rho}(A) R = 0 \) only if \(0 = R^* \rho (A) R = A R^* \rho R = A \).

Thus \(m(F^*F) = 0 \) implies \(F = 0 \), and \(m \) is a faithful positive linear projection from \(\mathfrak{F}_0 \) onto \(\mathfrak{F} \).

Lemma 273. Let \(P_0^\rho \) be the projection in \(\text{End}(E(\rho)) \) onto the subspace of \(G \)-invariant vectors with respect to the action \(\pi_\rho(g) = g \). Then \(E(P_0^\rho) = P_0^\rho \). Furthermore, the conditional expectation \(m \) is \(G \)-invariant, i.e. \(m(\alpha_g(F)) = m(F) \) for all \(g \in G \) and \(F \in \mathfrak{F}_0 \).

Proof. Recall that if \((H, \pi) \) is an irreducible representation of a compact group \(G \) and \(\pi \) is not the trivial representation, then \(H \) contains no \(G \)-invariant vectors. If \(\rho = \bigoplus \rho_i \) with \(\rho_i \) irreducible, then the previous observation implies that the \(G \)-invariant vectors in \(E(\rho) \) are precisely those in the image of \(E(P_0^\rho) \). Thus \(E(P_0^\rho) = P_0^\rho \), implying \(m(F) = \alpha_g(m(F)) \). Furthermore,

\[
m\alpha_g(A, \rho, \psi) = m(A, \rho, g_\rho \psi) = (A P_0^\rho, \rho, g_\rho \psi) = (A, \rho, P_0^\rho g_\rho \psi)
= (A, \rho, g_\rho P_0^\rho \psi) = (A, \rho, P_0^\rho \psi)
= (A P_0^\rho, \rho, \psi) = m(A, \rho, \psi).
\]
In view of Prop. 272, $\omega_0 \circ m$ is a faithful state on the \ast-algebra \mathcal{F}_0. Let (\mathcal{H}, π) be the GNS representation of \mathcal{F} induced by $\omega_0 \circ m$, let \mathcal{F} be the norm closure of $\pi(\mathcal{F}_0)$, and let $\mathcal{F}(O)$ be the weak closure of $\pi(\mathcal{F}_0(O))$. It is clear that \mathcal{F} is the C^\ast-inductive limit of the net $O \mapsto \mathcal{F}(O)$. Since $\omega_0 \circ m$ is G-invariant by Lemma 273, there is a unitary representation U of G on \mathcal{H} implementing the automorphisms α_g of \mathcal{F}_0:

$$\pi(\alpha_g(F)) = U(g)\pi(F)U(g)^*, \quad g \in G, F \in \mathcal{F}_0,$$

and therefore it extends to \mathcal{F}. Since $g \mapsto \alpha_g$ is injective, U is injective.

DEFINITION 274. Let $\sigma \in \hat{G}$ be an irreducible character of G. Define a map \mathcal{E}_σ on $\mathcal{B}(\mathcal{H})$ by

$$\mathcal{E}_\sigma(A) = \int_G \overline{\sigma(g)} U(g)AU(g)^* \, d\mu(g),$$

where μ is the Haar measure on $U(G)$.

NOTE 275. Let $F = (A, \rho, \psi) \in \mathcal{F}_0$. Since the $U(g)$ implements α_g we have

$$\mathcal{E}_\sigma(\pi(F)) = \int_G \overline{\sigma(g)} \left(\pi(\alpha_g (A, \rho, \psi)) \right) d\mu(g) = \int_G \overline{\sigma(g)} \pi(A, \rho, g\rho \psi) d\mu(g)$$

$$= \pi(A, \rho, P^\rho_\sigma \psi),$$

where $P^\rho_\sigma \in \text{End}(E(\rho))$ is the orthogonal projection onto the subspace transforming according to the irreducible representation σ. Since G is compact, \mathcal{E}_σ is strongly continuous. Note that $\mathcal{E}_0(\pi(F)) = \pi[m(A, \rho, \psi)]$.

LEMMA 276. $\mathcal{F}_0(O) \mathfrak{A} = \mathcal{F}_0$.

Proof. Let $(A, \rho, \psi) \in \mathcal{F}_0$. Since ρ is transportable, there is a unitary $T \in \text{Hom}(\rho, \rho')$ with ρ' localized in O. Then

$$(A, \rho, \psi) = (AT^*, \rho', E(T)\psi) = (AT^*, \iota, 1)(I, \rho', E(T)\psi) = BF,$$

where $B \in \mathfrak{A}$ and $F \in \mathcal{F}_0(O)$. Hence $\mathfrak{A}\mathcal{F}_0(O) = \mathcal{F}_0$. Since $\mathfrak{A}, \mathcal{F}_0(O)$ and \mathcal{F}_0 are \ast-algebras, $\mathcal{F}_0(O) \mathfrak{A} = \mathcal{F}_0$.

THEOREM 277. $(\pi, \mathcal{H}, \mathcal{F}, (G, k))$ is a field system with gauge symmetry for (\mathfrak{A}, ω_0) with normal commutation relations (in the sense of Definitions 229 and 245).

Proof. It is obvious that $\mathcal{F}(O)$ is a G-stable von Neumann subalgebra of \mathcal{F}. Also the net $O \mapsto \mathcal{F}(O)$ satisfies normal commutation relations. We now run through the individual conditions in Definition 229.

1. We need to show that the fixed point algebra of $\mathcal{F}(O)$ under the G action is $\pi(\mathfrak{A}(O))$. First note that $\mathcal{E}(\pi(\mathcal{F}_0(O))) = \pi(m(\mathcal{F}_0(O)))$. Thus,

$$\mathcal{F}(O)^G = \mathcal{E}(\mathcal{F}(O)) = \mathcal{E}(\pi(\mathcal{F}_0(O))) = \mathcal{E}(\pi(m(\mathcal{F}_0(O)))) = \pi(\mathcal{A}(O)).$$

The third equality follows by the normality of \mathcal{E}, and the last equality is due to the fact that m is a conditional expectation from \mathcal{F}_0 to \mathfrak{A}.

(δ) Let \(j : \mathcal{F}_0 \to \mathcal{H} \) be the inclusion mapping derived from the GNS representation of \(\omega_0 \circ m \). Since \(j(\mathcal{A}) = \mathcal{H}_0 \) we have

\[
\mathcal{F}(0)\mathcal{H}_0 = \pi(\mathcal{F}_0(0))\mathcal{H}_0 = \pi(\mathcal{F}_0(0))j(\mathcal{A}) = j(\mathcal{F}_0(0)\mathcal{A}) = j(\mathcal{F}_0) = \mathcal{H}.
\]

(ε) Let \(O_1 \) and \(O_2 \) be spacelike separated. The subalgebra \(\mathcal{A}(O_1) \) of \(\mathcal{F}_0 \) is pointwise invariant under the gauge transformations. In particular, \(\alpha_k(A) = A \) for all \(A \in \mathcal{A}(O) \), i.e. elements of \(\mathcal{A}(O_1) \) are purely Bosonic. Therefore relative locality follows by normality of the commutation relations (Prop. 269).

Now we claim that \(\text{Aut}_\mathcal{F} \mathcal{F} = G \). By Eqn. (49), \(\mathcal{E}_\sigma(\pi(\mathcal{F}_0)) \) is isomorphic as a Banach space to \(\mathcal{A} \otimes P_\rho E(\rho) \), and so is a closed subspace of \(\mathcal{F} \), and so

\[
\mathcal{E}_\sigma(\mathcal{F}) = \mathcal{E}_\sigma(\pi(\mathcal{F}_0)) = \mathcal{E}_\sigma(\pi(\mathcal{F}_0)) = \mathcal{E}_\sigma(\pi(\mathcal{F}_0)).
\]

Since for any \(F \in \mathcal{F} \) we have \(F = \sum_{\sigma \in \mathcal{G}} \mathcal{E}_\sigma(F) \), and \(\mathcal{E}_\sigma(F) \in \pi(\mathcal{F}_0) \), it follows that an element \(F \in \mathcal{F} \) is in \(\pi(\mathcal{F}_0) \) if and only if \(\mathcal{E}_\sigma(F) \neq 0 \) for only finitely many \(\sigma \in \mathcal{G} \). Together with linearity of \(\alpha \), this implies that \(\alpha(\pi(\mathcal{F}_0)) \subseteq \pi(\mathcal{F}_0) \). Thus there exists a \(g \in G \) such that \(\alpha|_{\pi(\mathcal{F}_0)} = g \) (by Prop. 264). Since \(\alpha_g \) is continuous and \(\pi(\mathcal{F}_0) \) is dense in \(\mathcal{F} \), \(\alpha \) is the unique extension of \(\alpha_g \) to \(\mathcal{F} \).

\[\blacksquare \]

10.4 Poincaré covariance of the field net

Covariance considerations have played no prominent role in the DHR theory of Section 7 or in the above reconstruction of a field net \(\mathcal{F} \). We now show that the latter is Poincaré covariant if the underlying DHR sectors are. (Recall from Remark 224 that under favorable circumstances we have \(\Delta_{fc} = \Delta_f \).)

THEOREM 278. If in the construction of the field net \(\mathcal{F} \) we start from the category \(\Delta_{fc} \) instead of \(\Delta_f \), the field net constructed above is covariant under an automorphic action of \(\widehat{P} \). This action is implemented by a positive energy representation on the GNS representation space of \(\mathcal{F} \) corresponding to the state \(\omega_0 \circ m \).

Proof. Let \(\beta_h = \text{Ad}U(h) \) be the action of \(\mathcal{P} \) on \(\mathcal{A} \). Recall from Note 221 that \(\rho_h = \beta_h \circ \rho \circ \beta_h^{-1} \) and \(X_\rho(h) \equiv U(h)U_\rho(h)^* \in \text{Hom}(\rho, \rho_h) \) for all \(h \in \widehat{P} \). We define an action \(\beta_\hat{h} \) of \(\widehat{P} \) on \(\mathcal{F}_0 \) by

\[
\beta_\hat{h}(((A, \rho, \psi)) \equiv (\beta_h(A), \rho_h, E(X_\rho(h))\psi)
\]

\[
= (\beta_h(A)X_\rho(h), \rho, \psi) = (U(h)AU_\rho(h)^*, \rho, \psi).
\]

(50)

Let \(\rho, \rho' \in \Delta_{fc} \) and \(T \in \text{Hom}(\rho, \rho') \). Then \(\beta_h(T) \in \text{Hom}(\rho_h, \rho_h') \), and \(TU_\rho(h) = U_{\rho'}(h)T \), cf. Section 8.4. Thus,

\[
\beta_h(T)X_\rho(h) = (U(h)TU(h)^*)(U(h)U_\rho(h)^*) = U(h)TU_\rho(h)^* = U(h)U_{\rho'}(h)T = X_{\rho'}(h)T,
\]
Using this equation, we compute
\[
\hat{\beta}_g((AT, \rho, \psi)) = (\beta_h(AT), \rho_h, E(X_\rho(h))\psi) = (\beta_h(A), \rho'_h, E(\beta(T)X_\rho(h))\psi)
\]
\[
= (\beta_h(A), \rho'_h, E(X_{\rho'}(h)T)\psi) = \hat{\beta}_h((A, \rho', E(T)\psi)),
\]
thus \(\hat{\beta}_g\) is well defined. Let \(i : A \mapsto (A, \iota, 1)\) be the inclusion of \(\mathcal{A}\) in \(\mathcal{F}\). Then \(\hat{\beta}_h \circ i = i \circ \beta_g\), thus \(\hat{\beta}_g\) extends \(\beta_g\). If \(F \in \mathcal{F}(O)\) then there exists a representation \(F = (A, \rho, \psi)\) with \(A \in \mathcal{A}(O)\) and \(\rho \in \Delta(O)\). Now it is evident from the definition that \(\hat{\beta}_h(F) \in \mathcal{F}(hO)\). That \(g \mapsto \hat{\beta}_g\) is a group homomorphism is obvious from the r.h.s. of Eqn. (50). Now,
\[
\hat{\beta}_g((A_1, \rho_1, \psi_1)(A_2, \rho_2, \psi_2)) = \hat{\beta}_g((A_1\rho_1(A_2), \rho_1\rho_2, \psi_1 \otimes \psi_2))
\]
\[
= (U(h)A_1\rho_1(A_2)\rho_2(h)^*, \rho_1\rho_2, \psi_1 \otimes \psi_2)
\]
\[
= (\beta_h(A_1)\rho_1,h(\beta_h(A_2))U(h)\rho_2(h)^*, \rho_1\rho_2, \psi_1 \otimes \psi_2)
\]
\[
= (\beta_h(A_1)\rho_1,h(\beta_h(A_2)))\rho_2(h), \rho_1\rho_2, \psi_1 \otimes \psi_2)
\]
\[
= (\beta_h(A_1)\rho_1,h(\beta_h(A_2)))\rho_2(h), \rho_1\rho_2, \psi_1 \otimes \psi_2)
\]
\[
= (U(h)A_1\rho_1(h)^* \rho_1(U(h)A_2\rho_2(h)^*), \rho_1\rho_2, \psi_1 \otimes \psi_2)
\]
\[
= (U(h)A_1\rho_1(h)^* \rho_1(U(h)A_2\rho_2(h)^*), \rho_1\rho_2, \psi_1 \otimes \psi_2)
\]
where the fifth equality is due to Eqn. (27). Thus \(\hat{\beta}_g\) is an algebra homomorphism.

Let \(\rho \in \Delta_{fc}\) and choose a conjugate \((\bar{\rho}, R, \bar{R})\). Since the trivial morphism \(\iota\) is covariant with \(X_\iota = \text{id}_\iota\), applying Eqn. (50) with \(T = R^* \in \text{Hom}(\bar{\rho}\rho, \iota)\) we get \(R^* = \beta_h(R^*)X_{\bar{\rho}}(h) = \beta_h(R^*)X_{\bar{\rho}}(h)\bar{\rho}(X_\rho(h))\), where we used Eqn. (27) again. This is equivalent to
\[
R^*\bar{\rho}(X_\rho(h)^*) = \beta_h(R^*)X_{\bar{\rho}}(h),
\]
which will be used below. Now we compute
\[
(\hat{\beta}_h(A, \rho, \psi))^* = (U(h)AU_\rho(h)^*, \rho, \psi)^*
\]
\[
= (R^*\bar{\rho}(U(h)AU_\rho(h)^*)^*, \bar{\rho}, J E(R^*)\psi)
\]
\[
= (R^*\bar{\rho}(U_\rho(h)A^*U(h)^*), \bar{\rho}, J E(R^*)\psi)
\]
\[
= (R^*\bar{\rho}(U_\rho(h)U(h)^*\beta_h(A^*)), \bar{\rho}, J E(R^*)\psi)
\]
\[
= (R^*\bar{\rho}(X_\rho(h)^*\beta_h(A^*)), \bar{\rho}, J E(R^*)\psi)
\]
\[
= (\beta_h(R^*)X_{\bar{\rho}}(h)\bar{\rho}(\beta_h(A))^*, \bar{\rho}, J E(R^*)\psi)
\]
\[
= (U(h)R^*U_\rho(h)^*\bar{\rho}(\beta_h(A))^*, \bar{\rho}, J E(R^*)\psi)
\]
\[
= (U(h)R^*\bar{\rho}(A)^*U_\rho(h)^*, \bar{\rho}, J E(R^*)\psi)
\]
\[
= \hat{\beta}_h((R^*\bar{\rho}(A)^*U_\rho(h)^*, \bar{\rho}, J E(R^*)\psi))
\]
\[
= \hat{\beta}_h((A, \rho, \psi)^*),
\]
thus $\hat{\beta}_h$ is a *-homomorphism. (In the sixth equality we used Eqn. (51).)

In view of
\[
\begin{align*}
\hat{\beta}_h((A, \rho, \psi)) &= (U(h)AU_\rho(h)^*, \rho, \psi) \\
\alpha_g((A, \rho, \psi)) &= (A, \rho, \pi_{E(\rho)}(g)\psi)
\end{align*}
\]

it is clear that $\hat{\beta}_h \circ \alpha_g = \alpha_g \circ \hat{\beta}_h$ for all $g \in G$, $h \in \hat{P}$. In view of $\pi \circ m = E_0 \circ \pi$, we have $\omega_0 \circ \beta_h \circ m = \omega_0 \circ m$. Thus the vacuum state of \mathcal{F} is \hat{P}-invariant, and \hat{P} is unitarily implemented in the GNS representation.

\[\blacksquare\]

10.5 Uniqueness of the field net

In the present section we have shown that, given a fiber functor $E : \Delta_f(\mathcal{A}) \to \mathcal{SH}$, there exists a field net with normal commutation relations that is complete, i.e. creates all representations in $\Delta_f(\mathcal{A})$ from the vacuum. We call this the Roberts field net and denote it by \mathcal{F}^R_E. We first consider the dependence of this construction on the functor E.

Proposition 279. Let $E_1, E_2 : \Delta_f \to \mathcal{H}$ be two fiber functors. Then the Roberts field nets $\mathcal{F}^R_{E_1}, \mathcal{F}^R_{E_2}$ constructed from them are unitarily equivalent.

Proof. By Theorem 373 from the appendix, there exists a unitary monoidal natural isomorphism $\alpha : E_1 \to E_2$. Based on this we define a map $\gamma : \mathcal{F}^R_{E_1} \to \mathcal{F}^R_{E_2}$ by $\gamma : (A, \rho, \psi) \mapsto (A, \rho, \alpha_\rho \psi)$. This makes sense since $\psi \in E_1(\rho)$ and $\alpha \in \text{Hom}(E_1(\rho), E_2(\rho))$. γ is well defined since, for $T \in \text{Hom}(\rho, \rho')$, we have
\[
\begin{align*}
\gamma(AT, \rho, \psi) &= (AT, \rho, \alpha_\rho \psi) \\
&= (A, \rho', E_2(T) \circ \alpha_\rho \psi) \\
&= (A, \rho', \alpha_\rho \circ E_1(T)\psi) \\
&= \gamma(A, \rho', E_1(T)\psi).
\end{align*}
\]

That γ is an algebra homomorphism follows from
\[
\begin{align*}
\gamma((A_1, \rho_1, \psi_1))\gamma((A_2, \rho_2, \psi_2)) &= (A_1, \rho_1, \alpha_{\rho_1, \psi_1})(A_2, \rho_2, \alpha_{\rho_2, \psi_2}) \\
&= (A_1\rho_1(A_2), \rho_1 \otimes \rho_2, \alpha_{\rho_1, \psi_1} \otimes \alpha_{\rho_2, \psi_2}) \\
&= (A_1\rho_1(A_2), \rho_1 \otimes \rho_2, \alpha_{\rho_1 \otimes \rho_2}(\psi_1 \otimes \psi_2)) \\
&= \gamma((A_1\rho_1(A_2), \rho_1 \otimes \rho_2, \psi_1 \otimes \psi_2)) \\
&= \gamma((A_1, \rho_1, \psi_1)(A_2, \rho_2, \psi_2)),
\end{align*}
\]

where we have used monoidality $\alpha_{\rho_1 \otimes \rho_2} = \alpha_{\rho_1} \otimes \alpha_{\rho_2}$ of α. Since an inverse can be obtained using the natural isomorphism α^*, γ is an isomorphism between the field algebras $\mathcal{F}^R_{0,1}$ and $\mathcal{F}^R_{0,2}$. It clearly respects the local structure, i.e. maps $\mathcal{F}^R_{0,1}(O)$ to $\mathcal{F}^R_{0,2}(O)$.

Next we claim that $m_2 \circ \gamma = \gamma \circ m_1$, where m_1, m_2 are the projections defined earlier. Namely,
\[
\begin{align*}
m_2 \circ \gamma((A, \rho, \psi)) &= m_2((A, \rho, \alpha_\rho \psi)) = (AP^\rho_\psi, \rho, \alpha_\rho \psi) = \\
\gamma((AP^\rho_\psi, \rho, \psi)) &= \gamma \circ m_1((A, \rho, \psi)).
\end{align*}
\]
This implies that the states $\omega_0 \circ m_1$ and $\omega_0 \circ m_2 \circ \gamma$ on $\mathcal{F}_{0,1}^R$ coincide, and therefore
the isomorphism $\gamma : \mathcal{F}_{0,1}^R \to \mathcal{F}_{0,2}^R$ extends to a unitary equivalence of the norm completions in the GNS representations.

In order to study an arbitrary complete normal field net \mathcal{F}, not a priori of the form $\mathcal{F}_{\mathbb{R}}^\| \|$, we use the following

Proposition 280. Let \mathcal{F} be a complete normal field net for the observable net \mathfrak{A}. Then there exists a strict tensor functor $E_\mathcal{F} : \Delta_f(\mathfrak{A}) \to S\mathcal{H}_f$ to the category of finite dimensional super Hilbert spaces. On the objects, $E_\mathcal{F}$ is given by the vector space

$$E_\mathcal{F}(\rho) := \{ F \in \mathcal{F} \mid F \pi_0(A) = \pi_0(\rho(A))F \ \forall A \in \mathfrak{A} \}.$$

The inner product is given by $\langle F', F'' \rangle 1 = F^* F'$ and the \mathbb{Z}_2-grading by the action of $k \in G$. For irreducible $\rho, \rho' \in \Delta_f$, we have $E(\epsilon(\rho, \rho')) = \pm \sum_{i,j} \psi_i \psi_j^* \psi_i^{\ast} \psi_j^{\ast}$, where $\{ \psi_i, i = 1, \ldots, d(\rho) \}$ and $\{ \psi'_i, i = 1, \ldots, d(\rho') \}$ are orthonormal bases of $E(\rho)$ and $E(\rho')$, respectively, and the minus sign appears iff ρ and ρ' are both fermionic.

Proof. (In this proof we write E instead of $E_\mathcal{F}$.) For $s \in \text{Hom}(\rho, \rho')$ we define $E(s) = \pi_0(s) \in \mathcal{F}$. For $F \in E(\rho)$ we have $\pi_0(s) F \pi_0(A) = \pi_0(\rho \circ s)(A) F = \pi_0(s \rho(A)) F = \pi_0(\rho'(A)s) F = \pi_0(\rho'(A)) \pi_0(s) F$ for all $A \in \mathfrak{A}$, thus $\pi_0(s) F \in E(\rho')$ and E is a functor. If $F, F' \in E(\rho)$ then $F^* F' \in \mathcal{F} \cap \mathfrak{A}' = C_1$, allowing us to define $\langle F', F'' \rangle 1 = F^* F'$. Let $s \in \text{Hom}(\rho, \rho')$ and $F \in E(\rho), F' \in E(\rho')$. Then

$$\langle F', E(s) F \rangle = \langle F', \pi_0(s) F \rangle = F'^* \pi_0(s) F = (\pi_0(s)^* F')^* F = (\pi_0(s^*) F', F') = \langle E(s^* F'), F' \rangle,$$

where we have used that π_0 is $*$-preserving, shows that E is $*$-preserving. By Section 9 we have $E(\rho) E(\rho') = E(\rho \otimes \rho')$. If $s_i \in \text{Hom}(\rho_i, \rho_i')$, $F_i \in E(\rho_i)$ then

$$E(S_1 \times S_2) F_1 F_2 = \pi_0(S_1 \rho_1(S_2)) F_1 F_2 = \pi_0(S_1) F_1 \pi_0(S_2) F_2 \in E(\rho_1 \otimes \rho_2'),$$

thus $E(S_1 \times S_2) = E(S_1) \otimes E(S_2)$, thus E is a strict tensor functor. Completeness of the field net together with the discussion in Section 9 implies that E is faithful and satisfies $\dim E(\rho) = d(\rho)$. (The latter follows also by Proposition 344 of the appendix.) Finally, let $F \in E(\rho), F' \in E(\rho')$ be of norm one. Now let $\rho, \rho' \in \Delta_f$, and let $\psi_i, i = 1, \ldots, d(\rho)$ and $\psi'_i, i = 1, \ldots, d(\rho')$ be orthonormal bases of $E(\rho)$ and $E(\rho')$, respectively. Then

$$\tilde{c}(\rho, \rho') = \sum_{i,j} \psi_i^{\ast} \psi_j \psi_i^{\ast} \psi_j^{\ast}$$

is in \mathcal{F}^G and independent of the chosen bases. Furthermore, $\tilde{c}(\rho, \rho') \in \text{Hom}(\rho \otimes \rho', \rho' \otimes \rho)$. The functoriality of E that was proven above implies that $\tilde{c}(\rho, \rho')$ is natural in both arguments. If now $\rho'' \in \Delta_f$ and $\psi_k, k = 1, \ldots, d(\rho'')$ is an
orthonormal basis in \(E(\rho'') \), then \(\{ \psi_j' \psi_k'' \} \) is an orthonormal basis in \(E(\rho' \otimes \rho'') \), thus

\[
\tilde{c}(\rho, \rho' \otimes \rho'') = \sum_{i,j,k} \psi_j' \psi_k'' \psi_j' \psi_k'' \psi_i^* \psi_i^* \\
= \sum_{i,j,m,k,l} \psi_m' (\psi_i'' \psi_j' \psi_i'' \psi_i'') \psi_m' (\psi_k' \psi_l' \psi_k' \psi_l') \\
= \text{id}_{\rho'} \otimes \tilde{c}(\rho, \rho'') \circ \tilde{c}(\rho, \rho') \otimes \text{id}_{\rho''},
\]

which is one of the braid relations. One easily sees that \(\tilde{c}(\rho, \rho') \tilde{c}(\rho', \rho) = 1 \), thus \(\tilde{c}(\cdot, \cdot) \) is a symmetry for the tensor category \(\Delta_f \). If \(\rho \) and \(\rho' \) are irreducible and localized spacelike to each other, the normal commutation relations of the corresponding fields imply that \(\tilde{c}(\rho, \rho) = \pm 1 \), where the minus sign occurs iff \(\rho \) and \(\rho'' \) are fermionic. Now, for irreducible \(\rho, \rho' \) define \(c(\rho, \rho') = \pm c(\rho, \rho') \), where we take the minus sign iff \(\rho \) and \(\rho' \) are fermionic, and extend \(c \) to reducible objects by naturality. Then \(c(\rho, \rho') = 1 \) whenever \(\rho, \rho' \) are localized spacelike. Now it follows from the uniqueness result Proposition 200 that \(E(\varepsilon(\rho, \rho')) = c(\rho, \rho') \). Thus \(E_\varepsilon \) is a symmetric tensor functor in the sense that it maps the symmetry \(\varepsilon \) of \(\Delta_f \) to the symmetry \(c \) of the category \(\mathcal{H} \) of Hilbert spaces. Equivalently, \(E \) is a symmetric tensor functor into the category of super Hilbert spaces equipped with the symmetry \(\tilde{c} \).

Thus every complete normal field net \(\mathcal{F} \) gives rise to a strict symmetric \(*\)-preserving fiber functor \(E_\varepsilon \). Denoting by \(\mathcal{F}_{E_\varepsilon}^R \) the Roberts field net associated to the latter, our aim is to construct an isomorphism \(\mathcal{F} \simeq \mathcal{F}_{E_\varepsilon}^R \).

THEOREM 281. Let \(\mathcal{F} \) be a complete normal field net for \(\mathfrak{A} \) and \(E_\varepsilon : \Delta_f \to \mathcal{SH} \) the fiber functor from Proposition 280. Then there is a unitary equivalence \(\mathcal{F}_{E_\varepsilon} \to \mathcal{F} \) of field nets.

Proof. By Proposition 280, there is a symmetric \(*\)-preserving fiber functor \(E_\varepsilon : \Delta_f \to \mathcal{SH} \). By the concrete Tannaka theorem (Theorem 377 of the appendix), the compact group \(G_{E_\varepsilon} \) of unitary monoidal natural transformations of \(E \) is unitarily represented on the spaces \(E_\varepsilon(\rho) \). On the other hand, the compact group \(G \) coming with our field net \(\mathcal{F} \) also acts on these spaces, providing a homomorphism \(G \to G_{E_\varepsilon} \). This homomorphism is injective since \(G \) is concretely given as a group of unitaries on the Hilbert space \(H \) where \(\mathcal{F} \) lives. It is also surjective, since otherwise \(\pi|\mathfrak{A} \) would contain representations that are not in \(\Delta_f \), contradicting the assumption that \(\mathcal{F} \) is a complete field net. Thus the given group \(G \) can be identified with the one reconstructed from the fiber functor \(E_\varepsilon \). For every \(\sigma \in \widehat{G} \) we define a projection \(E_\sigma \) on \(\mathcal{F} \) as in Definition 274. We denote by \(\mathfrak{F}_0 \) the algebraic direct sum \(\bigoplus_{\sigma \in \widehat{G}} E_\sigma(\mathcal{F}) \), which is the same as \(\{ F \in \mathcal{F} \mid E_\sigma(F) = 0 \text{ for almost all } \sigma \in \widehat{G} \} \).

We now define a map \(\gamma : \mathfrak{F}_{E_\varepsilon,0} \to \mathcal{F} \) by \(\gamma : (A, \rho, \psi) \mapsto \pi_0(A) \psi \). At first sight, this formula looks strange, but it makes perfect sense since \(\psi \in E_\varepsilon(\rho) \),
where $E_\mathcal{F}(\rho)$ by definition is a subspace of \mathcal{F}. As usual, γ is well defined since, for $T \in \text{Hom}(\rho, \rho')$,

$$
\gamma((AT, \rho, \psi)) = \pi_0(AT)\psi = \pi_0(A)E_\mathcal{F}(T)\psi = \gamma((A, \rho', E_\mathcal{F}(T)\psi)).
$$

Furthermore,

$$
\gamma((A_1, \rho_1, \psi_1)(A_2, \rho_2, \psi_2)) = \gamma((A_1\rho_1(A_2), \rho_1\rho_2, \psi_1 \otimes \psi_2)) = \pi_0(A_1\rho_1(A_2))\psi_1\psi_2
= \pi_0(A_1)\psi_1\pi_0(A_2)\psi_2 = \gamma((A_1, \rho_1, \psi_1))\gamma((A_2, \rho_2, \psi_2)),
$$

where we have used $\psi_1 \in E_\mathcal{F}(\rho_1) = \{F \in \mathcal{F} \mid F\pi_0(A) = \pi_0(\rho(A))F\}$. Thus γ is an algebra homomorphism. This, together with $(A, \rho, \psi) = (A, \iota, 1)(1, \rho, \psi)$ implies that γ is a $*$-homomorphism provided $\gamma(F^*) = \gamma(F)^*$ for $F = (1, \rho, \psi)$. Now, using the $*$-operation on \mathcal{F}^R defined in Proposition 263, we have

$$
\gamma((1, \rho, \psi)^*) = \gamma((R^*, \overline{\rho}, (JE(\overline{R}^*)))\psi)) = \pi_0(R^*)\gamma(JE(\overline{R}^*)\psi).
$$

On the other hand, $\gamma((1, \rho, \psi)^*) = \psi^*$; thus γ is a $*$-homomorphism provided $\psi^* = R^*(JE(\overline{R}^*))\psi$ holds for all $\psi \in E(\rho)$.

Now, for any $\overline{\psi} \in E(\overline{\rho})$, we have $R^*\overline{\psi}\rho(A) = R^*\overline{\rho}(A)\psi = AR^*\psi$, thus $(R^*\overline{\psi})^* \in E(\rho)$. Applying this to $\overline{\psi} = JE(\overline{R}^*)\psi \in E(\overline{\rho})$, we see that $\psi^* = R^*(JE(\overline{R}^*))\psi$ holds iff $\psi^*\overline{\psi}' = R^*(JE(\overline{R}^*)\psi)\psi'$ for all $\psi' \in E(\rho)$.

By Proposition 344 of the Appendix, $(E(\rho), E(\overline{R}), E(\overline{\rho}))$ is a conjugate of $E(\rho)$ in the category of Hilbert spaces. (Or super Hilbert spaces. This doesn’t matter since we don’t use the symmetry.) Thus there are bases $\{e_i\}, \{f_i\}$ of $E(\rho)$ and $E(\overline{\rho})$, respectively, with dual bases $\{\overline{e}_i\}, \{\overline{f}_i\}$ in $E(\overline{\rho}), E(\overline{\rho})$ such that

$$
E(\rho) = \sum_i f_i \otimes e_i, \quad E(\overline{R}) = \sum_i e_i \otimes f_i, \quad E(\overline{R})^* = \sum_i \overline{f}_i \otimes \overline{e}_i, \quad E(\overline{\rho})^* = \sum_i \overline{e}_i \otimes \overline{f}_i.
$$

Thus, for $\psi \in E(\rho), \overline{\psi} \in E(\overline{\rho})$, we have

$$
(JE(\overline{R}^*)\psi, \overline{\psi}) = \left(\sum_i \overline{e}_i \otimes \overline{f}_i\right) (\psi \otimes \overline{\psi}) = \sum \overline{e}_i(\psi) \overline{f}_i(\psi)
$$

and therefore $JE(\overline{R}^*)\psi = \sum_i \overline{e}_i(\psi) f_i$. Thus

$$
E(\overline{R})^*((JE(\overline{R}^*)\psi) \otimes \psi') = \left(\sum_i \overline{f}_i \otimes \overline{e}_i\right)\left(\sum_j \overline{e}_j(\psi) f_j \otimes \psi'\right) = \sum \overline{e}_i(\psi) \overline{e}_i(\psi') = \langle \psi, \psi' \rangle.
$$

Now, in \mathcal{F}, the left hand side equals $R^*(JE(\overline{R}^*)\psi)\psi'$ and the right hand side equals $\psi^*\psi'$, proving the desired identity $\psi^* = R^*(JE(\overline{R}^*))\psi$.

Now, for $(A, \rho, \psi) \in \mathcal{F}_R^{E_{\mathcal{F},0}}$ is is clear that $\gamma((A, \rho, \psi))$ is contained in a finite dimensional G-stable subspace of \mathcal{F} and thus in \mathcal{F}_0. Every $F \in \mathcal{F}_0$ is a sum of finitely many terms of the form $E_\sigma(F)$ with $\sigma \in \widehat{G}$. Picking an irreducible
subspace \(H_\sigma \) of isometries in \(\mathcal{F}_0 \) transforming according to the class \(\sigma \), there is an endomorphism \(\rho \in \Delta_f \) induced by the subspace \(H_\sigma \). Since every \(F \in \mathcal{E}_\sigma(\mathcal{F}) \) is a linear combination \(\sum_i A_i \psi_i \) with \(A_i \in \mathcal{A}, \psi_i \in H_\sigma \), we have \(F = \gamma(\sum_i (A, \rho, \psi_i)) \), proving \(\gamma(\mathcal{F}_E^R_{\mathcal{F}_0,0}) = \mathcal{F}_0 \).

Let \((A, \rho, \psi) \in \mathcal{F}_0^R \). By construction of \(\mathcal{F}_0 \), we have a finite sum representation \((A, \rho, \psi) = \sum_i (A_i, \rho_i, \psi_i) \), where the \(\rho_i \) are irreducible and mutually non-isomorphic. Now \(\gamma((A, \rho, \psi)) = \sum_i A_i \psi_i \), where the spaces \(E(\rho_i) \subset \mathcal{F} \) transform under mutually inequivalent irreducible representations of \(G \). Thus \(\gamma((A, \rho, \psi)) = 0 \) iff \(A_i \psi_i = 0 \) for all \(i \). isometries transforming according to a representation in the class \(\sigma \). Since by harmonic analysis, every \(F \in \mathcal{F} \) has a unique representation of the form \(F = \sum_\sigma A_\sigma, i \psi_i^\sigma \), this implies that for each \(i \) we have \((A_i, \rho_i, \psi_i) = 0 \). Thus \(\gamma \) is injective.

We have thus proven that \(\gamma : \mathcal{F}_E^R_{\mathcal{F},0} \to \mathcal{F}_0 \) is an isomorphism. Since the vacuum state \(\omega_0^\mathcal{F} = (\Omega, \cdot, \Omega) \) of \(\mathcal{F} \) is by assumption gauge invariant, the states \(\omega_0^\mathcal{F} \circ \gamma \) and \(\omega^\mathcal{F}_E \circ \gamma \) on \(\mathcal{F}_E^R_{\mathcal{F},0} \) coincide, implying that the completed nets are unitarily equivalent in their GNS representations.

COROLLARY 282. Every complete normal field net \(\mathcal{F} \) is unitarily equivalent to a Roberts field net \(\mathcal{F}_E^R \), where it doesn't matter which fiber functor \(E \) we use.

NOTE 283. As promised, we return to the issue of strictness of the functor \(F : \mathcal{C} \to S\mathcal{H}_f \) that was assumed in the construction of the field net, but not proven in the appendix. In the latter, we constructed a non-strict fiber functor, i.e. a functor \(E : \mathcal{C} \to S\mathcal{H}_f \) together with natural isomorphisms \(d^E_{\rho, \rho'} : E(\rho) \otimes E(\rho') \to E(\rho \otimes \rho') \) and \(e^E : 1_{S\mathcal{H}} \to E(\iota_{\Delta}) \) satisfying Eqns. (56), (57). The construction of the (algebraic) field algebra \(\mathcal{F}_0 \) in Subsection 10.2 can easily be generalized to this situation: The product of fields is defined by

\[
(A_1, \rho_1, \psi_1)(A_2, \rho_2, \psi_2) := (A_1 \rho_1(A_2), \rho_1 \otimes \rho_2, d^E_{\rho_1, \rho_2}(\psi_1 \otimes \psi_2))
\]

and the unit is \((1, \iota, e^E_{1_C})\). Now associativity and the unit property are obvious consequences of Eqns. (56), (57). The rest of the constructions and proofs goes through as before, just carrying the unitaries \(d^E, e^E \) along. An interesting consequence of this and of Proposition 280 is that we can prove the existence of a strict fiber functor \(E' : \Delta_f \to S\mathcal{H}' \), where \(S\mathcal{H}' \) is a strictification of the category of finite dimensional super Hilbert spaces. This is consistent with strictification results in category theory. (Strictification of tensor categories is nicely treated in [Kassel, 1995, Chap. XI], but for strictification of tensor functors the best reference remains [Joyal and Street, 1993a, Sect. 1].)

10.6 Further relations between \(\mathcal{A} \) and \(\mathcal{F} \), and a Galois interpretation

In Section 9 we have discussed at length the structure of the superselection sectors of a net \(\mathcal{A} \) of observables in relation to the harmonic analysis of the action of a (global) gauge group on a field net \(\mathcal{F} \). Note that we did not claim that all
DHR representations of the fixed point net $\mathcal{A} = \mathcal{F}^G$ are connected to the vacuum representation by the fields in \mathcal{F}. In order to see that this is in general false, consider a theory \mathcal{A} with non-trivial DHR-category and take $\mathcal{F} := \mathcal{A}$ as 'field net', acted upon by the trivial group $G = \{e\}$. Obviously, all DHR representations of \mathcal{A} are not created by the action of \mathcal{F} on H_0. In the special case where \mathcal{F} is Bosonic and itself satisfies all the requirements on an observable net, it may have non-trivial DHR sectors. Restricting a DHR representation π of \mathcal{F} with $d(\pi) < \infty$ to \mathcal{A}, one obtains a DHR representation of \mathcal{A} of the same dimension, which therefore decomposes into a finite direct sum of irreducibles. If π is irreducible and inequivalent to the vacuum representation π_0 of \mathcal{F}, then all the irreducible representations of \mathcal{A} obtained in this way are disjoint from those contained in $\pi_0|\mathcal{A}$. We refrain from a further analysis of this issue. We do, however, wish to point out that one can specify conditions on a net \mathcal{F} implying that all DHR representations of \mathcal{A} are contained in $\pi_0|\mathcal{A}$. This involves the net-cohomology or local 1-cohomology developed by J.E. Roberts and reviewed, e.g., in [Roberts, 1990, §3.4]. We refrain from even attempting to give precise statements and only say the following: If \mathcal{F} has 'quasi-trivial 1-cohomology' and is acted upon by a compact group G of global gauge symmetries, then the equivalent (by Proposition 206) categories $\text{DHR}_f(\mathcal{A}) \simeq \Delta_f(\mathcal{A})$ are equivalent, as symmetric tensor categories to Rep_fG. In [Buchholz et al., 1992] it is shown, e.g., that the theory of a free massive scalar field has quasi-trivial 1-cohomology. Thus, if one takes \mathcal{F} to be the direct product of N copies of such fields (of the same mass) then $SO(N)$ acts on \mathcal{F}. Therefore, $\Delta_f(\mathcal{A}) \simeq \text{Rep}_fG$ whenever $G \subset SO(N)$ is a closed subgroup and $\mathcal{A} = \mathcal{F}^G$. In [Doplicher and Piacitelli, 2002] this observation is combined with a limit construction to prove that every (second countable) compact group arises as a DHR gauge group. In a similar fashion, one shows that if \mathcal{F} is the theory of a massive Fermion with its canonical $\mathbb{Z}/2$-symmetry, then $\Delta_f(\mathcal{F}^{\mathbb{Z}/2}) \simeq \text{Rep}_f\mathbb{Z}/2$.

There are results in the opposite direction, i.e. from the superselection structure of \mathcal{A} to that of \mathcal{F}. By [Doplicher and Roberts, 1990, Theorem 3.6], which we have not covered entirely in Section 9, the field net reconstructed in [Doplicher and Roberts, 1990] and in Section 10 above satisfies 'twisted Haag duality'. In particular, if \mathcal{A} has no Fermionic representations then \mathcal{F} satisfies Haag duality. In this case, one can study the categories $\text{DHR}(\mathcal{F})$ or $\Delta(\mathcal{F})$. In [Conti et al., 2001], the following has been proven:

Theorem 284. Let \mathcal{A} be a net of observables such that there are at most countably many DHR representations of finite dimension, all of which are Bosonic. Then the complete field net \mathcal{F} has no non-trivial DHR representations of finite dimension.

Rather than trying to comment on the many other known results related to those treated in the preceding sections, we close this section by commenting on a very satisfactory mathematical interpretation of DHR/DR theory. We are referring to the evident analogy between this theory and the Galois theory of algebraic field extensions. (It should be clear that in the latter context, by 'field'
we mean the algebraic structure of which \(\mathbb{Q}, \mathbb{R}, \mathbb{C} \) are examples, not the theory of classical or quantum fields.) A field \(\mathbb{F} \) in the latter sense is called algebraically closed if every polynomial \(P(x) \) with coefficients in \(\mathbb{F} \) has a zero in \(\mathbb{F} \). (\(P \) then is a product of linear factors \(x - a \).) Every field \(\mathbb{F} \) is a subfield of an essentially unique algebraically closed field \(\overline{\mathbb{F}} \) that is an algebraic extension of \(\mathbb{F} \). The latter means that \(\overline{\mathbb{F}} \) is obtained by adjoining, typically transitively, solutions of polynomial equations to \(\mathbb{F} \). The group \(G_{\mathbb{F}} = \text{Aut}_{\mathbb{F}}(\overline{\mathbb{F}}) \) is compact, and one has a bijective correspondence between intermediate fields \(\mathbb{F}' \subset \overline{\mathbb{F}}, \mathbb{F}' \supset \mathbb{F} \) and closed subgroups \(H \subset G \). (The correspondence is given by \(H \mapsto \overline{\mathbb{F}}^H, \mathbb{F}' \mapsto \text{Aut}_{\mathbb{F}'}(\overline{\mathbb{F}}). \)) A similar Galois correspondence holds in AQFT, cf. e.g. [Conti et al., 2001; Carpi and Conti, 2001]. In view of Theorem 284, the construction of the complete DR field net is entirely analogous to that of the algebraic closure and can be considered as the passage to a simpler or better behaved theory. Conversely, just as taking the fixed field of an algebraically closed field \(\mathbb{F} \) under the action of a closed subgroup \(G \subset \text{Aut}\mathbb{F} \) will result in an algebraically non-closed field \(\mathbb{F}^G \), taking the \(G \)-fixed subnet of a net \(\mathcal{F} \) with trivial category \(\Delta_f(\mathcal{F}) \) (more precisely, quasi-trivial 1-cohomology) will result in a net with non-trivial category \(\Delta_f(\mathcal{A}) \). Thus the `complication' manifested by a non-trivial DHR-category \(\Delta_f(\mathcal{A}) \) indicates that the theory \(\mathcal{A} \) `really' is just a subtheory of a simpler one.

Physically, however, it is not at all clear whether the `observable' net \(\mathcal{A} = \mathcal{F}^G \) with its non-trivial representation category \(\Delta_f(\mathcal{A}) \) or the `field net' \(\mathcal{F} \) with trivial \(\Delta_f(\mathcal{F}) \) but non-trivial global symmetry group \(G \) is more fundamental – at least when \(\mathcal{F} \) is Bosonic. In [Haag, 1996] it is argued that the `right' description of the physical situation should be in terms of a net without any global symmetries. (On the other hand, in [Haag, 1996, Section III.4.2] one finds a tentative postulate on a `good' net \(\mathcal{A} \) of observables that implies triviality of \(\Delta_f(\mathcal{A}) \).) As the above discussion shows, it will be very hard to find a theory that has both a trivial DHR category \(\Delta_f \) and trivial global symmetry group! The theory of a single free massive Bose field is one of the rare examples.) Whether or not one subscribes to these views, from a mathematical point of view, both nets \(\mathcal{A} \) and \(\mathcal{F} \) contain the same amount of information. This equivalence is in fact a useful tool, since it permits to view many problems from different angles. For example, while a spin statistics theorem can be proven in a `field' framework, its physical interpretation may be clearer in the `observable' setting.

10.7 Spontaneous symmetry breaking

So far, our entire analysis has presupposed the axiom of Haag duality for the theory \(\mathcal{A} \). Haag duality played an important rôle in our analysis of the category \(\Delta(\mathcal{A}) \), but is needed also to establish the equivalence between the \(\Delta(\mathcal{A}) \) and the representations satisfying the a priori physically motivated DHR criterion (Definition 204). Thus, while it seems that the study of DHR representations is physically motivated also for non-Haag dual nets, our mathematical analysis soon gets stuck. We will therefore briefly comment on an approach to resolve this issue, which turns
out to have a profound physical interpretation.

DEFINITION 285. Let $O \mapsto \mathcal{A}(O)$ be a net of von Neumann algebras on a vacuum Hilbert space H_0. The **dual net** \mathcal{A}^d of \mathcal{A} is the assignment $O \mapsto \mathcal{A}(O')'$.

If we have $O_1 \subset O_2$ then $O_2' \subset O_1'$, thus $\mathcal{A}(O_2') \subset \mathcal{A}(O_1')$, and therefore $\mathcal{A}^d(O_1) \subset \mathcal{A}^d(O_2)$. Thus the dual net really satisfies isotony. Microcausality of \mathcal{A} is equivalent to $\mathcal{A}(O) \subset \mathcal{A}(O') = \mathcal{A}^d(O)$, or briefly $\mathcal{A} \subset \mathcal{A}^d$, and Haag duality of \mathcal{A} is equivalent to $\mathcal{A} = \mathcal{A}^d$. If $\mathfrak{A}_1 \subset \mathfrak{A}_2$ (in the sense of an inclusion for every O) then $\mathfrak{A}_2^d \subset \mathfrak{A}_1^d$, thus $\mathfrak{A} \subset \mathfrak{A}^{dd}$, and a standard argument shows $\mathfrak{A}^d = \mathfrak{A}^{dd}$. Note, however, that microcausality of \mathcal{A} does not imply microcausality of \mathcal{A}^d! This motivates the following

DEFINITION 286. A net $O \mapsto \mathcal{A}(O) \subset B(H_0)$ satisfies **essential duality** if both \mathcal{A} and the dual net \mathcal{A}^d (both indexed by double cones) satisfy microcausality.

LEMMA 287. If \mathcal{A} satisfies essential duality then $\mathcal{A}^d = \mathcal{A}^{dd}$, i.e. \mathcal{A}^d satisfies Haag duality.

NOTE 288. Essential duality can be difficult to verify. Fortunately, essential duality follows from **wedge duality**, to wit $\mathcal{A}(W')' = \mathcal{A}(W)$ for all wedge regions (the regions obtained from the standard wedge $W_0 = \{x \in \mathbb{R}^{1+\sigma} \mid x_0 \geq |x_1|\}$ by Poincaré transformations). Besides being much easier to verify than essential duality, wedge duality is a very fundamental property that might well be required of any ‘reasonable’ QFT.

Assuming that \mathcal{A} satisfies essential duality, \mathcal{A}^d satisfies Haag duality and the D(H)R analysis applies to it. Thus we obtain a symmetric tensor $*$-category with conjugates $\Delta_f^d(\mathcal{A}) := \Delta_f(\mathcal{A}^d) \simeq DHR_f(\mathcal{A}^d)$, and we can construct the complete DR field net \mathfrak{F} associated with $(\mathcal{A}^d, \Delta_f(\mathcal{A}^d))$. One thus has an inclusion $\mathcal{A} \subset \mathcal{A}^d \subset \mathfrak{F}$ of nets. The DR gauge group acts on \mathfrak{F} and we have $\mathfrak{F}^G = \mathfrak{F}^d$ and also $G = \text{Aut}_{\mathfrak{F}^d}(\mathfrak{F})$. Since the group G is implemented by unitaries that leave the vacuum vector fixed, G consists of ‘unbroken symmetries’. One can now define a larger group

$$\hat{G} = \text{Aut}_{\mathfrak{F}}(\mathfrak{F})$$

and topologize it suitably. Now $G \subset \hat{G}$ consists precisely of the elements of \hat{G} that are unitarily implemented. The point is that the net \mathcal{A} acts irreducibly on H_0, thus a unitary whose adjoint action leaves all algebras $\mathcal{A}(O)$ pointwise fixed must be a multiple of the identity also on \mathcal{A}^d.

Concerning the categories associated with \mathcal{A}, little can be said about the category $\Delta(\mathcal{A})$, but Roberts proved the existence of an extension functor $K : DHR(\mathcal{A}) \to DHR(\mathcal{A}^d)$ such that $K(\pi)|\mathcal{A} = \pi$ for every $\pi \in DHR(\mathcal{A})$, cf. [Roberts, 1990, §3.4]. (Again, a crucial rôle is played by the theory of local 1-cohomology. Furthermore, this result breaks down in less than three spacetime dimensions due to the phenomenon of solitonic representations.) This functor actually is an equivalence, thus spontaneous symmetry breakdown doesn't manifest itself in the superselection structure.
For the detailed analysis we refer to [Roberts, 1974; Roberts, 1990] and the remarkable paper [Buchholz et al., 1992], in which the Goldstone phenomenon is analyzed in the context of algebraic QFT.

Notes: DHR superselection theory originates in a four-paper series: [Doplicher et al., 1969a] starts with a field algebra and gauge group and then derives properties of the superselection sectors. [Doplicher et al., 1969b] reconstructs the field algebra and gauge group from the category of representations in the special case where the objects are all one dimensional (i.e. the equivalence classes of objects of Δ_f form an abelian group with the monoidal product and conjugates as inverses). [Doplicher et al., 1971] defines the symmetry $\varepsilon_{\rho_1,\rho_2}$, and uses it to give the statistical classification of objects of Δ.

For surveys of DHR theory in general, see [Roberts, 1970; Roberts, 1990; Roberts, 2004; Fredenhagen, 1992; Fredenhagen, 1994], [Araki, 1999, Ch. 6], and [Haag, 1996, Ch. IV.2].

The full proof of the DR reconstruction theorem is distributed over [Doplicher et al., 1974; Doplicher and Roberts, 1972; Doplicher and Roberts, 1989] and [Doplicher and Roberts, 1990]. The alternative approach to the reconstruction theorem that we use in this paper is based on [Roberts, ND] and [Deligne, 1990], incorporating simplifications of the latter due to [Bichon, 1998] and ourselves.

For informal expositions of the DR reconstruction theorem, see [Doplicher and Roberts, 1987; Doplicher, 1991; Doplicher, 1992; Doplicher, 1993; Doplicher, 1995]. For an interesting description of the goal of reconstructing fields and a gauge group, written before a solution was obtained, see [Roberts, 1975].

11 FOUNDATIONAL IMPLICATIONS OF THE RECONSTRUCTION THEOREM

We now return to the foundational questions (Section 7) that motivated our investigation. We also point out a few other cases where discussions in the philosophical literature (e.g. about permutation symmetry and the identity of particles) might benefit from the study of superselection theory.

11.1 Algebraic Imperialism and Hilbert Space Conservatism

DHR superselection theory sheds light on some questions that philosophers have asked about the role of inequivalent representations of the algebra of observables. But it will not answer all of our questions. We first bracket off those questions for which DHR theory provides little help, and then we proceed to develop a case for the relevance of DHR theory to foundational questions.

The DHR analysis requires that we fix a vacuum state ω_0, and hence a base representation (\mathcal{H}_0, π_0). Inequivalent DHR representations do not correspond to different vacuua; rather, they correspond to different local excitations of one and the same vacuum state. So, DHR theory effectively ignores the question of how to choose a vacuum representation. (But note that the power of the DHR analysis
strongly suggests — against the Algebraic Imperialist — that representations are essential components of the physical content of the theory.)

Second, in some of the most familiar cases — e.g., the free Boson field — the DHR category is trivial. That is, $DHR(\mathfrak{A}) = \{\pi_0\}$, and so $\mathfrak{F} = \mathfrak{A}$. In this case, the vacuum representation is the only DHR representation (relative to itself). Thus, in such cases, the elaborate apparatus of DHR superselection theory seems to provide little insight into the physical importance of inequivalent representations. (However, if we are able to find a physical reason for choosing a preferred vacuum representation, then the DHR analysis suggests that no other representations are relevant for explaining the phenomena.)

Finally, even in cases where $DHR(\mathfrak{A})$ is nontrivial, the field algebra itself has inequivalent representations. (After all, it’s just another large C^*-algebra.) And one might worry that the same Conservative versus Imperialist debate will arise with respect to the field algebra.

But DHR theory has something to say about inequivalent DHR representations, and about representations of the field algebra. First, the field algebra \mathfrak{F} is constructed concretely as operators on a Hilbert space \mathcal{H}; i.e. \mathfrak{F} comes with a preferred representation. (Recall that the preferred representation of \mathfrak{F} is on a Hilbert space \mathcal{H} that decomposes into a direct sum of superselection sectors for \mathfrak{A}.) Of course, we could consider other representations of \mathfrak{F}. But in other representations of \mathfrak{F}, we no longer have the intuitive interpretation of elements of \mathfrak{F} as intertwiners between the DHR sectors of \mathfrak{A}. If the physically meaningful quantities have to have some connection to observable phenomena, then the interpretation of elements of \mathfrak{F} in terms of \mathfrak{A} might be thought to be a necessary condition for interpretation; and so the given representation of \mathfrak{F} might be preferred for these reasons.

So, DHR theory suggests that the issue of inequivalent representations does not come up for the field algebra. Regarding the issue of inequivalent representation of the observable algebra, we can divide the problem into several questions:

1. Is there a physically privileged vacuum state/representation? What features pick it out?

2. Are all physical representations in the DHR category of some vacuum state? (We are ignoring for the time being theories with long range forces (see [Buchholz and Fredenhagen, 1982]). In more general settings, we expect the form of the question to remain the same: do we require physical states to be reachable from a fixed vacuum state by the action of an appropriate set of fields?)

3. If the answer to the second question is No, then how should we compare representations that are not connected to a vacuum representation by fields to representations that are?

Let’s suppose that the first question has been answered in the affirmative, and that the vacuum representation (\mathcal{H}_0, π_0) is fixed. Suppose also that $DHR(\mathfrak{A})$ is
nontrivial. Then how should we think about the inequivalent representations in $DHR(\mathcal{A})$? A naive transcription of Hilbert Space Conservatism to the current context would tell us the following: the representations in $DHR(\mathcal{A})$ are analogous to competing theories: one is correct, and the others are surplus structure. The naive transcription of Algebraic Imperialism to the current context would say: the representations in $DHR(\mathcal{A})$ are surplus structure; the physical content of the theory is in \mathcal{A}, the abstract algebra of observables.

Both Conservatism and Imperialism are based on an oversimplified view of the formalism: it is supposed that the elements of reality correspond to operators in the abstract algebra or in some Hilbert space representation thereof, and that the possible states are either all states on the abstract algebra or some particular folium of states. But the fundamental insight of DHR theory is that the set of representations itself has structure, and it is this structure that explains phenomena. So, a more adequate position would take all the representations more seriously. Hence, we propose that according to Representation Realism, the content of the theory is given by: (i) the net $O \mapsto \mathcal{A}(O)$, (ii) the dynamics on the quasilocal algebra (i.e. the representation of the translation group in $\text{Aut}(\mathcal{A})$), and (iii) the symmetric tensor \ast-category $DHR(\mathcal{A})$ of DHR representations.

Recall that the Conservative claims to have the advantage in terms of explanatory power: more structure (provided by choosing a representation) provides more elements of reality, and so more satisfying explanations. But DHR superselection theory shows that this claimed advantage is misleading: the focus on one representation ignores the most interesting structure, namely the relations between representations. Indeed, if we committed ourselves to one representation, and ignored others, we would have no field operators, no gauge group, no definition of Bose and Fermi fields, no definition of antiparticles, etc..

And yet there is a strong *prima facie* objection to Representation Realism: since the Hamiltonian is always an observable, no possible dynamical evolution can take us from a state in one representation to a state in an inequivalent representation. So, inequivalent representations are dynamically isolated from each other, and abstract relations between them cannot explain the features of states in the representation that best describes our universe.

The fact that the Hamiltonian is an observable — hence cannot map states from one sector to states in another — raises a further problem for our interpretation of field operators. Recall that we speak of "creating" states in a sector \mathcal{H}_ρ by acting on the vacuum with elements from the field algebra. That is, we can choose $F \in \mathcal{H}_\rho \subseteq \mathcal{F}$ such that $F\Omega \in \mathcal{H}_\rho$, where $(\mathcal{H}_\rho, \pi_\rho)$ is disjoint from the vacuum representation (\mathcal{H}_0, π_0). The talk of "creation" here suggests that we are talking about some sort of dynamical process. On the one hand, $F \in \mathcal{F}$ can be chosen unitary, so structurally the map $\Omega \mapsto F\Omega$ looks like dynamics. But since the Hamiltonian is an observable, the transition $\Omega \mapsto F\Omega$ is not dynamically allowable. So, in what sense are states in \mathcal{H}_ρ accessible from the vacuum? Is the key insight behind superselection rules that there are two notions of dynamic accessibility? If so, then how are we to understand the differences between these two notions?
11.2 Explanatory relations between representations

If we consider a C*-algebra \(\mathfrak{A} \) with no further structure, then the mathematically definable relations between representations (and hence, between states in the folia of these representations) are exhausted by the following table:

<table>
<thead>
<tr>
<th>(\pi_1) and (\pi_2) are equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_1) and (\pi_2) are quasiequivalent</td>
</tr>
<tr>
<td>(\pi_1) and (\pi_2) are disjoint</td>
</tr>
<tr>
<td>(\pi_1) and (\pi_2) are weakly equivalent</td>
</tr>
</tbody>
</table>

Table 1. Relations Between Representations of \(\mathfrak{A} \)

Outside of the fourth relation (which makes special reference to the topology of the state space), these relations are precisely those that can be defined in an arbitrary \(*\)-category \(\mathcal{C} \) with subobjects. Two objects \(X, Y \) in \(\mathcal{C} \) are equivalent if there is a unitary \(u \in \text{Hom}(X, Y) \); are quasiequivalent if there is an isometry \(v \in \text{Hom}(X, Y) \); and are disjoint just in case they are not quasiequivalent.

Consider now the normal state space \(K \) of a C*-algebra \(\mathfrak{A} \). The GNS theorem provides a map \(\omega \mapsto (\mathcal{H}_\omega, \pi_\omega) \) from \(K \) into the representation category of \(\mathfrak{A} \). We then use this map to induce relations corresponding to those in Table 1 on \(K \): we talk about equivalent, quasiequivalent, and disjoint states. Furthermore, the individual folia (sets of states whose GNS representations are quasiequivalent) have a rich geometrical structure which corresponds exactly to the normal state space of \(\mathfrak{B}(\mathcal{H}) \) for some Hilbert space \(\mathcal{H} \). Thus, within a folium we have a notion of "transition probability" between pure states (corresponding to rays in \(\mathcal{H} \)), and a three place relation "\(\omega \) is a superposition of \(\omega_1 \) and \(\omega_2 \)." However, if two states lie in disjoint folia, then these relations trivialize. The transition probability between disjoint states is zero, and no state can be a superposition of states from a different folia. It seems that the only physically suggestive thing we can say about states from different folia is that they are "orthogonal."

It is precisely the preceding considerations that have lead philosophers to worry about inequivalent representations. The worry is based on the fact that disjoint representations seem to be competitors, and nothing more. In order to alleviate worries about the competition between representations, some philosophers [Clifton and Halvorson, 2001a; Halvorson, 2004] go so far as to claim that these representations are "complementary" descriptions of the phenomena (in the sense of Bohr). The word "complementarity" is of course meant to suggest that the representations are not merely competitors, and the choice of one does not need to be seen as completely ruling out the relevance of another.

We wish to replace suggestive — and possibly misleading — terminology with some real facts about the relationships between inequivalent representations. To illustrate what we mean by this, consider the case of group representations: let \(\text{Rep}_f G \) be the category of unitary representations of a compact group \(G \). \(\text{Rep}_f G \) is
not only a \(*\)-category, but it has a monoidal product and conjugates. That is, for objects \(X, Y\) in \(\text{Rep}_f G\), there is a product object \(X \otimes Y\), and a conjugate object \(\bar{X}\). For our purposes, this is the crucial difference between group representations and the representations of an arbitrary \(C^*\)-algebra \(\mathcal{A}\). For an arbitrary \(C^*\)-algebra \(\mathcal{A}\), there is no product of representations, or conjugate of a representation.

In the case of compact group representations, typically \(X \in \text{Rep}_f G\) will be disjoint from both \(X \otimes Y\) and \(\bar{X}\). But in this case, we are not tempted to see \(X\) as merely a competitor of \(X \otimes Y\), or of \(\bar{X}\); there are some interesting relations between these representations. Roughly speaking, information about \(X\) gives us information about \(X \otimes Y\) and \(\bar{X}\). Thus, although these representations are technically “disjoint,” they are not completely unrelated to each other.\(^5\)

One of the main accomplishments of the DHR analysis and DR reconstruction theorem is to show that the category \(\Delta_f\) of physical representations is a tensor \(*\)-category with conjugates; indeed the Embedding Theorem (see the Appendix) shows that \(\Delta_f\) is equivalent to the category \(\text{Rep}_f G\) for some compact group \(G\). The obvious question then is whether these additional relations on the category of representations can help us get past the idea that disjoint representations are merely competing descriptions.

An analogy to states might be helpful. Consider a pair \(H_1, H_2\) of Hilbert spaces, and let \(\psi_i \in H_i\) be unit vectors. Now consider the following two “descriptions of reality”:

1. The state is \(\psi_1\).
2. The state is \(\psi_1 \otimes \psi_2\).

What do we say here: are these competing descriptions? In one sense, (1) and (2) are competitors, because they cannot both be fully adequate descriptions of reality at the same time. However, (1) and (2) are not competitors in the same sense that, say, two orthogonal vectors in a single Hilbert space are competitors. The two state descriptions are not merely competitors, because there is an interesting sense in which \(\psi_1\) is a “part” of \(\psi_1 \otimes \psi_2\). Indeed, information about \(\psi_1\) (e.g. expectation values it assigns to observables) does in fact give us information about \(\psi_1 \otimes \psi_2\) because of the canonical mappings between \(H_1\) and \(H_1 \otimes H_2\).

Now let \(\pi_1, \pi_2\) be objects in the DHR category \(\Delta_f\), and suppose (as will often be the case) that the representations \(\pi_1\) and \(\pi_1 \otimes \pi_2\) are disjoint. Are these competing descriptions? Again, \(\pi_1\) and \(\pi_1 \otimes \pi_2\) are competitors in the sense that if the state of an object (or of the universe?) is in \(\mathcal{H}_{(\pi_1 \otimes \pi_2)}\) then it is not in \(\mathcal{H}_{\pi_1}\). Nonetheless, \(\pi_1\) and \(\pi_1 \otimes \pi_2\) are not merely competitors, because in one sense \(\pi_1\) is “part” of \(\pi_1 \otimes \pi_2\).

\(^5\)But note also: Philosophers of physics have so far not worried about inequivalent group representations as competing descriptions of reality. And for good reason, because group elements are not observables, and groups do not have states. Another insight of DHR theory is to show that physicist’s intuitions about group representations are not totally baseless, because in fact the interesting (DHR) representations of the observable algebra correspond to representations of a compact group.
But two words of caution should be issued here. First, we must be cautious
with the use of the "part" metaphor. For example, Δ_f can have a nontrivial rep-
resentation π such that $\pi \otimes \pi$ is equivalent to the vacuum representation. Then it
is not so clear that we should say that "π is part of $\pi \otimes \pi$." Second, there is one
significant disanology between the case of states ψ_1 and $\psi_1 \otimes \psi_2$ and the case of
representations π_1 and $\pi_1 \otimes \pi_2$: the two representations are GNS representations
of states on a single C^*-algebra \mathcal{A}. Hence we can directly compare the expectation
values that these states assign to observables in \mathcal{A}, and they will disagree signifi-
cantly (indeed, for any $\varepsilon > 0$ there is an observable $A \in \mathcal{A}$ such that $\|A\| \leq 1$ and
$\|\omega_1(A) - \omega_2(A)\| > 2 - \varepsilon$). Thus, there is a clear, empirically verifiable sense in
which states in π_1 are competitors with states in $\pi_1 \otimes \pi_2$.

Finally, there is an interesting physical relation between a DHR representation π
and its conjugate $\overline{\pi}$, even though π and $\overline{\pi}$ are typically disjoint. In short, $\overline{\pi}$ is like an
inverse of π: if π is irreducible, then $\overline{\pi}$ is the unique irreducible representation such
that $\pi \otimes \overline{\pi}$ contains a copy of the vacuum representation. In fact, when $\pi = \pi_0 \circ \rho$
where ρ is a dimension 1 element of Δ_f, $d(\rho) = 1$, then this is the exact relation:
ρ is an automorphism and $\overline{\rho} = \rho^{-1}$. In terms of field operators, if F creates the
charge ξ, then \overline{F} annihilates the charge ξ. Furthermore, when π admits a particle
interpretation, then the states in the folium of $\overline{\pi}$ are the antiparticle states of the
states in the folium of π [Doplicher et al., 1969b].

11.3 Fields as theoretical entities, as surplus structure

From the standpoint of superselection theory, there is a sharp distinction between
observable and unobservable fields, namely, a field operator is an observable iff it is
invariant under all gauge transformations. To what extent does this distinction
between fields and observables match up with the philosopher of science's distinc-
tion between theoretical and observational components of a theory? Even if the
two notions are not exactly the same, the connection is suggestive. In particular,
it seems interesting to ask about the extent to which the field plus gauge part of
QFT is fixed by the observable algebra.

First, the notion of equivalent systems of field operators seems a fairly close
analogue of the philosopher's notion of "theoretical equivalence."

DEFINITION 289. Let $\mathfrak{F}_1 = (\mathfrak{F}_1, \mathcal{H}_1, G_1)$ and $\mathfrak{F}_2 = (\mathfrak{F}_2, \mathcal{H}_2, G_2)$ be local field
systems with gauge symmetry for (\mathcal{A}, ω). (See Defn. 247 on p. 808.) Then \mathfrak{F}_1 and
\mathfrak{F}_2 are theoretically equivalent just in case they are unitarily equivalent as systems
of local field operators. (See Defn. 10 on p. 816.)

REMARK 290. (i) This definition is not fully adequate, because it does not make
reference to dynamics. For example, this definition entails that the free Bose field
nets for different positive masses are theoretically equivalent. For a fully adequate
definition, it would probably be necessary to require that the unitary mapping
$W : \mathcal{H}_1 \to \mathcal{H}_2$ also intertwines the dynamical groups on the two Hilbert spaces. (ii)
If \mathfrak{F}_1 and \mathfrak{F}_2 are theoretically equivalent, then they are equivalent in all physically
relevant senses (modulo dynamics): they have the same type of commutation
relations (either both have normal or abnormal commutation relations), they have isomorphic gauge groups, etc..

The working analogy also suggests that we define "observational equivalence" between two theories in terms of some equivalence between their nets of observable algebras. There are a myriad number of ways we could explicate the notion of observational equivalence in this setting; philosophers have their work cut out for them. The following two definitions give extremely weak notions of observational equivalence that do not take into account a representation of the algebra of observables.

DEFINITION 291. Let \mathcal{F}_1 and \mathcal{F}_2 be two local field systems with gauge symmetry, and let \mathfrak{A}_1 and \mathfrak{A}_2 be the fixed point algebras; i.e.,

$$\mathfrak{A}_i = \{ A \in \mathcal{F}_i : \alpha_g(A) = A, \text{ for all } g \in G_i \}.$$

Then we say that \mathcal{F}_1 and \mathcal{F}_2 are weakly observationally equivalent just in case there is a \ast-isomorphism α from the algebra \mathfrak{A}_1 onto the algebra \mathfrak{A}_2.

DEFINITION 292. Let \mathcal{F}_1 and \mathcal{F}_2 be two local field systems with gauge symmetry, and let \mathfrak{A}_1 and \mathfrak{A}_2 be their fixed point nets; i.e. for each double cone O,

$$\mathfrak{A}_i(O) = \{ A \in \mathcal{F}_i(O) : \alpha_g(A) = A, \text{ for all } g \in G_i \}.$$

Then we say that \mathcal{F}_1 and \mathcal{F}_2 are observationally equivalent just in case there is a net isomorphism $\alpha : \mathfrak{A}_1 \rightarrow \mathfrak{A}_2$ (see Defn. 118 on p. 767).

REMARK 293. The first definition is weaker because it does not require that the net structure be preserved by the \ast-isomorphism α.

Again, the definitions omit reference to dynamics, which would be an important component of a fully adequate treatment of observational equivalence. Nonetheless, even with these definitions, we can make some sense of remarks about underdetermination of fields by observables, or about the physical equivalence of different field theories.

1. (Construction of observationally equivalent theories) The DR reconstruction theorem provides a general, nontrivial recipe for constructing non-equivalent theories that are observationally equivalent: If (\mathfrak{A}, ω_0) has nontrivial DHR superselection sectors, then it can be embedded into two nonequivalent field algebras \mathcal{F}_1 and \mathcal{F}_2. Indeed, \mathfrak{A} is always a field algebra over itself (but incomplete), but the field algebra \mathcal{F} from the DR reconstruction theorem is complete.

2. (Elimination of parafields) It has long been thought that parafields are a theoretical artifact. More precisely, it has been claimed that every parafield theory is "physically equivalent" to a theory with normal commutation relations (see [Araki, 1961]). The DR reconstruction theorem partially validates this claim by showing that every parafield theory is observationally equivalent to a theory with normal commutation relations. Indeed, suppose that
\mathcal{F}_1 is a parafield theory. Then we can extract the observable algebra \mathcal{A} contained in \mathcal{F}_1, and apply the DR reconstruction theorem to construct a field algebra \mathcal{F}_2 with normal commutation relations. Since \mathcal{F}_1 and \mathcal{F}_2 have the same net of local observable algebras, they are observationally equivalent.

3. Some have claimed that the relation between quantum fields (the field algebra \mathcal{F}) and observables (the observable algebra \mathcal{A}) is analogous to relation between coordinates and a manifold in differential geometry. However, the DR reconstruction theorem shows that (subject to normal commutation relations), there is a unique field net \mathcal{F} and gauge group G compatible with the observable algebra (\mathcal{A}, ω_0). Thus, there is a strong disanalogy between the two cases, since there seems to be no sense in which one coordinate system of a manifold is a better representation of reality than another coordinate system.

Finally, we are in a position to get a clear picture of the interrelations between questions about inequivalent representations and questions about gauge invariance.

According to a common interpretive stance, if two states of a physical system can be identified under a gauge symmetry, then those two states are different descriptions of the same underlying reality. So, for the purposes of counting states, we should look to the quotient of the state space under gauge orbits. Similarly, it is thought that the "real" quantities of a theory are the gauge invariant quantities (see [Earman, 2004]).

In the setting of DHR superselection theory, the algebra of observables \mathcal{A} is precisely the gauge invariant part of the field algebra \mathcal{F}, that is,

$$\mathcal{A} = \{ A \in \mathcal{F} : \alpha_g(A) = A, \text{ for all } g \in G \},$$

where G is the gauge group. This of course means that for any observable $A \in \mathcal{A}$, there is no difference between a state ψ and the gauge transformed state $U(g)\psi$. (Of course, if ψ is a state vector in the vacuum representation, then $U(g)\psi = \psi$, since the representation of the gauge group there is trivial.) So, if the common interpretive stance is correct, the physical content of the theory is in the observable algebra \mathcal{A}; the fields are "descriptive fluff."

So suppose that we ignore the field algebra \mathcal{F}, and just look to the observable algebra \mathcal{A} to provide the physical content of the theory. But what should we say about the representations of \mathcal{A}? Are they just descriptive fluff? If not, then is there one correct representation of \mathcal{A}, or do we somehow need inequivalent representations in order to account for all of the physical facts?

The DR reconstruction theorem shows that the preceding two sets of questions — regarding the status of gauge variant quantities on the one hand, and representations on the other hand — are tightly intertwined. The full structure of the theory, field algebra \mathcal{F} and gauge group G, is uniquely recoverable (modulo completeness, and normal commutation relations) from the structure of the category $DHR(\mathcal{A})$ of representations. The ontological significance of the gauge variant fields
is closely aligned with the ontological significance of inequivalent representations. (We will revisit this question in the next section when we discuss permutation symmetry.)

Of course, there is a crucial disanalogy between the global gauge symmetries in DHR superselection theory, and the local gauge symmetries of electromagnetism or general relativity. But it is not clear that this disanalogy makes the DR reconstruction theorem any less interesting for understanding the relation between gauge symmetry and superselection rules.

11.4 Statistics, permutation symmetry, and identical particles

Philosophers have taken an active interest in the differences between the Maxwell-Boltzmann statistics of classical physics, and the Bose-Fermi statistics of quantum physics. Indeed, it has been provocatively claimed that Bose-Fermi statistics is explained by permutation invariance — i.e. there are no physical differences between states with permuted particle labels — and that this entails that quantum particles are not "individuals" in the same sense that classical particles are. (See [French, 2000; French and Rickles, 2003] for an account of the argument.)

But such discussions can be hampered by an overly simplistic formalism. In particular, states are usually identified with unit vectors (or at best with rays) in a single Hilbert space, and no account is given of the status of non-permutation invariant operators. It might be helpful then to look at the issue from the perspective of a more flexible formalism that allows a distinction between fields and observables, and in which states can be represented by vectors in inequivalent representations of the algebra of observables.

There is another reason why the issue of permutation invariance should be revisited within the context of QFT. Some of the literature suggests that the metaphysical problem about the individuality of particles is aufgehoben in the transition to QFT, because: (i) QFT is about fields and not particles, and (ii) the Fock space formalism of QFT already identifies permuted states, and so rules out a notion of particles as individuals. We have already noted that it is not so clear how to make sense of the idea that QFT is about fields as opposed to particles. Furthermore, the DR reconstruction theorem shows precisely how to make sense of non-permutation invariant quantities and states in a theory that is manifestly permutation invariant.

It is not surprising that DHR theory is relevant for the issue of permutation invariance and statistics: one of the original goals of DHR was to clarify the role of statistics in QFT. Riding the crest of a wave of mathematical success, Roberts made the following bold claim about the DHR analysis of statistics:

One of the insights provided by the study of superselection sectors concerns the origin of what is termed the 'statistics' of a particle. ... Now just as a theory should determine its particle states so should it determine the statistics of these particles. Ordinary quantum mechanics ignores this challenge saying in effect that the statistics of particles is
one of the parameters determining the theory, the one telling you what
symmetry the \(n\)-particle states have. QFT does a little better: it says
that the statistics of the particles in the theory is determined by the
commutation relations of fields at spacelike separations. . . . In adopt-
ing the philosophy that the local observables determine the theory, we
are forced to meet this challenge in full. [Roberts, 1976, p. 203]

In the remainder of the paper from which the quote is taken, Roberts shows how
Bose-Fermi particle statistics emerges naturally from the DHR analysis of physical
representations of the algebra of observables.

Roberts’ claim is of crucial relevance to the philosophical debate about statistics
and identical particles. The philosophers have asked, “what explains Bose-Fermi
statistics?” Roberts’ answer is that the explanation comes from the structure of
the category of representations of the observable algebra.

Let us recall then how the Bose-Fermi distinction is supposed to emerge from
the DHR analysis. In Section 8.3, an object \(\rho\) of the category \(\Delta\) is shown to
have an intrinsic dimension \(d(\rho)\). The dimension is finite iff \(\rho\) has a conjugate; in
this case we define a unitary operator \(\Theta_\rho \in \text{End}(\rho)\) called the twist of \(\rho\). If \(\rho\) is
irreducible, then \(\Theta_\rho = \omega_\rho \text{id}_\rho\) where \(\omega_\rho = \pm 1\). We then stipulate that a “Bosonic”
object is one with \(\omega_\rho = 1\) and a “Fermionic” object is one with \(\omega_\rho = -1\).

Of course, \(\rho\) is not the sort of thing that the philosophers have been calling
Bosonic or Fermionic — it is not a wavefunction. To connect the two pieces of
formalism, recall that an object of \(\Delta_f\) (endomorphisms of the algebra of observ-
able) corresponds to a representation \(\pi_0 \circ \rho\) of the algebra of observables. So,
we call the representation \(\pi_0 \circ \rho\) Bosonic when \(\rho\) is Bosonic, and Fermionic when \(\rho\) is Fermionic. Finally, we then call a state (“wavefunction”) Bosonic if it is in
the folium of a Bosonic representation, and Fermionic if it is in the folium of a
Fermionic representation. The claims to be assessed are: (i) does this stipulative
definition adequately reproduce the distinction between Bosonic and Fermionic
wavefunctions made in elementary nonrelativistic QM; and if so, (ii) what does
this tell us about permutation invariance?

The Bose-Fermi distinction in nonrelativistic QM

In nonrelativistic QM, the state space of \(n\) identical particles is the tensor product
\(H \otimes \cdots \otimes H\) of \(n\) copies of a Hilbert space \(H\). The Hilbert space \(H \otimes \cdots \otimes H\) is
spanned by product states, i.e. states of the form

\[
\psi_1 \otimes \cdots \otimes \psi_n,
\]

with \(\psi_1, \ldots, \psi_n \in H\).

DEFINITION 294. We define the natural action of the permutation group \(S_n\) on
\(H \otimes \cdots \otimes H\) as follows. Let \(\{\psi_1, \ldots, \psi_m\}\) be an orthonormal basis for \(H\), and
define for each permutation \(\sigma\),

\[
U(\sigma)(\psi_{i_1} \otimes \cdots \otimes \psi_{i_m}) = \psi_{\sigma(i_1)} \otimes \cdots \otimes \psi_{\sigma(i_m)},
\]
and extend \(U(\sigma) \) by linearity to all of \(H \).

If \(\dim H > 1 \), then the representation \(U \) of \(S_n \) is reducible. It contains copies of the two one-dimensional representations of \(S_n \), namely the identity representation \(S_n \to 1 \), and the alternating representation. The subspace of vectors of \(H \otimes \cdots \otimes H \) transforming according to the identity representation is called the symmetric subspace, and the subspace of vectors transforming according to the alternating representation is called the antisymmetric subspace. Vectors in the symmetric subspace are called Bosonic, and vectors in the antisymmetric subspace are called Fermionic. These traditional definitions have served as the basis of discussions of permutation invariance in the philosophical literature.

In QM, states of \(n \) particles that differ only by permuting labels — for example, \(\psi_1 \otimes \psi_2 \) versus \(\psi_2 \otimes \psi_1 \) — should not be counted separately. For the purposes of statistical weighting, these two symbols represent one state. This has been stated as the principle of Permutation Invariance.

Permutation Invariance (PI): Let \(\mathcal{A} \) be the observables for the \(n \) particle system. Then for each state \(\psi \), and for each permutation \(\sigma \in S_n \), we have

\[
\langle U(\sigma)\psi, AU(\sigma)\psi \rangle = \langle \psi, A\psi \rangle.
\]

Permutation Invariance is sometimes also called the **Indistinguishability Postulate:** two states that differ by a permutation are indistinguishable (i.e. there is no measurement that can distinguish between the two). It has been claimed that PI entails that state has Bose or Fermi statistics, no states with "parastatistics" are allowed.

Dichotomy: For each state vector \(\psi \) and permutation \(\sigma \), we have \(U(\sigma)\psi = \pm \psi \).

(See [van Fraassen, 1991, pp. 389ff] for an account of attempts to prove Dichotomy from PI. See [Butterfield, 1993] for further details.) In other words, the states that are not in the symmetric or antisymmetric subspaces are surplus structure.

This leaves us with a number of puzzles. First, what do we say about the vectors in \(H \otimes \cdots \otimes H \) that are not in the symmetric or antisymmetric subspaces? Are they surplus structure? Are they possibilities that are contingently not realized in nature? More generally, not all vectors in \(H \otimes \cdots \otimes H \) are of a definite symmetry type; and even among those that are of a definite symmetry type, not all are totally symmetric or totally antisymmetric. For any irreducible representation \(\xi \) of \(S_n \) we say that a wavefunction \(\psi \) in \(H \otimes \cdots \otimes H \) is of symmetry type \(\xi \) just in case \(\psi \) is contained in the subspace corresponding to the representation \(\xi \). Then \(H \otimes \cdots \otimes H \) is the direct sum of subspaces of definite symmetry type vectors. But now the principle of plenitude suggests that there should be particles of every symmetry type. Why do we not see them?
An intrinsic characterization of symmetric and antisymmetric subspaces

We began with the full n-particle Hilbert space $H \otimes \cdots \otimes H$, and then we reduced to the symmetric and antisymmetric subspaces. We were then left wondering what to do with the remaining elements of $H \otimes \cdots \otimes H$.

The intrinsic description of the symmetric and antisymmetric subspaces is that they are representations of the group S_n. (In fact, they are quasiequivalent to the one dimensional irreducible representations of S_n.) So we can also work backwards. That is, if we are given a representation (H, π) of S_n, we can ask after the intrinsic characterization of this representation. Recall that the irreducible representations of S_n are in one-to-one correspondence with Young tableaux with n boxes (see [Simon, 1996]). There is a natural grouping of representations of S_n into para-Bose and para-Fermi categories: we specify the representation (H, π) by a pair of numbers $(d(\pi), \omega_\pi)$, with $d(\pi) \in \{1, 2, \ldots, n\}$ and $\omega_\pi = \pm 1$.

1. For $(d, +1)$, all Young tableaux whose columns have length less than or equal d. (In this case, we say that π has Para-Bose statistics of order d.)

2. For $(d, -1)$, all Young tableaux whose rows have length less than or equal d. (In this case, we say that π has para-Fermi statistics of order d.)

Clearly the division of representations into para-Bose and para-Fermi is mutually exclusive, but not exhaustive. (e.g., there are representations of S_n that contain copies of both the 1 representation and the alternating representation.)

Now suppose that we are in the following position (described vividly by Roberts in the opening quote): we are given a pure state ω of the algebra of observables \mathcal{A} and we asked whether its "intrinsic" statistics of its states is Bosonic or Fermionic. What can we do? First we construct the GNS representation (\mathcal{H}, π) induced by ω. At least this makes things more concrete. But the Hilbert space \mathcal{H} is not itself a tensor product, and so there is no natural representation of S_n on \mathcal{H}. Nor would it help to construct tensor products of elements of \mathcal{H} in the normal way, because for $\psi \otimes \cdots \otimes \psi$ is trivially Bosonic. So, the obvious approach does not seem to tell us anything about the intrinsic symmetry type of elements of \mathcal{H}.

The key insight again comes from the DHR analysis: the representation (\mathcal{H}, π) is naturally isomorphic to an object ρ of a symmetric tensor $*$-category, namely the category Δ_f of localized transportable endomorphisms. Since Δ_f has products we can construct $\rho \otimes \rho$, and the symmetry $\epsilon_{\rho, \rho}$ gives us notion of permuting $\rho \otimes \rho$. [Recall that $\epsilon_{\rho, \rho} \in \text{Hom}(\rho \otimes \rho)$]. As we will see in the following section, this gives us a natural representation u of S_n in $\text{End}(\rho \otimes \rho)$. Furthermore, the pair $(d(\rho), \omega_\rho)$, where $d(\rho)$ is the dimension of ρ, and ω_ρ is the statistical phase of ρ, coincide with the classification of u as a para-Bose or para-Fermi representation of S_n. We will also see that this natural representation u of S_n corresponds to a permutation of wavefunctions in the "larger" Hilbert space of the field algebra \mathcal{F}.
Representations of S_n in a symmetric tensor $*$-category

Unitary representations of the permutation group S_n arise naturally in tensor $*$-categories with a unitary symmetry. Let $(\mathcal{C}, \otimes, 1)$ be a tensor $*$-category with unitary symmetry $c_{X,Y}$. Fix an object $X \in \text{Obj}(\mathcal{C})$, and define a map $u : S_2 \to \text{End}(X \otimes X)$ by setting

$$u((1)) = \text{id}_X \otimes X, \quad u((1, 2)) = c_{X,X}.$$

Since $(c_{X,X})^2 = \text{id}_X \otimes X$, u is a unitary representation of S_2 in $\text{End}(X \otimes X)$. This construction can be iterated: define a map $u : S_n \to \text{End}(X \otimes \cdots \otimes X)$ by setting

$$u((i, i + 1)) = \text{id}_X \otimes \cdots \otimes c_{X,X} \otimes \cdots \otimes \text{id}_X.$$

It is easy to verify that u extends uniquely to a unitary representation of S_n in $\text{End}(X \otimes \cdots \otimes X)$.

FACT 295. Let \mathcal{C} be a tensor $*$-category with unitary symmetry and conjugates. Then for each irreducible object $X \in \text{Obj}(\mathcal{C})$ the induced unitary representation u of S_n in $\text{End}(X \otimes \cdots \otimes X)$ is para-Bose of order $d(X)$ if $\omega_X = +1$, and is para-Fermi of order $d(X)$ if $\omega_X = -1$. Furthermore, the statistical phase ω_X is the trace of $u((1, 2)) = c_{X,X}$. (See Appendix B for more details.)

The physical interpretation becomes more clear in the presence of field operators. (Of course, the point of the Reconstruction Theorem is to show that such field operators are always available.) Let $(\mathcal{H}, \mathfrak{F}, (G, k))$ be a field system with gauge symmetry for the observable algebra \mathfrak{A} and vacuum state ω. Let O_1, \ldots, O_n be mutually spacelike separated regions. Let ρ be an irreducible object in Δ_f. Then using the transportability of ρ we can choose $F_i \in \mathfrak{F}(O_i)$ such that $F_i \Omega$ is in the sector \mathcal{H}_ρ. (Recall that sectors are labeled by unitary equivalent classes $\hat{\rho}$ of objects in Δ_f.) In other words, F_i creates the charge $\hat{\rho}$ in the region O_i. Let σ be a permutation of $\{1, \ldots, n\}$ and consider the following two state vectors in \mathcal{H}:

\begin{align*}
(52) \quad \psi_1 \times \psi_2 \times \cdots \times \psi_n & \equiv F_1 F_2 \cdots F_n \Omega, \\
(53) \quad \psi_{\sigma(1)} \times \psi_{\sigma(2)} \times \cdots \times \psi_{\sigma(n)} & \equiv F_{\sigma(1)} F_{\sigma(2)} \cdots F_{\sigma(n)} \Omega.
\end{align*}

These two vectors are typically distinct. In fact, if the field net has normal commutation relations then we can compute the difference between the two vectors. Supposing that σ only permutes two numbers, the two vectors will be the same if ρ is Bosonic, and the two vectors will differ by a sign if ρ is Fermionic. However, the two vectors always induce the same state on the algebra of observables $\pi(\mathfrak{A})$. Indeed, if $\rho_i \in \Delta_f(O_i)$ are the corresponding morphisms, then the states induced by the two vectors, respectively, are

\begin{align*}
(54) \quad \omega \circ (\rho_1 \otimes \rho_2 \otimes \cdots \otimes \rho_n) & = \omega \circ (\rho_1 \rho_2 \cdots \rho_n), \\
(55) \quad \omega \circ (\rho_{\sigma(1)} \otimes \rho_{\sigma(2)} \otimes \cdots \otimes \rho_{\sigma(n)}) & = \omega \circ (\rho_{\sigma(1)} \rho_{\sigma(2)} \cdots \rho_{\sigma(n)}).
\end{align*}

Since endomorphisms that are localized in spacelike separated regions commute, these two states are equal. Thus, permutation invariance holds for the observables, but not for the fields.
The interpretive upshot of the the DHR treatment of statistics is as follows: permutation invariance is a gauge symmetry in the sense that it leaves all observables' values invariant, but changes the values assigned to field operators. Are two states related by a permutation the same or different? Of course, the answer to the mathematical question is clear: the states of the observable algebra are the same, the states of the field algebra are different. So, whether or not we take permutations to correspond to "real" changes depends on what we think about the status of the field operators. So the issue of permutation invariance is just a special version of the issue of gauge invariance, and accordingly is tightly connected to the question of the status of inequivalent representations.

Parastatistics and nonabelian gauge groups

The abstract Tannaka Theorem (Appendix B) shows that each symmetric tensor *-category (STC*) \(\mathcal{C} \) is equivalent to the representation category \(\text{Rep}_f(G, k) \) of a compact supergroup \((G, k) \). Applied to our current topic, the theorem shows that the category \(\Delta_f \) of localized transportable morphisms is equivalent to the representation category of the gauge group. Furthermore, Section B.9 shows that each object \(X \) of an STC* gives rise naturally to a unitary representation of the symmetric group \(S_n \) in \(\text{End}(X \otimes \cdots \otimes X) \), and this representation corresponds to the intrinsic statistical characterization of \(X \). Now, we know that the categorical dimension of a representation \((H, \pi) \) of \((G, k) \) corresponds to the dimension of the underlying Hilbert space \(H \). Hence:

LEMMA 296. The category \(\text{Rep}_f(G, k) \) has irreducible objects of dimension greater than 1 iff \(G \) is nonabelian.

Sketch of proof. The set of irreducible representations of \(G \) separates the elements of \(G \). Hence for \(gh \neq hg \), there is an irreducible representation \((H, \pi) \) such that \(\pi(g)\pi(h) \neq \pi(h)\pi(g) \). Therefore \(\dim H \geq 2 \).

It immediately follows from Fact 295, in conjunction with the fact that the embedding functor preserves dimension, that:

PROPOSITION 297. There is an irreducible object \(X \) of \(\mathcal{C} \simeq \text{Rep}_f(G, k) \) with parastatistics iff the corresponding group \(G \) is nonabelian.

Applied to our current case, this means that there are representations and states with parastatistics iff the gauge group \(G \) is nonabelian. But we have good reasons to think that the case of nonabelian gauge groups is physically relevant. So, the DHR approach ignores worries about the supposed nonexistence of paraparticle states, and undermines claims that there is a proof of Dichotomy.

\[^6 \text{But there is an ambiguity in "parastatistics." We mean para-Bose or para-Fermi statistics, not mixtures of Bose and Fermi statistics.} \]
Braid group statistics

Recall from Section 8.1 that when spacetime is dimension 2, then \(\varepsilon_{\rho_1,\rho_2} \) is not necessarily a symmetry on \(\Delta_f \), but only a braiding. In this case, objects in \(\Delta_f \) are not classified according to representations of the symmetric group \(S_n \); rather, objects in \(\Delta_f \) are classified in terms of representations of the braid group \(B_n \). In physical terms, states might not be permutation invariant, but satisfy the more general braid group statistics.

DEFINITION 298. The braid group \(B_n \) on \(n \) strands is the group generated by the set \(\{\sigma_1, \ldots, \sigma_{n-1}\} \) satisfying the equations

\[
(1) \quad \sigma_i \sigma_j = \sigma_j \sigma_i, \quad |i - j| \geq 2, \\
(2) \quad \sigma_{i+1} \sigma_i \sigma_{i+1} = \sigma_i \sigma_{i+1} \sigma_i.
\]

The braid group on \(n \) strands can be given the following heuristic, geometric description: a braid consists of two sets \(\{a_1, \ldots, a_n\} \) and \(\{b_1, \ldots, b_n\} \) of base points, and \(n \) strands of yarn, where each yarn strand has one end attached to \(a_i \), and the other end attached to \(b_j \), and each base point touches only one strand of yarn. We identify two configurations if one can be transformed into the other without disconnecting the strands from the base points. In this picture, the identity braid has \(a_i \) connected to \(b_i \), and no twists. The generating element \(\sigma_i \) can be thought of as the simple braid where: \(a_i \) is connected to \(b_{i+1} \), \(a_{i+1} \) is connected to \(b_i \), and these two strands are twisted only once. (Otherwise, the \(\sigma_i \) braid looks just like the identity braid.) Under this interpretation, the product \(gh \) of two braids is the braid formed by attaching the ending points of \(g \) to the beginning points of \(h \).

PROPOSITION 299. For each \(n \in \mathbb{N} \), the mapping

\[
\varepsilon^{(n)}_{\rho}(\sigma_i) = \rho^{i-1}(\varepsilon_{\rho}) = I_\rho \times \cdots \times I_\rho \times \varepsilon_{\rho} \times I_\rho \times \cdots \times I_\rho,
\]

defines a unitary representation of the braid group \(B_n \) in \(\text{End}(\rho \otimes \cdots \otimes \rho) \). For each \(i, j \in \mathbb{N} \) with \(i \leq j \) we have

\[
\varepsilon^{(i)}_{\rho}(g) = \varepsilon^{(j)}_{\rho}(\varphi_{ij}(g)), \quad \forall g \in S_i.
\]

(A proof of this Proposition can be found in [Rehren et al., 1990]. Alternatively, it is obvious given the considerations in Appendix B.) In other words, the product object \(\rho \otimes \cdots \otimes \rho \) carries a unitary representation of the braid group, which is induced by the unitary operators of the form:

\[
I_\rho \times \cdots \times \varepsilon_{\rho,\rho} \times \cdots \times I_\rho.
\]

This represents an elementary permutation of the \(i \)-th and \((i+1) \)-st copy of \(\rho \).

There is a natural homomorphism of the braid group onto the symmetric group. This is obvious when we recall that the definition of the symmetric group is exactly
the same as the definition of the braid group with the additional condition that each generator is its own inverse. Hence, van Dyck's theorem [Hungerford, 1980, p. 78] entails that the obvious map f on generators extends uniquely to a group homomorphism $\bar{f} : B_n \to S_n$. So, each representation π of S_n yields a representation $\pi \circ \bar{f}$ of B_n. In slogan form: a system that obeys permutation statistics also obeys braid statistics.

Recall now the worrisome argument for the existence of paraparticles: There should be particles corresponding to all irreducible representations of S_n. For $n \geq 3$, there are non Bose or Fermi representations of S_n, so there should be paraparticles.

Now we can see that either something is wrong with this argument, or the problem is much more severe than we thought. Since any system that has S_n as a symmetry group also has B_n as a symmetry group, the argument commits us to predicting the existence of particles corresponding to all irreducible representations of B_n. But B_n has infinitely many irreducible representations. (Indeed, its representations have so far resisted classification.) Furthermore, we could now repeat the argument for any group K that can be mapped homomorphically onto B_n, and there is an infinite chain of larger groups with this property. Therefore, the principle of plenitude applied to group representations predicts more particles than we could ever possibly describe.

Notes: For discussions of statistics of DHR representations, see [Roberts, 1976; Doplicher, 1975].

ACKNOWLEDGEMENTS

HH wishes to thank: Michael Müger for teaching him about the Doplicher–Roberts Theorem; the editors for their helpful feedback and patience; and David Baker, Tracy Lupher, and David Malament for corrections. MM gratefully acknowledges financial support by NWO via the Pioneer grant no.616.062.384 of N. P. Landsman and thanks Julien Bichon for a critical reading of the appendix and useful comments.

BIBLIOGRAPHY

Appendix.

Abstract Duality Theory for Symmetric Tensor ∗-Categories

(by Michael Müger)

The aim of this appendix is to give a proof of Theorem 389, first proved by S. Doplicher and J. E. Roberts in 1989, according to which every symmetric tensor ∗-category with conjugates, direct sums, subobjects and \(\text{End} \, \mathbf{1} = \mathbb{C} \) is equivalent to the category of finite dimensional unitary representations of a uniquely determined compact supergroup. Not much of this material is new, but Theorem 403 probably is, and see Remark 434. However, this seems to be the first exposition of the reconstruction theorem for symmetric tensor categories that gives complete and streamlined proofs, including a short and transparent proof of Tannaka’s classical theorem. In the first section we provide the necessary concepts and results of category theory to the extent that they don’t involve the notion of fiber functor, whereas the second section is concerned with the Tannaka theory proper. Our main reference for category theory is [Mac Lane, 1998], preferably the second edition. The reader having some experience with categories is advised to skip directly to Section B, using Section A as a reference when needed.

A CATEGORICAL PRELIMINARIES

A.1 Basics

DEFINITION 300. A category \(\mathcal{C} \) consists of:

- A class \(\text{Obj} \, \mathcal{C} \) of Objects. We denote the objects by capital letters \(X, Y, \ldots \).

- For any two objects \(X, Y \) a set \(\text{Hom}_\mathcal{C}(X,Y) \) of arrows (or morphisms); we write \(f : X \to Y \) to indicate that \(f \in \text{Hom}_\mathcal{C}(X,Y) \), and we omit the subscript \(\mathcal{C} \) whenever there is no risk of confusion.

- For any object \(X \) a distinguished arrow \(\text{id}_X \in \text{End}(X) = \text{Hom}(X,X) \).

- For each \(X, Y, Z \in \text{Obj} \, \mathcal{C} \), a function \(\circ : \text{Hom}(Y,Z) \times \text{Hom}(X,Y) \to \text{Hom}(X,Z) \) such that:

\[
 h \circ (g \circ f) = (h \circ g) \circ f,
\]

and

\[
 \text{id}_Y \circ f = f; \quad g \circ \text{id}_Y = g,
\]

whenever \(f \in \text{Hom}(X,Y) \), \(g \in \text{Hom}(Y,Z) \), and \(h \in \text{Hom}(Z,W) \).
DEFINITION 301. A morphism $f \in \text{Hom}(X,Y)$ is an isomorphism iff it is invertible, i.e. there is a $g \in \text{Hom}(Y,X)$ such that $g \circ f = \text{id}_X$ and $f \circ g = \text{id}_Y$. If an isomorphism $X \to Y$ exists, we write $X \cong Y$.

DEFINITION 302. If \mathcal{C} is a category, then a subcategory $\mathcal{D} \subset \mathcal{C}$ is defined by a subclass $\text{Obj} \mathcal{D} \subset \text{Obj} \mathcal{C}$ and, for every $X,Y \in \text{Obj} \mathcal{D}$, a subset $\text{Hom}_{\mathcal{D}}(X,Y) \subset \text{Hom}_{\mathcal{C}}(X,Y)$ such that $\text{id}_X \in \text{Hom}_{\mathcal{D}}(X,X)$ for all $X \in \text{Obj} \mathcal{D}$ and the morphisms in \mathcal{D} is closed under the composition \circ of \mathcal{C}. A subcategory $\mathcal{D} \subset \mathcal{C}$ is full if $\text{Hom}_{\mathcal{D}}(X,Y) = \text{Hom}_{\mathcal{C}}(X,Y)$ for all $X,Y \in \text{Obj} \mathcal{D}$.

DEFINITION 303. A (covariant) functor F from category \mathcal{C} to category \mathcal{D} maps objects of \mathcal{C} to objects of \mathcal{D} and arrows of \mathcal{C} to arrows of \mathcal{D} such that $F(g \circ f) = F(g) \circ F(f)$, and $F(\text{id}_X) = \text{id}_{F(X)}$. A contravariant functor is just like a covariant functor except that it reverses the order of arrows.

DEFINITION 304. A functor $F : \mathcal{C} \to \mathcal{D}$ is faithful, respectively full, if the map

$$F_{X,Y} : \text{Hom}_{\mathcal{C}}(X,Y) \to \text{Hom}_{\mathcal{D}}(F(X),F(Y))$$

is injective, respectively surjective, for all $X,Y \in \text{Obj} \mathcal{C}$.

DEFINITION 305. A functor $F : \mathcal{C} \to \mathcal{D}$ is essentially surjective if for every $Y \in \text{Obj} \mathcal{D}$ there is an $X \in \text{Obj} \mathcal{C}$ such that $F(X) \cong Y$.

DEFINITION 306. If $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{C} \to \mathcal{D}$ are functors, then a natural transformation η from F to G associates to every $X \in \text{Obj} \mathcal{C}$ a morphism $\eta_X \in \text{Hom}_{\mathcal{D}}(F(X),G(X))$ such that

$$\begin{array}{ccc}
F(X) & \xrightarrow{F(s)} & F(Y) \\
\downarrow \eta_X & & \downarrow \eta_Y \\
G(X) & \xrightarrow{G(s)} & G(Y)
\end{array}$$

commutes for every arrow $s \in \text{Hom}_{\mathcal{C}}(X,Y)$. If η_X is an isomorphism for every $X \in \text{Obj} \mathcal{C}$, then η is said to be a natural isomorphism.

DEFINITION 307. A functor $F : \mathcal{C} \to \mathcal{D}$ is an equivalence of categories if there exist a functor $G : \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $\eta : FG \to \text{id}_\mathcal{D}$ and $\epsilon : \text{id}_\mathcal{C} \to GF$. Two categories are equivalent, denoted $F \simeq G$, if there exists an equivalence $F : \mathcal{C} \to \mathcal{D}$.

DEFINITION 308. A category is small if $\text{Obj} \mathcal{C}$ is a set (rather than just a class). A category is essentially small if it is equivalent to a small one, i.e. $\text{Obj} \mathcal{C} / \cong$ is a set.

REMARK 309. Without wanting to go into foundational technicalities we point out that the category of a 'all representations' of a group is a huge object. However, considered modulo equivalence the representations are of reasonable cardinality, i.e. are a set.
A.2 Tensor categories and braidings

DEFINITION 310. Given two categories \mathcal{C}, \mathcal{D}, the product category $\mathcal{C} \times \mathcal{D}$ is defined by

$$\text{Obj}(\mathcal{C} \times \mathcal{D}) = \text{Obj} \mathcal{C} \times \text{Obj} \mathcal{D},$$

$$\text{Hom}_{\mathcal{C} \times \mathcal{D}}(X \times Y, Z \times W) = \text{Hom}_\mathcal{C}(X, Z) \times \text{Hom}_\mathcal{D}(Y, W),$$

$$\text{id}_{X \times Y} = \text{id}_X \times \text{id}_Y$$

with the obvious composition $(a \times b) \circ (c \times d) := (a \circ c) \times (b \circ d)$.

DEFINITION 311. A strict tensor category (or strict monoidal category) is a category \mathcal{C} equipped with a distinguished object 1, the tensor unit, and a functor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ such that:

1. \otimes is associative on objects and morphisms, i.e. $(X \otimes Y) \otimes Z = X \otimes (Y \otimes Z)$ and $(s \otimes (t \otimes u) = s \otimes (t \otimes u)$ for all $X, Y, Z, X', Y', Z' \in \text{Obj} \mathcal{C}$ and all $s : X \to X', t : Y \to Y', u : Z \to Z'$.

2. The unit object behaves as it should: $X \otimes 1 = X = 1 \otimes X$ and $s \otimes \text{id}_1 = s = \text{id}_1 \otimes s$ for all $s : X \to Y$.

3. The interchange law

$$(a \otimes b) \circ (c \otimes d) = (a \circ c) \otimes (b \circ d)$$

holds whenever $a \circ c$ and $b \circ d$ are defined.

REMARK 312. Many categories with tensor product are not strict in the above sense. A tensor category is a category equipped with a functor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$, a unit 1 and natural isomorphisms $\alpha_{X,Y,Z} : (X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$, $\lambda_X : 1 \otimes X \to X$, $\rho_X : X \otimes 1 \to X$ satisfying certain identities. The notions of braiding, monoidal functor and monoidal natural transformation generalize to such categories. The generality achieved by considering non-strict categories is only apparent: By the coherence theorems, every (braided/symmetric) tensor category is monoidally naturally equivalent to a strict one. See [Mac Lane, 1998; Joyal and Street, 1993a] for all this.

Strictly speaking (pun intended) the categories of vector spaces and Hilbert spaces are not strict. However, the coherence theorems allow us to pretend that they are, simplifying the formulae considerably. The reader who feels uncomfortable with this is invited to insert the isomorphisms α, λ, ρ wherever they should appear.

DEFINITION 313. A (full) tensor subcategory of a tensor category \mathcal{C} is a (full) subcategory $\mathcal{D} \subset \mathcal{C}$ such that $\text{Obj} \mathcal{D}$ contains the unit object 1 and is closed under the tensor product \otimes.
DEFINITION 314. Let \mathcal{C}, \mathcal{D} be strict tensor categories. A tensor functor (or a monoidal functor) is a functor $F : \mathcal{C} \to \mathcal{D}$ together with isomorphisms $d^F_{X,Y} : F(X) \otimes F(Y) \to F(X \otimes Y)$ for all $X, Y \in \mathcal{C}$ and a morphism $e^F : 1_\mathcal{D} \to F(1_\mathcal{C})$ such that

1. The morphisms $d^F_{X,Y}$ are natural w.r.t. both arguments.

2. For all $X, Y, Z \in \mathcal{C}$ the following diagram commutes:

$$
\begin{array}{c}
F(X) \otimes F(Y) \otimes F(Z) \\
\downarrow \text{id}_{F(X)} \otimes d^F_{Y,Z} \\
F(X) \otimes F(Y \otimes Z) \\
\text{d}^F_{X,Y \otimes Z} \\
\end{array}
\begin{array}{c}
d^F_{X,Y} \otimes \text{id}_{F(Z)} \\
\downarrow d^F_{X,Y,Z} \\
F(X \otimes Y) \otimes F(Z) \\
\end{array}
$$

3. The following compositions are the identity morphisms of $F(X)$

$$
\begin{array}{c}
F(X) \equiv F(X) \otimes 1_\mathcal{D} \\
\downarrow \text{id}_{F(X)} \otimes e^F \\
F(X) \otimes F(1_\mathcal{C}) \\
\downarrow d^F_{X,1} \\
F(X \otimes 1_\mathcal{C}) \equiv F(X) \\
\end{array}
\begin{array}{c}
F(X) \equiv 1_\mathcal{D} \otimes F(X) \\
\downarrow e^F \otimes \text{id}_{F(X)} \\
F(1_\mathcal{C}) \otimes F(X) \\
\downarrow d^F_{1,X} \\
F(1_\mathcal{C} \otimes X) \equiv F(X) \\
\end{array}
$$

for all $X \in \mathcal{C}$.

If \mathcal{C}, \mathcal{D} are tensor $*$-categories and F is $*$-preserving, the isomorphisms $e, d^F_{X,Y}$ are required to be unitary.

DEFINITION 315. Let \mathcal{C}, \mathcal{D} be strict tensor categories and $F, G : \mathcal{C} \to \mathcal{D}$ tensor functors. A natural transformation $\alpha : \mathcal{C} \to \mathcal{D}$ is monoidal if

$$
\begin{array}{c}
F(X) \otimes F(Y) \\
\downarrow \alpha_X \otimes \alpha_Y \\
G(X) \otimes G(Y) \\
\text{d}^G_{X,Y} \\
\end{array}
\begin{array}{c}
\text{d}^F_{X,Y} \\
\downarrow \\
F(X \otimes Y) \\
\alpha_X \otimes \alpha_Y \\
\end{array}
$$

commutes for all $X, Y \in \mathcal{C}$ and the composite $1_\mathcal{D} \xrightarrow{e^F} F(1) \xrightarrow{\alpha_1} G(1)$ coincides with e^G.

REMARK 316. A tensor functor between strict tensor categories is called strict if all the isomorphisms $d^F_{X,Y}$ and e are identities. However, it is not true that every tensor functor is equivalent to a strict one!

DEFINITION 317. A tensor functor $F : \mathcal{C} \to \mathcal{D}$ is an equivalence (of tensor categories) if there exist a tensor functor $G : \mathcal{D} \to \mathcal{C}$ and monoidal natural isomorphisms $GF \to \text{id}_\mathcal{C}$ and $FG \to \text{id}_\mathcal{C}$.
PROPOSITION 318. A functor $F : \mathcal{C} \to \mathcal{D}$ is an equivalence iff F is faithful, full and essentially surjective. A tensor functor $F : \mathcal{C} \to \mathcal{D}$ of (strict) tensor categories is an equivalence of tensor categories iff F is faithful, full and essentially surjective.

Proof. For the first statement see [Mac Lane, 1998, Theorem 1, p. 91] and for the second [Saavedra Rivano, 1972].

DEFINITION 319. A braiding for a strict tensor category \mathcal{C} is a family of isomorphisms $c_{X,Y} : X \otimes Y \to Y \otimes X$ for all $X,Y \in \text{Obj}\mathcal{C}$ satisfying

1. Naturality: For every $s : X \to X'$, $t : Y \to Y'$, the diagram

$$
\begin{array}{ccc}
X \otimes Y & \xrightarrow{c_{X,Y}} & Y \otimes X \\
\downarrow s \otimes t & & \downarrow t \otimes s \\
X' \otimes Y' & \xrightarrow{c_{X',Y'}} & Y' \otimes X'
\end{array}
$$

commutes.

2. The 'braid equations' hold, i.e. the diagrams

$$
\begin{array}{ccc}
X \otimes Y \otimes Z & \xrightarrow{c_{X,Y} \otimes \text{id}_Z} & Y \otimes X \otimes Z \\
\downarrow c_{X,Y \otimes Z} & & \downarrow \text{id}_Y \otimes c_{X,Z} \\
Y \otimes Z \otimes X & \xrightarrow{c_{X,Z} \otimes \text{id}_Y} & Z \otimes X \otimes Y
\end{array}
\quad
\begin{array}{ccc}
X \otimes Y \otimes Z & \xrightarrow{\text{id}_X \otimes c_{Y,Z}} & X \otimes Z \otimes Y \\
\downarrow c_{X \otimes Y,Z} & & \downarrow c_{X,Z} \otimes \text{id}_Y \\
Z \otimes X \otimes Y & & \text{commute for all } X,Y,Z \in \text{Obj}\mathcal{C}.
\end{array}
$$

If, in addition, $c_{Y,X} \circ c_{X,Y} = \text{id}_{X \otimes Y}$ holds for all X,Y, the braiding is called a symmetry.

A strict braided (symmetric) tensor category is a strict tensor category equipped with a braiding (symmetry).

DEFINITION 320. If \mathcal{C}, \mathcal{D} are strict braided (symmetric) tensor categories, a tensor functor $F : \mathcal{C} \to \mathcal{D}$ is braided (symmetric) if

$$
F(c_{X,Y}) = c_{F(X),F(Y)} \quad \forall X,Y \in \text{Obj}\mathcal{C}.
$$

(Note that on the l.h.s., respectively r.h.s, c is the braiding of \mathcal{C}, respectively \mathcal{D}.

There is no additional condition for a monoidal natural transformation to be braided/symmetric.
A.3 Graphical notation for tensor categories

We will on some occasions use the so-called ‘tangle diagrams’ for computations in strict (braided) tensor categories, hoping that the reader has seen them before. By way of explanation (for much more detail see e.g. [Kassel, 1995]) we just say that identity morphisms (equivalently, objects) are denoted by vertical lines, a morphism \(s : X \to Y \) by a box with lines corresponding to \(X \) and \(Y \) entering from below and above, respectively. Compositions and tensor products of morphisms are denoted by vertical and horizontal juxtaposition, respectively. Braiding morphisms are represented by a crossing and the duality morphisms \(r, \bar{r} \) by arcs:

\[
\text{Hom}(X, Y) \ni s = \begin{array}{c} Y \\ \downarrow \\ X \end{array}, \quad c_{X, Y} = \begin{array}{c} Y \\ \overline{X} \\ X \\ \overline{Y} \\ Y \end{array}, \quad c^{-1}_{Y, X} = \begin{array}{c} Y \\ X \\ Y \\ X \end{array}
\]

(If \(c \) is a symmetry, both lines in the braiding are drawn unbroken.) The reason for using this diagrammatic representation is that even relatively simple formulae in tensor categories become utterly unintelligible as soon as morphisms with ‘different numbers of in- and outputs’ are involved, like \(s : A \to B \otimes C \otimes D \). This gets even worse when braidings and duality morphisms are involved. Just one example of a complete formula: The interchange law \(s \otimes \text{id}_W \circ \text{id}_X \otimes t = \text{id}_Y \otimes t \circ s \otimes \text{id}_Z \) for \(s : X \to Y, \ t : Z \to W \) is drawn as

\[
\begin{array}{c} Y \\ \downarrow \\ W \\ \downarrow \\ X \\ \downarrow \\ t \\ \downarrow \\ Z \\ \downarrow \\ X \\ \downarrow \\ s \\ \downarrow \\ Z \\ \downarrow \\ W \end{array} = \begin{array}{c} s \\ \downarrow \\ W \\ \downarrow \\ t \\ \downarrow \\ Z \\ \downarrow \\ X \end{array}
\]

The diagram (correctly!) suggests that we have may pull morphisms alongside each other.

A.4 Additive, \(\mathbb{C} \)-linear and \(* \)-categories

DEFINITION 321. A category is an Ab-category if all hom-sets are abelian groups and the composition \(\circ \) is bi-additive.

DEFINITION 322. Let \(X, Y, Z \) be objects in a Ab-category. Then \(Z \) is called a direct sum of \(X \) and \(Y \), denoted \(Z \cong X \oplus Y \), if there are morphisms \(u : X \to \)}
$Z, u': Z \to X, v: Y \to Z, v': Z \to Y$ such that $u' \circ u = \text{id}_X$, $v' \circ v = \text{id}_Y$ and $u \circ u' + v \circ v' = \text{id}_Z$. (Note that every $Z' \cong Z$ also is a direct sum of X and Y. Thus direct sums are defined only up to isomorphism, which is why we don’t write $Z = X \oplus Y$.) We say that C has direct sums if there exists a direct sum $Z \cong X \oplus Y$ for any two object X, Y.

DEFINITION 323. An object 0 in a category C is called a zero object if, for every $X \in C$, the sets $\text{Hom}(X, 0)$ and $\text{Hom}(0, X)$ both contain precisely one element. A morphism to or from a zero object is called a zero morphism.

It is immediate from the definition that any two zero objects are isomorphic. If a category doesn’t have a zero object it is straightforward to add one. If z is a zero morphism and f is any morphism, then $z \circ f, f \circ z, z \otimes f, f \otimes z$ are zero morphisms (provided they make sense).

DEFINITION 324. An additive category is an Ab-category that has a zero object and direct sums.

EXAMPLE 325. The category of abelian groups (with the trivial group as zero).

DEFINITION 326. A category C is called \mathbb{C}-linear if $\text{Hom}(X, Y)$ is a \mathbb{C}-vector space for all $X, Y \in \text{Obj} C$ and the composition map $\circ: (f, g) \mapsto g \circ f$ is bilinear. If C is a tensor category we require that also $\otimes: (f, g) \mapsto g \otimes f$ is bilinear. Functors between \mathbb{C}-linear category are always assumed to be \mathbb{C}-linear, i.e. $\text{Hom}_C(X, Y) \to \text{Hom}_D(F(X), F(Y))$ must be \mathbb{C}-linear.

DEFINITION 327. A positive \ast-operation on a \mathbb{C}-linear category is a family of maps that to every morphism $s \in \text{Hom}(X, Y)$ associates a morphism $s^* \in \text{Hom}(Y, X)$. This map must be antilinear, involutive ($(s^*)^* = s$) and positive in the sense that $s^* \circ s = 0$ implies $s = 0$. A \ast-category is a \mathbb{C}-linear category equipped with a positive \ast-operation. A tensor \ast-category is a tensor category with a positive \ast-operation such that $(s \otimes t)^* = s^* \otimes t^*$ for all s, t. We consider only unitary braidings (symmetries) of tensor \ast-categories.

DEFINITION 328. A morphism $v: X \to Y$ in a \ast-category is called an isometry if $v^* \circ v = \text{id}_X$. An isometry v is called a unitary if it satisfies $v \circ v^* = \text{id}_Y$. A morphism $p \in \text{End} X$ is called a projector if $p = p \circ p = p^*$. We say that C has subobjects if for every projector $p \in \text{End} X$ there exists an isometry $v: Y \to X$ such that $v \circ v^* = p$. In a \ast-category we strengthen Definition 322 by requiring that $u' = u^*, v' = v^*$, i.e. u, v must be isometries.

DEFINITION 329. A functor F between \ast-categories is \ast-preserving if $F(s^*) = F(s)^*$ for every morphism s. The isomorphisms $d_{X, Y, e}$ coming with a functor between tensor \ast-categories coming with a functor of tensor \ast-categories are required to be unitaries.

DEFINITION 330. Let C be a tensor \ast-category and $X \in \text{Obj} C$. An object $X \in \text{Obj} C$ is called a conjugate object of X if there exist morphisms $r: 1 \to X \otimes X$
and \(r : 1 \to X \otimes \overline{X} \) satisfying the ‘conjugate equations’
\[
\begin{align*}
\text{id}_X \otimes r^* \circ \overline{r} \otimes \text{id}_X &= \text{id}_X, \\
\text{id}_{\overline{X}} \otimes \overline{r}^* \circ r \otimes \text{id}_{\overline{X}} &= \text{id}_{\overline{X}}.
\end{align*}
\]

We say that \((\overline{X}, r, \overline{r})\) is a conjugate of \(X\). If every non-zero object of \(C\) has a conjugate then we say that \(C\) has conjugates.

Note also that a zero object cannot have a conjugate. If \((\overline{X}, r, \overline{r}), (\overline{X}', r', \overline{r}')\) both are conjugates of \(X\) then one easily verifies that \(\text{id}_{\overline{X'}} \otimes \overline{r}'^* \circ r' \otimes \text{id}_{\overline{X}} : \overline{X} \to \overline{X}'\) is unitary. Thus the conjugate is unique up to unitary equivalence.

DEFINITION 331. An object \(X\) in a \(\mathbb{C}\)-linear category is irreducible if \(\text{End} \ X = \text{Cid}_X\).

DEFINITION 332. A \(TC^*\) is a tensor \(*\)-category with finite dimensional hom-sets, with conjugates, direct sums, subobjects and irreducible unit \(1\). A \(BTC^*\) is a \(TC^*\) with a unitary braiding. An \(STC^*\) is a \(TC^*\) with a unitary symmetry.

EXAMPLE 333. The tensor \(*\)-category \(\mathcal{H}\) of finite dimensional Hilbert spaces is a \(STC^*\). The symmetry \(c_{H, H'} : H \otimes H' \to H' \otimes H\) is given by the flip isomorphism \(\Sigma : x \otimes y \mapsto y \otimes x\). The conjugate of an object \(H\) is the Hilbert space dual \(H\). Picking a basis \(\{e_i\}\) of \(H\) with dual basis \(\{f_i\}\), the conjugation morphisms are given by
\[
r = \sum_i f_i \otimes e_i, \quad \overline{r} = \sum_i e_i \otimes f_i.
\]

In the same way one sees that the category \(\text{Rep}_G\) of finite dimensional unitary representations of a compact group \(G\) is an \(STC^*\).

LEMMA 334. A \(TC^*\) is semisimple, i.e. every object is a finite direct sum of irreducible objects.

Proof. For every \(X \in C\), \(\text{End} \ X\) is a finite dimensional \(\mathbb{C}\)-algebra with a positive involution. Such an algebra is semisimple, to wit a multi matrix algebra. Thus \(\text{id}_X\) is a sum of projections \(p_i\) that are minimal in the sense that \(p_i \text{End} \ X p_i \cong \mathbb{C}\). Since \(C\) has subobjects, there are objects \(X_i\) corresponding to the \(p_i\), which are irreducible by minimality of the \(p_i\). Clearly, \(X \cong \oplus_i X_i\).

DEFINITION 335. A solution \((X, r, \overline{r})\) of the conjugate equations is called standard if
\[
r^* \circ \text{id}_{\overline{X}} \otimes s \circ r = \overline{r}^* \circ s \otimes \text{id}_{\overline{X}} \circ \overline{r}
\]
for all \(s \in \text{End} \ X\). In this case, \((\overline{X}, r, \overline{r})\) is called a standard conjugate.

LEMMA 336. Let \(C\) be a \(TC^*\) and \((\overline{X}, r, \overline{r})\) a conjugate for \(X \in C\). Let \(v_i : X_i \to X\), \(w_i : \overline{X}_i \to \overline{X}\) be isometries effecting the direct sum decomposition of \(X, \overline{X}\) into irreducibles. Then \((\overline{X}, r, \overline{r})\) is a standard conjugate iff \((\overline{X}_i, w_i^* \otimes v_i^* \circ r, v_i^* \otimes w_i^* \circ \overline{r})\) is a standard conjugate for \(X_i\) for all \(i\). Every object admits a standard conjugate.
Proof. For the equivalence claim, see [Longo and Roberts, 1997], in particular Lemma 3.9. (Note that in [Longo and Roberts, 1997], standardness is defined by the property in the statement above.) We use this to prove that every objects admits a standard conjugate. If \(X \) is irreducible, we have \(\text{End} \, X = \text{Cid}_X \). Therefore the standardness condition reduces to \(r^* \circ r = \bar{r}^* \circ \bar{r} \), thus a conjugate \((\bar{X}, r, \bar{r})\) can be made standard by rescaling \(r, \bar{r} \). In the general case, we use semisimplicity to find a direct sum decomposition of \(X \) into irreducibles \(X_i \). Let \((\bar{X}_i, r_i, \bar{r}_i)\) be standard conjugates of the \(X_i \) and put \(\bar{X} = \oplus \bar{X}_i \). Let \(v_i : X_i \rightarrow X, \, w_i : \bar{X}_i \rightarrow \bar{X} \) be the isometries effecting the direct sums. Defining \(r = \sum_i w_i \otimes v_i \circ r_i \) and \(\bar{r} = \sum_i v_i \otimes w_i \circ \bar{r}_i \), the criterion in the first part of the lemma applies and gives standardness of \((\bar{X}, r, \bar{r})\).

Lemma 337. Let \((\bar{X}, r, \bar{r})\) be a (standard) conjugate of \(X \), let \(p \in \text{End} \, X \) a projection and define \(\bar{p} = r^* \otimes \text{id}_X \circ \text{id}_{\bar{X}} \otimes p \otimes \text{id}_X \circ \text{id}_{\bar{X}} \otimes \bar{r} \in \text{End} \, \bar{X} \). If \(v : Y \rightarrow X, \, w : \bar{Y} \rightarrow \bar{X} \) are isometries such that \(v \circ v^* = p, w \circ w^* = \bar{p} \) then \((\bar{Y}, w^* \otimes v^* \circ r, v^* \otimes w^* \circ \bar{r})\) is a (standard) conjugate for \(Y \).

Proof. Omitted. For the easy proof see [Longo and Roberts, 1997] or [Müger, 2000].

Lemma 338. If \((\bar{X}, r, \bar{r}), (\bar{Y}, r', \bar{r}')\) are (standard) conjugates of \(X, Y \), respectively, then \((\bar{Y} \otimes \bar{X}, r'', \bar{r}'')\), where \(r'' = \text{id}_Y \otimes r \otimes \text{id}_Y \circ \bar{r}', \bar{r}'' = \text{id}_X \otimes \bar{r} \otimes \text{id}_X \circ \bar{r} \) is a (standard) conjugate for \(X \otimes Y \).

Proof. That \((\bar{Y} \otimes \bar{X}, r'', \bar{r}'')\) is a conjugate is an easy computation. Standardness is less obvious since the map \(\text{End} \, X \otimes \text{End} \, Y \rightarrow \text{End} \, X \otimes Y \) need not be surjective. However, it follows using the alternative characterization of standardness given in Lemma 336.

Proposition 339. Let \(C \) be a \(TC^* \). Let \(X \in C \) and let \((\bar{X}, r, \bar{r})\) be a standard conjugate. Then the map \(\text{Tr}_X : \text{End} \, X \rightarrow C, \, s \mapsto r^* \circ \text{id}_{\bar{X}} \otimes s \circ \bar{r} \) is well defined, i.e. independent of the choice of \((\bar{X}, r, \bar{r})\). It is called the trace. It satisfies

\[\text{Tr}_X(s \circ t) = \text{Tr}_Y(t \circ s) \quad \forall s : Y \rightarrow X, t : X \rightarrow Y, \]
\[\text{Tr}_{X \otimes Y}(s \otimes t) = \text{Tr}_X(s) \text{Tr}_Y(t) \quad \forall s \in \text{End} \, X, t \in \text{End} \, Y. \]

Proof. Easy exercise.

Definition 340. Let \(C \) be a \(TC^* \) and \(X \in C \). The dimension of \(X \) is defined by \(d(X) = \text{Tr}_X(\text{id}_X) \), i.e. \(d(X) = r^* \circ r \) for any standard conjugate \((\bar{X}, r, \bar{r})\).

Lemma 341. The dimension is additive \((d(X \oplus Y) = d(X) + d(Y))\) and multiplicative \((d(X \otimes Y) = d(X)d(Y))\). Furthermore, \(d(X) = d(X) \geq 1 \) for every object, and \(d(X) = 1 \) implies that \(X \otimes X \cong 1 \), i.e. \(X \) is invertible.
Proof. Additivity is immediate by the discussion of standard conjugates. Multiplicativity of the dimension follows from Lemma 338. If \((\overline{X}, r, \overline{r})\) is a standard conjugate for \(X\), then \((X, \overline{r}, r)\) is a standard conjugate for \(\overline{X}\), implying \(d(\overline{X}) = d(X)\). The positivity of the \(*\)-operation implies that \(d(X) = r^* \circ r > 0\). Since \(X \otimes \overline{X}\) contains \(1\) as a direct summand, we have \(d(X)^2 \geq 1\), thus \(d(X) \geq 1\). Finally, if \(d(X) = 1\), \(1\) is the only direct summand of \(X \otimes \overline{X}\), to wit \(X \otimes \overline{X} \cong 1\). Similarly, \(\overline{X} \otimes X \cong 1\). ■

DEFINITION 342. Let \(C\) be a \(BTC^*\) and \(X \in C\). The twist \(\Theta(X) \in \text{End} X\) is defined by

\[
\Theta(X) = r^* \otimes \text{id}_X \circ \text{id}_{\overline{X}} \otimes c_{X, X} \circ r \otimes \text{id}_X,
\]

where \((\overline{X}, r, \overline{r})\) is a standard solution of the conjugate equations.

LEMMA 343. Let \(C\) be a \(BTC^*\). Then

(i) \(\Theta(X)\) is well defined, i.e. does not depend on the choice of \((\overline{X}, r, \overline{r})\).

(ii) For every morphism \(s : X \rightarrow Y\) we have \(\Theta(Y) \circ s = s \circ \Theta(X)\). (i.e., \(\Theta\) is a natural transformation of the identity functor of \(C\).

(iii) \(\Theta(X)\) is unitary.

(iv) \(\Theta(X \otimes Y) = \Theta(X) \otimes \Theta(Y) \circ c_{Y, X} \circ c_{X, Y}\) for all \(X, Y\).

(v) If \(C\) is an \(STC^*\), this simplifies to \(\Theta(X)^2 = \text{id}_X\) and \(\Theta(X \otimes Y) = \Theta(X) \otimes \Theta(Y)\) for all \(X, Y \in C\) (i.e., \(\Theta\) is a monoidal natural transformation of the identity functor of \(C\)). If \(X, Y\) are irreducible, we have \(\omega(X) = \pm 1\) and \(\omega_Z = \omega_X \omega_Y\) for all irreducible direct summands \(Z \prec X \otimes Y\).

Proof. (i) is proven as Proposition 339. The other verifications are not-too-difficult computations, for which we refer to [Longo and Roberts, 1997] or [Müger, 2000]. We just comment on (v): In an \(STC^*\) we have \(c_{X, X}^* = c_{X, X}^{-1} = c_{X, X}\), implying \(\Theta(X)^* = \Theta(X)\). Together with unitarity this gives \(\Theta(X)^2 = \text{id}_X\). Multiplicativity of \(\Theta\) in an \(STC^*\) follows from \(c_{Y, X} \circ c_{X, Y} = \text{id}\). If \(X, Y\) are irreducible, we have \(\Theta(X) = \omega_X \text{id}_X, \Theta(Y) = \omega_Y \text{id}_Y\) and thus \(\Theta(X \otimes Y) = \omega_X \omega_Y \text{id}_{X \otimes Y}\). Now \(\omega(Z) = \omega_X \omega_Y\) for irreducible \(Z \prec X \otimes Y\) follows by naturality of \(\Theta\). ■

The following is a reworking of Propositions 4.4 and 4.5 in [Longo and Roberts, 1997].

PROPOSITION 344. Let \(C, D\) be \(BTC^*\)s and \(E : C \rightarrow D\) a \(*\)-preserving braided tensor functor. If \((\overline{X}, r, \overline{r})\) is a standard conjugate of \(X \in C\), then \((E(\overline{X}), (d_{\overline{X}, X}^E)^{-1} \circ E(r) \circ e^E, (d_{X, \overline{X}}^E)^{-1} \circ E(\overline{r}) \circ e^E)\) is a standard conjugate for \(E(X)\). In particular,

\[
d(E(X)) = d(X), \quad \Theta(E(X)) = E(\Theta(X)) \quad \forall X \in C.
\]
Proof. We assume for a while that the functor E is strict and that X is irreducible. Let $(\overline{X}, r, \overline{r})$ be a standard conjugate. Since E preserves the conjugate equations, $(E(\overline{X}), E(r), E(\overline{r}))$ is a conjugate for $E(X)$, but if E is not full, standardness requires proof. We begin with

\[
\begin{align*}
\overline{X} & \rightarrow r^* \overline{r} \rightarrow X \\
\overline{X} & \rightarrow \overline{r} \rightarrow \overline{X} \\
X & \rightarrow r^* \overline{X} \rightarrow X
\end{align*}
\]

Thus $c_{\overline{X}, X}^* \circ \overline{r} = \omega \overline{X} \cdot r$, which is equivalent to $c_{\overline{X}, X} \circ r = \omega \overline{X} \overline{r}$. Now we let $s \in \text{End } E(X)$ and compute

\[
E(r^*) \circ \text{id}_{E(X)} \otimes s \circ E(r) = \]

\[
= E(r^*) \circ c_{E(\overline{X}), E(X)}^* \circ c_{E(\overline{X}), E(X)} \circ \text{id}_{E(\overline{X})} \otimes s \circ E(r) \]

\[
= (c_{E(\overline{X}), E(X)} \circ E(r))^* \circ c_{E(\overline{X}), E(X)} \circ \text{id}_{E(\overline{X})} \otimes s \circ E(r) \]

\[
= (c_{E(\overline{X}), E(X)} \circ E(r))^* \circ s \otimes \text{id}_{E(\overline{X})} \circ c_{E(\overline{X}), E(X)} \circ E(r) \]

\[
= E(c_{\overline{X}, X} \circ r)^* \circ s \otimes \text{id}_{E(\overline{X})} \circ E(c_{\overline{X}, X} \circ r) \]

\[
= E(\omega \overline{X} \overline{r})^* \circ s \otimes \text{id}_{E(\overline{X})} \circ E(\omega \overline{X} \overline{r}) \]

\[
= E(r^*) \circ s \otimes \text{id}_{E(\overline{X})} \circ E(\overline{r}),
\]

which means that $(E(\overline{X}), E(r), E(\overline{r}))$ is a standard conjugate for $E(X)$. (We have used unitarity of the braiding, the fact that E is $*$-preserving and braided, $c_{\overline{X}, X} \circ r = \omega \overline{X} \overline{r}$ and $|\omega_{\overline{X}}| = 1$.)

Now let X be reducible, $(\overline{X}, r, \overline{r})$ a standard conjugate and let $v_i : X_i \rightarrow X$, $w_i : X_i \rightarrow \overline{X}$ be isometries effecting the decompositions into irreducibles. Defining $r_i = w_i^* \otimes v_i^* \circ r, \overline{r}_i = v_i^* \otimes w_i^* \circ \overline{r}$, $(\overline{X}_i, r_i, \overline{r}_i)$ is standard by Lemma 336. Thus $(E(\overline{X}_i), E(r_i), E(\overline{r}_i))$ is standard by the first half of this proof. In view of $E(r) = E(\sum_i w_i \otimes v_i \circ r_i) = \sum_i E(w_i) \otimes E(v_i) \circ E(r_i)$ and similarly for $E(\overline{r})$, it follows that $(E(\overline{X}), E(r), E(\overline{r}))$ is standard (since it is a direct sum of standard conjugates).

If E is not strict, we have to insert the unitaries $d_{X,Y}^E : E(X) \otimes E(Y) \rightarrow E(X \otimes Y)$, $e^E : 1 \rightarrow E(1)$ at the obvious places in the above computations, but nothing else changes. That E preserves dimensions follows since the dimension is defined in terms of a standard conjugate. Finally, standardness of $(E(\overline{X}), E(r), E(\overline{r}))$ together with $E(c_{X,Y}) = c_{E(X), E(Y)}$ imply $\Theta(E(X)) = E(\Theta(X))$. ■
We close this subsection by commenting on the relation of $*$-categories with the more general notion of C^*-tensor categories of [Doplicher and Roberts, 1989; Longo and Roberts, 1997].

Definition 345. A C^*-category is a C-linear category with a positive $*$-operation, where $\text{Hom}(X, Y)$ is a Banach space for all X, Y and $\|s \circ t\|_{\text{Hom}(X, Z)} \leq \|s\|_{\text{Hom}(X, Y)} \cdot \|t\|_{\text{Hom}(Y, Z)}$ for all $s : X \to Y$, $t : Y \to Z$ and $\|s^* \circ s\|_{\text{End} X} = \|s\|^2_{\text{Hom}(X, Y)}$ for all $s : X \to Y$. (Thus each $\text{End} X$ is a C^*-algebra.) A C^*-tensor category is a C^*-category and a tensor category such that $\|s \otimes t\| \leq \|s\| \cdot \|t\|$ for all s, t.

Proposition 346. [Longo and Roberts, 1997] Let \mathcal{C} be a C^*-tensor category with direct sums and irreducible unit. Whenever $X, Y \in \mathcal{C}$ admit conjugates then $\dim \text{Hom}(X, Y) < \infty$. Thus a C^*-tensor category with direct sums, subobjects, conjugates and irreducible unit is a TC^*. Conversely, given a TC^*, there are unique norms on the spaces $\text{Hom}(X, Y)$ rendering \mathcal{C} a C^*-tensor category.

Proof. Assume that $X \in \mathcal{C}$ has a conjugate (X, r, \overline{r}). Then the map $\text{End} X \to \text{Hom}(1, \overline{X} \otimes X)$, $s \mapsto \text{id}_{\overline{X}} \otimes s \circ r$ is an isomorphism of vector spaces since $t \mapsto \overline{r}^* \otimes \text{id}_{\overline{X}} \circ \text{id}_{\overline{X}} \otimes t$ is its inverse, as is verified using the conjugate equations. Now, $\text{Hom}(1, \overline{X} \otimes X)$ is a pre-Hilbert space w.r.t. the inner product $\langle a, b \rangle \text{id}_1 = a^* \circ b$, and it is complete because \mathcal{C} is a C^*-tensor category. Choose an orthogonal basis $(e_i)_{i \in I}$ in $\text{Hom}(1, \overline{X} \otimes X)$. Then each $e_i : 1 \to \overline{X} \otimes X$ is an isometry and $e_i^* \circ e_j = 0$ for $i \neq j$, implying that $\overline{X} \otimes X$ contains $\#I$ copies of 1 as direct summands. Since X has a conjugate, so does $\overline{X} \otimes X$, but this is impossible if $\#I$ is infinite. Thus $\text{Hom}(1, \overline{X} \otimes X)$ and therefore $\text{End} X$ is finite dimensional.

Given arbitrary X, Y having conjugates, pick a direct sum $Z \cong X \oplus Y$ with isometries $u : X \to Z, v : Y \to Z$. Then also Z has a conjugate, cf. Lemma 336, and therefore $\dim \text{End} Z < \infty$. Now, the map $\text{Hom}(X, Y) \to \text{End} Z$ given by $s \mapsto v \circ s \circ u^*$ is injective since it has $t \mapsto v^* \circ t \circ u$ as inverse. This implies $\dim \text{Hom}(X, Y) < \infty$.

We omit the proof of the implication $TC^* \Rightarrow C^*$-tensor category, since it will not be used in the sequel. It can be found in [Müger, 2000].

This result shows that the assumptions made in Appendix B are equivalent to those of [Doplicher and Roberts, 1989], formulated in terms of C^*-tensor categories.

A.5 Abelian categories

In the second half of Appendix B, which is of a purely algebraic nature, we will need some basic facts from the theory of abelian categories. Good references are, e.g., [Gabriel, 1962] and [Mac Lane, 1998, Chapter VIII].

Definition 347. A morphism $s : X \to Y$ is called monic if $s \circ t_1 = s \circ t_2$ implies $t_1 = t_2$, whenever t_1, t_2 are morphisms with target X and the same source. A morphism $s : X \to Y$ is called epi if $t_1 \circ s = t_2 \circ s$ implies $t_1 = t_2$, whenever t_1, t_2 are morphisms with source Y and the same target.
DEFINITION 348. Let \mathcal{C} be an additive category. Given a morphism $f : X \to Y$, a morphism $k : Z \to X$ is a kernel of f if $f \circ k = 0$ and given any morphism $k' : Z' \to X$ such that $f \circ k' = 0$, there is a unique morphism $l : Z' \to Z$ such that $k' = k \circ l$.

A cokernel of $f : X \to Y$ is a morphism $c : Y \to Z$ if $c \circ f = 0$ and given any morphism $c' : Y \to Z'$ such that $c' \circ f = 0$, there is a unique $d : Z \to Z'$ such that $c' = d \circ c$.

It is an easy consequence of the definition that every kernel is monic and every cokernel is epic.

DEFINITION 349. An additive category \mathcal{C} is abelian if

1. Every morphism has a kernel and a cokernel.
2. Every monic morphism is the kernel of some morphism.
3. Every epic morphism is the cokernel of some morphism.

PROPOSITION 350. Let \mathcal{C} be an abelian category. Then

(i) Every monic is the kernel of its cokernel and every epic is the cokernel of its kernel.

(ii) A morphism is an isomorphism iff it is monic and epic.

(iii) Every morphism $f : X \to Y$ in an abelian category admits a factorization $f = m \circ e$, where $e : X \to Z$ is epi and $m : Z \to Y$ is monic. Given another epi $e' : X \to Z'$ and monic $m' : Z' \to Y$ such that $f = m' \circ e'$, there exists an isomorphism $u : Z \to Z'$ such that $e' = u \circ e$ and $m = m' \circ u$.

Proof. See [Mac Lane, 1998, Chapter VIII] for detailed proofs. The 'only if' of (ii) is trivial. Concerning (iii): Defining $m = \ker(coker(f))$, m is monic. In view of $(coker(f)) \circ f = 0$, f factors as $f = m \circ e$ for a unique e. Next one proves that e is epi and $e = coker(\ker(f))$.

DEFINITION 351. The image of a morphism $f : X \to Y$ in an abelian category is the monic $m : Z \to Y$ (unique up to isomorphism) in the monic-epic factorization $X \xrightarrow{e} Z \xrightarrow{m} Y$ of f.

In a concrete abelian category, the object Z is isomorphic to the usual image of f, which is a subset of Y, whence the terminology.

DEFINITION 352. An object P in an abelian category is projective if, given any epimorphism $p : A \to B$ and any morphism $b : P \to B$ there is a morphism $a : P \to A$ such that $b = p \circ a$.

LEMMA 353. Any TC^* \mathcal{C} that has a zero object is abelian.

Proof. It is clear that \mathcal{C} is additive. The other requirements of Definition 349 follow with a little work from semisimplicity, cf. Lemma 334.
A.6 Commutative algebra in abelian symmetric tensor categories

A considerable part of the well known algebra of commutative rings, their ideals and modules (living in the category Ab of abelian groups) can be generalized to other abelian symmetric or even braided tensor categories. We state just those facts that will be needed, some of which might be new.

DEFINITION 354. Let \mathcal{D} be a strict tensor category. Then a monoid in \mathcal{D} is a triple (Q, m, η), where $Q \in \mathcal{D}$ and $m : Q \otimes Q \to Q$ and $\eta : 1 \to Q$ are morphisms satisfying

$$m \circ (m \otimes \text{id}_Q) = m \circ (\text{id}_Q \otimes m), \quad m \circ \eta \otimes \text{id}_Q = \text{id}_Q = m \circ \text{id}_Q \otimes \eta.$$

If \mathcal{D} is braided then the monoid is called commutative if $m \circ c_{Q,Q} = m$.

DEFINITION 355. Let (Q, m, η) be a monoid in the strict tensor category \mathcal{D}. Then a Q-module (in \mathcal{D}) is a pair (M, μ), where $M \in \mathcal{D}$ and $\mu : Q \otimes M \to M$ satisfy

$$\mu \circ \text{id}_Q \otimes \mu = \mu \circ m \otimes \text{id}_M, \quad \mu \circ \eta \otimes \text{id}_M = \text{id}_M.$$

A morphism $s : (M, \mu) \to (R, \rho)$ of Q-modules is a morphism $s \in \text{Hom}_\mathcal{D}(M, R)$ satisfying $s \circ \mu = \rho \circ \text{id}_Q \otimes s$. The Q-modules in \mathcal{D} and their morphisms form a category $Q - \text{Mod}_\mathcal{D}$. If \mathcal{D} is k-linear then $Q - \text{Mod}_\mathcal{D}$ is k-linear. The hom-sets in the category $Q - \text{Mod}$ are denoted by $\text{Hom}_Q(\cdot, \cdot)$.

REMARK 356.

1. The preceding definitions, which are obvious generalizations of the corresponding notions in Vect, generalize in a straightforward way to non-strict tensor categories.

2. If (M, μ) is a Q-module and $X \in \mathcal{D}$ then $(Q \otimes X, \mu \otimes \text{id}_X)$ is a Q-module.

3. If \mathcal{D} has direct sums, we can define the direct sum (R, ρ) of two Q-modules $(M_1, \mu_1), (M_2, \mu_2)$. Concretely, if $v_i : M_i \to R, i = 1, 2$ are the isometries corresponding to $R \cong M_1 \oplus M_2$ then $\rho = v_1 \circ \mu_1 \circ \text{id}_Q \otimes v_1^* + v_2 \circ \mu_2 \circ \text{id}_Q \otimes v_2^*$ provides a Q-module structure.

4. Given a monoid (Q, m, η) in \mathcal{D}, we have an obvious Q-module (Q, m), and for any $n \in \mathbb{N}$ we can consider $n \cdot (Q, m)$, the direct sum of n copies of the Q-module (Q, m).

DEFINITION 357. Let \mathcal{D} be a strict tensor category with unit 1 and let (Q, m, η) be a monoid in \mathcal{D}. We define a monoid Γ_Q in the category of sets by $\Gamma_Q = \text{Hom}(1, Q)$, the multiplication being given by $s \bullet t = m \circ t \otimes s$ and the unit by η. If \mathcal{D} is braided and (Q, m, η) commutative then Γ_Q is commutative.
LEMMA 358. Let \mathcal{D} be a strict tensor category and (Q, m, η) a monoid in \mathcal{D}. Then there is an isomorphism of monoids $\gamma : \text{End}_Q((Q, m)) \to (\Gamma_Q, \bullet, \eta)$ given by

$$
\gamma : \text{End}_Q((Q, m)) \to \text{Hom}(1, Q), \quad u \mapsto u \circ \eta,
$$

$$
\gamma^{-1} : \text{Hom}(1, Q) \to \text{End}_Q((Q, m)), \quad s \mapsto m \circ \text{id}_Q \otimes s.
$$

If \mathcal{D} (and thus $Q - \text{Mod}_D$) is k-linear then γ is an isomorphism of k-algebras. If \mathcal{D} is braided and the monoid (Q, m, η) is commutative then the monoid $(k$-algebra) $(\Gamma_Q, \bullet, \eta)$, and therefore also $\text{End}_Q((Q, m))$, is commutative.

Proof. That $(\Gamma_Q, \bullet, \eta)$ is a monoid (resp. associative k-algebra) is immediate since (Q, m, η) is a monoid. For $s \in \text{Hom}(1, Q)$ we have $\gamma(\gamma^{-1}(s)) = m \circ \text{id}_Q \otimes s \circ \eta = s$ by the monoid axioms. On the other hand, for $u \in \text{End}_Q((Q, m))$ we have

$$
\gamma^{-1}(\gamma(u)) = m \circ \text{id}_Q \otimes (u \circ \eta) = m \circ \text{id}_Q \otimes u \circ \text{id}_Q \otimes \eta = u \circ m \circ \text{id}_Q \otimes \eta = u,
$$

where the third equality is due to the fact that s is a Q-module map (cf. Definition 355). Clearly $\gamma(\text{id}_Q) = \eta$. Furthermore,

$$
\gamma^{-1}(s) \circ \gamma^{-1}(t) = (m \circ \text{id}_Q \otimes s) \circ (m \circ \text{id}_Q \otimes t) = m \circ m \circ \text{id}_Q \circ \text{id}_Q \otimes t \otimes s = m \circ \text{id}_Q \otimes m \circ \text{id}_Q \otimes t \otimes s = \gamma^{-1}(s \bullet t).
$$

If \mathcal{D} is braided and the monoid (Q, m, η) is commutative then

$$
s \bullet t = m \circ t \otimes s = m \circ c_{Q, Q} \circ s \otimes t = m \circ s \otimes t = t \bullet s,
$$

where we used naturality of the braiding and commutativity of the monoid. □

REMARK 359. 1. We have seen that a monoid (Q, m, η) in any abstract tensor category gives rise to a monoid $(\Gamma_Q, \bullet, \eta)$ that is concrete, i.e. lives in the category Sets. The latter has the cartesian product as a tensor product and any one-element set is a tensor unit 1. Thus for any $X \in \text{Sets}$, $\text{Hom}(1, X)$ is in bijective correspondence to the elements of X. Therefore, if $\mathcal{D} = \text{Sets}$ then the monoids (Q, m, η) and $(\Gamma_Q, \bullet, \eta)$ are isomorphic. For this reason, we call Γ_Q the monoid of elements of Q even when \mathcal{D} is an abstract category.

2. The commutativity of $\text{End}_Q((Q, m))$ in the case of a commutative monoid (Q, m, η) in a braided tensor category \mathcal{D} has a very natural interpretation: If \mathcal{D} has coequalizers, which holds in any abelian category, then the category $Q - \text{Mod}_D$ is again a tensor category and the Q-module (Q, m) is its unit object. In any tensor category with unit 1, $\text{End} 1$ is a commutative monoid (commutative k-algebra if \mathcal{D} is k-linear). This is the real reason why $\text{End}_Q((Q, m))$ is commutative. More is known: If \mathcal{D} is symmetric and Q abelian, then the tensor category $Q - \text{Mod}_D$ is again symmetric. (In the braided case this need not be true, but $Q - \text{Mod}_D$ always has a distinguished full subcategory that is braided.)

We now specialize to abelian categories.

PROPOSITION 360. Let (Q, m, η) be a monoid in an abelian strict tensor category \mathcal{D}. Then the category $Q - \text{Mod}_D$ is abelian.
Proof. Omitted. (This is a nice exercise on abelian categories.)

Definition 361. Let \mathcal{D} be an abelian strict symmetric tensor category. An ideal in a commutative monoid (Q, m, η) is a monic $j : (J, \mu_J) \to (Q, m)$ in the category $Q \text{-} \text{Mod}$. An ideal $j : (J, \mu_J) \to (Q, m)$ is called proper if j is not an isomorphism (i.e., not epi). If $j : (J, \mu_J) \to (Q, m)$ and $j' : (J', \mu_{J'}) \to (Q, m)$ are ideals then $j : (J, \mu_J) \to (Q, m)$ is contained in $j' : (J', \mu_{J'}) \to (Q, m)$, denoted $j \prec j'$, if there exists a monic $i \in \text{Hom}_Q((J, \mu_J), (J', \mu_{J'}))$ such that $j' \circ i = j$. A proper ideal $j : (J, \mu_J) \to (Q, m)$ in (Q, m, η) is called maximal if every proper ideal $j' : (J', \mu_{J'}) \to (Q, m)$ containing $j : (J, \mu_J) \to (Q, m)$ is isomorphic to $j : (J, \mu_J) \to (Q, m)$.

Lemma 362. Let \mathcal{D} be an essentially small abelian strict symmetric tensor category, (Q, m, η) a commutative monoid in \mathcal{D}. Then every proper ideal $j : (J, \mu_J) \to (Q, m)$ in (Q, m, η) is contained in a maximal ideal $\tilde{j} : (\tilde{J}, \tilde{\mu}) \to (Q, m)$.

Proof. The ideals in (Q, m, η) do not necessarily form a set, but the isomorphism classes do, since \mathcal{D} is assumed essentially small. The relation \prec on the ideals in (Q, m, η) gives rise to a partial ordering of the set of isomorphism classes of ideals. The maximal elements w.r.t. this partial order are precisely the isomorphism classes of maximal ideals. Now we can apply Zorn’s Lemma to complete the proof as in commutative algebra.

As in the category R-mod, we can quotient a commutative monoid by an ideal:

Lemma 363. Let \mathcal{D} be an abelian strict symmetric tensor category, (Q, m, η) a commutative monoid and $j : (J, \mu_J) \to (Q, m)$ an ideal. Let $p = \text{coker} j : (Q, m) \to (B, \mu_B)$. Then there exist unique morphisms $m_B : B \otimes B \to B$ and $\eta_B : 1 \to B$ such that

1. (B, m_B, η_B) is a commutative monoid,

2. $p \circ m = m_B \circ p \otimes p$,

3. $p \circ \eta = \eta_B$.

The monoid (B, m_B, η_B) is called the quotient of (Q, m, η) by the ideal $j : (J, \mu_J) \to (Q, m)$. It is nontrivial ($B$ is not a zero object) iff the ideal is proper.

Furthermore, the map $p_\Gamma : \Gamma_Q \to \Gamma_B$ given by $s \mapsto p \circ s$ is a homomorphism of commutative algebras, which is surjective if the unit $1 \in \mathcal{D}$ is a projective object.

Proof. The construction of m_B, η_B proceeds essentially as in commutative algebra, despite the fact that the absence of elements makes it somewhat more abstract. Since $p : (Q, m) \to (B, \mu_B)$ is the cokernel of j, B is non-zero iff j is not epi, to wit if the ideal is proper. The equations $p \circ m = m_B \circ p \otimes p$ and $p \circ \eta = \eta_B$ imply that p_Γ is a unital homomorphism. If 1 is projective then the very Definition 352 implies that for every $s : 1 \to B$ there is $t : 1 \to Q$ such that $s = p \circ t$, thus p_Γ is surjective.
LEMMA 364. Let \(D \) be an essentially small abelian strict symmetric tensor category. Let \((Q, m, \eta)\) be a commutative monoid in \(D \) and \(j : (J, \mu) \rightarrow (Q, m) \) an ideal. Let \((B, m_B, \eta_B)\) be the quotient monoid. Then there is a bijective correspondence between equivalence classes of ideals in \((B, m_B, \eta_B)\) and equivalence classes of ideals \(j' : (J', \mu') \rightarrow (Q, m) \) in \((Q, \mu, \eta)\) that contain \(j : (J, \mu) \rightarrow (Q, m) \).

In particular, if \(j \) is a maximal ideal then all ideals in \((B, m_B, \eta_B)\) are either zero or isomorphic to \((B, m_B)\).

Proof. As in ordinary commutative algebra.

LEMMA 365. Let \(k \) be a field and \((Q, m, \eta)\) a commutative monoid in the strict symmetric abelian \(k \)-linear category \(D \). If every non-zero ideal in \((Q, m, \eta)\) is isomorphic to \((Q, m)\) then the commutative unital \(k \)-algebra \(\text{End}_Q((Q,m)) \) is a field.

Proof. Let \(s \in \text{End}_Q((Q,m)) \) be non-zero. Then \(\text{im} s \neq 0 \) is a non-zero ideal in \((Q, m)\), thus must be isomorphic to \((Q, m)\). Therefore \(\text{im} s \) and in turn \(s \) are epi. Since \(s \neq 0 \), the kernel \(\ker s \) is not isomorphic to \((Q, m)\) and therefore it must be zero, thus \(s \) is monic. By Proposition 350, \(s \) is an isomorphism. Thus the commutative \(k \)-algebra \(\text{End}_Q((Q,m)) \) is a field extending \(k \).

The following lemma is borrowed from [Bichon, 1998]:

LEMMA 366. Let \(D \) be an abelian strict symmetric tensor category and \((Q, m, \eta)\) a commutative monoid in it. Then every epimorphism in \(\text{End}_Q((Q,m)) \) is an isomorphism.

Proof. Let \(g \in \text{End}_Q((Q,m)) \) be an epimorphism and let \(j : (J, \mu_J) \rightarrow (Q, m) \) be an ideal in \((Q, m, \eta)\). Now, \(Q - \text{Mod} \) is a tensor category whose unit is \((Q, m)\), thus there is an isomorphism \(s \in \text{Hom}_Q((J, \mu_J), (Q \otimes Q, J, \mu_{Q \otimes Q})) \). Let \(h \in \text{End}_Q((J, \mu_J)) \) be the composition

\[
(J, \mu_J) \xrightarrow{s} (Q \otimes Q, J, \mu_{Q \otimes Q}) \xrightarrow{g \otimes id_J} (Q \otimes Q, J, \mu_{Q \otimes Q}) \xrightarrow{s^{-1}} (J, \mu_J).
\]

Since the tensor product \(\otimes_Q \) of \(Q - \text{Mod} \) is right-exact, \(g \otimes id_J \) is epi. Now, \(j \circ h = g \circ j \), and if we put \((j : (J, \mu_J) \rightarrow (Q, m)) = \ker g \) we have \(j \circ h = 0 \) and thus \(j = 0 \) since \(h \) is epi. Thus \(g \) is monic and therefore an isomorphism.

A.7 Inductive limits and the Ind-category

We need the categorical version of the concept of an inductive limit. For our purposes, inductive limits over \(\mathbb{N} \) will do, but in order to appeal to existing theories we need some definitions.

DEFINITION 367. If \(\mathcal{I}, \mathcal{C} \) are categories and \(F : \mathcal{I} \rightarrow \mathcal{C} \) a functor, then a colimit (or inductive limit) of \(F \) consists of an object \(Z \in \mathcal{C} \) and, for every \(X \in \mathcal{I} \), of a morphism \(i_X : F(X) \rightarrow Z \) in \(\mathcal{C} \) such that
1. \(i_Y \circ F(s) = i_X \) for every morphism \(s : X \to Y \) in \(\mathcal{I} \).

2. Given \(Z' \in \mathcal{C} \) and a family of morphisms \(j_X : F(X) \to Z' \) in \(\mathcal{C} \) such that \(j_Y \circ F(s) = j_X \) for every morphism \(s : X \to Y \) in \(\mathcal{I} \), there is a unique morphism \(\iota : Z \to Z' \) such that \(j_X = \iota \circ i_X \) for all \(X \in \mathcal{I} \).

The second property required above is the universal property. It implies that any two colimits of \(F \) are isomorphic. Thus the colimit is essentially unique, provided it exists.

DEFINITION 368. A category \(\mathcal{I} \) is **filtered** if it is non-empty and

1. For any two objects \(X, Y \in \mathcal{I} \) there is an \(Z \in \mathcal{Z} \) and morphisms \(i : X \to Z, j : Y \to Z \).

2. For any two morphisms \(u, v : X \to Y \) in \(\mathcal{I} \) there is a morphism \(w : Y \to Z \) such that \(w \circ u = w \circ v \).

Note that any directed partially ordered set \((I, \leq) \) is a filtered category if we take the objects to be the elements of \(I \), and the arrows are ordered pairs \(\{(i, j) : i \leq j\} \).

DEFINITION 369. Let \(\mathcal{C} \) be a category. Then the category \(\text{Ind} \mathcal{C} \) is defined as the functor category whose objects are all functors \(F : \mathcal{I} \to \mathcal{C} \), where \(\mathcal{I} \) is a small filtered category. For \(F : \mathcal{I} \to \mathcal{C}, F' : \mathcal{I}' \to \mathcal{C} \), the hom-set is defined by

\[
\text{Hom}_{\text{Ind} \mathcal{C}}(F, F') = \lim_{\overline{x}} \lim_{\overline{y}} \text{Hom}_{\mathcal{C}}(F(X), F'(Y)).
\]

(An element of the r.h.s. consists of a family \((f_{X,Y} : F(X) \to F'(Y))_{X \in \mathcal{I}, Y \in \mathcal{I}'} \) satisfying \(F'(s) \circ f_{X,Y} = f_{X,Y'} \), for every \(s : Y \to Y' \) in \(\mathcal{I}' \) and \(f_{X,Y} \circ F(t) = f_{X,Y} \) for every \(t : X \to X' \) in \(\mathcal{I} \).) We leave it as an exercise to work out the composition of morphisms.

Some properties of \(\text{Ind} \mathcal{C} \) are almost obvious. It contains \(\mathcal{C} \) as a subcategory: To every \(X \in \mathcal{C} \) we assign the functor \(F : \mathcal{I} \to \mathcal{C} \), where \(\mathcal{I} \) has only one object \(* \) and \(F(*) = X \). This embedding clearly is full and faithful. If \(\mathcal{C} \) is an Ab-category / additive / \(\mathbb{C} \)-linear then so is \(\text{Ind} \mathcal{C} \). If \(\mathcal{C} \) is a strict (symmetric) tensor category then so is \(\text{Ind} \mathcal{C} \): The tensor product of \(F : \mathcal{I} \to \mathcal{C} \) and \(F' : \mathcal{I}' \to \mathcal{C} \) is defined by \(\mathcal{I}'' = \mathcal{I} \times \mathcal{I}' \) (which is a filtered category) and \(F \otimes F' : \mathcal{I}'' \ni X \times Y \mapsto F(X) \otimes F'(Y) \).

For the remaining results that we need, we just cite [SGA, 1972], to which we also refer for the proof:

THEOREM 370. \(\text{Ind} \mathcal{C} \) has colimits for all small filtered index categories \(\mathcal{I} \). If \(\mathcal{C} \) is an abelian category \(\mathcal{C} \) then \(\text{Ind} \mathcal{C} \) is abelian.

Thus every abelian (symmetric monoidal) category is a full subcategory of an abelian (symmetric monoidal) category that is complete under filtered colimits. For us this means that in \(\text{Ind} \mathcal{C} \) we can make sense of infinite direct sums indexed by \(\mathbb{N} \), defining \(\bigoplus_{i \in \mathbb{N}} X_i \) as the colimit of the functor \(F : \mathcal{I} \to \mathcal{C} \), where \(\mathcal{I} \) is the
poset \(\mathbb{N} \) interpreted as a filtered category, and \(F(n) = \bigoplus_{i=1}^{n} X_i \) together with the obvious morphisms \(F(n) \rightarrow F(m) \) when \(n \leq m \).

Lemma 371. If \(\mathcal{C} \) is a \(\mathcal{T} \mathcal{C}^* \) then every object \(X \in \mathcal{C} \) is projective as an object of \(\text{Ind} \mathcal{C} \).

Proof. First assume that \(X \) is irreducible and consider \(s : X \rightarrow B \). Given an epi \(p : A \rightarrow B \) in \(\text{Ind} \mathcal{C} \), we have \(A = \varinjlim_i A_i \) with \(A_i \in \mathcal{C} \) and similarly for \(B \). Furthermore, \(\text{Hom}(A, B) = \varinjlim_i \text{Hom}_\mathcal{C}(A_i, B_j) \) and \(\text{Hom}(X, B) = \varinjlim_i \text{Hom}_\mathcal{C}(X, B_j) \). Since \(X \) is irreducible and \(\mathcal{C} \) is semisimple, \(X \) is a direct summand of \(B_j \) whenever \(s_j : X \rightarrow B_j \) is non-zero. Since \(p : A \rightarrow B \) is epi, the component \(A_i \rightarrow B_j \) is epi for \(i \) sufficiently big. By semisimplicity of \(\mathcal{C} \), \(s_j \) then lifts to a morphism \(X \rightarrow A_i \). Putting everything together this gives a morphism \(\hat{s} : X \rightarrow A \) such that \(p \circ \hat{s} = s \).

Now let \(X \) be a finite direct sum of irreducible \(X_i \) with isometries \(v_i : X_i \rightarrow X \) and \(s : X \rightarrow B \). Defining \(s_i = s \circ v_i : X_i \rightarrow B \), the first half of the proof provides \(\hat{s}_i : X_i \rightarrow A \) such that \(p \circ \hat{s}_i = s_i \). Now define \(\hat{s} = \sum_i \hat{s}_i \circ v_i^* : X \rightarrow A \). We have

\[
p \circ \hat{s} = \sum_i p \circ \hat{s}_i \circ v_i^* = \sum_i s_i \circ v_i^* = \sum_i s \circ v_i \circ v_i^* = s,
\]

proving projectivity of \(X \).

\[\square \]

B Abstract Duality Theory for Symmetric Tensor \(*\)-Categories

In the first two subsections we give self-contained statements of the results needed for the reconstructions in AQFT. Some of the proofs are deferred to the rest of this appendix, which hurried (or less ambitious) or readers may safely skip.

B.1 Fiber functors and the concrete Tannaka theorem. Part I

Let \(\text{Vect}_\mathcal{C} \) denote the \(\mathcal{C} \)-linear symmetric tensor category of finite dimensional \(\mathcal{C} \)-vector spaces and \(\mathcal{H} \) denote the \(\mathcal{STC}^* \) of finite dimensional Hilbert spaces. We pretend that both tensor categories are strict, which amounts to suppressing the associativity and unit isomorphisms \(\alpha, \lambda, \rho \) from the notation. Both categories have a canonical symmetry \(\Sigma \), the flip isomorphism \(\Sigma_{V, V'} : V \otimes V' \rightarrow V' \otimes V \).

Definition 372. Let \(\mathcal{C} \) be an \(\mathcal{STC}^* \). A fiber functor for \(\mathcal{C} \) is a faithful \(\mathcal{C} \)-linear tensor functor \(E : \mathcal{C} \rightarrow \text{Vect}_\mathcal{C} \). A \(*\)-preserving fiber functor for \(\mathcal{C} \) is a faithful functor \(E : \mathcal{C} \rightarrow \mathcal{H} \) of tensor \(*\)-categories. \(E \) is symmetric if \(E(c_{X,Y}) = \Sigma_{E(X), E(Y)} \), i.e. the symmetry of \(\mathcal{C} \) is mapped to the canonical symmetry of \(\text{Vect}_\mathcal{C} \) or \(\mathcal{H} \), respectively.

An \(\mathcal{STC}^* \) equipped with a symmetric \(*\)-preserving fiber functor is called concrete, since it is equivalent to a (non-full!) tensor subcategory of the category \(\mathcal{H} \) of Hilbert spaces. Our main concern in this appendix are (1) Consequences of the
existence of a fiber functor, (2) Uniqueness of fiber functors, and (3) Existence of fiber functors. As to (2) we will prove:

THEOREM 373. Let \mathcal{C} be an STC* and let $E_1, E_2 : \mathcal{C} \to \mathcal{H}$ be $*$-preserving symmetric fiber functors. Then $E_1 \cong E_2$, i.e. there exists a unitary monoidal natural isomorphism $\alpha : E_1 \to E_2$.

We now assume a symmetric $*$-preserving fiber functor for the STC* \mathcal{C} to be given. Let $G_E \subset \text{Nat}_{\mathcal{C}} E$ denote the set of unitary monoidal natural transformations of E (to itself). This clearly is a group with the identical natural transformation as unit. G_E can be identified with a subset of $\prod_{X \in \mathcal{C}} \mathcal{U}(E(X))$, where $\mathcal{U}(E(X))$ is the compact group of unitaries on the finite dimensional Hilbert space $E(X)$. The product of these groups is compact by Tychonov's theorem, cf. e.g. [Pedersen, 1989, Theorem 1.6.10], and since G_E is a closed subset, it is itself compact. The product and inverse maps are continuous, thus G_E is a compact topological group. By its very definition, the group G_E acts on the Hilbert spaces $E(X), X \in \mathcal{C}$ by unitary representations π_X, namely $\pi_X(g) = g_X$ where g_X is the component at X of the natural transformation $g \in G_E$.

PROPOSITION 374. There is a faithful symmetric tensor $*$-functor $F : \mathcal{C} \to \text{Rep}_f G_E$ such that $K \circ F = E$, where $K : \text{Rep}_f G_E \to \mathcal{H}$ is the forgetful functor $(H, \pi) \mapsto H$.

Proof. We define $F(X) = (E(X), \pi_X) \in \text{Rep}_f G_E$ for all $X \in \mathcal{C}$ and $F(s) = E(s)$ for all $s \in \text{Hom}(X, Y)$. For $s : X \to Y$ we have

$$F(s)\pi_X(g) = F(s)g_X = g_Y F(s) = \pi_Y(g)F(s),$$

since $g : E \to E$ is a natural transformation. Thus F is a functor, which is obviously $*$-preserving and faithful. In view of $g_1 = \text{id}_{E(1)}$ for every $g \in G_E$, we have $F(1_\mathcal{C}) = (\mathbb{C}, \pi_0) = 1_{\text{Rep}_f G_E}$, where π_0 is the trivial representation. In order to see that F is a functor of tensor $*$-categories we must produce unitaries $d^E_{X,Y} : F(X) \otimes F(Y) \to F(X \otimes Y), \ X, Y \in \mathcal{C}$ and $e : 1_{\text{Rep}_f G_E} \to F(1_\mathcal{C})$ satisfying (56) and (57), respectively. We claim that the choice $e^F = e^E$, $d^E_{X,Y} = d^E_{X,Y}$ does the job, where the e^E and $d^E_{X,Y}$ are the unitaries coming with the tensor functor $E : \mathcal{C} \to \mathcal{H}$. It is obvious that e^E and $d^E_{X,Y}$ satisfy (56) and (57), but we must show that they are morphisms in $\text{Rep}_f G_E$. For $d^E_{X,Y}$ this follows from the computation

$$d^E_{X,Y} \circ (\pi_X(g) \otimes \pi_Y(g)) = d^E_{X,Y} \circ g_X \otimes g_Y = g_X \otimes g_Y \circ d^E_{X,Y} = \pi_X \otimes \pi_Y(g) \circ d^E_{X,Y},$$

where we have used that g is a monoidal natural transformation. Now, by the definition of a natural monoidal transformation we have $g_1 = \text{id}_{E(1)}$ for all $g \in G_E$, i.e. $F(1) = (E(1), \pi_1)$ is the trivial representation. If the strict unit $1_\mathcal{H} = \mathbb{C}$ is in the image of E then, by naturality, it also carries the trivial representation, thus e^F in fact is a morphism of representations. (In case $1_\mathcal{H} \notin E(\mathcal{C})$, we equip $1_\mathcal{H}$ with the trivial representation by hand.) Since the symmetry of $\text{Rep}_f G_E$ is by definition given by $c((H, \pi), (H', \pi')) = c(H, H')$, where the right hand side refers
to the category \mathcal{H}, and since E respects the symmetries, so does F. $K \circ F = E$ is obvious.

The proof of the following proposition is postponed, since it requires further preparations.

Proposition 375. Let \mathcal{C} be an STC* and $E : \mathcal{C} \to \mathcal{H}$ a symmetric *-preserving fiber functor. Let G_E and $F : \mathcal{C} \to \text{Rep}_f G_E$ as defined above. Then the following hold:

(i) If $X \in \mathcal{C}$ is irreducible then $\text{span}_C \{ \pi_X(g), \ g \in G_E \}$ is dense in $\text{End} \ E(X)$.

(ii) If $X, Y \in \mathcal{C}$ are irreducible and $X \not\cong Y$ then $\text{span}_C \{ \pi_X(g) \oplus \pi_Y(g), \ g \in G_E \}$ is dense in $\text{End} \ E(X) \oplus \text{End} \ E(Y)$.

Theorem 376. Let \mathcal{C} be an STC* and $E : \mathcal{C} \to \mathcal{H}$ a symmetric *-preserving fiber functor. Let G_E and $F : \mathcal{C} \to \text{Rep}_f G_E$ as defined above. Then F is an equivalence of symmetric tensor *-categories.

Proof. We already know that F is a faithful symmetric tensor functor. In view of Proposition 318 it remains to show that F is full and essentially surjective.

Since the categories \mathcal{C} and $\text{Rep}_f G_E$ are semisimple, in order to prove that F is full it is sufficient to show that (a) $F(X) \in \text{Rep}_f G_E$ is irreducible if $X \in \mathcal{C}$ is irreducible and (b) whenever $X, Y \in \mathcal{C}$ are irreducible and inequivalent then $\text{Hom}(F(X), F(Y)) = \{0\}$. Now, (i) of Proposition 375 clearly implies that $\text{End}(F(X)) = \mathbb{C} \text{id}$, which is the desired irreducibility of $F(X)$. Assume now that $X, Y \in \mathcal{C}$ are irreducible and non-isomorphic and let $s \in \text{Hom}(F(X), F(Y))$, to wit $s \in \text{Hom}(E(X), E(Y))$ and $s\pi_X(g) = \pi_Y(g)s$ for all $g \in G_E$. Then (ii) of Proposition 375 implies $su = vs$ for any $u \in \text{End} \ E(X)$ and $v \in \text{End} \ E(Y)$. With $u = 0$ and $v = 1$ this implies $s = 0$, thus the irreps $F(X) = (E(X), \pi_X)$ and $F(Y) = (E(Y), \pi_Y)$ are non-isomorphic. This proves that F is full.

Therefore, F is an equivalence of \mathcal{C} with a full tensor subcategory of $\text{Rep}_f G_E$. If $g \in G_E$ is nontrivial, it is immediate by the definition of G_E that there is an $X \in \mathcal{C}$ such that $g_X \neq \text{id}_{E(X)}$ — but this means $\pi_X(g) \neq 1$. In other words, the representations $\{ F(X), X \in \mathcal{C} \}$ separate the points of G_E. But it is a well known consequence of the Peter-Weyl theorem that a full monoidal subcategory of $\text{Rep}_f G_E$ separates the points of G_E iff it is in fact equivalent to $\text{Rep}_f G_E$. Thus the functor F is essentially surjective, and we are done.

Since they are so important, we restate Theorems 373 and 376 in a self contained way:

Theorem 377. Let \mathcal{C} be an STC* and $E : \mathcal{C} \to \mathcal{H}$ a *-preserving symmetric fiber functor. Let G_E be the group of unitary monoidal natural transformations of E with the topology inherited from $\prod_{X \in \mathcal{C}} \mathcal{U}(E(X))$. Then G_E is compact and the functor $F : \mathcal{C} \to \text{Rep}_f G_E$, $X \mapsto (E(X), \pi_X)$, where $\pi_X(g) = g_X$, is an equivalence.
of STC*s. If $E_1, E_2 : \mathcal{C} \to \mathcal{H}$ are $*$-preserving symmetric fiber functors then $E_1 \cong E_2$ and therefore $G_{E_1} \cong G_{E_2}$.

REMARK 378. The preceding theorem is essentially a reformulation in modern language of the classical result of Tannaka [Tannaka, 1939]. It can be generalized, albeit without the uniqueness part, to a setting where \mathcal{C} is only braided or even has no braiding. This leads to a (concrete) Tannaka theory for quantum groups, for which the interested reader is referred to the reviews [Joyal and Street, 1991] and [Müger et al., 2004].

Before we turn to proving Theorem 373 (Subsection B.4) and Proposition 375 (Subsection B.5) we identify a necessary condition for the existence of fiber functors, which will lead us to a generalization of Theorem 377.

B.2 Compact supergroups and the abstract Tannaka theorem

According to Theorem 377, an STC* admitting a symmetric $*$-preserving fiber functor is equivalent, as a symmetric tensor $*$-category, to the category of finite dimensional unitary representations of a compact group G that is uniquely determined up to isomorphism. Concerning the existence of fiber functors it will turn out that the twist Θ (Definition 342) provides an obstruction, fortunately the only one.

DEFINITION 379. An STC* is called even if $\Theta(X) = \text{id}_X$ for all $X \in \mathcal{C}$.

EXAMPLE 380. A simple computation using the explicit formulae for $\tau, \bar{\tau}, c_{X,Y}$ given in Example 333 shows that the STC* \mathcal{H} of finite dimensional Hilbert spaces is even. The same holds for the category $\text{Rep}_f G$ of finite dimensional unitary representations of a compact group G.

This suggests that an STC* must be even in order to admit a fiber functor. In fact:

PROPOSITION 381. If an STC* \mathcal{C} admits a $*$-preserving symmetric fiber functor E then it is even.

Proof. By Proposition 344, we have $E(\Theta(X)) = \Theta(E(X))$. Since \mathcal{H} is even, this equals $\text{id}_{E(X)} = E(\text{id}_X)$. Since E is faithful, this implies $\Theta(X) = \text{id}_X$. □

Fortunately, this is the only obstruction since, beginning in the next subsection, we will prove:

THEOREM 382. Every even STC* admits a $*$-preserving symmetric fiber functor $E : \mathcal{C} \to \mathcal{H}$.

Combining this with Theorem 377 we obtain:

THEOREM 383. Let \mathcal{C} be an even STC*. Then there is a compact group G, unique up to isomorphism, such that there exists an equivalence $F : \mathcal{C} \to \text{Rep}_f G$ of STC*s.
Theorem 383 is not yet sufficiently general for the application to quantum field theory, which is the subject of this chapter. Making the connection with DHR theory, we see that the twist of an irreducible DHR sector is ±1, depending on whether the sector is bosonic or fermionic. Since in general we cannot a priori rule out fermionic sectors, we cannot restrict ourselves to even STC*’s. What we therefore really need is a characterization of all STC*’s. This requires a generalization of the notion of compact groups:

DEFINITION 384. A (compact) supergroup is a pair \((G, k)\) where \(G\) is a (compact Hausdorff) group and \(k\) is an element of order two in the center of \(G\). An isomorphism \(\alpha : (G, k) \cong (G', k')\) of (compact) supergroups is an isomorphism \(\alpha : G \to G'\) of (topological) groups such that \(\alpha(k) = k'\).

DEFINITION 385. A (finite dimensional, unitary, continuous) representation of a compact supergroup \((G, k)\) is just a (finite dimensional, unitary, continuous) representation \((H, \pi)\) of \(G\). Intertwiners and the tensor product of representations are defined as for groups, thus \(\text{Rep}_{f}(G, k) \cong \text{Rep}_{f}G\) as \(C^*\)-tensor tensor categories. (Since \(k\) is in the center of \(G\), morphisms in \(\text{Rep}_{f}(G, k)\) automatically preserve the \(\mathbb{Z}_2\)-grading induced by \(\pi(k)\). \(\text{Rep}_{f}(G, k)\) is equipped with a symmetry \(\Sigma_k\) as follows: For every \((H, \pi) \in \text{Rep}(G, k)\) let \(P_{\pi}^\pm = (\text{id} + \pi(k))/2\) be the projector on the even and odd subspaces of a representation space \(H\), respectively. Then

\[
\Sigma_k((H, \pi), (H', \pi')) = \Sigma(H, H')(1 - 2P_{\pi}^- \otimes P_{\pi'}^-),
\]

where \(\Sigma(H, H') : H \otimes H' \to H' \otimes H\) is the usual flip isomorphism \(x \otimes y \mapsto y \otimes x\). Thus for homogeneous \(x \in H, y \in H'\) we have \(\Sigma_k((H, \pi), (H', \pi')) : x \otimes y \mapsto \pm y \otimes x\), where the minus sign occurs iff \(x \in H_\text{-}\) and \(y \in H_\text{-}\). In the case \((G, k) = (\{e\}, k)\), we call \(\text{Rep}_f(G, k)\) the category \(\mathcal{SH}\) of super Hilbert spaces.

REMARK 386. Note that the action of \(k\) induces a \(\mathbb{Z}_2\)-grading on \(H\) that is stable under the \(G\)-action. Since the symmetry \(\Sigma_k\) defined above is precisely the one on the category \(\mathcal{SH}\) of finite dimensional super Hilbert spaces, we see that there is a forgetful symmetric tensor functor \(\text{Rep}_f(G, k) \to \mathcal{SH}\).

LEMMA 387. \(\Sigma_k\) as defined above is a symmetry on the category \(\text{Rep}(G, k)\). Thus \(\text{Rep}_f(G, k)\) is a STC*. For every object \(X = (H, \pi) \in \text{Rep}_f(G, k)\), the twist \(\Theta(X)\) is given by \(\pi(k)\).

Proof. Most of the claimed properties follow immediately from those of \(\text{Rep}_f G\). It is clear that \(\Sigma_k((H, \pi), (H', \pi')) \circ \Sigma_k((H', \pi'), (H, \pi))\) is the identity of \(H' \otimes H\). We only need to prove naturality and compatibility with the tensor product. This is an easy exercise. The same holds for the identity \(\Theta((H, \pi)) = \pi(k)\).

We need a corollary of (the proof of) Theorem 383:

COROLLARY 388. For any compact group \(G\), the unitary monoidal natural transformations of the identity functor on \(\text{Rep}_f G\) form an abelian group that is isomorphic to the center \(Z(G)\).
Proof. If $k \in Z(G)$ and $(H, \pi) \in \text{Rep}_f G$ is irreducible then $\pi(k) = \omega_{(H, \pi)} \text{id}_H$, where $\omega_{(H, \pi)}$ is a scalar. Defining $\Theta((H, \pi)) = \omega_{(H, \pi)} \text{id}_{(H, \pi)}$ and extending to reducible objects defines a unitary monoidal natural isomorphism of $\text{Rep}_f G$. Conversely, let $\{\Theta((H, \pi))\}$ be a unitary monoidal isomorphism of the identity functor of $\text{Rep}_f G$ and $K : \text{Rep}_f G \to \mathcal{H}$ the forgetful functor. Then the family $(\alpha_{(H, \pi)} = K(\Theta((H, \pi))))$ is a unitary monoidal natural isomorphism of K. By Theorem 377, there is a $g \in G$ such that $\alpha_{(H, \pi)} = \pi(g)$ for all $(H, \pi) \in \text{Rep}_f G$. Since $\pi(g)$ is a multiple of the identity for every irreducible (H, π), g is in $Z(G)$ by Schur’s lemma. Clearly the above correspondence is an isomorphism of abelian groups.

Modulo Theorem 382 we can now can prove the Main Result of this appendix:

THEOREM 389. Let \mathcal{C} be an STC*. Then there exist a compact supergroup (G, k), unique up to isomorphism, and an equivalence $F : \mathcal{C} \to \text{Rep}_f (G, k)$ of symmetric tensor *-categories. In particular, if $K : \text{Rep}_f (G, k) \to \mathcal{S} \mathcal{H}$ is the forgetful functor, the composite $E = K \circ F : \mathcal{C} \to \mathcal{S} \mathcal{H}$ is a ‘super fiber functor’, i.e. a faithful symmetric *-preserving tensor functor into the STC* of super Hilbert spaces.

Proof. We define a new STC* $\tilde{\mathcal{C}}$ (the ‘bosonization’ of \mathcal{C}) as follows. As a tensor *-category, $\tilde{\mathcal{C}}$ coincides with \mathcal{C}. The symmetry \tilde{c} is defined by

$$\tilde{c}_{X,Y} = (-1)^{(1 - \Theta(X))(1 - \Theta(Y))/4} c_{X,Y}$$

for irreducible $X, Y \in \text{Obj} \mathcal{C} = \text{Obj} \tilde{\mathcal{C}}$, and extended to all objects by naturality. It is easy to verify that (\tilde{C}, \tilde{c}) is again a symmetric tensor category, in fact an even one. Thus by Theorem 383 there is a compact group G such that $\tilde{\mathcal{C}} \simeq \text{Rep}_f G$ as STC*’s. Applying Corollary 388 to the category $\tilde{\mathcal{C}} \simeq \text{Rep}_f G$ and the family $(\Theta(X))_{X \in \mathcal{C}}$, as defined in the original category \mathcal{C} proves the existence of an element $k \in Z(G)$, $k^2 = e$, such that $\Theta((H, \pi)) = \pi(k)$ for all $(H, \pi) \in \tilde{\mathcal{C}} \simeq \text{Rep}_f G$. Clearly (G, k) is a supergroup. We claim that $\mathcal{C} \simeq \text{Rep}_f (G, k)$ as STC*’s. Ignoring the symmetries this is clearly true since $\text{Rep}_f (G, k) \simeq \text{Rep}_f G$ as tensor *-categories. That \mathcal{C} and $\text{Rep}_f (G, k)$ are equivalent as STC*’s, i.e. taking the symmetries into account, follows from the fact that \mathcal{C} is related to $\tilde{\mathcal{C}}$ precisely as $\text{Rep}_f (G, k)$ is to $\text{Rep}_f G$, namely by a twist of the symmetry effected by the family $(\Theta((H, \pi)) = \pi(k))$. To conclude, we observe that the uniqueness result for (G, k) follows from the uniqueness of G in Theorem 383 and that of k in Corollary 388.

REMARK 390. Theorem 389 was proven by Doplicher and Roberts in [Doplicher and Roberts, 1989, Section 7] exactly as stated above, the only superficial difference being that the terminology of supergroups wasn’t used. (Note that our supergroups are not what is usually designated by this name.) As above, the proof was by
reduction to even categories and compact groups. Independently and essentially at the same time, a result analogous to Theorem 382 for (pro)algebraic groups was proven by Deligne in [Deligne, 1990], implying an algebraic analogue of Theorem 383 by [Saavedra Rivano, 1972; Deligne and Milne, 1982]. Recently, Deligne also discussed the super case, cf. [Deligne, 2002].

This concludes the discussion of the main results of this appendix. We now turn to proving Theorem 373, Proposition 375 and Theorem 382.

B.3 Certain algebras arising from fiber functors

Let \(C \) be a \(TC^* \) and \(E_1, E_2 : C \to \text{Vect}_C \) fiber functors. Recall that they come with natural isomorphisms \(d_{X,Y}^i : E_i(X) \otimes E_i(Y) \to E_i(X \otimes Y) \) and \(e^i : 1_{\text{Vect}} = \mathbb{C} \to E_i(1_\mathbb{C}) \). Consider the \(\mathbb{C} \)-vector space

\[
A_0(E_1, E_2) = \bigoplus_{X \in C} \text{Hom}(E_2(X), E_1(X)).
\]

For \(X \in C \) and \(s \in \text{Hom}(E_2(X), E_1(X)) \) we write \([X, s]\) for the element of \(A_0(E_1, E_2) \) which takes the value \(s \) at \(X \) and is zero elsewhere. Clearly, \(A_0 \) consists precisely of the finite linear combinations of such elements. We turn \(A_0(E_1, E_2) \) into a \(\mathbb{C} \)-algebra by defining \([X, s] \cdot [Y, t] = [X \otimes Y, u]\), where \(u \) is the composite

\[
E_2(X \otimes Y) \xrightarrow{(d_{X,Y}^2)^{-1}} E_2(X) \otimes E_2(Y) \xrightarrow{s \otimes t} E_1(X) \otimes E_1(Y) \xrightarrow{d_{X,Y}^1} E_1(X \otimes Y)
\]

Since \(C \) is strict, we have \((X \otimes Y) \otimes Z = X \otimes (Y \otimes Z) \) and \(1 \otimes X = X = X \otimes 1 \). Together with the 2-cocycle type equation (56) satisfied by the isomorphisms \(d_{X,Y}^i \), this implies that \(A_0(E_1, E_2) \) is associative. The compatibility (57) of \(d_{X,Y}^i \) with \(e^i \) for \(i = 1, 2 \) implies that \([1, e^1 \circ (e^2)^{-1}]\) is a unit of the algebra \(A_0(E_1, E_2) \).

Lemma 391. Let \(C \) be a \(TC^* \) and \(E_1, E_2 : C \to \text{Vect}_C \) fiber functors. The subspace

\[
I(E_1, E_2) = \text{span}_C \{[X, a \circ E_2(s)] - [Y, E_1(s) \circ a] \mid s : X \to Y, a : E_2(Y) \to E_1(X)\}
\]

is a two-sided ideal.

Proof. To show that \(I(E_1, E_2) \subset A_0(E_1, E_2) \) is an ideal, let \(s : X \to Y, a \in \text{Hom}(E_2(Y), E_1(X)) \), thus \([X, a \circ E_2(s)] - [Y, E_1(s) \circ a] \in I(E_1, E_2)\), and let \([Z, t] \in A_0(E_1, E_2)\). Then

\[
([X, a \circ E_2(s)] - [Y, E_1(s) \circ a]) \cdot [Z, t]
= [X \otimes Z, d_{X,Z}^1 \circ (a \circ E_2(s)) \otimes t \circ (d_{X,Z}^2)^{-1}]
- [Y \otimes Z, d_{Y,Z}^1 \circ (E_1(s) \circ a) \otimes t \circ (d_{Y,Z}^2)^{-1}]
= [X \otimes Z, d_{X,Z}^1 \circ a \otimes t \circ (d_{X,Z}^2)^{-1} \circ E_2(s \otimes \text{id}_Z)]
- [Y \otimes Z, E_1(s \otimes \text{id}_Z) \circ d_{X,Z}^1 \circ a \otimes t \circ (d_{Y,Z}^2)^{-1}]
= [X', a' \circ E_2(s')] - [Y', E_1(s') \circ a'] \in I(E_1, E_2),
\]
where in the second equality we used naturality of d^A, and in the last line we wrote $X' = X \otimes Z, Y' = Y \otimes Z, s' = s \otimes \text{id}_Z : X' \to Y'$ and $a' = d_{X',Z}^1 \circ a \otimes t \circ (d_{Y,Z}^2)^{-1} \in \text{Hom}(E_2(Y'), E_1(X'))$ in order to make clear that the result is in $I(E_1, E_2)$. This proves that the latter is a left ideal in $A_0(E_1, E_2)$. Similarly, one shows that it is a right ideal. \[\]

We denote by $A(E_1, E_2)$ the quotient algebra $A_0(E_1, E_2)/I(E_1, E_2)$. It can also be understood as the algebra generated by symbols $[X, s, t], s \in \text{Hom}(E_2(X), E_1(X))$, subject to the relations $[X, s] + [X, t] = [X, s + t]$ and $[X, a \circ E_2(s)] = [Y, E_1(s) \circ a]$ whenever $s : X \to Y$, $a \in \text{Hom}(E_2(Y), E_1(X))$. Therefore it should not cause confusion that we denote the image of $[X, s] \in A_0(E_1, E_2)$ in $A(E_1, E_2)$ again by $[X, s]$.

Proposition 392. Let \mathcal{C} be an STC* and $E_1, E_2 : \mathcal{C} \to \text{Vect}_\mathbb{C}$ fiber functors. If E_1, E_2 are symmetric then $A(E_1, E_2)$ is commutative.

Proof. Assume that \mathcal{C} is symmetric and that the fiber functors satisfy $E_i(c_{X,Y}) = \Sigma_{E_i(X), E_i(Y)}$. Let $[A, u], [B, v] \in A_0(E_1, E_2)$, thus $A, B \in \mathcal{C}$ and $u : E_2(A) \to E_1(A), v : E_2(B) \to E_1(B)$. Then

$$[A, u] \cdot [B, v] = [A \otimes B, d_{A,B}^1 \circ u \otimes v \circ (d_{A,B}^2)^{-1}]$$

and

$$[B, v] \cdot [A, u] = [B \otimes A, d_{B,A}^1 \circ v \otimes u \circ (d_{B,A}^2)^{-1}]$$

$$= [B \otimes A, d_{B,A}^1 \circ \Sigma_{E_1(A), E_2(B)} \circ u \otimes v \circ \Sigma_{E_2(B), E_1(A)} \circ (d_{B,A}^2)^{-1}]$$

$$= [B \otimes A, d_{B,A}^1 \circ E_1(c_{B,A}) \circ u \otimes v \circ E_2(c_{B,A}) \circ (d_{B,A}^2)^{-1}]$$

$$= [B \otimes A, E_1(c_{A,B}) \circ d_{A,B}^1 \circ u \otimes v \circ (d_{A,B}^2)^{-1} \circ E_2(c_{B,A})].$$

With $X = A \otimes B, Y = B \otimes A, s = c_{A,B}$ and $a = d_{A,B}^1 \circ u \otimes v \circ (d_{A,B}^2)^{-1} \circ E_2(c_{B,A})$ we obtain

$$[A, u] \cdot [B, v] = [X, a \circ E_2(s)],$$

$$[B, v] \cdot [A, u] = [Y, E_1(s) \circ a].$$

Thus

$$[A, u] \cdot [B, v] - [B, v] \cdot [A, u] = [X, a \circ E_2(s)] - [Y, E_1(s) \circ a] \in I(E_1, E_2),$$

implying $[A_0(E_1, E_2), A_0(E_1, E_2)] \subset I(E_1, E_2)$. This implies commutativity of $A(E_1, E_2) = A_0(E_1, E_2)/I(E_1, E_2)$. \[\]

Proposition 393. Let \mathcal{C} be a TC* and let $E_1, E_2 : \mathcal{C} \to \mathcal{H}$ be *-preserving fiber functors. Then $A(E_1, E_2)$ has a positive *-operation, i.e. an antilinear and antimultiplicative involution such that $a^\ast a = 0$ implies $a = 0$. \[\]
Proof. We define a \(\ast \)-operation \(\ast \) on \(A_0(E_1, E_2) \). Let \([X, s] \in A_0(E_1, E_2)\). Pick a standard conjugate \((X, r_i, \bar{r}_i)\), define \(t \in \text{Hom}_H(E_2(\bar{X}), E_1(\bar{X}))\) by

\[
t = \text{id}_{E_1(\bar{X})} \otimes E_2(\bar{r}^*) \circ \text{id}_{E_1(\bar{X})} \otimes s^* \otimes \text{id}_{E_2(\bar{X})} \circ E_1(r) \otimes \text{id}_{E_2(\bar{X})}
\]

and put \([X, s]^* := [\bar{X}, t] \ast \). (Of course, \(s^*\) is defined using the inner products on the Hilbert spaces \(E_1(X), E_2(X)\).) If we pick another standard conjugate \((X', r', \bar{r}')\) of \(X\), we know that there is a unitary \(u : X \to X'\) such that \(r' = u \otimes \text{id}_X \circ r \) and \(\bar{r}' = \text{id}_X \otimes u \circ \bar{r}\). Using \((X', r', \bar{r}')\) we obtain \(([X, s]^*)' := [\bar{X}', t'] \ast \) with \(t'\) defined by replacing \(r, \bar{r}\) by \(r', \bar{r}'\). Now, \([X, t] - [X', t'] = \)

\[
[\bar{X}, \text{id}_{E_1(\bar{X})} \otimes E_2(\bar{r}^*) \circ \text{id}_{E_1(\bar{X})} \otimes s^* \otimes \text{id}_{E_2(\bar{X})} \circ E_1(r) \otimes \text{id}_{E_2(\bar{X})}]
\]

which is in the ideal \(I(E_1, E_2)\) defined in Proposition 398. Thus, while \([X, s]^*\) depends on the chosen conjugate \((X, r, \bar{r})\) of \(X\), its image \(\gamma([X, s]^*) \in A(E_1, E_2)\) doesn't.

In order to be able to define a \(\ast \)-operation on \(A(E_1, E_2)\) by \(x^* := \gamma \circ \gamma^{-1}(x)\) we must show that the composite map \(\gamma \circ \gamma : A_0(E_1, E_2) \to A(E_1, E_2)\) maps \(I(E_1, E_2)\) to zero. To this purpose, let \(X, Y \in C, s : X \to Y, a \in \text{Hom}(E_2(Y), E_1(X))\) and choose conjugates \((X, \tau X, \bar{r}_X), (Y, \tau Y, \bar{r}_Y)\). Then

\[
[X, a \circ E_2(s)]^* - [Y, E_1(s) \circ a]^* \\
= [\bar{X}, \text{id}_{E_1(\bar{X})} \otimes E_2(\bar{r}^* X) \circ \text{id}_{E_1(\bar{X})} \otimes (a \circ E_2(s))^* \otimes \text{id}_{E_2(\bar{X})} \circ E_1(\tau X) \otimes \text{id}_{E_2(\bar{X})}]
\]

with \(\bar{a} \in \text{Hom}_H(E_2(\bar{Y}), E_1(\bar{X}))\) and \(\bar{s} \in \text{Hom}(\bar{X}, \bar{Y})\) defined by

\[
\bar{a} = \text{id}_{E_1(\bar{X})} \otimes E_2(\bar{r}^* X) \circ \text{id}_{E_1(\bar{X})} \otimes a^* \otimes \text{id}_{E_2(\bar{Y})} \circ E_1(\tau X) \otimes \text{id}_{E_2(\bar{Y})},
\]

\[
\bar{s} = \text{id}_{\bar{Y}} \otimes \bar{r}_X^* \circ \text{id}_{\bar{Y}} \otimes s^* \otimes \text{id}_{\bar{X}} \circ \tau Y \otimes \text{id}_{\bar{X}}.
\]

This clearly is in \(I(E_1, E_2)\), thus \(x^* := \gamma \circ \gamma^{-1}(x)\) defines a \(\ast \)-operation on \(A(E_1, E_2)\).

Now it is obvious that the resulting map \(\ast\) on \(A(E_1, E_2)\) is additive and antilinear. It also is involutive and antimultiplicative as one verifies by an appropriate use of the conjugate equations. We omit the tedious but straightforward computations. It remains to show positivity of the \(\ast\)-operation. Consider \([X, s] \in A_0(E_1, E_2)\), pick a conjugate \((\bar{X}, r, \bar{r})\) and compute \([X, s]^* \ast [X, s] = [\bar{X} \otimes X, t] \ast\), where \(t\) equals

\[
d_{\bar{X}, X}^1 \circ \left(\text{id}_{E_1(\bar{X})} \otimes E_2(\bar{r}^*) \circ \text{id}_{E_1(\bar{X})} \otimes s^* \otimes \text{id}_{E_2(\bar{X})} \circ E_1(r) \otimes \text{id}_{E_2(\bar{X})}\right) \otimes s^\circ (d_{\bar{X}, X}^2)^*.
\]
Now,
\[
[X \otimes X, t] = [X \otimes X, E_1(r^*) \circ E_1(r) \circ t] = [1, E_1(r) \circ t \circ E_2(r^*)]
\]
\[
= \left[1, E_1(r^*) \circ \left(\text{id}_{E_1(X)} \otimes E_2(r^*) \circ \text{id}_{E_1(X)} \otimes s^* \otimes \text{id}_{E_2(X)} \right) \otimes s \circ E_2(r) \right]
\]
\[
= [1, E_1(r^*) \circ \left(s \circ s^* \right) \circ E_1(r)] = [1, u^*u],
\]
where we have used the conjugate equations and put \(u = \text{id} \otimes s^* \circ E_1(r) \). Thus, \([X, s]^* \cdot [X, s] = [1, u^*u]\) is zero iff \(u^*u \) is zero. By positivity of the \(*\)-operation in \(\mathcal{H} \), this holds iff \(u = 0 \). Using once again the conjugate equations we see that this is equivalent to \(s = 0 \). Thus for elements \(a \in A(E_1, E_2) \) of the form \([X, s]\), the implication \(a^*a = 0 \Rightarrow a = 0 \) holds. For a general \(a = \sum_i [X_i, s_i] \) we pick isometries \(v_i : X_i \to X \) such that \(\sum_i v_i \circ v_i^* = \text{id}_X \) (i.e. \(X \cong \oplus_i X_i \)). Then \([X_i, s_i] = [X, E_1(v_i) \circ s_i \circ E_2(v_i^*)]\), thus
\[
\sum_i [X_i, s_i] = [X, \sum_i E_1(v_i) \circ s_i \circ E_2(v_i^*)],
\]
implies that every element of \(A(E_1, E_2) \) can be written as \([X, s]\), and we are done.

PROPOSITION 394. Let \(\mathcal{C} \) be a TC* and let \(E_1, E_2 : \mathcal{C} \to \mathcal{H} \) be *-preserving fiber functors. Then
\[
\|a\| = \inf_b \sup_{X \in \mathcal{C}} \|b_X\|_{\text{End}_E(X)},
\]
where the infimum is over all representers \(b \in A_0(E_1, E_2) \) of \(a \in A(E_1, E_2) \), defines a C*-norm on \(A(E_1, E_2) \).

Proof. Let \([X, s], [Y, t] \in A_0(E_1, E_2)\). Then \([X, s] \cdot [Y, t] = [X \otimes Y, u]\), where \(u = d_{X,Y}^1 \otimes s \otimes t \circ (d_{X,Y}^2)^{-1} \). Since \(d_{X,Y}^1, d_{X,Y}^2 \) are unitaries, we have \(\| [X \otimes Y, u] \| = \| u \| \leq \| s \| \cdot \| t \| \). Thus \(\| b \| = \sup_{X \in \mathcal{C}} \| b_X \|_{\text{End}_E(X)} \) defines a submultiplicative norm on \(A_0(E_1, E) \), and the above formula for \(\| a \| \) is the usual definition of a norm on the quotient algebra \(A_0(E_1, E_2) / I(E_1, E_2) \). This norm satisfies \(\|[X, s]\| = \| s \| \). Since every \(a \in A(E_1, E_2) \) can be written as \([X, s]\), we have \(\| a \| = 0 \Rightarrow a = 0 \). Finally, the computations in the proof of Proposition 393 imply
\[
\|[X, s]^*[X, s]\| = \|[1, u^*u]\| = \| u^*u \| = \| u \|^2 = \| s \|^2 = \|[X, s]\|^2,
\]
which is the C*-condition.

DEFINITION 395. Let \(\mathcal{C} \) be a TC* and let \(E_1, E_2 : \mathcal{C} \to \mathcal{H} \) be *-preserving fiber functors. Then \(A(E_1, E_2) \) denotes the \(\| \cdot \| \)-completion of \(A(E_1, E_2) \). (This is a unital C*-algebra, which is commutative if \(\mathcal{C}, E_1, E_2 \) are symmetric.)
B.4 Uniqueness of fiber functors

LEMMA 396. [Joyal and Street, 1993a] Let \mathcal{C} be a TC*, \mathcal{D} a strict tensor category and $E_1, E_2 : \mathcal{C} \to \mathcal{D}$ strict tensor functors. Then any monoidal natural transformation $\alpha : E_1 \to E_2$ is a natural isomorphism.

Proof. It is sufficient to show that every component $\alpha_X : E_1(X) \to E_2(X)$ has a two-sided inverse $\beta_X : E_2(X) \to E_1(X)$. The family $\{\beta_X, X \in \mathcal{C}\}$ will then automatically be a natural transformation. If (\bar{X}, r, \bar{r}) is a conjugate for X, monoidality of α implies

$$E_2(r^*) \circ \alpha_{\bar{X}} \otimes \alpha_X = E_2(r^*) \circ \alpha_{\bar{X} \otimes X} = \alpha_1 \circ E_1(r^*) = E_1(r^*).$$

If we now define

$$\beta_X = \text{id}_{E_1(X)} \otimes E_2(r^*) \circ \text{id}_{E_1(X)} \otimes \alpha_{\bar{X}} \otimes \text{id}_{E_2(X)} \circ E_1(\bar{r}) \otimes \text{id}_{E_2(X)},$$

we have

$$\beta_X \circ \alpha_X = (\text{id}_{E_1(X)} \otimes E_2(r^*) \circ \text{id}_{E_1(X)} \otimes \alpha_{\bar{X}} \otimes \text{id}_{E_2(X)} \circ E_1(\bar{r}) \otimes \text{id}_{E_2(X)}) \circ \alpha_X$$

$$= \text{id}_{E_1(X)} \otimes E_2(r^*) \circ \text{id}_{E_1(X)} \otimes \alpha_{\bar{X}} \otimes \alpha_X \circ E_1(\bar{r}) \otimes \text{id}_{E_1(X)}$$

$$= \text{id}_{E_1(X)} \otimes E_1(\bar{r}^*) \circ E_1(\bar{r}) \otimes \text{id}_{E_1(X)} = \text{id}_{E_1(X)}.$$

The argument for $\alpha_X \circ \beta_X = \text{id}_{E_2(X)}$ is similar. \hfill \Box

REMARK 397. The lemma remains correct if one allows E_1, E_2 (or even \mathcal{C}, \mathcal{D}) to be non-strict. To adapt the proof one must replace $E_1(1)$ (which is a morphism $E_1(1) \to E_1(\bar{X} \otimes X)$) by $(E_{\bar{X}, X}^1)^{-1} \circ E_1(1) \circ e_{E_1}$ (which is a morphism $1_{\text{vect}} \to E_1(\bar{X}) \otimes E_1(X)$). Similarly with $E_2(\bar{r})$.

PROPOSITION 398. Let \mathcal{C} be a TC* and $E_1, E_2 : \mathcal{C} \to \text{Vect}_\mathbb{C}$ fiber functors. The pairing between $A_0(E_1, E_2)$ and the vector space

$$\text{Nat}(E_1, E_2) = \left\{ (\alpha_X)_{X \in \mathcal{C}} \in \prod_{X \in \mathcal{C}} \text{Hom}(E_1(X), E_2(X)) \mid E_2(s) \circ \alpha_X = \alpha_Y \circ E_1(s) \forall s : X \to Y \right\}$$

of natural transformations $E_1 \to E_2$ that is given, for $(\alpha_X) \in \text{Nat}(E_1, E_2)$ and $a \in A_0(E_1, E_2)$, by

$$\langle \alpha, a \rangle = \sum_{X \in \mathcal{C}} \text{Tr}_{E_1(X)}(a_X \alpha_X)$$

descends to a pairing between $\text{Nat}(E_1, E_2)$ and the quotient algebra $A(E_1, E_2) = A_0(E_1, E_2) / I(E_1, E_2)$ such that

$$\text{Nat}(E_1, E_2) \cong A(E_1, E_2)^*.$$

Under this isomorphism, an element $a \in A(E_1, E_2)^*$ corresponds to an element of $\text{Nat}_{\otimes}(E_1, E_2)$, i.e. a monoidal natural transformation (thus isomorphism by Lemma 396), iff it is a character, to wit multiplicative.
Proof. The dual vector space of the direct sum $A_0(L_1, L_2)$ is the direct product $\prod_{X \in C} \text{Hom}(E_2(X), E_1(X))^*$, and since the pairing between $\text{Hom}(E_2(X), E_1(X)) \times \text{Hom}(E_1(X), E_2(X))$, $s \times t \mapsto Tr(s \circ t)$ is non-degenerate, we have

$$A_0(L_1, L_2)^* \cong \prod_{X \in C} \text{Hom}(E_1(X), E_2(X))$$

w.r.t. the pairing given in (59). Now, $A(L_1, L_2)$ is the quotient of $A_0(L_1, L_2)$ by the subspace $I(L_1, L_2)$, thus the dual space $A(L_1, L_2)^*$ consists precisely of those elements of $A_0(L_1, L_2)^*$ that are identically zero on $I(L_1, L_2)$. Assume $(a_X)_{X \in C}$ satisfies $(a, a) = 0$ for all $a \in I(L_1, L_2)$, equivalently $(a, [X, a \circ E_2(s)] - [Y, E_1(s) \circ a]) = 0$ for all $s : X \to Y$ and $a : E_2(Y) \to E_1(X)$. By definition (59) of the pairing, this is equivalent to

$$Tr_{E_1X}(a \circ E_2(s) \circ \alpha_X) - Tr_{E_1Y}(E_1(s) \circ a \circ \alpha_Y) = 0$$

for all $s : X \to Y$ and $a \in \text{Hom}(E_2(Y), E_1(X))$. Non-degeneracy of the trace implies that $\alpha = (\alpha_X)_{X \in C}$ must satisfy $E_2(s) \circ \alpha_X = \alpha_Y \circ E_1(s)$ for all $s : X \to Y$, thus $\alpha \in \text{Nat}(L_1, L_2)$, implying

$$A(L_1, L_2)^* \cong \text{Nat}(L_1, L_2).$$

Now we consider the question when the functional $\phi \in A(L_1, L_2)^*$ corresponding to $\alpha \in \text{Nat}(L_1, L_2)$ is a character, i.e. multiplicative. This is the case when

$$\langle \alpha, [X, s] \cdot [Y, t] \rangle = \langle \alpha, [X, s] \rangle \langle \alpha, [Y, t] \rangle \quad \forall [X, s], [Y, t] \in A(L_1, L_2).$$

(Strictly speaking, $[X, s], [Y, t]$ are representers in $A_0(L_1, L_2)$ for some elements in $A(L_1, L_2)$.) In view of (59) and the definition of the product in $A(L_1, L_2)$ this amounts to

$$Tr_{E_1(X)}(d_{X,Y}^1 \circ s \otimes t \circ (d_{X,Y}^2)^{-1} \circ \alpha_X \otimes \alpha_Y) = Tr_{E_1(X)}(s \circ \alpha_X) Tr_{E_1(Y)}(t \circ \alpha_Y)$$

$$= Tr_{E_1(X) \otimes E_2(Y)}((s \circ \alpha_X) \otimes (t \circ \alpha_Y))$$

$$= Tr_{E_1(X) \otimes E_2(Y)}(s \otimes t \circ \alpha_X \otimes \alpha_Y).$$

In view of the cyclic invariance and non-degeneracy of the trace, this is true for all $s : E_2(X) \to E_1(X)$ and $t : E_2(Y) \to E_1(Y)$, iff

$$\alpha_X \otimes \gamma = d_{X,Y}^2 \circ \alpha_X \otimes \alpha_Y \circ (d_{X,Y}^1)^{-1} \quad \forall X, Y \in C.$$

This is precisely the condition for $\alpha \in \text{Nat}(L_1, L_2)$ to be monoidal, to wit $\alpha \in \text{Nat}(L_1, L_2)$. \[\blacksquare\]

PROPOSITION 399. Let C be a TC* and let $E_1, E_2 : C \to H$ be *-preserving fiber functors. Then a monoidal natural transformation $\alpha \in \text{Nat}(L_1, L_2)$ is unitary (i.e. each α_X is unitary) iff the corresponding character $\phi \in A(L_1, L_2)$ is a *-homomorphism (i.e. $\phi(\alpha^*) = \phi(\alpha)$).
Proof. Let $\alpha \in \text{Nat}_E(E_1, E_2)$ and $[X, s] \in A(E_1, E_2)$. By definition of the pairing of $A(E_1, E_2)$ and $\text{Nat}(E_1, E_2)$,

$$\phi([X, s]) = \left< \alpha, [X, s] \right> = Tr_{E_1}(X)(s \circ \alpha_X),$$

and therefore, using $\overline{Tr(AB)} = Tr(A^*B^*)$,

$$\overline{\phi([X, s])} = Tr_{E_1}(X)(s^* \circ \alpha_X^*).$$

On the other hand,

$$\phi([X, s]^*) = \left< \alpha, \overline{[X]} \cdot \text{id}_{E_1}(\overline{X}) \otimes E_2(\overline{r}^*) \circ \text{id}_{E_1}(\overline{X}) \otimes s^* \otimes \text{id}_{E_2}(\overline{X}) \circ E_1(r) \otimes \text{id}_{E_2}(\overline{X}) \circ \alpha_{\overline{X}} \right>$$

$$= Tr_{E_1}(\overline{X})(\text{id}_{E_1}(\overline{X}) \otimes E_2(\overline{r}^*) \circ \text{id}_{E_1}(\overline{X}) \otimes s^* \otimes \text{id}_{E_2}(\overline{X}) \circ E_1(r) \otimes \text{id}_{E_2}(\overline{X}) \circ \alpha_{\overline{X}})$$

$$= E_2(\overline{r}^*) \circ s^* \otimes \alpha_{\overline{X}} \circ E_1(\overline{r})$$

$$= E_2(\overline{r}^*) \circ (\alpha_X \circ \alpha_{\overline{X}}^{-1} \circ s^*) \otimes \alpha_{\overline{X}} \circ E_1(\overline{r})$$

$$= E_2(\overline{r}^*) \circ (\alpha_{\overline{X}}^{-1} \circ s^*) \otimes \text{id}_{E_2}(\overline{X}) \circ E_1(\overline{r})$$

$$= Tr_{E_1}(X)(\alpha_{\overline{X}}^{-1} \circ s^*).$$

(In the fourth step we have used the invertibility of α (Lemma 396) and in the fifth equality we have used (58) with X and \overline{X} interchanged and r replaced by \overline{r}.)

Now non-degeneracy of the trace implies that $\overline{\phi([X, s])} = \phi([X, s]^*)$ holds for all $[X, s] \in (E_1, E_2)$ iff $\alpha_X^* = \alpha_{\overline{X}}^{-1}$ for all $X \in C$, as claimed.

Now we are in a position to prove the first of our outstanding claims:

Proof of Theorem 373. By the preceding constructions, the $\| \cdot \|$-closure $A(E_1, E_2)$ of $A(E_1, E_2)$ is a commutative unital C^*-algebra. As such it has (lots of) characters, i.e. unital $*$-homomorphisms into C. (Cf. e.g. Theorem 401 below.) Such a character restricts to $A(E_1, E_2)$ and corresponds, by Propositions 398 and 399, to a unitary monoidal natural transformation $\alpha \in \text{Nat}(E_1, E_2)$.

REMARK 400. 1. The discussion of the algebra $A(E_1, E_2)$ is inspired by the one in the preprint [Bichon, ND] that didn’t make it into the published version [Bichon, 1998]. The above proof of Theorem 373 first appeared in [Bichon, 1999].

2. Lemma 396 implies that the category consisting of fiber functors and monoidal natural transformations is a groupoid, i.e. every morphism is invertible. Theorem 373 then means that the category consisting of symmetric $*$-preserving fiber functors and unitary monoidal natural transformations is a transitive groupoid, i.e. all objects are isomorphic. That this groupoid is non-trivial is the statement of Theorem 382, whose proof will occupy the bulk of this section, beginning in Subsection B.6.

B.5 The concrete Tannaka theorem. Part II

In order to prove Proposition 375 we need the formalism of the preceding subsections. We write $A(E)$ for the commutative unital C^*-algebra $A(E, E)$ defined
earlier. In order to study this algebra we need some results concerning commutative unital C^*-algebras that can be gathered, e.g., from [Pedersen, 1989].

THEOREM 401. Let \mathcal{A} be a commutative unital C^*-algebra. Let \mathcal{A}^* be its Banach space dual and let
\[
P(\mathcal{A}) = \{ \phi \in \mathcal{A}^* \mid \phi(1) = 1, \| \phi \| \leq 1 \},
\]
\[
X(\mathcal{A}) = \{ \phi \in \mathcal{A}^* \mid \phi(1) = 1, \phi(ab) = \phi(a)\phi(b), \phi(a^*) = \overline{\phi(a)} \ \forall a, b \in \mathcal{A} \}.
\]
P(\mathcal{A}) and X(\mathcal{A}) are equipped with the w^*-topology on \mathcal{A} according to which $\phi_n \to \phi$ iff $\phi_n(a) \to \phi(a)$ for all $a \in \mathcal{A}$. Then:

(i) $X(\mathcal{A}) \subset P(\mathcal{A})$. (I.e., $*$-characters have norm ≤ 1.)

(ii) $X(\mathcal{A})$ is compact w.r.t. the w^*-topology on $P(\mathcal{A})$.

(iii) The map $\mathcal{A} \to C(X(\mathcal{A}))$ given by $a \mapsto (\phi \mapsto \phi(a))$ is an isomorphism of C^*-algebras.

(iv) The convex hull
\[
\left\{ \sum_{i=1}^{N} c_i \phi_i, \ N \in \mathbb{N}, \ c_i \in \mathbb{R}_+, \ \sum_{i} c_i = 1, \ \phi_i \in X(\mathcal{A}) \right\}
\]
of $X(\mathcal{A})$ is w^*-dense in $P(\mathcal{A})$.

Proof. (i) Any unital $*$-homomorphism α of Banach algebras satisfies $\|\alpha(a)\| \leq \|a\|$.

(ii) By Alaoglu's theorem [Pedersen, 1989, Theorem 2.5.2], the unit ball of \mathcal{A}^* is compact w.r.t. the w^*-topology, and so are the closed subsets $X(\mathcal{A}) \subset P(\mathcal{A}) \subset \mathcal{A}^*$.

(iii) This is Gelfand's theorem, cf. [Pedersen, 1989, Theorem 4.3.13].

(iv) This is the Krein-Milman theorem, cf. Theorem 2.5.4 together with Proposition 2.5.7 in [Pedersen, 1989].

Theorem 401, (ii) implies that the set $X \equiv X(\mathcal{A}(E))$ of $*$-characters of $\mathcal{A}(E)$ is a compact Hausdorff space w.r.t. the w^*-topology. By (iii) and Proposition 399, the elements of X are in bijective correspondence with the set G_E of unitary monoidal transformations of the functor E.

LEMMA 402. The bijection $X \cong G_E$ is a homeomorphism w.r.t. the topologies defined above.

Proof. By definition of the product topology on $\prod_{X \in \mathcal{C}} \mathcal{U}(E(X))$, a net (g_λ) in G_E converges iff the net (g_λ, X) in $\mathcal{U}(E(X))$ converges for every $X \in \mathcal{C}$. On the other hand, a net (ϕ_λ) in X converges iff $(\phi_\lambda(a))$ converges in \mathcal{C} for every $a \in \mathcal{A}(E)$. In view of the form of the correspondence $\phi \leftrightarrow g$ established in Proposition 398, these two notions of convergence coincide.
The homeomorphism $X \cong G_E$ allows to transfer the topological group structure that G_E automatically has to the compact space X. Now we are in a position to complete the proof of our second outstanding claim.

Proof of Proposition 375. Since C is semisimple and essentially small, there exist a set I and a family $\{X_i, i \in I\}$ of irreducible objects such that every object is (isomorphic to) a finite direct sum of objects from this set. If $\text{Nat}(E) \equiv \text{Nat}(E, E)$ is the space of natural transformations from E to itself, with every $\alpha \in \text{Nat}(E)$ we can associate the family $\{\alpha_i = \alpha_{X_i} : i \in I\}$, which is an element of $\prod_{i \in I} \text{End} E(X_i)$. Semisimplicity of C and naturality of α imply that every such element arises from exactly one natural transformation of E. (In case it is not obvious, a proof can be found in [Müger et al., 2004, Proposition 5.4].) In this way we obtain an isomorphism

$$\gamma : \text{Nat}(E) \rightarrow \prod_{i \in I} \text{End} E(X_i), \quad \alpha \mapsto (\alpha_{X_i})_{i \in I}$$

of vector spaces. Now consider the linear map

$$\delta : \bigoplus_{i \in I} \text{End} E(X_i) \rightarrow A(E), \quad (a_i) \mapsto \sum_i [X_i, a_i].$$

Since every $a \in A(E)$ can be written as $[X, s]$ (proof of Proposition 393) and every $[X, s]$ is a sum of elements $[X_i, s_i]$ with X_i irreducible, δ is surjective. When understood as a map to $A_0(E)$, δ obviously is injective. As a consequence of $\text{Hom}(X_i, X_j) = \{0\}$ for $i \neq j$, the image in $A_0(E)$ of δ has trivial intersection with the ideal $I(E)$, which is the kernel of the quotient map $A_0(E) \rightarrow A(E)$, thus δ is injective and therefore an isomorphism (of vector spaces, not algebras). If the C^*-norm on $A(E)$ is pulled back via δ we obtain the norm

$$\|\|(a_i)_{i \in I}\| = \sup_{i \in I} \|a_i\|_{\text{End} E(X_i)}$$

on $\bigoplus_{i \in I} \text{End} E(X_i)$. Thus we have an isomorphism $\bar{\delta} : \bigoplus_{i \in I} \text{End} E(X_i) \rightarrow A(E)$ of the norm closures. W.r.t. the isomorphisms γ, δ, the pairing $\langle \cdot, \cdot \rangle : \text{Nat}(E) \times A(E) \rightarrow \mathbb{C}$ of Proposition 398 becomes

$$\langle \cdot, \cdot \rangle : \prod_{i \in I} \text{End} E(X_i) \times \bigoplus_{i \in I} \text{End} E(X_i) \rightarrow \mathbb{C}, \quad (\alpha_{X_i}) \times (a_i) \mapsto \sum_{i \in I} T_{\alpha E(X_i)}(\alpha_i a_i).$$

(More precisely: $\langle \cdot, \delta(\cdot) \rangle = \langle \gamma(\cdot), \cdot \rangle$ as maps $\text{Nat}(E) \times \bigoplus_{i \in I} \text{End} E(X_i) \rightarrow \mathbb{C}$.) Thus if $\alpha \in \text{Nat}(E)$ is such that $\gamma(\alpha) \in \prod_{i \in I} \text{End} E(X_i)$ has only finitely many non-zero components (i.e. $\gamma(\alpha) \in \bigoplus_{i \in I} \text{End} E(X_i)$), then $\langle \alpha, \cdot \rangle \in A(E)^*$ extends to an element of $A(E)^*$.

Now (iv) of Theorem 401 implies that every $\phi \in A(E)^*$ is the w^*-limit of a net (ϕ_ι) in the C-span of the $*$-characters $X(A(E))$ of $A(E)$. Thus for every $(\alpha_i) \in \bigoplus_{i \in I} \text{End} E(X_i)$ there is a such a net (ϕ_ι) for which

$$w^* - \lim \phi_\iota = \gamma^{-1}((\alpha_i)), \quad \in A(E)^*. $$
Restricting the \(\phi_i \) to \(A(E) \) and using the isomorphism \(\text{Nat} \ E \cong A(E)^* \), we obtain a net in \(\text{Nat} \ E \) that converges to \(\gamma^{-1}((\alpha_i)) \). By Propositions 398, 399, the isomorphism \(A(E)^* \to \text{Nat} \ E \) maps the elements of \(X(A(E)) \) to the unitary natural monoidal transformations of \(E \), i.e. to elements of \(G_E \). Thus, in particular for every finite \(S \subseteq I \) we have

\[
\text{span}_C \{ \pi_{s_1}(g) \oplus \cdots \oplus \pi_{s|S|}(g), \ g \in G_E \} = \bigoplus_{s \in S} \text{End} \ E(X_s),
\]

which clearly is a good deal more than claimed in Proposition 375. \(\blacksquare \)

This concludes the proof of all ingredients that went into the proof of Theorem 377. From the proof it is obvious that the commutative \(C^* \)-algebra \(A(E) \) is just the algebra of continuous functions on the compact group \(G_E \), whereas \(A(E) \) is the linear span of the matrix elements of the finite dimensional representations of \(G_E \).

B.6 Making a symmetric fiber functor \(*\)-preserving

The aim of his subsection is to prove the following result, which seems to be new:

THEOREM 403. An even STC\(^*\) C that admits a symmetric fiber functor \(C \to \text{Vect}_C \) also admits a symmetric \(*\)-preserving fiber functor \(C \to \mathcal{H} \).

LEMMA 404. Let \(C \) be an STC\(^*\) and \(E : C \to \text{Vect}_C \) a symmetric fiber functor. Choose arbitrary positive definite inner products \(\langle \cdot, \cdot \rangle_X^0 \) (i.e. Hilbert space structures) on all of the spaces \(E(X), X \in C \). Then the maps \(X \mapsto E(X) \) and \(s \mapsto E(s^*)^\dagger \), where \(E(s^*)^\dagger \) is the adjoint of \(E(s^*) \) w.r.t. the inner products \(\langle \cdot, \cdot \rangle_X^0 \), define a faithful functor \(\widetilde{E} : C \to \text{Vect}_C \). With \(d_{X,Y}^E = ((d_{X,Y}^E)^\dagger)^{-1} \) and \(e_{X}^E = ((e_{X}^E)^\dagger)^{-1} \), this is a symmetric fiber functor.

Proof. First note that \(s \mapsto \widetilde{E}(s) \) is \(C \)-linear and really defines a functor, since \(\widetilde{E}(\text{id}_X) = \text{id}_{\widetilde{E}(X)} \) and

\[
\widetilde{E}(sot) = E((sot)^*)^\dagger = E(t^*os^*)^\dagger = (E(t^*)^\circ E(s^*))^\dagger = E(s^*)^\dagger^\circ E(t^*)^\dagger = \widetilde{E}(s)\circ\widetilde{E}(t).
\]

Faithfulness of \(E \) clearly implies faithfulness of \(\widetilde{E} \). With \(d_{X,Y}^E = ((d_{X,Y}^E)^\dagger)^{-1} \) and \(e_{X}^E = ((e_{X}^E)^\dagger)^{-1} \), commutativity of the diagrams (56) and (57) is obvious. Since \(E \) is a tensor functor, we have

\[
E(s \otimes t) \circ d_{X,Y}^E = d_{X',Y'}^E \circ E(s) \otimes E(t)
\]

for all \(s : X \to X', \ t : Y \to Y' \), which is equivalent to

\[
(E(s \otimes t))^\dagger \circ ((d_{X',Y'}^E)^{-1})^\dagger = ((d_{X,Y}^E)^{-1})^\dagger \circ (E(s) \otimes E(t))^\dagger.
\]
Since this holds for all \(s, t, \) we have proven naturality of the family \((d^E_{X,Y})\), thus \(\widetilde{E} \) is a tensor functor. The computation
\[
\widetilde{E}(c_{X,Y}) = E(c^*_{X,Y})^\dagger = E(c_{Y,X})^\dagger = \Sigma^\dagger_{E(Y),E(X)} = \Sigma_{E(X),E(Y)},
\]
where we have used \(\Sigma^\dagger_{H,H'} = \Sigma_{H',H} \), shows that \(\widetilde{E} \) is also symmetric. Thus \(\widetilde{E} \) is a symmetric fiber functor.

Now the discussion of Subsection B.3 applies and provides us with a commutative unital \(C \)-algebra \(A(E, \widetilde{E}) \). However, we cannot appeal to Proposition 393 to conclude that \(A(E, \widetilde{E}) \) is a \(* \)-algebra, since \(E, \widetilde{E} \) are not \(* \)-preserving. In fact, for arbitrary symmetric fiber functors \(E_1, E_2 \) there is no reason for the existence of a positive \(* \)-operation on \(A(E_1, E_2) \), but in the present case, where the two functors are related by \(E_2(s) = E_1(s^*)^\dagger \), this is true:

Proposition 405. Let \(C \) be an STC*, \(E : C \to \text{Vect}_C \) a symmetric fiber functor and \(\widetilde{E} \) as defined above. Then
\[
[X, s]^* = [X, s^\dagger]
\]
is well defined and is a positive \(* \)-operation on \(A(E, \widetilde{E}) \). With respect to this \(* \)-operation, the norm \(\| \cdot \| \) from Proposition 394 is a \(C^* \)-norm, i.e. \(\| a^* a \| = \| a \|^2 \) for all \(a \in A(E, \widetilde{E}) \).

Proof. For \([X, s] \in A_0(E, \widetilde{E}) \) we define \([X, s]^* = [X, s^\dagger] \), where \(s^\dagger \) is the adjoint of \(s \in \text{End} E(X) \) w.r.t. the inner product on \(E(X) \). Clearly, \(* \) is involutive and antilinear. Now, if \(s : X \to Y, a \in \text{Hom}(E_2(Y), E_1(X)) \), then
\[
([X, a \circ E_2(s)] - [Y, E_1(s) \circ a])^* = [X, a \circ E(s^*)] - [Y, E(s) \circ a]^*
\]
\[
= [X, E(s^*) \circ a^\dagger] - [Y, a^\dagger \circ E(s)^\dagger] = [X, E_1(s^*) \circ a^\dagger] - [Y, a^\dagger \circ E_2(s^*)].
\]
Since \(s^* \in \text{Hom}(Y, X) \) and \(a^\dagger \in \text{Hom}(E(X), E(Y)) \), the right hand side of this expression is again in \(I(E, \widetilde{E}) \). Thus \(I(E, \widetilde{E}) \) is stable under \(* \), and \(* \) descends to an antilinear involution on \(A(E, \widetilde{E}) \). In \(A_0(E, \widetilde{E}) \) we have
\[
([X, s] \cdot [Y, t])^* = [X \otimes Y, d^E_{X,Y} \circ s \otimes t \circ (d^E_{X,Y})^{-1}]^*
\]
\[
= [X \otimes Y, (d^E_{X,Y})^{-1} \circ s \otimes t \circ (d^E_{X,Y})^{-1}]^*
\]
\[
= [X \otimes Y, (d^E_{X,Y})^{-1} \circ s^\dagger \otimes t^\dagger \circ (d^E_{X,Y})^{-1}]
\]
\[
= [X \otimes Y, d^E_{X,Y} \circ s^\dagger \otimes t^\dagger \circ (d^E_{X,Y})^{-1}]
\]
\[
= [X, s]^* \cdot [Y, t]^*.
\]
Together with commutativity of \(A(E, \widetilde{E}) \) this implies that \(* \) is antimultiplicative. Recall that there is an isomorphism \(\delta : \bigoplus_{i \in I} \text{End} E(X_i) \to A(E, \widetilde{E}) \) such that \(\| \delta((a_i)_{i \in I}) \| = \sup_i \| a_i \| \), where \(\cdot \) is the norm defined in Subsection B.3. By definition of \(* \) we have \(\delta((a_i)^*) = \delta((a_i^\dagger)) \), implying \(\| a^* a \| = \| a \|^2 \). Thus \((A(E, \widetilde{E}), *, \| \cdot \|) \) is a pre-\(C^* \)-algebra.

(Note that the involution \star has nothing at all to do with the one defined in Subsection B.3!)

Proposition 406. Let \mathcal{C} be an STC* and $E: \mathcal{C} \to \text{Vect}_\mathbb{C}$ a symmetric fiber functor. With \widetilde{E} as defined above, there exists a natural monoidal isomorphism $\alpha: E \to \widetilde{E}$, whose components α_X are positive, i.e. $\langle u, \alpha_X u \rangle_X^0 > 0$ for all nonzero $u \in E(X)$.

Proof. As in Subsection B.4, the norm-completion $\mathcal{A}(E, \widetilde{E})$ of $A(E, \widetilde{E})$ is a commutative unital C*-algebra and therefore admits a *-character $\phi: \mathcal{A}(E, \widetilde{E}) \to \mathbb{C}$. Restricting to $A(E, \widetilde{E})$, Proposition 398 provides a monoidal natural isomorphism $\alpha: E \to \widetilde{E}$. But we know more: The character ϕ is positive, i.e. $\phi(a^*a) > 0$ for all $a \neq 0$. With $a = [X, s]$ and taking (59) into account, we have

$$\phi(a^*a) = \phi([X, s^t s]) = Tr_{E(X)}(s^t s \alpha_X) = Tr_{E(X)}(s \alpha_X s^t)$$

$$= \sum_i \langle e_i, s \alpha_X s^t e_i \rangle^0_X = \sum_i \langle s^t e_i, \alpha_X s^t e_i \rangle^0_X,$$

where $\{e_i\}$ is any basis of $E(X)$ that is orthonormal w.r.t. $\langle \cdot, \cdot \rangle^0_X$. This is positive for all $a = [X, s] \in \mathcal{A}(E, \widetilde{E})$ iff $\langle u, \alpha_X u \rangle_X^0 > 0$ for all nonzero $u \in E(X)$. \[\square\]

Now we are in a position to prove the main result of this subsection, which is a more specific version of Theorem 403.

Theorem 407. Let \mathcal{C} be an even STC* and $E: \mathcal{C} \to \text{Vect}_\mathbb{C}$ a symmetric fiber functor. Then there exist Hilbert space structures (i.e. positive definite inner products $\langle \cdot, \cdot \rangle^0_X$) on the spaces $E(X)$, $X \in \mathcal{C}$ such that $X \mapsto (E(X), \langle \cdot, \cdot \rangle^0_X)$ is a *-preserving symmetric fiber functor $\mathcal{C} \to \mathcal{H}$.

Proof. Pick non-degenerate inner products $\langle \cdot, \cdot \rangle^0_X$ on the spaces $E(X)$, $X \in \mathcal{C}$. Since $E(1)$ is one-dimensional and spanned by e^E1, where $1 \in \mathcal{C} = 1_{\text{vect}_\mathbb{C}}$, we can define $\langle \cdot, \cdot \rangle^0_1$ by $\langle ae^E1, be^E1 \rangle^0_1 = \bar{a}b$, as will be assumed in the sequel. Let \widetilde{E} and $\alpha \in \text{Nat}_{\mathcal{H}}(E, \widetilde{E})$ as above. Defining new inner products $\langle \cdot, \cdot \rangle_X$ on the spaces $E(X)$ by

$$\langle v, u \rangle_X = \langle v, \alpha_X u \rangle_X^0,$$

the naturality

$$\alpha_Y \circ E(s) = \widetilde{E}(s) \circ \alpha_X = E(s^*)^\dagger \circ \alpha_X \quad \forall s: X \to Y$$

of (α_X) implies

$$\langle v, E(s)u \rangle_Y = \langle v, \alpha_Y E(s)u \rangle_Y^0 = \langle v, E(s^*)^\dagger \alpha_X u \rangle_Y^0$$

$$= \langle E(s^*)v, \alpha_X u \rangle_X^0 = \langle E(s)v, u \rangle_X$$

for all $s: X \to Y$, $u \in E(X)$, $v \in E(Y)$. This is the same as $E(s^*) = E(s)^*$, where now $E(s)^*$ denotes the adjoint of $E(s)$ w.r.t. the inner products $\langle \cdot, \cdot \rangle.$
Thus the functor $X \mapsto (E(X), \langle \cdot, \cdot \rangle_X)$ is $*$-preserving. The new inner products $\langle \cdot, \cdot \rangle_X$ are non-degenerate since the α_X are invertible, and the positivity property $(u, \alpha_X u)_X^0 > 0$ for $u \neq 0$ implies that $(E(X), \langle \cdot, \cdot \rangle_X)$ is a Hilbert space. The monoidality

$$
\alpha_{X \otimes Y} \circ d_{X,Y}^E = \tilde{d}_{X,Y}^E \circ \alpha_X \otimes \alpha_Y = ((d_{X,Y}^E)^\dagger)^{-1} \circ \alpha_X \otimes \alpha_Y \quad \forall X, Y
$$

of the natural isomorphism $\alpha : E \to \tilde{E}$ is equivalent to

$$(60) \quad \alpha_X \otimes \alpha_Y = (d_{X,Y}^E)^\dagger \circ \alpha_X \otimes \alpha_Y \circ d_{X,Y}^E.
$$

Using this we have

$$
(d_{X,Y}^E(u' \otimes v'), d_{X,Y}^E(u \otimes v))_{X \otimes Y} = (d_{X,Y}^E(u' \otimes v'), \alpha_X \otimes \alpha_Y \circ d_{X,Y}^E(u \otimes v))_{X \otimes Y}
$$

$$
= ((u' \otimes v'), (d_{X,Y}^E)^\dagger \circ \alpha_X \otimes \alpha_Y \circ d_{X,Y}^E(u \otimes v))_{X \otimes Y}
$$

$$
= ((u' \otimes v'), (\alpha_X \otimes \alpha_Y)(u \otimes v))_{X \otimes Y}
$$

$$
= (u', \alpha_X u)_X \langle v', \alpha_Y v \rangle_Y = \langle u', u \rangle_X \langle v', v \rangle_Y,
$$

thus the isomorphisms $d_{X,Y}^E : E(X) \otimes E(Y) \to E(X \otimes Y)$ are unitary w.r.t. the inner products $\langle \cdot, \cdot \rangle_Y$.

Now, the compatibility (57) of d^E and e^E implies that $d_{1,1}^E \circ e^E 1 \otimes e^E 1 = e^E 1$ and therefore, using our choice of the inner product $\langle \cdot, \cdot \rangle_1^0$,

$$
\langle d_{1,1}^E(ae^E 1 \otimes be^E 1), d_{1,1}^E(ce^E 1 \otimes de^E 1) \rangle_{1 \otimes 1} = \langle abc e^E 1, cde^E 1 \rangle_1^0
$$

$$
= \overline{abcd} = \langle ae^E 1, ce^E 1 \rangle_1^0 \langle be^E 1, de^E 1 \rangle_1^0.
$$

This means that $d_{1,1}^E : E(1) \otimes E(1) \to E(1)$ is unitary w.r.t. the inner product $\langle \cdot, \cdot \rangle_1^0$. Taking $X = Y = 1$ in (60) and using $\alpha_1 = \lambda \text{id}_{E(1)}$, we get $\lambda^2 = \lambda$. Since α_1 is invertible, we have $\lambda = 1$, thus $\alpha_1 = \lambda \text{id}_{E(1)}$ and therefore $\langle \cdot, \cdot \rangle_1 = \langle \cdot, \cdot \rangle_1^0$. Now,

$$
\langle e^E 1, e^E 1 \rangle_1 = \langle e^E 1, \alpha_1 e^E u \rangle_1^0 = \langle e^E 1, e^E 1 \rangle_1^0 = 1 = \langle 1, 1 \rangle_C,
$$

thus $(e^E)^* e^E = \text{id}_C$. By one-dimensionality of the spaces involved, we also have $e^E(e^E)^* = \text{id}_E(1)$, thus $e^E : 1 \to E(1)$ is unitary w.r.t. the inner new products $\langle \cdot, \cdot \rangle$.

\[\text{B.7 Reduction to finitely generated categories}\]

DEFINITION 408. An additive tensor category C is finitely generated if there exists an object $Z \in C$ such that every object $X \in C$ is a direct summand of some tensor power $Z^\otimes n = Z \otimes \cdots \otimes Z$, $n \in \mathbb{N}$, of Z.

LEMMA 409. Let C be a TC^*. Then the finitely generated tensor subcategories of C form a directed system, and C is the inductive limit of the latter:

$$
C \cong \lim_{\to I} C_i.
$$
Proof. Consider all full tensor subcategories of C. Since C is essentially small, the equivalence classes of such subcategories form a set, partially ordered by inclusion. If $C_1, C_2 \subset C$ are finitely generated, say by the objects X_1, X_2, then the smallest tensor subcategory containing C_1 and C_2 is generated by $X_1 \oplus X_2$, thus we have a directed system. Clearly there is a full and faithful tensor functor $\lim_{i \in I} C_i \to C$. Since every object X is contained in a finitely generated tensor subcategory (e.g., the one generated by X), this functor is essentially surjective and thus an equivalence of categories, cf. [Mac Lane, 1998], in fact of tensor categories, cf. [Saavedra Rivano, 1972].

REMARK 410. 1. The reason for considering finitely generated categories is that the existence problem of fiber functors for such categories can be approached using powerful purely algebraic methods. The general case can then be reduced to the finitely generated one using Lemma 409.

2. Note that we don’t require the generator Z to be irreducible. Thus if we a priori only know that C is generated by a finite set Z_1, \ldots, Z_r of objects, the direct sum $Z = \bigoplus_i Z_i$ will be a (reducible) generator of C. This is why only a single generating object appears in the definition.

3. If G is a compact group, the category $\text{Rep}_f G$ is finitely generated iff G is a Lie group. (Proof: \Leftarrow is a consequence of the well known representation theory of compact Lie groups. \Rightarrow: It is well known that the finite dimensional representations of G separate the elements of G. Therefore, if (H, π) is a generator of $\text{Rep}_f G$, it is clear that π must be faithful. Thus G is isomorphic to a closed subgroup of the compact Lie group $U(H)$, and as such it is a Lie group.)

4. The index set I in Lemma 409 can be taken countable iff C has countably many isomorphism classes of irreducible objects. The category $\text{Rep}_f G$, where G is a compact group, has this property iff G is second countable, equivalently metrizable.

In Subsections B.8-B.11 we will prove the following result, which we take for granted for the moment:

THEOREM 411. A finitely generated even STC^* admits a symmetric fiber functor $E : C \to \text{Vect}_C$.

Proof of Theorem 382. By Lemma 409, we can represent C as an inductive limit $\lim_{i \in I} C_i$ of finitely generated categories. Now Theorem 411 provides us with symmetric fiber functors $E_i : C_i \to \text{Vect}_C$, $i \in I$, and Theorem 407 turns the latter into $*$-preserving symmetric fiber functors $E_i : C_i \to \mathcal{H}$. By Theorem 377, we obtain compact groups $G_i = \text{Nat}_\otimes E_i$ (in fact compact Lie groups by Remark 410.3) with representations π_i, X on the spaces $E_i(X), X \in C_i$ such that the functors $F_i : C_i \to \text{Rep}_f G_i$, $X \mapsto (E_i(X), \pi_i, X)$ are equivalences. Let now $i \leq j$, implying that C_i is a full subcategory of C_j. Then $E_j \downarrow C_i$ is a fiber functor for C_i and thus Theorem 373 implies the existence of a unitary natural isomorphism $\alpha^{i,j} : F_1 \to F_2 \downarrow C_i$. (Note that $\alpha^{i,j}$ is not unique!) Now, by definition every $g \in G_2$ is a family
of unitaries \((g_X \in \mathcal{U}(E_2(X)))_{X \in C_2}\) defining a monoidal natural automorphism of \(E_2\). Defining, for every \(X \in C_1\), \(h_X := \alpha_X^{i,j} \circ g_X \circ (\alpha_X^{i,j})^*\) we see that the family \((h_X \in \mathcal{U}(E_1(X)))_{X \in C_1}\) is a unitary monoidal natural automorphism of \(E_1\), to wit an element of \(G_1\). In this way we obtain a map \(\beta^{i,j} : G_j \to G_i\) that clearly is a group homomorphism and continuous. By Schur's lemma, the unitary \(\alpha_X^{i,j}\) is unique up to a phase for irreducible \(X\). Thus for such \(X\), \(\beta_X^{i,j}\) is independent of the chosen \(\alpha^{i,j}\), and thus \(\beta^{i,j}\) is uniquely determined. It is also surjective in view of the Galois correspondence between the full tensor subcategories of \(\text{Rep}_f G\) and the quotients \(G/N\), where \(N \subset G\) is a closed normal subgroup. Now the inverse limit

\[
G = \lim_{\arrow{i \in I}} G_i = \{(g_i \in G_i)_{i \in I} \mid \beta^{i,j}(g_j) = g_i \text{ whenever } i \leq j\}
\]

is a compact group with obvious surjective homomorphisms \(\gamma_i : G \to G_i\) for all \(i \in I\). Now we define a functor \(E : \mathcal{C} \to \text{Rep}_f G\) as follows: For every \(X \in \mathcal{C}\) pick an \(i \in I\) such that \(X \in \mathcal{C}_i\) and define \(F(X) = (E_i(X), \pi_i(X) \circ \gamma_i)\). Clearly this is an object in \(\text{Rep}_f G\), and its isomorphism class is independent of the chosen \(i \in I\). In this way we obtain a functor from \(\mathcal{C} = \lim_{\arrow{i}} \mathcal{C}_i\) to \(\text{Rep}_f G \cong \lim_{\arrow{i}} \text{Rep}_f G_i\) that restricts to equivalences \(\mathcal{C}_i \to \text{Rep}_f G_i\). Thus \(E\) is full and faithful. Finally, \(E\) is essentially surjective since every finite dimensional representation of \(G = \lim_{\arrow{i}} G_i\) factors through one of the groups \(G_i\).

REMARK 412. In view of Remark 410.3, the preceding proof also shows that every compact group is an inverse limit of compact Lie groups.

B.8 Fiber functors from monoids

Our strategy to proving Theorem 411 will be essentially the one of Deligne [Deligne, 1990], replacing however the algebraic geometry in a symmetric abelian category by fairly elementary commutative categorical algebra. There are already several expositions of this proof [Bichon, 1998; Rosenberg, 2000; Hái, 2002], of which we find [Bichon, 1998] the most useful, see also [Bichon, ND]. However, we will give more details than any of these references, and we provide some further simplifications.

The following result clearly shows the relevance of the notions introduced in Subsection A.6 to our aim of proving Theorem 411:

PROPOSITION 413. Let \(\mathcal{C}\) be a \(TC^*\) and \(\hat{\mathcal{C}}\) be a \(\mathbb{C}\)-linear strict tensor category containing \(\mathcal{C}\) as a full tensor subcategory. Let \((Q, m, \eta)\) be a monoid in \(\hat{\mathcal{C}}\) satisfying

1. \(\dim \text{Hom}_{\mathcal{C}}(1, Q) = 1\). (I.e., \(\text{Hom}_{\mathcal{C}}(1, Q) = \mathbb{C}\eta\).)

2. For every \(X \in \mathcal{C}\), there is \(n(X) \in \mathbb{Z}_{\pm}\) such that \(n(X) \neq 0\) whenever \(X \neq 0\) and an isomorphism \(\alpha_X : (Q \otimes X, m \otimes \text{id}_X) \to n(X) \cdot (Q, m)\) of \(Q\)-modules.
Then the functor $E : C \to \text{Vect}_C$ defined by

$$E : C \to \mathcal{H}, \quad X \mapsto \text{Hom}_C(1, Q \otimes X),$$

together with

$$(61) \quad E(s)\phi = \text{id}_Q \otimes s \circ \phi, \quad s : X \to Y, \quad \phi \in \text{Hom}(1, Q \otimes X)$$

is a faithful (strong) tensor functor and satisfies $\dim_C E(X) = n(X)$.

If \tilde{C} has a symmetry c w.r.t. which (Q, m, η) is commutative then E is symmetric monoidal w.r.t. the symmetry Σ of Vect_C, i.e. $E(c_{X,Y}) = \Sigma E(X), E(Y)$.

Proof. We have $E(X) = \text{Hom}(1, Q \otimes X) \cong \text{Hom}(1, n(X)Q) \cong d(X)\text{Hom}(1, Q) \cong C^{n(X)}$, thus $E(X)$ is a vector space of dimension $n(X)$. Since $E(X) \neq 0$ for every non-zero $X \in C$, the functor E is faithful.

To see that E is monoidal first observe that by (ii) we have $E(1) = \text{Hom}(1, Q) = C\eta$. Thus there is a canonical isomorphism $e : C = 1_{\text{Vect}_C} \to E(1) = \text{Hom}(1, Q)$ defined by $c \mapsto c\eta$. Next we define morphisms

$$[d^{E}_{X,Y} : E(X) \otimes E(Y) \to E(X \otimes Y), \quad \phi \otimes \psi \mapsto m \otimes \text{id}_{X \otimes Y} \circ \text{id}_Q \otimes \phi \otimes \text{id}_Y \circ \psi].$$

By definition (61) of the map $E(s) : E(X) \to E(Y)$ it is obvious that the family $(d^{E}_{X,Y})$ is natural w.r.t. both arguments. The equation

$$d^{E}_{X_1 \otimes X_2, X_3} \circ d^{E}_{X_1, X_2} \otimes \text{id}_{E(X_3)} = d^{E}_{X_1, X_2 \otimes X_3} \circ \text{id}_{E_1} \otimes d^{E}_{X_2, X_3} \quad \forall X_1, X_2, X_3 \in C$$

required from a tensor functor is a straightforward consequence of the associativity of m. The verification is left as an exercise.

That $(E, (d^{E}_{X,Y}), e)$ satisfies the unit axioms is almost obvious. The first condition follows by

$$d_{X,1}(\text{id}_{E(X)} \otimes e)\phi = d_{X,1}(\phi \otimes \eta) = m \otimes \text{id}_X \circ \text{id}_Q \otimes \phi \circ \eta = \phi,$$

and the second is shown analogously.

So far, we have shown that E is a weak tensor functor for which $e : 1_{\mathcal{H}} \to E(1_C)$ is an isomorphism. In order to conclude that E is a (strong) tensor functor it remains to show that the morphisms $d^{E}_{X,Y}$ are isomorphisms. Let $X, Y \in C$. We consider the bilinear map

$$\gamma_{X,Y} : \text{Hom}_Q(Q, Q \otimes X) \boxtimes \text{Hom}_Q(Q, Q \otimes Y) \to \text{Hom}_Q(Q, Q \otimes X \otimes Y),$$

$$s \boxtimes t \mapsto s \otimes \text{id}_Y \circ t.$$

(We write \boxtimes rather than \otimes_C for the tensor product of Vect_C in order to avoid confusion with the tensor product in $Q - \text{Mod}$.) By 2., we have Q-module morphisms $s_i : Q \to Q \otimes X, s'_i : Q \otimes X \to Q$ for $i = 1, \ldots, n(X)$ satisfying $s'_i \circ s_j = \delta_{ij}\text{id}_Q$, and $\sum_i s_i \circ s'_i = \text{id}_Q \otimes X$, and similar morphisms $t_i, t'_i, \ i = 1, \ldots, n(Y)$ for X replaced by Y. Then the $\gamma_{ij} = \gamma_{X,Y}(s_i \otimes t_j)$ are linearly independent, since they satisfy $\gamma_{ij} \circ \delta_{ij} = \delta_{ij} \gamma_{X,Y}(s'_i \otimes t'_j)$ with $\gamma_{ij} = t'_j \circ s'_i \otimes \text{id}_Y$. Bijectivity of $\gamma_{X,Y}$ follows now
from the fact that both domain and codomain of $\gamma_{X,Y}$ have dimension $n(X)n(Y)$. Appealing to the isomorphisms $\delta_X : \text{Hom}_Q(Q, Q \otimes X) \cong \text{Hom}(1, Q \otimes X)$ one easily shows

$$d_{X,Y}^E = \delta_{X \otimes Y} \circ \gamma_{X,Y} \circ \delta^{-1}_X \otimes \delta^{-1}_Y,$$

which implies that $d_{X,Y}^E$ is an isomorphism for every $X, Y \in \mathcal{C}$.

We now assume that $\widehat{\mathcal{C}}$ has a symmetry c and that (Q, m, η) is commutative. In order to show that E is a symmetric tensor functor we must show that

$$E(c_{X,Y}) \circ d_{X,Y}^E = \Sigma_{E(X),E(Y)} \circ d_{Y,X}^E$$

for all $X, Y \in \mathcal{C}$. Let $\phi \in E(X), \psi \in E(Y)$.

By definition of E we have

$$(E(c_{X,Y}) \circ d_{X,Y}^E)(\phi \otimes \psi) = id_Q \otimes c_{X,Y} \circ m \otimes id_{X \otimes Y} \circ id_Q \otimes \phi \otimes id_Y \circ \psi$$

On the other hand,

$$(d_{Y,X}^E \circ c_{E(X),E(Y)})(\phi \otimes \psi) = (d_{Y,X}^E \circ \Sigma_{E(X),E(Y)})(\phi \otimes \psi) = d_{Y,X}^E(\psi \otimes \phi)$$

If m is commutative, i.e. $m = m \circ c_{Q,Q}$, these two expressions coincide, and we are done.
REMARK 414. 1. The property (ii) in the proposition is called the ‘absorbing property’.

2. The conditions in Proposition 413 are in fact necessary for the existence of a fiber functor! Assume that a tensor \ast-category \mathcal{C} admits a \ast-preserving fiber functor $E : \mathcal{C} \to \mathcal{H}$. By [Müger et al., 2004], which reviews and extends work of Woronowicz, Yamagami and others, there is a discrete algebraic quantum group (A, Δ) such that $\mathcal{C} \simeq \text{Rep}_f(A, \Delta)$. In [Müger and Tuset, 2006] it is shown that taking $\hat{\mathcal{C}} \simeq \text{Rep}_f(A, \Delta)$ (i.e. representations of any dimension) and $Q = \pi_l$, there is a monoid (Q, m, η) satisfying the conditions of Proposition 413. Namely, one can take $Q = \pi_l$, the left regular representation. In [Müger and Tuset, 2006] it shown that (i) $\dim \text{Hom}(\pi_0, \pi_l) = 1$, i.e. there exists a non-zero morphism $\eta : \pi_0 \to \pi_l$, unique up to normalization; (ii) π_l has the required absorbing property; (iii) there exists a morphism $m : \pi_l \otimes \pi_l \to \pi_l$ such that $(Q = \pi_l, m, \eta)$ is a monoid.

3. In the previous situation, the left regular representation π_l lives in $\text{Rep}_f(A, \Delta)$ iff A is finite dimensional. This already suggests that the category \mathcal{C} in general is too small to contain a monoid of the desired properties. In fact, assume we can take $\hat{\mathcal{C}} = \mathcal{C}$. Then for every irreducible $X \in \mathcal{C}$ we have $\dim \text{Hom}(X, Q) = \dim \text{Hom}(1, Q \otimes X) = n(X) > 0$. Thus Q contains all irreducible objects as direct summands. Since every object in \mathcal{C} is a finite direct sum of simple objects, $\hat{\mathcal{C}} = \mathcal{C}$ is possible only if \mathcal{C} has only finitely many isomorphism classes of simple objects. In fact, even in this case, our construction of (Q, m, η) will require the use of a bigger category $\hat{\mathcal{C}}$. It is here that the category $\text{Ind}\mathcal{C}$ of Subsection A.7 comes into play.

Since we have already reduced the problem of constructing a fiber functor to the case of finitely generated tensor categories, we want a version of the preceding result adapted to that situation:

COROLLARY 415. Let \mathcal{C} be a TC^\ast with monoidal generator $Z \in \mathcal{C}$ and let $\hat{\mathcal{C}}$ be a \mathbb{C}-linear strict tensor category containing \mathcal{C} as a full tensor subcategory. If (Q, m, η) is a monoid in $\hat{\mathcal{C}}$ satisfying

(i) $\dim \text{Hom}_\mathcal{C}(1, Q) = 1$.

(ii) There is $d \in \mathbb{N}$ and an isomorphism $\alpha_Z : (Q \otimes Z, m \otimes \text{id}_Z) \to d \cdot (Q, m)$ of Q-modules.

Then the hypothesis (ii) in Proposition 413 follows. Thus $E : X \mapsto \text{Hom}_\mathcal{C}(1, Q \otimes X)$ is a fiber functor.

Proof. If $X \in \mathcal{C}$, there exists $n \in \mathbb{N}$ such that $X \prec Z \otimes^n$. Concretely, there are morphisms $u : X \to Z \otimes^n$ and $v : Z \otimes^n \to X$ such that $v \circ u = \text{id}_X$. Then the morphisms $\tilde{u} = \text{id}_Q \otimes u : Q \otimes X \to Q \otimes Z \otimes^n$ and $\tilde{v} = \text{id}_Q \otimes v : Q \otimes Z \otimes^n \to Q \otimes X$ are morphisms of Q-modules. Thus the Q-module $(Q \otimes X, m \otimes \text{id}_X)$ is a direct summand of $(Q \otimes Z \otimes^n, m \otimes \text{id}_{Z \otimes^n})$. By assumption, the latter is isomorphic to a direct sum of d^n copies of (Q, m). By Lemma 358 and assumption
(i), $\text{End}_Q((Q, m)) \cong C$, thus $(Q, m) \in Q - \text{Mod}$ is irreducible. Thus the direct summand $(Q \otimes X, m \otimes \text{id}_X)$ of $d^m \cdot (Q, m)$ is a direct sum of r copies of (Q, m) with $r \leq d^m$ and $r \neq 0$ whenever $X \neq 0$. Thus hypothesis (ii) in Proposition 413 holds.

In view of Corollary 415, proving Theorem 411 amounts to finding a symmetric tensor category \hat{C} containing C as a full subcategory and a commutative monoid (Q, m, η) in \hat{C} such that $\text{dim Hom}(1, Q) = 1$ and $Q \otimes Z \cong d \otimes Q$ as Q-modules for a suitable monoidal generator Z of C. This will be achieved in Subsection B.11, based on thorough analysis of the permutation symmetry of the category C.

B.9 Symmetric group action, determinants and integrality of dimensions

We now turn to a discussion of certain representations of the symmetric groups $P_n, n \in \mathbb{N}$, present in tensor *-categories with a unitary symmetry. It is well known that the symmetric group P_n on n labels has the presentation

$$P_n = \langle \sigma_1, \ldots, \sigma_{n-1} \mid |i - j| \geq 2 \Rightarrow \sigma_i \sigma_j = \sigma_j \sigma_i, \quad \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \forall i \in \{1, \ldots, n-1\}, \quad \sigma_i^2 = 1 \forall i \rangle.$$

Since C is strict we may define the tensor powers $X^{\otimes n}, n \in \mathbb{N}$, in the obvious way for any $X \in C$. We posit $X^{\otimes 0} = 1$ for every $X \in C$.

LEMMA 416. Let C be an STC*. Let $X \in C$ and $n \in \mathbb{N}$. Then

$$\Pi_n^X : \sigma_i \mapsto \text{id}_{X^{\otimes i-1}} \otimes c_{X, X} \otimes \text{id}_{X^{\otimes n-i-1}}$$

uniquely determines a homomorphism Π_n^X from the group P_n into the unitary group of $\text{End} X^{\otimes n}$.

Proof. It is clear that $\Pi_n^X(\sigma_i)$ and $\Pi_n^X(\sigma_j)$ commute if $|i - j| \geq 2$. That $\Pi_n^X(\sigma_i)^2 = \text{id}_{X^{\otimes n}}$ is equally obvious. Finally,

$$\Pi_n^X(\sigma_i) \circ \Pi_n^X(\sigma_{i+1}) \circ \Pi_n^X(\sigma_i) = \Pi_n^X(\sigma_{i+1}) \circ \Pi_n^X(\sigma_i) \circ \Pi_n^X(\sigma_{i+1})$$

follows from the Yang-Baxter equation satisfied by the symmetry c.

REMARK 417. Dropping the relations $\sigma_i^2 = 1$ the same formulæ as above define homomorphisms of the Artin braid groups B_n into $\text{End} X^{\otimes n}$. However, none of the following considerations has known analogues in the braided case.

Recall that there is a homomorphism $\text{sgn} : P_n \to \{1, -1\}$, the signature map.

LEMMA 418. Let C be an STC*. For any $X \in C$ we define orthogonal projections in $\text{End} X^{\otimes 0} = \text{End} 1$ by $S_n^X = A_0^X = 1$. For any $n \in \mathbb{N}$, the morphisms

$$S_n^X = \frac{1}{n!} \sum_{\sigma \in P_n} \Pi_n^X(\sigma),$$

$$A_n^X = \frac{1}{n!} \sum_{\sigma \in P_n} \text{sgn}(\sigma) \Pi_n^X(\sigma)$$

are the orthogonal projections in $\text{End} X^{\otimes n}$ onto the submodules generated by all elements in P_n of the form $\sigma_i = (\text{id}_{X^{\otimes i-1}} \otimes c_{X, X} \otimes \text{id}_{X^{\otimes n-i-1}})$ where $i \geq 2$.
satisfy
\[\Pi_n^X(\sigma) \circ S_n^X = S_n^X \circ \Pi_n^X(\sigma) = S_n^X, \]
\[\Pi_n^X(\sigma) \circ A_n^X = A_n^X \circ \Pi_n^X(\sigma) = \text{sgn}(\sigma) A_n^X \]
for all \(\sigma \in P_n \) and are thus orthogonal projections in the \(*\)-algebra \(\text{End} \, X^{\otimes n} \).

Proof. Straightforward computations. \[\blacksquare \]

Definition 419. The subobjects (defined up to isomorphism) of \(X^{\otimes n} \) corresponding to the idempotents \(S_n^X \) and \(A_n^X \) are denoted by \(S_n(X) \) and \(A_n(X) \), respectively.

The following was proven both in [Doplicher and Roberts, 1989] and [Deligne, 1990]:

Proposition 420. Let \(\mathcal{C} \) be an even STC*. For any \(X \in \mathcal{C} \) we have

\[(62) \quad \text{Tr}_{X^{\otimes n}} A_n^X = \frac{d(X)(d(X)-1)(d(X)-2)\cdots(d(X)-n+1)}{n!} \quad \forall n \in \mathbb{N}. \]

Proof. *(Sketch)* Making crucial use of the fact that \(\mathcal{C} \) is even, i.e. \(\Theta(X) = \text{id}_X \) for all \(X \in \mathcal{C} \), one can prove

\[\text{Tr}_{X^{\otimes n}} \Pi_n^X(\sigma) = d(X)^{#\sigma} \quad \forall X \in \mathcal{C}, \sigma \in P_n, \]

where \(#\sigma \) is the number of cycles into which the permutation \(\sigma \) decomposes.

(The reader familiar with tangle diagrams will find this formula almost obvious: Triviality of the twist \(\Theta(X) \) implies invariance under the first Reidemeister move. Thus the closure of the permutation \(\sigma \) is equivalent to \(#\sigma \) cycles, each of which contributes a factor \(d(X) \).) Now the result follows at once from the definition of \(A_n^X \) and the formula

\[\sum_{\sigma \in P_n} \text{sgn}(\sigma) z^{#\sigma} = z(z-1)(z-2)\cdots(z-n+1), \]

which holds for all \(n \in \mathbb{N} \) and \(z \in \mathbb{C} \), as one can prove by induction over \(n \). \[\blacksquare \]

Corollary 421. *In an STC*\(^*\) *we have \(d(X) \in \mathbb{N} \) for every non-zero \(X \in \mathcal{C} \).*

Proof. Assume first that \(\mathcal{C} \) is even, and let \(X \in \mathcal{C} \). Since \(\mathcal{C} \) has subobjects there exist an object \(A_n(X) \in \mathcal{C} \) and a morphism \(s : A_n(X) \to X^{\otimes n} \) such that \(s^* \circ s = \text{id}_{A_n(X)} \) and \(s \circ s^* = A_n^X \). Then by part 1 and 2 in Proposition 339, we get

\[\text{Tr}_{X^{\otimes n}} A_n^X = \text{Tr}_{X^{\otimes n}} (s \circ s^*) = \text{Tr}_{A_n(X)} (s^* \circ s) = \text{Tr}_{A_n(X)} \text{id}_{A_n(X)} = d(A_n(X)). \]

Since the dimension of any object in a \(*\)-category is non-negative we thus conclude that \(\text{Tr}_{X^{\otimes n}} A_n^X \geq 0 \) for all \(n \in \mathbb{N} \). From the right-hand side in the formula (62)
for $\text{Tr}_{X^\otimes n} A^X_n$ we see that $\text{Tr}_{X^\otimes n} A^X_n$ will become negative for some $n \in \mathbb{N}$ unless $d(X) \in \mathbb{N}$.

If C is odd, the above argument gives integrality of the dimensions in the bosonized category \mathcal{C}. Since the categorical dimension is independent of the braiding, we have $d_C(X) = d_C(X)$ and are done. ■

Let C be an STC* and $X \in \mathcal{C}$ non-zero and set $d = d(X) \in \mathbb{N}$. Consider the subobject $A_d(X)$ of $X^\otimes d$, introduced in the proof of Corollary 421, which corresponds to the orthogonal projection $A^X_d \in \text{End } X^\otimes d$ defined in Lemma 418. Then

$$d(A_d(X)) = \text{Tr}_{X^\otimes d} A^X_d = \frac{d!}{d!} = 1,$$

we see that $A_d(X)$ is an irreducible and invertible object of \mathcal{C} (with inverse $A_d(X)$).

DEFINITION 422. The isomorphism class of $A^d(X)(X)$ is called the determinant $\det X$ of X.

LEMMA 423. Let C be an STC* and $X, Y \in \mathcal{C}$. Then

(i) $\det X \cong \overline{\det(X)}$.

(ii) $\det(X \oplus Y) \cong \det X \otimes \det Y$.

(iii) $\det(X \oplus \overline{X}) \cong 1$.

Proof. (i) Let $(\overline{X}, r, \overline{r})$ be a standard left inverse of X. By inductive use of Lemma 338 one obtains standard left inverses $(\overline{X}^\otimes n, r_n, \overline{r}_n)$ of $X^\otimes n$ for any $n \in \mathbb{N}$. If now $\sigma = \sigma_{i_1} \cdots \sigma_{i_r} \in P_n$, one can verify that

$$\Pi_n^X(\sigma') = r_n^* \otimes \text{id}_{X^\otimes n} \circ \text{id}_{\overline{X}^\otimes n} \otimes \Pi_n^X(\sigma) \otimes \text{id}_{X^\otimes n} \circ \text{id}_{\overline{X}^\otimes n} \otimes \overline{r}_n,$$

where $\sigma' = \sigma_{n-i_1}^{-1} \cdots \sigma_{n-i_r}^{-1}$. In particular, $\text{sgn} \sigma' = \text{sgn} \sigma$, implying

$$A^X_n = r_n^* \otimes \text{id}_{X^\otimes n} \circ \text{id}_{\overline{X}^\otimes n} \otimes A^X_n \otimes \text{id}_{\overline{X}^\otimes n} \circ \text{id}_{X^\otimes n} \otimes \overline{r}_n,$$

for any $n \in \mathbb{N}$. Now the claim follows from Lemma 337.

(ii) For any $X \in \mathcal{C}$ we abbreviate $d_X = d(X)$ and $A^X = A^X_{d_X} \in \text{End } X^\otimes d_X$. Let $u : X \to Z, v : Y \to Z$ be isometries implementing $Z \cong X \oplus Y$. Then $X^\otimes d_X$ is a subobject of $Z^\otimes d_X$, and similarly for $Y^\otimes d_Y$. By definition, $\det Z$ is the subobject of $Z^\otimes d_Z$ corresponding to the projector $A^Z \in \text{End } Z^\otimes d_Z$. On the other hand, $\det X \otimes \det Y$ is the subobject of $X^\otimes d_X \otimes Y^\otimes d_Y$ corresponding to the projector $A^X \otimes A^Y$, and therefore it is isomorphic to the subobject of $Z^\otimes d_Z$ corresponding to the projector

$$u \otimes \cdots \otimes u \otimes v \otimes \cdots \otimes v \circ A^X \otimes A^Y \circ u^* \otimes \cdots \otimes u^* \otimes v^* \otimes \cdots \otimes v^* \in \text{End } Z^\otimes d_Z,$$
where there are d_X factors u and u^* and d_Y factors v and v^*. This equals

$$\frac{1}{d_X!d_Y!} \sum_{\sigma \in P_{d_X}} \sum_{\sigma' \in P_{d_Y}} \text{sgn}(\sigma)\text{sgn}(\sigma') u \otimes \cdots \otimes u \otimes v \otimes \cdots \otimes v \circ \Pi_{d_X}^X(\sigma) \otimes \Pi_{d_Y}^Y(\sigma') \circ u^* \otimes \cdots \otimes u^* \otimes v^* \otimes \cdots \otimes v^*.$$

By naturality of the braiding, this equals

$$\frac{1}{d_X!d_Y!} \sum_{\sigma \in P_{d_X}} \sum_{\sigma' \in P_{d_Y}} \text{sgn}(\sigma)\text{sgn}(\sigma') \Pi_{d_X}^Z(\sigma) \otimes \Pi_{d_Y}^Z(\sigma') \circ p_X \otimes \cdots \otimes p_X \otimes p_Y \otimes \cdots \otimes p_Y,$n

where $p_X = u \circ u^*$, $p_Y = v \circ v^*$. With the juxtaposition $\sigma \times \sigma' \in P_{d_X+d_Y} = P_{d_Z}$ of σ and σ' this becomes

$$(63) \quad \frac{1}{d_X!d_Y!} \sum_{\sigma \in P_{d_X}} \sum_{\sigma' \in P_{d_Y}} \text{sgn}(\sigma \times \sigma') \Pi_{d_Z}^Z(\sigma \times \sigma') \circ p_X \otimes \cdots \otimes p_X \otimes p_Y \otimes \cdots \otimes p_Y.$$n

On the other hand,

$$A^Z = \frac{1}{d_Z!} \sum_{\sigma \in P_{d_Z}} \text{sgn}(\sigma) \Pi_{d_Z}^Z(\sigma)$$

$$= \left(\sum_{\sigma \in P_{d_Z}} \text{sgn}(\sigma) \Pi_{d_Z}^Z(\sigma) \right) \circ (p_X + p_Y) \otimes \cdots \otimes (p_X + p_Y).$$

Of the 2^{d_Z} terms into which this can be decomposed, only those with d_X factors p_X and d_Y factors p_Y are nonzero since $A_n^X = 0$ for $n > d_X$ and $A_n^Y = 0$ for $n > d_Y$. We are thus left with a sum of $d_Z!/d_X!d_Y!$ terms, and working out the signs we see that they all equal to $d_X!/d_Y!/d_Z!$ times (63), thus the sum equals (63). This proves the isomorphism $\det Z \cong \det X \otimes \det Y$.

Finally, (iii) follows from

$$\det(X \oplus X) \cong \det X \otimes \det X \cong \det X \otimes \det X \cong \det X \otimes (\det X)^{-1} \cong 1,$$n

where we have used (i) and (ii) of this lemma, $d(\det X) = 1$ and (iii) of Lemma 341.

For later use we state a computational result:

LEMA 424. Let X satisfy $\det X \cong 1$ and write $d = d(X)$. If $s : 1 \to X \otimes d$ is an isometry for which $s \circ s^* = A_d^X$ then

$$(64) \quad s^* \otimes id_X \circ id_X \otimes s = (-1)^{d-1} d^{-1} id_X.$$
Proof. We abbreviate \(x = s^* \otimes \text{id}_X \circ \text{id}_X \otimes s \) and observe that by non-degeneracy of the trace it is sufficient to show that \(\text{Tr}_X(ax) = (-1)^{d-1}d^{-1}\text{Tr}_X(a) \) for all \(a \in \text{End} X \). In order to show this, let \((\overline{X},r,\overline{r})\) be a standard solution of the conjugate equations and compute

\[
\text{Tr}_X(ax) = \begin{array}{c}
\begin{array}{c}
\text{s}^* \otimes \text{id}_X \circ \text{id}_X \otimes s \\
\end{array}
\end{array}
\overline{X} \begin{array}{c}
\begin{array}{c}
\text{p}^* \otimes \text{id}_X \circ \text{id}_X \otimes s \\
\end{array}
\end{array}X^{d-1} r
\]

\[
= (-1)^{d-1} \overline{X}
\]

We have in turn used the total antisymmetry of \(s \) (Lemma 418), the naturality properties of the braiding and the triviality of the twist \(\Theta_X \). Now,

\[
s^* \circ a \otimes \text{id}_{X \otimes d-1} \circ s = \text{Tr}_1(s^* \circ a \otimes \text{id}_{X \otimes d-1} \circ s) = \text{Tr}_{X \otimes d}(a \otimes \text{id}_{X \otimes d-1} \circ s^*) = \text{Tr}_{X \otimes d}(a \otimes \text{id}_{X \otimes d-1} \circ A_d^X).
\]

In order to complete the proof we need to show that this equals \(d^{-1}\text{Tr}_Xa \), which is done by suitably modifying the proof of Proposition 420. By the same argument as given there, it suffices to prove \(\text{Tr}_{X \otimes n}(a \otimes \text{id}_{X \otimes n-1} \circ \Pi_n^X(\sigma)) = d^n\sigma^{-1}\text{Tr}_Xa \). Again, the permutation \(\sigma \) decomposes into a set of cyclic permutations, of which now precisely one involves the index 1. It is therefore sufficient to prove \(\text{Tr}_{X \otimes n}(a \otimes \text{id}_{X \otimes n-1} \circ \Pi_n^X(\sigma)) = \text{Tr}_Xa \) for every cyclic permutation \(\sigma \) of all \(n \) indices. Inserting \(a \) at the appropriate place, the calculation essentially proceeds as before. The only difference is that instead of \(\text{Tr}_X \text{id}_X = d(X) \) one is left with \(\text{Tr}_Xa \), giving rise to the desired result.

\(\blacksquare\)
REMARK 425. Objects with determinant 1 were called special in [Doplicher and Roberts, 1989], where also all results of this subsection can be found.

This concludes our discussion of antisymmetrization and determinants, and we turn to symmetrization and the symmetric algebra. It is here that we need the Ind-category that was introduced in Subsection A.7.

B.10 The symmetric algebra

In “ordinary” algebra one defines the symmetric algebra \(S(V) \) over a vector space \(V \). Unless \(V = \{0\} \), this is an infinite direct sum of non-trivial vector spaces. We will need a generalization of this construction to symmetric tensor categories other than Vect. While infinite direct sums of objects make sense in the setting of \(C^* \)-tensor categories (Definition 345), a more convenient setting for the following considerations is given by the theory of abelian categories.

LEMMA 426. Let \(C \) be an STC* and \(X \in C \). For every \(n \in \mathbb{N} \) choose an object \(S_n(X) \) and an isometry \(u_n : S_n(X) \to X^\otimes n \) such that \(u_n \circ u_n^* = S_n^X \). Also, let \(u_0 = \text{id}_1 \), interpreted as a morphism from \(S_0(X) = 1 \) to \(X^0 = 1 \). The the morphisms \(m_{i,j} : S_i(X) \otimes S_j(X) \to S_{i+j}(X) \) defined by

\[
m_{i,j} : S_i(X) \otimes S_j(X) \xrightarrow{u_i \otimes u_j} X^\otimes i \otimes X^\otimes j \equiv X^\otimes (i+j) \xrightarrow{u_{i+j}^*} S_{i+j}(X)
\]

satisfy

\[
m_{i+j,k} \circ m_{i,j} \otimes \text{id}_{S_k(X)} = m_{i,j+k} \circ \text{id}_{S_i(X)} \otimes m_{j,k}
\]

for all \(i, j, k \in \mathbb{Z}_+ \). Furthermore,

\[
m_{i,j} = m_{j,i} \circ c_{S_i(X), S_j(X)} \quad \forall i, j
\]

and \(m_{i,0} = m_{0,i} = \text{id}_{S_i(X)} \).

Proof. As a consequence of \(S_n^X \circ \Pi_n^X(\sigma) = S_n^X(\sigma) \) for all \(\sigma \in P_n \), cf. Lemma 418, we have

\[
S_{i+j+k}^X \circ S_{i+j}^X \otimes \text{id}_{X^\otimes k} \circ S_i^X \otimes S_j^X \otimes \text{id}_{X^\otimes k} = S_{i+j+k}^X \circ S_i^X \otimes \text{id}_{X^\otimes k} = S_{i+j+k}^X;
\]

\[
S_{i+j+k}^X \circ \text{id}_{X^\otimes k} \circ S_{j+k}^X \otimes S_k^X \otimes S_i^X = S_{i+j+k}^X \circ \text{id}_{X^\otimes k} \circ S_{i+j+k}^X = S_{i+j+k}^X.
\]

Multiplying all this with \(u_{i+j+k}^* \) on the left and with \(u_i \otimes u_j \otimes u_k \) on the right and using \(u_i^* \otimes S_{i}^X = u_i^* \) and \(S_{i}^X \circ u_i = u_i \) this implies

\[
u_{i+j+k}^* \circ S_{i+j}^X \otimes \text{id}_{X^\otimes k} \circ u_i \otimes u_j \otimes u_k = u_{i+j+k}^* \circ u_i \otimes u_j \otimes u_k
\]

\[
= u_{i+j+k}^* \circ \text{id}_{X^\otimes k} \otimes S_{j+k}^X \circ u_i \otimes u_j \otimes u_k.
\]
Using again that \(S_{i+j}^X = u_{i+j} \circ u_{i+j}^* \), we have the first identity we wanted to prove. Furthermore,

\[
m_{j,i} \circ c_{s_i(X), s_j(X)} = u_{i+j}^* \circ u_j \otimes u_i \circ c_{s_i(X), s_j(X)} = u_{i+j}^* \circ c_{X_{\otimes i}, X_{\otimes j}} \circ u_i \otimes u_j = u_{i+j}^* \circ \Pi_{i+j}^X(\sigma) \circ u_i \otimes u_j = u_{i+j}^* \circ S_{i+j} \circ \Pi_{i+j}^X(\sigma) \circ u_i \otimes u_j = u_{i+j}^* \circ S_{i+j} \circ u_i \otimes u_j = m_{i,j},
\]

where \(\sigma \in P_{i+j} \) is the permutation exchanging the first \(i \) with the remaining \(j \) strands. The last claim is obvious in view of \(S_0(X) = 1 \).

In view of Lemma 353, \(C \) (with a zero object thrown in) is an abelian category, thus there exists an abelian \(C \)-linear strict symmetric tensor category \(\text{Ind} C \) containing \(C \) as a full subcategory and complete w.r.t. filtered inductive limits. Therefore, for any object \(X \) in the \(\text{STC}^* \) \(C \), there exists an object

\[
S(X) = \lim_{n \to \infty} \bigoplus_{i=0}^{n} S_n(X)
\]

together with monomorphisms \(v_n : S_n(X) \to S(X) \).

Proposition 427. Let \(C \) be an \(\text{STC}^* \) and \(X \in C \). Then there exists a morphism \(m_{S(X)} : S(X) \otimes S(X) \to S(X) \) such that

\[
m_{S(X)} \circ v_i \otimes v_j = v_{i+j} \circ m_{i,j} : S_i(X) \otimes S_j(X) \to S(X)
\]

and \((S(X), m_{S(X)}, \eta_{S(X)} = v_0) \) is a commutative monoid in \(\text{Ind} C \).

Proof. This amounts to using

\[
\text{Hom}_{\text{Ind} C}(S(X) \otimes S(X), S(X)) = \lim_m \lim_n \text{Hom}_C \left(\bigoplus_{i,j=0}^{m} S_i(X) \otimes S_j(X), \bigoplus_{k=0}^{n} S_k(X) \right)
\]

to assemble the morphisms \(m_{i,j} : S_i(X) \otimes S_j(X) \to S_{i+j}(X) \) into one big morphism \(S(X) \otimes S(X) \to S(X) \). We omit the tedious but straightforward details. Associativity \((m_{S(X)} \circ m_{S(X)} \otimes \text{id}_{S(X)} = m_{S(X)} \circ \text{id}_{S(X)} \otimes m_{S(X)}) \) and commutativity \((m_{S(X)} = m_{S(X)} \circ c_{S(X), S(X)} \circ S_X(X)) \) then follow from the respective properties of the \(m_{i,j} \) established in Lemma 426. The unit property \(m_{S(X)} \circ \text{id}_{S(X)} \otimes v_0 = \text{id}_{S(X)} \otimes v_0 = \text{id}_{S(X)} \) follows from \(m_{i,0} = m_{0,i} = \text{id}_{S_i(X)} \).

We now study the interaction between the operations of symmetrization and antisymmetrization, i.e. between determinants and symmetric algebras, that lies at the core of the embedding theorem. We begin by noting that given two commutative monoids \((Q_i, m_i, \eta_i), \ i = 1, 2 \) in a strict symmetric tensor category, the triple \((Q_1 \otimes Q_2, m_{Q_1 \otimes Q_2}, \eta_{Q_1 \otimes Q_2}) \), where \(\eta_{Q_1 \otimes Q_2} = \eta_1 \otimes \eta_2 \) and

\[
m_{Q_1 \otimes Q_2} = m_1 \otimes m_2 \circ \text{id}_{Q_1} \otimes c_{Q_2, Q_1} \otimes \text{id}_{Q_2},
\]
defines a commutative monoid, the direct product \((Q_1,m_1,\eta_1)\times (Q_2,m_2,\eta_2)\). The direct product \(\times\) is strictly associative, thus multiple direct products are unambiguously defined by induction.

Lemma 428. Let \(C\) be a STC and assume \(Z \in C\) satisfies \(\det Z \cong 1\). We write \(d = d(Z)\) and pick \(s : 1 \to Z^{\otimes d}\), \(s' : Z^{\otimes d} \to 1\) such that \(s' \circ s = \text{id}_1\) and \(s \circ s' = A^Z_1\). Let \(S(Z)\) be the symmetric tensor algebra over \(Z\) with the canonical embeddings \(v_0 : 1 \to S(Z), v_1 : Z \to S(Z)\). Consider the commutative monoid structure on \(Q = S(Z)^{\otimes d}\) given by

\[
(Q,m_Q,\eta_Q) = (S(Z),m_{S(Z)},\eta_{S(Z)})^{\times d}.
\]

Define morphisms \(f : 1 \to Q\) and \(u_i : Z \to Q, \quad t_i : Z^{\otimes (d-1)} \to Q, \quad i = 1, \ldots, d\) by

\[
f = v_1 \otimes \ldots \otimes v_1 \circ s, \quad \text{\(d\) factors}
\]

\[
u_i = \underbrace{v_0 \otimes \ldots \otimes v_0}_{i-1 \text{ factors}} \otimes v_1 \otimes \underbrace{v_0 \otimes \ldots \otimes v_0}_{d-i \text{ factors}},
\]

\[
t_i = (-1)^{d-i} \underbrace{v_1 \otimes \ldots \otimes v_1}_{i-1 \text{ factors}} \otimes v_0 \otimes \underbrace{v_1 \otimes \ldots \otimes v_1}_{d-i \text{ factors}}.
\]

Then \(s,f,u_i,t_j\) satisfy

\[(65) \quad m_Q \circ t_j \otimes u_i \circ s = \delta_{ij} f \quad \forall i,j \in \{1, \ldots, d\}.
\]

Proof. First note that \(s : 1 \to Z^{\otimes d}\) as required exists since \(\det Z \cong 1\) and that \(f\) is a composition of monics, thus non-zero. We compute

\[
m_Q \circ t_i \otimes u_i \circ s = (-1)^{d-i} \text{id}_{S(Z)^{\otimes (d-1)}} \otimes c_{S(Z)^{\otimes (d-1)},S(Z)} \circ v_1 \otimes v_1 \otimes \ldots \otimes v_1 \circ s
\]

\[
= (-1)^{d-i} v_1 \otimes v_1 \otimes \ldots \otimes v_1 \circ \text{id}_{Z^{\otimes (d-1)}} \otimes c_{Z^{\otimes (d-1)},Z} \circ s
\]

\[
= v_1 \otimes v_1 \otimes \ldots \otimes v_1 \circ s
\]

\[
= f.
\]

In the first equality we used the definition of \((Q,m_Q,\eta_Q)\) as \(d\)-fold direct product of \((S(Z),m_{S(Z)},\eta_{S(Z)})\) and the fact that \(v_0 = \eta_{S(Z)}\) is the unit, naturality of the braiding in the second and Lemma 418 in the third. To see that \(m_Q \circ t_j \otimes u_i \circ s = 0\) if \(i \neq j\) consider \(j = d-1, i = d\). Then \(m_Q \circ t_j \otimes u_i \circ s : 1 \to S(Z)^{\otimes d} \cong Q\) is the composite

\[
1 \xrightarrow{s} Z^{\otimes d} \xrightarrow{v_1 \otimes \ldots \otimes v_1 \otimes v_0 \otimes v_1 \otimes v_1} S(Z)^{\otimes (d+1)} \xrightarrow{\text{id}_{S(Z)^{\otimes (d-1)}} \otimes m_{S(Z)}} S(Z)^{\otimes d}.
\]
Now,

\[
\id_{S(Z)\otimes(d-1)} \otimes m_{S(Z)} \circ v_1 \otimes \cdots \otimes v_1 \otimes v_0 \otimes v_1 \circ s \\
= \id_{S(Z)\otimes(d-1)} \otimes (m_{S(Z)} \circ c_{S(Z), S(Z)}) \circ v_1 \otimes \cdots \otimes v_1 \otimes v_0 \otimes v_1 \otimes v_1 \circ s \\
= \id_{S(Z)\otimes(d-1)} \otimes m_{S(Z)} \circ \id_{S(Z)\otimes(d-1)} \otimes c_{S(Z), S(Z)} \circ v_1 \otimes \cdots \otimes v_1 \otimes v_0 \otimes v_1 \otimes v_1 \circ s \\
= -\id_{S(Z)\otimes(d-1)} \otimes m_{S(Z)} \circ v_1 \otimes \cdots \otimes v_1 \otimes v_0 \otimes v_1 \circ \id_{Z\otimes(d-2)} \otimes c_{Z, Z} \circ s \\
= -\id_{S(Z)\otimes(d-1)} \otimes m_{S(Z)} \circ v_1 \otimes \cdots \otimes v_1 \otimes v_0 \otimes v_1 \otimes v_1 \circ s,
\]

where we used the commutativity of \(m_{S(Z)} \) in the first step and the total antisymmetry of \(s \) in the last. Thus \(m_Q \circ u_d \otimes t_{d-1} \circ s = -m_Q \circ u_d \otimes t_{d-1} \circ s = 0 \).

For general \(i \neq j \) the argument is exactly the same, but becomes rather tedious to write up in detail. \(\blacksquare \)

REMARK 429. Lemma 428 and Proposition 430 below, both taken from [Bichon, 1998], are the crucial ingredients in our approach to the reconstruction theorem.

B.11 Construction of an absorbing commutative monoid

Throughout this subsection, let \(\mathcal{C} \) be an even \(STC^* \) with monoidal generator \(Z \). Consider the commutative monoid \((Q, m, \eta) = (S(Z), m_{S(Z)}, \eta_{S(Z)})^{\times d(Z)} \) in \(\text{Ind} \mathcal{C} \) and the morphisms \(s, s', f, u_i, t_j \) as defined in Lemma 428. Then \(m_0 \in \text{End} Q \)

\[
m_0 = m_Q \circ \id_Q \otimes (f - \eta_Q) = m_Q \circ \id_Q \otimes f - \id_Q
\]

is a \(Q \)-module map, thus \(m_0 \in \text{End}_Q((Q, m_Q)) \). Then its image \(j = \text{im} m_0 : (J, \mu_J) \rightarrow (Q, m_Q) \) (in the abelian category \(Q \text{-Mod} \)) defines an ideal \(j : (J, \mu_J) \rightarrow (Q, m, \eta) \) in \((Q, m, \eta) \). This ideal is proper iff \(j \) is not an isomorphism iff \(m_0 \) is not an isomorphism. Postponing this issue for a minute, we have:

PROPOSITION 430. Let \(\mathcal{C} \) be an even symmetric \(STC^* \) and let \(Z \in \mathcal{C} \) be such that \(\det Z \cong 1 \). Let \((Q, m, \eta) \) and \(s, s', f, u_i, t_j \) be as defined in Lemma 428 and \(m_0 \) as above. Let \(j' : (J', \mu') \rightarrow (Q, m) \) be any proper ideal in \((Q, m, \eta) \) containing the ideal \(j : (J, \mu) \rightarrow (Q, m) \), where \(j = \text{im} m_0 \). Let \((B, m_B, \eta_B) \) be the quotient monoid. Then there is an isomorphism

\[
(B \otimes Z, m \otimes \id_Z) \cong d(Z) \cdot (B, m_B)
\]

of \(B \)-modules.

Proof. Since the ideal is proper, the quotient \((B, m_B, \eta_B) \) is nontrivial and we have an epi \(p : Q \rightarrow B \) satisfying

\[
p \circ m_Q = m_B \circ p \otimes p, \tag{66}
\]

\[
p \circ f = p \circ \eta_Q = \eta_B. \tag{67}
\]
In order prove the claimed isomorphism $B \otimes Z \cong d \cdot B$ of B-modules we define morphisms $\tilde{q}_i \in \text{Hom}(1, B \otimes Z)$, $\tilde{p}_i \in \text{Hom}(Z, B)$, $i = 1, \ldots, d$ as the following compositions:

$$
\tilde{q}_i : \quad 1 \xrightarrow{s} Z^\otimes d \cong Z^\otimes (d-1) \otimes Z \xrightarrow{t_i \otimes \text{id}_Z} Q \otimes Z \xrightarrow{p \otimes \text{id}_Z} B \otimes Z, \\
\tilde{p}_i : \quad Z \xrightarrow{u_i} Q \xrightarrow{p} B.
$$

Using, first (66), then (65) and (67) we compute

$$
(68) \quad \begin{array}{ccc}
\tilde{q}_i &=& m_B \\
B & \xrightarrow{m_B} & B \\
\tilde{p}_i &=& p \\
B & \xrightarrow{u_i} & Q \\
& \xrightarrow{t_j} & Z^{d-1} \\
& \xrightarrow{s} & B \\
Z & \xrightarrow{\tilde{q}_i} & B \\
& \xrightarrow{\tilde{p}_i} & B \\
& \xrightarrow{p} & B \\
\end{array}
\quad = \quad \begin{array}{ccc}
\delta_{ij} \cdot p \circ f &=& \delta_{ij} \cdot \eta_B. \\
B & \xrightarrow{m_B} & B \\
\delta_{ij} \cdot p \circ f &=& \delta_{ij} \cdot \eta_B. \\
B & \xrightarrow{\delta_{ij} \cdot \eta_B} & B \\
\end{array}
$$

Defining, for $i = 1, \ldots, d$,

$$
q_i = \begin{array}{ccc}
B & \xrightarrow{m_B} & B \\
\tilde{q}_i & \xrightarrow{m_B} & B \\
B & \xrightarrow{\tilde{q}_i} & B \\
\end{array} \\
p_i = \begin{array}{ccc}
B & \xrightarrow{m_B} & B \\
\tilde{p}_i & \xrightarrow{m_B} & B \\
B & \xrightarrow{\tilde{p}_i} & B \\
\end{array}
$$

we find

$$
p_i \circ q_j = \begin{array}{ccc}
B & \xrightarrow{m_B} & B \\
\tilde{q}_j & \xrightarrow{m_B} & B \\
B & \xrightarrow{\tilde{q}_j} & B \\
\end{array} \\
\quad = \quad \begin{array}{ccc}
B & \xrightarrow{m_B} & B \\
\delta_{ij} \cdot m_B & \xrightarrow{\delta_{ij} \cdot m_B} & B \\
\tilde{q}_j & \xrightarrow{\tilde{q}_j} & B \\
\end{array} \\
\quad = \quad \delta_{ij} \cdot \eta_B = \delta_{ij} \cdot \text{id}_B.
$$
where in the next to last step we used (68). It is obvious from their definitions that \(p_i, q_i \) are morphisms of \(B \)-modules. We have thus shown that the \(B \)-module \((B \otimes Z, m_B \otimes \text{id}_Z)\) has \(d \) direct summands \((B, m_B)\), and therefore

\[
(B \otimes Z, m_B \otimes \text{id}_Z) \cong \underbrace{(B, m_B) \oplus \ldots \oplus (B, m_B)}_{d \text{ summands}} \oplus (N, \mu_N).
\]

It remains to be shown that \(N = 0 \) or, equivalently, \(\sum_{i=1}^{d} q_i \circ p_i = \text{id}_{B \otimes Z} \). A short argument to this effect is given in [Deligne, 1990; Bichon, 1998], but since it is somewhat abstract we give a pedestrian computational proof. We calculate
Composition with $\eta_B \otimes \text{id}_Z$ shows that this equals $\text{id}_{B \otimes Z}$ iff

$$\sum_{i=1}^{d} (-1)^{d-i} (p \circ c_{S(Z),S(Z)\otimes(i-1)} \otimes \text{id}_{S(Z)\otimes(d-i)} \circ v_1 \otimes \cdots \otimes v_1) \otimes \text{id}_Z \circ \text{id}_Z \otimes s = (p \circ v_1 \otimes \cdots \otimes v_1) \otimes \text{id}_Z$$

$$= \left(\sum_{i=1}^{d} (-1)^{d-i} c_{Z,Z\otimes(i-1)} \otimes \text{id}_{Z\otimes(d-i)} \otimes \text{id}_Z \circ \text{id}_Z \otimes s\right).$$

In view of the definition of (Q, m_Q, η_Q), the left hand side of (69) equals

$$\sum_{i=1}^{d} \left(\sum_{i=1}^{d} (-1)^{d-i} c_{Z,Z\otimes(i-1)} \otimes \text{id}_{Z\otimes(d-i)} \otimes \text{id}_Z \circ \text{id}_Z \otimes s\right).$$

Writing $K_i = c_{Z,Z\otimes(i-1)} \otimes \text{id}_{Z\otimes(d-i)} \circ \text{id}_Z \otimes s$, where $i \in \{1, \ldots, d\}$, one easily verifies

$$\Pi_{d+1}^Z(\sigma_j) \circ K_i = \begin{cases} K_{i-1} & : j = i - 1 \\ K_{i+1} & : j = i \\ K_i & : \text{otherwise} \end{cases}$$

for all $j \in \{1, \ldots, i - 1\}$. This implies that the morphism $Z \to Z^{\otimes(d+1)}$ in the large brackets of (70) is totally antisymmetric w.r.t. the first d legs, i.e. changes its sign upon multiplication with $\Pi_{d+1}^Z(\sigma_j)$, $j = 1, \ldots, d - 1$ from the left. We can thus insert $A_d^Z = s \circ s'$ at the appropriate place and see that (70) equals

$$= (p \circ v_1 \otimes \cdots \otimes v_1) \otimes \text{id}_Z \circ (s \circ s') \otimes \text{id}_Z$$

$$= \left(\sum_{i=1}^{d} (-1)^{d-i} c_{Z,Z\otimes(i-1)} \otimes \text{id}_{Z\otimes(d-i)} \otimes \text{id}_Z \circ \text{id}_Z \otimes s\right).$$

Now, $p \circ v_1 \otimes \cdots \otimes v_1 \circ s = p \circ f = \eta_B$. On the other hand, by the total antisymmetry of s we have $s' \circ c_{Z,Z\otimes(i-1)} \otimes \text{id}_{Z\otimes(d-i)} = (-1)^{i-1} s'$ and thus

$$\sum_{i=1}^{d} (-1)^{d-i} s' \otimes \text{id}_Z \circ c_{Z,Z\otimes(i-1)} \otimes \text{id}_{Z\otimes(d-i)} \otimes \text{id}_Z \circ \text{id}_Z \otimes s$$

$$= \sum_{i=1}^{d} (-1)^{d-i} (-1)^{i-1} s' \otimes \text{id}_Z \circ \text{id}_Z \otimes s$$

$$= d(-1)^{d-1} s' \otimes \text{id}_Z \circ \text{id}_Z \otimes s = \text{id}_Z,$$
where the last equality is provided by Lemma 424. Thus (69) is true, implying
\[\sum_{i=1}^{d} q_i \circ p_i = \text{id}_{B \otimes Z} \] and therefore the claimed isomorphism \(B \otimes Z \cong d(Z) B \) of
\(B \)-modules.

\[\text{LEMMA 431.} \text{ Let } C, Z \text{ and the monoid } (Q, m, \eta) \text{ be as in Lemma 428. Then the commutative algebra } \Gamma_Q = \text{Hom}(1, Q) \text{ is } \mathbb{Z}_+\text{-graded and has at most countable dimension.} \]

\[\text{Proof.} \text{ By construction of } Q \text{ we have } \]
\[\Gamma_Q = \text{Hom}(1, Q) = \lim_{n} \bigoplus_{i=0}^{n} \text{Hom}(1, S_i(Z)) = \bigoplus_{i \geq 0} \text{Hom}(1, S_i(Z)). \]

Each of the direct summands on the right hand side lives in \(C \) and thus has finite dimension. It follows that \(\Gamma_Q \) has at most countable dimension. That \(\Gamma_Q \) is a
\(\mathbb{Z}_+\)-graded algebra is evident from the definition of \(m_Q \) in terms of the morphisms
\(m_{i,j} : S_i(X) \otimes S_j(X) \to S_{i+j}(X) \) of Lemma 426.

\[\text{THEOREM 432.} \text{ Let } Z \in C \text{ be such that } \det Z \cong 1. \text{ Then there exists a commutative monoid } (B, m_B, \eta_B) \text{ in } \text{Ind} C \text{ such that } \text{dim } \text{Hom}_{\text{Ind} C}(1, B) = 1 \text{ and there is an isomorphism } B \otimes Z \cong d(Z) B \text{ of } B\text{-modules.} \]

\[\text{Proof.} \text{ Let } (Q, m, \eta) \text{ and the ideal } j = \text{im } m_0 : (J, \mu) \to (Q, m) \text{ as before. Assume that } j \text{ is an isomorphism, thus epi. Then } m_0 \text{ is epi and thus an isomorphism by Lemma 366. In particular, the map } \Gamma_Q \to \Gamma_Q \text{ given by } s \mapsto s \circ (f - \eta) \text{ is an isomorphism, thus } f - \eta \in \Gamma_Q \text{ is invertible. This, however, is impossible since } \Gamma_Q \text{ is } \mathbb{Z}_+\text{-graded and } f - \eta \in \Gamma_Q \text{ is not in the degree-zero part. Thus the ideal } j \text{ is proper. By Lemma 362 there exists a maximal ideal } j' : (J', \mu') \to (Q, m) \text{ containing } j : (J, \mu) \to (Q, m). \text{ If the monoid } (B, m_B, \eta_B) \text{ is the quotient of } (Q, m, \eta_Q) \text{ by } j : (J', \mu') \to (Q, m), \text{ Proposition 430 implies the isomorphism } B \otimes Z \cong d(Z) \cdot B \text{ of } B\text{-modules. By Lemma 364, the quotient module } (B, m_B, \eta_B) \text{ has no proper non-zero ideals, thus by Lemma 365, the commutative } C\text{-algebra } \text{End}_B((B, m_B)) \text{ is a field extending } k. \text{ By Lemma 358, } \text{End}_B((B, m)) \cong \text{Hom}(1, B) =: \Gamma_B \text{ as a } C\text{-algebra. By Lemma 371, the unit } 1 \in \text{Ind} C \text{ is projective, thus Lemma 363 implies that } \Gamma_B \text{ is a quotient of } \Gamma_Q \text{, and by Lemma 431 it has at most countable dimension. Now Lemma 433 below applies and gives } \Gamma_B = C \text{ and therefore dim } \text{Hom}(1, B) = 1 \text{ as desired.} \]

\[\text{LEMMA 433.} \text{ Let } K \supset C \text{ a field extension of } C. \text{ If } [K : C] \equiv \text{dim}_C K \text{ is at most countable then } K = C. \]

\[\text{Proof.} \text{ Assume that } x \in K \text{ is transcendental over } C. \text{ We claim that the set } \{ \frac{1}{x+a} \mid a \in C \} \subset K \text{ is linearly independent over } C: \text{ Assume that } \sum_{i=1}^{N} \frac{b_i}{x+a_i} = 0, \text{ where the } a_i \text{ are pairwise different and } b_i \in C. \text{ Multiplying with } \prod_{i \neq i} (x+a_i) \text{ (which is non-zero in } K) \text{ we obtain the polynomial equation } \sum_{i=1}^{N} b_i \prod_{j \neq i} (x+a_j) = 0 = \]
\[\sum_{k=0}^{N-1} c_k x^k \] for \(x \). Since \(x \) is transcendental, we have \(c_k = 0 \) for all \(k = 0, \ldots, N-1 \).

This gives us \(N \) linear equations \(\sum_{i=1}^{N} M_{ki} b_i = 0, \ k = 1, \ldots, N \), where \(M_{ki} = \sum_{\#S = k-1}^{S \subseteq \{1, \ldots, N\}} \prod_{g \in S} a_g \). This matrix can be transformed into the matrix \(\left(V_{ki} = a_i^{k-1}\right) \) by elementary row transformations. By Vandermonde's formula, \(\det V = \prod_{i<j} (a_j - a_i) \neq 0 \), thus the only solution of \(Mb = 0 \) is \(b_1 = \cdots = b_N = 0 \), proving linear independence. Since \(\mathbb{C} \) is uncountable this contradicts the assumption that \(K \) has countable dimension over \(\mathbb{C} \). Thus \(K/\mathbb{C} \) is algebraic and therefore \(K = \mathbb{C} \) since \(\mathbb{C} \) is algebraically closed.

Finally we have:

Proof of Theorem 411. If \(\mathcal{C} \) is an even \(STC^* \) with monoidal generator \(Z \), Lemma 423 allows us to assume \(\det Z \cong 1 \) (replacing \(Z \) by \(Z \oplus \bar{Z} \)). Now Theorem 432 provides a monoid \((\mathcal{B}, m, \eta) \) in \(\text{Ind} \mathcal{C} \) satisfying the assumptions of Corollary 415, which gives rise to a symmetric fiber functor \(E : \mathcal{C} \to \text{Vect}_{\mathbb{C}} \).

Remark 434. It seems instructive to point out the main difference of our proof of Theorem 411 w.r.t. the approaches of [Deligne, 1990; Bichon, 1998]. In [Deligne, 1990], a commutative monoid \((Q, m, \eta) \) for which there is an isomorphism \(Q \otimes Z \cong d(Z)Q \) of \(Q \)-modules is constructed by a somewhat complicated inductive procedure. The explicit construction of the monoid that we gave is due to [Bichon, 1998]. Deligne proceeds by observing that, for every \(X \in \mathcal{C} \), the \(k \)-vector space \(\text{Hom}(1, Q \otimes X) \) is a module over the commutative ring \(\Gamma_Q := \text{End}_Q((Q, m)) \cong \text{Hom}(1, Q) \), and the functor \(\tilde{E} : X \mapsto \text{Hom}(1, Q \otimes X) \) is monoidal w.r.t. the tensor product of \(\Gamma_Q \) - \(\text{Mod} \) (rather than that of \(\text{Vect}_{\mathbb{C}} \)). Now, a quotienting procedure w.r.t. a maximal ideal \(J \) in \(\Gamma_Q \) is used to obtain a tensor functor \(E : \mathcal{C} \to \text{K-Vect} \), where \(K = \Gamma_Q/J \) is a field extension of the ground field \(k \). If \(\text{Hom}(1, Q) \) is of at most countable dimension then \([K : k] \leq \aleph_0 \), and if \(k \) is uncountable and algebraically closed it follows that \(K = k \).

Our approach differs in two respects. Less importantly, our insistence on \(\det Z \cong 1 \) makes the construction of the monoid \((Q, m, \eta) \) slightly more transparent than in [Bichon, 1998]. More importantly, we perform the quotienting by a maximal ideal inside the category of \(Q \)-modules in \(\text{Ind} \mathcal{C} \) rather than in the category of \(\Gamma_Q \)-modules, yielding a monoid \((Q', m', \eta') \) in \(\text{Ind} \mathcal{C} \) with \(\Gamma_{Q'} = \mathbb{C} \). Besides giving rise to a symmetric fiber functor \(E : \mathcal{C} \to \text{Vect}_{\mathbb{C}} \) in a more direct fashion, this has the added benefit, as we will show in the final subsection, of allowing to recover the group \(\text{Nat}_{\otimes} E \) without any reference to the fiber functor and its natural transformations! The ultimate reason for this is that, due to uniqueness of the embedding functor, the monoid \((Q', m', \eta') \) in \(\text{Ind} \mathcal{C} \) is nothing but the monoid \((\pi_\mathcal{N}, \tilde{m}, \tilde{\eta}) \) in \(\text{Rep} G \) that arises from the left regular representation of \(G \), cf. [Müger and Tuset, 2006].
B.12 Addendum

In the previous subsection we have concluded the proof of the existence of a fiber functor and, by the concrete Tannaka theorem, of the equivalence $\mathcal{C} \simeq \text{Rep}_f(G, k)$, where (G, k) is a compact supergroup. However, we would like to show how the group $\text{Nat}_\otimes E$, and in some cases also G, can be read off directly from the monoid (Q, m, η), bypassing fiber functors, natural transformations etc.

DEFINITION 435. The automorphism group of a monoid (Q, m, η) in a strict tensor category \mathcal{C} is

$$\text{Aut}(Q, m, \eta) = \{ g \in \text{Aut} Q \mid g \circ m = m \circ g \otimes g, \ g \circ \eta = \eta \}.$$

PROPOSITION 436. Let \mathcal{C} be an STC* and (Q, m, η) a monoid in $\text{Ind} \mathcal{C}$ satisfying

(i) $\dim \text{Hom}_{\text{Ind} \mathcal{C}}(1, Q) = 1$.

(ii) For every $X \in \mathcal{C}$, there is $n(X) \in \mathbb{Z}_+$ such that $n(X) \neq 0$ whenever $X \neq 0$ and an isomorphism $\alpha_X : (Q \otimes X, m \otimes \text{id}_X) \rightarrow n(X) \cdot (Q, m)$ of Q-modules.

Then the group $\text{Nat}_\otimes E$ of monoidal natural automorphisms of the functor constructed in Proposition 413 is canonically isomorphic to the group $\text{Aut}(Q, m, \eta)$.

Proof. Let $g \in \text{Aut}(Q, m, \eta)$. For every $X \in \mathcal{C}$ define $g_X \in \text{End} E(X)$ by

$$g_X \psi = g \otimes \text{id}_X \circ \psi \quad \forall \psi \in E(X) = \text{Hom}(1, Q \otimes X).$$

From the definition of $(g_X)_{X \in \mathcal{C}}$ and of the functor E it is immediate that $(g_X)_{X \in \mathcal{C}}$ is a natural transformation from E to itself. We must show this natural transformation is monoidal, i.e.

$$E(X) \otimes E(Y) \xrightarrow{d_{X,Y}} E(X \otimes Y)$$

$$g_X \otimes g_Y \downarrow \quad g_X \otimes g_Y$$

$$E(X) \otimes E(Y) \xrightarrow{d_{X,Y}} E(X \otimes Y)$$

commutes. To this end consider $\phi \in E(X) = \text{Hom}(1, Q \otimes X), \psi \in E(X) = \text{Hom}(1, Q \otimes Y)$ and $g \in \text{Aut}(Q, m, \eta)$ with $(g_X)_{X \in \mathcal{C}}$ as just defined. Then the image of $\phi \otimes \psi \in E(X) \otimes E(Y)$ under $g_X \otimes g_Y$ is

$$g \otimes \text{id}_X \otimes \text{id}_Y \circ m \otimes \text{id}_X \otimes \text{id}_Y \circ \phi \otimes \text{id}_Y \circ \psi,$$

whereas its image under $d_{X,Y} \circ g_X \otimes g_Y$ is

$$m \otimes \text{id}_X \otimes \text{id}_Y \circ g \otimes g \otimes \text{id}_X \otimes \text{id}_Y \circ \phi \otimes \text{id}_Y \circ \psi.$$

In view of $g \circ m = m \circ g \otimes g$, these two expressions coincide, thus $(g_X) \in \text{Nat}_\otimes E$. It is very easy to see that the map $\sigma : \text{Aut}(Q, m, \eta) \rightarrow \text{Nat}_\otimes E$ thus obtained is a group homomorphism.
We claim that \(\sigma \) is an isomorphism. Here it is important that we work in \(\text{Ind} \mathcal{C} \) rather than any category \(\hat{\mathcal{C}} \), since this implies that \(Q \) is an inductive limit of objects in \(\mathcal{C} \). The assumptions (i),(ii) then give \(\text{Hom}(X, Q) \cong \text{Hom}(1, Q \otimes X) \cong \mathbb{C}^{n(X)} \) for all \(X \in \mathcal{C} \) and thus (using \(n(X) = n(X) = \dim E(X) \))

\[
Q \cong \lim_{\longrightarrow} \bigoplus_{i \in S} n(X_i)X_i \quad \text{and} \quad \text{End } Q \cong \prod_{i \in I} \text{End } E(X_i),
\]

where \(S \) runs through the finite subsets of \(I \). Assume now that \(\sigma(g) \) is the identity natural transformation, i.e. \(g \otimes \text{id}_X \circ \phi = \phi \) for all \(X \in \mathcal{C} \) and \(\phi \in \text{Hom}(1, Q \otimes X) \). Be the existence of conjugates in \(\mathcal{C} \), this is equivalent to \(g \circ s = s \) for all \(Y \in \mathcal{C} \) and \(s \in \text{Hom}(Y, Q) \). Since \(Q \) is an inductive limit of objects in \(\mathcal{C} \), this implies \(g = \text{id}_Q \).

If now \(\alpha \in \text{Nat}_E \), we first observe that \(\alpha \) is a natural isomorphism by 396. By the isomorphisms \(\text{Nat } E \cong \prod_{i \in I} \text{End } E(X_i) \) (cf. the proof of Proposition 375) and (71), we have a map \(\text{Nat}_E \rightarrow \text{Aut } Q \). Reversing the preceding computations shows that every \(\alpha \in \text{Nat}_E \) gives rise to an element of \(\text{Aut}(Q, m, \eta) \).

\[\blacksquare\]

REMARK 437. This result shows that the group \(\text{Nat}_E \) can be recovered directly from the absorbing monoid \((Q, m, \eta) \) in \(\text{Ind } \mathcal{C} \). In general the compact group \(G \) as defined in Subsection B.1 is a true subgroup of \(\text{Nat}_E \), the latter being the pro-algebraic envelope of \(G \). (In the cases of \(G = U(1), SU(2), U(2) \), e.g., that would be \(\mathbb{C}^\times, SL(2, \mathbb{C}), GL(2, \mathbb{C}) \), respectively.) But if \(\mathcal{C} \) is finite (i.e. has finitely many isomorphism classes of simple objects) then \(\text{Nat}_E \) is finite and \(G = \text{Nat}_E \). Interestingly, even in the case of finite \(\mathcal{C} \), where the monoid \((Q, m, \eta) \) actually lives in \(\mathcal{C} \), there seems to be no way to recover \(G \) without using \(\text{Ind } \mathcal{C} \) at an intermediate stage.
INDEX

ABL-rule, 597
absolute objects, 1343
absolutism, 18
abundance of elements, 1221
accelerating expansion, 1209
adibatic measurement, see measurement
adjoint representation, 68, 69
age of the universe, 1196, 1229
Aharonov, Y., 596, 597
Albert, D., 597
Anderson, J., 1343, 1348, 1350, 1353
angular power spectrum, 1202
anomalies, 711
apparent size, 1197, 1199
area distance, 1197
Aristotle, 1313
astronomical observation, 1220, 1221
asymptotic freedom, 714
averaging scale, 1223
background independence, 1307
baryosynthesis, 1193, 1232
BB84 (Bennett and Brassard protocol), 595, 596
BBGKY approach, 1034–1038
BCS theory of superconductivity, 493, 1122–1125
Beethoven, L., 529
beginning of the universe, 1212
Bekenstein entropy, 1294, see Hawking effect
Bell locality, 386, 387, 391, 395
Bell states, 567, 591
Bell’s inequality, 386, 566, 596, 617, 638, 754
Bell’s theorem, 308, 384, 386, 396, 755
Bell-type experiment, 396
Belot, G., 209
Benioff, P., 556
Bennett, C., 556, 590, 593, 594, 601
Berezin function, 480
classical limit, 480
quantization, 459
Bergmann, P., 596, 1291
Bernoulli, D., 943
best-fit parameters, 1227
big bang, 209, 491, 1169, 1185, 1191–1194, 1209, 1210, 1212, 1213, 1214, 1236, 1287, 1318, 1322, 1424, 1425, see initial singularity
biorthogonal decomposition, 288, 358, 566, 578, 607, 611
bit, 558
bit commitment, 594, 600
binding protocol, 606
concealing protocol, 606
‘no go’ theorem, 594, 606
unconditionally secure, 601, 637, 639
black hole, 1086–1088, 1287, 1294
thermodynamics, 1295, see Hawking effect
blackbody spectrum, 1077, 1197
Bloch sphere, 295, 296, 309
Bohm, D., 323, 385, 418, 437, 566, 653
Bohm interpretation of quantum mechanics, 373–377, 392, 646, 651–653, 762, 1404, 1406, see hidden variables
Bohr, N., 424, 433–444, 555, 647
Bohr’s atomic model, 424, 483
Bohr’s correspondence principle, 426,
Carnot’s theorem, 934
category, 863
*-category, 869
C*, 874
C-linear, 869
Ab-, 868
Abelian, 875
additive, 869
braided monoidal, 867
equivalence, 864
complex-linear, 869
monoidal, 865
of localized transportable endomorphisms, 783f
product, 865
symmetric monoidal, 867
Cauchy
development, 1415–1418
horizon, 1416–1417
surface, 1394, 1409–1411, see global hyperbolicity
causal properties of relativistic spacetimes, 263
past distinguishing, 271
chronology, 271
closed timelike curves, 271, 1421
future distinguishing, 271
global hyperbolicity, 1410, 1419,
1423–1424, see Cauchy surface
past distinguishing, 271
stable causality, 1368, see global time function
strong causality, 271, 1410
CBH (Clifton–Bub–Halvorson) theorem, 632, 650
CBR (cosmic background radiation),
1192, 1195, 1197, 1200, 1202–
1206, 1215, 1223, 1226, 1231
anistropies, 1209, 1214, 1223, 1224,
1227, 1231
isotropy, 1195, 1225, 1226
polarization, 1210
power spectrum, 1202, 1203, 1217
temperature, 1229
CCR (canonical commutation relations),
287, 334, 340–341, 447, 1125,
1423
Chalmers, A.,
on Curie’s principle, 1334
channel capacity, 562, 564
chaos
classical, 490, 491, 520, 1390, 1403
deterministic, 1390, 1391
quantum, 478, 486–491, 519, 1106,
1402
intrinsic, 490
Chau, H., 594, 601
chronology, see causal properties of relativistic spacetimes
chronology protection conjecture, 1419
Church, A., 614
Church–Turing thesis, 614, 1420, see Turing machine
classical limit (of quantum mechanics), 360, 471–530, see high temperature limit, thermodynamic limit, van Hove limit
the limit \(h \to 0 \), 471–491, 1156–1157
the limit \(N \to 0 \), 492–514
classical observables, 493, 512, 514ff,
1162–1163
classical probabilities, 283, 285, 309
classical states, 316, 422, 472, 500,
514
classical world, 420
absolute existence of, 420
Clausius, R., 932–938, 944
Clifton, R., 632, 646
clock (or twin) paradox, 236
cloning, 582
‘no cloning’ theorem, 580, 581
and measurement, 652
closed timelike curves, 271, 1419 see causal properties of relativistic spacetimes
clustering, 740, 1108, 1109
CNOT gate, 616, 632
co-adjoint representation, 73
symplectic structure of, 99
coarse-graining (for consistent histories), 526
coherent state, 429, 455, 472, 519
Schrödinger’s, 455
cokernel, 875
collapse interpretations (of quantum measurement), 377–382, 645–647
collapse postulate, 363, 377, 378, 397,
1165
common cause, 382–386
complementarity, 441, 555, 647
early Bohr, 441
Heisenberg, 442
Landsman, 443
later Bohr, 442
Pauli, 443
completely positive map, 456, 574, 755
completeness condition, 570
complexity class
\(EXP \), 614
\(NP \), 615
\(P \), 614
compression/decompression scheme, 561, 589
computational complexity, 614
easy (tractable), 614
hard (intractable), 614, see complexity class
concordance model, 1214–1216
Connes, A., 1295
confinement, 721
conservation of energy-momentum (in general relativity), 240–243
conservation principles (in general relativity), 252–256, see Noether’s theorems
consistent histories, 419, 422, 517, 518,
522–529
constant mean curvature time, 214–
| Constraint equation, 1230, 1352, 1372, 1412, 1424 |
| Constraints (in Hamiltonian mechanics), 151–153, 180 |
| First class, 180, 1379 |
| Primary, 1379 |
| Secondary, 1379 |
| Contact transformations, 1341 |
| Container view of spacetime, 18, 1312, 1377, 1411 |
| Continuous field of C^*-algebras, 457 |
| Continuous spontaneous localisation, 380 |
| Copenhagen interpretation, 349, 422, 433–446, 555, 645, 655, 1257, 1232 |
| Copernican Principle, 1225, 1226, 1273 |
| Correspondence principle, 418, 424–429, 483 |
| Cosmic censorship conjecture, 1419, 1425 |
| Cosmic variance, 1203, 1217 |
| Cosmological constant, 243–249, 1187, 1188, 1190, 1197, 1200, 1202, 1227, 1408, see Einstein’s field equations |
| Cosmological principle, 1223, 1231 |
| Cosmological time function, 216 |
| Cotangent bundle |
| Symplectic structure of, 9, 122 |
| Cotangent lift, 18, 20, 58, 116 |
| Covariance, 330, 335, 1343 |
| General, see general covariance |
| Crépeau, C., 590 |
| Creation of the universe, 1212, 1218, 1230, 1236, 1271 |
| Critical density, 1188, 1199, 1201 |
| Curie’s principle, 1333–1336, 1346, 1374–1375 |
| Curie, P., 1374–1375, 1415 |
| Cyclic (ignoreable) coordinates, 5, 15 |
| Darboux’s theorem, 10, 85, 91, 97, 98, 142 |
| Dark energy, 1185, 1188, 1200, 1202, 1216, 1224, 1227, 1232, 1267, 1268, 1408 |
| Dark matter, 1201 |
| Cold dark matter (CDM), 1187, 1189, 1201, 1202, 1244 |
| Hot dark matter, 1201 |
| de Broglie-Bohm theory, see Bohm interpretation of quantum mechanics |
| De Finetti’s representation theorem, 500 |
| de Sitter spacetime, 213, 215, 1213 |
| de Sitter universe, 1189, 1190, 1198, 1204, 1212 |
| Debye, P., 1080 |
| Deceleration parameter, 1187, 1197, 1198, 1227 |
| Decoherence, 211, 365–368, 372, 373, 515–529, 646, 654, 1401, 1405 |
| Deformation quantization, 456 |
| Functorial reinterpretation, 470 |
| Delay-differential equations, 1371 |
| Deligne, P., 901, 919 |
| Density parameter, 1187, 1188, 1227 |
| Descartes, R., 1312–1313 |
| Deser, S., 1292 |
| Determinism |
| As a methodological imperative, 1372 |
| Varieties of, 1373–1374 |
| Laplacian, 1370 |
| Non-Laplacian, 1373–1374 |
| Deutsch, D., 556, 617, 631 |
| Deutsch’s XOR algorithm, 617, 618 |
| Deutsch-Jozsa algorithm, 618, 621 |
| Dieks, D., 580 |
| Diffeomorphism, 31 |
| Diffeomorphism invariance, 1308, see general covariance |
differential equation
 ordinary, 32, 1373, 1385
 partial
 elliptic, 1382
 hyperbolic, 1395, 1396
 parabolic, 1382
 weak solutions, 1384
dimension in a category, 871
 integrality of, 907
Dirac bra-ket notation, 296–198, 305
Dirac equation, 677–679, 720
Dirac matrices, 469, 675, 678
Dirac operator, 471, 1295, 1296
Dirac picture, 306, 1161
Dirac, P. A. M., 153, 377, 378, 427,
 429, 432, 447, 459, 462, 467,
 469, 470, 473, 555, 642, 718,
 1239, 1291, 1379
disjoint representations, 498, 732, 843,
 844
disjoint states, 498, 843
distances of observed objects, 1195
domain of causal influence, 1205
domain of dependence, 241, 1387m
 see Cauchy development
domain of prediction, 1397–1398, 1419
Doplicher, S., 744, 766, 800, 801, 815,
 837, 840, 845, 855
Doplicher–Haag–Roberts (DHR)
 theory of superselection, 502,
 781ff
double slit experiment, 345, 377, 441,
 443, 524, 536
dual of a Lie algebra, 88, 90
dynamical objects, 1343
dynamical reduction theories, 379
dynamical triangulation, 1288, 1296

Earman, J., 177, 197, 206, 209
 on Curie’s principle, 1335
Eddington, A. S., 514, 1088
EGS theorem, 1226
Ehrenfest time, 478
Ehrenfest’s theorem, 475

Ehrenfests, on Boltzmann, 930, 980,
 1005
eigenstate–eigenvalue link, 285, 286,
 357–359, 367, 378, 380, 381,
 1405–1406
einselection, 516–522, see decoherence
Einstein, A., 206, 252, 258, 259, 348,
 350, 418–424, 427, 433, 435,
 442, 471, 478, 486, 488, 555–
 557, 639, 640, 645, 647–652,
 940, 941, 977, 989, 991, 993,
 1003, 1021, 1075–1082, 1290,
 1309–1314, 1346–1353, 1356,
 1357, 1363, 1410–1414
Einstein Field Equations (EFE), 200,
 243–245, 249, 263, 1185, 1187,
 1190, 1224, 1230, 1290, 1352,
 1409–1416
Einstein’s ‘hole argument’, 1308, 1349,
 1351, 1411
Einstein’s principle of relativity, 1346
Einstein static universe, 1184, 1189,
 1212
Einstein–de Sitter model (or universe),
 1189, 1198, 1204
Ekert, A., 596, 599
embedding, 41
empirical content of quantum theory,
 307–308, 321–339
energy-density conservation equation,
 1186
energy conditions (in general relativ-
 ity), 240, 1207
 dominant, 240, 1394
 strong, 1187
ensemble interpretations,
 of quantum mechanics, 363, 432,
 478
 of statistical mechanics, 943
entangled state (in quantum mech-
 anics), 288, 367, 368, 396, 445,
 565, 566, 754–756
entanglement (quantum), 397, 439,
 444–446, 518, 555, 556, 590–
Index

Everett interpretation, 370, 646, 1407–1408
Saunders-Wallace version, 646

evolution of the universe, 1185, 1188, 1233, 1267, 1273, 1319

existential interpretation (of quantum mechanics), 517

expansion of the universe, 1183, 1184, 1187, 1192, 1196, 1200, 1214, 1221, 1239, 1245, 1252,

Faddeev, L., 689–691, 695, 1292
Faraday lines, 1300
Faraday, M., 1300, 1314, 1324
Feynman, R., 556, 1170, 1291, 1292, 1391
Feynman diagram, 664–667, 676, 682, 699, 704, 709
Feynman path integral, 671–674
Feynman propagator, 666, 698
Feynman rules
 classical theory, 663–669
 quantized theory, 674–677
 Dirac fields, 681–683
 calculation of scattering matrix, 690–691
 perturbative quantum general relativity 1292

fiber functor, 881
 existence, 884, 900, 902
 uniqueness, 882, 893

fidelity, 561, 588, 589
Fierz, M., 1290
fine-graining (for consistent histories), 526

fine tuning, 723, 1205, 1209, 1212, 1215, 1218, 1238, 1248, 1249, 1264, 1265, 1285

finitely generated
 algebra, 918
 tensor category, 900

folium, 498

entropy
 conditional, 562, 563, 575, 577
 gravitational, 1208
 joint, 563, 577, 578
 relative, 564
 Shannon, 557, 558, 562, 564, 576, 577
 von Neumann, 575, 577, 579, 1091

environment-induced superselection, 516–522, see decoherence

EPR (Einstein–Podolsky–Rosen) argument (or paradox), 308, 349–355, 385, 555, 556, 590, 639
EPR criterion for physical reality, 351–353, 384
EPR attack (or cheating strategy), 601, 603, 605, 606, 609, 610, 637

equivariance, 63, 68, 75
 of momentum maps, 103, 112–114, 117

ergodic theory (classical) 1005–1020, 1025, see quantum ergodic theory
ergodic hierarchy, 1011–1020, 1104–1105, 1390
ergodic hypothesis in early Boltzmann, 955–962, see Boltzmann’s combinatorial argument and H-theorem
ergodic theorem, 1006–1009, 1093
Khinchin’s approach, 1017–1028
Euclidean group, 17–20, 62, 66, 103, 1100, 1113, 1151, 1154

Euler
 equations for rigid body, 81, 91
 equations for fluid, 16, 1383–1384
Euler–Lagrange equations, 145, 146, 158, 159, 184, 190, 208, 688, 1356–1358, 1378, 1379
Friedman, M., 197, 206
Friedmann equation, 1187, 1188, 1196, 1198, 1211, 1217
Friedmann–Lemaître (FL) model (or universe), 1184, 1187, 1188, 1190, 1195, 1204, 1207–1209, 1212, 1215, 1222–1229, 1234, 1238, 1266, 1269, 1270, 1275
Friedmann–Robertson–Walker model, 1187, 1322, 1426, 1427, see Friedmann–Lemaître model
Frobenius' theorem, 7, 29, 38–43, 51, 94, 97, 98, 151, 250, see Perron–Frobenius' theorem
Fuchs, C., 580, 601, 632, 650
functor, 864
*-preserving, 869
braided monoidal, 867
essentially surjective, 864
faithful, 864
fiber, 881
full, 864
monoidal, 866
symmetric monoidal, 867
funnel property, 743
future distinguishing, see causal properties of relativistic spacetimes

Gödel, K., 614
Galilean group, 25, 299, 329–334
Galilean transformation, 299, 337, 649, 1375, 1397, 1398
Galois, É., 1337–1338
gauge conditions
Lorentz gauge, 1378, 1379
gauge fixing, 153, 688, 692, 704, 716, 1318, 1378
gauge freedom, 151–153, 177–191, 1352, 1376, 1378–1380, 1410, 1413
gauge symmetry, 197, 203, 467, 685, 687, 719, 806, 809, 811, 815, 830, 846–848, 853, 854, 1124, 1355, 1359, 1378–1380, 1410, 1413

1413
general covariance, 133, 136, 196–219, 1302, 1306, 1310, 1311, 1343, 1348–54, 1357, 1358, 1363, 1409, 1411, 1414
general linear group, 44, 49, 409
geometric quantization, 462–467, 471, see quantization
functorial reinterpretation, 470
geometry of the universe, 1222
Ghirardi, G.-C., 379–381, 420, 522, 645, 1403
GHZ (Greenberger–Horne–Zeilinger) theorem, 361, 387
Gibbs' statistical mechanics, 992–1005, see BBGKY approach
Gisin, N., 379, 569
Gleason's theorem, 281, 282, 286, 295, 308, 634, 644, 654, 1089, 1405
global hyperbolicity, 1410, 1421–1424, see Cauchy surface
global observable, 1101, 1109, see macroscopic observables
global time function, 1370, 1410, 1411, 1419
GNS (Gelfand–Naimark–Segal) construction (or representation), 318, 442, 445, 498, 499, 502, 503, 505, 508, 510, 732, 740, 758, 759, 782, 800, 806, 827, 829, 830–833, 836, 843, 845, 851, 1089, 1101, 1109, 1110–1113, 1117, 1119, 1120, 1121, 1124–1127, 1133, 1144, 1148, 1152, 1154, 1163
Goroff, M., 1292
gravitational lensing, 1197–1199, 1202, 1203, 1214, 1227
gravitational instability, 1193, 1210, 1214
gravitational waves, 1186, 1203, 1207, 1210, 1232, 1252, 1290, 1291
GR, see GTR (general theory of relativity)
Green, M., 1288, 1298
groups and group theory, 299, 409, 685, 1337–1342
amenable, 740, 1113
continuous, 44, 1340–1342
discrete, 1340
Lie, 7, 8, 15, 19, 20, 29, 37, 40, 44–79, 147, 1341, 1342, 1376
matrix, 44, 50, 51, 71, 72
semi-simple, 1113
compact, 900, 901
GRW (Ghirardi–Rimini–Weber) ‘collapse theory’, 645, 651
GTR (general theory of relativity), 133–138, 147, 156, 172, 178, 184, 196–221, 229, 246, 263, 384, 467, 724, 1185, 1230, 1287, 1348–1354, 1409–1423, see Einstein field equations
Gupta, S., 1290
Gutzwiller trace formula, 487, 488

\(H \)-theorem, 962–969
objections and responses, 970–974
Haag, R., 738ff, 777, 781ff, 1099, 1124, 1125
Hadamard gate, 616, 632
Hadamard transformation, 618, 620–622, 624–626
Hadamard, J., 1105, 1390
Halvorson, H., 569, 632, 633
Hamilton’s equations, 11, 85, 87, 90, 141
Hamilton–Jacobi equations of GR, 1293
Hamiltonian approach to mechanics and field theory, 8–13, 79–119, 140–143, 147–154, 165–168, 180, 193
Hamiltonian, 303, 304–307, 323, 325
Hamiltonian symmetries, 12, 58
Hamiltonian system, 12, 150
Hamiltonian vector field, 12, 85, 458

Hardy’s axioms (for quantum mechanics), 320–322
Hardy’s no-go theorem, 387–389
Hartle, J., 518, 522, 528, 530, 546, 1262, 1264, 1294, 1315, 1323
Hartle–Hawking ‘no-boundary’ proposal, 1213, 1236
Hausdorff property (of topological spaces), 63, 147, 155, 175, 445, 457, 507, 635, 885, 894, 1295, 1409, 1418
Hawking effect, 1143, 1144, 1294, 1424, see Unruh effect
Hawking, S., 244, 271, 1143, 1207, 1213, 1236, 1294, 1424
Healey, R., 191, 209, 375, 421
heat equation, 927, 1096, 1380–1381
Heisenberg, W., 340, 342, 417, 418, 420, 421, 426–448, 459, 471, 484, 486, 515, 523, 529, 555, 641, 1126, 1291, 1292
Heisenberg cut, 418, 437–441, 446, 518
Heisenberg picture, 306, 307, 448, 475, 520, 521, 523, 635, 1115, see Schrödinger picture
Heisenberg equation, 307, 509
Heisenberg’s matrix mechanics, see matrix mechanics
Helmholtz, H. von, 159, 339, 1381
Helmholtz free energy, 939, 1091
Henneaux, M., 153, 467, 1379–1380
Hepp, K., 477, 492, 493, 499, 502, 512, 513, 1163
Hertz, H., 28
Hertz, P., 995
hidden variables (in quantum mechanics), 372–376, 384–395, 431, 446, 646, 648, 653, 754, 1401–1406, see Bohm interpretation
Higgs mechanism, see Brout–Englert–Higgs mechanism
high temperature limit, 1078, 1081,
<table>
<thead>
<tr>
<th>Index</th>
<th>I-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1157–1159</td>
<td></td>
</tr>
<tr>
<td>Hilbert, D., 1076, 1268, 1270, 1348, 1351, 1357, 1361, 1363</td>
<td></td>
</tr>
<tr>
<td>Hilbert space, 397–400</td>
<td></td>
</tr>
<tr>
<td>formalism for quantum statistical physics, 1089–1094</td>
<td></td>
</tr>
<tr>
<td>limitations of, 1094–1099</td>
<td></td>
</tr>
<tr>
<td>hole argument, see Einstein’s hole argument</td>
<td></td>
</tr>
<tr>
<td>Holevo bound, 582, 585, 593</td>
<td></td>
</tr>
<tr>
<td>derivation, 583</td>
<td></td>
</tr>
<tr>
<td>holism, 395</td>
<td></td>
</tr>
<tr>
<td>horizons, see physics horizon</td>
<td></td>
</tr>
<tr>
<td>event, 1203, 1417</td>
<td></td>
</tr>
<tr>
<td>Cauchy, 216, 1414, 1415</td>
<td></td>
</tr>
<tr>
<td>causal, 1203, 1204, 1209</td>
<td></td>
</tr>
<tr>
<td>particle, 1203, 1204, 1206, 1209, 1215, 1230</td>
<td></td>
</tr>
<tr>
<td>visual, 1203, 1204, 1206, 1209, 1226, 1227, 1230, 1231, 1247, 1272</td>
<td></td>
</tr>
<tr>
<td>horizon problem, 1204, 1209, 1238</td>
<td></td>
</tr>
<tr>
<td>hot big bang, see big bang</td>
<td></td>
</tr>
<tr>
<td>Hubble constant (or parameter), 1186, 1187, 1190, 1196, 1197, 1227</td>
<td></td>
</tr>
<tr>
<td>Hughston–Jozsa–Wootters theorem, 569, 590</td>
<td></td>
</tr>
<tr>
<td>Husimi function, 480</td>
<td></td>
</tr>
<tr>
<td>hydrodynamics as part of statistical physics, 926</td>
<td></td>
</tr>
<tr>
<td>Hyperion, 418, 478, 519, 1403</td>
<td></td>
</tr>
<tr>
<td>ideal fluid, 8, 15, 16, 82</td>
<td></td>
</tr>
<tr>
<td>ignorable coordinates, see cyclic coordinates</td>
<td></td>
</tr>
<tr>
<td>ignorance interpretation (of mixed states), 357, 432, 433, 439, 440, 512, 516, 544, 749</td>
<td></td>
</tr>
<tr>
<td>Immirzi parameter, 1295, 1301</td>
<td></td>
</tr>
<tr>
<td>improper mixture, see mixed state, improper</td>
<td></td>
</tr>
<tr>
<td>impulsive measurement, 321–324, 327, 337, 377</td>
<td></td>
</tr>
<tr>
<td>incompatible observables, 285, 308, 346–349</td>
<td></td>
</tr>
<tr>
<td>incomplete motion, 491, 492, 1382, 1385, 1400</td>
<td></td>
</tr>
<tr>
<td>inductive limit C*-algebra, 496, 504, 739, 765, 829, 879, 900, 901, 911, 920, 921, 1099, 1100, 1107, 1129, 1141, 1151, 1152</td>
<td></td>
</tr>
<tr>
<td>inertial frame, 140, 164, 169, 170, 188, 206, 334–339, 350, 451, 648, 649, 1297, 1375, 1376</td>
<td></td>
</tr>
<tr>
<td>inflationary model (or universe), 1209–1212, 1215, 1224, 1233, 1234, 1284</td>
<td></td>
</tr>
<tr>
<td>chaotic, 1206, 1210, 1213, 1219, 1227, 1231, 1234–1236, 1244, 1245, 1256, 1262, 1266, 1269</td>
<td></td>
</tr>
<tr>
<td>information</td>
<td></td>
</tr>
<tr>
<td>accessible, 582</td>
<td></td>
</tr>
<tr>
<td>channel, 562</td>
<td></td>
</tr>
<tr>
<td>classical, 557, 576, 577</td>
<td></td>
</tr>
<tr>
<td>compressibility, 576, 577</td>
<td></td>
</tr>
<tr>
<td>compression, 562, 578</td>
<td></td>
</tr>
<tr>
<td>‘block coding’, 561</td>
<td></td>
</tr>
<tr>
<td>blind, 586</td>
<td></td>
</tr>
<tr>
<td>classical, 557</td>
<td></td>
</tr>
<tr>
<td>quantum, 585</td>
<td></td>
</tr>
<tr>
<td>visible, 586</td>
<td></td>
</tr>
<tr>
<td>compression rate, 560, 586</td>
<td></td>
</tr>
<tr>
<td>inaccessible, 577</td>
<td></td>
</tr>
<tr>
<td>mutual, 562, 564, 575, 577</td>
<td></td>
</tr>
<tr>
<td>quantum, 565, 576, 577</td>
<td></td>
</tr>
<tr>
<td>represented physically, 576</td>
<td></td>
</tr>
<tr>
<td>Shannon’s sense, 575</td>
<td></td>
</tr>
<tr>
<td>source, 557, 561</td>
<td></td>
</tr>
<tr>
<td>ergodic, 558</td>
<td></td>
</tr>
<tr>
<td>stationary, 557</td>
<td></td>
</tr>
<tr>
<td>information loss paradox, 1424, 1426</td>
<td></td>
</tr>
<tr>
<td>initial singularity (of the universe), 1188, 1190, 1204, 1211, 1232, 1235, 1236, 1284, 1426, see big bang</td>
<td></td>
</tr>
<tr>
<td>initial conditions for the universe, 1223, 1233, 1237, 1238, 1273, 1426</td>
<td></td>
</tr>
<tr>
<td>initial value formulation/problem, 1370,</td>
<td></td>
</tr>
</tbody>
</table>
Klein, F.
and group theory, 1338–1342
and his Erlangen Program, 1339–1340
Klein, M., 649, 930, 931, 957, 962, 965, 974, 990
Klein, O., 1290
Klein-Gordon equation, 154, 192, 207, 208, 1394, 1396, 1416, 1422
KMS (Kubo–Martin–Schwinger) states, 1114–1154
extremal KMS states and pure phases, 499, 1144–1154
in BCS theory, Bose gas and Heisenberg model, 1122–1128
in QFT, 1142–1144
stability conditions, 1128–1142
Tomita–Takesaki theory, 1119–1122
toy-model, 1115–1119
Kochen–Specker theorem, 359–362, 387, 1405

Kolmogorov axioms, 644, 1089
Kosso, P., 1350
Kraus operator, 570, 756
Kretschmann, E., 206, 1353
Kuhn, T., 423

Lagrange, J. L., 1337, 1345
Lagrangian approach to mechanics and field theory, 143–146, 154–164, 179, 192
Lagrangian submanifold, 485
Landau, L., 417
Landsman’s theorem, 320
Lanford’s theorem, 1031–1033
Laplace’s demon, 1388, 1392
Laplace, P.-S., 942–943, 1388
large scale of the universe, 1220
Last Scattering Surface, see LSS
lattice of propositions, 309–312, 403–405, 641
laws of creation of the universe, 1218
laws of nature

Kaluza–Klein theory, 28, 29
Kent, A., 517, 522, 527, 602, 608
Kepler, J., 1305
Kepler problem, 5, 15, 174–175, 483, 484
key distribution and storage, 556, 594, 595–596, 599
public, 617
secure, 602, 650
Killing fields, 165, 199, 215, 252–256, 1421
kinematic independence, 633, 635, 636, 639, see microcausality
kinematics on Lie groups, 75
kinetic theory of gases, 927, 941–952

properly posed, 1390
well posed, 1388–1390, 1395, 1414
instantons, 719
integrable system, 482, 483, 485
classical limit, 482
integral manifold, 42, 43, 98, 151
interaction Hamiltonian, 322, 324, 336, 364
interaction picture, 306, 1161
interference pattern, 345–347, 378, 441,
see wave-particle duality
intermediate isotropisation, 1226
invariance, 328, 333, 337, 1331, 1343
invariant means and states, 740, 1108
involution, 42
Isham, C., 209, 452, 462, 522–525, 1212, 1254, 1257, 1294, 1313, 1318, 1324
isotropic universe, 1225, 1226, see Copernican Principle
isotropy group, 65, 66, 68, 120, 128

Jacobson, T., 1293, 1303
Jaynes, E., 569, 932, 943, 977, 993, 1003, 1010, 1090
Jozsa, R., 557, 569, 580, 585, 588, 590, 616, 618, 621, 627, 630–632

Kaluza–Klein theory, 28, 29
Kent, A., 517, 522, 527, 602, 608
Kepler, J., 1305
Kepler problem, 5, 15, 174–175, 483, 484
key distribution and storage, 556, 594, 595–596, 599
public, 617
secure, 602, 650
Killing fields, 165, 199, 215, 252–256, 1421
kinematic independence, 633, 635, 636, 639, see microcausality
kinematics on Lie groups, 75
kinetic theory of gases, 927, 941–952
empiricist conception, 1371
local algebras, 745–750, see global observables
Lebowitz, J., 596
left action, 56
left translation, 45
left-invariant function, 123
Leggett’s argument against decoherence, 516
Leibniz, G., 1313
Lewis, D., 155, 1371
Lie algebra, 35, 1341
Lie algebra of a Lie group, 45, 46
Lie bracket, 37
Lie derivative, 33
Lie group, see groups and group theory, Lie algebra
Lie groupoids, 462
Lie subgroup, 50
Lie, S., 15
and group theory, 1338–1342
Lie–Poisson bracket, 88, 124, 125
Lie–Poisson reduction theorem, 19, 77, 82, 88
limit $\hbar \to 0$, see classical limit
limit $N \to \infty$, see classical limit
limit to size of structure, 1205
Linden, N., 631
Lipschitz condition, 1383, 1387
Lo, H.-K., 594, 601
locality, 308, 351, 381, 391, 396
localizability of particles, 481
Lorentz theory, 649, 651
Lorentz, H., 417
Lorentz–invariance, 383, 388, 396
LSS (Last Scattering Surface), 1192, 1202, 1206, 1214, 1230
Lüder’s rule, 284, 289, see collapse postulate
Mackey’s theorem, 331–334, 447–452, 461–462, see system of imprimitivity
Mackey, G., 447
macroscopic average, 494
macroscopic observables, 493–496, 504–506, 512, see global observable
magnetic monopoles, 718
magnitude-redshift relation, 1214
Malmquist bias, 1199
many universes, 1219, 1259–1266
many-somethings interpretation of quantum mechanics, 370, 646, 1407–1408
Marsden–Weinstein reduction, 467
Marsden–Weinstein–Meyer theorem, 127
matrix mechanics, 277, 417, 427, 428, 641
matrix representation of quantum states, 282, 298, 364
Maudlin, T., 183, 184, 191, 209
Maxwell, J., 944–952, 1300
Maxwell’s equations, 188–190, 1395, 1416
Mayers, D., 594, 601, 608
measurement, 321–325, 327, 328, 334–337, 345, 352, 355–359, 362, 569
first kind, 324
generalized, 569, 573, 579
impulsive, 323, 326, 338, 376
non-selective measurement, 394, 575
operator, 323, 570–572, 579
projective, 570, 571
and entropy, 579
repeated, 311, 325
second kind, 324
selective, 575
weak, 324–327
microcausality, 739, 741–743, 746, 749–753, 766, 771, 772, 807, 839,
see kinematic independence
microlocal analysis, 419, 476, 482
microscopic quantum observables, 506
Milne model, 1189
minimum apparent size, 1198
Minkowski spacetime, 256–263
Minkowski, H., 1363
misconceptions about cosmology, 1214
Misner, C., 1291
improper, 289, 366
maximally mixed, 749
proper, 289, 366, 605
mixture, see mixed state
modal interpretations of quantum theory, 375, 646, 761–766, 1406–1407
model selection, 1229
module, 876
momentum (or non-relativistic quantum mechanics), 287, 329, 335, 340, 349–352
momentum function, 114
momentum map, 6, 106, 464
momentum map on cotangent bundle, 114
monic, 874
monoid, 876
absorbing, 902, 913
module, 876
quotient, 878

n-Body problem, 175–177, see Newtonian n-body problem

Naimark’s dilation theorem, 453
naive realism, 359
natural transformation, 864
monoidal, 866

Navier–Stokes equations, 1383–1384, 1396
Neumann, J. von, 430, 432
Newton, I., 1312, 1314
Newton’s equations of motion, 1385
Newton–Wigner position operator, 451
Newtonian n-body problem, 139–146, 1385
Newtonian gravitation theory, 245, 263–270, 1385
Nieuwenhuizen, P. van, 1292
‘no go’ theorems, 383, 645
no-signaling theorem, 391
Noether’s theorems, 4, 6, 11, 108, 161, 253, 1355–1359, 1378, 1411
noisy channel, 562, 564
non-baryonic matter, see dark matter
non-contextuality, 360, 387
non-locality, 308, 381–397
in quantum field theory, 750–756
non-localizability of particles, see localizability of particles
non-singular start of universe, 1211
Norton, J., 197
NP-complete, 615
nucleosynthesis, 1192, 1199, 1214, 1222, 1232
null cone observation, 1194
number count dipole, 1230
number counts, 1198, 1199, 1214, 1224, 1227

object
conjugate, 869
irreducible, 870
projective, 875
observable, 277, 282, 283, 289, 312, 328, 337, 359, see POVM, PVM
positive-operator-valued measurement, 277, 569–575
observable universe, 1183, 1198, 1206, 1222, 1230
observational cosmology theorem, 1222
observational completeness, 1232
observed isotropy, 1223
Ohanian, H., 1343
one-time pad, 594
operators introduced, 277f., 401–403
at a point in quantum field theory, 766–777
origin of the light elements, 1193
origin of the universe, 1212, see big bang
outcome independence, 390, 395
Painlevé's conjecture, 1385
parameter independence, 390 395
partial observable, 1308, 1317
particles in quantum field theory, 756–761, see Unruh effect
passage to the quotients, 63, 76
past distinguishing, see causal properties of relativistic space-times
Pauli, W., 443, 555, 1290
Pearle, P., 379, 381, 645, 1403
Penrose, R., 1419
Peres, A., 590, 608, 1293
perfect (anti-)correlation, 288, 323, 349, 365, 381, 383
permutation-invariant state, 500
Perron–Frobenius theorem, 1048, 1050
phase gate, 616, 632
phase space quantization, 452, 456
phenomenon for Bohr, 434, 442
Phoenix universe, 1213
physical proposition, 310, 311–312, 316–317
physics horizon, 1232, 1233
π/8 gate, 616, 632
Piron's theorem, 312
Planck scale, 1287, 1289
Planck, M., 423, 1075–1079, 1370
pocket universe, 1210, see inflationary model, chaotic
Podolsky, B., 349
Poincaré's recurrence theorem, 983–984
pointer state, 323, 519
Poisson antimorphism, 104, 105, 108, 115
Poisson bracket, 84, 307, 318, 319
Poisson equation, 1379
Poisson manifold, 6, 14, 24, 79, 84, 317, 458
quotient of, 101
Poisson map, 93
Poisson reduction theorem, 101
Poisson space, 506
Poisson submanifold, 95
Poisson structure, 91
polarization spectrum, 1203
Polyakov, V., 1300
Popov, V., 1292
POVM (positive operator valued measure), 277–283, 321, 327, 453, 569–575
pre- and post-selected states, 326, 596
predictability, 1388, see domain of prediction
and chaos, 1388–1389
and determinism, 1386–1390
in general relativistic physics, 1419
in quantum mechanics, 1402–1403
in special relativistic physics, 1396–1398
preferred basis, 372
prequantization, 463
line bundle, 464
presymplectic manifold, 151, 172, 179–180, 189
primary states, 498
Primas, H., 444
Primas–Zurek cut, 518
prime factorization, 557
principle vs. constructive theories, 647–652
probabilities in the Copenhagen interpretation, 440
probability, 279, 282, 283, 298, 300, 318, 929, 941–943
problem of time, 133, 136, 137, 196–221, 1316
projective representation, 301
projector morphism, 869
proper map, 64
protective measurement, see measurement, weak
public-key cryptography, 617
pure state in quantum mechanics, 284, 285, 289, 293, 296, 301, 302, 312, 314–317, 320–322, 358
purification, 568, 569, 574
PVM (projection-valued measure), 278, 279, 281, 331, 571
quantization, 153, 154, 177, 195, 220–221, 304, 446, 467, 669, see geometric quantization and system of imprimitivity and Weyl quantization
quantum information and computation, see key distribution, bit commitment, information algorithms, 617
communication, 556, 590, 592
computation, 295, 556, 614
computer, 556
circuit model, 616
cluster state, 616
one-way, 616
cryptography, 556, 594, 595
dense coding, 593
information, 565, 576, 577, see information operation, 574
parallelism, 631
qubit, 577
teleportation, 556, 590, 591
quantum cosmology, 1183, 1212, 1294
quantum ergodic theory, 1092–1094
for time, 1102–1106
for space, 1106–1114
quantum gravity, 1211, 1212, 1214, 1287
quantum logic, 309, 369
quantum object in Primas’ sense, 444
quantum postulate, 438
quantum probability theory, 283, 1089
quantum theory of infinite systems, 492, 496, 738–750, 1094–1102
quantum world, 434, 526
quasi-equivalent representations, 498, 732, 745, 843, see representation
quasilocal observables, 496
quintessence, 1200
quotient space, 6, 62, 63

Raggio’s theorem, 445
randomized algorithm, 629
Raussendorff, R., 616
Raychaudhuri equation, 1186, 1188, 1190, 1211
Redhead, M., 191
redshift-distance relation, 1184, 1196–1198
reduced density operator, 288, 366, 367, 375, 568
reduced phase space, 14, 21, 24, 128, 152, 183, 189, 202
reduced state, see reduced density operator
reduction of dynamics, 102, 126, 129
Reeh–Schlieder theorem, 742–743
reference frame, 329, 335, 337, 339, 347
Regge calculus, 1296
relationism, 17–18, 1312
relative configuration space, 18, 21
relative phase space, 21
relative states, 370, 568
relativistic spacetime structure
causal structure, see causal properties of relativistic space-
Index

Schrödinger picture, 306, see Heisenberg picture
Schrödinger's cat, 355, 364, 418–422, 514, 527, 640, see measurement problem
Schrödinger's problem, 641–644, 651, see measurement problem
Schumacher, B. 585
Schumacher's quantum source coding theorem (noiseless channel coding theorem), 578, 586, 589
Schwarz, J., 1298
selection criterion for representations, 502, 781f.
self-adjointness, 403, 1400–1402, 1421–1423

Semiclassical analysis, 476

Semiclassical regime, 471

Semicommuting product Poisson structure, 461

Shannon, C., 557, 558
Shannon entropy, 557, 558, 562, 564, 576, 577
Shannon's noisy channel coding theorem, 562, 564
Shannon's source coding theorem (noiseless channel coding theorem), 557, 560, 562, 577
Shor, P., 557, 617
Shor's algorithm, 617, 626
signaling, 373, 391, 392, 582, see remote steering
Simon, D., 617, 623
Simion's algorithm, 617, 623
simultaneity in relativity theory, 237, 248, 256–263

Singlet state, 349, 381, 384
singularity theorems, 1190, 1207
size of the visible universe, 1220
small universe, 1203, 1206, 1230, 1231
Smolin, J., 575
Smolin, L., 1293
Soler's theorem, 312

Sagnotti, A., 1292
Saunders, S., 646
scars, 490
Schmidt decomposition, see biorthogonal decomposition

Schrödinger, E., 418, 428, 556, 569, 590, 591, 637, 639
Schrödinger coherent states, 455, 473, 480
Schrödinger equation, 305, 323, 355, 373, 474, 1399–1400

Rimini, A., 645
Rosen, N. 349
Rosenfeld, L., 1290
rotation in relativity theory, 249–252 rotation group, 44, 52, 60, 72, 74, 90, 98

RSA, 617
Ruetsche, L., 221
Ruffini, R., 1343
Rynasiewicz, R., 206

right action, 56
right translation, 45
right-invariant function, 123
right-invariant vector field, 47
rigid body, 15, 61, 80, 90

Sagnotti, A., 1292
Saunders, S., 646
scars, 490
Schmidt decomposition, see biorthogonal decomposition

Schrödinger, E., 418, 428, 556, 569, 590, 591, 637, 639
Schrödinger coherent states, 455, 473, 480
Schrödinger equation, 305, 323, 355, 373, 474, 1399–1400

Index
Sorkin, R., 1296
source evolution, 1221
space, public and private in relativity theory, 249–252
space of states, see state space
spacetime
classical, 263–270
full Newtonian, 1387
Leibnizian, 1376
Maxwellian, 1377
neo-Newtonian, 263–270, 1377
relativistic, 230–249, see Friedmann-Robertson-Walker model and causal properties of Gödel spacetime, 1407–1409 Malament-Hogarth spacetimes, 1420–1421 Minkowski spacetime, 256–263, 1394, 1396–1398 Misner spacetime, 1417 negative mass, 1422 Reissner-Nordström, 1421 relativistic, see causal properties of Schwarzschild spacetime, 1422 Taub-NUT spacetime, 1417 spatial coordinates contrasted with body coordinates, 54, 76 spatial homogeneity of universe, 1185, 1209, 1218, 1223–1226 spatial isotropy of universe, 1185, 1195, 1223 special initial conditions, see fine tuning specific heat of solids, 1080 spectral action, 1296 spectral family, 278, see PVM spectral modal interpretations, 375, see modal interpretations of quantum theory spectral theorem, 278, see PVM spectral triple, 1296 spectrum of the area, 1301 spherically symmetric universe mod-
energy conditions
strong energy condition, 1187, 1211
strong non-disturbance, 353, 354
structure constants, 37
structure formation, 1201, 1202, 1207, 1209, 1210, 1214, 1217, 1221, 1228, 1244, 1245
structure function, 86
subadditivity inequality, 578
subcategory, 864
monoidal, 865
submanifold, 40
submersion, 40
substantivalism, 18, 1312, 1411, see container view of spacetime
super
- Hilbert space, 885
- fiber functor, 886
- group, 885
super-horizon structure of the universe, 1206, see observable universe
supernovae, 1194, 1200, 1224, 1227
superselection sector, 501–506, 778f.
supersymmetry, 724, 1299
surface brightness, 1197
symmetric algebra, 911
symmetric sequence, 494
discrete, 1345
gauge, 1344, 1345
geometric, 1344
global, 1360, 1361
group, 1342
Hamiltonian, 12, 58
internal/external, 1344
Lagrangian, 161
local, 1359, 1361
meaning of, 1342–1345
of laws, 1332
of objects, 1332
of solutions, 1332, 1336
of states, 1332, 1335, 1336
quantum field theory, 764–766 principles, 1332
transformations, active and passive, 1342
variational, 161
symplectic foliation of Poisson manifolds, 91, 95, see symplectic leaf
symplectic form, 8
symplectic group, 55
symplectic leaf, 96, 318, 458, 508
symplectic manifold, 8, 149–151
symplectic map, 55
symplectic vector field, 12
system of covariance, 329
system of imprimitivity, 331–334, 410, 447–454, 461–462, see Mackey's theorem
generalized, 454
relation to deformation quantization, 461
't Hooft, G., 1292, 1296
Tannaka, T., 883
TC* (tensor *-category), 870
temporal orientability, 1409
tensor
category, 865
category, braided, 867
category, finitely generated, 900
category, symmetric, 867
functor, 866
subcategory, 865
thermodynamics, 925, 932–941, 994, see thermodynamic limit
thermodynamic limit, 1017–1028, 1159–1160
Thomas, R., 221
Thomas–Fermi model, 1085
time homogeneity, 304
time of decoupling, 1191
time-dependent systems, 191–196
time-energy uncertainty relation, 344
Timpson, C., 632
Tomita–Takesaki theory, 735–738, see KMS states
trace, 871
transformation group C^*-algebra, 452
transformation theory, 1345–1346
transition probability, 318–321, 479, 502
classical limit, 473
transition probability space, 319, 320, 503
transport equation, 484
tunnelling, 1156–1157, 1402
Turing, A., 614
Turing computability, 1418, see Turing machine
Turing machine, 614
nondeterministic (probabilistic), 615
universal, 556, 614, 1392
twist, 872
two-slit experiment, 347, see double slit experiment
typical sequence, 558, 559

Umdeutung
functorial quantization, 471
Heisenberg, 427
of classical pure states, 474
quantization, 446
Rieffel, 459

Schrödinger, 428
von Neumann, 430
unbounded energies, 1232
uncertainty relation, 341–349, 1289
algebraic derivation of, 344
optical derivation of, 343
wavefunctional derivation of, 343
uniform thermal histories, 1225
uniqueness of the universe, 1216, 1219
uniqueness of cosmology, 1232
unitarily equivalent representations, 447, 732, 843, see representation
unitarity of a Hamiltonian flow, 509
unitary representation, 301
Unruh effect, 1143, 1295, 1303, 1424, see Hawking effect
Unruh, W., 1295
Vaidman, L., 597
van Fraassen, B., 647
van Hove limit, 1135, 1160–1162
Veltman, F., 1292
Vidal, G., 631
von Neumann, J., 430, 432
hyperfine, 569
type classification, 733–738
von Neumann chain, 432, 515
von Neumann entropy, 575, 577, 579, 1091
von Neumann's imprimitivity theorem, 450
von Neumann's infinite tensor product, 504
von Plato, J., 962, 967
Wallace, D., 646
wave packet revival, 429, 519
wave-particle duality, 345,
wavefunction, 281, 343, 373, 379–381
weak non-disturbance, 352, 354, see
state in quantum mechanics
Weber, T., 645
Weyl algebra, 758
Weyl quantization, 460, 473
Weyl relations, 333, 340–3411
Weyl, H., 233, 234, 1340, 1363, 1369
Wheeler, J., 650, 1291
Wheeler-DeWitt equation, 1293
Wien’s law for blackbody radiation,
423, 1078
Wiesner, S., 556, 593
Wigner function, 479
classical limit, 480
Wigner’s friend, 377, 1164, 1166
Wigner’s theorem, 300
Wigner, E. P., 1362
and his hierarchy, 1359–1360
geometric symmetries, 1344
Wilson, K., 1300
Wittgenstein, L., 514
WKB approximation, 484
Wootters, W., 580, 590

yes–no experiments, 310

Zeilinger, A., 632
Zurek, W., 580
This page intentionally left blank