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From metaphysics to physics

GORDON BELOT AND JOHN EARMAN

1. Introduction

Michael Redhead began his Tarner Lectures by allowing that ‘many physi-
cists would dismiss the sort of question that philosophers of physics tackle
as irrelevant to what they see themselves as doing’ (1995, p. 1). He argued
that, on the contrary, philosophy has much to offer physics: presenting
examples and arguments from many parts of physics and philosophy, he
led his audience towards his ultimate conclusion that physics and meta-
physics enjoy a symbiotic relationship.

By way of tribute to Michael we would like to undertake a related project:
convincing philosophers of physics themselves that the philosophy of space
and time has something to offer contemporary physics. We are going to
discuss the relationship between the interpretative problems of quantum
gravity, and those of general relativity. We will argue that classical and
quantum theories of gravity resuscitate venerable philosophical questions
about the nature of space, time, and change; and that the resolution of some
of the difficulties facing physicists working on quantum theories of gravity
appears to require philosophical as well as scientific creativity. These pro-
blems have received little attention from philosophers. Indeed, scant atten-
tion has been paid to recent attempts to quantize gravity. As a result, most
philosophers have been unaware of the problem of time in quantum gravity,
and its relationship to the knot of philosophical and technical problems
surrounding the general covariance of general relativity — so that it has
been all too easy to dismiss this latter set of problems as philosophical
contrivances. Consequently, philosophical discussion of space and time
has suffered.

This point is best illustrated by attending to the contrast between what
philosophers and physicists have to say about the significance of Einstein’s
hole argument. A version of this argument was used by Earman & Norton
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(1987) to argue that it is a consequence of general covariance that substan-
tivalism about the spacetime of general relativity can be maintained only at
the price of indeterminism. Philosophical responses to this version of the
argument divide quite strikingly into two camps. On the one hand, there are
those who criticize the argument on the grounds that it relies upon a naive
approach to modality. These authors argue that the prima facie force of the
argument evaporates once one understands the subtlety of the modal seman-
tics of spacetime points.! We believe, but will not argue here, that this
variety of response lacks a coherent and plausible motivation.

The second sort of response to the hole argument is more radical, and its
popularity more telling as a measure of the insularity of contemporary
philosophy of space and time. The modalists acknowledge that the hole
argument has some value: it points up a strange fact about the modal
semantics of spacetime theories. A more radical response is to deny that
the hole argument has anything at all to teach us about the nature of space-
time.? This is often combined with a general pessimism concerning the pre-
sent state of philosophical discussion of space and time. Thus, Rynasiewicz
contrasts the present state of the debate with its glorious past:

What is remarkable about the substantival-relational debate is that,
although it engaged natural philosophers from the seventeenth century
into the nineteenth century and continues to be debated in academic phi-
losophy, interest in the controversy on the part of twentieth century phy-
sicists has waned over the generations to virtually nil. (1992, p. 588)

Meanwhile, Leeds questions the interest of interpretative work on general
relativity by contrasting the hole argument literature with another genre of
philosophy of physics:

There is an oddity here, it seems to me: for surely the philosophers of
physics who work on these problems are the same men and women who,
in another mood, are fond of comparing quantum mechanics with GTR, as
the paradigm case of a theory which cries out for interpretation with the
paradigm case of a theory which does not. (1995, p. 428)

! This camp subdivides into two factions: those who attempt to derive an appropriately sophis-
ticated modal semantics for spacetime from some general framework (Bartels 1996; Brighouse
1994; Butterfield 1989; and Maudlin 1990); and those who take the required semantics as a
primitive (Hoefer 1996; Maidens 1993; and Stachel 1993).

2 Again there are two factions. On the one hand, we have those who hold the argument is
fallacious because determinism is a formal property of theories, independent of questions of
interpretation (Leeds 1995 & Mundy 1992). On the other hand, we have those who claim that
the hole argument turns upon a piece of philosophy of language (the inscrutability of refer-
ence), and has nothing to do with philosophy of physics (Liu 1996 & Rynasiewicz 1996).
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Discussion of the hole argument is often taken to be the epitome of irrele-
vant philosophy of physics. It is held, implicitly or explicitly, that it is
obvious that there is nothing to the argument, since no physicist would
entertain for a minute the proposition that general relativity is an indeter-
ministic theory. It is supposed to be something of an embarrassment that
philosophers have wasted so much time on this argument — how do they
expect physicists to take them seriously? Typically, partisans of this line of
thought believe that the hole argument is predicated on some sort of simple
mistake. Most spectacularly, it is claimed that it has nothing in particular to
do with general relativity at all. Rather, it is an artifact of a certain mis-
guided way of thinking about language, naively mistaken for a bit of phi-
losophy of physics:

Such permutation arguments have been exploited at length by W. V.
Quine, Donald Davidson, and Hilary Putnam to argue that a hankering
for absolute criteria of individuation leads to an inscrutability of reference.
The hole argument is nothing more than an application of the same tech-
niques to space-time theories. If it yields relationist or anti-realist conclu-
sions, these are conclusions which apply globally to any ontology. The
substantival-relational debate, however, was a local one over the status
of space and time.>

It is further alleged that philosophy of space and time has been led yet
further astray by the suggestion that the ‘solution’ to the hole argument is
to be found in the furthest reaches of metaphysics:

I think that issues about whether this spacetime point could in some other
world have been over there are not really questions about the nature of
spacetime points, or indeed about physics at all, they are questions about
situations or possible worlds — philosophers’ constructions so loosely con-
nected with reality that we can consistently answer these questions in any
way that we care to. And in fact it seems to me that this had begun to be the
consensus about these questions until Earman seemed to breathe new life
into them via the connection with determinism. (Leeds 1995, p. 436)

These philosophers of physics paint a bleak picture indeed of the current
state of the philosophy of space and time: having long ago lost its relevance
to physics, it has recently degenerated into the worst sort of confused and
eminently philosophical discussion.

This is in sharp contrast to the interest in the substantival-relational
debate which is expressed by some physicists:

3 Rynasiewicz (1996), p. 305. See also pp. 24344 of Liu (1996) and p. 84 of Maudlin (1989).
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T would like to argue that the problem of quantum gravity is an aspect of a
much older problem, that of how to construct a physical theory which
could be a theory of an entire universe and not just a portion of one.
This problem has a long history. It was, I believe, the basic issue behind
the criticisms of Newtonian mechanics by Leibniz, Berkeley, and Mach.
(Smolin 1991, p. 230)

This remark is not atypical: many physicists who work on canonical quan-
tum gravity believe that the substantival-relational debate is directly rele-
vant to their research. In fact, many physicists emphasize the importance of
interpretative questions about general relativity — often motivated by the
belief that differences of opinion about the technical and conceptual diffi-
culties of quantum gravity can be traced to differences of opinion concern-
ing the classical theory. Thus, Rovelli asserts that

many discussions and disagreements on interpretational problems in the
quantum domain (for instance the famous ‘time issue’) just reflect different
but unexpressed interpretations of the classical theory. Thus, the subtleties
raised by the attempts to quantize the theory force us to reconsider the
problem of observability in the classical theory. (1991c, pp. 297-8)

Furthermore, far from dismissing the hole argument as a simple-minded
mistake which is irrelevant to - understanding general relativity, many
physicists see it as providing crucial insight into the physical content
of general relativity. Thus, Isham uses a version of the hole argument
to motivate an important claim about the observables of classical and
quantum gravity:

the diffeomorphism group moves points around. Invariance under such an
active group of transformations robs the individual points of M of any
fundamental ontological significance . . . This is one aspect of the Einstein
‘hole’ argument that has featured in several recent expositions (Earman &
Norton 1987; Stachel 1989). It is closely related to the question of what
constitutes an observable in general relativity — a surprisingly contentious
issue that has generated much debate over the years and which is of parti-
cular relevance to the problem of time in quantum gravity. In the present
context, the natural objects are Diff(M)-invariant spacetime integrals . . .
Thus the ‘observables’ of quantum gravity are intrinsically non-local.
(Isham 1993, p. 170)

Most surprisingly, one can even find physicists grappling with issues about
the transworld identification of spacetime points:

* This belief is much less common among string theorists.
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The basic principles of general relativity — as encompassed in the term ‘the
principle of general covariance’ (and also ‘principle of equivalence’) — tell us
that there is no natural way to identify the points of one space-time with
corresponding spacetime points of another.’

In short, a survey of the literature on quantum gravity reveals a very
different picture of the relevance of philosophical work on the nature of
space and time from that which is current among philosophers of physics.
We do not mean to suggest that physicists are universally enthusiastic about
the substantival-relational debate in general, or about the hole argument in
particular. Nor, of course, are all philosophers of physics ill-disposed
towards these topics. What is true is that philosophers of physics have
tended to be unaware of the extent of the interest which physicists take in
these issues. Philosophy of physics has suffered as a result: the interpretative
inter-relationship between classical and quantum gravity has been missed;
and the interest of the questions surrounding the general covariance of
general relativity has been underestimated.

Our purpose in this short essay, is to bring these shortcomings to the
attention of philosophers of physics, and to begin to redress them by giving
a brief outline of the relationship between the interpretative problems of
classical and quantum gravity, as we understand it.° Our focus in this paper
is the canonical approach to quantum gravity, in which general relativity is
first cast in Hamiltonian form, and then quantized via the canonical proce-
dure. Unfortunately, the Hamiltonian formulation of general relativity is
not entirely straightforward. Rather than being a true Hamiltonian system,
general relativity is a gauge theory — and a somewhat peculiar one at that.
The first task, undertaken in section 2, is to describe this formalism, and
how its peculiarities derive from the general covariance of the standard
formulation of general relativity. We will also discuss the interpretative
problems of general relativity qua gauge theory. In the following section,
we will see that the problem of time in quantum gravity — surely one of the
deepest conceptual problems facing contemporary physics — follows from
the gauge invariance of general relativity. Along the way, we will attempt to
explicate the relationship between the somewhat unfamiliar conceptual pro-
blems of canonical gravity, and familiar philosophical problems about the
nature of space, time, and change.

> Penrose (1996), p. 591. Penrose is led to this conclusion by the same considerations that
motivate Rovelli and Isham; see especially p. 586.
6 We discuss these issues at greater length in a companion paper, Belot & Earman (1999).
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2. General relativity as a gauge theory

A Hamiltonian system consists of a phase space equipped with a real-valued
function, H, the Hamiltonian. The geometric structure of the phase space is
such that the specification of the Hamiltonian determines a unique curve
t — x(?), called a dynamical trajectory, through each point of the space (see
figure 7.1). Ordinarily, one thinks of the points of phase space as represent-
ing the dynamically possible states of some classical physical system, of the
Hamiltonian as encoding information about the energy of each of these
states, and the dynamical trajectory through a given point of phase space
as representing the unique dynamically possible past and future of the state
represented by that point. Thus interpreted, a Hamiltonian system consti-
tutes a complete and deterministic description of a classical system.

phase space

Figure 7.1 Hamiltonian systems



172 GORDON BELOT AND JOHN EARMAN

Unfortunately, the most natural formulations of many interesting classical
theories — including electrodynamics and general relativity — are not strictly
Hamiltonian. Rather they are gauge theories, in which the equations of
motion fail to uniquely determine the evolution of the state in phase space.
The geometric structure of the phase space of a gauge theory is somewhat
weaker than that of a Hamiltonian system. For our purposes, the most
important point is that the phase space of a gauge theory is naturally foliated
by submanifolds of some fixed dimension, called gauge orbits (see figure 7.2).
It is convenient to introduce the following notation and terminology: if x is a
point in phase space, then [x] is the unique gauge orbit in which x lies; if x and
y are points of phase space then x ~ y iff [x]=[y]; if f is a function on phase

[x]

phase space

Figure 7.2 Gauge systems.
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space which is constant on gauge orbits — i.e. if x ~ y implies f(x) =f(y) —
then f is said to be gauge invariant. As in the Hamiltonian case, a gauge
theory consists of a phase space equipped with a real-valued Hamiltonian H
(we require that H be gauge invariant). But whereas in the former case the
Hamiltonian together with the geometry of the phase space determined a
unique dynamical trajectory through each point, in the gauge-theoretic case
we find that there are infinitely many dynamical trajectories through each
point of the phase space. Thus, if we fix an initial state, x, our theory is unable
to tell us which point of phase space represents the state of the system at some
later time ¢, — since we can find distinct dynamical trajectories, x(¢) and x'(%),
through our initial point x,, and in general we expect that x(¢; # x'(¢;). What
makes gauge theories interesting, however, is that although they are incap-
able of predicting which point of phase space represents the future state of
the system, they do predict which gauge orbit that point will lie in — we find
that x(#;) ~ x'(,) even if x(¢;) # x'(¢;) (see figure 7.2).

The gauge freedom inherent in the equations of motion of a gauge theory
complicates interpretation. It is possible to adopt the same literal approach
which works so well for Hamiltonian systems, according to which each
point of phase space corresponds to exactly one dynamically possible
state. In this case, however, there will be physically real quantities which
are not gauge invariant, since points lying in the same gauge orbit will
correspond to distinct physically possible states of the system.’ This
straightforward approach has a serious disadvantage: it renders the theory
indeterministic. Indeed, the state represented by our initial point, x,, will
have many possible futures: if x(f) and x'(¢) are distinct dynamical trajec-
tories through this point, then x(¢;) and x'(¢;) represent distinct physically
possible future states of the system at time #,. Note, however, that this
indeterminism need not render the theory empirically inadequate: one can
maintain that all observable quantities are gauge invariant, so that the the-
ory can still be used to make determinate predictions of measurement out-
comes, even if it cannot determine the evolution of all physical quantities.

Alternatively, we can require that our interpretation be gauge invariant, in
the sense that all physically real quantities are represented by gauge invar-
iant functions on phase space. In this case, points of phase space which lie in
the same gauge orbit will correspond to the same dynamical state, and
determinism will be rescued (since x(¢;) ~ x'(t;)). Ceteris paribus, this sort

7 Here and below we assume that two states are distinct if there is some physically real quantity
which takes on different values in the two states.
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of interpretation will be preferable to a literal interpretation, since we prefer
to think of our classical theories as being deterministic.

All of this can be illustrated using the most familiar gauge theory, elec-
trodynamics. Here the phase space is the set, {(4, E): 4, E: S — R?, div
E = 0}, of vector potentials and electric fields on physical space, S. The
gauge orbits have the following structure: (4, E)~ (4’,E’), iff E'=E
and A’ = A+ grad A, for some A: S — R. The Hamiltonian for vacuum
elect;odynamics is_ H=/ s|E I + |curl 4|%dx>, and the equations of motion
are A = —F and E = curl(curl 4). These equations determine the evolution
of E uniquely, but determine the evolution of 4 only up to the addition of
the gradient of a scalar. That is, if (A(¢), E(?)) and (4'(¢), E'(¢)) are two
dynamical trajectories through the same initial point in phase space, then
for all ¢+ we have that E'(f) = E(t) and A'(t) = A(?) + grad A(f), for some
scalar A. If we give this theory a literal interpretation by stipulating that A4
corresponds to the velocity field of a material ether, then the theory becomes
indeterministic — according to A(¢;) this bit of ether ends up here, while
according to A'(t;) it ends up there.® On the other hand, we can stipulate
that along with the electric field, E, the only other physicallS/ real quantity is
the magnetic field, B = curl 4. The theory is rendered deterministic, since B
is a gauge invariant quantity whose evolution is determined uniquely by the
equations of motion.” The vector potential becomes a mathematical fiction,
and any information contained in 4 over and above that contained in B is,
to borrow Redhead’s apt phrase, surplus structure (see Redhead 1975).

We now turn to the more complicated case of general relativity. The
points of the phase space of general relativity should represent instanta-
neous states of the gravitational field. Thus, it is natural to build the phase
space out of points which represent the geometries of Cauchy surfaces of
models of general relativity. We proceed as follows. We fix a three-dimen-
sional manifold, . We now imagine that this manifold is embedded in a
model, (M, g), of general relativity as a Cauchy surface. What geometrical
information does X inherit from (M, g)? The answer is: the first and sec-
ond fundamental forms, # and k, of X considered as a submanifold of
(M, g). Here h is just the Riemannian metric which results from restricting
g to X, and k is, very roughly, the time derivative of 4. Thus we can think
of h and k as being the position and momentum variables of our gravita-
tional field theory. The phase space of general relativity is just the set of

8 Such an interpretation would, presumably, be supplemented with an account of measurement
which would imply that this indeterminism would be empirically undetectable.

® See Belot (1998) for an account of the difficulties which this interpretation faces in light of the
Aharonov-Bohm effect.
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pairs, (A, k), which can arise from embedding X as a Cauchy surface of a
model of general relativity. The gauge orbits of this phase space have a strik-
ingly simple structure: (4, k) and (h’, k') lie in the same gauge orbit iff they
can be viewed as Cauchy surfaces of the same model of general relativity.

Thus, if we fix a model of general relativity and look at the geometries,
(h, k) and (h, k"), corresponding to two distinct Cauchy surfaces, then these
geometries will lie in the same gauge orbit of general relativity. This means
that the dynamical trajectory which joins these two points must lie entirely
within their common gauge orbit. It follows that in general relativity the
Hamiltonian assumes a very simple form: H = 0. This is, in fact, a straight-
forward consequence of the general covariance of the theory: in order to
have a non-zero Hamiltonian, one must have access to a preferred parame-
terization of time (see chapter 4 of Henneaux & Teitelboim 1992 for a
careful discussion). This feature, that the dynamical trajectories are
restricted to gauge orbits, rather than passing from one orbit to another,
distinguishes general relativity from other familiar gauge theories and is the
source of some of the most interesting interpretative problems of classical
and quantum gravity.

Indeed, once general relativity has been formulated as a gauge theory, we
can reformulate the hole argument so that it depends upon the structure of
the phase space of general relativity rather than upon the diffeomorphism
invariance of the standard formulation of the theory. Above, we noted if x
() and x'(f) are two dynamical trajectories passing through the same initial
point, x,, then these trajectories represent distinct dynamical futures for x;,
under a literal interpretation, but represent the same dynamical future under
a gauge invariant interpretation. Thus, general relativity, like any gauge
theory, is indeterministic under a literal interpretation, and deterministic
under a gauge invariant interpretation. But notice that in general relativity
x(?) and x'(f) correspond to the same four-dimensional geometry of space-
time (since they each represent a sequence of instantaneous geometries
which belong to the same gauge orbit). This is the core of the hole argument,
re-expressed in the language of gauge theories.

The connection with the substantival-relational debate can be recovered
as follows. First, notice that in general relativity x(¢) and x’(¢) correspond to
the same four-dimensional geometry. Next, consider the condition which
Leibniz and Clarke agreed constituted a good criterion for distinguishing
absolutists from relationalists: the absolutist will affirm, while the relation-
alist will deny, that there could be two worlds whose contents instantiated
the same spatial relations, but which were numerically distinct in virtue of
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the fact that different points of space would be occupied by the material
objects of the two worlds. In the context of general relativity, the natural
generalization of this criterion is: substantivalists will affirm, while relation-
alists will deny, that there could be two general relativistic worlds which
instantiated the same four dimensional geometry which were numerically
distinct in virtue of the fact that the geometrical relations of these worlds
would be differently shared out among the spacetime points of the worlds.'°

Thus, substantivalists will view x(¢) and x'(¢) as representing distinct instan-

tiations of the given four-geometry by a set of existent spacetime points.

Relationalists, on the other hand will maintain that all instantiations of a

given four-dimensional geometry are numerically identical — x(¢) and x'(¢)

correspond to the same physical possibility. Hence relationalism is a gauge
invariant interpretation of general relativity.

At this point it would seem to be mandatory to adopt a gauge invariant
interpretation of general relativity. Otherwise, we are committed to ruling
general relativity to be indeterministic for the slimmest of reasons: a meta-
physical preference for substantivalism. Certainly, there are a number of
prominent gravitational physicists who accept this line of thought (see,
e.g., Rovelli 1991c and 1997). Most philosophers who have written on the
hole argument concur (although they are more likely to opt for some sophis-
ticated form of substantivalism than for Rovelli’s robust relationalism). In
the next section, we will discuss the bearing that considerations arising out
of quantum gravity have on this question. Our conclusion will be that, when
the dust settles, these considerations may well override any grounds for
settling the substantival-relational dispute which are internal to general
relativity itself. Before turning to this argument, however, we would like
to point out that, even at the classical level, the formulation of a cogent
gauge invariant interpretation of general relativity is by no means a straight-
forward task.!!

10 For the purposes of this paper, we bracket the question of the cogency of the sort of
substantivalists, mentioned briefly in 7.1, who deny the Leibniz-Clarke condition; see
Earman (1989) and Belot (1999). For present purposes, it suffices to observe that some
varieties of substantivalism are literal interpretations of general relativity.

"' Many philosophers of physics have assumed that the formulation of a gauge-invariant
interpretation of general relativity is an easy and attractive option — simply count diffeo-
morphic models as physically equivalent. We will see below, however, that this strategy runs
into serious technical and conceptual difficulties when we attempt to formulate interpreta-
tions in terms of the phase space of the theory rather than individual models. The upshot for
the substantival-relational debate remains unclear. But the existence of these problems, and
the fact that they do not arise for other gauge theories such as electromagnetism, makes it

wholly implausible that the issues surrounding the hole argument are pseudo-problems or
merely a recapitulation of familiar problems about reference.
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Our first worry is of a technical nature. Recall that the problem of iso-
lating the gauge invariant quantities of a theory is closely related to the
problem of formulating a gauge invariant formulation of that theory.
Indeed, according to a gauge invariant interpretation all physically real
quantities are represented by gauge invariant quantities on phase space. It
is thus impossible to fully specify a gauge invariant interpretation until the
gauge invariant functions have been identified. In the case of general rela-
tivity, this is quite a tall order. Very few gauge invariant quantities are
known. Worse, in the spatially compact case it has been proven that there
are no gauge invariant quantities which are local (i.e., which can be written
as integrals over X of A, k, and a finite number of their derivatives; see Torre
1993). Thus, there is reason to worry that the gauge invariant quantities of
general relativity may not be suitable candidates for the ontology of an
interpretation of a classical field theory like general relativity.

Thus, it is not at all trivial to formulate a gauge invariant interpretation of
general relativity. As long as the existence of a sufficient number of suitable
gauge invariant quantities of general relativity remains an open question, a
dark cloud hangs over the programme of giving a gauge invariant interpre-
tation of the theory. We contend that an honest approach to the interpre-
tative enterprise requires one to suspend judgement until these difficult
technical questions are settled. In support of this contention, we note that
the isolation of the gauge invariant quantities of the theory appears to be a
prerequisite for a gauge invariant approach to quantization. And, we claim,
an interpretation which supports quantization is deeper than one which does
not. We conclude that the present state of ignorance about the existence of
gauge invariant quantities for general relativity should give pause to advo-
cates of gauge invariant interpretations.'?

Our second problem is primarily conceptual in nature, and prefigures the
problems to be discussed in the next section. Although it lies near the core of
the conceptual difficulties facing attempts to quantize gravity, it is simple
enough to state: prima facie, gauge invariant interpretations of general rela-
tivity imply that time and change are illusions. Lest it be thought that this is a
pseudo-problem concocted by benighted philosophers, let us begin with a
formulation from a leading gravitational physicist:

How can changes in time be described in terms of objects which are com-
pletely time independent? In particular, since the only physical, and thus

12 This is closely related to the claim, advanced in Earman (1989), that relationalists are obliged
to produce formulations of physical theories which can be expressed in relationally pure
vocabulary.
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measurable quantities are those which are time independent, how can we
describe the rich set of time dependent observations we make of the world
around us? (Unruh 1991, p. 266)

The argument here is straightforward. Fix a model of general relativity,
(M, g), with two Cauchy surfaces, ¥; and X,. If we accept that the only
physically real quantities of general relativity are gauge invariant, then it
follows that there is no physically real quantity which takes on different
values when evaluated on 2| and X,. This is to say that there is no change in
the world described by (M, g), since no physically real quantity evolves in
time. Prima facie, proponents of gauge invariant interpretations of general
relativity are committed to the view that change is illusory. This is a very
radical thesis — it is, for instance, much stronger than the doctrine that there
is no room for temporal becoming in a relativistic world, since proponents
of the tenseless theory of time are confident that they can account for the
existence of change (see, e.g., Mellor 1981).

There has been a great deal of discussion of this thesis, and its conse-
quences, in the physics literature. It is clear that at the classical level it does
not affect the routine business of applying general relativity — there is no
difference of opinion as to the predictions of general relativity between
Parmenideans who hold that time and change are illusory and the
Heraclitians who believe that change is a fundamental reality. None the
less, the question of the reality and nature of time and change is the subject
of debate among physicists (see, e.g., the exchange between Kuchaf and
Rovelli on pp. 138-40 of Ashtekar & Stachel 1991). The reason for this is
straightforward: it is felt that one must correctly understand the nature of
time and change in the classical theory if one is to make any progress on the
deep conceptual problems of quantum gravity.

3. Quantum gravity and the problem of time

In the previous section, we saw that it was possible to formulate general
relativity as a gauge theory. This cast the interpretative problems of general
relativity in a new light: it became clear that the hole argument is just a
special case of the general observation that literal interpretations of gauge
theories are indeterministic. This observation motivates us to search for
gauge invariant interpretations of general relativity. But this turns out to
be unexpectedly difficult: unsolved technical problems and daunting con-
ceptual difficulties stand in our way. The latter, especially, are troubling:
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adopting a gauge invariant interpretation of general relativity seems to
require us to revise out most fundamental metaphysical categories. Thus
we find ourselves in the following position: having noticed that general
relativity is a gauge theory, we attempt to apply the interpretative strategy
which works so well for other gauge theories, such as electrodynamics. But
here the peculiar nature of general relativity qua gauge theory — the fact that
the Hamiltonian is zero, so that dynamical trajectories are restricted to
gauge orbits — forces us to confront difficulties that have no analogues in
other familiar gauge theories. The case is similar when we attempt to quan-
tize general relativity. Here the most obvious strategy is to apply to general
relativity the algorithm of canonical quantization which works so well for
other gauge theories. In this section we will see that this leads to tremendous
conceptual difficulties. These may be traced back, via the vanishing of the
classical Hamiltonian, to the general covariance of general relativity.

The algorithm for quantizing gauge theories is simple enough in outline.'?
As in ordinary quantum mechanics, one begins by selecting a set of classical
position and momentum variables, and then constructing a representation
of their algebra as an algebra of operators on the Hilbert space L3(Q, i)
(here Q is the classical configuration space and u is some appropriate
measure on Q). One then isolates the subspace, H, of LZ(Q, () consisting
of gauge invariant wave functions. Once equipped with a suitable inner
product, H will be the space of states for our quantum theory. In order
to complete’ the construction, we need to introduce an algebra of gauge
invariant quantum observables on H, and a quantum Hamiltonian, ﬁ,
which determines the dynamics of the theory via the Schréodinger equation.

In the case of electrodynamics, we take the components of 4 and E at
each point of physical space, S, to be our classical position and momentum
variables. We then construct L*(Q,u) by taking Q to be the set,
{4: S - R*}, of vector potentials. The elements of L*(Q, u) are wave func-
tions over Q: complex functionals of the form ¥Y[A4]. We construct H by
restricting our attention to those ¥ € L*(Q, ) which are gauge invariant in
the sense that 4 ~ A4’ implies P[4] = P[4']. We then find a set of self-
adjoint operators on H which represent an algebra of gauge invariant
classical observables, and impose a quantum version of the classical
Hamiltonian, H = [ |E|* + |curl A[*3. The result is a quantum theory of

13 The details, of course, involve many subtleties, which we gloss over in the following. It is safe
to assume that the quantization of gravity faces all of the technical difficulties present in
other quantum field theories — operator ordering ambiguities, anomalies, problems of reg-
ularization and renormalization. etc. — and then some.
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the familiar type: a Hilbert space carrying a self-adjoint representation of an
algebra of observables, with dynamics given by a Schrédinger equation.

It is possible, at least formally, to apply this algorithm to general relativ-
ity.'* One takes the components of 4 and k at each point of X as the classical
position and momentum variables. Thus, our states will be wavefunctions
on Q = Riem X, the space of Riemannian metrics on X. We restrict our
attention to gauge invariant wavefunctions.'® The observables must remain
unspecified for the time being, since so few classical gauge invariant quan-
tities have been identified. But it is easy to write down the correct quantum
Hamiltonian: A = 0. Thus, the Schrédinger equation becomes trivial:

%Eh] = ikHY[h] = 0.

Since the quantum Hamiltonian is zero, there is no evolution in time of
the quantum states. This is the core of the problem of time: there appears to
be no time or change in quantum gravity. This is not surprising: the algo-
rithm sketched above for the construction of quantum gravity treats the
gauge invariance of general relativity in strict analogy with the gauge invar-
iance of other theories. And we know from the discussion of section 2 that
embracing an interpretation of general relativity which is gauge invariant in
this sense involves, at least prima facie, renouncing the existence of time and
change. But, whereas in the classical domain our interpretgtive beliefs did
not interfere with our ability to apply the theory, it appears to be impossible
to understand this gauge invariant theory of quantum gravity as a theory
about our world, replete as it is with change. For, naively applying a frag-
ment of the conceptual apparatus of ordinary quantum mechanics, it
appears that the states, ¥[A4], of our theory of quantum gravity tell us that
the probability of measuring the spatial geometry to be (X, 4) at a given
instant is given by |¥[A]|>. But according to our theory the state never
evolves, and so the probability of obtaining a given three-geometry as the
outcome of a measurement is constant in time. But this contradicts one of

4 Le. although technical problems — such as the prohibitive difficulty of constructing an
appropriate measure on the configuration space of general relativity — prevent one from
achieving a fully rigorous formulation of quantum gravity along these lines, it is possible
to formally manipulate the equations. Even at this level, one can see that the resulting theory
of quantum gravity would run into serious interpretative problems.

15 Naively, we might hope that the gauge invariant wavefunctions would be those for which
Y[h] = P[A4'] if h and &’ can be viewed as spatial geometries of Cauchy surfaces of the same
model. Unfortunately, the actual situation is considerably more complicated. See pp, 189-93
and 225-6 of Isham (1993).
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the most basic tenets of modern cosmology: that the geometry of the uni-
verse jis temporally evolving.

Thus, the most straightforward approach to the construction of a quan-
tum theory of gravity results in a theory which appears to be incapable of
describing our world. In recent years, many attempts have been made to
remedy this situation: either by showing that this appearance is misleading
and that one can indeed construct a viable theory of quantum gravity by
treating the gauge invariance of general relativity in analogy with the gauge
invariance of other theories; or by suggesting alternative routes to quantum
gravity which rely upon unorthodox interpretations of the gauge invariance
of general relativity.'® We will briefly describe four such attempts, and
sketch their interpretative underpinnings. Although we will not go into
details, it is safe to assume that each of these proposals is fraught with
serious technical and conceptual difficulties (see Belot & Earman 1999 for
further details and references).

One of the most radical proposals is Barbour’s timeless interpretation of
quantum gravity (see Barbour 1994a, b). Barbour accepts the Parmenidean
interpretation of general relativity, and the approach to quantum gravity
sketched above to which it leads. He also endorses the account of measure-
ment according to which the probability of finding the spatial geometry
(Z, h) is given by |¥[A]|>. He must, therefore, face the full force of the
problem of time. His response is to bite the bullet: Barbour acknowledges
that he is committed to the view that the probability of measuring (X, 4)
does not change in time; his explanation for this surprising result is that
there is no time. On his view, what exists is a single moment, and a wave-
function which tells us the probabilities for possible outcomes of measure-
ments of the geometry of this instant. The geometries which are likely
measurement outcomes are supposed to encode information which would
make it appear as if the universe had a past and future. But in fact, on
Barbour’s view, all that exists, and all that we experience, is a single magical
moment.

Rovelli has developed a somewhat less radical Parmenidean approach to
quantum gravity (Rovelli 1991a, b). He begins by endorsing the
Parmenidean approach to general relativity, and the relationalism which
underlies it. Thus, he posits that the physically real quantities in general
relativity are gauge invariant. These are constants of motion of the theory,
in the sense that they take on the same value at any two Cauchy surfaces of a
given model of general relativity. Thus, if we are talking about a system

16 Kuchat (1992) is the canonical survey.
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containing a rocket, ‘the mass of the rocket’ will not be a physically real
quantity, since it changes over time. But quantities of the form ‘the mass of
the rocket at blast-off’ and ‘the mass of the rocket when it docks at the
space-station’ will be constants of motion — they take on a single value for
each model of the theory. Rovelli’s insight is that we can give the set of
constants of motion of the theory an internal structure by grouping together
constants of motion: we can form an ‘evolving constant of motion’ whose
members are just the constants of motion which give the mass of the rocket
at each instant. The resulting set will form a one-parameter family. We can
even write down an equation which describes the change in the value of the
evolving constant as the parameter is varied. Rovelli’s hope is that we can
do the same at the quantum level: group the quantum observables which
correspond to classical constants of motion into quantum evolving con-
stants. This is a technically daunting task. If it can be carried out, then
one could hope to write down equations which would govern the evolution
in parameter time of the expectation values of the quantum observables.
One would then have explained how the appearance of time can arise out of
fundamentally timeless structures. This would not, however, amount to
‘finding time’ in quantum gravity, since Rovelli doubts that there is a unique
time hidden here. Rather, one expects that there will be many ways of
constructing evolving constants, classical and quantum. We should be
opportunistic about selecting a technique which suits the model at hand,
and our psychological experience of time, without reading our pragmatic
decision back into nature.

On the Heraclitian side, we again find a very radical approach which
privileges spatial structure, and a less radical, but more ambitious proposal.
The former consists of breaking the general covariance of general relativity
by introducing a privileged time parameter.!” Using this preferred time
coordinate, we can rewrite general relativity as a time-dependent
Hamiltonian system with a non-zero Hamiltonian. It is then in principle
possible to construct a quantum field theory of gravity in which the privi-
leged classical time parameter provides the background for the evolution of
the quantum states. Thus, general relativity and quantum gravity are recast
as theories of the evolution of the gravitational field in time. In particular,
general relativity becomes a theory of the evolution in time of the geometry
of space. One ends up with theories of gravity which are no more difficult

7 This can be done in a number of ways. Popular approaches include the introduction of
special forms of matter and the privileging of the foliations of spacetime by Cauchy surfaces
of constant mean curvature. See Kuchaf (1992) for references and discussion. -~
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(or easy!) to interpret than other classical and quantum field theories. Of
course, this is achieved at the price of sacrificing one of the conceptual
cornerstones of contemporary physics: the idea that the spirit behind the
general covariance of general relativity forbids one from introducing pre-
ferred coordinate systems.

Kuchaf’s internal time proposal represents a more plausible Heraclitian
alternative (see Kuchaf 1972 and 1993). He endeavours to respect the spirit
of the general covariance of general relativity without treating it as a prin-
ciple of gauge invariance. His starting point is the conviction that if one
wants to make sense of our experience of change, then one must accept that
there are physically real quantities of general relativity and quantum gravity
which are not gauge invariant. As argued in section 2, such a position is
closely associated with substantivalism about the spacetime of general rela-
tivity. Kuchai’s goal is to isolate within the classical phase space some
structure which deserves to be called temporal, but which would not single
out a preferred time parameter.'® This temporal structure would allow one
to explicate a sense in which the physically real quantities of general rela-
tivity evolve, and hence cannot be gauge invariant. One would then use the
same temporal structure as the background against which the states of
quantum gravity would exhibit non-gauge invariant evolution. Kuchaf’s
programme is very ambitious technically, and is, as yet, incomplete. But it
suggests a way in which substantivalism, despite its shortcomings, can
underwrite a distinctive and intriguing approach to the quantization of
general relativity.

4. Conclusion

In the previous section, we saw how the problem of time in quantum gravity
arises out of the conceptual difficulties surrounding the general covariance
of general relativity. We sketched four proposed solutions to the problem of
time, and saw how each was linked to a definite view about the nature of
change and time in the classical and quantum world, and to a view about the
nature of the spacetime of general relativity. One expects, of course, that
each of these programmes, if developed rigorously, would lead to a different
theory of quantum gravity. If one of them should turn out to be empirically
adequate, that fact would have interpretative repercussions at the classical

'8 The vagueness here is, of course, our own: we gloss over the details of Kucha¥’s sophisticated
and elegant construction.
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level — if an interpretation of general relativity suggests a given approach to
quantization, then one is bound to revise one’s interpretative judgements
should that approach prove untenable. Thus, we find the interpretative
problems of general relativity and quantum gravity to be bound in a close
relationship: we cannot settle one set of questions without this having reper-
cussions for the other set. And so long as the way forward in quantum
gravity is unclear, physicists will continue to ponder and to debate meta-
physical questions about the nature and existence of spacetime and change.
Thus, we reach the same conclusion as Michael did in his Tarner lectures:
‘that physics and metaphysics blend into a seamless whole, each enriching
the other, and that in very truth neither can progress without the other’
(Redhead 1995, p. 87).
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