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PREFACE

The philosophy of science has become such a far-flung and specialized enterprise that
no one person is in a position to write an authoritative survey of the field, even at an
introductory level. This is an especially unfortunate situation in view of the felt need
for an up-to-date textbook in this field. Our solution is drawn on the combined
expertise of members of the History and Philosophy of Science Department of the
University of Pittsburgh: John Earman, Clark Glymour, James G. Lennox, J. E.
McGuire, Peter Machamer, John D. Norton, Merrilee H. Salmon, Wesley C. Salmon,
and Kenneth F. Schaffner.* Although individual names are attached to chapters, this
volume is the result of a cooperative effort, and to the extent that it succeeds the credit
is to be equally divided, except for additional measures for Merrilee Salmon, who
conceived the project and prodded us into action, and for John Norton, who drew the
figures for Chapters 2, 5, 6, and 9.

The primary audience for our text consists of upper-level undergraduates and
beginning graduate students. While it is possible to teach philosophy of science to
first and second year students, our experience is that students will benefit more from
such a course if they have already mastered some college-level science and /or history
of science. We have attempted to reach a compromise between a presentation that is
accessible to a wide audience and one that makes contact with current research. This
is by no means an easy compromise to achieve, but texts that do not aspire to it are
not worth the candle.

The volume contains more material than can be comfortably covered in one
semester and certainly more than can be covered in a ten-week quarter. The instructor
is thus presented with a number of choices. Those interested mainly in scientific
methodology may want to devote the entire course to the general topics in the



philosophy of science that are explored in Part One, Chapters 1-4. Alternatively, the
first half of the course could be devoted to a survey of the material in Chapters 1-4
and the second to a sampling of the foundational problems in various physical,
biological, behavioral and social sciences that are discussed in Chapters 5-11. Or the
text could be used as the basis of a two-course sequence.

Each chapter contains a list of suggested readings and study questions. Some of
the questions are appropriate for test questions; others can be used as topics for
writing assignments.

We have tried to keep technical notation to a minimum, but sometimes its use
is unavoidable. Symbols are defined and their use is explained with examples in the
contexts in which they first occur. When symbols occur in more than one chapter, first
occurrences are noted in the index.

We want to express our deepest thanks to Philip Kitcher, Universiy of Califor-
nia, San Diego, who read the entire manuscript at an early stage and offered extensive
and helpful comments on every chapter. We are also grateful to James E. Roper,
Michigan State University, Arnold Wilson, University of Cincinnati, and Michael J.
Zenzen, Rensselaer Polytechnic Institute, for their critical reading of the manuscript
and their good advice. John Beatty, University of Minnesota, Harry Corwin, Uni-
versity of Pittsburgh, and David Kelly, Institute for Objectivist Studies, offered useful
suggestions for Chapter 7. Rob Pennock, University of Texas at Austin, offered
important suggestions regarding Chapter 1. Kevin Kelly, Carnegie-Mellon Univer-
sity, provided useful suggestions and help with the pictures in Chapters 3 and 10.
David Hillman gave valuable help in checking and assembling the bibliography, and
Judith Meiksin provided excellent editorial assistance. Madeline Larson compiled the
index. The Faculty Proficiency Enhancement Program, University of Pittsburgh,
provided the computer system on which the text, graphics, and index were assem-
bled. Special thanks are due to the students in several Honors Philosophy of Science
courses at the University of Pittsburgh. They served as willing guinea pigs for our
efforts to produce a suitable text for undergraduates, and their lively participation in
class discussions helped immensely in refining our pedagogical strategies.

John Earman

*Schaffner is now University Professor of Medical Humanities and Professor of Philosophy at
George Washington University.
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INTRODUCTION

Scientific knowledge stands as the supreme intellectual achievement of our society.
Governments, private foundations, and businesses support scientific research although
it is costly and does not always yield immediate practical benefits. Courses in science
are a required part of curricula from grade school through university, and young
people are encouraged to undergo the long apprenticeship of study and work that will
transform them into scientists. Scientific accomplishments are honored at every level,
from awards at local science fairs to Nobel prizes. Major museums in cities all over
the western world document and display scientific achievements and inventions. Yet
despite the impressive scope of scientific progress and all the attention paid to science
and scientists, many questions remain about the nature of science and how it works.

Such questions are not usually raised in the study of specific sciences. Physics
is concerned, for example, with providing explanations of why chain reactions occur
in certain kinds of materials but not in others; it is not the task of physics to outline
an answer to the more general question of what features an explanation must have if
it is to be scientifically acceptable. Biologists study populations of fruit flies to draw
conclusions about how heredity works. They do not, as biologists, address in a
general way the issue of the nature of the relationship between observation and
theories. This is not to say that physicists and biologists are incapable of discussing
such topics or of clarifying them. When they do so, however, they are speaking
philosophically abour science rather than actually doing science.

‘‘Philosophy of science’” is the name given to that branch of philosophy that
reflects on and critically analyzes science. As a discipline, it tries to understand the
aims and methods of science, along with its principles, practices, and achievements.
Philosophers try to provide precise answers to very broad questions about science,



such as the question just raised about the nature of scientific explanation. Some other
questions studied by philosophers of science are as follows:

What are the aims of science?

What is the role of observations and experiments in obtaining scientific knowl-
edge?

How do scientists justify their claims? What is a scientific proof?

What is a scientific law?

Are there methods for making scientific discoveries?

How does scientific knowledge advance and grow?

How do the historical and cultural settings in which scientific work occurs affect
the content and quality of such work?

Does science employ or require a special language?

Science itself is made up of many subdisciplines: physics, astronomy, chem-
istry, biology, psychology, sociology, anthropology, and medicine, to name a few.
The presence of so many different fields within science raises interesting questions
about what it means to be a science and whether a single method is common to all
sciences. Philosophy of science thus addresses also the following sorts of questions:

Is it possible to give a general account of scientific methodology, or are there
different methods and forms of explanation for various branches of science?

How do physical, biological, and social sciences differ from one another?
Can some sciences be reduced to others?

Finally, philosophy of science is concerned with specific issues that arise in
connection with particular fields of science. For example, while experimentation
plays a major role in some sciences, in others, such as astronomy, it does not. Some
other discipline-specific questions ate these:

Does the existence of free will pose a special problem for a science of human
behavior?

Is medicine more an art than a science?

Are statistical techniques useful in anthropology, where sample sizes are very
small?

All of the questions raised above are complex and difficult, so it should come
as no surprise that the opinions of philosophers of science (and scientists in their
philosophical moments) on these topics vary considerably. In the twentieth century,
two disparate approaches have been dominant. The earlier tradition, developed by
logical positivists (members of the Vienna Circle) and logical empiricists (a similar
group from Berlin), set rigorous standards for the conduct of philosophy of science,
as close to those of science itself as the subject matter would allow. These philoso-
phers and scientists attempted to provide logical analyses of the nature of scientific
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concepts, the relation between evidence and theory, and the nature of scientific
explanation. In their desire to be precise, they made extensive use of the language and
techniques of symbolic logic. Despite many differences in points of view, the logical
positivists and logical empiricists generally were concerned with emphasizing such
distinctions as

the demarcation between scientific knowledge and other types of knowledge,
the difference between facts and values,

the difference between the language used to state observations and that used to
refer to theoretical entities, and

the difference between how theories are discovered and how they are justified.

Logical empiricists and logical positivists were also concerned with establishing clear
meanings for all the terms used in science. Some approached this problem by search-
ing for a verifiability criterion of meaning while others, particularly scientists them-
selves, tried to formulate operational definitions of scientific terms. These efforts
were closely related to their concern with providing a solid foundation for scientific
theorizing by linking it firmly to an observational basis. Although they believed that
justification rather than discovery was the proper concern of science, they shared an
optimism about the ability of science to provide genuine knowledge of the features of
an independently existing world.

At the time of World War Two, many of these philosophers left Europe for
England and the United States where their works have significantly affected the
development of philosophy of science in English-speaking countries. Even at the
level of undergraduate education, their influence has been important. Carl G. Hempel,
who came to America from Berlin, for example, has literally defined the philosophy
of the natural sciences for generations of students who first learned about the subject
from his introductory text, Philosophy of Natural Science (1966). The power and
broad influence of the general approach outlined by Hempel in this work justifies
calling it ‘‘the standard view’’ of philosophy of science.

During the past twenty-five years, however, many criticisms have been raised
against perceived faults of the standard view. (Indeed, Hempel himself has criticized
some of its features.) A major objection is that the standard view fails to take account
of the bearing of history of science on the philosophy of science. Critics of the
standard view cite Thomas Kuhn's Structure of Scientific Revolutions (1962, 1970),
which argues that most scientific textbooks ignore history and distort the real nature
of progress in science by presenting it as a series of accumulations of new discoveries
that straightforwardly build on and add to knowledge already attained. Kuhn draws
attention to the revolutionary character of science—its replacement of outworn the-
ories by newer ones that are so different from the old that the two do not share the
same problems or even a common language. He also draws attention to the ‘‘irra-
tional’’ aspects of changes in science, that is to say, those features of scientific change
that cannot be accounted for entirely in terms of scientists’ allegiance to “‘facts’’ and
logic. Kuhn argues that only a refusal to take seriously the history of science could
account for the gross distortion presented in scientific textbooks.
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Appealing to Kuhn’s account of science, critics of the standard view of philos-
ophy of science say that it embodies and promotes an ahistorical view of scientific
activity by emphasizing the logical characteristics of science while ignoring the
cultural context of scientific activity, which strongly influences the style of the en-
terprise and the content of its results. Furthermore, critics say, failure to take account
of the rhetorical features of scientific discourse can only lead to a distorted notion of
how science really works. The values of society and of individual practitioners of
science, they say, influence not only the choice of problems and the amount of effort
devoted to their solution, but also the interpretation of the results. They maintain that
so-called facts can only be grasped through theories, which are the creations of
members of a specific culture, and are never completely free of the values and
aspirations of that culture.

Both the standard view and that of its critics have merits and shortcomings.
Both views are likewise too complex to state succinctly without distortion and over-
simplification; the above brief synopsis is intended only to introduce the reader to the
subject. The ensuing chapters will survey many aspects of the dispute and will
examine the reasons offered in support of the various positions.

The approach to the philosophy of science exemplified in this work does not fall
neatly into either of the two main categories briefly outlined. The authors of this text
are all members of a Department of History and Philosophy of Science. The marriage
between history and philosophy in the Department is not merely one of convenience
between philosophers and historians each of whom happens to be concerned with
science. Instead, the Department was founded because the members believe that the
study of the philosophy of science must be informed by an understanding of the
historical and social context of science, as well as by a grasp of the workings of
science itself. At the same time, the general approach of this book disavows the
extreme forms of relativism and skepticism that characterize some of the more stri-
dent critics of the standard view.

Part One of this book takes up topics requisite for any adequate introduction to
the philosophy of science: Explanation; Induction and Confirmation; Realism and the
Nature of Scientific Theories; and Scientific Change: Perspectives and Proposals.
These four chapters outline and discuss fundamental issues in philosophy of science
and form the foundation for discussions in the remaining chapters of the book. In Part
One, the reader is introduced to the pertinent history of the topics discussed as well
as to the vocabulary, techniques, and most important issues in contemporary philos-
ophy of science. The intention of the authors in each case is to presume no prior
knowledge of philosophy of science, but to lead the reader to an appreciation of some
of the knottiest problems that concern contemporary philosophers of science. In the
first chapter, ‘‘Scientific Explanation,”” Wesley C. Salmon discusses the elements
involved in the special kind of understanding of our world and what takes place within
it that is provided by the various sciences. In the second chapter, *“The Confirmation
of Scientific Hypotheses,”” John Earman and Wesley C. Salmon deal with questions
concerning the relationship between empirical evidence and scientific hypotheses,
laws, and theories. In the course of the discussion they consider the nature of induc-
tive reasoning and the meanings of the concept of probability. Chapter 3, by Clark
Glymour, considers the major traditional arguments against literal belief in the claims
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of science and a range of responses to those arguments. In the fourth chapter, J. E.
McGuire discusses the nature of scientific change and progress in relation to social
context and historical development.

In the remaining seven chapters, each of which deals with the philosophy of a
special area of science, the authors assume that the reader is familiar with the issues
addressed in the first four chapters, though some topics depend less heavily on this
than others. The chapters in Parts Two through Four can be read independently of one
another, although they do contain references to the materials covered in other chap-
ters.

The philosophy of physical sciences is covered in Part Two (Chapters 5 and 6).
In ““The Philosophy of Space and Time,”” John D. Norton introduces questions
central to recent work in philosophy of space and time and illustrates how philosoph-
ical ideas about verification, conventions, realism, and theory reduction are applied
in physical theories of space and time. In ‘‘Determinism in the Physical Sciences,’’
John Earman surveys the implications of classical physics, the special and general
theories of relativity, and quantum mechanics for the doctrine that the world evolves
in a deterministic manner.

Part Three takes up the philosophy of biology and medicine with separate
chapters on these topics. In ““Philosophy of Biology,”’ James G. Lennox discusses
the development of the so-called neo-Darwinian theory of evolution. Lennox shows
how this union of Mendelian genetics and Darwin’s theory of natural selection pro-
vides a powerful tool for explaining evolutionary change and adaptation that operates
differently from theories in the physical sciences. In ‘‘Philosophy of Medicine,’”
Kenneth F. Schaffner, who has been trained as a physician as well as an historian and
philosopher of science, discusses the questions of whether medicine is a science and
whether medicine can be reduced to biology. He examines the nature of medicine as
an enterprise incorporating ethical principles and the implications of this for medi-
cine’s reduction to biology. Part Four, on the behavioral sciences, begins with Peter
Machamer’s chapter on ‘‘Philosophy of Psychology.”” This chapter briefly surveys
the relationships between philosophy and psychology and lays out some of the topics
that are and have been important to an understanding of psychology. The bulk of the
chapter, however, describes and assesses the nature of psychological theories of
perception. The author’s intent is to provide a case study of what philosophers who
are interested in psychology might do. In Chapter 10, ‘‘Android Epistemology,’’
Clark Glymour discusses philosophical issues raised by the exciting new field of
Artificial Intelligence. He illustrates the influence of issues in philosophy of science
on the design of artificial intelligence and expert systems programs. In the final
chapter, ‘‘Philosophy of Social Science,’” Merrilee H. Salmon addresses the issue of
whether the so-called social sciences really are entitled to the name, and discusses
some of the special problems posed by disciplines that try to explain human behavior
by using the same methods that have been so successful in the physical sciences.

Merrilee H. Salmon
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PART 1. GENERAL TOPICS IN THE PHILOSOPHY OF SCIENCE

One

SCIENTIFIC EXPLANATION

Wesley C. Salmon

The fruits of science are many and various. When science is first mentioned, many
people think immediately of high technology. Such items as computers, nuclear en-
ergy, genetic engineering, and high-temperature superconductors are likely to be in-
cluded. These are the fruits of applied science. Evaluating the benefits, hazards, and
costs of such technological developments often leads to lively and impassioned debate.

In this chapter, however, we are going to focus on a different aspect of science,
namely, the intellectual understanding it gives us of the world we live in. This is the
fruit of pure science, and it is one we highly prize. All of us frequently ask the
question ‘“Why?’’ in order to achieve some degree of understanding with regard to
various phenomena. This seems to be an expression of a natural human curiosity.
Why, during a total lunar eclipse, does the moon take on a coppery color instead of
just becoming dark when the earth passes between it and the sun? Because the earth’s
atmosphere acts like a prism, diffracting the sunlight passing through it in such a way
that the light in the red region of the spectrum falls upon the lunar surface. This is a
rough sketch of a scientific explanation of that phenomenon, and it imparts at least
some degree of scientific understanding.

Our task in this chapter is to try to say with some precision just what scientific
explanation consists in. Before we embark on that enterprise, however, some pre-
liminary points of clarification are in order.

1.1 EXPLANATION VS. CONFIRMATION

The first step in clarifying the notion of scientific explanation is to draw a sharp
distinction between explaining why a particular phenomenon occurs and giving rea-



sons for believing that it occurs. My reason for believing that the moon turns coppery
during total eclipse is that I have observed it with my own eyes. I can also appeal to
the testimony of other observers. That is how the proposition that the moon turns
coppery during a total eclipse is confirmed,’ and it is entirely different from explain-
ing why it happens. Consider another example. According to contemporary cosmol-
ogy all of the distant galaxies are receding from us at high velocities. The evidence
for this is the fact that the light from them is shifted toward the red end of the
spectrum; such evidence confirms the statement that the other galaxies are moving
away from our galaxy (the Milky Way). The fact that there is such a red shift does
not explain why the galaxies are moving in that way; instead, the fact that they are
receding explains—in terms of the Doppler effect>—why the light is shifted toward
the red end of the spectrum. The explanation of the recession lies in the “‘big bang’’
with which our universe began several billion years ago; this is what makes all of the
galaxies recede from one another and, consequently, makes all of the others move
away from us.

1.2 OTHER KINDS OF EXPLANATION

Another preliminary step in clarifying the notion of scientific explanation is to rec-
ognize that there are many different kinds of explanation in addition to those we
classify as scientific. For example, we often encounter explanations of how to do
something—how to use a new kitchen gadget, or how to find a certain address in a
strange city. There are, in addition, explanations of what—what an unfamiliar word
means, or what is wrong with an automobile. While many, if not all, scientific
explanations can be requested by means of why-questions, requests for explanations
of these other sorts would not normally be phrased in why-questions; instead, how-
ro-questions and what-questions would be natural.

Still other types of explanation exist. Someone might ask for an explanation of
the meaning of a painting or a poem; such a request calls for an artistic interpretation.
Or, someone might ask for an explanation of a mathematical proof; an appropriate
response would be to fill in additional steps to show how one gets from one step to
another in the original demonstration. Neither of these qualifies as scientific expla-
nation. Also excluded from our domain of scientific explanation are explanations of
formal facts of pure mathematics, such as the infinitude of the set of prime numbers.
We are concerned only with explanation in the empirical sciences.

As we understand the concept of scientific explanation, such an explanation is
an attempt to render understandable or intelligible some particular event (such as the
1986 accident at the Chernobyl nuclear facility) or some general fact (such as the
copper color of the moon during total eclipse) by appealing to other particular and/or
general facts drawn from one or more branches of empirical science. This formulation

' Confirmation will be treated in Chapter 2 of this book.

% The Doppler effect is the lengthening of waves emitted by a source traveling away from a receiver and
the shortening of waves emitted by a source approaching a receiver. This effect occurs in both light and sound,
and it can be noticed in the change of pitch of a whistle of a passing train.
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is not meant as a definition, because such terms as ‘‘understandable’’ and ‘‘intelli-
gible’’ are as much in need of clarification as is the term “‘explanation.’’ But it should
serve as a rough indication of what we are driving at.

In pointing out the distinction between scientific explanations and explanations
of other types we do not mean to disparage the others. The aim is only to emphasize
the fact that the word ‘‘explanation’’ is extremely broad—it applies to a great many
different things. We simply want to be clear on the type of explanation with which our
discussion is concerned.

1.3 SCIENTIFIC EXPLANATIONS AND WHY-QUESTIONS

Many scientific explanations are requested by means of why-questions, and even
when the request is not actually formulated in that way, it can often be translated into
a why-question. For example, ‘“What caused the Chernobyl accident?’’ or ‘ ‘For what
reason did the Chernobyl accident occur?’’ are equivalent to *“Why did the Chernobyl
accident occur?”’ However, not all why-questions are requests for scientific expla-
nations. A woman employee might ask why she received a smaller raise in salary than
a male colleague when her job-performance is just as good as his. Such a why-
question might be construed as a request for a justification, or, perhaps, simply a
request for more pay. A bereaved widow might ask why her husband died even
though she fully understands the medical explanation. Such a why-question is a
request for consolation, not explanation. Some why-questions are requests for evi-
dence. To the question, ‘“Why should we believe that the distant galaxies are trav-
eling away from us at high velocities?’’ the answer, briefly, is the red shift. Recall,
as we noted in Section 1.1, that the red shift does not explain the recession. The
recession explains the red shift; the red shift is evidence for the recession. For the sake
of clarity we distinguish explanation-seeking why-questions from why-questions that
seek such other things as justification, consolation, or evidence.

Can all types of scientific explanation be requested by why-questions? Some
authors say ‘‘yes’’ and others say ‘‘no.’” It has been suggested, for example, that
some scientific explanations are answers to how-possibly-questions. There is an old
saying that a cat will always land on its feet (paws), no matter what position it falls
from. But remembering the law of conservation of angular momentum we might well
ask, ‘“How is it possible for a cat, released (without imparting any angular momen-
tum) from a height of several feet above the ground with its legs pointing upward, to
turn over so that its paws are beneath it when it lands? Is this just an unfounded belief
with no basis in fact?’’ The answer is that the cat can (and does) twist its body in ways
that enable it to turn over without ever having a total angular momentum other than
zero (see Frohlich 1980).

Other requests for explanation may take a how-actually form. A simple com-
monsense example illustrates the point. ‘‘How did the prisoner escape?’’ calls for an
explanation of how he did it, not why he did it. The answer to this question might be
that he sawed through some metal bars with a hacksaw blade smuggled in by his wife.
If we were to ask why, the answer might be his intense desire to be with his wife
outside of the prison. For a somewhat more scientific example, consider the question,
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““How did large mammals get to New Zealand?’’ The answer is that they came in
boats—the first were humans, and humans brought other large mammals. Or, con-
sider the question, ‘‘How is genetic information transmitted from parents to off-
spring?”’ The answer to this question involves the structure of the DNA molecule and
the genetic code.

In this chapter we will not try to argue one way or other on the issue of whether
all scientific explanations can appropriately be requested by means of why-questions.
We will leave open the possibility that some explanations cannot suitably be re-
quested by why-questions. '

1.4 SOME MATTERS OF TERMINOLOGY

As a further step in preliminary clarification we must establish some matters of
terminology. In the first place, any explanation consists of two parts, the explanan-
dum and the explanans. The explanandum is the fact that is to be explained. This fact
may be a particular fact, such as the explosion of the Challenger space-shuttle
vehicle, or a general fact, such as the law of conservation of linear momentum. A
statement to the effect that the explanandum obtained is called the explanandum-
statement. Sometimes, when it is important to contrast the fact-to-be-explained with
the statement of the explanandum, we may refer to the explanandum itself as the
explanandum-fact. When the explanandum is a particular fact we often speak of it as
an event or occurrence, and there is no harm in this terminology, provided we are
clear on one basic point. By and large, the events that happen in our world are highly
complex, and we hardly ever try to explain every aspect of such an occurrence. For
example, in explaining the explosion of the Challenger vehicle, we are not concerned
to explain the fact that a woman was aboard, the fact that she was a teacher, or the
fact that her life had been insured for a million dollars. When we speak of a particular
fact, it is to be understood that this term refers to certain limited aspects of the event
in question, not to the event in its full richness and complexity.

The other part of an explanation is the explanans. The explanans is that which
does the explaining. It consists of whatever facts, particular or general, are sum-
moned to explain the explanandum. When we want to refer to the statements of these
facts we may speak of the explanans-statements; to contrast the facts with the state-
ments of them we may also speak of the explanans-facts.

In the philosophical literature on scientific explanation, the term *‘explanation’’
is used ambiguously. Most authors use it to apply to a linguistic entity composed of
the explanans-statements and the explanandum-statement. Others use it to refer to the
collection of facts consisting of the explanans-facts and the explanandum-fact. In
most contexts this ambiguity is harmless and does not lead to any confusion. But we
should be aware that it exists.

1.5 DEDUCTION AND INDUCTION

As we will see, one influential philosophical account of explanation regards all bona
fide scientific explanations as arguments. An argument is simply a set of statements,
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one of which is singled out as the conclusion of the argument. The remaining mem-
bers of the set are premises. There may be one or more premises; no fixed number of
premises is required.” The premises provide support for the conclusion.

All logically correct arguments fall into two types, deductive and inductive, and
these types differ fundamentally from one another. For purposes of this chapter (and
later chapters as well) we need a reasonably precise characterization of them. Four
characteristics are important for our discussion.

. DEDUCTION

1. In a valid deductive argument, all of
the content of the conclusion is present,
at least implicitly, in the premises. De-
duction is nonampliative.

2. If the premises are true, the conclusion
must be true. Valid deduction is neces-
sarily truth-preserving.

3. If new premises are added to a valid
deductive argument (and none of the
original premises is changed or deleted)

INDUCTION

1. Induction is ampliative. The conclu-
sion of an inductive argument has content
that goes beyond the content of its prem-
ises.

2. A correct inductive argument may
have true premises and a false conclu-
sion. Induction is not necessarily truth-
preserving.

3. New premises may completely under-
mine a strong inductive argument. Induc-
tion 18 not erosion-proof.

the argument remains valid. Deduction is
erosion-proof.

4. Deductive validity is an all-or-nothing
matter; validity does not come in degrees.
An argument is totally valid or it is in-
valid.

4. Inductive arguments come in different
degrees of strength. In some inductions
the premises support the conclusions
more strongly than in others.

These characteristics can be illustrated by means of simple time-honored ex-
amples.

(1) All humans are mortal.
Socrates is human.
Socrates is mortal.

Argument (1) is obviously a valid deduction. When we have said that all humans are
mortal, we have already said that Socrates is mortal, given that Socrates is human.
Thus, it is nonampliative. Because it is nonampliative, it is necessarily truth-
preserving. Since nothing is said by the conclusion that is not already stated by the
premises, what the conclusion says must be true if what the premises assert is true.
Moreover, the argument remains nonampliative, and hence, necessarily truth-
preserving, if new premises—for example, ‘‘Xantippe is human’’—are added. You
cannot make a valid deduction invalid just by adding premises. Finally, the premises

3 Because of certain logical technicalities, there are valid deductive arguments that have no premises at
all, but arguments of this sort will not be involved in our discussion.
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support the conclusion totally, not just to some degree; to accept the premises and
reject the conclusion would be outright self-contradiction.

{2) All observed ravens have been black.

All ravens are black.

This argument is obviously ampliative; the premise refers only to ravens that have
been observed, while the conclusion makes a statement about all ravens, observed or
unobserved. It is not necessarily truth-preserving. Quite possibly there is, was, or will
be—at some place or time—a white raven, or one of a different color. It is not
erosion-proof; the observation of one non-black raven would undermine it com-
pletely. And its strength is a matter of degree. If only a few ravens in one limited
environment had been observed, the premise would not support the conclusion very
strongly; if vast numbers of ravens have been observed under a wide variety of
circumstances, the support would be much stronger. But in neither case would the
conclusion be necessitated by the premise.

Deductive validity and inductive correctness do not hinge on the truth of the
premises or the conclusion of the argument. A valid deduction may have true pre-
mises and a true conclusion, one or more false premises and a false conclusion, and
one or more false premises and a true conclusion.? When we say that valid deduction
is necessarily truth-preserving, we mean that the conclusion would have to be true if
the premises were true. Thus there cannot be a valid deduction with true premises and
a false conclusion. Where correct inductive arguments are concerned, since they are
not necessarily truth-preserving, any combination of truth values of premises and
conclusion is possible. What we would like to say is that, if the premises are true (and
embody all relevant knowledge), the conclusion is probable. As we will see in
Chapter 2, however, many profound difficulties arise in attempting to support this
claim about inductive arguments.

We have chosen very simple—indeed, apparently trivial—examples in order to
illustrate the basic concepts. In actual science, of course, the arguments are much
more complex. Most of the deductive arguments found in serious scientific contexts
are mathematical derivations, and these can be extremely complicated. Nevertheless,
the basic fact remains that all of them fulfill the four characteristics listed above.
Although deep and interesting problems arise in the philosophy of mathematics, they
are not our primary concern in this book. Qur attention is focused on the empirical
sciences, which, as we argue in Chapter 2, necessarily involve induction. In that
chapter we encounter much more complex and interesting inductive arguments.

1.6 IS THERE ANY SUCH THING AS SCIENTIFIC EXPLANATION?

The idea that science can furnish explanations of various phenomena goes back to
Aristotle (4th century B.C.), and it has been reaffirmed by many philosophers and

4 The familiar slogan, ‘‘Garbage in, garbage out,”’ does not accurately characterize deductive argu-
ments.
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scientists since then. Nevertheless, many other philosophers and scientists have main-
tained that science must ‘‘stick to the facts,”’ and consequently can answer only
questions about what but not about why. To understand ‘‘the why of things,”’ they
felt, it is necessary to appeal to theology or metaphysics. Science can describe natural
phenomena and predict future occurrences, but it cannot furnish explanations. This
attitude was particularly prevalent in the early decades of the twentieth century. Since
it is based upon certain misconceptions regarding scientific explanation, we need to
say a bit about it.

It is natural enough, when attempting to find out why a person did something,
to seek a conscious (or perhaps unconscious) motive. For example, to the question,
‘““Why did you buy that book?’’ a satisfactory answer might run, ‘‘Because I wanted
to read an amusing novel, and | have read several other novels by the same author,
all of which I found amusing.’” This type of explanation is satisfying because we can
put ourselves in the place of the subject and understand how such motivation works.
The concept of understanding is critical in this context, for it signifies empathy. If we
yearn for that kind of empathetic understanding of nonhuman phenomena, we have to
look elsewhere for motivation or purpose. One immediate suggestion is to make the
source of purpose supernatural. Thus, prior to Darwin, the variety of species of living
things was explained by special creation—that is, God’s will. Another manifestation
of the same viewpoint—held by some, but not all, vitalists—was the notion that
behind all living phenomena there is a vital force or entelechy directing what goes on.
These entities—entelechies and vital forces—are not open to empirical investigation.

The insistence that all aspects of nature be explained in human terms is known
as anthropomorphism. The supposition—common before the rise of modern
science—that the universe is a cozy little place, created for our benefit, with humans
at its center, is an anthropomorphic conception. The doctrines of special creation and
some forms of vitalism are anthropomorphic. So-called ‘‘creation science’’ is an-
thropomorphic. Teleological explanation of nonhuman phenomena in terms of
human-like purposes is anthropomorphic.’

Many philosophers and scientists rejected the appeal to anthropomorphic and
teleological explanations as an appeal to hypotheses that could not, even in principle,
be investigated by empirical science. If this is what is needed for explanation, they
said, we want no part of it. Science is simply not concerned with explaining natural
phenomena; anyone who wants explanations will have to look for them outside of
science. Such scientists and philosophers were eager to make clear that scientific
knowledge does not rest on nonempirical metaphysical principles.

Not all philosophers were willing to forgo the claim that science provides
explanations of natural phenomena. Karl R. Popper (1935), Carl G. Hempel (1948),
R. B. Braithwaite (1953), and Ernest Nagel (1961) published important works in
which they maintained that there are such things as legitimate scientific explanations,
and that such explanations can be provided without going beyond the bounds of
empirical science. They attempted to provide precise characterizations of scientific

5 As James Lennox points out in Chapter 7, teleological explanations are anthropomorphic only if they
appeal to human-like purposes. In evolutionary biology—and other scientific domains as well—there are
teleological explanations that are not anthropomorphic.
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explanation, and they were, to a very large degree, in agreement with respect to the
core of the account. The line of thought they pursued grew into a theory that enjoyed
a great deal of acceptance among philosophers of science. We will discuss it at length
in later sections of this chapter.

1.7 DOES EXPLANATION INVOLVE REDUCTION TO THE
FAMILIAR?

It has sometimes been asserted that explanation consists in reducing the mysterious or
unfamiliar to that which is familiar. Before Newton, for example, comets were
regarded as mysterious and fearsome objects. Even among educated people, the
appearance of a comet signified impending disaster, for example, earthquakes, floods,
famines, or epidemic diseases. Newton showed that comets could be understood as
planet-like objects that travel around the sun in highly eccentric orbits. For that
reason, any given comet spends most of its time far from the sun and well beyond the
range of human observation. When one appeared it was a surprise. But when we
learned that they behave very much as the familiar planets do, their behavior was
explained, and they were no longer objects of dread.

Appealing as the notion of reduction of the unfamiliar to the familiar may be,
it is not a satisfactory characterization of scientific explanation, The point can best be
made in terms of a famous puzzle known as Olbers’s paradox—which is named after
a nineteenth-century astronomer but was actually formulated by Edmund Halley in
1720—why is the sky dark at night? Nothing could be more familiar than the darkness
of the night sky. But Halley and later astronomers realized that, if Newton’s con-
ception of the universe were correct, then the whole night sky should shine as brightly
as the noonday sun. The question of how to explain the darkness of the sky at night
is extremely difficult, and there may be no answer generally accepted by the experts.
Among the serious explanations that have been offered, however, appeal is made to
such esoteric facts as the non-Euclidean character of space or the mean free path of
photons in space. In this case, and in many others as well, a familiar phenomenon is
explained by reference to facts that are very unfamiliar indeed.

I suspect that a deep connection exists between the anthropomorphic conception
of explanation and the thesis that explanation consists in reduction of the unfamiliar
to the familiar. The type of explanation with which we are best acquainted is that in
which human action is explained in terms of conscious purposes. If it is possible to
explain the phenomena of physics or biology in terms of attempting to realize a goal,
that is a striking case of reduction to the familiar. A problem with this approach is,
of course, that a great deal of the progress in scientific understanding has resulted in
the elimination, not the injection, of purposes.

1.8 THE DEDUCTIVE-NOMOLOGICAL PATTERN OF SCIENTIFIC
EXPLANATION

In a classic 1948 paper, Carl G. Hempel and Paul Oppenheim formulated, with great

precision, one pattern of scientific explanation that is central to all discussions of the
subject. It is known as the deductive-nomological (D-N) model of scientific explana-
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tion. Stated very simply, an explanation of this type explains by subsuming its
explanandum-fact under a general law. This can best be appreciated by looking at an
example.

A figure skater with arms outstretched stands balanced on one skate. Propelling
herself with her other skate she begins to rotate slowly. She stops propelling herself,
but she continues to rotate slowly for a few moments. Suddenly—without propelling
herself again and without being propelled by any external object, such as another
skater—she begins spinning very rapidly. Why? Because she drew her arms in close
to her body, thus concentrating her total body mass closer to the axis of rotation.
Because of the law of conservation of angular momentum, her rate of rotation had to
increase to compensate for her more compact body configuration.

More technically, the angular momentum of an object is the product of its
angular velocity (rate of rotation) and its moment of inertia. The moment of inertia
depends upon the mass of the object and the average distance of the mass from the
axis of rotation; for a fixed mass, the moment of inertia is smaller the more compactly
the mass is distributed about the axis of rotation. The law of conservation of angular
momentum says that the angular momentum of a body that is not being propelled or
retarded by external forces does not change; hence, since the moment of inertia is
decreased, the rate of rotation must increase to keep the value of the product con-
stant.®

According to Hempel and Oppenheim, an explanation of the foregoing sort is to
be viewed as a deductive argument. It can be set out more formally as follows:

(3) The angular momentum of any body (whose rate of rotation is not being mcreased or de-
creased by external forces) remains constant.
The skater is not interacting with any external object in such a way as to alter her angular
velocity.
The skater is rotating (her angular momentum is not zero).
The skater reduces her moment of inertia by drawing her arms in close to her body.

The skater’s rate of rotation increases.

The explanandum—the increase in the skater’s rate of rotation——is the conclusion of
the argument. The premises of the argument constitute the explanans. The first
premise states a law of nature—the law of conservation of angular momentum. The
remaining three premises state the antecedent conditions. The argument is logically
correct; the conclusion follows validly from the premises. For purposes of our dis-
cussion, we may take the statements of antecedent conditions as true; expert figure
skaters do this maneuver frequently. The law of conservation of angular momentum
can also be regarded as true since it is a fundamental law of physics which has been
confirmed by a vast quantity of empirical data.

Hempel and Oppenheim set forth four conditions of adequacy for D-N expla-
nations:

° In this example we may ignore the friction of the skate on the ice, and the friction of the skater’s body
in the surrounding air.
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1. The explanandum must be a logical consequence of the explanans; that is, the
explanation must be a valid deductive argument.

2. The explanans must contain at least one general law, and it must actually be
required for the derivation of the explanandum; in other words, if the law or
laws were deleted, without adding any new premises, the argument would no
longer be valid.

3. The explanans must have empirical content; it must be capable, at least in
principle, of test by experiment or observation.

4. The sentences constituting the explanans must be true.

These conditions are evidently fulfilled by our example. The first three are classified
as logical conditions of adequacy; the fourth is empirical. An argument that fulfills all
four conditions is an explanation (for emphasis we sometimes say ‘‘true explana-
tion’’). An argument that fulfills the first three conditions, without necessarily ful-
filling the fourth, is called a potential explanation. It is an argument that would be an
explanation if its premises were true.’

According to Hempel and Oppenheim, it is possible to have D-N explanations,
not only of particular occurrences as in argument (3), but also of general laws. For
example, in the context of Newtonian mechanics, it is possible to set up the following
argument:

(4) F = ma (Newton’s second law).
For every action there is an equal and opposite reaction (Newton’s third law).

In every interaction, the total lincar momentum of the system of interacting bodies remains
constant (law of conservation of linear momentum).

This argument is valid, and among its premises are statements of general laws. There
are no statements of antecedent conditions, but that is not a problem since the
conditions of adequacy do not require them. Because we are not concerned to explain
any particular facts, no premises regarding particular facts are needed. Both premises
in the explanans are obviously testable, for they have been tested countless times.
Thus, argument (4) fulfills the logical conditions of adequacy, and consequently, it
qualifies as a potential explanation. Strictly speaking, it does not qualify as a true
explanation, for we do not consider Newton’s laws of motion literally true, but in
many contexts they can be taken as correct because they provide extremely accurate
approximations to the truth. _

Although Hempel and Oppenheim discussed both deductive explanations of
particular facts and deductive explanations of general laws, they offered a precise
characterization only of the former, but not of the latter. They declined to attempt to
provide a characterization of explanations of general laws because of a problem they
recognized but did not know how to solve. Consider Kepler’s laws of planetary
motion K and Boyle’s law of gases B. If, on the one hand, we conjoin the two to form

’ Hempel and Oppenheim provide, in addition to these conditions of adequacy, a precise technical
definition of ‘‘explanation.’’ In this book we will not deal with these technicalities.
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alaw K . B, we can obviously deduce K from it. But this could not be regarded as
an explanation of K, for it is only a pointless derivation of K from itself. On the other
hand, the derivation of K from Newton’s laws of motion and gravitation constitutes
an extremely illuminating explanation of Kepler’s laws. Hempel and Oppenheim
themselves confessed that they were unable to provide any criterion to distinguish the
pointless pseudoexplanations from the genuine explanations of laws (see Hempel and
Oppenheim 1948 as reprinted in Hempel 1965b, 273, f.n. 33).

Hempel and Oppenheim envisioned two types of D-N explanation, though they
were able to provide an account of only one of them. In addition, they remarked that
other types of explanation are to be found in the sciences, namely, explanations that
appeal, not to universal generalizations, but to statistical laws instead (ibid., 250—
251).

Table 1.1 shows the four kinds of explanations to which Hempel and Oppen-
heim called attention; they furnished an account only for the type found in the upper
left-hand box. Some years later Hempel (1962) offered an account of the I-S pattern
in the lower left-hand box. In Hempel (1965b) he treated both the I-S and the D-S
patterns. In 1948, Hempel and Oppenheim were looking forward to the time when
theories of explanation dealing with all four boxes would be available.

TABLE 1.1

Explanada Particular Facts General Regularities
Laws
Universal D-N D-N
Laws Deductive-Nomological Deductive-Nomological
Statistical I-S D-S
Laws Inductive-Statistical Deductive-Statistical

1.9 WHAT ARE LAWS OF NATURE?

Hempel and Oppenheim emphasized the crucial role played by laws in scientific
explanation; in fact, the D-N pattern is often called the covering-law model. As we
will see, laws play a central part in other conceptions of scientific explanation as well.
Roughly speaking, a law is a regularity that holds throughout the universe, at all
places and all times. A law-statement is simply a statement to the effect that such a
regularity exists. A problem arises immediately. Some regularities appear to be
lawful and others do not. Consider some examples of laws:

(1) All gases, kept in closed containers of fixed size, exert greater pressure when
heated.
(i1) In all closed systems the quantity of energy remains constant.

(ii1) No signals travel faster than light.

Contrast these with the following:
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(iv) All of the apples in my refrigerator are yellow.
(v) All Apache basketry is made by women.
(vi) No golden spheres have masses greater than 100,000 kilograms.

Let us assume, for the sake of argument, that all of the statements (i)—(vi) are true.
The first thing to notice about them is their generality. Each of them has the overall
form, ‘“All A are B’ or ““No A are B.”’ Statements having these forms are known as
universal generalizations. They mean, respectively, ‘‘Anything that is an A is also a
B’ and ‘‘Nothing that is an A is also a B.”’ Nevertheless, statements (i)—(iii) differ
fundamentally from (iv)—(vi). Notice, for example, that none of the statements (i)—
(iii) makes any reference to any particular object, event, person, time, or place. In
contrast, statement (iv) refers to a particular person (me), a particular object (my
refrigerator), and a particular time (now). This statement is not completely general
since it singles out certain particular entities to which it refers. The same remark
applies to statement (v) since it refers to a particular limited group of people (the
Apache).

Laws of nature are generally taken to have two basic capabilities. First, they
support counterfactual inferences. A counterfactual statement is a conditional state-
ment whose antecedent is false. Suppose, for example, that I cut a branch from a tree
and then, immediately, burn it in my fireplace. This piece of wood was never placed
in water and never will be. Nevertheless, we are prepared to say, without hesitation,
that if it had been placed in water, it would have floated. This italicized statement is
a counterfactual conditional. Now, a law-statement, such as (i), will support a coun-
terfactual assertion. We can say, regarding a particular sample of some gas, held in
a closed container of fixed size but not actually being heated, that if it were heated it
would exert greater pressure. We can assert the counterfactual because we take
statement (i} to be a statement of a law of nature.

When we look at statement (iv) we see that it does not support any such
counterfactual statement. Holding a red delicious apple in my hand, I cannot claim,
on the basis of (iv), that this apple would be yellow if it were in my refrigerator,

A second capability of laws of nature is to support modal statements of physical
necessity and impossibility. Statement (ii), the first law of thermodynamics, implies
that it is impossible to create a perpetual motion machine of the first kind—that is, a
machine that does useful work without any input of energy from an external source.
In contrast, statement (v) does not support the claim that it is impossible for an
Apache basket to be made by a male. It is physically possible that an Apache boy
might be taught the art of basket making, and might grow up to make a career of
basketry.

When we compare statements (iii) and (vi) more subtle difficulties arise. Unlike
statements (iv) and (v), statement (vi) does not make reference to any particular
entity or place or time.® It seems clear, nevertheless, that statement (vi)—even
assuming it to be true—cannot support either modal statements or counterfactual

8 If the occurrence of the kilogram in (vi} seems to make reference to a particular object—the interna-
tional prototype kilogram kept at the international bureau of standards—the problem can easily be circumvented
by defining mass in terms of atomic mass units.

18 Scientific Explanation



conditionals. Even if we agree that nowhere in the entire history of the universe—
past, present, or future—does there exist a gold sphere of mass greater than 100,000
kilograms, we would not be justified in claiming that it is impossible to fabricate a
gold sphere of such mass. I once made a rough calculation of the amount of gold in
the oceans of the earth, and it came to about 1,000,000 kilograms. If an incredibly
rich prince were determined to impress a woman passionately devoted to golden
spheres it would be physically possible for him to extract a little more than 100,000
kilograms from the sea to create a sphere that massive.

Statement (vi) also lacks the capacity to support counterfactual conditionals.
We would not be justified in concluding that, if two golden hemispheres, each of
50,001 kilogram mass, were put together, they would not form a golden sphere of
mass greater than 100,000 kilograms. To appreciate the force of this point, consider
the following statement:

(vii) No enriched uranium sphere has a mass greater than 100,000 kilograms.

This is a lawful generalization, because the critical mass for a nuclear chain reaction
is just a few kilograms. If 100,000 kilograms of enriched uranium were to be as-
sembled, we would have a gigantic nuclear explosion. No comparable catastrophe
would ensue, as far as we know, if a golden sphere of the same mass were put
together.

Philosophers have often claimed that we can distinguish true generalizations
that are lawful from those that are accidental. Even if we grant the truth of (vi), we
must conclude that it is an accidental generalization. Moreover, they have maintained
that among universal generalizations, regardless of truth, it is possible to distinguish
lawlike generalizations from those that are not lawlike. A lawlike generalization is
one that has all of the qualifications for being a law except, perhaps, being true.

It is relatively easy to point to the characteristic of statements (iv) and (v) that
makes them nonlawlike, namely, that they make reference to particular objects,
persons, events, places, or times. The nonlawlike character of statement (vi) is harder
to diagnose. One obvious suggestion is to apply the criteria of supporting counter-
factual and/or modal statements. We have seen that (vi) fails on that score. The
problem with that approach is that it runs a serious risk of turning out to be circular.
Consider statement (ii). Why do we consider it physically impossible to build a
perpetual motion machine (of the first type)? Because to do so would violate a law of
nature, namely (ii). Consider statement (vi). Why do we consider it physically
possible to fabricate a golden sphere whose mass exceeds 100,000 kilograms? Be-
cause to do so wouid not violate a law of nature. It appears that the question of what
modal statements to accept hinges on the question of what regularities qualify as laws
of nature.

A similar point applies to the support of counterfactual conditionals. Consider
statement (1). Given a container of gas that is not being heated, we can say that, if it
were to be heated, it would exert increased pressure on the walls of its container—
sufficient in many cases to burst the container. (I learned my lesson on this as a Boy
Scout heating an unopened can of beans in a camp fire.) The reason that we can make
such a counterfactual claim is that we can infer from statement (i) what would
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happen, and (i) states a law of nature. Similarly, from (iii) we can deduce that if
something travels faster than light it is not a signal—that is, it cannot transmit
information. You might think that this is vacuous because, as the theory of relativity
tells us,. nothing can travel faster than light. However, this opinion is incorrect.
Shadows and various other kinds of ‘‘things’’ can easily be shown to travel faster than
light. We can legitimately conclude that, if something does travel faster than light, it
is not functioning as a signal, because (iii) is, indeed, a law of nature.

What are the fundamental differences between statement (vi) on the one hand
and statements (i)—(iii) and (vii) on the other? The main difference seems to be that
(i)—(ii1) and (vi1) are all deeply embedded in well-developed scientific theories, and
that they have been, directly or indirectly, extensively tested. This means that (i)—(iii)
and (vii) have a very different status within our body of scientific knowledge than do
(iv)—(vi). The question remains, however, whether the regularities described by
(i)—(iii) and (vii) have a different status in the physical universe than do (iv)—(vi).

At the very beginning of this chapter, we considered the explanation of the fact
that the moon assumes a coppery hue during total eclipse. This is a regularity found
in nature, but is it a lawful regularity? Is the statement, ‘“The moon turns a coppery
color during total eclipses,”” a law-statement? The immediate temptation is to respond
in the negative, for the statement makes an explicit reference to a particular object,
namely, our moon. But if we reject that statement as a lawful generalization, it would
seem necessary to reject Kepler’s laws of planetary motion as well, for they make
explicit reference to our solar system. Galileo’s law of falling bodies would also have
to go, for it refers to things falling near the surface of the earth. It would be unrea-
sonable to disqualify all of them as laws.

We can, instead, make a distinction between basic and derived laws. Kepler’s
laws and Galileo’s law can be derived from Newton’s laws of motion and gravitation,
in conjunction with descriptions of the solar system and the bodies that make it up.
Newton’s laws are completely general and make no reference to any particular per-
son, object, event, place, or time. The statement about the color of the moon during
total eclipse can be derived from the laws of optics in conjunction with a description
of the earth’s atmosphere and the configuration of the sun, moon, and earth when an
eclipse occurs. The statement about the color of the moon can also be taken as a
derivative law. But what about statements (iv) and (v)? The color of the apples in my
refrigerator can in no way be derived from basic laws of nature in conjunction with
a description of the refrigerator. No matter how fond I may be of golden delicious
apples, there is no physical impossibility of a red delicious getting into my refriger-
ator. Similarly, there are no laws of nature from which, in conjunction with descrip-
tions of the Apache and their baskets, it would be possible to derive that they can only
be made by women.

1.10 PROBLEMS FOR THE D-N PATTERN OF EXPLANATION
Quite remarkably the classic article by Hempel and Oppenheim received virtually no

attention for a full decade. Around 1958, however, a barrage of criticism began and
a lively controversy ensued. Much of the criticism was brought into sharp focus by
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means of counterexamples that have, themselves, become classic. These examples
fall into two broad categories. The first consists of arguments that fulfill all of the
requirements for D-N explanation, yet patently fail to qualify as bona fide explana-
tions. They show that the requirements set forth by Hempel and Oppenheim are not
sufficient to determine what constitutes an acceptable scientific explanation. The
second consists of examples of allegedly bona fide explanations that fail to fulfill the
Hempel-Oppenheim requirements. They are meant to show that it is not necessary to
fulfill those requirements in order to have correct explanations. We must treat this
second category with care, for Hempel and Oppenheim never asserted that all correct
explanations fit the D-N pattern. They explicitly acknowledged that legitimate sta-
tistical explanations can be found in science. So, statistical explanations are not
appropriate as counterexamples. However, the attempt has been to find examples that
are clearly not statistical, but which fail to fulfill the Hempel-Oppenheim criteria. Let
us look at some counterexamples of each type.

CE-1. The flagpole and its shadow.” On a flat and level piece of ground
stands a flagpole that is 12’ tall. The sun, which is at an elevation of 53.13° in the sky,
shines brightly. The flagpole casts a shadow that is 9’ long. If we ask why the shadow
has that length, it is easy to answer. From the elevation of the sun, the height of the
flagpole, and the rectilinear propagation of light, we can deduce, with the aid of a bit
of trigonometry, the length of the shadow. The result is a D-N explanation that most
of us would accept as correct. So far, there is no problem.

If, however, someone asks why the flagpole is 12’ tall, we could construct
essentially the same argument as before. But instead of deducing the length of the
shadow from the height of the flagpole and the elevation of the sun, we would deduce
the height of the flagpole from the length of the shadow and the elevation of the sun.
Hardly anyone would regard that argument, which satisfies all of the requirements for
a D-N explanation, as an adequate explanation of the height of the flagpole.

We can go one step farther. From the length of the shadow and the height of the
flagpole, using a similar argument, we can deduce that the sun is at an elevation of
53.13°. It seems most unreasonable to say that the sun is that high in the sky because
a 12’ flagpole casts a 9’ shadow. From the fact that a 12" flagpole casts a 9’ shadow
we can infer that the sun is that high in the sky, but we cannot use those data to
explain why it is at that elevation. Here we must be sure to remember the distinction
between confirmation and explanation (discussed in Section 1.1). The explanation of
the elevation rests upon the season of the year and the time of day.

The moral: The reason it is legitimate to explain the length of the shadow in
terms of the height of the flagpole and the elevation of the sun is that the shadow is
the effect of those two causal factors. We can explain effects by citing their causes.
The reason it is illegitimate to explain the height of the flagpole by the length of the
shadow is that the length of the shadow is an effect of the height of the flagpole (given
the elevation of the sun), but it is no part of the cause of the height of the flagpole.
We cannot explain causes in terms of their effects. Furthermore, although the eleva-

? The counterexample was devised by Sylvain Bromberger, but to the best of my knowledge he never
published it.
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tion of the sun is a crucial causal factor in the relation between the height of the
flagpole and the length of the shadow, the flagpole and its shadow play no causal role
in the position of the sun in the sky.

CE-2. The barometer and the storm. Given a sharp drop in the reading on a
properly functioning barometer, we can predict that a storm will shortly occur.
Nevertheless, the reading on the barometer does not explain the storm. A sharp drop
in atmospheric pressure, which is registered on the barometer, explains both the storm
and the barometric reading.

The moral: Many times we find two effects of a common cause that are corre-
lated with one another. In such cases we do not explain one effect by means of the
other. The point is illustrated also by diseases. A given illness may have many
different symptoms. The disease explains the symptoms; one symptom does not
explain another.

CE-3. A solar eclipse. From the present positions of the earth, moon, and
sun, using laws of celestial mechanics, astronomers can predict a future total eclipse
of the sun. After the eclipse has occurred, the very same data, laws, and calculations
provide a legitimate D-N explanation of the eclipse. So far, so good. However, using
the same laws and the same positions of the earth, moon, and sun, astronomers can
retrodict the previous occurrence of a solar eclipse. The argument by which this
retrodiction is made fulfills the requirements for a D-N explanation just as fully as
does the prediction of the eclipse. Nevertheless, most of us would say that, while it
is possible to explain an eclipse in terms of antecedent conditions, it is not possible
to explain an eclipse in terms of subsequent conditions.

The moral: We invoke earlier conditions to explain subsequent facts; we do not
invoke later conditions to explain eariier facts. The reason for this asymmetry seems
to lie in the fact that causes, which have explanatory import, precede their effects—
they do not follow their effects.

CE-4. The man and the pill. A man explains his failure to become pregnant
during the past year on the ground that he has regularly consumed his wife’s birth
control pills, and that any man who regularly takes oral contraceptives will avoid
getting pregnant.

The moral: This example shows that it is possible to construct valid deductive
arguments with true premises in which some fact asserted by the premises is actually
irrelevant. Since men do not get pregnant regardless, the fact that this man took birth
control pills is irrelevant. Nevertheless, it conforms to the D-N pattern.

Counterexamples CE-1-CE-4 are all cases in which an argument that fulfills the
Hempel-Oppenheim requirements manifestly fails to constitute a bona fide explana-
tion. They were designed to show that these requirements are too weak to sort out the
illegitimate explanations. A natural suggestion would be to strengthen them in ways
that would rule out counterexamples of these kinds. For example, CE-1 and CE-2
could be disqualified if we stipulated that the antecedent conditions cited in the
explanans must be causes of the explanandum. CE-3 could be eliminated by insisting
that the so-called antecedent conditions must actually obtain prior to the explanan-
dum. And CE-4 could be ruled out by stipulating that the antecedent conditions must
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be relevant to the explanandum. For various reasons Hempel declined to strengthen
the requirements for D-N explanation in such ways.

The next counterexample has been offered as a case of a legitimate explanation
that does not meet the Hempel-Oppenheim requirements.

CE-5. The ink stain.  On the carpet, near the desk in Professor Jones’s office,
is an unsightly black stain. How does he explain it? Yesterday, an open bottle of black
ink stood on his desk, near the corner. As he went by he accidentally bumped it with
his elbow, and it fell to the floor, spilling ink on the carpet. This seems to be a
perfectly adequate explanation; nevertheless, it does not incorporate any laws. De-
fenders of the D-N pattern would say that this is simply an incomplete explanation,
and that the laws are tacitly assumed. Michael Scriven, who offered this example,
argued that the explanation is clear and complete as it stands, and that any effort to
spell out the laws and initial conditions precisely will meet with failure.

The moral: 1t is possible to have perfectly good explanations without any laws.
The covering law conception is not universally correct.

The fifth counterexample raises profound problems concerning the nature of
causality. Some philosophers, like Scriven, maintain that one event, such as the
bumping of the ink bottle with the elbow, is obviously the cause of another event,
such as the bottle falling off of the desk. Moreover, they claim, to identify the cause
of an event is all that is needed to explain it. Other philosophers, including Hempel,
maintain that a causal relation always involves (sometimes explicitly, sometimes
implicitly) a general causal law. In the case of the ink stain, the relevant laws would
include the laws of Newtonian mechanics (in explaining the bottle being knocked off
the desk and falling to the floor) and some laws of chemistry (in explaining the stain
on the carpet as a result of spilled ink).

1.11 TWO PATTERNS OF STATISTICAL EXPLANATION

Anyone who is familiar with any area of science—physical, biological, or social—
realizes, as Hempel and Oppenheim had already noted, that not all explanations are
of the deductive-nomological variety. Statistical laws play an important role in vir-
tually every branch of contemporary science and statistical explanations—those fall-
ing into the two lower boxes in Table 1.1—are frequently given. In 1965b Hempel
published a comprehensive essay, ‘‘Aspects of Scientific Explanation,’’ in which he
offered a theory of statistical explanation encompassing both types.

In the first type of statistical explanation, the deductive-statistical (D-S) pattern,
statistical regularities are explained by deduction from more comprehensive statistical
laws. Many examples can be found in contemporary science. For instance, archae-
ologists use the radiocarbon dating technique to ascertain the ages of pieces of wood
or charcoal discovered in archaeological sites. If a piece of wood is found to have a
concentration of C** (a radioactive isotope of carbon) equal to one-fourth that of
newly cut wood, it is inferred to be 11,460 years old. The reason is that the half-life
of C'* is 5730 years, and in two half-lives it is extremely probable that about
three-fourths of the C'* atoms will have decayed. Living trees replenish their supplies
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of C'* from the atmosphere; wood that has been cut cannot do so. Here is the D-S
explanation:

(5) Every C' atom (that is not exposed to external radiation’®) has a probability of 2 of
disintegrating within any period of 5730 years.

In any large collection of C'* atoms (that are not exposed to external radiation) approximately
three-fourths will very probably decay within 11,460 years.

This derivation constitutes a deductive explanation of the probabilistic generalization
that stands as its conclusion.

Deductive-statistical explanations are very similar, logically, to D-N explana-
tions of generalizations. The only difference is that the explanation is a statistical law
and the explanans must contain at least one statistical law. Universal laws have the
form “‘All A are B’ or ‘*“No A are B’’; statistical laws say that a certain proportion of
A are B."' Accordingly, the problem that plagued D-N explanations of universal
generalizations also infects D-S explanations of statistical generalizations. Consider,
for instance, one of the statistical generalizations in the preceding example—namely,
that the half-life of C'* is 5730 years. There is a bona fide explanation of this
generalization from the basic laws of quantum mechanics in conjunction with a
description of the C'* nucleus. However, this statistical generalization can also be
deduced from the conjunction of itself with Kepler’s laws of planetary motion. This
deduction would not qualify as any kind of legitimate explanation; like the case cited
in Section 1.8, it would simply be a pointless derivation of the generalization about
the half-life of C'* from itself.

Following the 1948 article, Hempel never returned to this problem concerning
explanations of laws; he did not address it in Hempel (1965a), which contains
characterizations of all four types of explanation represented in Table 1.1. This leaves
both boxes on the right-hand side of Table 1.1 in a highly problematic status. Nev-
ertheless, it seems clear that many sound explanations of both of these types can be
found in the various sciences.

The second type of statistical explanation—the inductive-statistical (I-S)
pattern—explains particular occurrences by subsuming them under statistical laws,
much as D-N explanations subsume particular events under universal laws. Let us
look at one of Hempel’s famous examples. If we ask why Jane Jones recovered
rapidly from her streptococcus infection, the answer is that she was given a dose of
penicillin, and almost all strep infections clear up quickly upon administration of
penicillin. More formally:

(6) Almost all cases of streptococcus infection clear up quickly after the administration of pen-
icillin.
Jane Jones had a streptococcus infection.

19 This qualification is required to assure that the disintegration is spontaneous and not induced by
external radiation.

"' As James Lennox remarks in Chapter 7 on philosophy of biology, Darwin’s principle of natural
selection is an example of a statistical law.
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Jane Jones received treatment with penicillin.

(7]
Jane Jones recovered quickly.

This explanation is an argument that has three premises (the explanans); the first
premise states a statistical regularity—a statistical law—while the other two state
antecedent conditions. The conclusion (the explanandum) states the fact-to-be-
explained. However, a crucial difference exists between explanations (3) and (6):
D-N explanations subsume the events to be explained deductively, while I-S expla-
nations subsume them inductively. The single line separating the premises from the
conclusion in (3) signifies a relation of deductive entailment between the premises
and conclusion. The double line in (6) represents a relationship of inductive support,
and the attached variable r stands for the strength of that support. This strength of
support may be expressed exactly, as a numerical value of a probability, or vaguely,
by means of such phrases as ‘‘very probably’’ or ‘‘almost certainly.”

An explanation of either of these two kinds can be described as an argument to
the effect that the event to be explained was to be expected by virtue of certain
explanatory facts. In a D-N explanation, the event to be explained is deductively
certain, given the explanatory facts; in an I-S explanation the event to be explained
has high inductive probability relative to the explanatory facts. This feature of ex-
pectability is closely related to the explanation-prediction symmeitry thesis for expla-
nations of particular facts. According to this thesis any acceptable explanation of a
particular fact is an argument, deductive or inductive, that could have been used to
predict the fact in question if the facts stated in the explanans had been available prior
to its occurrence. > As we shall see, this symmetry thesis met with serious opposition.

Hempel was not by any means the only philosopher in the early 1960s to notice
that statistical explanations play a significant role in modern science. He was, how-
ever, the first to present a detailed account of the nature of statistical explanation, and
the first to bring out a fundamental problem concerning statistical explanations of
particular facts. The case of Jane Jones and her quick recovery can be used as an
illustration. It is well known that certain strains of the streptococcus bacterium are
penicillin-resistant, and if Jones’s infection were of that type, the probability of her
quick recovery after treatment with penicillin would be small. We could, in fact, set
up the following inductive argument:

(7) Almost no cases of penicillin-resistant streptococcus infection clear up quickly after the
administration of penicillin.
Jane Jones had a penicillin-resistant streptococcus infection.
Jane Jones received treatment with penicillin.

[q]

Jane Jones did not recover quickly.

The remarkable fact about arguments (6) and (7) is that their premises are
mutually compatible—they could all be true. Nevertheless, their conclusions contra-

12 This thesis was advanced for D-N explanation in Hempel-Oppenheim (1948, 249), and reiterated,
with some qualifications, for D-N and I-S explanations in Hempel (1965a, Sections 2.4, 3.5).
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dict one another. This is a situation that can never occur with deductive arguments.
Given two valid deductions with incompatible conclusions, their premises must also
be incompatible. Thus, the problem that has arisen in connection with I-S explana-
tions has no analog in D-N explanations. Hempel called this the problem of ambiguity
of I-§ explanation.

The source of the problem of ambiguity is a simple and fundamental difference
between universal laws and statistical laws. Given the proposition that all A are B, it
follows immediately that all things that are both A and C are B. If all humans are mortal,
then all people who are over six feet tall are mortal. However, even if almost all humans
who are alive now will be alive five years from now, it does not follow that almost all
living humans with advanced cases of pancreatic cancer will be alive five years hence.
As we noted in Section 1.5, there is a parallel fact about arguments. Given a valid
deductive argument, the argument will remain valid if additional premises are supplied,
as long as none of the original premises is taken away. Deduction is erosion-proof.
Given a strong inductive argument—one that supports its conclusion with a high degree
of probability—the addition of one more premise may undermine it completely. For
centuries Europeans had a great body of inductive evidence to support the proposition
that all swans are white, but one true report of a black swan in Australia completely
refuted that conclusion. Induction is not erosion-proof.

Hempel sought to resolve the problem of ambiguity by means of his require-
ment of maximal specificity (RMS). It is extremely tricky to state RMS with precision,
but the basic idea is fairly simple. In constructing I-S explanations we must include
all relevant knowledge we have that would have been available, in principle, prior to
the explanandum-fact. If the information that Jones’s infection is of the penicillin-
resistant type is available to us, argument (6) would not qualify as an acceptable I-S
explanation. "

In Section 1.8 we stated Hempel and Oppenheim’s four conditions of adequacy
for D-N explanations. We can now generalize these conditions so that they apply both
to D-N and I-S explanations as follows:

1. The explanation must be an argument having correct (deductive or inductive)
logical form.

2. The explanans must contain at least one general law (universal or statistical),
and this law must actually be required for the derivation of the explanandum.

3. The explanans must have empirical content; it must be capable, at least in
principle, of test by experiment or observation.

4. The sentences constituting the explanans must be true.
5. The explanation must satisfy the requirement of maximal specificity.'*

13 Nor would (6) qualify as an acceptable I-S explanation if we had found that Jones’s infection was of
the non-penicillin-resistant variety, for the probability of quick recovery among people with that type of
infection is different from the probability of quick recovery among those who have an unspecified type of
streptococcus infection.

¥ D-N explanations of particular facts automatically satisfy this requirement. If all A are B, the prob-
ability that an A is a B is one. Under those circumstances, the probability that an A which is alsoa Cisa B is
also one. Therefore, no partition of A is relevant to B.
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The theory of scientific explanation developed by Hempel in his ‘‘Aspects’
essay won rather wide approval among philosophers of science. During the mid-to-
late 1960s and early 1970s it could appropriately be considered the received view of
scientific explanation. According to this view, every legitimate scientific explanation
must fit the pattern corresponding to one or another of the four boxes in Table 1.1.

1.12 CRITICISMS OF THE I-S PATTERN OF SCIENTIFIC
EXPLANATION

We noticed in Section 1.10 that major criticisms of the D-N pattern of scientific
explanation can be posed by means of well-known counterexamples. The same sit-
uation arises in connection with the I-S pattern. Consider the following:

CE-6. Psychotherapy. Suppose that Bruce Brown has a troublesome neurotic
symptom. He undergoes psychotherapy and his symptom disappears. Can we explain
his recovery in terms of the treatment he has undergone? We could set out the
following inductive argument, in analogy with argument (6):

(8) Most people who have a neurotic symptom of type N and who undergo psychotherapy
experience relief from that symptom.
Bruce Brown had a symptom of type N and he underwent psychotherapy.

(r]

Bruce Brown experienced relief from his symptom.

Before attempting to evaluate this proffered explanation we should take account of the
fact that there is a fairly high spontaneous remission rate—that is, many people who
suffer from that sort of symptom get better regardless of treatment. No matter how
large the number r, if the rate of recovery for people who undergo psychotherapy is
no larger than the spontaneous remission rate, it would be a mistake to consider
argument (8) a legitimate explanation. A high probability is not sufficient for a correct
explanation. If, however, the number r is not very large, but is greater than the
spontaneous remission rate, the fact that the patient underwent psychotherapy has at
least some degree of explanatory force. A high probability is not necessary for a
sound explanation.
Another example reinforces the same point.

CE-7. Vitamin C and the common cold."> Suppose someone were to claim
that large doses of vitamin C would produce rapid cures for the common cold. To
ascertain the efficacy of vitamin C in producing rapid recovery from colds, we should
note, it is not sufficient to establish that most people recover quickly; most colds
disappear within a few days regardless of treatment. What is required is a double-

13 Around the time Hempel was working out his theory of I-S explanation, Linus Pauling’s claims about
the value of massive doses of vitamin C in the prevention of common colds was receiving a great deal of
attention. Although Pauling made no claims about the ability of vitamin C to cure colds, it occurred to me that
a fictitious example of this sort could be concocted.
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blind controlled experiment'® in which the rate of quick recovery for those who take

vitamin C is compared with the rate of quick recovery for those who receive only a
placebo. If there is a significant difference in the probability of quick recovery for
those who take vitamin C and for those who do not, we may conclude that vitamin
C has some degree of causal efficacy in lessening the duration of colds. If, however,
there is no difference between the two groups, then it would be a mistake to try to
explain a person’s quick recovery from a cold by constructing an argument analogous
to (6) in which that result is attributed to treatment with vitamin C.,

The moral: CE-6 and CE-7 call attention to the same point as CE-4 (the man and
the pill). All of them show that something must be done to exclude irrelevancies from
scientific explanations. If the rate of pregnancy among men who consume oral con-
traceptives is the same as for men who do not, then the use of birth control pills is
causally and explanatorily irrelevant to pregnancy among males. Likewise, if the rate
of relief from neurotic symptoms is the same for those who undergo psychotherapy
as it is for those who do not, then psychotherapy is causally and explanatorily
irrelevant to the relief from neurotic symptoms. Again, if the rate of rapid recovery
from common colds is the same for those who do and those who do not take massive
doses of vitamin C, then consumption of massive doses of vitamin C is causally and
explanatorily irrelevant to rapid recovery from colds.'” Hempel’s requirement of
maximal specificity was designed to insure that a// relevant information (of a suitable
sort) is included in I-S explanations. What is needed in addition is a requirement
insuring that only relevant information is included in D-N or I-S explanations.

CE-8. Syphilis and paresis. Paresis is a form of tertiary syphilis which can be
contracted only by people who go through the primary, secondary, and latent forms
of syphilis without treatment with penicillin. If one should ask why a particular
person suffers from paresis, a correct answer is that he or she was a victim of
untreated latent syphilis. Nevertheless, only a small proportion of those with un-
treated latent syphilis—about 25%-—actually contract paresis. Given a randomly
selected member of the class of victims of untreated latent syphilis, one should predict
that that person will not develop paresis.

The moral: there are legitimate I-S explanations in which the explanans does not
render the explanandum highly probable. CE-8 responds to the explanation-prediction
symmetry thesis—the claim that an explanation is an argument of such a sort that it
could have been used to predict the explanandum if it had been available prior to the

18 In a controlled experiment there are two groups of subjects, the experimental group and the control
group. These groups should be as similar to one another as possible. The members of the experimental group
receive the substance being tested, vitamin C. The members of the control group receive a placebo, that is, an
inert substance such as a sugar pill that is known to have no effect on the common cold. In a blind experiment
the subjects do not know whether they are receiving vitamin C or the placebo. This is important, for if the
subjects knew which treatment they were receiving, the power of suggestion might skew the results. An
experiment is double-blind if neither the person who hands out the pills nor the subjects know which subject is
getting which type of pill. If the experiment is not double-blind, the person administering the pills might, in spite
of every effort not to, convey some hint to the subject.

7 1t should be carefully noted that I am claiming reither that psychotherapy is irrelevant to remission of
neurotic symptoms nor that vitamin C is irrelevant to rate of recovery from colds. I am saying that that is the
point at issue so far as I-S explanation is concerned.
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fact-to-be-explained. It is worth noting, in relation to CE-6 and CE-7, that untreated
latent syphilis is highly relevant to the occurrence of paresis, although it does not
make paresis highly probable, or even more probable than not.

CE-9. The biased coin. Suppose that a coin is being tossed, and that it is
highly biased for heads—in fact, on any given toss, the probability of getting heads
is 0.95, while the probability of tails is 0.05. The coin is tossed and comes up heads.
We can readily construct an I-S explanation fitting all of the requirements. But
suppose it comes up tails. In this case an I-S explanation is out of the question.
Nevertheless, to the degree that we understand the mechanism involved, and conse-
quently the probable outcome of heads, to that same degree we understand the
improbable outcome, even though it occurs less frequently.

The moral: If we are in a position to construct statistical explanations of events
that are highly probable, then we also possess the capability of framing statistical
explanations of events that are extremely improbable.

1.13 DETERMINISM, INDETERMINISM, AND STATISTICAL
EXPLANATION

When we look at an I-S explanation such as (6), there is a strong temptation to regard
it as incomplete. It may, to be sure, incorporate all of the relevant knowledge we
happen to possess. Nevertheless, we may feel, it is altogether possible that medical
science will discover enough about streptococcus infections and about penicillin
treatment to be able to determine precisely which individuals with strep infections
will recover quickly upon treatment with peniciilin and which individuals will not.
When that degree of knowledge is available we will not have to settle for I-S expla-
nations of rapid recoveries from strep infections; we will be able to provide D-N
explanations instead. Similar remarks can also be made about several of the
counterexamples—in particular, examples CE-6—CE-9.

Consider CE-8, the syphilis-paresis example. As remarked above, with our
present state of knowledge we can predict that about 25% of all victims of untreated
latent syphilis contract paresis, but we do not know how to distinguish those who will
develop paresis from those who will not. Suppose Sam Smith develops paresis. At
this stage of our knowledge the best we can do by way of an I-S explanation of
Smith’s paresis is the following:

(9) 25% of all victims of untreated Iatent syphilis develop paresis.
Smith had untreated latent syphilis.

[.25]

Smith contracted paresis.

This could not be accepted as an I-S explanation because of the weakness of the
relation of inductive support.

Suppose that further research on the causes of paresis reveals a factor in the
blood—-=all it the P-factor—which enables us to pick out, with fair reliability—say
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95%—those who will develop paresis. Given that Smith has the P-factor, we can
construct the following argument:

(10) 95% of all victims of untreated latent syphilis who have the P-factor develop paresis.
Smith had untreated latent syphilis.
Smith had the P-factor.

[.95]
Smith developed paresis.

In the knowledge situation just described, this would count as a pretty good I-S
explanation, for 0.95 is fairly close to 1.

Let us now suppose further that additional medical research reveals that, among
those victims of untreated latent syphilis who have the P-factor, those whose spinal
fluid contains another factor ¢ invariably develop paresis. Given that information,
and the fact that Smith has the Q-factor, we can set up the following explanation:

(11) All victims of untreated latent syphilis who have the P-factor and the Q-factor develop
paresis.
Smith had untreated latent syphilis.
Smith had the P-factor.
Smith had the Q-factor.

Smith developed paresis.

If the suppositions about the P-factor and the O-factor were true, this argument would
qualify as a correct D-N explanation. We accepted (10) as a correct explanation of
Smith’s paresis only because we were lacking the information that enabled us to set
up (11).

Determinism is the doctrine that says that everything that happens in our uni-
verse is completely determined by prior conditions.'® If this thesis is correct, then
each and every event in the history of the universe—past, present, or future—is, in
principle, deductively explainable. If determinism is true, then every sound I-S ex-
planation is merely an incomplete D-N explanation. Under these circumstances, the
I-S pattern is not really a stand-alone type of explanation; all fully correct explana-
tions fit the D-N pattern. The lower left-hand box of Table 1.1 would be empty. This
does not mean that I-S explanations—that is, incomplete D-N explanations—are
useless, only that they are incomplete. '

Is determinism true? We will not take a stand on that issue in this chapter.
Modern physics—quantum mechanics in particular—seems to offer strong reasons to
believe that determinism is false, but not everyone agrees with this interpretation.
However, we will take the position that indeterminism may be true, and see what the
consequences are with respect to statistical explanation.

According to most physicists and philosophers of physics, the spontaneous
disintegration of the nucleus of an atom of a radioactive substance is a genuinely
indeterministic happening. Radioactive decay is governed by laws, but they are

18 Determinism is discussed in detail in Chapter 6.
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fundamentally and irreducibly statistical. Any C'* atom has a fifty-fifty chance of
spontaneously disintegrating within the next 5730 years and a fifty-fifty chance of not
doing so. Given a collection of C'* atoms, the probability is overwhelming that some
will decay and some will not in the next 5730 years. However, no way exists, even
in principle, to select in advance those that will. No D-N explanation of the decay of
any such atom can possibly be constructed; however, I-S explanations can be for-
mulated. For example, in a sample containing 1 milligram of C'* there are approx-
imately 4 X 10'® atoms. If, in a period of 5730 years, precisely half of them decayed,
approximately 2 X 10'° would remain intact. It is extremely unlikely that exactly half
of them would disintegrate in that period, but it is extremely likely that approximately
half would decay. The following argument—which differs from (5) by referring to
one particular sample S—would be a strong I-S explanation:

(12) S is a sample of C'* that contained one milligram 5730 years ago.
S has not been exposed to external radiation.
The half-life of C'* is 5730 years.

[r]

S now contains one-half milligram ( + 1%) of C**.

In this example, r differs from 1 by an incredibly tiny margin, but is not literally equal
to 1. In a world that is not deterministic, I-S explanations that are not merely incom-
plete D-N explanations can be formulated.

1.14 THE STATISTICAL RELEVANCE (S-R) MODEL OF
EXPLANATION

According to the received view, scientific explanations are arguments; each type of
explanation in Table 1.1 is some type of argument satisfying certain conditions. For
this reason, we can classify the received view as an inferential conception of scientific
explanation. Because of certain difficulties, associated primarily with I-S explanation,
another pattern for statistical explanations of particular occurrences was developed. A
fundamental feature of this model of explanation is that it does not construe expla-
nations as arguments.

One of the earliest objections to the I-S pattern of explanation—as shown by
CE-6 (psychotherapy) and CE-7 (vitamin C and the common cold)—is that statistical
relevance rather than high probability is the crucial relationship in statistical expla-
nations. Statistical relevance involves a relationship between two different probabil-
ities. Consider the psychotherapy example. Bruce Brown is a member of the class of
people who have a neurotic symptom of type N. Within that class, regardless of what
the person does in the way of treatment or nontreatment, there is a certain probability
of relief from the symptom (R). That is the prior probability of recovery; let us
symbolize it as ‘“‘Pr(R/N).”” Then there is a probability of recovery in the class of

19 This qualification is required to assure that the disintegrations have been spontaneous and not induced
by external radiation.
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people with that symptom who undergo psychotherapy (P); it can be symbolized as
“Pr(RIN.P).” If

Pr(R/IN.P) > Pr(RIN)

then psychotherapy is positively relevant to recovery, and if
Pr(R/IN.P) < Pr(R/IN)

then psychotherapy is negatively relevant to recovery. If
Pr(RIN . P) = Pr(RIN)

then psychotherapy is irrelevant to recovery. Suppose psychotherapy is positively
relevant to recovery. If someone then asks why Bruce Brown, who suffered with
neurotic symptom N, recovered from his symptom, we can say that it was because he
underwent psychotherapy. That is at least an important part of the explanation.

Consider another example. Suppose that Grace Green, an American woman,
suffered a serious heart attack. In order to explain why this happened we search for
factors that are relevant to serious heart attacks—for example, smoking, high cho-
lesterol level, and body weight. If we find that she was a heavy cigarette smoker, had
a serum cholesterol level above 300, and was seriously overweight, we have at least
a good part of an explanation, for all of those factors are positively relevant to serious
heart attacks. There are, of course, other relevant factors, but these three will do for
purposes of illustration.

More formally, if we ask why this member of the class A (American women)
has characteristic H (serious heart attack), we can take the original reference class A
and subdivide or partition it in terms of such relevant factors as we have mentioned:
S (heavy cigarette smokers), C (high cholesterol level), and W (overweight). This
will give us a partition with eight cells (where the dot signifies conjunction and the
tilde “*-’” signifies negation):

S.C.W -S.C.W

S.C.-W -S.C.-W
S.-C.W “S.-C.W
S.-C.-W S.-C.-W

An S-R explanation of Green’s heart attack has three parts:

1. The prior probability of H, namely, Pr(H/A).

2. The posterior probabilities of H with respect to each of the eight cells, Pr(H/
S.C.W), Pr(HIS.C.-W), ..,Pr(H -S.-C.-W).

3. The statement that Green is a member of S .C .W.

It is stipulated that the partition of the reference class must be made in terms of all and
only the factors relevant to serious heart attacks.

Clearly, an explanation of that sort is not an argument; it has neither premises
nor conclusion. It does, of course, consist of an explanans and an explanandum.
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Items 1-3 constitute the explanans; the explanandum is Green’s heart attack. More-
over, no restrictions are placed on the size of the probabilities—they can be high,
middling, or low. All that is required is that these probabilities differ from one another
in various ways, because we are centrally concerned with relations of statistical
relevance.

Although the S-R pattern of scientific explanation provides some improvements
over the I-S model, it suffers from a fundamental inadequacy. It focuses on statistical
relevance rather than causal relevance. It may, as a result, tend to foster a confusion
of causes and correlations. In the vitamin C example, for instance, we want a con-
trolled experiment to find out whether taking massive doses of vitamin C is causally
relevant to quick recovery from colds. We attempt to find out whether taking vitamin
C is statistically relevant to rapid relief because the statistical relevance relation is
evidence regarding the presence or absence of causal relevance. It is causal relevance
that has genuine explanatory import. The same remark applies to other examples as
well. In the psychotherapy example we try to find out whether such treatment is
statistically relevant to relief from neurotic symptoms in order to tell whether it is
causally relevant. In the case of the heart attack, many clinical studies have tried to
find statistical relevance relations as a basis for determining what is causally relevant
to the occurrence of serious heart attacks.

1.15 TWO GRAND TRADITIONS

We have been looking at the development of the received view, and at some of the
criticisms that have been leveled against it. The strongest intuitive appeal of that view
comes much more from explanations of laws than from explanations of particular
facts. One great example is the Newtonian synthesis. Prior to Newton we had a
miscellaneous collection of laws including Kepler’s three laws of planetary motion
and Galileo’s laws of falling objects, inertia, projectile motion, and pendulums. By
invoking three simple laws of motion and one law of gravitation, Newton was able to
explain these laws—and in some cases correct them. In addition, he was able to
explain many other regularities, such as the behavior of comets and tides, as well.
Later on, the molecular-Kinetic theory provided a Newtonian explanation of many
laws pertaining to gases. Quite possibly the most important feature of the Newtonian
synthesis was the extent to which it systematized our knowledge of the physical world
by subsuming all sorts of regularities under a small number of very simple laws.
Another excellent historical example is the explanation of light by subsumption under
Maxwell’s theory of electromagnetic radiation.

The watchword in these beautiful historical examples is unification. A large
number of specific regularities are unified in one theory with a small number of
assumptions or postulates. This theme was elaborated by Michael Friedman (1974)
who asserted that our comprehension of the universe is increased as the number of
independently acceptable assumptions we require is reduced. I would be inclined to
add that this sort of systematic unification of our scientific knowledge provides a
comprehensive world picture or worldview. This, I think, represents one major aspect
of scientific explanation—it is the notion that we understand what goes on in the
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world if we can fit it into a comprehensive worldview. As Friedman points out, this
is a global conception of explanation. The value of explanation lies in fitting things
into a universal pattern, or a pattern that covers major segments of the universe.’

As we look at many of the criticisms that have been directed against the received
view, it becomes clear that causality is a major focus. Scriven offered his ink stain
example, CE-5, to support the claim that finding the explanation amounts, in many
cases, simply to finding the causes. This is clearly explanation on a very local level.
All we need to do, according to Scriven, is to get a handle on events in an extremely
limited spacetime region that led up, causally, to the stain on the carpet, and we have
adequate understanding of that particular fact. In this connection, we should also
recall CE-1 and CE-2. In the first of these we sought a local causal explanation for the
length of a shadow, and in the second we wanted a causal explanation for a particular
storm. Closely related noncausal ‘‘explanations’’ were patently unacceptable. In such
cases as the Chernobyl accident and the Challenger space-shuttle explosion we also
seek causal explanations, partly in order to try to avoid such tragedies in the future.
Scientific explanation has its practical as well as its purely intellectual value.

It often happens, when we try to find causal explanations for various occur-
rences, that we have to appeal to entities that are not directly observable with the
unaided human senses. For example, to understand AIDS (Acquired Immunodefi-
ciency Syndrome), we must deal with viruses and cells. To understand the transmis-
sion of traits from parents to offspring, we become involved with the structure of the
DNA molecule. To explain a large range of phenomena associated with the nuclear
accident at Three Mile Island, we must deal with atoms and subatomic particles.
When we try to construct causal explanations we are attempting to discover the
mechanisms—often hidden mechanisms—that bring about the facts we seek to un-
derstand. The search for causal explanations, and the associated attempt to expose the
hidden workings of nature, represent a second grand tradition regarding scientific
explanation. We can refer to it as the causal-mechanical tradition.

Having contrasted the two major traditions, we should call attention to an
important respect in which they overlap. When the search for hidden mechanisms is
successful, the result is often to reveal a small number of basic mechanisms that
underlie wide ranges of phenomena. The explanation of diverse phenomena in terms
of the same mechanisms constitutes theoretical unification. For instance, the kinetic-
molecular theory of gases unified thermodynamic phenomena with Newtonian parti-
cle mechanics. The discovery of the double-helical structure of DNA, for another
example, produced a major unification of biology and chemistry.

Each of the two grand traditions faces certain fundamental problems. The tra-
dition of explanation as unification—associated with the received view—still faces
the problem concerning explanations of laws that was pointed out in 1948 by Hempel
and Oppenheim. It was never solved by Hempel in any of his subsequent work on
scientific explanation. If the technical details of Friedman’s theory of unification were
satisfactory, it would provide a solution to that problem. Unfortunately, it appears to
encounter serious technical difficulties (see Kitcher 1976 and Salmon 1989).

20 The unification approach has been dramatically extended and improved by Philip Kitcher (1976, 1981,
and 1989).
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The causal-mechanical tradition faces a longstanding philosophical difficulty
concerning the nature of causality that had been posed by David Hume in the eigh-
teenth century. The problem—stated extremely concisely—is that we seem unable to
identify the connection between cause and effect, or to find the secret power by which
the cause brings about the effect. Hume is able to find certain constant conjunctions—
for instance, between fire and heat—but he is unable to find the connection. He is able
to see the spatial contiguity of events we identify as cause and effect, and the temporal
priority of the cause to the effect—as in collisions of billiard balls, for instance—but
still no necessary connection. In the end he locates the connection in the human
imagination—in the psychological expectation we feel with regard to the effect when
we observe the cause.”!

Hume’s problem regarding causality is one of the most recalcitrant in the whole
history of philosophy. Some philosophers of science have tried to provide a more
objective and robust concept of causality, but none has enjoyed widespread success.
One of the main reasons the received view was reticent about incorporating causal
considerations in the analysis of scientific explanation was an acute sense of uneas-
iness about Hume’s problem. One of the weaknesses of the causal view, as it is
handled by many philosophers who espouse it, is the absence of any satisfactory
theory of causality.”

1.16 THE PRAGMATICS OF EXPLANATION

As we noted in Section 1.4, the term ‘‘explanation’” refers sometimes to linguistic
entities—that is, collections of statements of facts—and sometimes to nonlinguistic
entities—namely, those very facts. When we think in terms of the human activity of
explaining something to some person or group of people, we are considering linguis-
tic behavior. Explaining something to someone involves uttering or writing state-
ments. In this section we look at some aspects of this process of explaining. In this
chapter, up to this point, we have dealt mainly with the product resulting from this
activity, that is, the explanation that was offered in the process of explaining.

When philosophers discuss language they customarily divide the study into
three parts: syntax, semantics, and pragmatics. Syntax is concerned only with rela-
tionships among the symbols, without reference to the meanings of the symbols or the
people who use them. Roughly speaking, syntax is pure grammar; it deals with the
conventions governing combinations and manipulations of symbols. Semantics deals
with the relationships between symbols and the things to which the symbols refer.
Meaning and truth are the major semantical concepts. Pragmatics deals with the
relationships among symbols, what they refer to, and the users of language. Of
particular interest for our discussion is the treatment of the context in which language
is used.

The 1948 Hempel-Oppenheim essay offered a highly formalized account of D-N
explanations of particular facts, and it characterized such explanations in syntactical

2! Hume’s analysis of causation is discussed in greater detail in Chapter 2, Part I1.
22 1 have tried to make some progress in this direction in Salmon (1984, Chapters 5-7).
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and semantical terms alone. Pragmatic considerations were not dealt with. Hempel’s
later characterization of the other types of explanations were given mainly in syn-
tactical and semantical terms, although I-S explanations are, as we noted, relativized
to knowledge situations. Knowledge situations are aspects of the human contexts in
which explanations are sought and given. Such contexts have other aspects as well.

One way to look at the pragmatic dimensions of expianation is to start with the
question by which an explanation is sought. In Section 1.3 we touched briefly on this
matter. We noted that many, if not all, explanations can properly be requested by
explanation-seeking why-questions. In many cases, the first pragmatic step is to
clarify the question being asked; often the sentence uttered by the questioner depends
upon contextual clues for its interpretation. As Bas van Fraassen, one of the most
important contributors to the study of the pragmatics of explanation, has shown, the
emphasis with which a speaker poses a question may play a crucial role in determin-
ing just what question is being asked. He goes to the Biblical story of the Garden of
Eden to illustrate. Consider the following three questions:

(1) Why did Adam eat the apple?
(i1) Why did Adam eat the apple?
(iii) Why did Adam eat the apple?

Although the words are the same—and in the same order—in each, they pose three
very different questions. This can be shown by considering what van Fraassen calls
the contrast class. Sentence (i) asks why Adam ate the apple instead of a pear, a
banana, or a pomegranate. Sentence (i1) asks why Adam, instead of Eve, the serpent,
or a goat, ate the apple. Sentence (iii) asks why Adam ate the apple instead of
throwing it away, feeding it to a goat, or hiding it somewhere. Unless we become
clear on the question being asked, we can hardly expect to furnish appropriate an-
SWeTS.

Another pragmatic feature of explanation concerns the knowledge and intellec-
tual ability of the person or group requesting the explanation. On the one hand, there
is usually no point in including in an explanation matters that are obvious to all
concerned. Returning to (3)—our prime example of a D-N explanation of a particular
fact—one person requesting an explanation of the sudden dramatic increase in the
skater’s rate of rotation might have been well aware of the fact that she drew her arms
in close to her body, but unfamiliar with the law of conservation of angular momen-
tum. For this questioner, knowledge of the law of conservation of angular momentum
is required in order to understand the explanandum-fact. Another person might have
been fully aware of the law of conservation of angular momentum, but failed to notice
what the skater did with her arms. This person needs to be informed of the skater’s
arm maneuver. Still another person might have noticed the arm maneuver, and might
also be aware of the law of conservation of angular momentum, but failed to notice
that this law applies to the skater’s movement. This person needs to be shown how
to apply the law in the case in question.

On the other hand, there is no point in including material in an explanation that
is beyond the listeners’ ability to comprehend. To most schoolchildren, for example,
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an explanation of the darkness of the night sky that made reference to the non-
Euclidean structure of space or the mean free path of a photon would be inappropri-
ate. Many of the explanations we encounter in real-life situations are incomplete on
account of the explainer’s view of the background knowledge of the audience.

A further pragmatic consideration concerns the interests of the audience. A
scientist giving an explanation of a serious accident to a congressional investigating
committee may tell the members of Congress far more than they want to know about
the scientific details. In learning why an airplane crashed, the committee might be
very interested to find that it was because of an accumulation of ice on the wing, but
totally bored by the scientific reason why ice-accumulations cause airplanes to crash.

Peter Railton (1981) has offered a distinction that helps considerably in under-
standing the role of pragmatics in scientific explanation. First, he introduces the
notion of an ideal explanatory text. An ideal explanatory text contains all of the facts
and all of the laws that are relevant to the explanandum-fact. It details 4!l of the causal
connections among those facts and all of the hidden mechanisms. In most cases the
ideal explanatory text is huge and complex. Consider, for example, an explanation of
an automobile accident. The full details of such items as the behavior of both drivers,
the operations of both autos, the condition of the highway surface, the dirt on the
windshields, and the weather, would be unbelievably complicated. That does not
really matter, for the ideal explanatory text is seldom, if ever, spelled out fully. What
is important is to have the ability to illuminate portions of the ideal text as they are
wanted or needed. When we do provide knowledge to fill in some aspect of the ideal
text we are furnishing explanatory information.

A request for a scientific explanation of a given fact is almost always—if not
literally always—a request, not for the ideal explanatory text, but for explanatory
information. The ideal text contains all of the facts and laws pertaining to the
explanandum-fact. These are the completely objective and nonpragmatic aspects of
the explanation. If explanatory information is to count as legitimate it must corre-
spond to the objective features of the ideal text. The ideal text determines what is
relevant to the explanandum-fact. Since, however, we cannot provide the whole ideal
text, nor do we want to, a selection of information to be supplied must be made. This
depends on the knowledge and interests of those requesting and those furnishing
explanations. The information that satisfies the request in terms of the interests and
knowledge of the audience is salient information. The pragmatics of explanation
determines salience—that is, what aspects of the ideal explanatory text are appropri-
ate for an explanation in a particular context.

1.17 CONCLUSION

Several years ago, a friend and colleague—whom I will call the friendly physicist—
was sitting on a jet airplane awaiting takeoff. Directly across the aisle was a young
boy holding a helium-filled balloon by a string. In an effort to pique the child’s
curiosity, the friendly physicist asked him what he thought the balloon would do
when the plane accelerated for takeoff. After a moment’s thought the boy said that it
would move toward the back of the plane. The friendly physicist replied that ke
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thought it would move toward the front of the cabin. Several adults in the vicinity
became interested in the conversation, and they insisted that the friendly physicist was
wrong. A flight attendant offered to wager a miniature bottle of Scotch that he was
mistaken—a bet that he was quite willing to accept. Soon thereafter the plane accel-
erated, the balloon moved forward, and the friendly physicist enjoyed a free drink.*

Why did the balloon move toward the front of the cabin? Two explanations can
be offered, both of which are correct. First, one can tell a story about the behavior of
the molecules that made up the air in the cabin, explaining how the rear wall collided
with nearby molecules when it began its forward motion, thus creating a pressure gra-
dient from the back to the front of the cabin. This pressure gradient imposed an un-
balanced force on the back side of the balloon, causing it to move forward with respect
to the walls of the cabin.®® Second, one can cite an extremely general physical
principle—Einstein’s principle of equivalence—according to which an acceleration is
physically equivalent, from the standpoint of the occupants of the cabin, to a gravi-
tational field. Since helium-filled balloons tend to rise in the atmosphere in the earth’s
gravitational field, they will move forward when the airplane accelerates, reacting just
as they would if a massive object were suddenly placed behind the rear wall.

The first of these explanations is causal-mechanical. It appeals to unobservable
entities, describing the causal processes and causal interactions involved in the ex-
planandum phenomenon. When we are made aware of these explanatory facts we
understand how the phenomenon came about. This is the kind of explanation that
advocates of the causal-mechanical tradition find congenial. The second explanation
illustrates the unification approach. By appealing to an extremely general physical
principle, it shows how this odd little occurrence fits into the universal scheme of
things. It does not refer to the detailed mechanisms. This explanation provides a
different kind of understanding of the same fact.

Which of these explanations is correct? Both are. Both of them are embedded
in the ideal explanatory text. Each of them furnishes valuable explanatory informa-
tion. It would be a serious error to suppose that any phenomenon has only one
explanation. It is a mistake, I believe, to ask for the explanation of any occurrence.
Each of these explanations confers a kind of scientific understanding. Pragmatic
considerations might dictate the choice of one rather than the other in a given context.
For example, the explanation in terms of the equivalence principle would be unsuit-
able for a ten-year-old child. The same explanation might be just right in an under-
graduate physics course. But both are bona fide explanations.

As we noted in Section 1.10, the 1948 Hempel-Oppenheim essay attracted
almost no attention for about a decade after its publication. Around 1959 it became
the focus of intense controversy, much of it stemming from those who saw causality
as central to scientific explanation. The subsequent thirty years have seen a strong
opposition between the advocates of the received view and the proponents of causal
explanation. Each of the two major approaches has evolved considerably during this

23 This little story was previously published in Salmon (1980). I did not offer an explanation of the
phenomenon in that article.

* Objects that are denser than air do not move toward the front of the cabin because the pressure
difference is insufficient to overcome their inertia.
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period—indeed, they have developed to the point that they can peacefully coexist as
two distinct aspects of scientific explanation. Scientific understanding is, after all, a
complicated affair; we should not be surprised to learn that it has many different
aspects. Exposing underlying mechanisms and fitting phenomena into comprehensive
pictures of the world seem to constitute two important aspects. Moreover, as re-
marked above, we should remember that these two types of understanding frequently
overlap. When we find that the same mechanisms underlie diverse types of natural
phenomena this ipso facto constitutes a theoretical unification.

On one basic thesis there i1s nearly complete consensus. Recall that in the early
decades of the twentieth century many scientists and philosophers denied that there
can be any such thing as scientific explanation. Explanation is to be found, according
to this view, only in the realms of theology and metaphysics. At present it seems
virtually unanimously agreed that, however it may be explicated, there is such a thing
as scientific explanation. Science can provide deep understanding of our world. We
do not need to appeal to supernatural agencies to achieve understanding. Equally
importantly, we can contrast the objectively based explanations of contemporary
science with the pseudounderstanding offered by such flagrantly unscientific ap-
proaches as astrology, creation science, and scientology. These are points worth
remembering in an age of rampant pseudoscience.

QUESTIONS

1. Must every scientific explanation contain a law of nature? According to philosophers who
support ‘ ‘the received view’’ the answer is affirmative. Other philosophers have answered in the
negative. Discuss critically the arguments pro and con. Give your own answer, supported by
reasons.

2. Are there any inductive or statistical explanations of particular facts? In their classic 1948 paper
Hempel and Oppenheim say that there are such explanations, but do not offer any explication of
their nature. Later attempts to work out the details ran into many difficulties. Discuss these
problems and say whether you think they are insuperable. Give your reasons.

3. According to the explanation-prediction symmetry thesis, every satisfactory scientific explana-
tion could (in some suitable context) serve as a scientific prediction, and every scientific pre-
diction could (in some suitable context) serve as a scientific explanation. Critically discuss both
parts of this symmetry thesis. Give your reasons for accepting or rejecting each part.

4. Are there any fundamental differences between explanations in the natural sciences and expla-
nations n the social sciences? (See Merrilee H. Salmon’s chapter on philosophy of the social
sciences.) Are there basic differences between human behavior and the behavior of other kinds
of physical objects that make one kind more amenable to explanation than the other? Is expla-
nation of human behavior that involves conscious deliberation and free choice possible? Discuss
critically.

5. In this chapter it was suggested that *‘No gold sphere has a mass greater than 100,000 kg™’ is not
a lawlike statement, whereas ‘‘No enriched uranium sphere has a mass greater than 100,000 kg*’
is a lawlike statement. Discuss the distinction between lawlike and accidental generalizations.
Explain as clearly as possible why one is lawlike and the other is not.

6. Discuss the role of causality in scientific explanation. Do all legitimate scientific explanations
make reference to causal relations? Is causality essentially irrelevant to scientific explanation?
Are some good explanations causal and other good explanations not? Discuss critically.
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7. Choose an actual example of a scientific explanation from a magazine such as Scientific Amer-
ican, Science, Nature, American Scientist, or from a textbook you have used in a science course.
Give a concise summary of this explanation, and analyze it in terms of the models (such as D-N,
I-§, D-§, S-R) and concepts (such as covering law, causal-mechanical, unification) introduced
in this chapter. Evaluate the explanation in terms of these models and/or concepts.

8. In Section 1.9 it was claimed that

(i) All gases, kept in closed containers of fixed size, exert greater pressure when heated

is a general statement, whereas

(v) All Apache basketry is made by women

is not completely general because it refers specifically to a particular group of people. But, it
might be objected, (i) refers to physical objects of a specific type, namely, gases in closed
containers, so it is not completely general either. Moreover, (v) is a general statement about the
Apache. Discuss this objection. Hint: Statement (i) can be formulated as follows: *‘If anything
15 a gas in a closed container that is heated, it will expand.’’ But: Statement (v) can likewise be
reformulated as follows: “‘If anything is an Apache basket, it was made by a woman.”’ Is there
a fundamental logical difference between the two statements as reformulated?
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Two

Tue CONFIRMATION
OF ScIENTIFIC HYPOTHESES

John Earman and Wesley C. Salmon

In Chapter 1 we considered the nature and importance of scientific explanation. If we
are to be able to provide an explanation of any fact, particular or general, we must be
able to establish the statements that constitute its explanans. We have seen in the
Introduction that many of the statements that function as explanans cannot be estab-
lished in the sense of being conclusively verified. Nevertheless, these statements can
be supported or confirmed to some degree that falls short of absolute certainty. Thus,
we want to learn what is involved in confirming the kinds of statements used in
explanations, and in other scientific contexts as well.

This chapter falls into four parts. Part I (Sections 2.1-2.4) introduces the
problem of confirmation and discusses some attempts to explicate the qualitative
concept of support. Part IT (2.5-2.6) reviews Hume’s problem of induction and some
attempted resolutions. Part IIT (2.7-2.8) develops the mathematical theory of prob-
ability and discusses various interpretations of the probability concept. Finally, Part
IV (2.9-2.10) shows how the probability apparatus can be used to illuminate various
issues in confirmation theory.

Parts 1, 11, and III can each stand alone as a basic introduction to the topic with
which it deals. These three parts, taken together, provide a solid introduction to the
basic issues in confirmation, induction, and probability. Part IV covers more ad-
vanced topics. Readers who prefer not to bring up Hume’s problem of induction can
omit Part IT without loss of continuity.
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Part I: Qualitative Confirmation

2.1 EMPIRICAL EVIDENCE

The physical, biological, and behavioral sciences are all empirical. This means that
their assertions must ultimately face the test of observation. Some scientific state-
ments face the observational evidence directly; for example, ‘‘All swans are white,”’
was supported by many observations of European swans, all of which were white, but
it was refuted by the observation of black swans in Australia. Other scientific state-
ments confront the observational evidence in indirect ways; for instance, ‘‘Every
proton contains three quarks,’’” can be checked observationally only by looking at the
results of exceedingly complex experiments. Innumerable cases, of course, fall be-
tween these two extremes.

Human beings are medium-sized objects; we are much larger than atoms and
much smaller than galaxies. Our environment is full of other medium-sized things—
for example, insects, frisbees, automobiles, and skyscrapers. These can be observed
with normal unaided human senses. Other things, such as microbes, are too small to
be seen directly; in these cases we can use instruments of observation—
microscopes—to extend our powers of observation. Similarly, telescopes are exten-
sions of our senses that enable us to see things that are too far away to be observed
directly. Our senses of hearing and touch can also be enhanced by various kinds of
instruments. Ordinary eyeglasses—in contrast to microscopes and telescopes—are
not extensions of normal human senses; they are devices that provide more normal
sight for those whose vision is somewhat impaired.

An observation that correctly reveals the features—such as size, shape, color,
and texture—of what we are observing is called veridical. Observations that are not
veridical are illusory. Among the illusory observations are hallucinations, afterim-
ages, optical illusions, and experiences that occur in dreams. Philosophical arguments
going back to antiquity show that we cannot be absolutely certain that our direct
observations are veridical. It is impossible to prove conclusively, for example, that
any given observation is not a dream experience. That point must be conceded. We
can, however, adopt the attitude that our observations of ordinary middle-sized phys-
ical objects are reasonably reliable, and that, even though we cannot achieve cer-
tainty, we can take measures to check on the veridicality of our observations and
make corrections as required (see Chapter 4 for further discussion of the topics of
skepticism and antirealism).

We can make a rough and ready distinction among three kinds of entities: (1)
those that can be observed directly with normal unaided human senses; (ii) those that
can be observed only indirectly by using some instrument that extends the normal
human senses; and (iii) those that cannot be observed either directly or indirectly,
whose existence and nature can be established only by some sort of theoretical
inference. We do not claim that these distinctions are precise; that will not matter for
our subsequent discussion. We say much more about category (iii) and the kinds of
inferences that are involved as this chapter develops.

Our scientific languages should also be noted to contain terms of two types. We
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have an observational vocabulary that contains expressions referring to entities,
properties, and relations that we can observe. ““Tree,”” ““airplane,”” ‘‘green,”” “‘soft,”’
and ‘‘is taller than’’ are familiar examples. We also have a theoretical vocabulary
containing expressions referring to entities, properties, and relations that we cannot
observe. ‘‘Microbe,’’ “‘quark,”’ *‘electrically charged,”’ ‘‘ionized,’’ and ‘‘contains
more protons than’’ exemplify this category. The terms of the theoretical vocabulary
tend to be associated with the unobservable entities of type (iii) of the preceding
paragraph, but this relationship is by no means precise. The distinction between
observational terms and theoretical terms—Iike the distinction among the three kinds
of entities—is useful, but it is not altogether clear and unambiguous. One further
point of terminology. Philosophers often use the expression ‘‘theoretical entity,”’ but
it would be better to avoid that term and to speak either of theoretical terms or
unobservable entities.

At this point a fundamental moral concerning the nature of scientific knowledge
can be drawn. It is generally conceded that scientific knowledge is not confined to
what we have observed. Science provides predictions of future occurrences—such as
the burnout of our sun when all of its hydrogen has been consumed in the synthesis
of helium—that have not yet been observed and that may never be observed by any
human. Science provides knowledge of events in the remote past—such as the ex-
tinction of the dinosaurs—before any human observers existed. Science provides
knowledge of other parts of the universe—such as planets orbiting distant stars—that
we are unable to observe at present. This means that much of our scientific knowledge
depends upon inference as well as observation. Since, however, deductive reasoning
is nonampliative (see Chapter 1, Section 1.5), observations plus deduction cannot
provide knowledge of the unobserved. Some other mode of inference is required to
account for the full scope of our scientific knowledge.

77 L6

2.2 THE HYPOTHETICO-DEDUCTIVE METHOD

As we have seen, science contains some statements that are reports of direct obser-
vation, and others that are not. When we ask how statements of this latter type are to
meet the test of experience, the answer often given is the hypothetico-deductive (H-D )
method; indeed, the H-D method is sometimes offered as the method of scientific
inference. We must examine its logic.

The term hypothesis can appropriately be applied to any statement that is in-
tended for evaluation in terms of its consequences. The idea is to articulate some
statement, particular or general, from which observational consquences can be drawn.
An observational consequence is a statement—one that might be true or might be
false—whose truth or falsity can be established by making observations. These ob-
servational consequences are then checked by observation to determine whether they
are true or false. If the observational consequence turns out to be true, that is said to
confirm the hypothesis to some degree. If it turns out to be false, that is said to
disconfirm the hypothesis.

Let us begin by taking a look at the H-D testing of hypotheses having the form
of universal generalizations. For a very simple example, consider Boyle’s law of
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gases, which says that, for any gas kept at a constant temperature 7, the pressure P
is inversely proportional to the volume V,’ that is,

P X V = constant (at constant T).

This implies, for example, that doubling the pressure on a gas will reduce its volume
by a half. Suppose we have a sample of gas in a cylinder with a movable piston, and
that the pressure of the gas is equal to the pressure exerted by the atmosphere—about
15 pounds per square inch. It occupies a certain volume, say, 1 cubic foot. We now
apply an additional pressure of 1 atmosphere, making the total pressure 2 atmo-
spheres. The volume of the gas decreases to Y2 cubic foot. This constitutes a
hypothetico-deductive confirmation of Boyle’s law. It can be schematized as follows:

(1) At constant temperature, the pressure of a gas is inversely proportional to its volume
(Boyle’s law).
The initial volume of the gas is 1 cubic ft.
The initial pressure is 1 atm.
The pressure is increased to 2 atm.
The temperature remains constant.

The volume decreases to Y2 cubic ft.

Argument (1) is a valid deduction. The first premise is the hypothesis that is being
tested, namely, Boyle’s law. It should be carefully noted, however, that Boyle’s law
is not the only premise of this argument. From the hypothesis alone it is impossible
to deduce any observational prediction; other premises are required. The following
four premises state the initial conditions under which the test is performed. The
conclusion is the observational prediction that is derived from the hypothesis and the
initial conditions. Since the temperature, pressure, and volume can be directly mea-
sured, let us assume for the moment that we need have no serious doubts about the
truth of the statements of initial conditions. The argument can be schematized as
follows:

(2) H (test hypothesis)
I (initial conditions)
O (observational prediction)

When the experiment is performed we observe that the observational prediction is
true.

As we noted in Chapter 1, it is entirely possible for a valid deductive argument
to have one or more false premises and a true conclusion; consequently, the fact that
(1) has a true conclusion does not prove that its premises are true. More specificaily,
we cannot validly conclude that our hypothesis, Boyle’s law, is true just because the
observational prediction turned out to be true. In (1) the argument from premises to

! This relationship does not hold for temperatures and pressures close to the point at which the gas in
question condenses into a liquid or solid state.
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conclusion is a valid deduction but the argument from the conclusion o the premises
is not. If it has any merit at all, it must be as an inductive argument.

Let us reconstruct the argument from the observational prediction to the hy-
pothesis as follows:

(3) The initial volume of the gas is 1 cubic ft.
The initial pressure is 1 atm.
The pressure is increased to 2 atm.
The temperature remains constant.
The volume decreases to %2 cubic ft.

At constant temperature, the pressure of a gas is inversely proportional to its volume
(Boyle’s law).

No one would seriously suppose that (3) establishes Boyle’s law conclusively, or
even that it renders the law highly probable. At best, it provides a tiny bit of inductive
support. If we want to provide solid inductive support for Boyle’s law it is necessary
to make repeated tests of this gas, at the same temperature, for different pressures and
volumes, and to make other tests at other temperatures. In addition, other kinds of
gases must be tested in a similar manner.

In one respect, at least, our treatment of the test of Boyle’s law has been
oversimplified. In carrying out the test we do not directly observe—say by feeling the
container—that the initial and final temperatures of the gas are the same. Some type
of thermometer is used; what we observe directly is not the temperature of the gas but
the reading on the thermometer. We are therefore relying on an auxiliary hypothesis
to the effect that the thermometer is a reliable instrument for the measurement of
temperature. On the basis of an additional hypothesis of this sort we claim that we can
observe the temperature indirectly. Similarly, we do not observe the pressures di-
rectly, by feeling the force against our hands; instead, we use some sort of pressure
gauge. Again, we need an auxiliary hypothesis stating that the instrument is a reliable
indicator.

The need for auxiliary hypotheses is not peculiar to the example we have
chosen. In the vast majority of cases—if not in every case—auxiliary hypotheses are
required. In biological and medical experiments, for example, microscopes of various
types are employed—ifrom the simple optical type to the tunneling scanning electron
microscope, each of which requires a different set of auxiliary hypotheses. Likewise,
in astronomical work telescopes—refracting and reflecting optical, infrared, radio,
X-ray, as well as cameras are used. The optical theory of the telescope and the
chemical theory of photographic emulsions are therefore required as auxiliary hy-
potheses. In sophisticated physical experiments using particle accelerators, an elab-
orate set of auxiliary hypotheses concerning the operation of all of the various sorts
of equipment is needed. In view of this fact, schema (2) should be expanded:

(4) H (test hypothesis)
A (auxiliary hypotheses)
I (initial conditions)

O (observational prediction)
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Up to this point we have considered the case in which the observational pre-
diction turns out to be true. The question arises, what if the observational prediction
happens to be false? To deal with this case we need a different example.

At the beginning of the nineteenth century a serious controversy existed about
the nature of light. Two major hypotheses were in contention. According to one
theory light consists of tiny particles; according to the other, light consists of waves.
If the corpuscular theory is true, a circular object such as a coin or ball bearing, if
brightly illuminated, will cast a uniformly dark circular shadow. The following H-D
test was performed:

(5) Light consists of corpuscles that travel in straight lines.>
A circular object is brightly illuminated.

The object casts a uniform circular shadow.

Surprisingly, when the experiment was performed, it turned out that the shadow had
a bright spot in its center. Thus, the result of the test was negative; the observational
prediction was false.

Argument (5) is a valid deduction; accordingly, if its premises are true its
conclusion must also be true. But the conclusion is not true. Hence, at least one of the
premises must be false. Since the second premise was known to be true on the basis
of direct observation, the first premise—the corpuscular hypothesis—must be false.

We have examined two examples of H-D tests of hypotheses. In the first,
Boyle’s law, the outcome was positive—the observational prediction was found to be
true. We saw that, even assuming the truth of the other premises in argument (1), the
positive outcome could, at best, lend a small bit of support to the hypothesis. In the
second, the corpuscular theory of light, the outcome was negative—the observational
prediction was found to be false. In that case, assuming the truth of the other premise,
the hypothesis was conclusively refuted.

The negative outcome of an H-D test is often less straightforward than the
example just discussed. For example, astronomers who used Newtonian mechanics
to predict the orbit of the planet Uranus found that their observational predictions
were incorrect. In their calculations they had, of course, taken account only of the
gravitational influences of the planets that were known at the time. Instead of tak-
ing the negative result of the H-D test as a refutation of Newtonian mechanics, they
postulated the existence of another planet that had not previously been observed.
That planet, Neptune, was observed shortly thereafter. An auxiliary hypothesis con-
cerning the constitution of the solar system was rejected rather than Newtonian
mechanics.

It is interesting to compare the Uranus example with that of Mercury. Mercury
also moves in a path that differs from the orbit calculated on the basis of Newtonian
mechanics. This irregularity, however, could not be successfully explained by pos-
tulating another planet, though this strategy was tried. As it turned out, the pertur-
bation of Mercury’s orbit became one of three primary pieces of evidence supporting
Einstein’s general theory of relativity—the theory that has replaced Newtonian me-

* Except when they pass from one medium (e.g., air) to another medium (e.g., glass or water).
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chanics in the twentieth century. The moral is that negative outcomes of H-D tests
sometimes do, and sometimes do not, result in the refutation of the test hypothesis.
Since auxiliary hypotheses are almost always present in H-D tests, we must face the
possibility that an auxiliary hypothesis, rather than the test hypothesis, is responsible
for the negative outcome.

2.3 PROBLEMS WITH THE HYPOTHETICO-DEDUCTIVE METHOD

The H-D method has two serious shortcomings that must be taken into account. The
first of these might well be called the problem of alternative hypotheses. Let us
reconsider the case of Boyle’s law. If we represent that law graphically, it says that
a plot of pressures against volumes is a smooth curve, as shown in Figure 2.1.

The result of the test, schematized in argument (1), is that we have two points
(indicated by arrows) on this curve—one corresponding to a pressure of 1 atmosphere
and a volume of 1 cubic foot, the other corresponding to a pressure of 2 atmospheres
and a volume of Y2 cubic foot. While these two points conform to the solid curve
shown in the figure, they agree with infinitely many other curves as well—for ex-
ample, the dashed straight line through those two points. If we perform another test,
with a pressure of 3 atmospheres, we will find that it yields a volume of 3 cubic foot.
This is incompatible with the straight line curve, but the three points we now have are
still compatible with infinitely many curves, such as the dotted one, that go through
these three. Obviously we can make only a finite number of tests; thus, it is clear that,
no matter how many tests we make, the results will be compatible with infinitely
many different curves.
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This fact poses a profound problem for the hypothetico-deductive method.
Whenever an observational result of an H-D test confirms a given hypothesis, it
also confirms infinitely many other hypotheses that are incompatible with the given
one. In that case, how can we maintain that the test confirms our test hypothesis
in preference to an infinite number of other possible hypotheses? This is the prob-
lem of alternative hypotheses. The answer often given is that we should prefer the
simplest hypothesis compatible with the results of the tests. The question then be-
comes, what has simplicity got to do with this matter? Why are simpler hypotheses
preferable to more complex ones? The H-D method, as such, does not address
these questions.

The second fundamental problem for the H-D method concerns cases in
which observational predictions cannot be deduced. The situation arises typically
where statistical hypotheses are concerned. This problem may be called the prob-
lem of statistical hypotheses. Suppose, to return to an example cited in Chapter 1,
that we want to ascertain whether massive doses of vitamin C tend to shorten the
duration of colds. If this hypothesis is correct, the probability of a quick recovery
is increased for people who take the drug. (As noted in Chapter 1, this is a fic-
titious example; the genuine question is whether vitamin C lessens the frequency of
colds.) As suggested in that chapter, we can conduct'a double-blind controlled ex-
periment. However, we cannot deduce that the average duration of colds among
people taking the drug will be smaller than the average for those in the control
group. We can only conclude that, if the hypothesis is true, it is probable that the
average duration in the experimental group will be smaller than it is in the control
group. If we predict that the average duration in the experimental group will be
smaller, the inference is inductive. The H-D method leaves no room for arguments
of this sort. Because of the pervasiveness of the testing of statistical hypotheses in
modern science, this limitation constitutes a severe shortcoming of the H-D
method.

2.4 OTHER APPROACHES TO QUALITATIVE CONFIRMATION

The best known alternative to the H-D method is an account of qualitative confir-
mation developed by Carl G. Hempel (1945). The leading idea of Hempel’s approach
is that hypotheses are confirmed by their positive instances. Although seemingly
simple and straightforward, this intuitive idea turns out to be difficult to pin down.
Consider, for example, Nicod’s attempt to explicate the idea for universal condi-
tionals; for example:

H: (x) (Rx O Bx) (All ravens are black).

(The symbol ““(x)’’ is the so-called universal quantifier, which can be read, ‘‘for
every object x’’; *“D” is the sign of material implication, which can be read very
roughly “‘if . . . then. . . .””) Although this statement is too simpleminded to qualify
as a serious scientific hypothesis, the logical considerations that will be raised apply
to all universal generalizations in science, no matter how sophisticated—see Section
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2.11 of this chapter. According to Nicod, E Nicod-confirms such an H just in case E
implies that some object is an instance of the hypothesis in the sense that it satisfies
both the antecedent and the consequent, for example, E is Ra.Ba (the dot means
‘““and’’; it is the symbol for conjunction). To see why this intuitive idea runs into
trouble, consider a plausible constraint on qualitative confirmation.

Equivalence condition: If E confirms H and - H = H', then E confirms H'.

(The triple bar ‘‘="’ is the symbol for material equivalence; it can be translated very
roughly as ‘‘if and only if,”” which is often abbreviated ‘‘iff.”’ The turnstile “‘+"’
preceding a formula means that the formula is a truth of logic.) The failure of this
condition would lead to awkward situations since then confirmation would depend
upon the mode of presentation of the hypothesis. Now consider

H' : (x) (— Bx DO ~ Rx).
(The tilde ““~’’ signifies negation; it is read simply as ‘“‘not.”’) H' is logically
equivalent to H. But
E: Ra.Ba
does not Nicod-confirm H' although it does Nicod-confirm H. Or consider
H": (x) [(Rx.~ Bx) D (Px.~ Px)].

Again H” is logically equivalent to H. But by logic alone, nothing can satisfy the
consequent of H” and if H is true nothing can satisfy the antecedent. So if H is true
nothing can Nicod-confirm H".>

After rejecting the Nicod account because of these and other shortcomings,
Hempel’s next step was to lay down what he regarded as conditions of adequacy for
qualitative confirmation—that is, conditions that should be satisfied by any adequate

definition of qualitative confirmation. In addition to the equivalence condition there
are (among others) the following:

Entailment condition: If E - H, the E confirms H.

(When the turnstile is preceded by a formula (‘‘E” in “E = H”’), it means that
whatever comes before the turnstile logically entails that which follows the turnstile—F
logically entails H.)

3 Such examples might lead one to try to build the equivalence condition into the definition of Nicod-
confirmation along the following lines:

{(N) E Nicod-confirms H just in case there is an H' such that - H = H' and such that E implies that
the objects mentioned satisfy both the antecedent and consequent of H'.

But as the following example due to Hempel shows, (N') leads to confirmation where it is not wanted in the case
of multiply quantified hypotheses. Consider

H: (x) () Rxy
H': (x) ([~Rxy . Ryx) D (Rxy.~ Ryx)]
E: Rab. ~ Rba

E implies that the pair a, b satisfies both the antecedent and the consequent of H', and H' is logically equivalent
to H. So by (N") E Nicod-confirms H. But this is an unacceptable result since E contradicts H.
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Special consequence condition: If E confirms H and H - H' then E confirms H'.

Consistency condition: If E confirms H and also confirms A’ then H and H' are
logically consistent.

As a result, he rejects
Converse consequence condition: If E confirms H and H' - H then E confirms H'.

For to accept the converse consequence condition along with the entailment and
special consequence conditions would lead to the disastrous result that any E confirms
any H. (Proof of this statement is one of the exercises at the end of this chapter.) Note
that the H-D account satisfies the converse consequence condition but neither the
special consequence condition nor the consistency condition.

Hempel provided a definition of confirmation that satisfies all of his adequacy
conditions. The key idea of his definition is that of the development, dev,(H), of a
hypothesis H for a set I of individuals. Intuitively, dev,(H) is what H says about a
domain that contains exactly the individuals of /. Formally, universal quantifiers are
replaced by conjunctions and existential quantifiers are replaced by disjunctions. For
example, let I = {a, b}, and take

H: (x) Bx (Everything is beautiful)

then
dev,(H) = Ba.Bb.
Or take
H': (3x) Rx (Something is rotten)
then

dev(H') = Ra Vv Rb.

(The wedge ‘v’ symbolizes the inclusive disjunction; it means ‘‘and/or’’—that is,
“‘one, or the other, or both.”’) Or take

H": (x) (3y) Lxy (Everybody loves somebody);
then
dev(H") = (Laa v Lab).(Lba v Lbb).*
Using this notion we can now state the main definitions:

4 In formulas like H” that have mixed quantifiers, we proceed in two steps, working from the inside out.
In the first step we replace the existential quantifier by a disjunction, which yields

(x) (Lxa v Lxb).

In the next step we replace the universal quantifier with a conjunction, which yields dev,(H").
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Def. E directly-Hempel-confirms H just in case E — dev,(H) for the class I of
individuais menioned in E.

Def. E Hempel-confirms H just in case E directly confirms every member of a set
of sentences K such that X — H.

To illustrate the difference between the two definitions, note that Ra.Ba does not
directly-Hempel-confirm Rb D Bb but it does Hempel-confirm it. Finally, disconfir-
mation can be handled in the following manner.

Def. E Hempel-disconfirms H just in case E confirms ~H.

Despite its initial attractiveness, there are a number of disquieting features of
Hempel’s attempt to explicate the qualitative concept of confirmation. The discussion
of these features can be grouped under two queries. First, is Hempel’s definition too
stringent in some respects? Second, is it too liberal in other respects? To motivate the
first worry consider

H: (x) Rxy.
(The expression ‘‘Rxy’’means ‘‘x bears relation R to y.”’) H is Hempel-confirmed by
E: Raa.Rab.Rbb.Rba.
But it is not confirmed by
E' : Raa.Rab.Rbb

even though intuitively the latter evidence does support H. Or consider the compound
hypothesis

(x) (Ay) Rxy.(x) ~ Rxx.(x) (y) (2} [(Rxy.Ryz) D Rxz],

which is true, for example, if we take the quantifiers to range over the natural
numbers and interpret Rxy to mean that y is greater than x. (Thus interpreted, the
formula says that for any number whatever, there exists another number that is larger.
Although this statement is true for the whole collection of natural numbers, it is
obviously false for any finite set of integers.) This hypothesis cannot be Hempel-
confirmed by any consistent evidence statement since its development for any finite
I is inconsistent. Finally, if H is formulated in the theoretical vocabulary, then, except
in very special and uninteresting cases, H cannot be Hempel-confirmed by evidence
E stated entirely in the observational vocabulary. Thus, Hempel’s account is silent on
how statements drawn from such sciences as theoretical physics—for example, all
protons contain three quarks—can be confirmed by evidence gained by observation
and experiment. This silence is a high price to pay for overcoming some of the defects
of the more vocal H-D account.

This last problem is the starting point for Glymour’s (1980) so-called boot-
strapping account of confirmation. Glymour sought to preserve the Hempelian idea
that hypotheses are confirmed by deducing instances of them from evidence state-
ments, but in the case of a theoretical hypothesis he allowed that the deduction of
instances can proceed with the help of auxiliary hypotheses. Thus, for Glymour the

52 The Confirmation of Scientific Hypotheses



basic confirmation relation is three-place—E confirms H relative to H'—rather than
two-place. In the main intended application we are dealing with a scientific theory T
which consists of a network of hypotheses, from which H and H' are both drawn. If
T is finitely axiomatizable—that is, if 7" consists of the set of logical consequences of
a finite set of hypotheses, H,, H,, . . ., H,—we can say that T i1s bootstrap-confirmed
if for each H, there is an H; such that E confirms H, relative to H;. These ideas are
most easily illustrated for the case of hypotheses consisting of simple linear equa-
tions.

Consider a theory consisting of the following four hypotheses (and all of their
deductive consequences):

H:0,=X
H, O, =Y+ Z
Hy: 0, =Y + X
Hy:0,=2

The Os are supposed to be observable quantities while the Xs and Ys are theoretical.

For purposes of a concrete example, suppose that we have samples of four
different gases in separate containers. All of the containers have the same volume,
and they are at the same pressure and temperature. According to Avogadro’s law,
then, each sample contains the same number of molecules. Observable quantities
0,—0, are simply the weights of the four samples:

0O, =28g,0,=44g,0;,=44g,0, = 28 g.

Our hypotheses say

H,: The first sample consists solely of molecular nitrogen—N,—molecular weight
28; X is the weight of a mole of N, (28 g).

H,: The second sample consists of carbon dioxide—CO,—molecular weight 44; ¥
is the weight of a mole of atomic oxygen O (16 g), Z is the weight of a mole
of carbon monoxide CO (28 g).

H,: The third sample consists of nitrous oxide—N,O—molecular weight 44; Y is
the weight of a mole of atomic oxygen O (16 g) and X is the weight of a mole
of molecular nitrogen (28 g).

H,: The fourth sample consists of carbon monoxide—CO—molecular weight 28; Z
is the weight of a mole of CO (28 g).

(The integral values for atomic and molecular weights are not precisely correct,
but they furnish a good approximation for this example.)

To show how H, can be bootstrap-confirmed relative to the other three hypoth-
eses, suppose that an experiment has determined values O,, O,, O, O,, for the
observables. From the values for O, and O, we can, using H, and H,, compute values
for ¥ + Z and for Z. Together these determine a value for ¥. Then from the value for
05 we can, using f,, compute a value for Y + X. Then from these latter two values
we get a value for X. Finally, we compare this computed value for X with the
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observed value for O,. If they are equal, H, is confirmed. Although this simple
example may seem a bit contrived, it is in principle similar to the kinds of measure-
ments and reasoning actually used by chemists in the nineteenth century to establish
molecular and atomic weights.

If we want the bootstrap procedure to constitute a test in the sense that it carries
with it the potential for falsification, then we should also require that there are
possible values for the observables such that, using these values and the very same
bootstrap calculations that led to a confirmatory instance, values for the theoretical
quantities are produced that contradict the hypothesis in question. This requirement is
met in the present example.

In Glymour’s original formalization of the bootstrapping idea, macho bootstrap-
ping was allowed; that is, in deducing instances of H, it was allowed that H itself
could be used as an auxiliary assumption. To illustrate, consider again the earlier
example of the perfect gas law P(ressure) X V(olume) = K X T(emperature), and
suppose P, V, T to be observable quantities while the gas constant K is theoretical.
We proceed to bootstrap-test this law relative to itself by measuring the observables
on two different occasions and then comparing the values &; and &, for K deduced
from the law itself and the two sets of observation values p,, v{, ¢; and p,, v,, f.
However, macho bootstrapping can lead to unwanted results, and im any case it may
be unnecessary since, for instance, in the gas law example it is possible to analyze the
logic of the test without using the very hypothesis being tested as an auxiliary
assumption in the bootstrap calculation (see Edidin 1983 and van Fraassen 1983).
These and other questions about bootstrap testing are currently under discussion in the
philosophy journals. (The original account of bootstrapping, Glymour 1980, is open
to various counterexamples discussed in Christensen 1983; see also Glymour 1983.)

Let us now return to Hempel’s account of confirmation to ask whether it is too
liberal. Two reasons for giving a positive answer are contained in the following
paradoxes.

Paradox of the ravens. Consider again the hypothesis that all ravens are
black: (x) (Rx D Bx). Which of the following evidence statements Hempel-confirm
the ravens hypothesis?

E.: Ra,.Ba,

E,: ~ Ra,

E;: Ba,

E,: ~ Ra,.~ Ba,
Es: ~ Ras.Bas
E¢: Ra,.~ Bag

The answer is that E\—E5 all confirm the hypothesis. Only the evidence E that refutes
the hypothesis fails to confirm it. The indoor ornithology of some of these Hempel-
confirmation relations—the confirmation of the ravens hypothesis, say, by the evi-
dence that an individual is a piece of white chalk—has seemed to many to be too easy
to be true.

Goodman’s paradox. 1f anything seems safe in this area it is that the evidence
Ra.Ba that a is a black raven confirms the ravens hypothesis (x) (Rx D Bx). But on
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Hempel’s approach nothing rides on the interpretation of the predicates Rx and Bx.
Thus, Hempel confirmation would still obtain if we interpreted Bx to mean that x is
blite, where ‘‘blite’’ is so defined that an object is blite if it is examined on or before
December 31, 2000, and is black or else is examined afterwards and found to be
white. Thus, by the special consequence condition, the evidence that a is a black
raven confirms the prediction that if b is a raven examined after 2000, it will be white,
which is counterintuitive to say the least.

Part lIl: Hume's Problem of Induction

2.5 THE PROBLEM OF JUSTIFYING INDUCTION

Puzzles of the sort just mentioned—involving blite ravens and grue emeralds (an
object is grue if it is examined on or before December 31, 2000 and is green, or it is
examined thereafter and is blue)}—were presented in Nelson Goodman (1955) under
the rubric of the new riddle of induction. Goodman sought the basis of our apparent
willingness to generalize inductively with respect to such predicates as ‘‘black,”
“‘white,”” ‘““‘green,’”’ and ‘‘blue,”’ but not with respect to ‘‘blite’” and ‘‘grue.”’ To
mark this distinction he spoke of projectible predicates and unprojectible predicates,
and he supposed that there are predicates of each of these types. The problem is to find
grounds for deciding which are which.

There is, however, a difficulty that is both historically and logically prior. In his
Treatise of Human Nature ([1739-1740] 1978) and his Enguiry Concerning Human
Understanding (1748) David Hume called into serious question the thesis that we
have any logical or rational basis for any inductive generalizations—that is, for
considering any predicate to be projectible.

Hume divided all reasoning into two types, reasoning concerning relations of
ideas and reasoning concerning matters of fact and existence. All of the deductive
arguments of pure mathematics and logic fall into the first category; they are unprob-
lematic. In modern terminology we say that they are necessarily truth-preserving
because they are nonampliative (see Chapter 1, Section 1.5). If the premises of any
such argument are true its conclusion must also be true because the conclusion says
nothing that was not said, at least implicitly, by the premises.

Not all scientific reasoning belongs to the first category. Whenever we make
inferences from observed facts to the unobserved we are clearly reasoning
ampliatively—that is, the content of the conclusion goes beyond the content of the
premises. When we predict future occurrences, when we retrodict past occurrences,
when we make inferences about what is happening elsewhere, and when we establish
generalizations that apply to all times and places we are engaged in reasoning con-
cerning matters of fact and existence. In connection with reasoning of the second type
Hume directly poses the question: What is the foundation of our inferences from the
observed to the unobserved? He readily concludes that such reasoning is based upon
refations of cause and effect. When we see lightning nearby (cause) we infer that the
sound of thunder (effect) will ensue. When we see human footprints in the sand
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(effect) we infer that a person recently walked there (cause). When we hear a knock
and a familiar voice saying ‘‘Anybody home?’” (effect) we infer the presence of a
friend (cause) outside the door.

The next question arises automatically: How can we establish knowledge of the
cause-effect relations to which we appeal in making inferences from the observed to
the unobserved? Hume canvasses several possibilities. Do we have a priori knowl-
edge of causal relations? Can we look at an effect and deduce the nature of the cause?
He answers emphatically in the negative. For a person who has had no experience of
diamonds or of ice—which are very similar in appearance—there is no way to infer
that intense heat and pressure can produce the former but would destroy the latter.
Observing the effect, we have no way to deduce the cause. Likewise, for a person
who has had no experience of fire or snow, there is no way to infer that the former
will feel hot while the latter will feel cold. Observing the cause, we have no way to
deduce the effect. All of our knowledge of causal relations must, Hume argues, be
based upon experience.

When one event causes another event, we might suppose that three factors are
present—namely, the cause, the effect, and the causal connection between them.
However, in scrutinizing such situations Hume fails to find the third item—the causal
connection itself. Suppose that one billiard ball lies at rest on a table while another
moves rapidly toward it. They collide. The ball that was at rest begins to move. What
we observe, Hume notes, is the initial motion of the one ball and its collision with the
other. We observe the subsequent motion of the other. This is, he says, as perfect a
case of cause and effect as we will ever see. We notice three things about the
situation. The first is temporal priority; the cause comes before the effect. The second
is spatiotemporal proximity; the cause and effect are close together in space and time.
The third is constant conjunction, if we repeat the experiment many times we find that
the result is just the same as the first time. The ball that was at rest always moves away
after the collision.

Our great familiarity with situations similar to the case of the billiard balls may
give us the impression that ‘‘it stands to reason’’ that the moving ball will produce
motion in the one at rest, but Hume is careful to point out that a priori reasoning cannot
support any such conclusion. We can, without contradiction, imagine many possibil-
ities: When they collide the two balls might vanish in a puff of smoke; the moving ball
might jump right over the one at rest; or the ball that is initially at rest might remain
fixed while the moving ball returns in the direction from which it came. Moreover, no
matter how closely we examine the situation, the thing we cannot see, Hume maintains,
is the causal connection itself—the ‘‘secret power’’ by which the cause brings about
the effect. If we observe two events in spatiotemporal proximity, one of which follows
right after the other, just once, we cannot tell whether it is a mere coincidence or a
genuine causal connection. Hans Reichenbach reported an incident that occurred in a
theater in California as he was watching a movie. Just as a large explosion was depicted
on the screen the theatre began to tremble. An individual’s first instinct was to link them
as cause and effect, but, in fact, by sheer coincidence, a minor earthquake occurred at
precisely that moment. Returning to Hume’s billiard ball example, on the first obser-
vation of such a collision we would not know whether the motion of the ball originally
at rest occurred by coincidence or as a result of the collision with the moving ball. It
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is only after repeated observations of such events that we are warranted in concluding
that a genuine causal relation exists. This fact shows that the causal connection itseif
1s not an observable feature of the situation. If it were an observable feature we would
not need to observe repetitions of the sequence of events, for we would be able to
observe it in the first instance.’

What, then, is the basis for our judgements about causal relations? Hume
answers that it is a matter of custom or habit. We observe, on one occasion, an event
of type C and observe that it is followed by an event of type E. On another occasion
we observe a similar event of type C followed by a similar event of type E. This
happens repeatedly. Thereafter, when we notice an event of type C we expect that it
will be followed by an event of type E. This is merely a fact about human psychology;
we form a habit, we become conditioned to expect E whenever C occurs. There is no
logical necessity in all of this.

Indeed, Hume uncovered a logical circle. We began by asking for the basis on
which inferences from the observed to the unobserved are founded. The answer was
that all such reasoning is based upon relations of cause and effect. We then asked how
we can establish knowledge of cause-effect relations. The answer was that we
assume—or psychologically anticipate—that future cases of events of type C will be
followed by events of type E, just as in past cases events of type C were followed by
events of type E. In other words, we assume that nature is uniform—that the future
will be like the past—that regularities that have been observed to hold up to now will
continue to hold in the future.

But what reason do we have for supposing that nature is uniform? If you say
that nature’s uniformity has been established on the basis of past observations, then
to suppose that it will confinue to be uniform is simply to suppose that the future will
be like the past. That is flagrantly circular reasoning. If you say that science proceeds
on the presumption that nature is uniform, and that science has been extremely
successful in predicting future occurrences, Hume’s retort is the same. To assume that
future scientific endeavors will succeed because science has a record of past success
is, again, to suppose that the future will be like the past. Furthermore, Hume points
out, it is entirely possible that nature will not be uniform in the future—that the future
need not be like the past—for we can consistently imagine all sorts of other possi-
bilities. There is no contradiction in supposing that, at some future time, a substance
resembling snow should fall from the heavens, but that it would feel like fire and taste
like salt. There is no contradiction in supposing that the sun will not rise tomorrow
morning. One can consistently imagine that a lead ball, released from the hand,
would rise rather than fall. We do not expect such outlandish occurrences, but that is
a result of our psychological makeup. It is not a matter of logic.

> The English philosopher John Locke had claimed that in one sort of situation we do observe the actual
power of one event to bring about another, namely, in cases in which a person has a volition or desire to perform
some act and does so as a result. We might, for example, wish to raise our arms, and then do so0. According to
Locke we would be aware of our power to produce motion in a part of our body. Hume gave careful consid-
eration to Locke’s claim, and argued that it is incorrect. He points out, among other things, that there is a
complex relationship of which we are not directly aware—involving transmission of impulses along nerves and
the contractions of various muscles—between the volition originating in the brain and the actual motion of the
arm. Hume’s critique effectively cut the ground from under Locke’s claim.
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What applies to Hume’s commonsense examples applies equally to scientific
laws, no matter how sophisticated they may be. We have never observed an exception
to the law of conservation of angular momentum; nevertheless, tomorrow it may fail.
Within our experience, the half-life of C'* has been 5730 years; tomorrow it could be
10 minutes. We have never found a signal that could be propagated faster than light;
tomorrow we may find one. There is no guarantee that the chemistry of the DNA
molecule will be the same in the future as it has been up to now. The possibilities are
endless.

We should be clear about the depth and scope of Hume’s arguments. Hume is not
merely saying that we cannot be certain about the results of science——about scientific
predictions, for example. That point had been recognized by the ancient skeptics many
centuries before Hume’s time. Hume’s point is that we have no logical basis for placing
any confidence in any scientific prediction. From this moment on, for all we can know
every scientific prediction might fail. We cannot say even that scientific predictions are
probable (the concept of probability will be examined in detail in Part III). We have
no rational basis for placing more confidence in the predictions of science than in the
predictions of fortune tellers or in wild guesses. The basis of our inferences from the
observed to the unobserved is, to use Hume’s terms, custom and habit.

2.6 ANSWERS TO HUME

Hume’s critique of inductive reasoning struck at the very foundations of empirical
science. It can be formulated as a dilemma. Science involves ampliative inference in
an essential way. If we ask for the warrant or justification of any sort of ampliative
inference, two responses seem possible. We could, on the one hand, attempt to offer
a deductive argument to show that the conclusion follows from the premises—that the
conclusion will be true if the premises are—but if any such argument could be given
it would transform induction into deduction, and we would be left without any sort of
ampliative inference. We could, on the other hand, try to offer an inductive justifi-
cation, but any such justification would be circular—it would involve the use of
induction itself to justify induction. The result is that, on either alternative, it is
impossible to provide a suitable justification for the kinds of reasoning indispensable
to science—and to common sense as well. It is this situation that led Broad (1926) to
remark that induction is the glory of science and the scandal of philosophy.

It goes almost without saying that philosophers have adopted a variety of strat-
egies to deal with Hume’s dilemma. We consider some of the more appealing and/or
influential ones (a number of these approaches are discussed in detail in Salmon 1967,
Chapter 2).

1. The success of science. In spite of Hume’s clear arguments concerning the
circularity of justifying induction by using induction, it is difficult to escape the
feeling that the most basic reason for relying on the methods of science is the
remarkable success they have achieved in enabling us to explain natural phenomena
and predict future events. What better basis could there be for judging the worth of
a method than its track record up to now? And certainly no method of astrology,
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crystal gazing, divination, entrail reading, fortune telling, guessing, palmistry, or
prophesy can begin to match the success of science. It would seem absurd to give up
a highly successful method in exchange for one whose record is patently inferior.

Suppose, however, that a scientist—either an actual practitioner of science or
anyone else who believes in the scientific method—is challenged by a crystal gazer.
The scientist disparages crystal gazing as a method for predicting the future on the
ground that it has not in the past been a very successful method, while the scientific
method has, on the whole, worked well. The crystal gazer might correctly accuse the
scientist of using the scientific method to justify the scientific method. The method of
science is based, after all, on projecting past regularities into the future. To predict that
the scientific method will continue to be successful in the future because it has been
successful in the past is flagrantly circular. ‘‘If you are going to use your method to
judge your method,’’ the crystal gazer might remark, ‘‘then I have every right to use
my method to judge my method.’” After looking into the crystal ball, the crystal gazer
announces that the method of crystal gazing (in spite of its past lack of success) is about
to become a very reliable method of prediction. ‘‘Furthermore,”” the crystal gazer
might add, *‘since you used your method to cast aspersions on my method, I will use
my method to judge yours: I see in my crystal ball that the scientific method is going
to have a run of really bad luck in its forthcoming use as a method of prediction.”’

As Hume’s argument regarding circularity had clearly shown, it is difficult to
see anything wrong with the logic of the crystal gazer.®

2. Ordinary language disselution.  Perhaps the most widely adopted approach
to Hume’s problem of induction is the attempt to dissolve it—rather than trying to
solve it—by showing that it was not a genuine problem in the first place. One way to
state the argument is this. If we ask what it means to be reasonable, the obvious
answer is that it means to fashion our beliefs in terms of the available evidence. But
what is the meaning of the concept of evidence? There are two forms of evidence,
corresponding to two kinds of arguments—namely, deductive and inductive. To say
that a proposition is supported by deductive evidence means that it can be deduced
from propositions that we are willing to accept. If, for example, we accept the
postulates of Euclidean geometry, then we are permitted to accept the Pythagorean
theorem, inasmuch as it follows deductively from those postulates. Similarly—so the
argument goes—if we accept the vast body of empirical evidence that is available, we
should be prepared to accept the law of conservation of angular momentum (recall the
figure skater in Chapter 1). This evidence inductively supports the claim that angular
momentum is always conserved, and hence, that it will continue to be conserved
tomorrow, next week, next month, next year and so on. To ask—in the spirit of
Hume~—whether we are justified in believing that angular momentum will be con-
served tomorrow is to ask whether it is reasonable to base our beliefs on the available
evidence, which, in this case, is inductive evidence. But basing our beliefs on evi-
dence is just what it means to be rational. To ask whether we should believe on the
basis of inductive evidence is tantamount to asking whether it is reasonable to be

 Max Black and R. B. Braithwaite both argued that inductive justifications of induction could escape
circularity. The arguments of Black are criticized in detail in Salmon (1967, 12-17); Braithwaite’s arguments
are open to analogous criticism.
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reasonable (two classic statements of this view are given by Ayer 1956, 71-75 and
Strawson 1952, Chapter 9). The problem vanishes when we achieve a clear under-
standing of such terms as ‘‘evidence’’ and ‘‘rationality.’’

The foregoing argument is often reinforced by another consideration. Suppose
someone continues to demand a justification for the fundamental principles of induc-
tion, for example, that past regularities can be projected into the future. The question
then becomes, to what principle may we appeal in order to supply any such justifi-
cation? Since the basic principles of inductive reasoning, like those of deductive
reasoning, are ultimate, it is impossible to find anything more basic in terms of which
to formulate a justification. Thus, the demand for justification of our most basic
principles is misplaced, for such principles define the concept of justification itself.

In spite of its popular appeal among philosophers, this attempt to dispose of
Hume’s problem of justification of induction is open to serious objection. It can be
formulated in terms of a useful distinction, drawn by Herbert Feigl (1950), between
two kinds of justification—validation and vindication. A validation of a principle
consists in a derivation of that principle from other, more basic, principles that we
accept. For example, we often try to validate moral and/or legal principles. Some
people argue that abortion is wrong, and should be outlawed, because it is wrong to
take human life (except in certain extreme circumstances) and human life begins at
the time of conception. Others (in America) argue, by appealing to certain rights they
take to be guaranteed by the Constitution of the United States, that abortion should be
permitted. What counts as a validation for any individual obviously depends upon the
fundamental principles that person adopts.

Validation also occurs in mathematics and logic. The derivation of the
Pythagorean theorem from the postulates of Euclidean geometry constitutes a good
mathematical example. In logic, the inference rule modus tollens

(6) pDg
41

~p
can be validated by appealing to modus ponens

(7) pOgq
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q

and contraposition

PDq=(~gD~p)

7 A less trivial example in deductive logic is the validation of the rule of conditional proof by means of
the deduction theorem. The deduction theorem shows that any conclusion that can be established by means of
conditional proof can be derived using standard basic deductive rules without appeal to conditional proof.
Conditional proof greatly simplifies many derivations, but it does not allow the derivation of any conclusion that
cannot be derived without it.
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To vindicate a rule or a procedure involves showing that the rule or procedure
in question serves some purpose for which it is designed. We vindicate the basic rules
of deductive logic by showing that they are truth-preserving—that it is impossible to
derive false conclusions from true premises when these rules are followed. This is a
vindication because we want to be guaranteed that by using deductive rules we will
never introduce a false conclusion by deduction from true premises.

Where induction is concerned we know that—because it is ampliative—truth
preservation cannot be guaranteed; we sometimes get false conclusions from true
premises. We would like to be able to guarantee that we will usually get true con-
clusions from true premises, but Hume’s arguments show that this goal cannot be
guaranteed either. As we will see, Reichenbach tried to give a different kind of
vindication, but that is not the issue right now. The point is that, of the two kinds of
justification, only one—validation—requires appeal to more basic principles; vindi-
cation does not. Vindications appeal to purposes and goals. When it is noted—as in
the foregoing argument—that there is no principle more basic in terms of which
induction can be justified, that shows that induction cannot be validated; it does not
follow that induction cannot be vindicated.

If we keep clearly in mind the distinction between validation and vindication,
we can see that the ordinary language dissolution fails. When we pose the question,
““Is it reasonable to be reasonable?’’ it is easy to be fooled by an equivocation. Two
senses of the word ‘‘reasonable’’ correspond to the two senses of ‘‘justification.’’
One sense of “‘reasonable’” (‘‘reasonable,’”) corresponds to vindication; in this sense,
to ask whether something is reasonable is to ask whether it is a good means for
achieving some desired goal. Where induction is concerned, that goal may be de-
scribed roughly as getting true conclusions or making correct predictions as often as
possible. The other sense of ‘‘reasonable’’ (‘‘reasonable,’’) corresponds to valida-
tion. In this sense, being reasonable includes adopting the generally accepted basic
principles of inductive inference. If we now ask, ‘‘Is it reasonable, to be reason-
able,?’’ the question is far from trivial; it now means, ‘‘Does it serve our goal of
predicting correctly as often as possible (reasonable,) to use the accepted rules of
inductive inference (reasonable,)?’” This is just another way of phrasing the funda-
mental question Hume raised concerning the justifiability of induction; the basic
problem has not been dissolved, but only reformulated.

3. Inductive intuition. 'When Goodman posed the new riddle of induction, he
made some sweeping claims about the nature of justification of logical principles.
These claims applied both to deduction and to induction. In both cases, he said, we
must confront the basic principles we hold dear with the kinds of arguments we are
prepared to accept as valid or logically correct. (The term *‘valid’’ is often defined so
that it characterizes logically correct deductive arguments only; if it is so construed,
we need another term, such as ‘‘logically correct”” to characterize inductive argu-
ments that conform to appropriate logical principles.) When an argument that we
want to retain conflicts with a principle we do not want to relinquish, some adjustment
must be made. Speaking of deduction, Goodman says:

The point is that rules and particular inferences alike are justified by being brought into
agreement with each other. A rule is amended if it yields an inference we are unwilling to
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accept; an inference is rejected if it violates a rule we are unwilling to amend. The process
of justification is the delicate one of making mutual adjustments between rules and accepted
inferences; and in the agreement achieved lies the only justification needed for either. (1955,
67, italics in the original)

He continues:

All this applies equally well to induction. An inductive inference, too, is justified by
conformity to general rules, and a general rule by conformity to accepted inductive infer-
ences. Predictions are justified if they conform to valid canons of induction; and the canons
are valid if they accurately codify accepted inductive practice. (Ibid.)

Rudolf Carnap, whose theory of probability will be examined in item 6 in Section
2.8, seems to have had a similar point in mind when he said that the basic justification
for the axioms of inductive logic rests on our inductive intuitions (Schilpp 1963,
978).

Goodman’s claim about deductive logic is difficult to defend. We reject, as
fallacious, the form of affirming the consequent
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because it is easy to provide a general proof that it is not necessarily truth-preserving.
The rejection is nrot the result of a delicate adjustment between particular aguments
and general rules; it is based upon a demonstration that the form lacks one of the main
features demanded of deductive rules. Other argument forms, such as modus ponens
and modus tollens, are accepted because we can demonstrate generally that they are
necessarily truth-preserving. (Going beyond truth-functional logic, there are general
proofs of the consistency and completeness of standard first-order logic.)

The situation in inductive logic is complicated. As we will see when we study
the various proposed interpretations of the concept of probability, there is an enor-
mous plethora of possible rules of inference. We can illustrate by looking at three
simple rules as applied to a highly artificial example. Suppose we have a large urn
containing an extremely large number of marbles, all of which are known beforehand
to be either red, yellow, or blue. We do not know beforehand what proportion of the
marbles is constituted by each color; in fact, we try to learn the color constitution of
the population of marbles in the urn by removing samples and observing the colors of
the marbles in the samples.

Suppose, now, that the contents of the urn are thoroughly mixed, and that we
draw out a sample containing n marbles, of which m are red. Consider three possible
rules for inferring (or estimating) the percentage of the marbles in the urn that are red:

Induction by enumeration: if m/n of the marbles in the sample are red, infer that
approximately m/n of all marbles in the urn are red.

62 The Confirmation of Scientific Hypotheses



A priori rule: regardless of the makeup of the observed sample, infer that approx-
imately Y4 of all marbles in the urn are red. (The fraction ¥5 is chosen because three
colors occur 1in the total population of marbles in the urn.)

Counterinductive rule: if m/n of the marbles in the sample are red, infer that
approximately (n — m)/n of the marbles in the urn are red.

Certain characteristics of these rules can be established by general arguments.
The counterinductive rule is so called because it uses observed evidence in a negative
way. If we observe the proportion of red marbles in a sample, this rule instructs us
to project that the proportion of red in the whole population is approximately equal to
the proportion that are not red in the sample. Use of this rule would rapidly land us
in an outright contradiction. Suppose, for the sake of simplicity, that our observed
sample contains V5 red, ¥4 yellow, and Y5 blue. Using the counterinductive rule for
each of the colors would yield the conclusion that %3 of the marbles in the urn are red,
and %5 of the marbles in the urn are yellow, and %5 of the marbles in the urn are blue.
This is logically impossible; clearly, the counterinductive rule is unsatisfactory.

Suppose we use the a priori rule. Then, even if 98 percent of our observed
sample were red, 1 percent yellow, and 1 percent blue, the rule would direct us to
ignore that empirical evidence and infer that only about Y3 of the marbles in the urn
are red. Because the a priori rule makes observation irrelevant to prediction, it, too,
should be rejected.

The rule of induction by enumeration does not have either of the foregoing
defects, and it has some virtues. One virtue is that if it is used persistently on larger
and larger samples, it must eventually yield inferences that are approximately correct.
If we are unlucky, and begin by drawing unrepresentative samples, it will take a long
time to start giving accurate results; if we are lucky and draw mainly representative
samples, the accurate results will come much sooner. (Some philosophers have
derived considerable comfort from the fact that the vast majority of samples that could
be drawn are very nearly representative. See Williams 1947.)

Obviously many-—indeed, infinitely many—possible rules exist for making in-
ductive inferences. The problem of deciding which of these rules to use is compli-
cated and difficult. We have seen, nevertheless, that general considerations can be
brought to bear on the choice. It is not just a matter of consulting our intuitions
regarding the acceptability or nonacceptability of particular inductive inferences. This
is not to deny, however, that intuitive consideration of particular inferences has a
great deal of heuristic value.

Although we have been skeptical about Goodman’s success in dismissing the
old riddle of induction, we must remark on the importance of his new riddle. First,
Hume never explicitly took account of the fact that some forms of constant conjunc-
tion do not give rise to habits of expectation. Such Goodmanian predicates as ‘‘blite”’
and ‘‘grue’’ call attention vividly to this point. Second, Goodman’s examples provide
another way of showing that there can be no noncircular justification of induction by
means of a uniformity principle. There are many uniformities, and the question of
which ones will extend into the future is the problem of induction all over again.

4. Deductivism. One influential philosopher, Sir Karl Popper, has attacked
Hume’s problem by denying that science involves any use of induction. He takes
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Hume to have proved decisively that induction cannot be justified, and he concludes
that science—if it is to be a rational enterpriss—must do without it. The only logic
of science, he maintains, is deduction.

Popper characterizes the method of science as frial and error, as conjecture and
refutation. The scientist formulates bold explanatory hypotheses, and then subjects
them to severe testing. This test procedure is very much like hypothetico-deductive
testing, but there s an absolutely crucial difference. According to the H-D theory,
when the observational prediction turns out to be true, that confirms the hypothesis to
some degree. Popper denies that there is any such thing as confirmation. If, however,
the observational prediction turns out to be false, modus tollens can be used to
conclude deductively that some premise is false. If we are confident of the initial
conditions and auxiliary hypotheses, then we reject the hypothesis. The hypothesis
was a conjecture; the test provided a refutation. Hypotheses that are refuted must be
rejected.

If a bold hypothesis is subjected to severe testing and is not refuted, it is said to
be corroborated. Popper emphatically denies that corroboration is any brand of
confirmation. H-D theorists regard confirmation as a process that increases to some
degree the probability of the hypothesis and, by implication, the probability that the
hypothesis will yield correct predictions. Corroboration, in contrast, says nothing
whatever about the future predictive success of the hypothesis; it is, instead, a report
exclusively on the past performance of the hypothesis. The corroboration-rating is a
statement of the past success of the hypothesis as an explanatory theory. The cor-
roboration report is not contaminated with any inductive elements.

Even if we were to grant Popper’s dubious claim that theoretical science is
concerned only with explanation, and not with prediction, it would be necessary to
recognize that we use scientific knowledge in making practical decisions. If we wish
to put an artificial satellite into an orbit around the earth, we use Newtonian mechan-
ics to compute the trajectory, and we confidently expect the satellite to perform as
predicted. An inductivist would claim that we base such expectations on the fact that,
within certain well-defined limits, Newtonian mechanics is a well-confirmed theory.
Popper maintains that, for purposes of practical prediction, using well-corroborated
theories is advisable, for nothing could be more rational.

The crucial question is, however, whether anything could be less rational than
to use the corroboration-rating of a theory as a basis for choosing it for predictive
purposes. Recalling that Popper has emphatically stated that the corroboration-rating
refers only to past performance, and not to future performance, the corroboration-
rating would seem to be totally irrelevant to the predictive virtues of the theory. The
use of highly corroborated theories for prediction has no greater claim to rationality
than do the predictions of fortune-tellers or sheer blind guessing. The price for
banishing all inductive elements from science is to render science useless for predic-
tion and practical decision making (see Salmon 1981).

5. Pragmatic vindication. Reichenbach fully accepted Hume’s conclusion
about the impossibility of proving that nature is uniform. He agreed that we have no
way of knowing whether past uniformities will extend into the future. He recognized
that, for all we can know, every inductive inference we make in the future may lead
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to a false prediction. Nevertheless, he attempted to construct a practical decision-
theoretic justification for the use of induction.

Given our inability to know whether nature is uniform, we can consider what
happens in either case. Hume showed convincingly that, if nature is uniform, induc-
tive reasoning will work very well, whereas, if nature is not uniform, inductive
reasoning will fail. This much is pretty easy to see. Reichenbach suggested, however,
that we should consider other options besides the use of induction for purposes of
trying to predict the future. Suppose we try consulting a crystal gaze to get our
predictions. We cannot say a priori that we will get correct predictions, even if nature
turns out to be uniform, but we cannot say a priori that we won’t. We just don’t know.
Let us set up a chart:

TABLE 2.1
Nature is uniform Nature is not uniform
We use induction Success Failure
We don’t use induction Success or Failure Failure

The crucial entry is in the lower right-hand box. What if nature is not uniform and we
do not use induction? One possibility is simply not to make any predictions at all;
whether nature is uniform or not, that obviously does not result in successful predic-
tions. Another possibility is that we adopt a noninductive method such as crystal
gazing. Any method—including wild guessing—may yield a true prediction once in
a while by chance, whether nature is uniform or not. But suppose that crystal gazing
were to work consistently. Then, that would be an important uniformity, and it could
be established inductively—that is, on the basis of the observed record of the crystal
gazer in making successful predictions we could infer inductively that crystal gazing
will be successful in making correct predictions in the future. Thus, if crystal gazing
can produce consistent successful predictions so can the use of induction. What has
just been said about crystal gazing obviously applies to any noninductive method.
Reichenbach therefore concluded that if any method will succeed consistently, then
induction will succeed consistently. The same conclusion can be reformulated (by
contraposition) as follows: If induction does not work, then no other method will
work. We therefore have everything to gain and nothing to lose-—so far as predicting
the future is concerned—by adopting the inductive method. No other method can
make an analogous claim. Reichenbach’s argument is an attempt at vindication of
induction. He is trying to show that—even acknowledging Hume’s skeptical
arguments—induction is better suited to the goal of predicting the future than any
other methods that might be adopted.

Although Reichenbach’s pragmatic justification may seem promising at first
glance, it does face serious difficulties on closer inspection. The greatest problem
with the foregoing formulation is that it suffers from severe vagueness. What do we
mean by speaking of the uniformity of nature? Nature is not completely uniform;
things do change. At the same time—up to the present at any rate—nature has
exhibited certain kinds of uniformity. What degree of uniformity do we need in order
for the argument to succeed? We should be much more precise on this point. Like-
wise, when we spoke about noninductive methods we did not carefully survey all of
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the available options. When the argument is tightened sufficiently, it turns out, it does
not vindicate just one rule of inductive inference; instead, it equally justifies an
infinite class of rules. Serious efforts—up to this time—to find a satisfactory basis for
selecting a unique rule have been unsuccessful, (the technical details are discussed in
Salmon 1967, Chapter 6).

Where do things stand now—25( years after the publication of Hume’s Treatise
of Human Nature—with respect to the problem we have inherited from him? Al-
though many ingenious attempts have been made to solve or dissolve it there is still
no consensus. It still stands as an item of ‘‘unfinished business” for philosophy of
science (see Salmon 1978a). The problem may, perhaps, best be summarized by a
passage from Hume himself:

Let the course of things be allowed hitherto ever so regular, that alone, without some new
argument or inference, proves not that for the future it will continue so. In vain do you
pretend to have learned the nature of bodies from your past experience. Their secret nature,
and consequently all their effects and influence, may change without any change in their
sensible qualities. This happens sometimes, and with regard to some objects: Why may it not
happen always, and with regard to all objects? What logic, what process or argument secures
you against this supposition? My practice, you say, refutes my doubts. But you mistake the
purport of my question. As an agent, I am quite satisfied in the point; but as a philosopher
. . . I want to learn the foundation of this inference. (1748, Section 4)

As Hume makes abundantly clear, however, life—and science—go on in spite of
these troubling philosophical doubts.

Part Ill: Probability

2.7 THE MATHEMATICAL THEORY OF PROBABILITY

Our discussion up to this point has been carried on without the aid of a powerful
tool—the calculus of probability. The time has come to invoke it. The defects of the
qualitative approaches to confirmation discussed in Sections 2.3 and 2.4 suggest that
an adequate account of the confirmation of scientific statements must resort to quan-
titative or probabilistic methods. In support of this suggestion, recall that we have
already come across the concept of probability in the discussion of the qualitative
approaches. In our discussion of the H-D method, for instance, we encountered the
concept of probability in at least two ways. First, noting that a positive result of an
H-D test does not conclusively establish a hypothesis, we remarked that it might
render the hypothesis a little more probable than it was before the test. Second, in
dealing with the problem of statistical hypotheses, we saw that only probabilistic
observational predictions can be derived from such test hypotheses. In order to pursue
our investigation of the issues that have been raised we must take a closer look at the
concept or concepts of probability.
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The modern theory of probability had its origins in the seventeenth century.
Legend has it that a famous gentleman, the Chevalier de Méré, posed some questions
about games of chance to the philosopher-mathematician Blaise Pascal. Pascal com-
municated the problems to the mathematician Pierre de Fermat, and that was how it
all began. Be that as it may, the serious study of mathematical probability theory
began around 1660, and Pascal and Fermat, along with Christian Huygens, played
crucial roles in that development, (for an historical account see Hacking 1975 and
Stigler 1986).

In order to introduce the theory of probability, we take probability to be a rela-
tionship between events of two different types—for example, between tossing a stan-
dard die and getting a six, or drawing from a standard bridge deck and getting a king.
We designate probabilities by means of the following notation:

Pr(BIA) is the probability of a result of the type B given an event of the type A.

If A is a toss of a standard die and B is getting a three, then ‘‘Pr(BIA)’’ stands for the
probability of getting a three if you toss a standard die. As the theory of probability
is seen today, all of the elementary rules of probability can be derived from a few
simple axioms. The meanings of these axioms and rules can be made intuitively
obvious by citing examples from games of chance that use such devices as cards and
dice. After some elementary features of the mathematical calculus of probability have
been introduced in this section, we look in the following section at a variety of
interpretations of probability that have been proposed.

Ax10MS (BAsic RULES)
Axiom (rule) 1: Every probability is a unique real number between zero and one

inclusive; that is,
O = Pr(BIA) = 1.

Axiom (rule) 2: If A logically entails B, then Pr(BIA) = 1.

Definition: Events of types B and C are mutually exclusive if it is impossible for both
B and C to happen on any given occasion. Thus, for example, on any draw from a
standard deck, drawing a heart and drawing a spade are mutually exclusive, for no
card is both a heart and a spade.

Axiom (rule) 3: If B and C are mutually exclusive, then
Pr(B v CIA) = Pr(BIA) + Pr(CIA).
This axiom is also known as the special addition rule.

Example: The probability of drawing a heart or a spade equals the probability of
drawing a heart plus the probability of drawing a spade.

Axiom (rule) 4: The probability of a joint occurrence—that is, of a conjunction of
B and C—is equal to the probability of the first multiplied by the probability of the
second given that the first has occurred:

Pr(B.Cl1A) = Pr(BlA) x Pr(CIA.B).
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This axiom is also known as the general multiplication rule.

Example: If you make two draws without replacement from a standard deck, what is
the probability of getting two aces? The probability of getting an ace on the first draw
is 4/52; the probability of getting an ace on the second draw if you have already drawn
an ace on the first draw is 3/51, because there are only 51 cards left in the deck and
only 3 of them are aces. Thus, the probability of getting two aces is

4/52 X 3/51 = 12/2652 = 1/221.
SoME DERIVED RULES

From the four axioms (basic rules) just stated, several other rules are easy to

derive that are extremely useful in calculating probabilities. First, we need a defini-

tion:

Definition: The events B and C are independent if and only if
Pr(CIA.B) = Pr(CIA).

When the events B and C are independent of one another, the multiplication rule
(axiom 4) takes on a very simple form:
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Rule 5: If B and C are independent, given A, then
Pr(B.CIA) = Pr(BIA) X Pr(CiA).
This rule is known as the special multiplication rule. (Proofs, sketches of proofs,

and other technical items will be placed in boxes. They can be omitted on first
reading.)

Proof of Rule 5: Substitute Pr(CiA) for Pr(B.CIA) in Axiom 4.

Example: What is the probability of getting double 6 (‘‘boxcars’’) when a standard
pair of dice is thrown? Since the outcomes on the two dice are independent, and the
probability of 6 on each die is 1/6, the probability of double 6 is

1/6 X 1/6 = 1/36

Example: What is the probability of drawing two spades on two consecutive draws
when the drawing is done with replacement? The probability of getting a spade on
the first draw is 13/52 = 1/4. After the first card is drawn, whether it is a spade or
not, it is put back in the deck and the deck is reshuffled. Then the second card is
drawn. Because of the replacement, the outcome of the second draw is independent
of the outcome of the first draw. Therefore, the probability of getting a spade on the
second draw is just the same as it was on the first draw. Thus, the probability of
getting two spades on two consecutive draws is

1/4 X 1/4 = 1/16
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NOTE CAREFULLY. If the drawing is done without replacement, the special
multiplication rule cannot be used because the outcomes are not independent. In that
case Rule 4 must be used.

Rule 6: Pr(~ Bl1A) = 1 — Pr(BlA).
This simple rule is known as the negation rule. It is very useful.

Example: Suppose you would like to know the probability of getting at least one 6
if you toss a standard die three times.® That means you want to know the probability
of getting a 6 on the first toss or on the second toss or on the third toss, where this
is an inclusive or. Thus, the outcomes are not mutually exclusive, so you cannot use
the special addition rule (Axiom 3). We can approach this problem via the negation.
To fail to get at least one 6 in three tosses means to get non-6 on the first toss and
non-6 on the second toss and non-6 on the third toss. Since the probability of 6 is
1/6, the negation rule tells us that the probability of non-6 is 5/6. Because the
outcomes on the three tosses are independent, we can use Rule 5 to obtain the
probability of non-6 on all three tosses as

5/6 X 5/6 X 5/6 = 125/216.
The probability of getting at least one 6, which is the negation of not getting any 6,
is therefore
1 — 125/216 = 91/216.

NOTE CAREFULLY:: The probability of getting at least one 6 in three tosses is not
1/2. It is equal to 91/216, which is approximately 0.42.

Proof of Rule 6: Obviously every A is either a B or not a B. Therefore,
by Axiom 2,

Pr(B v ~ BlA) = 1.
Since B and ~ B are mutually exclusive, Axiom 3 yields
Pr(BIA) + Pr(~ BIA) = 1.
Rule 6 results from subtracting Pr(B|A) from both sides.

Rule 7: Pr(B v CIA) = Pr(B|A) + Pr(ClA) — Pr(B.CIA).

This is the general addition rule. Unlike Rule 3, this rule applies to outcomes B and
C even if they are not mutually exclusive.

Example: What is the probability of getting a spade or a face card in a draw from a
standard deck? These two alternatives are not mutually exclusive, for there are three

8 This example is closely related to one of the problems posed by the Chevalier de Méré. How many
tosses of a pair of dice, he asked, are required to have at least a fifty-fifty chance of getting at least one double
67 It seemns that a common opinion among gamblers at the time was that 24 tosses would be sufficient. The
Chevalier doubted that answer, and it torned out that he was right. One needs 25 tosses to have at least a
fifty-fifty chance.
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cards—king, queen, and jack of spades—that are both face cards and spades. Since
there are 12 face cards and 13 spades, the probability of a spade or a face card is

12/52 + 13/52 — 3/52 = 22/52

It is easy to see why this rule has the form that it does. If B and C are not
mutually exclusive, then some outcomes may be both B and C. Any such items will
be counted twice—once when we count the Bs and again when we count the Cs. (In
the foregoing example, the king of spades is counted once as a face card and again
as a spade. The same goes for the queen and jack of spades.) Thus, we must subtract
the number of items that are both B and C, in order that they be counted only once.

How to prove Rule 7. First, we note that the class of things that are B
or C in the inclusive sense consists of those things that are B.C or ~ B.C
or B.~ C, where these latter three classes are mutually exclusive. Thus,
Rule 3 can be applied, giving

Pr(B v ClA) = Pr(B.Cl1A) + Pr(~ B.CIA) + Pr(B.~ClA).

Rule 4 is applied to each of the three terms on the right-hand side, and
then Rule 6 is used to get rid of the negations inside of the parentheses.
A bit of simple algebra yields Rule 7.

Rule 8: Pr(ClA) = Pr(BIA) X Pr(ClA.B) + Pr(~ BiA) X Pr(ClA.~ B).
This is the rule of total probability. It can be illustrated as follows:

Example: Imagine a factory that produces frisbees. The factory contains just two
machines, a new machine B that produces 800 frisbees each day, and an old
machine ~B that produces 200 frisbees per day. Among the frisbees produced by
the new machine, 1% are defective; among the frisbees produced by the old ma-
chine, 2% are defective. Let A stand for the frisbees produced in a given day at that
factory. Let B stand for the frisbees produced by the new machine; ~B then stands
for those produced by the old machine. Let C stand for defective frisbees. Then,

Pr(BIA) = the probability that a frisbee is produced by machine B = 0.8
Pr(~B!A) = the probability that a frisbee is produced by machine ~B = 0.2
Pr(CIA.B) = the probability that a frisbee produced by machine B is defec-

tive = 0.01
Pr(ClA.~B) = the probability that a frisbee produced by machine ~B is defec-
tive = 0.02

Therefore, the probability that a frisbee is defective =
0.8 x 0.01 + 0.2 x 0.02 = 0.012

As can be seen from this artificial example, the rule of total probability can be
used to calculate the probability of an ouicome that can occur in either of two ways,
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either by the occurrence of some intermediate event B or by the nonoccurrence of B.
The situation can be shown in a diagram:

Proof of Rule 8: Since every C is either a B or not a B, the class C is
identical to the class B.C v ~B.C; moreover, since nothing is both a B
and not a B, the classes B.C and ~B.C are mutually exclusive. Hence,
Pr(CIA) = Pr(C.[B v ~B] 14)

= Pr([B.C v ~B.C]JIA)

= Pr(B.CIA) + Pr(~B.CIA) by Rule 3

= Pr(BiA) X Pr(CIA.B) + Pr(~BIA) X Pr(ClA.~B)

by Rule 4 applied twice

We now come to the rule of probability that has special application to the
problem of confirmation of hypotheses.

Pr(BIA) X Pr(CIA.B)
Pr(ClA)

Rule 9: Pr(BIA.C) =

B Pr(BIA} x Pr(CIA.B)
~ Pr(BIA) X Pr(CIA.B) + Pr(~BIA) X Pr(ClA.~B)

provided that Pr(CIA) # 0. The fact that these two forms are equivalent follows
immediately from the rule of total probability (Rule 8), which shows that the de-
nominators of the right-hand sides are equal to one another.

Rule 9 is known as Bayes’s rule; it has extremely important applications. For
purposes of illustration, however, let us go back to the trivial example of the frisbee
factory that was used to illustrate the rule of total probability.

Example: Suppose we have chosen a frisbee at random from the day’s production
and it turns out to be defective. We did not see which machine produced it. What
is the probability—Pr(BIA . C)—that it was produced by the new machine? Bay-
es’s rule gives the answer:

0.8 x 0.01 _0.008
0.8 X 0.01 + 0.2 X 0.02  0.012

2/3

The really important fact about Bayes’s rule is that it tells us a great deal about
the confirmation of hypotheses. The frisbee example illustrates this point. We have a
frisbee produced at this factory (A) that turns out, on inspection, to be defective (C),
and we wonder whether it was produced (caused) by the new machine (B). In other
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words, we are evaluating the hypothesis that the new machine produced this defective

Proof of Bayes’s rule: Bayes’s rule has two forms as given above; we
show how to prove both. We begin by writing Rule 4 twice; in the
second case we interchange B and C.

Pr(B.CIA) = Pr(BIA) x Pr(CIA.B)
Pr(C.BIA) = Pr(C|A) X Pr(BIA.IC)

Since the class B.C is obviously identical to the class C.B we can equate
the right-hand sides of the two equations:

Pr(ClA) X Pr(BIA.C) = Pr(BIA ) X Pr(C|A.B)
Assuming that P(CIA) # 0, we divide both sides by that quantity:

Pr(BIA) X Pr(CIA.B)
Pr(CIA)

PrBIA.C) =

This is the first form. Using Rule 8, the rule of total probability, we
replace the denominator, yielding the second form:

Pr(BIA.C) = Pr(BIA) X Pr(CIA.B)

Pr(BIA) X Pr(CIA.B) + Pr(~BlA) X Pr(CIA.~B)

frisbee. As we have just seen, the probability is 2/3.

Inasmuch as we are changing our viewpoint from talking about types of objects
and events A, B, C, . . . to talking about hypotheses, let us make a small change in
notation to help in the transition. Instead of using ‘“‘A’’ to stand for the day’s pro-
duction of frisbees, we shall use “‘K”’ to stand for our background knowledge about
the situation in that factory. Instead of using ‘‘B’’ to stand for the frisbees produced
by the new machine B, we shall use ‘“H’’ to stand for the hypothesis that a given
frisbee was produced by machine B. And instead of using ‘‘C’’ to stand for defective
frisbees, we shall use ‘‘E’’ to stand for the evidence that the given frisbee is defective.

Now Bayes’s rule reads as follows:

Changing the letters in the formula (always replacing the same old letter for the same
new letter) obviously makes no difference to the significance of the rule. If the axioms
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Pr(HIK) X Pr(E |K.H)
Pr(EIK)

Rule 9: Pr(HIK.E) =

_ Pr(HIK) X Pr(EIK.H)
"~ Pr(HIK) X Pr(E\K.H) + Pr(~HIK) X Pr(EIK.~H)
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are rewritten making the same changes in variables, Rule 9 would follow from them
in exactly the same way. And inasmuch as we are still talking about probabilities—
albeit the probabilities of hypotheses instead of the probabilities of events—we still
need the same rules.

We can now think of the probability expressions that occur in Bayes’s rule in the
following terms:

Pr(HIK) is the prior probability of hypothesis H just on the basis of our background
knowledge K without taking into account the specific new evidence E. (In our
example, it is the probability that a given frisbee was produced by machine B.)
Pr(~HIK) 1s the prior probability that our hypothesis H is false. (In our example,
it is the probability that a given frisbee was produced by machine ~B.) Notice that
H and ~H must exhaust all of the possibilities.

By the negation rule (Rule 6), these two prior probabilities must add up to 1; hence,
if one of them is known the other can immediately be calculated.

Pr(E\K.H) is the probability that evidence E would obtain given the truth of hy-
pothesis H in addition to our background knowledge K. (In our example, it is the
probability that a particular frisbee 1s defective, given that it was produced by
machine B.) This probability is known as a likelihood.

Pr(EIK.~H) is the probability that evidence E would obtain if our hypothesis H is
false. (In our example, it is the probability that a particular frisbee is defective if it
was not produced by machine B.) This probability is also a likelihood.

The two likelihoods—in sharp contrast to the prior probabilities—are independent of
one another. Given only the value of one of them, it is impossible to calculate the
value of the other.

Pr(E|K) is the probability that our evidence £ would obtain, regardless of whether
hypothesis H is true or false. (In our example, it is the probability that a given
frisbee is defective, regardless of which machine produced it.) This probability is
often called the expectedness of the evidence.’

Pr(HIK . E) is the probability of our hypothesis, judged in terms of our background
knowledge K and the specific evidence E. It is known as the posterior probability.
This is the probability we are trying to ascertain. (In our example, it is the prob-
ability that the frisbee was produced by the new machine. Since the posterior
probability of H is different from the prior probability of H, the fact that the frisbee
is defective is evidence relevant to that hypothesis.)

? Expectedness is the opposite of surprisingness. If the expectedness of the evidence is small the
evidence is surprising. Since the expectedness occurs in the denominator of the fraction, the smaller the
expectedness, the greater the value of the fraction. Surprising evidence confirms hypotheses more than evidence
that is to be expected regardless of the hypothesis.
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Notice that, although the likelihood of a defective product is twice as great for the old
machine (0.02) as for the new (0.01), the posterior probability that a defective
frisbee was produced by the new machine (2/3) is twice as great as the probability that
it was produced by the old one (1/3).

In Section 2.9 we return to the problem of assigning probabilities to hypotheses,
which is the main subject of this chapter.

2.8 THE MEANING OF PROBABILITY

In the preceding section we discussed the notion of probability in a formal manner.
That is, we introduced a symbol, ““Pr(l),”’ to stand for probability, and we laid down
some formal rules governing the use of that symbol. We illustrated the rules with
concrete examples, to give an intuitive feel for them, but we never tried to say what
the word ‘‘probability’’ or the symbol “‘Pr’’ means. That is the task of this section.

As we discuss various suggested meanings of this term, it is important to recall
that we laid down certain basic rules (axioms). If a proposed definition of ‘‘proba-
bility’” satisfies the basic rules—and, consequently, the derived rules, since they are
deduced from the basic rules—we say that the suggested definition provides an
admissible interpretation of the probability concept. If a proposed interpretation
violates those rules, we consider it a serious drawback.

1. The classical interpretation. One famous attempt to define the concept of
probability was given by the philosopher-scientist Pierre Simon de Laplace ([1814]
1951). It is known as the classical interpretation. According to this definition, the
probability of an outcome is the ratio of favorable cases to the number of equally
possible cases. Consider a simple example. A standard die (singular of ‘‘dice’’) has
six faces numbered 1-6. When it is tossed in the standard way there are six possible
outcomes. If we want to know the probability of getting a 6, the answer is 1/6, for
only one possible outcome is favorable. The probability of getting an even number is
3/6, for three of the possible outcomes (2, 4, 6) are favorable.

Laplace was fully aware of a fundamental problem with this definition. The
definition refers not just to possible outcomes, but to equally possible outcomes.
Consider another example. Suppose two standard coins are flipped simultaneously.
What is the probability of getting two heads? Someone might say it is 1/3, for there
are three possible outcomes, two heads, one head and one tail, or two tails. We see
immediately that this answer is incorrect, for these possible outcomes are not equally
possible. That is because one head and one tail can occur in two different ways—head
on coin #1 and tail on coin #2, or tail on coin #1 and head on coin #2. Hence, we
should say that there are four equally possible cases, so the probability of two heads
is 1/4.

In order to clarify his definition Laplace needed to say what is meant by ‘‘equally
possible,”’ and he endeavored to do so by offering the famous principle of indiffer-
ence. According to this principle, two outcomes are equally possible—we might as
well say ‘‘equally probable’’—if we have no reason to prefer one to the other.
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Compare the coin example with the following from modern physics.
Suppose you have two helium-4 atoms in a box. Each one has a fifty-
fifty chance of being in the left-hand side of the box at any given time.
What is the probability of both atoms being in the left-hand side at a
particular time? The answer is 1/3. Since the two atoms are in principle
indistinguishable—unlike the coins, which are obviously distinguish-
able—we cannot regard atom #1 in the left-hand side and atom #2 in
the right-hand side as a case distinct from atom #1 in the right-hand side
and atom #?2 in the left-hand side. Indeed, it does not even make sense
to talk about atom #1 and atom #2 since we have no way, even in
prirciple, of telling which is which.

Suppose, for example, that we examine a coin very carefully and find that it is
perfectly symmetrical. Any reason one might give to suppose 1t will come up heads
can be matched by an equally good reason to suppose it will land tails up. We say that
the two sides are equally possible, and we conclude that the probability of heads is
1/2. If, however, we toss the coin a large number of times and find that it lands heads
up in about 3/4 of all tosses and tails up in about 1/4 of all tosses, we do have good
reason to prefer one outcome to the other, so we would not declare them equally
possible. The basic idea behind the principle of indifference is this: when we have no
reason to consider one outcome more probable than another, we should not arbi-
trarily choose one outcome to favor over another. This seems like a sound principle
of probabilistic reasoning.

There is, however, a profound difficulty connected with the principle of indif-
ference; its use can lead to outright inconsistency. The problem is that it can be
applied in different ways to the same situation, yielding incompatible values for a
particular probability. Again, consider an example, namely, the case of Joe, the
sloppy bartender. When a customer orders a 3:1 martini (3 parts of gin to 1 part of
dry vermouth), Joe may mix anything from a 2:1 to a 4:1 martini, and there is no
further information to tell us where in that range the mix may lie. According to the
principle of indifference, then, we may say that there is a fifty-fifty chance that the
mix will be between 2:1 and 3:1, and an equal chance that it will be between 3:1 and
4:1. Fair enough. But there is another way to look at the same situation. A 2:] martini
contains 1/3 vermouth, and a 4:1 martini contains 1/5 vermouth. Since we have no
further information about the proportion of vermouth we can apply the principle of
indifference once more. Since 1/3 = 20/60 and 1/5 = 12/60, we can say that there
is a fifty-fifty chance that the proportion of vermouth is between 20/60 and 16/60 and
an equal chance that it is between 16/60 and 12/60. So far, so good?

Unfortunately, no. We have just contradicted ourselves. A 3:1 martini contains
25 percent vermouth, which is equal to 15/60, not 16/60. The principle of indifference
has told us both that there is a fifty-fifty chance that the proportion of vermouth is
between 20/60 and 16/60, and also that there is a fifty-fifty chance that it is between
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20/60 and 15/60. The situation is shown graphically in Figure 2.2. As the graph
shows, the same result occurs for those who prefer their martinis drier; the numbers
are, however, not as easy to handle.

We must recall, at this point, our first axiom, which states, in part, that the
probability of a given outcome under specified conditions is a unigue real number. As
we have just seen, the classical interpretation of probability does not furnish unique
results; we have just found two different probabilities for the same outcome. Thus, it
turns out, the classical interpretation is not an admissible interpretation of probability.

You might be tempted to think the case of the sloppy bartender is an isolated and
inconsequential fictitious example. Nothing could be farther from the truth. This
example illustrates a broad range of cases in which the principle of indifference leads
to contradiction. The source of the difficulty lies in the fact that we have two
quantities—the ratio of gin to vermouth and the proportion of vermouth—that are
interdefinable; if you know one you can calculate the other. However, as Figure 2.2
clearly shows, the definitional relation is not linear; the graph is not a straight line. We
can state generally: Whenever there is a nonlinear definitional relationship between
two quantities, the principle of indifference can lead to a similar contradiction. To
convince yourself of this point, work out the details of another example. Suppose
there is a square piece of metal inside of a closed box. You cannot see it. But you are
told that its area is somewhere between 1 square inch and 4 square inches, but nothing
else 1s known about the area. First apply the principle of indifference to the area of
the square, and then apply it to the length of the side which 1s, of course, directly

61
Ratio
ginto
vermouth 5:1

41 41— 9 —
Equal = 1
intervals 3:1¢— 81— 2 — I~
\{ !
21N~ 21— > -~r -
| 1560 |
1 F 12/60 20/60
1:1 60| /
Vo NV
0:1 l e — 1 1 1 1 ] 1
St ——
0/60 10/60 \ / 20/60 30/60 40/60
Unequal —.__Fractional parts
inter?tals vermouth in martini
Figure 2.2

76 The Confirmation of Scientific Hypotheses



ascertainable from the area. (For another example, involving a car on a racetrack, see
Salmon 1967, 66—67.)

Although the classical interpretation fails to provide a satisfactory basic defi-
nition of the probability concept, that does not mean that the idea of the ratio of
favorable to equiprobable possible outcomes is useless. The trouble lies with the
principle of indifference, and its aim of transforming ignorance of probabilities into
values of probabilities. However, in situations in which we have positive knowledge
that we are dealing with alternatives that have equal probabilities, the strategy of
counting equiprobable favorable cases and forming the ratio of favorable to equiprob-
able possible cases is often handy for facilitating computations.

2. The frequency interpretation. The frequency interpretation has a venera-
ble history, going all the way back to Aristotle (4th century B.C.), who said that the
probable is that which happens often. It was first elaborated with precision and in
detail by the English logician John Venn (1866, [1888] 1962). The basic idea is easily
illustrated. Consider an ordinary coin that is being flipped in the standard way. As it
is flipped repeatedly a sequence of outcomes is generated:

HTHTTTHHTTHTTTTHTHTTTHHHH...!

We can associate with this sequence of results a sequence of relative frequencies—
that is, the proportion of tosses that have resulted in heads up to a given point in the
sequence—as follows:

1/1, 172, 2/3, 2/4, 2/5, 2/6, 3/7, 4/8, 4/9, 4/10, 5/11, 5/12, 5/13/ 5/14, 5/15,
6/16, 6/17, 7/18, 7/19, 7/20, 7/21, 8/22, 9/23, 10/24, 11/25, . . .

The denominator in each fraction represents the number of tosses made up to that
point; the numerator represents the number of heads up to that point. We could, of
course, continue flipping the coin, recording the results, and tabulating the associated
relative frequencies. We are reasonably convinced that this coin is fair and that it was
flipped in an unbiased manner. Thus, we believe that the probability of heads is 1/2.
If that belief is correct, then, as the number of tosses increases, the relative frequen-
cies will become and remain close to 1/2. The situation is shown graphically in Figure
2.3. There is no particular number of tosses at which the fraction of heads is and
remains precisely 1/2; indeed, in an odd number of tosses the ratio cannot possibly
equal 1/2. Moreover, if, at some point in the sequence, the relative frequency does
equal precisely 1/2, it will necessarily differ from that value on the next flip. Instead
of saying that the relative frequency must equal 1/2 in any particular number of
throws, we say that it approaches 1/2 in the long run.

Although we know that no coin can ever be flipped an infinite number of times,
it is useful, as a mathematical idealization, to think in terms of a potentially infinite
sequence of tosses. That is, we imagine that, no matter how many throws have been

19 These are the results of 25 flips made in an actual trial by the authors.
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made, it is still possible to make more; that is, there is no particular finite number N
at which point the sequence of tosses is considered complete. Then we can say that
the limit of the sequence of relative frequencies equals the probability; this is the
meaning of the statement that the probability of a particular sort of occurrence is, by
definition, its long run relative frequency.

What is the meaning of the phrase ‘‘limit of the relative frequency’’? Let f;, f5,
f3, . . . be the successive terms of the sequence of relative frequencies. In the ex-
ample above, f, = 1, f, = 1/2, f; = 2/3, and so on. Suppose that p is the limit of
the relative frequency. This means that the values of f,, become and remain arbitrarily
close to p as n becomes larger and larger. More precisely, let & be any small number
greater than 0. Then, there exists some finite integer N such that, for any n > N, f,
does not differ from p by more than &.

Many objections have been lodged against the frequency interpretation of prob-
ability. One of the least significant is that mentioned above, namely, the finitude of
all actual sequences of events, at least within the scope of human experience. The
reason this does not carry much weight is the fact that science is full of similar sorts
of idealizations. In applying geometry to the physical world we deal with ideal
straight lines and perfect circles. In using the infinitesimal calculus we assume that
certain quantities—such as electric charge—can vary continuously, when we know
that they are actually discrete. Such practices carry no danger provided we are clearly
aware of the idealizations we are using. Dealing with infinite sequences is technically
easier than dealing with finite sequences having huge numbers of members.

A much more serious problem arises when we ask how we are supposed to
ascertain the values of these limiting frequencies. It seems that we observe some
limited portion of such a sequence and then extrapolate on the basis of what has been
observed. We may not want to judge the probability of heads for a certain coin on the
basis of 25 flips, but we might well be willing to do so on the basis of several hundred.
Nevertheless, there are several logical problems with this procedure. First, no matter
how many flips we have observed, it is always possible for a long run of heads to
occur that would raise the relative frequency of heads well above 1/2. Similarly, a
long run of future tails could reduce the relative frequency far below 1/2.

Another way to see the same point is this. Suppose that, for each n, m/n is the
fraction of heads to tosses as of the nth toss. Suppose also that f, does have the
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limiting value p. Let a and b be any two fixed positive integers where a =< b, If we
add the constant a to every value of m and the constant b to every value of n, the
resulting sequence (m + a)/(n + b) will converge to the very same value p. That
means that you could attach any sequence of b tosses, a of which are heads, to the
beginning of your sequence, without changing the limiting value of the relative
frequency. Moreover, you can chop off any finite number & of members, a of which
are heads, from the beginning of your sequence without changing the limiting fre-
quency p. As m and n get very large, the addition or subtraction of fixed numbers a
and b has less and less effect on the value of the fraction. This seems to mean that the
observed relative frequency in any finite sample is irrelevant to the limiting fre-
guency. How, then, are we supposed to find out what these limiting frequencies—
probabilities—are?

It would seem that things could not get much worse for the frequency interpre-
tation of probability, but they do. For any sequence, such as our sequence of coin
tosses, there is no guarantee that any limit of the relative frequency even exists. It is
logically possible that long runs of heads followed by longer runs of tails followed by
still longer runs of heads, and so on, might make the relative frequency of heads
fluctuate between widely separated extremes throughout the infinite remainder of the
sequence. If no limit exists there is no such thing as the probability of a head when
this coin is tossed.

In spite of these difficulties, the frequency concept of probability seems to be
used widely in the sciences. In Chapter 1, for instance, we mentioned the spon-
taneous decay of C'* atoms, commenting that the half-life is 5730 years. That is
the rate at which atoms of this type have decayed in the past; we confidently predict
that they will continue to do so. The relative frequency of disintegration of C'*
atoms within 5730 years 1s 1/2. This type of example is of considerable interest to
archaeologists, physicists, and geophysicists. In the biological sciences it has been
noted, for example, that there is a very stable excess of human male births over
human female births, and that 1s expected to continue. Social scientists note, how-
ever, that human females, on average, live longer than human males. This fre-
quency is also extrapolated.

It is easy to prove that the frequency interpretation satisfies the axioms of
probability laid down in the preceding section. This interpretation is, therefore,
admissible. Its main difficulty lies in the area of ascertainability. How are we to
establish values of probabilities of this sort? This question again raises Hume’s
problem of justification of induction.

A further problem remains. Probabilities of the frequency variety are used in
two ways. On the one hand, they appear in statistical laws, such as the law of
radioactive decay of unstable species of nuclei. On the other hand, they are often
applied in making predictions of single events, or finite classes of events. Pollsters,
for example, predict outcomes of single elections on the basis of interviews with
samples of voters. If, however, probability is defined as a limiting frequency in a
potentially infinite sequence of events, it does not seem to make any sense to talk
about probabilities of single occurrences. The problem of the single case raises a
problem about the applicability of the frequency interpretation of probability.

Before we leave the frequency interpretation a word of caution is in order. The
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frequency interpretation and the classical interpretations are completely different from
one another, and they should not be confused. When the classical interpretation refers
to possible outcomes and favorable outcomes it is referring to types or classes of
events—for example, the class of all cases in which heads comes up is one possible
outcome; the class of cases in which tails comes up is one other possible outcome. In
this example there are only two possible outcomes. These classes—not their
members—are what you count for purposes of the classical interpretation. In the
frequency interpretation, it is the members of these classes that are counted. If
the coin is tossed a large number of times there are many heads and many tails. In the
frequency interpretation, the numbers of items of which ratios are formed keep
changing as the number of individual events increases. In the classical interpretation,
the probability does not depend in any way on how many heads or tails actually occur.

3. The propensity interpretation. The propensity interpretation is a relatively
recent innovation in the theory of probability. Although suggested earlier, particularly
by Charles Saunders Peirce, it was first clearly articulated by Popper (1957b, 1960).
It was introduced specifically to deal with the problem of the single case.

The sort of situation Popper originally envisaged was a potentially infinite
sequence of tosses of a loaded die that was biased in such a way that side 6 had a
probability of 1/4. The limiting frequency of 6 in this sequence is, of course, 1/4.
Suppose, however, that three of the tosses were ror made with the biased die, but
rather with a fair die. Whatever the outcomes of these three throws, they would have
no effect on the limiting frequency. Nevertheless, Popper maintained, we surely want
to say that the probability of 6 on those three tosses was 1/6—rnot 1/4. Popper argued
that the appropriate way to deal with such cases is to associate the probability with the
chance setup that produces the outcome, rather than to define it in terms of the
sequence of outcomes themselves. Thus, he claims, each time the fair die is thrown,
the mechanism—consisting of the die and the thrower—has a causal tendency or
propensity of 1/6 to produce the outcome 6. Similarly, each time the loaded die is
tossed, the mechanism has a propensity of 1/4 to produce the outcome 6.

Although this idea cf propensity—probabilistic causal tendency—is important
and valuable, it does not provide an admissible interpretation of the probability
calculus. This can easily be seen in terms of the case of the frisbee factory introduced
in the preceding section. That example, we recall, consisted of two machines, each
of which had a certain propensity or tendency to produce defective frisbees. For the
new machine the propensity was 0.01; for the old machine it was 0.02. Using the rule
of total probability we calculated the propensity of the factory to produce faulty
frisbees; it was 0.012. So far, so good.

The problem arises in connection with Bayes’s rule. Having picked a defec-
tive frisbee at random from the day’s production, we asked for the probability that
it was produced by the new machine; the answer was 2/3. This is a perfectly le-
gitimate probability, but it cannot be construed as a propensity. It makes no sense
to say that this frisbee has a propensity of 2/3 to have been produced by the new
machine. Either it was produced by the new machine or by the old. It does not
have a tendency of 1/3 to have been produced by the old machine and a tendency
of 2/3 to have been produced by the new one. The basic point is that causes pre-
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cede their effects and causes produce their effects, even if the causal relationship
has probabilistic aspects. We can speak meaningfully of the causal tendency of a
machine to produce a faulty product. Effects do not produce their causes. It does
not make sense to talk about the causal tendency of the effect to have been pro-
duced by one cause or another.

Bayes’s rule enables us to compute what are sometimes called inverse proba-
bilities. Whereas the rule of total probability enables us to calculate the forward
probability of an effect, given suitable information about antecedent causal factors,
Bayes’s rule allows us to compute the inverse probability that a given effect was
produced by a particular cause. These inverse probabilities are an integral part of the
mathematical calculus of probability, but no propensities correspond to them. For this
reason the propensity interpretation is not an admissible interpretation of the proba-
bility calculus.

4. The subjective interpretation. Both the frequency interpretation and the
propensity interpretation are regarded by their proponents as types of physical prob-
abilities. They are objective features of the real world. But probability seems to many
philosophers and mathematicians to have a subjective side as well. This aspect has
something to do with the degree of conviction with which an individual believes in
one proposition or another. For instance, Mary Smith is sure that it will be cold in
Montana next winter—that is, in some place in that state the temperature will fall
below 50 degrees Fahrenheit between 21 December and 21 March. Her subjective
probability for this event is extremely close to 1. Also, she disbelieves completely
that Antarctica will be hot any time during its summer—that is, she is sure that the
temperature will not rise above 100 degrees Fahrenheit between 21 December and 21
March. Her subjective probability for real heat in Antarctica in summer is very close
to 0. She neither believes in rain in Pittsburgh tomorrow, nor disbelieves in rain in
Pittsburgh tomorrow; her conviction for either one of these alternatives is just as
strong as for the other. Her subjective probability for rain tomorrow in Pittsburgh is
just about 1/2. As she runs through the various propositions in which she might
believe or disbelieve she finds a range of degrees of conviction spanning the whole
scale from O to 1. Other people will, of course, have different degrees of conviction
in these same propositions.

It is easy to see immediately that subjective degrees of commitment do not
provide an admissible interpretation of the probability calculus. Take a simple ex-
ample. Many people believe that the probability of getting a 6 with a fair die is 1/6,
and that the outcomes of successive tosses are independent of one another. They also
believe that we have a fifty-fifty chance of getting 6 at least once in three throws. As
we saw 1n the previous section, however, that probability is significantly below 1/2.
Therefore, the preceding set of degrees of conviction violate the mathematical cal-
culus of probability. Of course, not everyone makes that particular mistake, but
extensive empirical research has shown that most of us do make various kinds of
mistakes in dealing with probabilities. In general, a given individual’s degrees of
conviction fail to satisfy the mathematical caicuius.

5. Personal probabilities. What if there were a person whose degrees of
conviction did not violate the probability calculus? That person’s subjective proba-
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bilities would constitute an admissible interpretation. Whether there actually is any
such person, we can think of such an organization of our degrees of conviction as an
ideal.

Compare this situation with deductive logic. One of its main functions is to help
us avoid certain types of logical errors. Anyone who believes, for example, that all
humans are mortal and Socrates is human, but that Socrates is immortal, is guilty of
self-contradiction. Whoever wants to believe only what is true must try to avoid
contradictions, for contradictions cannot possibly be true. In this example, among the
three statements, ‘‘All humans are mortal,”” ‘‘Socrates is human,’’ and *‘Socrates is
immortal,”’ at least one must be false. Logic does not tell us which statement is false,
but it does tell us to make some change in our set of beliefs if we do not want to
believe falsehoods. A person who avoids logical contradictions—inconsistencies—
has a consistent set of beliefs.

A set of degrees of conviction that violate the calculus of probability is said to
be incoherent. Anyone who holds a degree of conviction of 1/6 that a fair die, when
tossed, will come up 6, and who also considers successive tosses independent (whose
degree of conviction in 6 on the next toss is not affected by the outcome of previous
tosses), and who is convinced to the degree 1/2 that 6 will come up at least once in
three tosses, 1s being incoherent. So also is anyone who assigns two different values
to the probability that a martini mixed by Joe, the sloppy bartender, is between 3:1
and 4:1.

A serious penalty results from being incoherent. A person who has an incoher-
ent set of degrees of conviction is vulnerable to a Dutch book. A Dutch book is a set
of bets such that, no matter what the outcome of the event on which the bets are made,
the subject loses. Conside a very simple example. The negation rule of the probability
calculus tells us that Pr(BlA) and Pr(~B|A) must add up to 1. Suppose someone has
a degree of conviction of 2/3 that the next toss of a particular coin will result in heads,
and also a degree of conviction of 2/3 that it will result in tails. This person should
be willing to bet at odds of 2 to 1 that the coin will come up heads, and also at odds
of 2 to 1 that it will come up tails. These bets constitute a Dutch book because, if the
coin comes up heads the subject wins $1 but loses $2, and if it comes up tails the
subject loses $2 and wins $1. Since these are the only possible outcomes, the subject
loses $1 no matter what happens.

It has been proved in general that a person is subject to a Dutch book if and only
if that person holds an incoherent set of degrees of conviction. Thus, we can look at
the probability calculus as a kind of system of logic—the logic of degrees of con-
viction. Conforming to the rules of the probability calculus enables us to avoid certain
kinds of blunders in probabilistic reasoning, namely, the type of error that makes one
subject to a Dutch book. In light of these considerations, personal probabilities have
been defined as coherent sets of degrees of conviction. It follows immediately that
personal probabilities constitute an admissible interpretation of the probability cal-
culus, for they have been defined in just that way.

One of the major motivations of those who accept the personalist interpretation
of probability lies in the use of Bayes’s rule; indeed, those who adhere to personal
probabilities are often called ‘‘Bayesians.”” To see why, let us take another look at
Bayes’s rule (Rule 9):
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Pr(HIK) x Pr(EIK.H)
Pr(HIK) x Pr(EIK.H) + Pr(~HIK) X Pr(EIK.~H)

provided that Pr(EIK) + 0.

Pr(HIK.E) =

Consider the following simple example. Suppose that someone in the next room is
flipping a penny, and that we receive a reliable report of the outcome after each toss.
We cannot inspect the penny, but for some reason we suspect that it is a two-headed
coin. To keep the arithmetic simple, let us assume that the coin is either two-headed
or fair. Let K stand for our background knowledge and opinion, H for the hypothesis
that the coin is two-headed, and E for the results of the flips. For any given individual
Pr(H'K)—the prior probability—represents that person’s antecedent degree of con-
viction that the coin is two-headed before any of the outcomes have been reported.
Probability Pr(E|K.H)—one of the likelihoods—is the probability of the outcome
reported to us, given that the coin being flipped is two-headed. If an outcome of tails
is reported, that probability obviously equals zero, and the hypothesis H is refuted.

If one or more heads are reported, that probability clearly equals 1. The prob-
ability Pr(~HK) is the prior probability that the coin is not two-headed—that is, that
it is fair. On pain of incoherence, this probability must equal 1 — Pr(HIK). The
probability Pr(E1~H.K) is also a likelihood; it is the probability of the outcomes
reported to us given that the coin is not two-headed. The probability Pr(H K. E)—the
posterior probability—is the probability that the coin is two-headed given both our
background knowledge and knowledge of the results of the tosses. That probability
represents an assessment of the hypothesis in the light of the observational evidence
(reported reliably to us).

Suppose that John’s prior personal probability that the coin is two-headed is
1/100. The result of the first toss is reported, and it is a head. Using Bayes’s rule, he
computes the posterior probability as follows:

1/100 X 1

After two heads the result would be
1/100 x 1
= 4/103 = 0.04.

1/100 X 1 + 99/100 X 1/4
After ten heads the result would be

17100 X 1
1/100 X 1 + 99/100 x 1/1024

= 1024/1123 = 0.91.

Suppose Wes’s personal prior probability, before any outcomes are known, is much
higher than John’s; Wes has a prior conviction of 1/2 that the coin is two-headed.
After the first head, he makes the following calculation:
112 x 1
172 X 1 + 1/2 x 1/2

After the second head, he has

= 2/3 = 0.67.
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172 X 1
172 X 1 + 172 X 1/4

After ten heads, he has

= 4/5 = 0.80.

1/2 X 1

X T T 13 X Tiom ~ 102411025 > 0.99.

These calculations show two things. First, they show how Bayes’s rule can be
used to ascertain the probability of a hypothesis if we have values for the prior
probabilities. 1If we employ personal probabilities the prior probabilities become
available. They are simply a person’s degrees of conviction in the hypothesis prior to
receipt of the observational evidence. In this kind of example the likelihoods can be
calculated from assumptions we share concerning the behavior of fair and two-headed
coins.

Second, these calculations illustrate a phenomenon known as washing out of the
priors or swamping of the priors. Notice that we did two sets of calculations—one for
John and one for Wes. We started with widely divergent degrees of conviction in the
hypothesis; Wes’s was 1/2 and John’s was 1/100. As the evidence accumulated our
degrees of conviction became closer and closer. After ten heads, Wes’s degree of
conviction is approximately 0.99 and John’s is approximately 0.91. As more heads
occur our agreement becomes even stronger. This illustrates a general feature of
Bayes’s rule. Suppose there are two people with differing prior probabilities—as far
apart as you like provided neither has an extreme value of O or 1. Then, if they agree
on the likelihoods and if they share the same observational evidence, their posterior
probabilities will get closer and closer together as the evidence accumulates. The
influence of the prior probabilities on the posterior probabilities decreases as more
evidence becomes available. This phenomenon of washing out of the priors should
help to ease the worry we might have about appealing to admittedly subjective
degrees of conviction in our evaluations of scientific hypotheses.

Still, profound problems are associated with the personalistic interpretation of
probability. The only restriction imposed by this interpretation on the values of prob-
abilities is that they be coherent—that they satisfy the rules of mathematical proba-
bility. This is a very weak constraint. If we look at the rules of probability we note that,
with a couple of trivial exceptions, the mathematical calculus of probability does not
by itself furnish us with any values of probabilities. The exceptions are that a logically
necessary proposition must have probability 1 and a contradiction must have proba-
bility 0. In all other cases, the rules of probability enable us to calculate some prob-
ability values from others. You plug in some probability values, turn the crank, and
others come out. This means that there need be little contact between our personal
probabilities and what goes on in the external world. For example, it is possible for a
person to have a degree of conviction of 9/10 that the next toss of a coin will result in
heads even though the coin has been tossed hundreds of times and has come up tails
on the vast majority of these tosses. By suitably adjusting one’s other probabilities one
can have such personal probabilities as these without becoming incoherent. If our prob-
abilities are to represent reasonable degrees of conviction some stronger restrictions
surely appear to be needed.
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6. The logical interpretation. One of the most ambitious twentieth-century
attempts to deal with the problems of probability and confirmation was the construc-
tion of a theory of logical probability by Rudolf Carnap. Carnap was not the first to
make efforts in that direction, but his was the most systematic and precise. In fact,
Carnap maintained that there are two important and legitimate concepts of
probability—relative frequencies and logical probabilities—but his main work was
directed toward the latter. He referred to logical probability as degree of confirmation.
Many philosophers refer to logical probability as inductive probability. The three
terms are essentially interchangeable.

Carnap’s program was straightforward in intent. He believed that it is possible
to develop a formal inductive logic along much the same lines as formal deductive
logic. In fact, he constructed a basic logical language in which both deductive and
inductive relations would reside. In deductive logic, if a statement E entails another
statement H, E supports H completely—if E is true H must also be true. In in-
ductive logic, if E is evidence for a hypothesis H, E provides some sort of partial
support for H; indeed, this type of partial support is often referred to as partial
entailment.

The easiest way to understand what Carnap did is to work out the details of
a simple and highly artificial example. Let us construct a language which deals with
a universe containing only three entities, and each of these entities has or lacks one
property. We let a, b, and ¢ denote the three individuals, and we use F to designate
the property. To make the example concrete, we can think of the individuals as
three balls and the property as red. The notation Fa says that the first ball is red;
~Fa says that it is not red. We need a few other basic logical symbols. We use
x and y as variables for individuals, and (x), which is known as the universal
quantifier, means ‘‘for every x.”” The notation (3x), which is known as the exis-
tential quantifier, means ‘‘there exists at least one x such that.”” A dot “*.”” is used
for the conjunction and; a wedge ‘‘v’’ for the disjunction or. That is about all of
the logical equipment we will need.

The model universe we are discussing is a very simple place, and we can
describe it completely; indeed, we can describe every logically possible state of this
universe. Any such complete description of a possible state is a state description;
there are eight:

1. Fa.Fb.Fc 5. Fa.~Fb.~Fc
2. Fa.Fb.~Fc 6. ~Fa.Fb.~Fc
3. Fa.~Fb.Fc 7. ~Fa.~Fb.Fc
4. ~Fa.Fb.Fc 8. ~Fa.~Fb.~Fc

Any consistent statement that we can form in this miniature language can be ex-
pressed by means of these state descriptions. For example, (x)Fx, which says that
every ball is red, is equivalent to state description 1. The statement (Jx)Fx, which
says that at least one ball is red, is equivalent to the disjunction of state descriptions
1-7; that is, it says that either state description 1 or2 or3 or4 or 5 or 6 or 7 is true.
Fa is equivalent to the disjunction of state descriptions 1, 2, 3, and 5. Fa.Fb is
equivalent to the disjunction of state descriptions 1 and 2. If we agree to admit—just
for the sake of convenience—that there can be disjunctions with only one term, we
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can say that every consistent statement is equivalent to some disjunction of state
descriptions. The state descriptions in any such disjunction constitute the range of
that statement. A contradictory statement is equivalent to the denial of all eight of the
state descriptions. Its range is empty.

In the following discussion, H is any statement that is being taken as a hy-
pothesis and E any statement that is being taken as evidence. In this discussion any
consistent statement that can be formulated in our language can serve as a statement
of evidence, and any statement—consistent or inconsistent—can serve as a hy-
pothesis. Now, consider the hypothesis (3x)Fx and evidence Fc. Clearly this ev-
idence deductively entails this hypothesis; if the third ball is red at least one must
be red. If we look at the ranges of this evidence and this hypothesis, we see that
the range of Fc (state descriptions 1, 3, 4, 7) is entirely included in the range of
(dx)Fx (state descriptions 1-7). This situation always holds. If one statement en-
tails another, the range of the first is included within the range of the second. This
means that every possible state of the universe in which the first is true is a possible
state of the universe in which the second is true. If two statements have identical
ranges, they are logically equivalent, and each one entails the other. If two state-
ments are logically incompatible with one another, their ranges do not overlap at
all—that is, there is no possible state of the universe in which they can both be
true. We see, then, that deductive relationships can be represented as relationships
among the ranges of the statements involved.

Let us now turn to inductive relationships. Consider the hypothesis (x)Fx and
the evidence Fa. This evidence obviously does not entail the hypothesis, but it seems
reasonable to suppose that it provides some degree of inductive support or confirma-
tion. The range of the evidence (1, 2, 3, 5) is not completely included in the range
of the hypothesis (1), but it does overlap that range—the two ranges have state
description 1 in common. What we need is a way of expressing the idea of confir-
mation in terms of the overlapping of ranges. When we take any statement £ as
evidence, we are accepting it as true; in so doing we are ruling out all possible states
of the universe that are incompatible with the evidence E. Having ruled out all of
those, we want to know to what degree the possible states in which the evidence holds
true are possible states in which the hypothesis also holds true. This can be expressed
in the form of a ratio, range (E.H)/range (E), and this is the basic idea behind the
concept of degree of confirmation.

Consider the range of (x)Fx; this hypothesis holds in one state description out
of eight. If, however, we learn that Fa is true, we rule out four of the state descrip-
tions, leaving only four as possibilities. Now the hypothesis holds in one out of four.
If we now discover that b is also true, our combined evidence Fa.Fb holds in only
two state descriptions, and our hypothesis holds in one of the two. It looks reasonable
to say that our hypothesis had a probability of 1/8 on the basis of no evidence, a
probability of 1/4 on the basis of the first bit of evidence, and a probability of 1/2 on
the two pieces of evidence. (This suggestion was offered by Wittgenstein 1922). But
appearances are deceiving in this case.

If we were to adopt this suggestion as it stands, Carnap realized, we would
rule out altogether the possibility of learning from experience; we would have no
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basis at all for predicting future occurrences. Consider, instead of (x)Fx, the hy-
pothesis Fc. By itself, this hypothesis holds in four (1, 3, 4, 7) out of eight state
descriptions. Suppose we find as evidence that Fa. The range of this evidence is
four state descriptions (1, 2, 3, 5), and the hypothesis holds in two of them. But
4/8 = 2/4, so the evidence has done nothing to support the hypothesis. Moreover,
if we learn that Fb is true our new evidence is Fa.Fb, which holds in two state
descriptions (1, 2), and our hypothesis holds in only one of them, giving us a ratio
of 1/2. Hence, according to this way of defining confirmation, what we observe in
the past and present has no bearing on what will occur in the future. This is an
unacceptable consequence. When we examined the hypothesis (x)Fx in the pre-
ceding paragraph we appeared to be achieving genuine confirmation, but that was
not happening at all. The hypothesis (x)Fx simply states that a, b, and ¢ all have
property F. When we find out by observing the first ball that it is red, we have
simply reduced the predictive content of k. At first it predicted the color of three
balls; after we examine the first ball it predicts the color of only two balls. After
we observe the second ball, the hypothesis predicts the color of only one ball. If
we were to examine the third ball and find it to be red, our hypothesis would have
no predictive content at all. Instead of confirming our hypothesis we were actually
simply reducing its predictive import.

In order to get around the foregoing difficulty, Carnap proposed a different way
of evaluating the ranges of statements. The method adopted by Wittgenstein amounts
to assigning equal weights to all of the state descriptions. Carnap suggested assigning
unequal weights on the following basis. Let us take another look at our list of state
descriptions in Table 2.2:

TABLE 2.2

State Description Weight Structure Description Weight
1. Fa.Fb.Fc 1/4 All F 1/4
2. Fa.Fb.~Fc /12

3. Fa.~Fb.Fc /12 2F,1~F 1/4
4. ~Fa.Fb.Fc 1/12

5. Fa.~Fb.~Fc 1/12

6. ~Fa.Fb.~Fc 1/12 1F,2~F 1/4
7. ~Fa.~Fb.Fc 12

8. ~Fa.~Fb.~Fc 1/4 No F 14

Carnap noticed that state descriptions 2, 3, and 4 make similar statements about
our miniature universe; they say that two entities have property F and one lacks it.
Taken together, they describe a certain structure. They differ from one another in
identifying the ball that is not red, but Carnap suggests that that is a secondary
consideration. Similarly, state descriptions 5, 6, and 7, taken together describe a
certain structure, namely, a universe in which one individual has property F and two
lack it. Again, they differ in identifying the object that has this property. In contrast,
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state description 1, all by itself, describes a particular structure, namely, all threeen-
tities have property F. Similarly, state description 8 describes the structure in which
no object has that property.

Having identified the structure descriptions, Carnap proceeds to assign equal
weights to them (each gets 1/4); he then assigns equal weights to the state de-
scriptions within each structure description. The resulting system of weights is
shown above. These weights are then used as a measure of the ranges of state-
ments;'! this system of measures is called m*. A confirmation function c* is de-
fined as follows:'?

cHHIE) = m*(H.E)m*(E).

To see how it works, let us reconsider the hypothesis Fc in the light of different
bits of evidence. First, the range of Fc consists of state description 1, which has
weight 1/4, and 3, 4, and 7, each of which has weight 1/12. The sum of all of them
is 1/2; that is, the probability of our hypothesis before we have any evidence. Now,
we find that Fa; its measure is 1/2. The range of Fa.Fc is state descriptions 1 and
3, whose weights are, respectively, 1/4 and 1/12, for a total of 1/3. We can now
calculate the degree of confirmation of our hypothesis on this evidence:

CHHIE) = m¥E.HYm*(E) = 1/3 + 1/2 = 23,

Carrying out the same sort of calculation for evidence Fa.Fb we find that our hy-
pothesis has degree of confirmation 3/4. If, however, our first bit of evidence had
been ~Fa, the degree of confirmation of our hypothesis would have been 1/3. If
our second bit of evidence had been ~Fb, that would have reduced its degree of
confirmation to 1/4. The confirmation function c* seems to do the right sorts of
things. When the evidence is what we normally consider to be positive, the degree
of confirmation goes up. When the evidence is what we usually take to be negative,
the degree of confirmation goes down. Clearly, c¢* allows for learning from expe-
rience.

A serious philosophical problem arises, however. Once we start playing the
game of assigning weights to state descriptions, we face a huge plethora of pos-
sibilities. In setting up the machinery of state descriptions and weights, Carnap
demands only that the weights for all of the state descriptions add up to 1, and that
each state description have a weight greater than 0. These conditions are sufficient
to guarantee an admissible interpretation of the probability calculus. Carnap rec-
ognized the obvious fact that infinitely many confirmation functions satisfying this
basic requirement are possible. The question is how to make an appropriate choice.
It can easily be shown that choosing a confirmation function is precisely the same
as assigning prior probabilities to all of the hypotheses that can be stated in the
given language.

Consider the following possibility for a measure function:

! The measure of the range of any statement H can be identified with the prior probability of that
statement in the absence of any background knowledge K. It is an a priori prior probability.

12 Wittgenstein’s measure function assigns the weight Y% to each state description; the confirmation
function based upon it is designated ct.
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TABLE 2.3

State Description Weight Structure Description Weight
l. Fa.Fb.Fc 1/20 AllF 1/20
2. Fa.Fb.~Fc 3/20

3. Fa.~Fb.Fc 3/20 2F,1~F 9/20
4. ~Fa.Fb.Fc 3/20

5. Fa.~Fb.~Fc 3/20

6. ~Fa.Fb.~Fc 3/20 1F,2~F 9/20
7. ~Fa.~Fb.Fc 3120

8. ~Fa.~Fb.~Fc 1/20 No F 1720

(The idea of a confirmation function of this type was given in Burks 1953; the
philosophical issues are further discussed in Burks 1977, Chapter 3.) This method of
weighting, which may be designated m ©, yields a confirmation function C°, which
is a sort of counterinductive method. Whereas m* places higher weights on the first
and last state descriptions, which are state descriptions for universes with a great deal
of uniformity (either every object has the property, or none has it), m places lower
weights on descriptions of uniform universes. Like c*, ¢ allows for ‘‘learning from
experience,”” but it is a funny kind of anti-inductive *‘learning.”” Before we reject m ©
out of hand, however, we should ask ourselves if we have any a priori guarantee that
our universe is uniform. Can we select a suitable confirmation function without being
totally arbitrary about it? This is the basic problem with the logical interpretation of
probability.

Part IV: Confirmation and Probability

2.9 THE BAYESIAN ANALYSIS OF CONFIRMATION

We now turn to the task of illustrating how the probabilistic apparatus developed
above can be used to illuminate various issues concerning the confirmation of scien-
tific statements. Bayes’s theorem (Rule 9) will appear again and again in these
illustrations, justifying the appellation of Bayesian confirmation theory.

Various ways are available to connect the probabilistic concept of confirmation
back to the qualitative concept, but perhaps the most widely followed route utilizes
an incremental notion of confirmation: E confirms H relative to the background
knowledge K just in case the addition of E to K raises the probability of H, that is,
Pr(HIE.K) >) Pr(HIK)."> Hempel’s study of instance confirmation in terms of a

13 Sometimes, when we say that a hypothesis has been confirmed, we mean that it has been rendered
highly probable by the evidence. This is a high probabiliry or absolute concept of confirmation, and it should
be carefully distinguished from the incremental concept now under discussion (se¢ Carnap 1962, Salmon 1973,
and Salmon 1975). Salmon (1973) is the most elementary discussion.
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two-place relation can be taken to be directed at the special case where K contains no
information. Alternatively, we can suppose that K has been absorbed into the prob-
ability function in the sense that Pr(K) = 1,'* in which case the condition for
incremental confirmation reduces to Pr(H!E) > Pr(H). (The unconditional proba-
bility Pr(H) can be understood as the conditional probability Pr(HIT), where T is a
vacuous statement, for example, a tautology. The axioms of Section 2.7 apply only
to conditional probabilities.)

It is easy to see that on the incremental version of confirmation, Hempel’s
consistency condition is violated as is

Conjunction condition: If E confirms H and also A’ then E confirms H.H’.

It takes a bit more work to construct a counterexample to the special consequence
condition. (This example is taken from Carnap 1950 and Salmon 19735, the latter of
which contains a detailed discussion of Hempel’s adequacy conditions in the light of
the incremental notion of confirmation. ) Towards this end take the background knowl-
edge to contain the following information. Ten players participate in a chess tourna-
ment in Pittsburgh; some are locals, some are from out of town; some are juniors,
some are seniors; and some are men (M), some are women (W). Their distribution is
given by

TABLE 2.4

Locals Qut-of-towners
Juniors M W, W MM
Seniors M M W, W, w

And finally, each player initially has an equal chance of winning. Now consider the
hypotheses H: an out-of-towner wins, and H': a senior wins, and the evidence E: a
woman wins. We find that

Pr(HIE) = 3/5> Pr(H) = 12
so E confirms H. But
Pr(HVv H'\E) = 3/5<(Pr(HVv H") = 7/10.

So E does not confirm H v H'; in fact E confirms ~(H v H') and so disconfirms
H v H' even though H v H' is a consequence of H.

The upshot is that on the incremental conception of confirmation, Hempel’s
adequacy conditions and, hence, his definition of qualitative confirmation, are inad-
equate. However, his adequacy conditions fare better on the high probability con-
ception of confirmation according to which E confirms H relative to K just in case
Pr(H\E.K) > r, where r is some number greater than 0.5. But this notion of

4 As would be the case if learning from experience is modeled as change of probability function through
conditionalization; that is, when K is learned, Pr,, is placed by Pr,,, ( ) = Pr,, (| K). From this point of
view, Bayes’s theorem (Rule 9) describes how probability changes when a new fact is learned.
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confirmation cannot be what Hempel has in mind; for he wants to say that the
observation of a single black raven (E) confirms the hypothesis that all ravens are
black (H), although for typical K, Pr(H|E.K) will surely not be as great as 0.5. Thus,
in what follows we continue to work with the incremental concept.

The probabilistic approach to confirmation coupled with a simple application of
Bayes’s theorem also serves to reveal a kernel of truth in the H-D method. Suppose
that the following conditions hold:

(i) H, K - E; (ii) 1 > Pr(HIK) > 0; and (iii) 1 > PHEIK) > 0.

Condition (i) is the basic H-D condition. Conditions (ii) and (ii1) say that neither H
nor £ is known on the basis of the background information K to be almost surely false
or almost surely true. Then on the incremental conception it follows, as the H-D
methodology would have it, that E confirms H on the basis of K. By Bayes’s theorem

Pr(HIK)
Pr(HIE.K) = _—Pr(EIK)
since by (i),
Pr(EIHK) = 1,

It then follows from (ii) and (iii) that
Pr(HIE.K) > Pr(HIK).

Notice also that the smaller Pr(E|K) is, the greater the incremental confirmation
afforded by E. This helps to ground the intuition that ‘‘surprising’’ evidence gives
better confirmational value. However, this observation is really double-edged as will
be seen in Section 2.10.

The Bayesian analysis also affords a means of handling a disquieting feature of
the H-D method, sometimes called the problem of irrelevant conjunction. If the H-D
condition (i) holds for H, then it also holds for H.X where X is anything you like,
including conjuncts to which E is intuitively irrelevant. In one sense the problem is
mirrored in the Bayesian approach, for assuming that 1 > Pr(H.X1K) > 0, it follows
that E incrementally confirms H.X. But since the special consequence condition does
not hold in the Bayesian approach, we cannot infer that E confirms the consequence
X of H.X. Moreover, under the H-D condition (i), the incremental confirmation of a
hypothesis is directly proportional to its prior probability. Since
Pr(HIK) = Pr(H.X!|K), with strict inequality holding in typical cases, the incremen-
tal confirmation for H will be greater than for H.X.

Bayesian methods are flexible enough to overcome various of the shortcomings
of Hempel’s account. Nothing, for example, prevents the explication of confirmation
in terms of a Pr-function which allows observational evidence to boost the probability
of theoretical hypotheses. In addition the Bayesian approach illuminates the para-
doxes of the ravens and Goodman’s paradox.

In the case of the ravens paradox we may grant that the evidence that the
individual a is a piece of white chalk can confirm the hypothesis that ‘‘All ravens are
black’ since, to put it crudely, this evidence exhausts part of the content of the
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hypothesis. Nevertheless, as Suppes (1966) has noted, if we are interested in sub-
jecting the hypothesis to a sharp test, it may be preferable to do outdoor ornithology
and sample from the class of ravens rather than sampling from the class of nonblack
things. Let a denote a randomly chosen object and let

Pr(Ra.Ba) = p,, Pr(Ra.~Ba) = p,
Pr(~Ra.Ba) = p,, Pr(~Ra.~Ba) = p,.

Then

Pr(~BalRa) = p,#(p; + p,)
Pr(Ral~Ba) = p,#(p, + p.)

Thus, Pr(~BalRa) > Pr(Ral~Ba) just in case p, > p,. In our world it certainly
seems true that p, > p;. Thus, Suppes concludes that sampling ravens is more likely
to produce a counterinstance to the ravens hypothesis than is sampling the class of
nonblack things.

There are two problems here. The first is that it is not clear how the last
statement follows since a was supposed to be an object drawn at random from the
universe at large. With that understanding, how does it follow that Pr(~BalRa) is the
probability that an object drawn at random from the class of ravens is nonblack?
Second, it is the anti-inductivists such as Popper (see item 4 in Section 2.8 above and
2.10 below) who are concerned with attempts to falsify hypotheses. It would seem
that the Bayesian should concentrate on strategies that enhance absolute and incre-
mental probabilities. An approach due to Gaifman (1979) and Horwich (1982) com-
bines both of these points.

Let us make it part of the background information X that a is an object drawn
at random from the class of ravens while b is an object drawn at random from the class
of nonblack things. Then an application of Bayes’s theorem shows that

Pr(HIRa.Ba.K) > Pr(H|~Rb.~Bb.K)
just in case
1 > Pr(~RblK) > Pr(BalK).

To explore the meaning of the latter inequality, use the principle of total probability
to find that

Pr(BalK) = Pr(BalH.K) - Pr(HIK) + Pr(Bal~H.K) - Pr(~HIK)
= Pr(HIK) + Pr(Bal~H.K) - Pr(~HIK)

and that
Pr(~RblK) = Pr(HIK) + Pr(~Rbl~H.K) - Pr(~HIK).
So the inequality in question holds just in case
1 > Pr(~Rb|~H.K) > Pr(Bal~H.K),

or
Pr(~Bal~H.K) > Pr(RbI~H.K) > 0,
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which is presumably true in our universe. For supposing that some ravens are non-
black, a random sample from the class of ravens is more apt to produce such a bird
than is a random sample from the class of nonblack things since the class of nonblack
things is much larger than the class of ravens. Thus, under the assumption of the
stated sampling procedures, the evidence Ra.Ba does raise the probability of the
ravens hypothesis more than the evidence ~Rb.~Bb does. The reason for this is
precisely the differential propensities of the two sampling procedures to produce
counterexamples, as Suppes originally suggested.

The Bayesian analysis also casts light on the problems of induction, old and
new, Humean and Goodmanian. Russell (1948) formulated two categories of induc-
tion by enumeration:

Induction by simple enumeration is the following principle: ‘‘Given a number n of o’s which
have been found to be B’s, and no o which has been found to be not a 8, then the two
statements: (a) ‘the next a will be a 3,” (b) ‘all a’s are B’s,” both have a probability which
increases as n increases, and approaches certainty as a limit as n approaches infinity.””

I shall call (a) “‘particular induction’” and (b) ‘‘general induction.”” (1948, 401)

4

Between Russell’s ‘‘particular induction’” and his ‘‘general induction” we can in-
terpolate another type, as the following definitions show (note that Russell’s “‘a’” and
““‘B’’ refer to properties, not to individual things):

Def. Relative to K, the predicate ‘‘P’’ is weakly projectible over the sequence of
individuals a,, a,, . . . just in case

lim Pr(Pa,_ ,\Pa,. ... .Pa,K) = 1.

n—>

Def. Relative to K, ‘P’ is strongly projectible over a,, a,, ... just in case
lim Pr(Pa,.,. ... .Pa,,,) Pa,. ... .Pa,K) = 1.

n m-— «
(The notation lim indicates the limit as m and z both tend to infinity in any manner
H, n—> ©
you like.) A sufficient condition for both weak and strong probability is that the
general hypothesis H: (1)Pa, receives a nonzero prior probability. To see that it is

sufficient for weak projectibility, we follow Jeffreys’s (1957) proof. By Bayes’s
theorem '

Pr(Pa,. ... .Pa, . |H.K) - Pr(HIK)
Pr(Pa,. ... .Pa,  ,|K)

_ Pr(H\K)
~ Pr(Pa,|K) + Pr(Pa,lPa,.K) ... ‘Pr(Pa,, |\Pa,. ... .Pa,K)

Pr(H\Pa,. ... .Pa,,,.K) =

!5 Equation lim x, = L means that, for any real number € > 0, there is an integer N > Q
>0
such that, foralln > N, |x, — L] <e.
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Unless Pr(Pa, ,|Pa;. ... .Pa,.K) goes to 1 as » — oc, the denominator on the

right-hand side of the second equality will eventually become less than Pr(H|K),

contradicting the truth of probability that the left-hand side is no greater than 1.
The posit that

(P) Pr([(i)Pa, K] > 0

is not necessary for weak projectibility. Carnap’s systems of inductive logic (see item
6 in Section 2.8 above) are relevant examples since in these systems (P) fails in a
universe with an infinite number of individuals although weak projectibility can hold
in these systems.'® But if we impose the requirement of countable additivity

(CA) lim Pr(Pa,. ... .Pa,K) = Pr[(i) Pa,/K]

n—> X

then (P) is necessary as well as sufficient for strong projectibility.
Also assuming (CA), (P) is sufficient to generate a version of Russell’s ‘‘gen-
eral induction,’’ namely

(G) lim Pr{({)Pa;jPa,. ... .Pa, K] = 1.

n—> o

(Russell 1948 lays down a number of empirical postulates he thought were necessary
for induction to work. From the present point of view these postulates can be inter-
preted as being directed to the question of which universal hypotheses should be given
NONZEro priors. )

Humean skeptics who regiment their beliefs according to the axioms of prob-
ability cannot remain skeptical about the next instance or the universal generalization
in the face of ever-increasing positive instances (and no negative instances) unless
they assign a zero prior to the universal generalization. But

Pr[(i)Pa;)K] = 0
implies that
Pr{(3i) ~Pa;K] = 1,

which says that there is certainty that a counterinstance exists, which does not seem
like a very skeptical attitude.

1 A nonzero prior for the general hypothesis is a necessary condition for strong projectibility but not for
weak projectibility. The point can be illustrated by using de Finetti’s representation theorem, which says that if
P is exchangeable over a,, a,, .. . (which means roughly that the probability does not depend on the order)
then:

Pr(Pa,.Pa,. ... .Pa,| K) = [,'0" du(9)

where u(8) is a uniquely determined measure on the unit interval 0 = 6 < 1. For the uniform measure du.(8)
= d(8) we have

Pr (Pa,  ,|\Pa,. ... .Pa,.,K) =n+ lin + 2
and

Pr(Pa,, ,.....Pa,,  Pa,. ... Pa,K)=m+<+ lin+m+ 1.
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Note also that the above results on instance induction hold whether ‘P’ is a
normal or a Goodmanized predicate—for example, they hold just as well for P*q,
which i1s defined as

[(i = 2000).Pa]]\/ [(i > 2000).~Pa,)],

where Pa; means that a, is purple. But this fact just goes to show how weak the results
are; in particular, they hold only in the limit as # — ¢ and they give no information
about how rapidly the limit is approached.

Another way to bring out the weakness is to note that (P) does not guarantee
even a weak form of Hume projectibility.

Def. Relative to K, ‘P’ is weakly Hume projectible over the doubly infinite

sequence . . ., d_,, d_4, Gy, 41, Gy, . - . jUst in case for any n,
lim Pr(Pa,Pa,_,. ... .Pa, ,.K) = 1.
k—

(To illustrate the difference between the Humean and non-Humean versions of pro-
jectibility, let Pa, mean that the sun rises on day n. The non-Humean form of
projectibility requires that if you see the sun rise on day 1, on day 2, and so on, then
for any € > O there will come a day N when your probability that the sun will rise on
day N + 1 will be at least I — €. By contrast, Hume projectibility requires that if
you saw the sun rise yesterday, the day before yesterday, and so on into the past, then
eventually your confidence that the sun will rise tomorrow approaches certainty.)
If (P) were sufficient for Hume projectibility we could assign nonzero priors to
both ({)Pa; and (i)P*a;, with the result that as the past instances accumulate, the
probabilities for Pa,q,, and for P*a,q,, both approach 1, which is a contradiction.
A sufficient condition for Hume projectibility is exchangeability.

Def. Relative to K, ‘P’ is exchangeable for Pr over the a;s just in case for any »
and m

Pr(xPa,. ... . xPa, , IK) = Pr(£Pa,....%xPa, . 1K)

where * indicates that either P or its negation may be chosen and {a;] is any
permutation of the a,s in which all but a finite number are left fixed. Should we then
use a Pr-function for which the predicate ‘‘purple’” is exchangeable rather than the
Goodmanized version of ‘‘purple’’? Bayesianism per se does not give the answer
anymore than it gives the answer to who will win the presidential election in the year
2000. But it does permit us to identify the assumptions needed to guarantee the
validity of one form or another of induction.

Having touted the virtues of the Bayesian approach to confirmation, it is now
only fair to acknowledge that it is subject to some serious challenges. If it can rise to
these challenges, it becomes all the more attractive.

2.10 CHALLENGES TO BAYESIANISM

1. Nonzero priors. Popper (1959) claims that ‘‘in an infinite universe . . . the
probability of any (non-tautological) universal law will be zero.”’ If Popper were right

The Confirmation of Scientific Hypotheses 95



and universal generalizations could not be probabilified, then Bayesianism would be
worthless as applied to theories of the advanced sciences, and we would presumably
have to resort to Popper’s method of corroboration (see item 4 in Section 2.8 above).

To establish Popper’s main negative claim it would suffice to show that the prior
probability of a universal generalization must be zero. Consider again H: (i)Pa,.
Since for any n

H - Pa,. Pa,. ... .Pa

. "

Pr(HIK) < lim Pr(Pa,. ... .Pa,K).

H—>
Now suppose that
(I) Forall n, Pr(Pa,. ... .Pa,lK) = Pr(Pa,lK) - ... - Pr(Pa,K)
and that
(E) For any m and n, Pr(Pa,,|K) = Pr(Pa,K).
Then except for the uninteresting case that Pr(Pa,\K) = 1 for each #, it follows that

lim Pr(Pay. ... .Pa,K) = 0

n—>

and thus that Pr(HIK) = 0.

Popper’s argument can be attacked in various places. Condition (E) is a form of
exchangeability, and we have seen above that it cannot be expected to hold for all
predicates. But Popper can respond that if (E) does fail then so will various forms of
inductivism (e.g., Hume projectibility). The main place the inductivist will attack is
at the assumption (I) of the independence of instances. Popper’s response is that the
rejection of (I) amounts to the postulation of something like a causal connection
between instances. But this a red herring since the inductivist can postulate a prob-
abilistic dependence among instances without presupposing that the instances are
cemented together by some sort of causal glue.

In another attempt to show that probabilistic methods are ensnared in inconsis-
tencies, Popper cites Jeffreys’s proof sketched above that a non-zero prior for (i)Pa;
guarantees that

lim Pr(Pa,, ,Pa,. ... .Pa, K) = 1.

n—>

But, Popper urges, what is sauce for the goose is sauce for the gander. For we can do
the same for a Goodmanized P*, and from the limit statements we can conclude that
for some r > 0.5 there is a sufficiently large N such that for any N' > N, the
probabilities for P"N' and for P *aN, are both greater than r, which is a contradiction

for appropriately chosen P*. But the reasoning here is fallacious and there is in
fact no contradiction lurking in Jeffreys’s limit theorem since the convergence is
not supposed to be uniform over different predicates—indeed, Popper’s reasoning
shows that it cannot be.
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Of course, none of this helps with the difficult questions of which hypotheses
should be assigned nonzero priors and how large the priors should be. The example
from item S in Section 2.8 above suggests that the latter question can be ignored to
some extent since the accumulation of evidence tends to swamp differences in priors
and force merger of posterior opinion. Some powerful results from advanced prob-
ability theory show that such merger takes place in a very general setting (on this
matter see Gaifman and Snir 1982).

2. Probabilification vs. inductive support. Popper and Miller (1983) have ar-
gued that even if it is conceded that universal hypotheses may have nonzero priors and
thus can be probabilified further and further by the accumulation of positive evidence,
the increase in probability cannot be equated with genuine inductive support. This con-
tention is based on the application of two lemmas from the probability calculus:

Lemma 1. Pr(~HIE.K) X Pr(~E\K) = Pr(H v ~EIK)— Pr(H v ~EIEK).
Lemma 1 leads easily to

Lemma 2. If Pr(HIE.K) < 1 and Pr(EIK) < 1 then
Pr(H v ~E|IE.K) < Pr(H v ~EIK).

Let us apply Lemma 2 to the case discussed above where Bayesianism was used to
show that under certain conditions the H-D method does lead to incremental confir-
mation. Recall that we assumed that

H,K—E;1>Pr(EIK)>0;and 1 > Pr(HIK) > 0
and then showed that
Pr(H'E.K) > Pr(HIK),

which the inductivists want to interpret as saying that E inductively supports H on the
basis of K. Against this interpretation, Popper and Miller note that H is logically
equivalent to (H v E). (H v ~E). The first conjunct is deductively implied by E,
leading Popper and Miller to identify the second conjunct as the part of H that goes
beyond the evidence. But by Lemma 2 this part is countersupported by E, except in
the uninteresting case that £.K makes H probabilistically certain.

Jeffrey (1984) has objected to the identification of H v ~F as the part of H that
goes beyond the evidence. To see the basis of his objection, take the case where

H: (i)Pa; and E: Pa,. ... .Pa

n*

Intuitively, the part of H that goes beyond this evidence is (i) [ (i > n) ... Pa;] and
not the Popper-Miller (i)Pa, Vv ~(Pa,. ... .Pa,).

Gillies (1986) restated the Popper-Miller argument using a measure of inductive
support based on the incremental model of confirmation: (leaving aside K) the support
given by E to H is S(H, E) = Pr(HIE) — Pr(H). We can then show that

Lemma 3. S(H, E) = S(HVE, E) + S(HV ~E, E).
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Gillies suggested that S(H v EE, ) be identified as the deductive support given
H by E and S(H v ~E, E) as the inductive support. And as we have already seen,
in the interesting cases the latter is negative. Dunn and Hellman (1986) responded by
dualizing. Hypothesis H is logically equivalent to (H.E) v (H.~E) and S(H, E)
= S(H.E, E) + S(H.~E, E). Identify the second component as the deductive coun-
tersupport. Since this is negative, any positive support must be contributed by the first
component which is a measure of the nondeductive support.

3. The problem of old evidence. In the Bayesian identification of the valid
kernel of the H-D method we assumed that Pr(EIK) < 1, that is, there was some
surprise to the evidence E. But this is often not the case in important historical
examples. When Einstein proposed his general theory of relativity (H) at the close of
1915 the anomalous advance of the perihelion of Mercury (E) was old news, that is,
Pr(EIK) = 1. Thus, Pr(HIE.K) = Pr(HIK), and so on the incremental conception
of confirmation, Mercury’s perihelion does not confirm Einstein’s theory, a result that
flies in the face of the fact that the resolution of the perihelion problem was widely
regarded as one of the major triumphs of general relativity. Of course, one could seek
to explain the triumph in nonconfirmational terms, but that would be a desperate
move.

Garber (1983) and Jeffrey (1983) have suggested that Bayesianism be given a
more human face. Actual Bayesian agents are not logically omniscient, and Einstein
for all his genius was no exception. When he proposed his general theory he did not
initially know that it did in fact resolve the perihelion anomaly, and he had to go
through an elaborate derivation to show that it did indeed entail the missing 43" of arc
per century. Actual flesh and blood scientists learn not only empirical facts but
logicomathematical facts as well, and if we take the new evidence to consist in such
facts we can hope to preserve the incremental model of confirmation. To illustrate, let
us make the following assumptions about Einstein’s degrees of belief in 1915:

(a) Pr(HIK) > 0 (Einstein assigned a nonzero prior to his general theory.)
(b) Pr(EIK) = 1 (The perihelion advance was old evidence.)

(c) Pr(Ht EIK) < 1 (Einstein was not logically omniscient and did not invent his
theory so as to guarantee that it entailed the 43".)

(d) Pr[(H +— E) v (H & ~E)K] = 1 (Einstein knew that his theory entailed a
definite result for the perihhelion motion.)

(e) Pr[H.(H~E)IK] = Pr[H.(Ht ~E).~EIK] (Constraint on interpreting F as
logical implication.)

From (a)—(e) it can be shown that Pr[HI|(H +— E).K]. > Pr(HIK). So learning that his
theory entailed the happy result served to increase Einstein’s confidence in the theory.

Although the Garber-Jeffrey approach does have the virtue of making Bayesian
agents more human and, therefore, more realistic, it avoids the question of whether
the perihelion phenomena did in fact confirm the general theory of relativity in favor
of focusing on Einstein’s personal psychology. Nor is it adequate to dismiss this
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concern with the remark that the personalist form of Bayesianism is concerned pre-
cisely with psychology of particular agents, for even if we are concerned principally
with Einstein himself, the above calculations seem to miss the mark. We now believe
that for Einstein in 1915 the perihelion phenomena provided a strong confirmation of
his general theory. And contrary to what the Garber-Jeffrey approach would suggest,
we would not change our minds if historians of science discovered a manuscript
showing that as Einstein was writing down his field equations he saw in a flash of
mathematical insight that H - E or alternatively that he consciously constructed his
field equations so as to guarantee that they entailed E. ‘‘Did E confirm H for Ein-
stein?’’ and ‘‘Did learning that H  E increase Einstein’s confidence in H?"’ are two
distinct questions with possibly different answers. (In addition, the fact that agents are
allowed to assign Pr (H F EIK)<1 means that the Dutch book justification for the
probability axioms has to be abandoned. This is anathema for orthodox Bayesian
personalists who identify with the betting quotient definition of probability.)

A different approach to the problem of old evidence is to apply the incremental
model of confirmation to the counterfactual degrees of belief that would have ob-
tained had E not been known. Readers are invited to explore the prospects and
problems of this approach for themselves. (For further discussion of the problem of
old evidence, see Howson 1985, Eells 1985, and van Fraassen 1988.)

2.11 CONCLUSION

The topic of this chapter has been the logic of science. We have been trying to
characterize and understand the patterns of inference that are considered legitimate in
establishing scientific results—in particular, in providing support for the hypotheses
that become part of the corpus of one science or another. We began by examining
some extremely simple and basic modes of reasoning—the hypothetico-deductive
method, instance confirmation, and induction by enumeration. Certainly (pace Pop-
per) all of them are frequently employed in actual scientific work.

We find—both in contemporary science and in the history of science—that
scientists do advance hypotheses from which (with the aid of initial conditions and
auxiliary hypotheses) they deduce observational predictions. The test of Einstein’s
theory of relativity in terms of the bending of starlight passing close to the sun during
a total solar eclipse is an oft-cited example. Others were given in this chapter.
Whether the example is as complex as general relativity or as simple as Boyle’s law,
the logical problems are the same. Although the H-D method contains a valid
kernel—as shown by Bayes’s rule—it must be considered a serious oversimplification
of what actually is involved in scientific confirmation. Indeed, Bayes’s rule itself
seems to offer a schema far more adequate than the H-D method. But—as we have
seen—it, too, is open to serious objections (such as the problem of old evidence).

When we looked at Hempel’s theory of instance confirmation, we discussed an
example that has been widely cited in the philosophical literature—namely, the gen-
eralization ‘‘All ravens are black.’’ If this is a scientific generalization, it is certainly
at a low level, but it is not scientifically irrelevant. More complex examples raise the
same logical problems. At present, practicing scientists are concerned with—and
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excited by—such generalizations as, ‘‘All substances having the chemical structure
given by the formula YBa,Cu;0, are superconductors at 70 kelvins.”’ As if indoor
ornithology weren’t bad enough, we see, by Hempel’s analysis, that we can confirm
this latter-day generalization by observing black crows. It seems that observations by
birdwatchers can confirm hypotheses of solid state physics. (We realize that bird-
lovers would disapprove of the kind of test that would need to be performed to
establish that a raven is not a superconductor at 70°K.) We have also noted, however,
the extreme limitations of the kind of evidence that can be gathered in any such
fashion.

Although induction by enumeration is used to establish universal generaliza-
tions, its most conspicuous use in contemporary science is connected with statistical
generalizations. An early example is found in Rutherford’s counting of the frequen-
cies with which alpha particles bombarding a gold foil were scattered backward (more
or less in the direction from which they came). The counting of instances led to a
statistical hypothesis attributing stable frequencies to such events. A more recent
example—employing highly sophisticated experiments—involves the detection of
neutrinos emitted by the sun. Physicists are puzzled by the fact that they are detecting
a much smaller frequency than current theory predicts. (Obviously probabilities of the
type characterized as frequencies are involved in examples of the sort mentioned
here.) In each of these cases an inductive extrapolation is drawn from observed
frequencies. In our examination of induction by enumeration, however, we have
found that it is plagued by Hume’s old riddle and Goodman’s new one.

One development of overwhelming importance in twentieth-century philosophy
of sctence has been the widespread questioning of whether there is any such thing as
a logic of science. Thomas Kuhn’s influential work, The Structure of Scientific
Revolutions (1962, 1970), asserted that the choice of scientific theories (or hypoth-
eses) involves factors that go beyond observation and logic—including judgement,
persuasion, and various psychological and sociological influences. There is, how-
ever, a strong possibility that, when he wrote about going beyond the bounds of
observation and logic, the kind of logic he had in mind was the highly inadequate H-D
schema, (see Salmon 1989 for an extended discussion of this question, and for an
analysis of Kuhn’s views in the light of Bayes’s rule). The issues raised by the
Kuhnian approach to philosophy of science are discussed at length in Chapter 4 of this
book.

Among the problems we have discussed there are—obviously—many to which
we do not have adequate solutions. Profound philosophical difficulties remain. But
the deep and extensive work done by twentieth-century philosophers of science in
these areas has cast a good deal of light on the nature of the problems. It is an area
in which important research is currently going on and in which significant new results
are to be expected.

DISCUSSION QUESTIONS

1. Select a science with which you are familiar and find a case in which a hypothesis or theory is
taken to be confirmed by some item of evidence. Try to characterize the relationship between the
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evidence and hypothesis or theory confirmed in terms of the schemas discussed here. If none of
them is applicable, can you find a new schema that is?

If the prior probability of every universal hypothesis is zero how would you have to rate the
probability of the statement that unicorns (at least one) exist? Explain your answer.

Show that accepting the combination of the entailment condition, the special consequence
condition, and the converse consequence condition (see Section 2.4) entails that any E confirms
any H.

Consider a population that consists of all of the adult population of some particular district. We
want to test the hypothesis that all voters are literate,

(x)(Vx O Lx),

which is, of course, equivalent to
(x)(~Lx D ~ Vx).

Suppose that approximately 75 percent of the population are literate voters, approximately 15
percent are literate nonvoters, approximately 5 percent are illiterate nonvoters, and approxi-
mately 5 percent are illiterate voters—but this does not preclude the possibility that no voters are
illiterate. Would it be best to sample the class of voters or the class of illiterate people? Explain
your answer. (This example is given in Suppes 1966, 201.)

Goodman’s examples challenge the idea that hypotheses are confirmed by their instances.
Goodman holds that the distinction between those hypotheses that are and those that are not
projectable on the basis of their instances is to be drawn in terms of entrenchment. Predicates
become entrenched as antecedents or consequents by playing those roles in universal condition-
als that are actually projected. Call a hypothesis admissible just in case it has some positive
instances, no negative instances, and is not exhausted. Say that H overrrides H' just in case H
and H' conflict, H is admissible and is better entrenched than H' (i.e., has a better entrenched
antecedent and equally well entrenched consequent or vice versa), and H is not in conflict with
some still better entrenched admissible hypothesis. Critically discuss the idea that H is project-
able on the basis of its positive instances just in case it is admissible but not overridden.

. Show that

H: (x) (3 y) Rxy.(x) ~ Rxx.(x) (y) (z) [(Rxy.Ryz) D Rxz]

cannot be Hempel-confirmed by any consistent E.

It is often assumed in philosophy of science that if one is going to represent numerically the
degree to which evidence E supports hypothesis H with respect to background B, then the
numbers so produced — P(HIE.B) — must obey the probability calculus. What are the pros-
pects of alternative calculi? (Hint: Consider each of the axioms in turn and ask under what
circumstances each axiom could be violated in the context of a confirmation theory. What
alternative axiom might you choose?)

. If Bayes’s rule is taken as a schema for confirmation of scientific hypotheses, it is necessary to

decide on an interpretation of probability that is suitable for that context. It is especially crucial
to think about how the prior probabilities are to be understood. Discuss this problem in the light
of the admissible interpretations offered in this chapter.

William Tell gave his young cousin Wesley a two-week intensive archery course. At its com-
pletion, William tested Wes’s skill by asking him to shoot arrows at a round target, ten feet in
radius with a centered bull’s-eye, five feet in radius.

““You have learned no control at all,”” scolded William after the test. ‘‘Of those arrows
that hit the target, five are within five feet of dead center and five more between five and ten feet
from dead center.”” ““Not so,”” replied Wes, who had been distracted from archery practice by
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14.

15.

16

17.

his newfound love of geometry. ‘‘That five out of ten arrows on the target hit the bull’s-eye
shows I do have control. The bullseye is only one quarter the total area of the target.”’
Adjudicate this dispute in the light of the issues raised in the chapter. Note that an
alternative form of Bayes’s rule which applies when one considers the relative confirmation
accrued by two hypotheses H, and H, by evidence E with respect to background B is:

Pr(H,[E.B) _ Pr(EiH,B) Pr(H,B)
Pr(H,IE.B) = Pr(EH,B) Pr(H,B)

. Let {H,, H,, . . ., H,} be a set of competing hypotheses. Say that E selectively Hempel-
confirms some H, just in case it Hempel-confirms H; but fails to confirm the alternative Hs. Use
this notion of selective confirmation to discuss the relative confirmatory powers of black ravens
versus nonblack nonravens for alternative hypotheses about the color of ravens.

. Prove Lemmas 1, 2, and 3 of Section 2.10.

Discuss the prospects of resolving the problem of old evidence by using counterfactual degrees
of belief, that is, the degrees of belief that would have obtained had the evidence E not been
known.

Work out the details of the following example, which was mentioned in Section 2.8. There is
a square piece of metal in a closed box. You cannot see it. But you are told that its area is
somewhere between 1 square inch and 4 square inches. Show how the use of the principle of
indifference can lead to conflicting probability values.

Suppose there 15 a chest with two drawers. In each drawer are two coins; one drawer contains
two gold coins, the other contains one gold coin and one silver coin. A coin will be drawn from
one of these drawers. Suppose, further, that you know (without appealing to the principle of
indifference) that each drawer has an equal chance of being chosen for the draw, and that,
within each drawer, each coin has an equal chance of being chosen. When the coin is drawn
it turns out to be gold. What is the probability that the other coin in the same drawer is gold?
Explain how you arrived at your answer.

Discuss the problem of ascertaining limits of relative frequencies on the basis of observed
frequencies in initial sections of sequences of events. This topic is especially suitable for those
who have studied David Hume’s problem regarding the justification of inductive inference in
Part I of this chapter.

. When scientists are considering new hypotheses they often appeal to plausibility arguments. As
a possible justification for this procedure, it has been suggested that plausibility arguments are
attempts at establishing prior probabilities. Discuss this suggestion, using concrete illustrations
from the history of science or contemporary science.

Analyze the bootstrap confirmation of the perfect gas law in such a way that no ‘‘macho’’
bootstrapping is used, that is, the gas law itself is not used as an auxiliary to deduce instances
of itself.
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Three

REALISM
AND THE NATURE
OF THEORIES

Clark Glymour

When we read about the results of scientific discoveries, we usually understand these
accounts as descriptions of nature. If we pick up an issue of Scientific American, for
example, we may find an article about the way in which some feature of the immune
system works, or about the origin of the planets. It seems strangely trivial to note that
we understand such articles to be telling us about the immune system, or how the
planets came to be. What else would they be about except what their words say they
are about? The same applies to articles in scientific journals and books, and to
scientific lectures and even to conversations on scientific matters. Obviously they are
about what they seem to be talking about.

On many occasions throughout the history of modern science this apparently ob-
vious view of what scientific papers, books, lectures and conversations are about has
been emphatically denied. Many of the naysayers have been among the greatest of
scientists, or have attached their denials to great scientific works. The preface to Co-
pernicus’s great work, De Revolutionibus (1952), was not written by Copernicus him-
self, but it announced that despite what the words in the book appeared to mean,
Copernicus’s theory was not really about how the planets move; instead, so the preface
claimed, the book merely presented a mathematical device for computing the positions
of the planets on the celestial sphere. Copernican theory, according to the preface, was
an instrument, not a description. In the 1830s different methods of determining the
atomic masses of the elements gave different and conflicting results. Methods using
chemical analogies gave different masses from methods using the law of Dulong and
Petit which determine atomic masses from heat capacities. The latter methods gave still
different masses from methods that used vapor density measurements. Jean Marie Du-
mas, the leading French chemist of the time, concluded that a different atomic mass
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should apply according to how the atomic mass is determined. Thus, said Dumas, at-
oms don’t have a single mass, they have a mass associated with vapor density mea-
surements, another mass associated with heat capacity measurements, and so on.
Contrary to appearances, in Dumas’s view science does not show us how to measure
one and the same property of things in different ways; instead each kind of measure-
ment operation has a distinct property. In the twentieth century, after the theory of
relativity had replaced the Newtonian concept of mass with two distinct notions—rest
mass and proper mass—Percy Bridgeman (1927), a distinguished physicist, proposed
that every distinct physical operation determines a distinct property, a view he called
operationalism. Late in the nineteenth century many consistent alternatives to Euclid-
ean geometry had been developed, and Henri Poincaré, one of the greatest mathema-
ticians and mathematical physicists of the time, realized that by various changes in
physical dynamics any of these alternative geometries could be made consistent with
scientific observations. Poincaré argued that the geometry of space is not something the
world forces upon us; instead, we force geometry on the world. We, in effect, adopt
the convention that we will measure things in such a way, and formulate our physics
in such a way, that Euclidean geometry is true.

Many, many other examples like these could be given. The question of just how
scientific theories should be understood becomes a burning issue whenever it seems
that the content of our theories is uncertain, and especially whenever it seems that
science is faced with alternative theories that could equally account for all possible
observations. The threat that the content of science might in some respects be un-
derdetermined by all evidence we might ever have often brings about proposals by
scientists and by philosophers to reinterpret the meaning of that content.

In this chapter we consider the evolution of modern philosophical and scientific
debates over scientific realism. These debates concern both the nature and content of
scientific theories, and whether we can have any real justification for believing the
claims of science.

3.1 METAPHYSICAL SKEPTICISM AND INDUCTIVE SKEPTICISM

In the seventeenth century, mechanical explanations flourished in chemistry, in phys-
ics, in the study of gases, and in many other areas of science. The emerging new
sciences tried to explain phenomena by the motions, masses, shapes and collisions of
component bodies—the atoms or ‘‘corpuscles’ that were thought to make up all
matter. English philosophers of science in the seventeenth and eighteenth centuries
tried to make philosophical sense of the great revolution in the sciences that had taken
hold in the seventeenth century. One of the most immediate philosophical problems
was the difference between the world we experience and the world described by
seventeenth-century mechanical theories of nature. The world of our experience is
filled with colors, tastes, smells, sounds, heats, and more that does not appear among
the basic properties in Newtonian mechanical science. One fundamental philosoph-
ical question therefore had to do with the connection between the world we experi-
ence and the purely mechanical world that the new sciences postulated: How are the
colors, tastes, odors, and heats we observe in the world produced by mechanical
actions, and how can we know how this comes about?
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John Locke’s Essay Concerning Human Understanding ([1690] 1924), engaged
the question by supposing that the world we experience is entirely mental, a world of
ideas. The simple ideas in us are created entirely by the mechanical operation of
corpuscles in the world outside us; the corpuscles act mechanically on our bodies,
which are also mechanical systems, and somehow the result is that mental events take
place in us: we see bodies, smell odors, hear sounds, feel heat, and so forth. From
these simple ideas our minds create more complex ideas, Locke held, by forming
combinations of simple ideas. We have no ideas whatsoever except those that arise by
combining ideas that come either from sensation or from observing in ourselves the
operations of our own minds. Some of our simple ideas correspond to qualities that
external bodies really have; our ideas of solidity, motion, shape, and number of
~ bodies, for example, correspond to features of external bodies. Locke called these
properties ‘‘primary qualities.”” Other ideas, such as those of heat, taste, odor and
color do not, according to Locke, correspond to properties that external bodies really
have. External bodies are not colored, for example, but they may have the power
(because of their arrangements of primary qualities) to produce the idea of color in us.

Locke’s picture of how we fit into the world is not very different from the
pictures that some people might give using contemporary physics rather than the
mechanical physics with which Locke was familiar. But no matter whether we use
Newtonian mechanics or modern physics, such pictures raise a fundamental philo-
sophical problem to which Locke had no solution: If Locke is right that all we
experience are our ‘‘ideas,”” not things themselves, then how can we have any
knowledge of things themselves? How, for instance, could Locke possibly know that
our ideas of corpuscles, solidity, figure, and motion really do correspond to qualities
of bodies themselves, but our ideas of color and odor do not? How could anyone
know that the claims of physics are true? Our experience would be the same, it seems,
if bodies really did have colors and odors, and not just shapes and masses and
velocities. Still more fantastically, our experience might be the same if the external
world we see really didn’t exist at all, and things in themselves had no mass, no shape
and no velocity. The problem with Locke’s picture is that it postulates a scientific
description of how things are in themselves but it seems to forbid any method by
which we could obtain relevant evidence as to the truth of that description.

The problem Locke’s picture poses is referred to as the problem of metaphysical
skepticism. Metaphysical skepticism arises whenever it seems that two or more ways
are possible in which the world could be constituted and not even all possible evi-
dence would be sufficient to determine in which of these ways the world actually is
constituted. In that case, we might reasonably doubt that anyone could really know
(or even have good reason to think) that the world is one way rather than the other.
Locke’s veil of ideas is only one way in which metaphysical skepticism can be posed.
In the nineteenth century the Reverend Phillip Gosse invented a novel version of
metaphysical skepticism in order to dispute the fossil evidence indicating that the age
of the Earth is much greater than is suggested by scripture. God, according to
Reverend Gosse, created the world less than 6,000 years ago complete with geolog-
ical strata and fossils. Evidently, barring time machines, no observations that could
ever be obtained would refute this theory. For a modern version of metaphysical
skepticism, consider the possibility that you are a brain in a vat and that all of what
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you see, hear, taste, smell and feel is unreal; your sensations are produced by stim-
ulating your sensory nerves according to a plan that is executed by a sophisticated
computer. No matter what you may observe in the course of your life, your obser-
vations will be consistent both with the hypothesis that you are a brain in a vat and
with the hypothesis that you are not.

To such metaphysical perplexities about science and knowledge, David Hume
added another in the eighteenth century. Hume’s problem of induction has already been
considered (see Chapter 2). Hume phrased it as a problem about our knowledge of any
necessary connection between cause and effect. He argued that we do not perceive any
necessary connection between a cause and its effect, and therefore the idea of necessary
connection cannot come from our experience of the external world. Hume proposed
that the source—and therefore the content—of the idea of necessary connection is our
observation within ourselves of the force of habit that leads us to expect a familiar effect
when we observe a familiar cause. From this analysis, Hume argued that neither ex-
perience nor reason can guarantee that future examples of any familiar cause will be
followed by the familiar effect. For all that reason or experience can establish, bread
will not nourish people tomorrow, or tomorrow daytime will not be followed by night.

Hume framed his argument in terms that were appropriate to the ‘‘idea’” idea
and to the philosophical language of the eighteenth century, but his inductive skep-
ticism is almost as old as philosophy. A related point is made very clearly, and in
some respects more clearly than in Hume, by Plato (1900-1903) in his dialogue, The
Meno. Plato’s protagonists, Socrates and Meno, try to establish a general, universal
hypothesis by looking for examples or counterexamples. The general hypotheses that
Plato considers in the dialogue are proposed conditions for virtue, but Plato’s philo-
sophical point applies as well to any general scientific hypotheses, for example
hypotheses about the melting point of water.

Imaginably, all pure water could melt at one and the same temperature, or
different samples of water could melt at different temperatures. It is perfectly con-
sistent to imagine a world in which before this time all samples of water melted at O
degrees celsius, but after this time water will melt at 10 degrees celsius. We trust that
we don’t actually live in such a world, but we can imagine one well enough. Suppose
we conjecture on the basis of our experience that all pure water melts at O degrees
celsius and suppose in fact we are right about the actual world we inhabit. In the
future we will therefore continue to be correct about the melting point of water. A
modern version of Plato’s question is this: Even if we are correct right now about
what the melting point of water is for all cases everywhere, in the past and in the
future, how can we know right now that we are correct?

We can understand the logical structure of Hume’s and Plato’s problems if we
imagine a game a scientist must play against a demon bent on deceiving the scientist.
We will suppose the two players can live forever. The demon has available a col-
lection of possible worlds. Both the demon and the scientist know which worlds are
in the collection. The scientist and the demon agree on a proposition that is true in
some of these possible worlds and false in others. The proposition might be ‘‘bread
always nourishes’” or ‘‘the melting point of water is zero degrees celsius’’ or any
other proposition of interest. The demon gets to choose a possible world, and he gives
the scientist facts about that world one at a time in any order the demon pleases. But
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the demon is not allowed to lie about the facts and is not allowed to withhold any
relevant fact; every fact about the world the demon has chosen must eventually be put
in evidence for the scientist. The scientist must guess whether or not the proposition
is true in the world the demon has chosen. If he wishes the scientist can change his
guess whenever a new fact is received.

What does it mean to win this game? Winning is coming to know. For Plato
(and, less clearly, for Hume) the scientist knows the truth or falsity of the proposition
if and only if no matter which world the demon chooses, after some finite number of
facts have been received, the scientist can announce the conjecture that will always
henceforth be given about the proposition, and that conjecture is correct. For Plato,
knowledge requires true belief acquired by a reliable method that permits the knower
to know that she knows.

The simple but devastating logical fact is that except for the very trivial prop-
ositions or very restricted sets of alternative worlds, the scientist can never win this
sort of game. The conditions Plato and Hume require for knowledge can almost never
be met unless the alternative circumstances are restricted a priori, a supposition Plato
endorsed and Hume denied.

In one form or another the problems of metaphysical skepticism and inductive
skepticism have been central to theories of knowledge and philosophies of science
throughout the history of philosophy, and the same remains true of philosophy of
science today. The two problems are alike in calling into question our ability to have
scientific knowledge by considering circumstances in which alternative hypotheses
are consistent with the evidence we might have. The problems differ in detail.
Inductive skepticism trades on the fact that we are finite beings who only have a finite
amount of data available at any time. Metaphysical skepticism trades on the assump-
tion of a separation between the kinds of things we have evidence about and the kinds
of things we wish to know about; even if we had infinite knowledge of things of the
first kind, it would not suffice to determine the truth about things of the second kind.
These problems are at the bottom of many disputes over the nature of scientific
claims, the structure of scientific theories, and the appropriateness of belief in the
claims of modern science.

3.2 THE KANTIAN SOLUTION

Immanuel Kant, an eighteenth-century physicist and philosopher, offered a novel
solution to both the problem of metaphysical skepticism and the problem of inductive
skepticism. His ideas had an extraordinary influence on both science and philosophy
from the nineteenth century into the twentieth. It is almost impossible to understand
twentieth-century debates about the structure of science without some grasp of Kant’s
VIEWS.

Kant drew a radical conclusion from the perplexities of English philosophers
such as Locke and Hume. Kant’s conclusion is that we can have no knowledge
whatsoever of things in themselves. But why should we want to? Kant knew that the
world that affects each of us, the world we care about and want to predict and control
and understand, is the world we experience, not the world of things in themselves. In
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the world we experience we have tables, chairs, houses and other people; in the world
we experience, bodies move (approximately) according to the law of inertia, events
occur one after another, things have shapes, the properties of figures and shapes are
described by geometrical principles, and familiar causes produce familiar effects.
This is the world science tries to describe, not the world of things in themselves.

In an important sense, Kant rejected the notion that what we perceive are our own
ideas. We perceive things in the world of experience, not our own ideas. In Kant’s view
itis true enough that the structure of our experience depends in part on the structure of
our minds. The objects we see, touch, hear, feel or smell are in some respects con-
stituted by our own minds: The unknowable things in themselves together with our
minds produce the world of experience. But exactly what it is to be an object of
experience—an ordinary chair for example—is to be an entity constructed in this way.

While this is one way out of metaphysical skepticism, what about inductive
skepticism? Kant had an ingenious solution there as well, and it is much more
intricate and requires a further look at Kant’s philosophical project. Kant asked the
following sorts of questions: In order for there to be any experience of things in space
and time and any experience of events occurring one after the other, what conditions
are necessary? We can interpret this sort of question psychologically—how must the
mind work in order for one to have experience of the sort we do?—or logically—what
principles are logically presupposed by the assumption that we have experience at all?
(Kant’s words suggest both a psychological and a logical reading of his project, and
scholars have argued about the matter ever since.) Kant called these sorts of questions
transcendental, and to this day philosophers call “‘transcendental’’ any arguments
that try to establish that something must be true because it is (or is claimed to be) a
necessary condition for human knowledge or for human experience.

What separates transcendental arguments from ordinary empirical arguments of
the kind given in the sciences is not entirely clear. Some empirical arguments take as
premises particular facts of our experience (for example, that particular samples of
sodium melted at particular temperatures) and argue to generalizations (for example,
that all pure sodium melts within a specific interval of temperatures). Some scientific
arguments take general features of human experience (for example, that the motions
of the planets satisfy Kepler’s second law) and argue to deeper general laws (such as
the law of gravitation). ‘“Transcendental’’ arguments seem to be distinguished only
by the fact that their premises about experience are very, very general (and therefore
often banal), and their conclusions are not supposed merely to be the best explanation
of the premises or the best scientific conjecture, but demonstrably necessary in order
for the premises to be true.

Kant claimed that the way the mind forms experience guarantees that objects of
experience must have certain features. Objects are perceived in space, and Kant held
that the ‘‘empirical intuition’’ of space—that is, seeing particular things in space—
requires that the principles of Euclidean geometry truly describe spatial relations.
Events occur in time, and Kant further held that the “‘intuition’” of time requires that
events occur in a linear, serial order like the integers. Euclidean geometry and
arithmetic are not themselves spatial or temporal intuitions; they are what Kant called
the forms of sensible intuitions of space and time. Indeed, Kant held that because of
these forms of intuition, we can have a priori knowledge that geometry and arithmetic

Realism and the Nature of Theories 109



will be true in the world we experience—that is, knowledge not derived from any
particular experiences. Kant thought our knowledge of the truth of propositions of
arithmetic and geometry was especially puzzling. These propositions appear to be
certain and not to be based on experiment of any kind, but their truth did not seem to
Kant to be ‘‘analytic’’ either. Although 7 + 5 = 12, the concept of seven plus five,
Kant maintained, does not contain the concept of twelve, and hence we could not
come to know that 7 + 5 = 12 merely by analyzing the concept of seven plus five.
The doctrine that arithmetic is the pure form of the intuition of time seemed to explain
how we could know such ‘‘synthetic’’ claims a priori.

In addition to these ‘ ‘pure forms of intuition,”’ Kant held that certain *‘pure con-
cepts of the understanding’” necessarily apply to any judgements we make about the
objects of experience. Kant called these concepts ‘‘pure’’ because he held that they too
are not obtained from any experience; instead they form experience, or they are pre-
conditions of experience of objects. Kant’s *‘pure concepts of the understanding’’ were
taken from the logical categories commonly used in his day (and, indeed, Kant himself
wrote a treatise on logic). For our purposes the most important concept of the under-
standing is that of causality. The upshot in psychological terms is that through a process
that is not entirely clear, the understanding guarantees that objects of experience are
subject to causal regularities. Kant did not hold that the understanding generally reveals
_a priori which possible causal laws are true; that is up to science to determine from
experience. The understanding only guarantees that if objects are experienced they and
their properties must be subject to some causal regularities or other. But Kant did argue
that the understanding also guarantees a priori the truth of many principles of New-
tonian physics, for example the law of inertia.

Kant’s system seemed to provide an answer to most of the philosophical prob-
lems that beset eighteenth-century science. The doubts of metaphysical skepticism
were pushed aside as of no relevance to the aims of science or the concerns of
humans. The problem of inductive skepticism appeared to be solved. Furthermore,
Kant’s system justified the feeling—more common in the eighteenth century than
today—that geometry, arithmetic, and the fundamental principles of physical kine-
matics and dynamics are too certain to be based on generalizations from experience
and too full of content to be merely disguised definitions.

The influence Kant’s system had among scientists and philosophers is hard for
us to appreciate today. One example will have to serve by way of illustration. Josiah
Willard Gibbs was the first great American-born theoretical physicist, one of the
figures most responsibie for forming that branch of physics called statistical thermo-
dynamics, which attempts to understand phenomena of heat through the application
of probability theory to the mechanics of systems of particles. In the preface to his
seminal work, Elementary Principles of Statistical Mechanics (1960), Gibbs wrote
that his aim was to reduce the phenomena of heat to regularities of mechanics that
have an a priori foundation.

3.3 SKEPTICISM AND THE ANTINOMIES OF REASON

Kant’s Critique of Pure Reason ([1787] 1929) nonetheless contained troublesome
seeds of skepticism. Nothing in Kant’s picture of the world guaranteed that every
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meaningful scientific question we might pose about the world of experience can be
settled by scientific investigation. Hume’s problem may be solved by Kant’s picture
of the role of the concept of causation, but the logical problem about learning from
experience that Plato posed doesn’t seem to be solved at all. Kant himself argued that
questions arise that cannot be solved empirically or rationally. Kant ([1787] 1929,
384-484) described four ‘‘antinomies of pure reason,’” two of which seem to be clear
scientific questions about the world of experience:

1. Does the world have a beginning in time and is space unlimited?
2. Are objects infinitely divisible?

Kant held that these are intelligible questions about the world of experience, and
that no experience or a priori reasoning could settle them. He tried to establish as
much by giving an a priori proof in each case that the answer is “‘yes’” and in each
case another equally good a priori proof that the answer is ‘‘no.”” Kant’s ‘‘proofs,”’
like most of his attempts at demonstrations, are dubious and equivocal, but a rigorous
logical sense exists in which he was correct that these questions cannot be settled by
experience.

Recall the scientist and the demon. Suppose the demon may choose from among
different possible worlds in which some particular object—a banana, for example—
may be divided into exactly two pieces, a world in which it may be divided into three
pieces, a world in which it may be divided into four pieces, and so on for every
number. Let us also include a world in which the banana can be divided without end.
The second question, about infinite divisibility, has a *‘yes’” answer only in the last
of these possible worlds. Let us suppose the scientist can do experiments to try to
divide the banana or a part of it. One experimental method may not succeed at
dividing an object, while another experimental method will work. If the object is
divisible, let us assume that an experimental method available to the scientist will
divide it, although the scientist can only discover which method, if any, works by
trying the method experimentally. Let us further assume that the number of methods
of division that might be tried i1s unlimited. The demon picks one of the possible
worlds and in that world the banana has some definite divisibility. The scientist tries
experimental methods to divide the banana or its parts, and after each experiment the
scientist can conjecture whether the banana is infinitely divisible.

Can the scientist win this game? Not if we use Plato’s criterion for winning,
namely, that the scientist must not only get the right answer to the question but she
must eventually know when she had got the right answer. Indeed, the scientist cannot
win this game even if we loosen Plato’s conception of knowledge and do not require
that the scientist eventually know when she is correct. Suppose we change things as
follows: The scientist wins if no matter what world the demon chooses, the scientist
eventually reaches a point at which she guesses the correct answer to the second
question in that world, and continues to guess the correct answer in that world ever
after. The scientist does not have to be able to say when she has reached the point of
convergence to the truth. A moment’s reflection will show that many games exist that
a scientist can win in this way that cannot be won if the scientist is held to Plato’s
standard. For example, the scientist could now win a game in which the question was
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whether all samples of water melt at zero degrees celsius. But the scientist cannot win
the game on the question of infinite divisibility even with this more charitable crite-
rion of success. In a precise sense, Kant was right that the answer to the question is
beyond all possible experiences.

Kant’s picture therefore leaves open important practical issues about which
scientific questions can and which cannot be settled by which methods. Before and
after Kant those issues sparked debates over scientific realism.

3.4 LOGICAL POSITIVISM AND THE LINGUISTIC TURN

Most philosophers and many scientists educated in the late nineteenth and early
twentieth centuries were taught Kantian ideas, but by the 1920s the most daring and
sophisticated young philosophers of science had come to reject the Kantian picture.
The partial disintegration of the Kantian solution was due to several factors. One was
the scientific rejection of principles of geometry and physics that Kant had claimed to
prove are synthetic a priori truths. The middle and late nineteenth centuries saw the
development of non-Euclidean geometries that vied with Kant’s Euclidean geometry
as descriptions of the structure of space. By the 1920s the general theory of relativity
had led a good many scientists to think—contrary to Poincaré—that Euclidean ge-
ometry is not true of physical space, and had also led scientists to reject the law of
inertia as Newton and Kant understood it. Such results inevitably led scientifically
informed philosophers to wonder about Kant’s arguments: How good could Kant’s
demonstrations be if they were refuted by the advance of science?

Another factor in the demise of Kant’s system was the development of modern
logic at the hands of Gottlob Frege (1972), David Hilbert and others. In 1879 Frege
had revolutionized logic, laying the foundations for a theory of mathematical proof
that permitted the mathematical study of the structure of mathematics itself. By the
1920s Hilbert, Bertrand Russell and others had developed Frege’s ideas into a rich
and powerful tool for analyzing language and arguments in mathematics, physics and
even philosophy. From the perspective provided by this new tool, Kant’s arguments
didn’t look very sound. Rather than rigorous demonstrations, they seemed to be
equivocal, full of gaps, and well short of proving their claims. Kant’s response to
Hume, for example, seemed inadequate when one moved from talk of justifying a
vague principle of causality to questions about how universal laws of nature could be
known on the basis of any finite amount of evidence. Kant was left with a sort of
picture but without convincing arguments for its details. The Kantian system was
replaced by a new philosophical enterprise: unfolding the logic of science.

Frege’s logical theory focused on formal languages, which were presented as
abstract but precise mathematical objects, as definite as the system of natural num-
bers. Frege’s greatest achievement was to show how a variety of mathematical the-
ories could be represented in such formal languages and how the notion of a proof
could be characterized as a precise mathematical property of certain sets of sequences
of symbols in such a language. Early twentieth-century logicians clarified Frege’s
accomplishment, formalized still more powerful languages and other mathematical
theories, and introduced a mathematical representation of how language describes
various kinds of facts.
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The new subject of model theory that emerged concerned the representation of
how language describes the actual world or any possible world. Associated with any
formal language were an infinity of set-theoretic structures called models. Each model
consisted of a set (the domain of the model) and special subsets of the domain, or
special subsets of pairs or triples or n-tuples of members of the domain. The domain
of a model was a mathematical representation of the objects in some possible world,
and the subsets, and sets of pairs, triples, and so on, of members of the domain were
mathematical representations of properties or relations among things in that possible
world. The idea, roughly, is that a property corresponds to the set of things that have
that property in each possible world. ‘‘Brown’’ corresponds in each possible world to
the set of brown things in that world.

Parts of the formal language were associated with parts of any model for the
language. Certain symbols in the language named members of the domain, while
other symbols denoted properties or relations—that is, subsets or sets of pairs or
triples and so on of members of the domain. Other symbols in the formal language
were used as variables that range over members of the domain. Under such an
association between symbols of an abstract formal language, on the one hand, and
features of a model, on the other hand, it was possible to define in explicit mathe-
matical terms what it means for a sentence in the formal language to be true (or false)
in the model.

With this apparatus, one could study the expressive power of various formalized
theories entirely mathematically; one could study the conditions under which theories
could (or could not) be described by a finite collection of sentences; one could study
which properties of collections of models could (or could not) be characterized by any
possible theory in a formal language; one could study whether formalized theories
were complete or incomplete in the sense that they left no, or some, claims about their
models indeterminate; and we could study which properties of formal theories could
be determined by algorithms—the way the long division algorithm of elementary
arithmetic determines the result of dividing one number by another. By 1930 Kurt
Godel, then a young logician, had proved that a reformulation of Frege’s logic by
Hilbert and Ackermann is complete, meaning that every sentence of a kind of formal
language that is true in every model associated with the language is also a sentence
that can be proved by their rules of proof.

The logical revolution of the late nineteenth and early twentieth centuries led to
revolutionary developments in the foundations of mathematics and eventually to the
creation of the contemporary subject of computer science. Along the way it also
changed philosophy of science, and that is what interests us here.

Two leaders of this new logical perspective were Bertrand Russell in England
and Rudolf Camap in Austria. Russell had originally been a Kantian—in fact his
doctoral thesis was a defense of the Kantian view of geometry in the face of the
development of non-Euclidean geometries. Russell, however, subsequently almost
fully abandoned the Kantian perspective; he corresponded with Frege and made
important contributions to the development of logical theory. Carnap, while he made
no original contributions to logic, studied with Frege and fully absorbed the new
logical methods, and like Russell almost entirely abandoned the Kantian perspective.
Russell and especially Carnap saw in Frege’s mathematical reconstruction of the idea

Realism and the Nature of Theories 113



of proof a model for all of philosophy. Philosophy would use the tools of modern
logic to reconstruct all of the notions of scientific methodology—the notion of a
scientific theory, of testing, confirmation, explanation, prediction, and more. Rather
than talking in Kantian terms about ‘‘synthesis’’ or in Lockean terms about ‘‘ideas’
philosophy would talk about language, about symbols, their mathematical relations
and their meanings.

This new logical perspective led to a program to replace Kantian epistemology
with other solutions to the problems of skepticism, especially metaphysical skepti-
cism. One of the first efforts of the new perspective was to attempt to replace the
Kantian synthesis of the world of experience by a logical construction of the world
of experience. The idea was something like Locke’s except that rather than talking
vaguely about combining ideas, certain parts of a formal language would be assumed
to describe the deliverances of experience, and then new terms would be introduced
into the language through formal, logical definitions that reduced the new terms to the
terms denoting immediate experiences (see Chapter 4, Sections 4.2 and 4.3). On this
view, the external world is whatever satisfies these logical constructions, and the
structure of definitions guarantees that what satisfies the constructions, if anything,
must be sets of immediate experiences, or sets of sets of immediate experiences, or
sets of sets of sets of immediate experiences, and so on. In this way any intelligible
talk of the objects of science, the external world, or anything else is reduced to talk
about possible experiences. Metaphysical skepticism was avoided in something of the
same way it was avoided in Kant, and the possibility of empirical knowledge was
explained. Russell sketched such an account and around 1925 Carnap attempted to

“carry it out in detail in a book he entitled The Logical Structure of the World (1969).
A similar viewpoint was developed near the same time by the American philosopher
and logician C. I. Lewis in his Mind and the World Order ([1929] 1956).

Kant’s system provided a kind of explanation of mathematical knowledge. How
did the new logical turn of the 1920s explain our knowledge of arithmetic and
geometry? Not by any attempt to establish that some mathematical knowledge is
synthetic a priori. The new philosophers of science unanimously rejected Kant’s
claims about the source and character of mathematical knowledge; instead, several
other alternatives were pursued. One idea was logicism, the proposal that just as
claims about the world can be reduced by appropriate definitions to claims entirely
about experience, so claims in mathematics can be reduced by appropriate definitions
to claims about nothing and everything. By appropriate definitions of mathematical
objects and operations, mathematical claims were to be reduced to complex logical
truths. Logical truths are true of everything, true in every possible world, and they
can be established by purely logical demonstrations. In this way the certainty and a
priori character of mathematics would be accounted for, but only by making math-
ematics in a sense empty of content. This proposal was carried out in considerable
detail by Bertrand Russell and Alfred North Whitehead (1925). A second idea is that
mathematical knowledge is tacitly conditional and axiomatic. Many mathematicians
had shown how to give rigorous sets of axioms for various fundamental mathematical
theories. In the nineteenth century Giuseppe Peano had given a set of axioms for
arithmetic, and later Hilbert ([1909] 1971) gave a rigorous set of axioms for geom-
etry. The axiomatic idea about mathematical knowledge was that we don’t in fact
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know a prior1 that the axioms of arithmetic are true of anything; what we know is only
that if the axioms of arithmetic are true of a system then certain other claims must
necessarily also be true. We don’t know a priori, for example, that 1 + 1 = 2 is true
of any particular system, and sometimes it isn’t: 1 volume of water mixed with 1
volume of alcohol does not make two volumes of anything because the two liquids are
mutually soluble. What we know a priori is that if Peano’s axioms describe any
system of quantities, then 1 + 1 = 2 is true of them. The same is true of geometry.
As Einstein put the point, insofar as geometry is about experience it is not certain, and
insofar as geometry is certain, it is not about experience.

The philosophical movement Carnap represented came to be known as “‘logical
positivism.’” That term was applied mostly by German and Austrian philosophers to
their point of view, but as we have already noted the perspective was shared by others
in England and the United States. The logical-linguistic approach to scientific knowl-
edge underwent a rapid evolution, caused largely by various technical difficulties
encountered by attempts at logical reconstruction of human knowledge. One of the
very first difficulties was the failure of Carnap’s attempt to show how the external
world could be constructed logically from descriptions of experiences. Carnap found
that he could construct classes reducible to a simple relation between terms denoting
experiences, and that some of these classes seem reasonable reconstructions of sen-
sory modalities such as color and sound. But he did not find a satisfactory way to
interpret the notion of a physical object or of places and times as such reducible
classes. Metaphysical skepticism seemed to threaten once more; fortunately Carnap
and the other logical positivists had a stick with which to beat it down.

3.5 THE VERIFIABILITY PRINCIPLE OF MEANING

Locke had claimed that we can only think about ideas, and he held that the source of
ideas must be either sensation or internal observation of the operations of our own
minds. In a fashion not entirely welcome to Locke, this point of view contains a
solution to metaphysical skepticism, since on Locke’s view we cannot really think of
objects in themselves, only of ideas. What we cannot think of we cannot intelligibly
talk of. So when we ask whether the world in itself could be made of nonentities
without primary qualities, we are not, on this view, really saying anything intelligi-
ble. For metaphysical skepticism and other perplexities, the logical positivists pro-
posed a still more radical solution: the verifiability principle.

The vertfiability principle holds that a claim is meaningful if and only if it
could be verified, that is, if and only if some possible set of observations exists
that, were they to be made, would establish the truth of the claim (see Chapter 4,
Section 4.4). A claim that is actually false can be verifiable in this sense. It is false
that I weigh less than 200 pounds, but a possible sequence of observations exists
that were they to be made would establish that I do weigh less than 200 pounds.
Because I don’t weigh less than 200 pounds, no such observations will in fact be
made, but they are possible.

By embracing the verifiability principle, the logical positivists were able to
dismiss metaphysical skepticism and metaphysical speculation as sheer nonsense, as
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literally talk with no meaning, for metaphysical skepticism only gets started by
attempting to describe some circumstance whose truth or falsity allegedly is under-
determined by ali possible evidence. According to the verifiability principle, no such
circumstance can ever be described; words do not have the power to express what is
meaningless. (For an example of the application of the principle in a scientific
context, see Chapter 5, Section 5.1).

With the verifiability principle available, the failure of Carnap’s attempt to show
how to construct descriptions of the world from descriptions of experience did not
herald the rebirth of metaphysical skepticism, and the principle is still held today by
a few philosophers. But the verifiability principle seemed to create as many problems
as it solved. The problem, once more, was Plato’s.

Consider whether the claim that the melting point of water is zero degrees
celsius can be verified. If ‘‘verify”’ means to establish the truth in such a way that
we need not reserve the right to change our minds, then Plato’s criterion for suc-
cess in the knowledge game seems to apply: To verify the proposition there must
exist a finite sequence of observations such that upon making those observations we
can be certain that the proposition is true. So the observations must necessitate the
truth of the proposition, or in other words, the demon must not have available a
possible world in which the observations are true and the proposition in question is
false. However, we cannot verify in this way any general scientific law. We can-
not, for example, use observations of the melting point of water to verify that water
melts at zero degrees celsius because it is logically possible (even if we do not
believe it) that in the future water will melt at 10 degrees celsius. Thus, according
to the verifiability principle, understood in this way, every scientific law is mean-
ingless. The verifiability principle saves the world from metaphysics, but at the
price of losing the world!

Some, but not many, philosophers have been willing to accept this conclusion.
A number of philosophers educated at Oxford endorse it (Dummett 1978, Wright
1980.) Stephen Toulmin, a prominent philosopher of science, proposed for example
that scientific theories are not really claims about the world, they are ‘‘inference
tickets’’ that lead us to predict new observations from old observations. Toulmin’s
idea is a form of instrumentalism, much like the view proposed by Osiander, the
author of the Copernican preface. In recent decades, however, most people concluded
that the verifiability principle is not acceptable. That conclusion is easy to draw when
we reflect that no independent arguments for the principle derived from any empirical
analysis of how language actually functions. The verifiability principle seems simply
to have been a convenient dogma for discrediting metaphysical perplexities. The
perplexities won.

3.6 CONFIRMATION, MEANING AND THE “STANDARD
CONCEPTION"” OF THEORIES

With the failure of attempts to show how the world could be viewed as a logical
construction from simple descriptions of experience, and the rejection of the verifi-
ability principle, the problem of separating science from metaphysics began to seem
all the more difficult. Kant had solved the problem of metaphysical skepticism by
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confining the claims of empirical science to the world of experience. The first at-
tempts of the new logical methods to replace the Kantian system with a clearer, more
rigorous, more ‘‘scientific’’ understanding of knowledge resulted either in a failure to
establish how the world of experience could be known at all, or else a failure to
separate the claims of science from those of metaphysical speculation, with all of their
underdetermination. To this dilemma philosophers of science in the 1930s responded
by using the notions of testing and confirmation to limit meaning. In the end that
proved not to help matters much.

One clever solution to the problem of metaphysical skepticism was proposed by
Hans Reichenbach (1938): Even if they are expressed differently, two claims mean
the same thing if every possible piece of evidence for (or against) one of the claims
is equally strong evidence for (or against) the other claim, and vice versa. The usual
examples of metaphysical skepticism arise when there appear to be two or more
claims that are indistinguishable in this way by any possible evidence. On Reichen-
bach’s proposal, making a case for metaphysical skepticism by articulating two
claims that are indistinguishable by any possible evidence is actually making a case
that there is no difference in the claims: There is nothing between them to be in doubt
about. Reichenbach viewed confirmation as a matter of probability relations: Evi-
dence confirms a hypothesis by raising its probability in accordance with Bayes’ rule
(see Chapter 2). In his view, two theories say the same thing if they would receive
the same probability on every possible observation.

As with the verifiability principle no particular argument arose for this proposal
founded on how language is used, but important technical difficulties did appear.
Reichenbach had proposed an outline of a characterization of synonymy: A is syn-
onymous with B just if A and B receive the same confirmation on every piece of
evidence. Since this synonymy relation depends on an initial distribution of proba-
bilities, there is no way to be sure just what synonymy relation Reichenbach had in
mind. Suppose we separate from a formal language a special part or sub-language in
which observations are to be reported, and suppose in Reichenbach’s spirit we say
that two theories are synonymous if and only if they entail exactly the same collection
of sentences in this observation language. Frege’s theory of proof, then, no longer
applies, and indeed no effective theory of proof is possible within such a language.
So a comparatively clear variant of Reichenbach’s proposal would destroy one of the
very pillars of the logical movement.

Reichenbach, as well as Hermann Weyl ([1949] 1963), the great mathematician
and mathematical physicist of the early part of this century, Carnap and Reich-
enbach’s (and Hilbert’s) student, Carl Hempel, developed another perspective. The
perspective presented in this chapter follows Carnap’s, but all of these philosophers
developed very closely related ideas.

In Carnap’s picture we can observe ordinary objects and their ordinary proper-
ties; we are not separated from the world by a veil of ideas. However, a great deal
exists that we cannot observe: events inaccessible in space-time, things too small, and
differences in properties too slight for our senses. Science is concerned with both the
observed and the unobserved, and indeed even the unobservable. We describe what
we observe in language and we state our scientific theories and hypotheses in lan-
guage as well. Both aspects of language can be formalized. Scientific theories and
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their claims about the world can be represented in a formal language of any of the
kinds Frege, Russell, Hilbert and other logicians developed. The difference between
that part of the formal language which represents claims about observations and the
more theoretical parts of the formal language are chiefly differences in vocabulary.
Many of the symbols that represent the language of science—*‘photon,’’ *‘molecular
bond,”’ “‘gene,”” and so on—are not symbols that denote observed things or prop-
erties or events.

By making observations and conducting experiments we can obtain descrip-
tions of particular facts; these descriptions are represented in a formal language as
singular sentences in the vocabulary of observation terms. How such facts might be
used as evidence for or against generalizations that are expressed purely in obser-
vational terms seems clear enough. If the generalization is, for example, that all
water melts at zero degrees celsius, then observations of water melting at zero de-
grees celsius count for the generalization, at least until we find a sample of water
that does not. Carnap (1936) proposed that singular sentences describing observa-
tions stand in a relation of confirmation to general claims. The sentence, ‘‘This
sample of water melted at zero degrees celsius,”’ confirms ‘‘All water melts at zero
degrees celsius.’”” But how are we to confirm generalizations that are not limited to
observation terms? How, for instance, are we to confirm that the atomic weight of
oxygen is greater than the atomic weight of hydrogen? Carnap’s answer to this
fundamental question was a form of conventionalism in which the conventions
specify meanings. Theoretical terms, Carnap suggested, are literally meaningless
until some conditions or rules are given that specify what observable circumstance
would count as determining instances of the terms. Carnap called such rules mean-
ing postulates. This principle is weaker than the verifiability principle; Carnap did
not require that meaningful sentences be verifiable, he required only that they be
composed of predicates for which meaning postulates exist (see Chapter 4, Sections
4.3 and 4.4).

Meaning postulates look very much like other generalizations. Although Car-
nap proposed some restricted logical forms for meaning postulates, what is special
about them is their role and their justification. Their role is both to establish the
meaning of theoretical terms and to permit the confirmation of theoretical claims.
They permit confirmation of theoretical claims by enabling us to infer instances of
theoretical generalizations from singular observation statements. If, for instance,
the law of Dulong and Petit were taken as a meaning postulate, then we could use
it to infer values of atomic weights from measurements of heat capacities. In this
way we could confirm the claim that the atomic weight of oxygen is greater than
the atomic weight of hydrogen. The justification of meaning postulates is that they
are simply stipulations, conventions about how we will use theoretical terms. They
are therefore, in Carnap’s terminology, analytic truths, while the claims of science
that are not either truths of logic or consequences of meaning postulates are syn-
thetic claims.

Contemporary commentators sometimes refer to variants of this conception of
the structure of scientific theories as the ‘‘standard conception.’” Its elements are
the assumption that scientific language can be formalized, a division between ob-
servation terms and theoretical terms, a set of meaning postulates or stipulations
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relating the two sorts of terms, and an analysis of confirmation in terms of relations
among sentences in the same vocabulary. The standard conception is the closest
modern philosophy of science ever came to a logical successor to the Kantian pic-
ture. The problems of metaphysical skepticism are solved in the standard concep-
tion by noting that the terms in metaphysical disputes lack adequate meaning
postulates to permit the confirmation of disputed metaphysical claims. A picture of
how scientific knowledge is possible emerges: Meaning postulates constrain scien-
tific language, and observations generate observational reports that confirm or dis-
confirm scientific hypotheses.

3.7 REALISM AND THE LIMITS OF SCIENTIFIC KNOWLEDGE

The standard conception set the framework for logicians to investigate one of the
fundamental Kantian questions: What are the limits of possible scientific knowledge?
The questions at issue are exactly those that concerned Kant, but now the logical
conception permitted logicians to find answers that have real demonstrations rather
than Kant’s intuitive but inconclusive arguments. This work was begun around 1960
by Hilary Putnam (1965), and has been continued since by a number of logicians and
philosophers.

One way to understand such questions is to consider again the knowledge
games an imaginary scientist might win against a demon, assuming the standard
conception. The demon and the scientist agree on a division between observation
and nonobservation terms, and on a set of meaning postulates, and the demon has
a set of possible worlds from which to choose. In each of these possible worlds the
meaning postulates must be true, but everything else may vary between worlds.
Whatever world the demon chooses, the demon must give the scientist the observ-
able facts of that world in some order, and every observable fact must eventually
be given. The scientist must conjecture whether some claim is true or false. We can
adopt Plato’s criterion of success for the scientist or the weaker criterton suggested
by Kant’s antinomies of reason. We know that the scientist cannot win in any
interesting case if we adopt Plato’s criterton of success, in which no matter what
the demon’s choice the scientist’s conjectures must eventually converge to the truth
and the scientist must know when she has converged to the truth. But what if we
grant that the scientist wins even if the scientist may not know when she had con-
verged to the truth? Then the question of knowledge is more interesting. In that
case, assuming a formal language of the kind developed by Hilbert and Acker-
mann, whether the scientist can win depends entirely on the logical properties of
the claim in question and the logical properties of the meaning postulates. The
scientist can win just if the meaning postulates entail that the claim to be decided
is true if and only if purely observational claims of a special logical form are true.
With the aid of the meaning postulates the claim under investigation must be re-
ducible to a claim of the form, ‘‘For every x, y, . . ., z, there existsa u, w, . . .,
v, such that so and so,”” where the ‘‘so and so’’ contains only observational terms
and does not contain any expressions (called quantifiers) such as ‘‘for every’’ or
“‘there exists.”’ Furthermore, for the scientist to win, the meaning postulates must
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also entail that the claim under investigation is reducible to another purely obser-
vational claim with the quantifiers reversed, that is, to a claim of the form, ‘‘There
exists an x, y, . . ., z such that for all 4, w, . . ., v, so and so.”"!

Using the standard conception logicians have been able to obtain similar results
for a wide range of alternative formal languages and for problems in which the
scientist must discover an entire theory rather than settle a preestablished question.
Such mathematical analyses can be obtained even when the characterization of pos-
sible observation sentences is not by vocabulary, when all the evidence the scientist
will see is incomplete, and even when the observation sentences are not limited to
statements of particular facts. If we want to go to the trouble, such logical results
enable us to say precisely what questions are or are not beyond human knowledge
given a definite logical system, a set of meaning postulates, and a characterization of
which sentences can be decided directly by observation.

Given the elements of the standard conception, logical analyses of the limits of
knowledge give rather pessimistic results: Relative to the logical complexity of the
observation sentences, any claim of science that could be known even in the limit
must be equivalent to sentences with specially restricted quantifier structure. In ad-
dition, of course, what cannot be known in the long run cannot be known in the short
run either. On plausible accounts of what we can actually observe, much of what we
think we know we could not possibly know. Kant’s problem of the antinomies of
reason finds a modern form.

Even without detailed logical analyses, by looking at particular scientific the-
ories and enterprises many philosophers sensed that much of scientific belief would
prove on close examination to be underdetermined by observation, not just in the
short run but even in the long run. Arguments of these sorts were developed in
different ways for features of geometry and physics by Reichenbach ([1928] 1957),
Salmon (1975}, Griinbaum (1973), Glymour (1977), Malament (1977b) and others,
and for sciences that depend on deciphering meanings by Quine (1960) and Davidson
(1984). These difficulties have been met with at least three different responses.

One response to the apparently strict limitations on the possibility of scientific

! The following procedure will determine in the limit that *“There exists an x such that for all y F(x,y)"’
is true (if it is) and (if it is not) will otherwise not converge to any hypothesis: Let xy, x; . . . x,, . . . be an
enumeration of all of the objects that could be a value v of x for which *‘for all y F(v,y)’" is true. Start by
conjecturing yes to the claim that “‘There exists an x such that for all y F(x,y)"’ so long as the data are consistent
with ““for all v F(x,,y).”” If a datum is received that contradicts “‘for all ¥ F{x,, y)”’ conjecture ne to the
question. Thereafter, conjecture yes provided all evidence so far received is consistent with *‘for all y F(x,,y)”’
until this is contradicted, at which point no is conjectured and the procedure moves to ‘‘for all y F(x,,y)"” and
so on. If “*There exists an x such that for all y F(x,y)”’ is true, then the procedure eventually finds an x,, for which
““for all y F(x,,y) is never contradicted by the data and so the procedure says yes ever after. If ‘““There exists
an x such that for all y F(x,y)”’ is false, then for each x, “*for all y F(x,,y)”’ is eventually contradicted by the
data, and the procedure changes conjectures infinitely often.

If the denia] of ‘“There exists an x such that for all y F(x,y)”’ is logically equivalent to a *‘There exists
an x, for all y such and such’’ formula, then a similar procedure can be applied. The two procedures, one for
the original sentence and one for its denial, can be dovetailed into a single procedure that converges to yes if
““There exists an x such that for all y F(x,y)’" is true and converge to no if the denial of it is true. It can be shown
that a sentence not equivalent to a sentence of the form *‘there exists an x, for all y, such and such’’ cannot have
its truth verified in the limit.
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knowledge is an argument from the implausibility of miracles. The argument is
roughly this: It would be miraculous if the observed features of the world behaved
exactly as if our best scientific theories were true, even though those theories were in
fact not true or not very close to the truth. Since it is irrational to believe in miracles,
we should believe our best theories.

The argument has great intuitive appeal because it reflects scientific common
sense. Even when some theories provide logically possible explanations of phenom-
ena, the scientific community may reject the theories if the explanations require
“‘miracles.”” A common sort of objectionable miracle requires contingent parameter
values to have infinitely precise values in order for some observed phenomenon to be
accounted for. Richard Feynman (1985), for example, recounts discovering theories
of fundamental particles and rejecting them because they required that arbitrary
parameters have very precise values. The argument based on miracles is in effect a
judgement that we are willing to reject many theories because they require circum-
stances that we regard as having zero probability.

However, we experience a difficulty. Usually we have a pretty good under-
standing of the properties of theories that scientists at one time or another have
developed, but we often have little idea of the properties of theories that scientists
have not developed. For the argument from miracles to work we need some guarantee
that among the vast array of logically possible theories of the world no alternatives
exist that generate our observations, or that whatever alternatives do exist require
some sort of scientific miracle (for example, that the worlds they describe are very
unstable and in them, generating the phenomena we have observed depends on
infinitely precise values of parameters). Simply because we do not know of such
theories does not mean they do not exist.

Another response to the view that scientific claims reach beyond any possibility
of knowledge is to deny that they are really claims at all, or at least not the claims they
appear to be. We have already seen one form of that view, instrumentalism, but
another form has gained influence in recent decades. Rather than viewing a theory as
a body of claims that are true or false, we could view a theory as a (complicated)
predicate that is frue of some systems and not true of others. Rather than a body of
claims about all systems, Newtonian dynamics, for example, is viewed as a complex
description that is true of some systems and false of others. Instead of having just one
intended model—the world—a theory is viewed as a way of specifying a collection
of alternative models with which we try to represent, explain and predict aspects of
observed phenomena. So Newtonian dynamics forms a complex predicate that applies
to many different systems and has many different well-studied models, including, for
example, a harmonic oscillator, a damped harmonic oscillator, a 2-body system in
which one point mass moves in a closed orbit, a 3-body system, and so on. In
explaining phenomena we try to show how observed regularities may be embedded
within a model of some known theory, so that any system exhibiting the phenomena
may be treated as satisfying the theoretical predicate. The practice of science is to try
to show how observed regularities may be embedded within a model of a theory so
that the system exhibiting the regularity may be treated as a system to which the
theoretical predicate applies.

This conception, sometimes called the semantic conception of theories, leads
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away from asking questions about the limits or foundations of scientific knowledge,
for the product of science in this view is not so much knowledge of general propo-
sitions but as an understanding of systems of models and how to embed various
classes of phenomena within those models. On this conception we may accept and use
a scientific theory, but see no sense or point to believing the theory. Differing versions
of this approach have been developed by a number of philosophers of science in-
cluding Suppes, van Fraassen (1980), Suppe (1989), Sneed (1971), Giere (1988) and
others.

The semantic conception certainly captures one important aspect of how theo-
retical conceptions are deployed in science. It is not, however, clear that the semantic
conception solves any of the fundamental traditional problems facing philosophy of
science. In some cases, such as cosmology, there may be no difference between
saying that a theory is true and saying that it is true of some system. Again, it is
plausible enough to treat Newtonian dynamics as a predicate of systems, or as a class
of models that vary in details, but it seems somehow less plausible to treat the atomic
theory in chemistry that way. More importantly, even on the semantic conception,
one of the aims of science is to predict the course of phenomena, and corresponding
to the limitations of knowledge there are limitations of reliable prediction. In various
settings precise theorems can be demonstrated about such limitations, even in the
limit of arbitrarily increasing evidence.

A third response to underdetermination, advocated by Russell (1948), Quine
(1969b) and several other philosophers is the conception of naturalized epistemology.
Granted that starting from nothing but our observations, without any *‘background
knowledge’’ about how the world works, we could come to know only a very
restricted body of claims about the world. Granted that in games with the demon, if
the scientist does not know beforehand that the collection of possible worlds the
demon might choose is very restricted, then the scientist can only win (even in the
more generous sense that does not require that the scientist know when he is right) for
a very limited set of questions. Nonetheless, because of how we are in fact con-
structed biologically and socially, we do not start inquiry utterly ignorant. We have
evolved to favor certain behaviors and to organize our sensations in particular ways.
Unless hindered in some serious way, infants rapidly learn to identify and reidentify
objects, and they learn that objects continue to exist when unobserved; infants have
available almost from birth some simple facts about size, distance and perspective.
And so on. Society provides us with a great deal of belief about the world, about other
people and about social relations. (Of course some of what society leads us to believe
is erroneous. ) Assuming as background the beliefs thus bestowed on us, we can study
our own perceptual and cognitive apparatus and our own social structures to discover
how beliefs are formed and to determine the reliability (and unreliability) of the
processes of human cognition. Such inquiries lead us to devices and procedures to
improve the way we acquire new beliefs, and they may even lead us to modify or
abandon some of the beliefs common to our culture. Assuming the beliefs—or most
of the beliefs—to which we are disposed by nature and culture, we proceed to expand
scientific knowledge. Our faith is that in the game we play against nature’s demon,
the demon has available only those possible worlds in which our background beliefs
are true.
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Naturalized epistemology is a program for snatching victory from defeat. Meta-
physical skepticism wins, true enough, but in practice we are not and could not be in
the circumstance of trying to learn from pure ignorance. Assuming the circumstances
we cannot help but believe we are in, the powers of science to expand our knowledge
are increased—nature’s demon has fewer ways to deceive us. Logical and statistical
investigations of the possibilities and limitations of scientific inquiry remain valuable
critical tools for determining, relative to our background knowledge, which scientific
projects and programs can hope to solve which questions. When epistemology is
naturalized, normative philosophy of science remains a most important enterprise.

3.8 MEANING, OBSERVATION AND HOLISM

In the last twenty years the standard conception and its solutions to the problems of
metaphysical skepticism and justification of scientific belief have come under heavy
criticism. One criticism of the standard conception is that there appears to be no
objective feature to tell us which scientific claims are meaning postulates. No mark
of scientific hypotheses tells us that they are meaning postulates that are not subject
to empirical disconfirmation. Even a principle that is explicitly introduced as a stip-
ulation about how a new term will be used may, as observations accumulate, come
to be abandoned in favor of other claims that historically were confirmed by assuming
and using the putative meaning postulate. As Quine put it, any claim can be held true
come what may.

Curiously, both Reichenbach and Carnap had anticipated part of this criticism.
They had viewed the selection of particular claims as meaning stipulations as a
somewhat arbitrary part of the logical reconstruction of science. Their view seems to
have been that in order to understand how scientific inference and argument works at
any moment, some claims must be understood to be functioning as meaning postu-
lates at that time. The meaning postulates may change over time, but these changes
are themselves alterations in the meanings of scientific terms, not alterations in the
content of scientific claims. The picture for which Quine argued was subtly but
importantly different. At any moment any accepted scientific claim might be used to
justify any other accepted scientific claim; except for rare usages, such as abbrevia-
tions, there is not even at a given time any distinction between the two.

Quine’s criticisms generated two lines of thought, both premised on the as-
sumption that he was correct that no sentences function simply as meaning postulates.
One line of thought tried to save the achievements of the standard conception by
explaining how scientific claims could be tested and confirmed even without meaning
postulates. The other focused on meaning rather than evidence. Without meaning
postulates, how do theoretical terms get their meaning? What determines the condi-
tions under which theoretical terms correctly apply from the conditions under which
they do not correctly apply? One answer went roughly as follows: A theoretical term
is generally introduced in order to describe the cause of some aspect of a body of
experimental or observational phenomena. The theoretical term then denotes what-
ever it is (if it is anything at all) that plays that causal role for that aspect of the
phenomena. It may be that the aspects of several phenomena for which a term is
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introduced have several causes, in which case the theoretical term may ‘‘partially
denote’’ each of these features rather than one of them (Field 1973). A more radical
view was championed by Quine himself: A theoretical term gets its meaning from the
entire body of scientific beliefs in which it is embedded. This view, often called
meaning holism, further denies any distinct basis for meaning as against belief. It has
the consequence that if beliefs about a collection of sentences change, so do the
meanings of the terms in the sentences. This doctrine, or rather the phenomenon it
alleges—that whenever scientific opinion changes the meanings of all scientific terms
change—is sometimes called meaning variance.

Just as no clear mark seemed to separate meaning postulates from other scien-
tific claims, so on reflection no clear mark seemed to separate what is observable from
what is not observable, and certainly no distinguishing mark seemed suitable for
founding a theory of meaning. Depending on details of context and scientific belief,
almost any sentence in the language of our theories might serve as a report of
observations. For example, a scientist who believes that the law of Dulong and Petit
is approximately correct might make measurements with a calorimeter and report, ‘It
was observed that the atomic weight of hydrogen in our samples is less than the
atomic weight of oxygen in our samples.”’ A physicist checking photographs of
particles from an accelerator might say, ‘A Z particle was observed.’’ In practice we
judge the correctness of reports of observations by whether the circumstance claimed
to be observed really did occur, and by whether the observers were situated so that
they could have distinguished the circumstance from others, for example, from the
absence of a Z particle in the picture. Neither of these requirements is met only by
sentences in some special ‘‘observational’’ vocabulary. Moreover, how observations
are reported is—as Locke noted—very sensitive to the beliefs of the observer. A
scientist who holds one theory may honestly describe experimental observations
differently from the way the outcomes of the same experiment are honestly described
by a scientist who holds a competing theory. However, because of the doctrine of
meaning holism, no neutral formulation exists of what has been observed. Observa-
tions are unavoidably theory laden.

Sometimes the freshest lines of thought in a discipline come from those outside
it who sense the larger issues without being entangled in the detailed arguments of
specialists. The attack on the standard conception was led by Thomas Kuhn (1970),
who at the time had studied physics and the history of science, but not philosophy.
Kuhn argued through historical examples that occasionally radical breaks arise in
scientific tradition when practitioners follow different lines of research using different
standards of argument and making different inferences from observations. Kuhn
claimed that the practitioners separated by such a break literally do not understand
each other—their scientific languages are incommensurable—and they share no meth-
ods for resolving their disputes. Between sides in scientific revolutions, success is
determined by rhetoric and politics, not by evidence. Moreover, science does not
accumulate truths as time passes. When a scientific break occurs, all of the results
accumulated by the previous tradition are rejected; either they are dismissed alto-
gether by the new tradition (or paradigm as Kuhn called it) or else they are given a
new meaning.

Much of the philosophy of science in the last twenty years has centered around
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arguments over whether to abandon the standard conception entirely, or to save its
essential elements by arguing, for example, that the doctrines of meaning holism and
meaning variance are false exaggerations, that characterizations of observations exist
that are neutral between competing theories, and that Kuhn’s and others’ historical
accounts are incorrect. Rather than entering into the details of these debates (see
Chapter 4), let us consider some responses to abandoning the standard conception.

3.9 HOLISM, RELATIVISM AND SOCIETY

One of the first consequences of rejecting the standard conception is a problem about
the relevance of evidence. Abandoning meaning postulates meant that confirmation
relations involving theoretical terms could no longer be specified for an entire lan-
guage of theoretical and observational terms. Instead, philosophers of science at-
tempted to characterize confirmation relations that are relative to a theory. Different
theories will generate different confirmations of hypotheses from the same set of
observation statements. This line of thought was undercut by its fundamental inability
to resolve the issues about the limits of knowledge, the very questions that had
motivated the entire philosophical development leading to the standard conception.
One could, for example, analyze logically which claims a scientist could discover in
the limit assuming a theory, and the answer was essentially the same as in the
standard conception but with the entire theory serving in place of a system of meaning
postulates. Of course the truth of entire theories is not guaranteed by stipulations
about meaning, so how can we know which theories to use? If no theories are
assumed then scientists could only win games in which the claim to be decided had
the appropriate logical form and no theoretical vocabulary.

Once we abandon the view of the standard conception that the relevance of
evidence can be localized, that an experimental outcome bears for or against partic-
ular hypotheses but not others, scientific claims appear to become ever more under-
determined. This was the conclusion of Quine (1961), and of Pierre Duhem ([1906]
1954), a distinguished physical chemist who wrote before the standard conception
had been articulated. Duhem claimed that in any modern physical experiment virtu-
ally the whole of physics is involved; the design of the apparatus and interpretation
of its output may involve not only the hypothesis supposedly to be tested, but also
principles of optics, thermodynamics, electronics and hence electromagnetism, and
so on. If the experiment does not give the expected result, the hypothesis to be tested
might be blamed, but from a logical point of view any of these other physical
principles might be faulted instead. The much disputed claim that no principled way
exists to localize the bearing of evidence is often called the Duhem—Quine thesis.

One use of the Duhem—Quine thesis is for what philosophers of science call the
pessimistic induction, an argument to the effect that the only reasonable conclusion we
can have about the present claims of science is that they are false. The argument
(Laudan, 1984) is as follows: Every theory we can name in the history of science is,
in retrospect, erroneous in some respect. The Newtonian theory of gravitation is in-
correct, as is the classical theory of electromagnetism, Dalton’s atomic theory, clas-
sical physical optics, the special theory of relativity, the Bohr theory of the atom, and
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so on. The errors of these theories may not matter for most practical purposes, but from
a contemporary point of view they are all, strictly, false theories. Since all theories in
history have been false, the argument continues, we should conclude that the methods
of science do not generate true theories; hence our present scientific theories, which
were obtained by the same methods, are false as well.

It is important to see that whatever plausibility the pessimistic induction has
depends on rejecting the standard conception of theories and invoking the Duhem—
Quine thesis or something very much like it. When we look back at historical cases
of false theories, we note that parts of the theory are false, but other parts seem less
so. Dalton’s atomic theory, for example, contained claims that heat is a fluid, ‘‘ca-
loric,”” and that all atoms have the same volume. In retrospect, these claims seem
false. Dalton also held that all atoms of the same element have the same weight,
which also seems false, but less so, and in fact rnearly true. Dalton also claimed that
all molecules of a compound contain the same number of atoms of each element, and
that seems even today entirely correct. Just as we informally separate parts of Dal-
ton’s theory as more and less correct, we also informally weigh how sufficient his
evidence was for these various parts of the theory. In retrospect Dalton’s evidence for
the caloric theory and for the hypothesis about atoms seems insubstantial, and the
evidence for the constitution of molecules and the sameness of weights seems better.
These separations make some sort of sense in the standard conception, but they are
nonsensical on the holistic view of evidence.

Another response to the decline of the standard conception sentiments is rep-
resented by the sociology of knowledge movement. In its strongest form (indeed,
sometimes called the strong program) the view advocated by some sociologists and
cultural anthropologists is that the content of science is entirely an artifact of elaborate
social customs whose function is often hidden from scientific practitioners them-
selves. Scientists, on this view, do not really discover anything, although they may
think they do. Instead science is an elaborate and expensive social system for deciding
what to say, how to talk about the world, and for making social decisions about
technical matters (whether to build a nuclear power plant, for example). The scientific
community makes such decisions essentially on political grounds; some people have
more authority, more influence and more power than others, and so long as they retain
these advantages the scientific conceptions they hold are deferred to. There is no
normative difference whatsoever between the claims of science and the claims of any
religion or religious group; scientific claims have no more warrant, no more justifi-
cation, no greater rationale, than the claims of Islamic or Christian sects, or than
flat-Earth theories or astrology. )

Few philosophers of science have much sympathy with the strong program, but
its viewpoint should be at least be correctly understood. The position is not (or at least
need not be) that the only facts are social facts. Undoubtedly a great many facts exist
that are not social, but exactly because science is a social enterprise it is claimed to
be incapable of giving any warrant that its claims are correct.

The doctrines of meaning variance and meaning holism combined with the
rejection of the linguistic observational-theoretical distinction result in a view in
which the success of science becomes very mysterious: Meaning changes with belief,
and the doctrine of meaning variance applies as much to reports of observations as to
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other claims in science. Scientists who hold different opinions do not share the same
meanings, even if their differences appear to be remote from the subject under
discussion. Competing scientific theories, it seems, cannot be tested against a com-
mon standard of observations since what the observations mean depends on which
theory is believed. No means seem to demonstrate when scientific inquiry can and
cannot reliably lead to the truth. When both meaning and the world of experience vary
with the beliefs or conceptual scheme of the observer, the great philosophical issues
about the possibility of knowledge cannot be answered because they cannot sensibly
be formulated. Philosophy of science (and some would say, philosophy generally)
comes to an impasse in which there is nothing that can be done; there is nothing for
philosophy or for philosophy of science to discover about how to reliably acquire
knowledge of the world, or about the limits of such knowledge. This is exactly the
conclusion reached by some prominent philosophers, Rorty (1979) for example, who
have followed and accepted the attacks on the standard conception, and who recom-
mend giving up the pursuit of philosophical questions about knowledge.

3.10 RELATIVISM AND QUANTUM MECHANICS

Separately from the arguments over the standard conception of theories, modern
quantum mechanics has given some philosophers of science reason to think that we
cannot acquire any knowledge of the world independently of variable features of
ourselves. We cannot because there is no such world.

The quantum theory includes both dynamical variables such as position, mo-
mentum, time and energy, and states of a physical system. The theory does not,
however, include any physical states in which all dynamical variables have precise
values. Any state in which position is perfectly precise, for example, is a state in
which momentum is completely indeterminate. The quantum theory restricts how
precisely any allowed state can specify both position and momentum and similarly
both time and energy. These restrictions are the famous Heisenberg Uncertainty
relations. (See Chapter 6, Sections 6.11-6.16 for in-depth discussion. )

A natural response to the quantum theory is to think that microscopic systems
have precise values for all of their dynamical variables but the theory simply is unable
to determine these quantities precisely. While this view has its supporters, a great deal
of empirical and mathematical research has led many physicists and philosophers of
science to think it is false. Instead, systems literally do not have a simultaneous
precise value for position and momentum; however, if we conduct an experiment to
measure position we find one, and if we conduct a measurement to measure momen-
tum we find one. What properties the world exhibits depends on what we ask of it.

Niels Bohr called this phenomenon ‘‘complementarity,’” and the conclusion he
drew was a revision of Kant’s perspective. In the psychological version of the Kantian
picture is a fixed but unknowable world in itself and a fixed ‘‘us,’’ and the world we
experience is determined by the two together. In Bohr’s picture, an unknowable and
undescribable world in itself exists, as well as ‘‘us,’’ but the ‘‘us’’ is not fixed. We
can ask one set of questions about the world and get a coherent set of answers, or we
can ask any of many other sets of questions about the world and in each case get
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coherent answers, but the coherent answers to the several sets of questions cannot be
fitted together into a single coherent picture of the world. Changing the experiments
we conduct is like changing conceptual schemes or paradigms: we experience a
different world. Just as no world of experience combines different conceptual
schemes, no reality we can experience (even indirectly through our experiments)
combines precise position and precise momentum.

3.11 CONCLUSION: REALISM, RELATIVISM AND PHILOSOPHY
OF SCIENCE

The most immediate connection between philosophy of science and the rest of phi-
losophy is through issues about the limits to knowledge and the character and pos-
sibilities for justified belief. For a brief while a consensus among the best philosophers
of science pursuing the logical program provided a clear framework for exploring
these issues and obtaining interesting answers. That consensus has disappeared in the
closing years of the century. The community of philosophers of science is fragmented
among those who regard the general perspective of the standard conception of the-
ories as correct—although most would modify it in some important way—and those
who reject it for various alternatives. The most radical, and at least in one sense the
most interesting, fragment argues that because meaning varies with belief and con-
ceptual scheme, and because no linguistic characterization of the observable exists,
the epistemological questions that have motivated the enterprise of philosophy of
science are unanswerable. Locke’s picture, Kant’s and Carnap’s all ask what can be
known by science assuming some things—such as meanings—are fixed. The radicals,
however, claim that those things are not fixed, and so the questions have no answer.

Many, perhaps most, philosophers of science reject this relativist view, and the
debates over it and how best to mend or replace the standard conception remain
central to philosophy of science today. Suppose, however, that we accept the rela-
tivist view entirely: meaning and truth vary in some unknown way with aspects of
belief or with the experiments we choose to conduct; we observe a world but the
world we observe depends on features of our belief, culture, or experiments. Sur-
prisingly, even in this radical picture questions about scientific realism and the limits
of scientific knowledge still make sense and have answers; the puzzles of Kant’s
antinomies still survive. There is information about how best to conduct inquiry that
philosophy can still seek after and find.

Even if the relativist picture were correct, philosophers (and others) can inves-
tigate how meaning depends on belief, and what aspects of sense, reference and ex-
perience are altered by what changes in belief, custom or culture. Perhaps more
importantly, relativism is not subjectivism; that the world of experience depends in part
on variable features of us does not mean that we can have any world of experience we
wish. What we experience depends on us and on something not us—Kant’s things in
themselves for lack of a better term. The world in itself and our conceptual scheme
together determine the world we experience, and thus what questions we can and can-
not answer. If the world we experience depends on some feature of us and our
community—call that feature our conceptual scheme—then there are logical facts
about what questions can and cannot be answered in a given conceptual scheme, and
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about which questions can be answered by changing conceptual schemes. Formal mod-
els of inquiry exist in which certain questions can be settled in the limit—scientists can
beat the demon—but only if scientists are free to alter conceptual schemes as need be.
In these models for some issues successful discovery requires scientific revolutions.
Even if relativism were true, the limits of knowledge could be investigated and better
and worse ways to conduct inquiry would arise. Philosophy of science endures through
relativism.?

DISCUSSION QUESTIONS

1. Suppose someone knew that two incompatible theories, call them A and B, are underdetermined
by all possible evidence of a certain kind, E: Any possible evidence of kind E is known to be
consistent with A and with B. Is there any interesting point to claiming that, nonetheless,
evidence of kind E confirms A rather than B? If so, what point, and why is it interesting? Is there
any interesting sense or point to claiming that, nonetheless, evidence of kind E would justify
such a person in believing A rather than B? What goals might be served by having a shared
confirmation relation that prefers one underdetermined hypothesis to another?

2. One theory about the notion of truth is that a claim that a sentence is true does nothing more than
reassert the sentence. According to this view, sometimes called the redundancy theory of truth,
the sentence, ‘* ‘“The sky is blue’ is true’’ simply asserts that the sky is blue. The claim that
‘““What Sam believes is true’’ simply asserts the otherwise unknown set of propositions believed
by Sam.

One advocate of the redundancy theory asks the question: Why is it practically useful to
believe the truth? Does this question even make sense according to the redundancy theory? Why
or why not? What expressions using the word ‘‘truth” are difficult to account for with a
redundancy conception?

3. Suppose after careful logical and psychological study it is found that the array of ordinary beliefs
(about ordinary objects, spatial and temporal relations, causal connections, and such) needed as
background knowledge for reliable scientific inquiry cannot themselves be reliably acquired
from any possible array of facts about elementary experiences such as those available to an
infant. What, in that case, should we say about our scientific claims and our ordinary beliefs
about the world? Would they be knowledge, dogma, what?

4. Suppose two methods of inquiry are exactly alike so far as their convenience and reliability are
concerned, except that method 1 will find out that A is true if in fact A is true, but method 2 will
not. Suppose you are convinced that A is not true. Is there any reason for you to prefer method
1 to method 2?

5. What could be meant by the claim that two scientists who speak the same natural language and
work in the same discipline literally do not understand one another’s claims? What does under-
standing another person’s claims require? Is it sufficient, for example, to be able to describe what
the other would say about any case or circumstance? Could there be good evidence that historical
figures in science who ascribe to different theories or ‘‘paradigms’’ literally could not understand
one another? What would such evidence be like?

6. Social approaches to epistemology emphasize the value of procedures for obtaining consensus
rather than the value of reliable procedures of inquiry. What ways of organizing rewards,
communicating opinions, and making resources available would further the goal of obtaining a

2 The general perspective of this chapter—and the banana—owe a great deal to Kevin Kelly.
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consensus of true opinions? Is science so organized? What evidence is there that the enterprise
of science has goals other than consensus regardless of truth value?

7. If you were in fact a brain in a vat all of whose experiences are illusions produced by computer-
controlled stimulations of your nerve endings, what would your words ‘‘brain in a vat’’ signify?

8. Could an ideal scientific theory, that gave the best possible explanation of all possible evidence,
nonetheless be false?
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Four

ScienTiFic CHANGE:
PERSPECTIVES
AND PRoPOSALS

J.E. McGuire

Scientific cultures develop and change. The worldviews of the ancient cultures were
modified significantly during the Medieval and Renaissance periods. In their turn,
these cultures were radically transformed throughout the seventeenth century, the
century of the Scientific Revolution and the beginning of Modernity. Likewise, our
present scientific and technological cultures bear little comparison with the worlds of
the Ancient Greeks, the Medieval metaphysicians, or the worldviews of the nine-
teenth century. In short, the ways in which we interact with our physical environ-
ment, and the ways in which we think about it, have changed and will continue to
change.

But how is such change to be understood? What sorts of factors (social, his-
torical, cultural, institutional, and such) determine scientific change? Why do certain
views of the physical world become accepted while other and equally plausible views
get rejected? Are there forms of continuity through scientific change? If so, what are
they and how are they to be characterized? Or are earlier theories and practices
radically incommensurate with later theories and practices? Apart from considering
scientific development as either continuous or discontinuous, is it at some levels of
practice continuous with its past and at others discontinuous? Again, what connection
lies between traditional perspectives embedded in the scientific enterprise and inno-
vative changes in theory and practice? Is there only a contingent relationship between
tradition and innovation, or is there an intrinsic connection? Are theories accepted
because they stand in some logically timeless relation to objective evidence, such as
being confirmed, verified, or corroborated? Or are theories accepted because they are
human constructs satisfying the cognitive and social norms of the scientific cultures
in which they are embedded?
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Needless to say, various responses to such questions raise profound issues. Let
us begin by considering their scope in a preliminary way. Scientific change can be
considered in two chief ways. First, it can be seen as an exercise in logically ap-
praising the evidential consequences of a scientific theory in comparison with those
of its rivals. In this framework, justificatory parameters such as degree of confirma-
tion, strength of verification, the management of relevant evidence, or the extent of
corroboration are considered, and change is judged in accordance with how well
theories pass muster with respect to such criteria. Second, scientific change can be
conceived as an historical and social phenomenon. This orientation involves consid-
eration of historical and temporal modalities. How is scientific advance related to its
past history and how is it directed to its future? This framework takes seriously the
belief that contexts of change and progress dwell in history’s unfolding through the
present into the future. To judge, then, whether a piece of science is progressive or
not involves the retrieval of its past performances and the comparison of these with
those of its rivals.

A shift from the first perspective to an historical and social orientation is char-
acteristic of the move to the ‘‘new philosophy of science’’ of the 1960s and 1970s.
To sharpen the point, consider the assumptions of two frameworks or scenarios within
which issues of scientific change have been addressed.

The first is as follows: At every moment human beings dwell in their immediate,
but ever changing, historical and social contexts. They are consequently thoroughly
historicized and socialized by contexts that are characteristically different from one
another. Given that we dwell in such contexts, their constitutive presuppositions
structure our view of history, science, philosophy, and culture. This conception has
consequences for truth, the nature of human knowing, and for the objectivity of
knowledge and what is knowable. If, as this scenario has it, our norms and standards
(both cognitive and social) depend on context, what counts as truth, knowledge,
knowing, and objectivity is relative to that perspective. Thus, every cultural reality,
science included, carries its own inner logic, its own values and norms, its own ways
of carving up experience, its own inner dynamics of change, and must be judged
accordingly. On this perspective there are no timeless truths, identical in all spheres
of human activity—moral and political, social and economic, scientific and artistic;
the cultural worlds in which we dwell are not essentially objective wholes in which
all things cohere, but contingent artifacts of our own free making; and finally there is
not one true method, based on reason, which yields correct solutions to all genuine
problems, and similar in all fields of systematic inquiry. On the contrary, all forms of
knowing are historically and socially contingent, and so too are the discourses which
express what we claim to know. Accordingly, human knowing, together with what it
claims to know, is situated in the temporally bounded worlds in which it dwells.
Furthermore, the human self is not a fixed essence that is, but a social construct that
evolves and becomes. There are, then, no decontextualized and occurrent objects of
knowing to which a self disengaged from context is directed and to which it univer-
sally relates, for there is no such self and there are no such objects: Both are illusions
of metaphysical reification.

On these assumptions, scientific change becomes a matter not of one perspec-
tive on the physical environment metamorphosing into another, but a matter of one

Scientific Change: Perspectives and Proposals 133



scientific culture being substituted for another. This, of course, entails the recontex-
tualizing of theory and practice. So, on this view, there can be no transcultural
foundation for objectivity and the universalization of science. Historical, social,
sociological, anthropological, constructivist, and rhetorical approaches to scientific
change accept to a greater or lesser extent the above scenario.

The second scenario holds fast to a belief in the continuous progress of science,
and to the belief that a mind-independent world exists that is objectively knowable.
Human beings not only occupy positions in space and in time, they are also knowers.
Not only are they knowers, they are knowers who remain self-identical through
change. Notice the scope of this assumption. Whatever accounts for the identity
through change of the human mind, at all times and places (and thus a fortiori in all
cultures, past, present, and future) the human mind itself remains structurally the
same. This picture of the situated knower encourages the view that the human mind
can predict and retrospect events, occurring along any linear horizon of time and
space, from any space-time point within a spatiotemporal matrix.

Accordingly, we have a picture of the human knower disengaged from context
and situated in an objective world whose nature differs from the knower’s nature. For
not only is the space-time matrix independent of human perception, but so too is the
physical world that is an object of human knowing. Essential to this picture is also the
belief that the mind is occurrently related to the occurrent physical objects which it
knows. In its simplest form the belief is this; The mind perceives (say) a tree in the
virtue of being able to form an inner mental representation of that outer physical
reality (see Chapter 3, Section 3.1).

Within this framework a definite picture of scientific change emerges. There s,
so to speak, a God’s eye view of the epistemic horizons which we survey. Further-
more, the skeptical challenge posed by the dualism of the mind and the physical
universe is met by the construction of semantically coherent theories generated by
universally applicable methodologies. Since the time of the seventeenth century, this
progressive faith in theory and methodology has gone almost unchallenged, for the
belief remains that the methodologies of science give access to a logically coherent
account of the real structure of physical reality. Particular theories may come and go;
still the well-formed factual basis of our knowledge of the real remains. Accordingly,
scientific change is the process of successively incorporating earlier and successful
theories into the framework of their successors so that factual and predictive control
over nature curnulatively increases over time. In other words, as a result of cumu-
lative scientific change we come to know more and more facts about an objective
world that exists beyond. Logical positivism and logical empiricism are compatible in
spirit with this second scenario.

Here then are two opposite frameworks of discourse within which problems of
scientific change have been addressed. The first perspective is diachronic and takes
seriously the temporality and historicality embodied in the making of scientific
change. The second is synchronic and conceives the products of scientific practice as
detached from context and time. The aim of this chapter is twofold. First, it outlines
and critically evaluates the major positions on scientific change now current in the
literature. Among perspectives to be discussed are logical positivism and logical
empiricism, still considered by many (even by their detractors) to be the ‘‘received
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view’’ in the philosophy of science. Secondly, the ‘‘New Philosophy of Science,”’
which numbers among its exponents Thomas Kuhn, Imre Lakatos, and Paul Feyer-
abend, is considered. Next, the major challenges that have been mounted by social
theory, sociology, historicism, and the anthropology of science are considered. This
chapter provides a critical appraisal of some of the major contributors to the growing
and complex literature on scientific change.

4.1 THE DISCOURSE OF THE “RECEIVED VIEW” IN THE
PHILOSOPHY OF SCIENCE

“Received view’’ means the perspectives on the language and the foundations of
science advocated in this century by logical positivism, logical constructionism,
logical empiricism, logical atomism and physicalism (included, also, is the *‘standard
conception of theories,”” Chapter 3, Section 3.7). These labels can be misleading
since they evidently cover a wide range of attitudes and positions in regard to the issue
of scientific change. Carnap, for instance, shows little or no interest throughout his
career in scientific change. Nor, for that matter, does Russell. This is not altogether
surprising given the character of their logical, mathematical, philosophical, and lin-
guistic interests. Moreover, both philosophers assume that science is by its very
nature, and in virtue of its very methods, cumulative and progressive, and that
therefore we can gain a better and better understanding of the world. In contrast, the
work of Reichenbach and Popper is relevant to the questions of theory choice and to
the comparative merits of competing theories. In fact, questions of theory choice and
the nature of scientific change do not become central to the ‘‘received view’’ until
after the period of the Second World War. However, questions of discontinuity and
change in the development of the sciences were central to writers such as Gaston
Bachelard (1984) in France throughout the 1930s and beyond.

The purpose of outlining the main commitments and assumptions of the *‘re-
ceived view’’ is twofold: (1) To motivate its attitude toward scientific change, and (2)
to place this attitude within the larger discourse of positivism. Of course, not all
proponents of the ‘‘received view’’ accept the same commitments and assumptions,
but unless the scope of the discourse of positivism is understood, the issues that
motivated the move to the *‘New Philosophy of Science’’ of the 1950s and 1960s will
not be apparent.

4.2 LOGICAL CONSTRUCTIONISM: LOGIC AS THE
PHILOSOPHER’S STONE

Let us begin with the program of logical constructionism. This will help to clarify the
nature of scientific philosophy, and will serve to introduce the conceptual framework
of a more pragmatic mode of analysis still current in the social theory of science,
namely, social and linguistic constructionism (see Sections 4.10, 4.11, 4.12, and
4.13).

Logical constructionism is based on two commitments. Western philosophy has
attempted traditionally to account for all ways of being and all ways of knowing by
appealing to ‘‘privileged’’ ontological and epistemological items. Accordingly, the
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special status of lawful or rule-governed combinations of occurrent elements has
repeatedly been proclaimed: Platonic forms, atoms, fields, ordinary physical objects,
atomic facts, sense-data, ideas, protocol sentences, bits of information, syntactic
structures, and so forth. Furthermore, this view holds that everything that can be
experienced, or that is knowable, or which can properly be said to exist, can be
translated into, or reduced to, or explained by, privileged and more basic items.

The second commitment holds that the transformation to the privileged basis is
to be performed through the medium of a semantically coherent and logically rigorous
discourse. For Russell, and following him Carnap, this is the language of Russell and
A.N. Whitehead’s Principia Mathematica (1925). The program of Russell and White-
head is to show that pure mathematics can be stated in the canonical language of logic
using no undefined terms apart from the logical operations of implication, disjunction,
class inclusion, and class membership. The motivation is clear: to show that prob-
lematic mathematical entities are adequately expressed in this language to the extent
they can be constructed out of entities considered to be less problematic. This is the
claim that less fundamental entities can be reduced, by the power of the logical lan-
guage, to a privileged constructive basis without loss of meaning. For example, num-
bers are defined as classes of classes: Zero is the class of all empty classes, and the
number one is the class of all classes each of which is such that any member is identical
with any other member. But the use of reductive schema to show that certain items are
constructible in terms of other more privileged items leads to problems. Among these
is the alleged unproblematic status of classes, and the notorious paradox of the self-
membership and nonmembership of classes.

This is logical constructionism in its purest form. It is clear that its motivating
feature is the belief that anything that can be said clearly can be said in the discourse
of logic, a discourse taken to capture best the fundamental status of the privileged
entities and their relations. Thus, anything sayable about something else is not really
about that something else, it is about these privileged entities, construed as repre-
senting all knowledge in terms of their properties and relations alone. In other words,
the techniques of logical constructionism involve a principle of economy acting to
reduce epistemic and ontological commitments to a minimum, and to mitigate the
possibility of error and confusion.

In the period after the publication of Principia Mathematica, Russell applied the
techniques of logical constructionism to knowledge of physical objects both in the
sciences and in commonsense experience. The basic problem he addressed is this.
How can the existence of unperceived entities be warranted, such as fields, forces,
subatomic particles, energy quanta, and so forth? One traditional approach is to show
that such unperceptible items can be inferred from the content of our immediate
experience. But how is that experience to be correlated with these unobservable
entities and relations? And what epistemic status is to be accorded to the correlating
principles? Alternatively, it can be argued that realism about these unobservables
must be presupposed if an adequate explanatory account is to be given of what is in
fact observable. This, however, requires a meta-argument to show that adequate
scientific explanations cannot be given in purely observable terms, a view that van
Fraassen (1980) and Cartwright (1983) have recently opposed.

Russell, in his early work, takes another course which is motivated by his
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commitment to constructionism: where possible substitute constructions out of known
entities for inferences to unknown and unobservable entities. His aim is to show that
both unobservable scientific entities and ordinary physical objects, such as flowers
and tables, can be constructed out of the incorrigible sense-data of sensory experience
(11912] 1959, Chapter 3 and [1914] 1960, Lecture 3).

In the face of the venerable distinction between the inner world of human
experience and an outer world of physical objects, Russell privileges the inner world
of sense-data, that is, the colors, shapes and sounds of which we are directly aware
in sense perception, and about the nature and existence of which there is thought to
be no serious doubt. He still encounters, of course, the ancient skeptical problem of
how such private entities relate to outer objects, or how inference to such objects is
to be warranted. This he seeks to avoid by showing that all the outer objects of science
and of common sense can be construed as complexes of immediate sense-data. Here
again is the basic supposition of constructionism, namely, that the problematic can be
reduced to, or constructed out of, the more certain and less problematic.

However, in order to avoid the implications of solipsistic reductionism (i.e., the
idea that physical objects are constructible out of the actually experienced sense-data
of a single observing mind), Russell modified his view. He argued that the basis for
construction must include both the actually experienced sense-data of an observer and
those that would be or could be experienced by others if they had been subjected to
certain experiences under certain conditions. This type of phenomenalism encounters
formidable difficulties, many of which Russell recognized in his later work. For
example, how do we characterize which actual and possible experiences define a
particular physical object under changing conditions of perception without referring
directly to that object or to others in our characterization? Again, the position en-
counters difficulties in specifying the conditionality of the if-then structure of counter
factual statements, that is, statements to the effect that if something were the case, or
had been the case, then such and such would be, or could have been, the case.

Let us turn now to Carnap’s The Logical Structure of the World ([1928] 1967).
Carnap ([1928] 1967) uses the techniques of construction theory inspired by the
methods of Russell and by Wittgenstein’s Tractatus ([1922] 1955) (see also Chapter
3, Section 3.4). His main conceptual tool is that of reducibility. A concept § is
reducible to another set of concepts W if the sentences pertaining to S can be trans-
formed into the sentences of W with the extensional preservation of truth value. The
transformation operation is performed by means of a rule, which Carnap calls a
constitutional definition. These definitions are arranged into a structure which he calls
the constitutional system. This system is a complex of definitions and theorems
expressed in the language of Principia Mathematica. The known (or knowable)
objects that Carnap seeks to place into, or reduce to, the constitutional system are
fourfold: cultural objects, other minds, the private experiences of our own minds,
and, lastly, physical objects (1967, Part 4).

Carnap ([1928] 1967) uses a principle of tolerance. His purpose is not to
provide a description of concept formation, but rather to provide a rational recon-
struction of concepts, a notion that later recurs in the work of Imre Lakatos (see
Section 4.6). Thus, although he chooses the inner experiences of our own minds as
the basis for his solipsistic system, Carnap 1is at pains to stress that any other basis is
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in fact possible, and that his choice of the mind’s experiences was made for meth-
odological and not for metaphysical reasons. In fact, he was later persuaded by Otto
Neurath—another member of the Vienna Circle (see Introduction)—that a physicalist
basis or language is to be preferred. Carnap ([1928] 1967, Chapter 5) considers
philosophy and science and metaphysics in the light of constitution theory, and offers
criteria for demarcating scientific questions from metaphysical ones. Thus, the ques-
tion ‘‘Is there an external world?’’ is a metaphysical question which must be sharply
separated from the scientific question as to whether a physical object can be placed
within a set of law-like regularities and a set of orderings in space-time. Accordingly,
as with Russell, Carnap is concerned to distinguish metaphysical questions and
pseudoquestions from genuine scientific questions, and with Russell to subject sci-
entific and commonsense modes of understanding experience to rigorous analysis
conducted solely in terms of the language of logic.

4.3 LOGICAL ATOMISM, EMPIRICISM, AND THE
UNITY OF SCIENCE

Although they are concerned with the logical syntax of their constructions, Russell and
Carnap also manipulate semantics or meanings. But the question becomes: What mean-
ings are basic and how are they to be established epistemically? The question of how
and where the ultimate source of meaning is established in the analysis of scientific
practice remained a central issue in philosophy of science well into the 1970s.

First, let us motivate the doctrine of logical atomism. Thus far we have con-
centrated on the methodological side of logical constructionism, namely, the concern
to reduce epistemic commitment to a minimum and the concern to display the priv-
ileged status of known or knowable objects. Russell and Carnap, however, suppose
not only that their constructions have normative force, but also that they clarify the
structure of what actually obtains in our experience. Although Russell sometimes
proceeds as if his constructions are neutral, at other times he holds (for example) that
constructions out of the irreducible data of awareness reveal how the mind actually is,
or that the sense-data that make up the appearance of a physical object provide the
fundamental basis of our knowledge of what the table really is. This second tendency
in his thought is addressed systematically in Russell ([1918] 1956b and [1914] 1960).

Here he endorses explicitly a principle, shared with Carnap, that a metaphysical
or world-oriented interpretation of logical constructionism depends on a correspon-
dence between an ideal language and the structure of what is real. But how do we
choose an ideal language? After all, any number of alternative discursive frameworks
are possible. For Russell, the language must be empirical, a desideratum he spells out
in terms of the ‘‘principle of acquaintance.’’

Russell tells us, ‘‘All our knowledge, both knowledge of things and knowledge
of truths, rest upon acquaintance as its foundation’” ([1912] 1959, 48). We have
acquaintance with anything if we are directly aware of it without the mediation of
inference. Thus, we are immediately aware of sense-data—colors, sounds, shapes—
possess immediate knowledge through memory, are immediately aware of being
aware of something, and can immediately conceive nonparticulars such as universals.
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Universals play a crucial rule in extending knowledge beyond particular acts of
awareness, for when we know objects, such as a table or an electron, we do not know
them by direct acquaintance, but know them by description, that is, through general
truths and statements containing universal terms. Such acts of knowing Russell calls
‘‘knowledge by description’” as opposed to acts of immediate awareness which he
calls ‘*knowledge by acquaintance.’’ Furthermore, he persistently affirms that knowl-
edge of what is known by description is ultimately reducible to what is known by
acquaintance (ibid., 58).

However, he also tells us, ‘‘Every proposition which we can understand must
be composed wholly of constituents with which we are acquainted’” (ibid.). Russell
contends here that in order to speak significantly we have to attach meaning to the
language we use; ultimately these meanings must refer to that with which we are
directly acquainted. Without meaning there can be no understanding. Consequently,
Russell also contends that we understand language only if it refers to what we have
experienced by acquaintance, or is defined in terms of expressions that do so refer.
His claims are two. First, that unless physical objects are defined in terms of modes
of acquaintance, there can be no way of knowing them. And second, and more
significant, there can be no way of understanding them without satisfaction of this
requirement.

But what 1s it that Russell proposes to analyze in his ideal language, and what
is the structure of this language? Put simply, facts need to be analyzed, and the
language is explicitly truth functional in structure. In the world things have various
properties and stand in various relations. These properties and relations are facts
about those things. For Russell, facts are stated by propositions that are composed of
terms and other linguistic items. Some terms are simple; for instance, the term
“‘brown’’ designates a particular shade of color, and the proper name ‘‘Bob’’ refers
to a particular individual. Now our understanding of the term ‘‘brown’’ does not
depend on something simpler, for understanding in this case depends on acquaintance
with that to which the term refers, that is, a definite shade of color. Thus, the sentence
*“This is brown’’ is composed of a simple designating term “‘this’’ and the predicate
““brown.’’ This sentence expresses the sort of proposition that Russel! calls ““atomic,”
and the facts stated by such propositions are atomic facts.

From atomic propositions more complex propositions can be constructed. By
joining together atomic propositions with the operators ‘‘and’” or ‘‘or’> we can
construct propositions which Russell calls molecular. But there are no facts, Russell
holds, that corresponds to molecular propositions. What makes the molecular prop-
osition ‘“This is brown and this is green’’ true, if it is true, is not a molecular fact but
two atomic facts, that this is brown and that this is green. Thus, the truth or falsity
of molecular propositions depends entirely upon the truth or falsity of the atomic
propositions that compose them. In other words, molecular propositions are ‘‘truth
functions’’ of atomic propositions.

Russell was aware that this is an ideal picture of language and of its relation to
the world. Moreover, he was aware that many propositions that have meaning cannot
be captured by truth functional analysis. For example, the meaning of the proposition
‘“All swans are white’’ is not merely a conjunction of propositions ‘“This swan is
white and that swan is white and . . . ,”” and so on until every swan has been
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enumerated. For even were it possible to enumerate all swans, it is necessary to
stipulate that the swans so enumerated are exhaustively enumerated. This of course
reintroduces the generality and as such fails to provide an analysis of it. Russell was
therefore forced to abandon truth functional analysis of such propositions and to
introduce irreducibly general facts. He also had to abandon a truth functional ap-
proach to propositions of the form ‘‘x believes that p’” since the truth of “‘x believes
that p*’ is independent of the truth ‘‘that p.’’ Despite these difficulties, Russell
remained committed to the drive for minimal vocabularies and to the aim of reducing
complexity to the logically simple. Although he was haunted by the prospect that
what is taken to be logically simple may be subject to further analysis, he never lost
faith in the belief that knowledge must ultimately rest on simples if we are to possess
meaning and understanding, and that what is actually controls the success of our.
objective descriptions.

Like Russell, Carnap also privileges those types of minimal sentences that stand
closest to immediate experience. Where Russell speaks of ‘‘atomic propositions,”’
Carnap speaks of ‘‘protocol sentences.’’ This commitment to observation sentences
as the unit which supplies the foundation for meaning and understanding in the
sciences 1s perhaps the leading characteristic of the *‘received view’’ in the philos-
ophy of science well into the 1970s. Moreover, one of the central concemns in this
empiricist tradition (which also includes Hume, Mach, and Duhem) is the problem
not only of specifying how knowledge is based in the simples of experience, but also
how theoretical or nonprotocol sentences, which are remote from observational ex-
perience, relate to observational sentences.

When Russell and Carnap speak of reducing complex statements and terms to
simpler ones, they clearly accept a distinction between ‘‘theoretical’” and *‘observa-
tional’’ sentences and terms (see Chapter 2). If, as the empiricist tradition has it,
meanings must attach solely to the observational terms of immediate experience, how
is meaning accorded to the theoretical terms? Given distinctions between theoretical
and observational terms, there are three clear-cut solutions: (1) Show that complex
theoretical terms are reducible to, or are constructed out of, observational terms; (2)
show that theoretical terms are dispensable in science and are thus eliminable from
scientific theories understood as formal systems, and (3) deny the distinction either by
showing that observational terms are theory-laden or by arguing that there is really
only theory and theoretical terms, and that what we take to be lower-level terms have
this status only relative to theory (see Chapter 3, section 3.7).

Carnap ([1928] 1967) places his constructions and his language on a phenom-
enalist basis—the private data of inner experience—under the influence of Russell.
Neurath persuaded Carnap that a physicalist language has certain advantages. The
central issue here is not a choice between a phenomenalist as opposed to a physicalist
metaphysics, but rather a choice of the fundamental language, in this case, the basic
observational sentences which Carnap calls protocol sentences. Thus, Carnap adopts
the view (developed also by Russell [1914] 1960, Lecture 4) that the protocol sen-
tences of science are best expressed as quantitative expressions which refer to deter-
minate regions of space-time points (1967, Part 3, C). On this view, all of the
theoretical sentences of science can be expressed ideally as equivalent to sentences in
the physicalist protocol language. Clearly a physicalist protocol language affords
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certain advantages over a phenomenalist basis. It is common to different senses, it is
intersubjective, that is, directly accessible to all observers, and universal in the strong
sense that all sentences in science can be translated ideally into the protocol language.
Besides physical protocols, Carnap also advocates the notion of the unity of science.
For Carnap the notion is exemplified in the thesis that the language of science can be
totally constructed on a physicalist basis, including the languages of psychology and
biology.

From first to last, Carnap’s intention is to eliminate metaphysics and pseudo-
philosophical problems. This drive is no more evident than in the Logical Syntax of
Language (1937). Here under the influence of the logician Gottlob Frege and the math-
ematicians David Hilbert and L. E. Brouwer, Carnap distinguishes the ‘‘object lan-
guage’’ (the language under investigation) and the ‘‘metalanguage’’ (the language that
articulates the theoretical account of the object language). His aim is to construct suit-
able metalanguages in which to practice philosophy, or as he preferred to call it, the
logical analysis of language. He generates, in fact, two model languages. Language I
is “‘definite’’ in the sense that its defining expressions contain no unlimited quantifiers
and is constructivist or finitist in character. Language II he advocates as arepresentation
of classical mathematics (1937; Parts 2, 3). Once again he invokes the principle of
tolerance, here the notion that linguistic structures are conventional in character and
allow the construction of any form of language that is deemed preferable.

For Carnap the logical structure of language is to be replaced by the logical
syntax of language. Here he introduces the notion that pseudoproblems in philosophy
arise from misunderstandings of how syntax works. For example, in first-level or
object-language discourse, language is used referringly to designate its objects. But
in a second-level or metalinguistic discourse, linguistic expressions refer to linguistic
items at the first level and not to nonlinguistic items. In a time-honored philosophical
vein, reminiscent of Plato’s Theatatus, the thought of the Middle Ages, and the work
of Hobbes and Leibniz, Carnap indicates the endemic tendency to confuse these two
levels of language. The confusion turns on the simple fact that the ‘‘material mode’’
of speaking is treated as though it were an “*object mode’’; that is, the metalinguistic
functioning of language is conceived as though it were about objects and not about the
object language itself. For Carnap it is at the juncture of this confusion that pseudo-
philosophical problems begin to emerge.

In a later discussion of ontological commitment which has its roots in Carnap
(1937), Carnap again mobilizes resources against pseudoquestions. Carnap (1956a)
seeks to show that a thorough empiricism is not incompatible with the use of abstract
entities. Two sorts of questions about the existence of entities must be distinguished:
internal questions which concern the sort of ontology to which a particular theoretical
or linguistic framework is committed; external questions which query the ontological
status of frameworks as such (Carnap 1956b, Supplement). For Carnap, acceptance
of frameworks raises no issues concerning external questions of ontological commit-
ment. Such external questions raise pseudoproblems of the sort found in the tradi-
tional realism-idealism-nominalism debate. The real question is the concrete one of
choosing a linguistic framework, and as before, Carnap advocates tolerance.

Logical positivism was always a self-critical movement, and this is no less
evident in Carnap’s thought than in any other member of the Vienna Circle. Many
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members of the Circle, Carnap included, began to feel that their philosophical pre-
occupation with logically ‘‘clean’’ languages failed to come to grips with the ever-
changing realities of scientific practice. Indeed, if empiricism is to deal adequately
with the significant advances in science, it must do so without appeal to a priori
presuppositions. That is, it must reconstruct scientific knowledge from the bottom up
in terms of the data of immediate experience, and not from the top down through
recourse to synthetic a priori judgements traditionally thought to be necessary in order
to have intelligible experience. But difficulties develop in sustaining a thoroughgoing
empiricism. We have already noted the problems Russell encounters with general
facts and intentional contexts. Russell (1948) posits a priori postulates which he
maintains are necessary preconditions of scientific inference in a manner not unlike
the transcendentalism of the Neo-Kantian tradition (ibid., 6). Camap (1963, 978—
979) also transgresses the dictates of a purely empirical account of knowledge. In his
later work on degrees of confirmation or inductive probability, he is driven reluctantly
to allow that prior probabilities rest on intuition regarding a priori distributions of
these probabilities. Such propositions are scarcely anything else but synthetic a priori
propositions (see Chapter 3, Sections 3.5, 3.7). Nevertheless, these deep tensions in
the empiricist program lay behind Carnap’s attempts in the 1930s to loosen its logical
and empirical criteria by attempting to reflect more faithfully the open character of
actual scientific advance. Here his reevaluation focuses chiefly on the reducibility
requirement and on the verification principle of meaning, the scope of which is
considerably modified. Indeed, Camap (1936) agrees with Popper that scientific
hypotheses can never be completely verified by observational evidence, and advo-
cates the substitution of the notion of degree of confirmation for that of verification.

Although Carnap never explicitly addresses the notion of scientific change, his
work on probability, confirmation, and induction is relevant to the problem(s) of
adducing criteria for theory choice. The issue here is how one theory can be shown
to be cognitively and empirically better than another theory. In company with most
of his contemporaries, Carnap agrees that if a theory is genuinely scientific, it must
in some way be responsive to empirically determinable evidence, and that the better
theory is comparatively more responsive to the evidence than the lesser theory. But
how was this relation to be specified? For Carnap it is in terms of inductive support
as spelled out in his probabilistic notion of degree of confirmation (see Chapter 2).
Thus, on a given body of evidence, a theory is better grounded than another if its
inductive probability is higher.

4.4 VERIFICATION, COGNITIVE MEANINGFULNESS, INDUCTION
AND CONJECTURE

Let us turn now to some later developments in the ‘‘received view,”” with reference
to the work of Hans Reichenbach and Karl Popper. Reichenbach is the most thor-
oughgoing and uncompromising empiricist of the group originally centered on Berlin.
On the other hand, Popper, although of similar philosophical sensibility, but never a
member of either the Vienna Circle or the Berlin group, has been and is a persistent
critic of positivism, especially on the issue of how a theory’s responsiveness to its
evidential basis is to be specified.
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The striking thing about Reichenbach’s empiricism is that his probabilistic
theory of cognitive meaningfulness allows him to escape most of the difficult com-
mitments of earlier positivism. He does not need to consider phenomenalism as did
Russell and Carnap; he does not need to regard physical objects as constructions out
of sense-data; nor does he need to assume that physical objects are logically equiv-
alent to a finite series of observational reports embodied in protocol sentences. In
short, he is able to navigate the central semantic and ontological difficulties that beset
classic positivism while still maintaining a robust empiricism.

The key to understanding this ‘‘Reichenbachian turn’’ in the empiricist program
lies in the way Reichenbach relates induction and probability to the problem of factual
or empirical meaning. Although A. J. Ayer’s attempt to explicate a ‘‘weak’’ criterion
of verifiability came to grief at the hands of Alonzo Church (see Chapter 3, Sections
3.5, 3.6). Reichenbach never relinquished the notion that a verifiability theory of
meaning is possible. For him the question for empiricist philosophy is not how objects
are constructed out of experience, but rather how statements about both observable and
unobservable objects are verified in present and future experience. Accordingly the
context of justification, not that of discovery, is what counts. Moreover, he realized that
criteria of cognitive meaningfulness cannot be stated in terms of strict deductive ver-
ifiability from a finite set of observational statements, but must invoke the notion of
probabilistic verifiability to some specific degree. Thus, Reichenbach avoids the tra-
ditional difficulties of reducibility and constructibility by orienting the dynamics of his
epistemology toward a probabilistic assessment of the best cognitive outcomes likely
to obtain in the long run. Indeed Reichenbach (1938, Chapter 5) is concerned to show
the fundamental role that probability plays in accounting for knowledge.

According to Reichenbach, a statement is cognitively meaningful only if in
principle it is possible to obtain evidence which will support it to some degree of
probability or weight. Depending on whether the weight is high, intermediary, or
low, a probabilistic verification will be either supportive or nonsupportive of the
statement. Thus, Reichenbach’s criterion of cognitive meaningfulness is probabilistic
confirmability or refutability.

Closely connected to this epistemic picture is Reichenbach’s contention that
induction is a rule that can be justified pragmatically in terms of probability frequen-
cies. On this view, induction is a rule-governed activity that directs us to infer or posit
that the observed frequency approximates the long-run frequency. We, of course,
lack foreknowledge whether a sequence has a limiting frequency or not. Neverthe-
less, by use of the inductive rule, if the sequence has a limit, induction will capture
it; if not, no method is of use. Against this pragmatic approach to induction Reichen-
bach develops one of his key epistemic notions, the posit. A posit is a statement or
hypothesis that is treated as if it were true but which would not be posited if it were
known to be false. Posits are epistemic strategies that maximize the information we
possess by using the inductive rule (the rule for making posits) in the task of ascer-
taining the limit of frequencies (see Chapter 2).

Apparently, scientific change is not a problem for Reichenbach. He never
doubts that science changes and grows and that there are revolutionary discontinuities
in its development. For Reichenbach, the central issues for the philosopher lie else-
where in the business of giving the most pellucid account of how scientific statements
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are justifiable. Given his probabilistic understanding of the context of justification and
his Baysianism, Reichenbach has much to say that is germane to questions of com-
parative theory evaluation and choice (see Chapter 2).

Popper’s notion of conjecture has much in common epistemically with Reichen-
bach’s posit. For Popper, science is about falsifying basic statements, not about
verifying them. Thus, science must construct bold conjectures or severe tests for a
theory which, if it passes and continues to survive serious attempts at falsifying it, the
theory can be accepted provisionally. Popper is emphatic, however, that a theory or
hypothesis can never be established beyond doubt. If a theory survives serious at-
tempts at refutation it is thereby corroborated, corroboration being greater the extent
to which the theory is falsifiable (1963, Chapter 10). For Popper, a theory has greater
falsifiability to the extent to which it says more about the world and thereby constrains
the context of its generalizing power. If this 1s the case, the theory’s basic statements
have comparatively greater empirical content. In Popper’s view, induction is to be
abandoned because it is not justifiably a rational procedure. Thus, strategies for
establishing inductive generalizations should be rejected and science should concen-
trate on conjectural tests and refutations of theortes regardless of how they are dis-
covered. In effect, this means that science must forgo the idea of establishing positive
support for any theory that goes beyond the immediate evidence for it. Ironically
enough, Popper’s position is not immune from the procedures of induction. For what
is the point in subjecting a scientific theory to severe tests unless we assume that the
passing of such tests makes it more likely to do so in the future? This assumption
clearly involves the inductive projection of confirming instances into the future.
Interestingly, however, Popper’s epistemic attitude toward science supports the in-
terpretation of science as a dynamic enterprise which has the potential for changing
itself continuously. There are potentially scientific revolutions forever.

Here then, is a powerful discourse. It seeks to reveal the unchanging patterns
that lie beneath the surface of scientific practice. For the ‘‘received view,’” science is
at once cumulatively progressive, objective, and universal. It is objective in two
senses. First, the basic language of science addresses the bar of immediate observa-
tional experience, believed to be intersubjectively available to all impartial observers.
Moreover, the dream of the ‘‘received view’’ is to capture this experience linguisti-
cally in its purest form through a minimal vocabulary which distorts experience to the
least extent. Secondly, it is objective in the sense that the basic language is the
language of modern logic, a language held to mimic the structures of outer reality.
Science 1s universal according to the ‘‘received view’’ since it holds that the meth-
odological norms of science are invariantly instantiated in various cultures and at
various times. Thus, the epistemic attitude of the ‘‘received view’ embodies an
essentializing mode of understanding scientific change. It is essentializing because it
attempts synchronically to detemporalize the temporality of science by reducing
scientific change to the business of imposing at the logical instant comparative criteria
of theory evaluation in the form of either confirmation, verification, falsification, or
logical simplicity. Accordingly, the immediate ‘‘unit’” of change in scientific devel-
opment is the observational sentence such that a change in empirical content or a
rejection at this level leads to an adjustment of the theoretical sentences of the system.

Notice that the ‘‘received view’’ maintains some unquestioned assumptions. No
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cogent argument is offered for verificationism. Precisely why should meaningfulness
consist in what can be perceptually verified? And why should assertive forms of
discourse in science be privileged over pragmatic forms? Again, objective truth is
assumed to be available, to be communicated through a correct and canonical lan-
guage, and to be readily distinguished from falsehood. Lastly, there is a reductive
reliance on the priority of simples, and on the faith that they can be isolated and
decontextualized in the service of theory. The ‘‘New Philosophy of Science’ is
indeed skeptical of these assumptions.

45 THE DISCOURSE OF THE GLOBALISTS:
THE “NEW PHILOSOPHY OF SCIENCE"

The phrase ‘‘The Globalists” refers to philosophers such as Thomas Kuhn, Imre
Lakatos, Larry Laudan, and Paul Feyerabend. They are concerned with problems of
scientific change, emphatically reject the program of the ‘‘received view,’’ and take
seriously the historical and temporal dimensions of scientific change and develop-
ment. The ‘‘New Philosophy of Science’” means that body of opinion largely influ-
ential in the field during the period from roughly 1960 to 1980.

Let us begin by outlining the doctrines and perspectives of the *‘received view”’
that the Globalists either reject or put into serious doubt:

1. First and foremost, they reject the theoretical and observational sentence di-
chotomy. They argue either that no principled distinction is to be made, or that
observational sentences are seriously infected by theory. In fact, they privilege
theory over observation, whereas the ‘‘received view’’ privileges observation
over theory. Recently this whole dialectic has been challenged as misguided by
those who see experimentation and experimental techniques as central to sci-
entific practice and change (see Section 4.14).

2. They dismiss the view that the transition from one theory to another is cumu-
lative. They argue that logical and empirical content (even the confirmed con-
sequences of an earlier theory) are not entirely preserved when a theory is
replaced by a newer theory. This denies the claim that there is meaning invari-
ance of the observational sentences across theoretical change.

3. They reject the view that theories can be logically assessed at a time through
their observational consequences by means either of confirmation, verification,
or falsification. There are no such absolute canons of nonrelative knowledge and
authority. Theory evaluation is a complex matter involving many factors be-
yond the idealized logics of justification; and theory change is a diachronic
phenomenon involving the career of a piece of science within its changing social
and historical contexts.

4. They hold that the distinction between the context of discovery and the context
of justification is misguided. Concentration on logical issues of justification
skews perspectives on the developmental dynamics of the scientific enterprise
and overlooks the wider context in which science grows and changes. For the
*“New Philosophy of Science’’ it is important to understand how science comes
into being.
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5. They cast serious doubts on foundationalism, the view that a disinterested,
reflective, and cognitive attitude can disclose privileged epistemic or ontolog-
ical items to which all else is reducible. ‘‘Logical atoms,”’ ‘‘protocol sen-
tences,’”” ‘‘sense-data,’’ and ‘‘increasing empirical content’’ are cases in point,
as indeed is the idea that there is one true theory which can represent the
ultimate structure of a mind-independent world.

6. They object to the view that science can be understood solely as an enterprise
seeking to establish disinterested knowledge of the decontextualized properties
of self-sufficient objects such as electrons, genes, and quarks. To put the point
another way, the ‘*“New Philosophy of Science’ objects to the oversimplified
image of science as possessing arcane infallibility, as giving unique epistemic
access to what is, as producing unassailable, occurrent, and objective knowl-
edge by the use of absolute and culturally-neutral methods, as giving one true
description of the physical world by means of a semantically pure and truth-
producing vocabulary.

7. They make explicit the view that scientific theorizing is prior to scientific
practice. Indeed, in common with the ‘‘received view’’ the globalists maintain
the idea that explanatory knowledge is propositional in content, and thus that all
forms of knowing-how are to be transformed into knowing-that. They differ
from the ‘‘received view’’ in this respect only to the extent they privilege theory
over observation.

4.6 PARADIGMS, LEXICONS, AND INCOMMENSURATION

The main themes of the ‘‘New Philosophy of Science’ are now presented in the
context of the writings of the main contributors. The work of Thomas Kuhn put in
doubt the view that science is progressive and cumulative in the increase of its
empirical content. For Kuhn, theories are not superseded by their successors because
of an accumulation of evidence against them, or because they are either nonverified
or refuted, but because they are less good in comparison to the theories that supersede
them at choosing new problems and at setting criteria for solving outstanding scien-
tific problems. Consider his view of the emergence of Copernican astronomy. He
points to the persistent failure of Polemic astronomy to solve its own problems and
puzzles. It failed not only to do this, but in the scientific community there was an
increasing sense that the problems of Ptolemaic astronomy were no longer solvable
within its own framework. To the crisis engendered by this situation the Copernican
theory seemed to emerge as a direct response. Here Kuhn stresses the importance of
crisis within the scientific community. In many cases the solution to the failure in
problem solving is anticipated. For example, in the third century B.C. Aristarchus had
in large measure anticipated Copernicus. However, Kuhn points out that, if viewed
historically, Artistarchus’s anticipation clearly became a viable Copernican possibil-
ity only after the crisis generated by the demonstrable failures of the Ptolemaic system
itself (Kuhn 1970, Chapter 7).

Kuhn advocates a definite model for understanding scientific change, especially
those changes in science that may be called revolutionary. It involves three key
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notions: paradigm shift, the persistence of outstanding difficulties in the face of a
paradigm’s declining ability to solve its problems, and incommensurability between
the old and the newly emerging paradigm during a period of crisis in science. Kuhn
bases his model for scientific change on theories of social change, and sees social and
institutional factors as essential parameters for understanding the nature of such
transitions in science. In this regard, he rejects the epistemologically motivated dis-
tinctions of much of the philosophy of science current in his time: theory versus
observation, context of discovery versus context of justification, continuity versus
discontinuity, and verificationism versus conjecture and refutation. These had already
been attacked by writers such as Paul Feyerabend and N. R. Hanson. The idea that
intellectual advance arises from radical discontinuities had long been an article of
faith among the Bachelardians in France (Bachelard 1984). Kuhn, however, pro-
duced the first systematic alternative to these entrenched philosophical orthodoxies.

The notions of paradigm and paradigm shift have rightly been criticized as
vague and ambiguous. For present purposes this much needs to be said. For Kuhn a
paradigm has two distinct connotations. It stands, on the one hand, ‘‘for the entire
constellation of beliefs, values, techniques, and so on shared by the members of a
given community’” (Kuhn 1970, 175). Thus a research paradigm is what a scientific
community shares, a shared bond of education, acceptance of theories, objectives,
values, socialization and professionalization. In this sense, it may be compared to
Wittgenstein’s (1953) ‘‘forms of life’’ or to Heidegger’s (1962) notion of Dasein.
Although a scientific community may be identified by a shared paradigm, the com-
munity itself is a social phenomenon that can be identified and isolated independently
of its paradigm. In this sense a paradigm must be understood in sociological and
institutional terms as a social complex which expresses the affiliations, techniques,
and organization of the scientific research community.

On the other hand, paradigm stands for an important element in the organiza-
tional complex, namely, the models that exemplify the explicit rules and criteria that
guide the puzzle-solving activities of normal science (ibid.). For Kuhn, normal
science does not seek novelties. It seeks, rather, to actualize a paradigm’s potential
by increasing, for example, the extent of the match between ‘‘facts’” determinable
under the paradigm and the scope of a paradigm’s predictions. In this way the
paradigm is further articulated by the realization of its puzzle-solving potential. Thus,
it 1s the solved problems within the paradigm’s framework which act as exemplars for
further puzzle-solving activities under the paradigm. Here Kuhn stresses the cognitive
role that successfully solved problems play as standards to be emulated in further
research. That is, he rejects the view that science advances simply by applying
theories and laws to new experimental and theoretical contexts which may or may not
be verified or refuted. Rather, science advances by using the puzzle-solving resources
of the paradigm. These Kuhn likens to the use of rules implicit in the solving of
crossword and jigsaw puzzles. Just as the rule-governed moves that solve a puzzle
insure its solvability by setting discrete boundaries for solution, so it is with the
puzzle-solving potential of science. When science performs in this rule-bound way
we have normal science. But when its puzzles are no longer solvable by the resources
of normal science, they become its problems (ibid., Chapter 4).

Now a close relationship obtains between the proliferation of problems that a
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paradigm has not yet solved, or solved inadequately, or which are deemed not to be
solvable under the paradigm, and the phenomenon of a radical shift to a new para-
digm. Thus, the continued loss of puzzle-solving efficacy, and the increase of out-
standing problems not amenable to the paradigm, propel the scientific community into
crisis which is resolved ultimately by the community coming to share a new para-
digm. The new paradigm sets new puzzles and the rules for their solution, and
successfully tackles new outstanding problems but not necessarily those of the old
paradigm. Here Kuhn insists that the decision to reject one paradigm is always
simultaneously the decision to accept another (ibid., Chapters 7, 8).

We must be clear about Kuhn’s position at this point. His claim is not that the
older paradigm changes gradually into its successor: His claim is that the new para-
digm completely replaces its predecessor. This is the doctrine that the old and new
paradigms are incommensurable, and that historically the emergence of the one
means the destruction of the other. For Kuhn, then, scientific change is reducible to
the complete replacement of one set of structures by another (ibid., Chapter 9). It is
important to grasp the force of the notion of ‘‘complete replacement.’’ Kuhn tells us
that the component statements of the rival paradigms are not intertranslatable. If this
is so the incommensurability of the paradigms precludes saying that they are logically
incompatible since this notion presupposes some measure of intertranslatability, pre-
cisely the requirement denied by Kuhn’s conception of incommensurability.

In his more recent work, Kuhn still maintains a linguistic approach to incom-
mensurability. In company with the structural linguists he holds that a linguistic item
is defined by differences between it and other items in the linguistic field. What is
meant by ‘‘lion’’ depends as well on what is meant by *‘tiger’” and on how “‘lion’’
and ‘‘tiger’’ differ. If this is so, the reference of a term cannot be secured locally
because the relation of a term to its object is based on a network of differences
between this term and its object and other terms and objects in the field. Thus,
piecemeal translation is not possible, which means that the entire linguistic network
indigenous to the language has to be reconstructed in the translator’s language. It is
of course possible that the language’s lexicon is not entirely homologous with the
lexicon of the interpreter. If this is so, incommensurability is equated with untrans-
latability since a complete translation cannot be given. For Kuhn, then, incommen-
surability results from nonhomologous linguistic networks or lexicons which reflect
their cultures as they interpret them. Although a full translation is not possible,
incommensurability can be controlled to the extent that we are able to learn the other
lexicon or language (Kuhn 1983, 1989). Notice how this notion differs both from
paradigm-incommensurability and Kuhn’s related claim that no neutral observation
language can decide between theories since all scientific language is theory-laden.

Before examining the notion of paradigm-incommensurability in its relation to
problem solving, let us consider briefly the parallel Kuhn sees between political and
scientific development since it throws light on this notion. He points out that both po-
litical and scientific revolutions develop in response to increasing dysfunction within
the system. This eventuates in the crisis that is a prerequisite to revolution. Further-
more, he notes that revolutions in society ‘‘aim to change political institutions in ways
that those institutions themselves prohibit’’ (Kuhn 1970, 93). The resulting tensions
lead to resistance, intransigence, and to the partial breakdown of the existing social
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structures. The deepening crisis at first attenuates the role of the existing structures, but
the ensuing divisions lead eventually to competing proposals for the ‘‘reconstruction
of society in a new institutional framework’’ (ibid.). Eventually, certain of the recon-
structive proposals win the day through persuasion and rhetoric. As in political rev-
olutions, so in scientific paradigm-choice, there is ‘‘no supra-institutional framework
for the adjudication of revolutionary difference . . .”” (ibid.). So, the choice between
“‘competing paradigms proves to be a choice between incompatible modes of com-
munity life’” (ibid., 94) much in the manner in which one chooses between competing
social frameworks.

If we consider the orientation of Kuhn’s thought, the parallel he sees between
political and social change, on the one hand, and scientific change, on the other, is
far from superficial. Indeed, his intuitions about revolutionary change in society seem
to inform his model of scientific revolutions. For Kuhn there is no revolutionary
change in a society that does not destroy, by its total victory, the social framework
that it replaces. Likewise, a scientific revolution, understood as paradigm-change,
altogether replaces the paradigm it succeeds and is incompatible with it. Kuhn is not
a reductionist. He is not reducing scientific change to social change. His strategy,
rather, is to transfer elements from one domain to another, at least by metaphorical
extension. The claims of social reductionism are examined in the ‘‘strong program’
(see Sections 4.9, 4.10, and 4.11 of this chapter).

But if Kuhn’s view of the incommensurability that ensues from paradigm-shift
is so radical, what of the evident continuity in the development and growth of
scientific knowledge, and what of the progressiveness of that growth? Kuhn (1970)
addresses this issue in ‘‘Progress Through Revolutions,”” and more squarely In his
“Postscript—1969.”" The key notions in his consideration of scientific progress are
the “‘solved problem’’ and *‘problem solvability.”’ For Kuhn they embody ‘‘the unit
of scientific achievement’’ (1970, 160). In regard to normal science Kuhn’s position
is clear enough. Given its allegiance to a shared paradigm a scientific community is
an efficient instrument for solving the problems or puzzles that its paradigm defines
(ibid., 169). For Kuhn it is axiomatic that the solving of problems is in itself progress.
His main difficulty, however, with progress is accounting for the frequent claim that
progress is a universal concomitant of scientific revolutions.

For Kuhn, if an accepted paradigm at once defines its problems and posits
criteria for their solution, does not its replacement by an incommensurable successor
generate a new set of problems (and their criteria of solution) which are definable only
within that successor-paradigm? How, then, are the old and new paradigms to be
compared with respect to their progressiveness? This can be done only in reference to
some element or elements that remain invariant throughout the paradigm-shift, and to
which each of the paradigms addresses itself individually. For Kuhn this element is
embodied in the efficacy of the new paradigm for solving ‘‘some outstanding and
generally recognized problem that can be met in no other way’’ (ibid.). He adds,
rather surprisingly, that the new paradigm ‘‘must promise to preserve a relatively
large part of the concrete problem-solving ability that has accrued to science through
its predecessors’’ (ibid.) as well as generate additional problem solutions.

This is night; successor-theories do solve problems that theories under the
predecessor-paradigm could not solve and they do offer solutions to problems that are
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already solvable. Strictly speaking, however, Kuhn’s model of change cannot provide
an unproblematic account of these facts. If paradigms are incommensurable, so too
are the problems and the criteria of their solutions which they define. What counts as
a problem under one paradigm is different from what counts as a problem under
another. Because of incommensurability and the consequent absence of any neutral
framework beyond the paradigms on which to base an appeal, there is simply no
transparadigm criteria of problem-individuation which allows us to say that the par-
adigms address the same problem.

Kuhn seems to have placed himself into this uncomfortable position for two
main reasons. In the first place, he wishes to provide an epistemological substitute for
the traditional view that two theories can be said to define their terms differently but
still be said to refer to one and the same events, things or processes. He argues
vigorously that we have no reason for supposing that (say) the term mass as employed
in a Newtonian framework refers to the same ‘‘things’’ as it does in an Einsteinian
framework. Both our modes of talking and what we talk about change altogether from
one framework to the other (1970, Chapter 9). It is one thing to claim, as Kuhn does,
that there can be no neutral observation language on which to base an algorithm for
evaluating competing theory-choice, but another matter to say that there can be no
such language because the proponents ‘‘see things differently’” or *‘live in different
worlds.”” Kuhn’s proclivity for seeing issues in ontological terms leads him to say
repeatedly that ‘‘after a revolution scientists are responding to a different world”’
(1970, 111) without disambiguating clearly enough whether his reference is to con-
ceptual or nonconceptual worlds.

Apart from this tension, in this way he thought (and continues to think) we can
best establish the notion that there is no algorithm for theory-choice. Ironically
enough, Kuhn’s problem-solving approach to the cognitive goodness of the scientific
enterprise need not appeal, as he himself recognizes, to the notion that after a
paradigm-shift scientists are living in an entirely different world. To dislodge the
theory that there is a neutral observation language which can be differently inter-
preted, ontological extravagances of this sort are hardly necessary and certainly
misleading. In subsequent reviews of his position Kuhn recognizes this. Indeed, he
has increasingly availed himself of linguistic and pragmatic perspectives to buttress
his point that science advances by proliferating new and different rule-bound dis-
courses which set and guide its problem-solving goals.

Secondly, for all his adherence to historical context, Kuhn impaled himself
originally on the formal horn of incommensurability because he abstracted scientific
activity too far from its appropriate historical and social contexts. He fails, therefore,
fully to appreciate the common ground, shared by disparate points of view, which
makes any judgement of incommensurability possible. Instead, Kuhn attempts to put
everything into question simultaneously. This is impossible as an historicist perspec-
tive makes plain. From that perspective, traditions (e.g., paradigms) change and
develop and often negotiate internal conflicts by self-criticism and adaptation. If a
tradition falls into incoherence either through self-engendered conflict or through
challenge from rival traditions, it can critically reconstitute itself by continuous trans-
formation into a new perspective. From this new perspective the tradition can throw
fresh light on its elements to reveal the former inadequacy of some and to affirm the
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present strength of others. Thus the sense of historicality that an historical narrative
provides of scientific crises shows that there is no transformation of a scientific
tradition into a new perspective that does not preserve some important elements of
continuity with its former self. Newton’s synthesis of the astronomy, mathematics
and mechanics that went before him is indeed just that, a synthesis. This is not to deny
that the Principia is an impressive achievement. It is a revolution in itself and
possessed revolutionary potential for the eighteenth century. But it is also a work that
revitalizes the traditions on which it draws by showing their limitations (e.g., Des-
cartes’s theory of motion) in understanding the world. At the same time, however, it
does not break with Kelper’s vision of a true and dynamical astronomy which marries
causes and the mathematization of their effects, nor with Galileo’s vision of the
geometry of motion.

An important aspect of Kuhn’s work serves as a natural transition into the
philosophy of Imre Lakatos. This is Kuhn’s rejection of the idea that knowledge is
growing just in case our theories are succeeding in producing better representations of
reality. For Kuhn a scientific theory is better than its predecessors only in the sense
that it is a better instrument for formulating and solving puzzles, and not because it
is a better representation of what the physical world is really like. For Kuhn the idea
that there is a match between a theory’s power to represent and what is there to be
represented is epistemologically dubious. For this reason his work is congenial to
current antifoundational perspectives in general philosophy, in rhetoric, and in the
humanistic disciplines as a whole. These perspectives hold that what is true, right,
and good is justified pragmatically by group consensus arrived at by social practice
(on what we agree to accept and reject), and not by privileged access to some
extralinguistic reality which our thinking represents.

This is not to claim that Kuhn rejects the existence of a physical world which
we seek to explain through science. But it means he has two main commitments.
First, scientific explanation is to be accounted for in terms of the successful problem-
solving resources of science. On this view, scientific explanation is a matter neither
of the theoretical unification of phenomena (or of argument patterns) nor of an appeal
to theory-independent entities as the realist proposes (see Chapters 1 and 2). Sec-
ondly, to some extent Kuhn is a social constructivist (see Latour and Woolgar in
Section 4.14). However, he does not seem to wish to reduce the ‘‘factual’’ quality of
scientific theorizing to social construction. Science, for Kuhn, is still about a theory-
independent world. Indeed, science ought to be ‘‘concerned to solve problems about
the behavior of nature’” (1970, 168).

4.7 RESEARCH PROGRAMS AND PROGRESS

Lakatos’s work also contains a strong antifoundationalist theme. He takes it for
granted not just that we have knowledge, but that knowledge grows. Moreover, the
growth of knowledge is not a phenomenon that needs arguing. What is needed, rather,
is an account that tells us in what the growth of knowledge consists, and whether it
is progressing or not. Furthermore, we can ask these questions of the growth of
knowledge by carefully considering the internal features of a body of knowledge over
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time. This diachronic perspective is an important characteristic of Lakatos’s thinking.
Thus, in his view, we can talk about scientific advance solely in terms of knowledge
and its growth. Lakatos had no need for the notion that knowledge is growing just in
case we are approximating more closely to the truth, nor for the idea that knowing is
the business of producing more privileged representations of reality. In his view
nothing could count as showing that our statements are warranted only if they are
compared to an unconceptualized reality. Rather, his position can be compared with
Pierce’s view that truth is to be replaced by method. Accordingly, truth is just a way
of characterizing that which is ultimately acceptable to a community of enquirers who
pursue ends by means of certain actions and activities (Hacking 1981a, 131). Thus,
instead of asking how well scientific theories represent an extralinguistic reality,
Lakatos advocates the development of methodological programs which produce
growth of scientific knowledge and allow appraisal of its progressiveness.

For Lakatos the growth of knowledge is always a dynamic phenomena, and the
unit by which the nature and direction of that growth is analyzed is the research
program. He tells us that in his ‘*‘methodology the great scientific achievements are
research programmes which can be evaluated in terms of progressive and degenerat-
ing problemshifts; and scientific revolutions consist of one research programme su-
perseding (overtaking in progress) another’” (ibid., 115). In Lakatos’s perspective,
then, knowledge grows by progressive programs triumphing over degenerating ones.
An important feature of his position must be noted at once. He emphatically rejects
the view that scientific discovery and advance is to be ascertained by comparatively
evaluating two competing theories. That is, Lakatos replaces the concept of a theory
as the basic concept of the logic of discovery by the concept of series of theories:

It is a succession of theories and not one given theory which is appraised as scientific or
pseudoscientific. But the members of such series of theories are usually connected by a
remarkable continuity which welds them into research programmes. (Lakatos and Musgrave
1970, 132; italics in the original)

In some respects, Lakatos’s concept of a research program resembles Kuhn'’s
notion of normal science. For both of them science is conducted according to rules,
and Lakatos tells us explicitly that a research program consists of methodological
rules: Some prohibit certain paths of research, the negative heuristic, and other rules
advocate the paths to pursue, the positive heuristic (Lakatos and Musgrave 1970,
132-138).

What are we to understand by a progressing as opposed to a degenerating
research program? Lakatos claims to give criteria for progress and nonprogress within
a program, and also rules for the “‘elimination’’ of entire research programs. A
program is said to be progressive if its theoretical growth anticipates its empirical
growth; that is, if it continues to predict novel facts successfully (Hacking 1981a,
117). This means that a theory is progressing so long as its internal ability to produce
new effective knowledge continues to outrun the effective knowledge it has already
achieved. What matters to a theory is its ability to predict new facts; for the ‘‘building
of pigeon holes must proceed faster than the recording of facts which are to be housed
in them’’ (Lakatos and Musgrave 1970, 188). Effective knowledge, here, means the
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experimental and theoretical techniques of the program that contribute working con-
trol over nature, that is, increase its empirical content. A program is stagnating or
nonprogressing if its theoretical growth falls behind its empirical growth, that is, ‘“as
long as it gives only post hoc explanations either of chance discoveries or of facts
anticipated by, and discovered in, a rival programme (‘degenerating problemshift’)’’
(Hacking 1981a, 117). The research program that progressively explains more than
its rival (in the sense of explain just cited) supersedes it, and the rival can be
eliminated from contention and thus retired. Lakatos warns, however, that this pro-
cedure of evaluation is far from mechanical. He admits that it is difficult to decide
when a program has degenerated hopelessly, or when one of two rival programs has
achieved a decisive advantage over the other. After all, a program that is lagging
badly behind may stage a comeback, and, in general, there is never anything inev-
itable about either triumph or defeat.

Lakatos’s methodological ‘‘ecumenicalism’ indicates another feature of his
position. He incorporates into the notion of a research program the importance of
doing the history of particular episodes in the growth of knowledge. That is, the
actual account one constructs of a developing research tradition must include a history
of science of that body of growing knowledge. There is no better way in which to
judge whether a body of knowledge is a genuine case of growth and progress than to
study all the documentary evidence which pertains to it. Accordingly, to test the
supposition that knowledge grows by the triumph of progressive programs over
degenerating ones, we select an example that illustrates (on the face of it) something
that scientists have discovered. Moreover, it ought to be an example about which
there is consensus in the field as to its importance. By reading the relevant texts which
cover the entire period in the growth of the body of knowledge, and by studying its
practitioners, the aim in constructing a research program is to establish what these
scientific practitioners were attempting to find out, and how they were trying to find
it out.

Let us look now more closely at the notion of a research program and ask
whether Lakatos’s account of scientific change and progress is more viable than
Kuhn’s. Lakatos distinguishes the negative heuristic, or the “‘hard core’’ of the
program from its positive heuristic, or ‘‘protective belt.”” The ‘‘hard core of a
program is what its protagonists decide is irrefutable in the sense that it is protected
methodologically from refutations. This is a conventionalist strategy, but not one that
is maintained at all costs. If the program ceases to anticipate novel facts, its hard core
might have to be abandoned. But if the program, while being protected and hardened
in this way, continues to predict new phenomena, there is a progressive theoretical
shift; if these phenomena are in the end verified, there is also an empirical progressive
shift (Lakatos and Musgrave, 1970a, 133—134). The positive heuristic, on the other
hand, defines a program’s problems, ‘‘outlines the construction of a belt of auxiliary
hypotheses, foresees anomalies and turns them victoriously into examples, all ac-
cording to a preconceived plan’’ (Hacking 1981a, 116). Moreover, the positive
heuristic not only dictates the program’s choice of problems, it also creates the high
degree of autonomy that theoretical science enjoys. A concrete example of these
distinctions is Newton’s gravitational theory. The irrefutable core is Newton’s three
laws of dynamics and his law of gravitation. Anomalies produce changes only in the
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‘‘protective’’ belt of auxiliary, ‘‘observational’’ hypotheses and initial conditions.
The “‘protective’” belt is thus more flexible and resilient than the ‘‘hard core’” of the
program, and is more easily able to turn counterinstances to the program into cor-
roborating instances by the systematic invention of auxiliary hypotheses and models
(Lakatos and Musgrave 1970, 135).

Lakatos, like Kuhn, clearly rejects the idea that progress can be evaluated in
terms of one theory superseding another because the former is refuted by an exper-
iment that is successfully explained by the latter. That is what Lakatos calls ‘‘naive
falsificationism’’ and he calls for a more sophisticated approach (ibid., 93-95). First,
progress is not a linear process involving only two competing theories, but a complex
process that demands a proliferation of different theories at the same time. Secondly,
a counterinstance to a theory can be said to falsify it only after it is satisfactorily
explained by another theory. And lastly, falsification requires a number of method-
ological decisions: for example, how to decide on one of many possible interpreta-
tions of an experimental situation; whether the experiment falsifies the theory itself or
only some auxiliary hypothesis of its ‘‘protective’’ belt; and when and if the theory
itself is crumbling and has to be abandoned.

Lakatos clearly defines the relationship between theories in terms of progress,
whereas Kuhn compares theories and then attempts to define progress. According to
Lakatos’s conception, a research program is internally progressive just in case its
ability to predict novel facts outruns its established empirical content. A research
program is progressive with respect to other programs if it provides an excess of
corroborated information in comparison to what they prohibit. Lakatos can, therefore,
avoid the entanglements of incommensurability, and at the same time, provide a
straightforward account of progress and change in science.

If the basic unit of appraisal is not the isolated theory, or a conjunction of
theories, but the ‘‘research program,’’ is Lakatos’s methodology retroactive? The
answer is yes. After all, the thrust of his position is to characterize real cases of
growth and to distinguish them from imposters. That a program has enjoyed long-
standing progress is ascertainable only after the fact, and this appraisal provides no
basis for the claim that it will go on progressing. Furthermore, we can only tell what
is progressive and what is degenerating with sufficient hindsight; for at any time a
successfully progressing program might become a degenerating one, and vice versa.
This means that Lakatos’s philosophy provides no forward-looking assessments of
presently competing scientific theories (Hacking 1981a, 133-134). At best, the in-
spection of research programs cautions us to be methodologically lenient. We should
be modest about our projects because rival programs may eventually triumph. More-
over, we should be patient if a program is doing badly, since the history of science
clearly teaches that prolonged periods are often necessary for one program to super-
sede another. Thus science is to be judged as an historical development, as an
achievement over time, rather than in terms of a situation at a particular time. Lakatos
clearly combines history and methodology into a single enterprise, and his insistence
on the creative involvement of the history of science with the philosophy of science
has been rightly and subsequently influential. However, his equal insistence that
history be ‘‘reconstructed’” synchronically according to preferred rational norms has
rightly been rejected by historians.
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4.8 PROBLEMS AND PROGRESS

Laudan’s position incorporates Kuhn’s notion of problem solving and Lakatos’s
conception of research programs, the latter characterized by Laudan as research
traditions. For Laudan any philosophy of science must come to terms with certain
persistent features of scientific change (Hacking 1981b, 144—-145):

1. The transition from one theory to another is noncumulative. That is, the logical
and empirical content (and even the confirmed consequences of an earlier the-
ory) are not entirely preserved when a theory is replaced by a newer theory.

2. Theories are generally not rejected just because they encounter anomalies, nor
are they entirely accepted because they are empirically confirmed.

3. Debates about scientific theories are often about conceptual issues rather than
about questions of empirical support.

4. Principles and criteria for evaluating scientific theories are not fixed and have
altered significantly throughout the course of science.

5. Scientists take many cognitive stances toward theories beyond accepting or
rejecting them.

6. Scientific progress cannot plausibly be viewed as evolving or approximating
toward the truth.

Each of these features has been challenged. Currently, however, many are
accepted by most philosophers of science in one form or another. What is important
for our present purpose is that for Laudan they are the touchstone of adequacy for any
theory of scientific change. Indeed, he takes his own account of scientific change to
be among those that adequately explains these features.

One of Laudan’s concerns is to articulate the aim of science in terms other than
“truth’” or ‘‘apodictic certainty.”” For Laudan the claim that we are progressing
toward the truth is empty. No way is possible of establishing that our present theories
are more truthlike or on more certain ground than their predecessors. If the notion that
one theory is better than another just in case it has more of the truth, or more
adequately represents reality, 1S empty, what is to be substituted as a criterion of
progressiveness in science? Laudan claims that the cognitive goals of science may be
characterized in many ways. Science can be viewed as aiming at well-tested theories,
aiming at theories that predict novel facts, or at theories which have maximum
practical applications, and so forth. His own criteria is problem-solving effectiveness.
That is, in Laudan’s view ‘‘science progresses just in case successive theories solve
more problems than their predecessors’’ (Laudan 1981, 145).

In Laudan’s view this conception of the aim of science sets a goal for science
that is epistemically accessible. It also captures the nature of scientific growth. Prob-
lem solving divides for Laudan into two broad categories of activity: the solving of
empirical and the elimination of conceptual problems. At the empirical level he
distinguishes between potential problems, solved problems, and anomalous prob-
lems. A potential problem indicates what we take to be the case in the physical world
but, as yet, have no explanation for. Solved problems embody cases of actual knowl-
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edge achieved by one or more theories. Anomalous problems are such for any theory
that has not, or cannot solve them, but which are solved by rival theories. Thus an
unsolved or potential problem is never as such an anomalous problem. It only be-
comes so for the theory that cannot solve if it and only if it is solved by rival theories
(ibid., 146).

Laudan singles out conceptual problems as especially important. A theory might
be in conceptual difficulties if it is internally inconsistent; if it makes claims that are
inconsistent with deep, intertheoretical assumptions, such as the conservation of
energy; or if it violates the postulates of more general theories to which it is logically
subordinate.

In Laudan’s view his problem-solving model of scientific advance explicitly
recognizes the demands that both conceptual and empirical problems make on a
theory. Conceptual difficulties should be minimized, while, at the same time, the
theory should solve a maximal number of empirical problems and generate a minimal
number of anomalies. Indeed, for Laudan the elimination of conceptual difficulties is
as important for scientific progress as increasing empirical support. So much so, that
he allows the possibility that a shift from a better supported theory to one less well
supported could occur if the less well supported theory had fewer conceptual diffi-
culties.

But what counts as a solution to a problem? Laudan tells us that ‘‘a theory
solves an empirical problem when it entails, along with approximately initial and
boundary conditions, a statement of the problem. A theory solves or eliminates a
conceptual problem when it fails to exhibit a conceptual difficulty of its predecessor’’
(Laudan 1981, 148). On this view of solvability, many different theories can be said
to solve the same problem (empirical or conceptual), and a theory’s worth is largely
predicated on how many problems it solves. This allows Laudan to assess a theory
independently of its confirmed adequacy, or on how well established it is, just in case
the theory can be credited with solving an outstanding problem. It also allows him to
sever the link between cumulative retention and progress in the context of theory-
evaluation. On many pre-Kuhnian accounts of progress, earlier theories were required
to be contained in later theories. Other accounts required that the empirical content or
confirmed consequences of earlier theories be subsets of the content or consequences
of the new theories. This allows the claim that the new theory can do everything that
its predecessor can do and more. On Laudan’s model, it is possible to assess a
theory’s progressiveness in terms of its problem-solving efficiency without having to
consider the issue of cumulative retention.

But how is problem-solving efficiency to be determined? Laudan recognizes
difficulties here. He claims, rightly, that he has only an outline of an account. He tells
us to consider a theory by counting the number and weight of the empirical problems
it is known to solve; do the same for the number and weight of its empirical anom-
alies; lastly, assess the number and difficulty of its conceptual problems. In the light
of this perspective the theory that comes closest to solving the largest number of
important empirical problems, while generating the smallest number of significant
anomalies and conceptual problems, is to be preferred (ibid., 149).

The technical problems are immense here. The model is highly qualitative, yet
it promises quantitative parameters of evaluation. How a comparative evaluative scale
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of this sort is to be determined is not clear. Moreover, how are problems to be
individuated and counted? Laudan freely admits these difficulties, and notices in
mitigation that theories of empirical support also encounter difficulties in identifying
and individuating confirming and disconfirming instances (ibid.).

On Laudan’s view, science is a rule-governed activity conducted by fundamen-
tal commitments and norms which endure over long periods of time. Ultimately our
view of scientific change must be seen against these more fundamental commitments.
The beliefs that constitute these fundamental views, Laudan calls ‘“‘research tradi-
tions.”” The elements of their makeup that he stresses differ from Lakatos’s charac-
terization of his notion of a ‘‘research program.’’ For Laudan, a ‘‘research tradition”’
has two main features: It comprises (1) a set of beliefs about what sorts of entities and
processes make up the field of inquiry, and (2) a set of norms of inquiry about how
the field is to be investigated, how theories are to be tested, how data is to be
collected, and so on. A ‘‘research tradition,”’ therefore, binds together a family of
theories which are all guided by the same rules or norms, and which all share in the
ontology of the research tradition (ibid., 150-152). An example is the Newtonian
research tradition which proceeded under the norms of Newton’s laws of dynamics
and the principle of universal gravitation, together with the ontological claim that all
interactions among phenomena (whether chemical, magnetic, biological, or such)
had to occur by means of centrally directed forces. This tradition achieved much,
although many of the theories that were guided by its norms of research were even-
tually given up. This makes clear that research traditions are not directly testable like
theories. In company with Lakatos, Laudan is insistent that ‘‘research traditions’’
must be illuminated by historical research. Once again, in Laudan’s view as in
Lakatos’s, philosophy of science is blind without history of science. Certainly changes
in scientific theories, and the triumph of theories over their rivals, cannot be objects
of investigation in abstraction from the social and historical contexts of enquiry in
which they were embedded and which propel their specific import. Indeed, in recent
work Laudan is engaged in the task of testing empirically and historically various
abstract models of scientific change. As yet there is no well-tested theory of scientific
change. The matter, however, is worth pursuing. In fact it has recently been taken up
by David Hull (1988), who advances a balanced account of the social interplay of
reason, argument, evidence, power, prestige and influence in the development of
certain of the life sciences.

4.9 ANARCHISM AND “ANYTHING GOES”

Each of the ‘‘global’’ theorists examined thus far is antifoundational in his approach
to the cognitive advance of science; each holds that comparative theory-evaluation is
not a matter of logically and decontextually assessing theories one at a time, but
involves long-term perspectives which can only be established diachronically and
historically; and each holds that science is a rule-bound activity. Feyerabend is highly
critical of these commitments. His position can be viewed as radical since he also
rejects explicitly the claim that science is a rational enterprise.

In Feyerabend’s view, successful scientific practice has never proceeded ac-
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cording to rational method at all. Thus, he regards all attempts to characterize the
methods of science as totally misguided. For Feyerabend, success in the scientific
enterprise depends not on rational argument but on persuasion, rhetoric, propaganda,
and practice (Feyerabend 1978; Chapters 3, 4). What any explanation of progress in
science must account for is the creativity of the individual theorist or scientific
practitioner rather than the methods and authority of science itself. For Feyerabend,
the only maxim that ‘‘does not inhibit progress is: anything goes’’ (ibid., 23). He thus
advocates anarchism in science, and the proliferation of conflicting and competing
theories.

Let us be clear about Feyerabend’s position. He makes two central claims: (1)
The notion that progress in science is made through the constraints of a paradigm, or
through a research program, or tradition is an illusion. These are artificial constructs,
unwarranted by the nature of scientific change; (2) also illusory is the notion that
science is a problem-solving activity that proceeds by explicit rules and norms. These
observations have force. It can be asked in particular whether the problem-solving
characterization of science accounts adequately for its explanatory power. Indeed, if
there are rules and norms of scientific practice directing its problem-solving activities,
what is it that creates explanatory satisfaction through the solving of certain prob-
lems? That a problem is solvable says something about the explanatory power of
science which is not captured by the problem-solving rubric alone.

How did Feyerabend get into this position? And how can he account for sci-
entific progress in the absence of the machinery he denies? The basis of his position
is found in his classic papers, ‘‘Problems of Empiricism, I and II’* (1965, 1970).
Indeed, the views he expresses in his book Against Method (1978) are really ideo-
logical and rhetorical versions of views already established in the earlier papers. The
focus of Feyerabend’s attack is what he calls radical empiricism, (1965, 154-163).
This is the view that at any time only a single set of mutually consistent theories are
to be used. Thus, the simultaneous use of mutually inconsistent theories is forbidden.
Feyerabend argues for theoretical piuralism, and he does so by attacking two articles
of faith explicit in radical empiricism: the claim that (1) there must be consistency
between predecessor and successor theories—that is, new theories must contain or be
consistent with the results and the content of the theories they replace (i.e., what
Laudan calls cumulative retention); and (2) the claim that there is meaning invariance
across theory change—that is, he attacks the view that the meanings of scientific
terms have to be invariant throughout scientific progress. For Feyerabend both con-
ditions are restrictive. They encourage theoretical monism, and discourage theoretical
pluralism (Feyerabend 1965, 163—168). Only if a theory can be viewed from the
perspective of conflicting and alternative theories is there a basis for critically ap-
praising it. Demands for consistency and invariance discourage this development, and
encourage adherence to one theory or set of theories long after it is advantageous to
do so.

Feyerabend attempts to show that demands for consistency and invariance are
not supported by actual science. He argues that Newtonian theory is strictly speaking
not consistent with Kepler’s law for n-body interactions; that statistical thermody-
namics is inconsistent with the second law of the phenomenological theory; that wave
optics is inconsistent with geometrical optics (ibid., 168—-177). What Feyerabend has
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in mind here is logical inconsistency. Observationally the differences in these per-
spectives may be too small to detect. Here Feyerabend’s view has affinities with
Kuhnian incommensurability and with Laudan’s rejection of cumulative retention.
Feyerabend, of course, does not accept their theoretical accounts of these notions.

His rejection of meaning invariance is a more significant feature of his position.
His claim is that both theoretical and observational terms change their meanings in the
context of theory-shifts. Terms do not mean something in isolation, but only as part
of a theoretical system. Thus we do not introduce terms for the phenomena that a
theory is to explain, and then bring to bear the theoretical terms of the theory which
purportedly explain these observational terms (see Chapter 3, Section 3.7). Every-
thing stands or falls together. If two contexts with basic principles are either contra-
dictory or lead to inconsistent consequences in certain domains, it is reasonable to
assume that some of the terms of the first do not occur with the same meaning in the
second. Thus, in situations of testing we are dealing with entire sets of partly over-
lapping, factually adequate, but mutually inconsistent theories (Feyerabend 1965,
174—177). What we have according to Feyerabend, then, is theoretical pluralism as
the basis of every test procedure. He argues in some detail that the terms of Newto-
nian dynamics, such as mass, do not remain invariant when we move from Newton’s
theory to Einstein’s relativistic dynamics. Nevertheless, both theories can simulta-
neously provide the necessary theoretical background for a test situation (ibid., 169-
171).

In Feyerabend’s view pluralism is essential to the growth of knowledge. More-
over, the generation of a plurality of theories is not a sign that knowledge is at a
primitive stage in its development. On the contrary, it is an essential feature of all
knowledge that is not constrained by rules and norms (Feyerabend 1978, Chapter 3).
For if there is no meaning invariance across theories, and if theories are logically
inconsistent with one another, there is no basis for overarching methodological norms
which guide all facets of scientific advance. Kuhn, Lakatos, and Laudan can all agree
that the criteria which scientists use in evaluating theories change slowly over time.
Moreover, Kuhn and Laudan, but not Lakatos, deny that there are transcultural norms
of rationality which guide the practice of science. Feyerabend’s position is more
radical. In denying the requirements of consistency and meaning invariance he denies
that science has an overall methodology which characterizes its activities and aims.
Given this conclusion, it is not surprising that Feyerabend thinks it futile to seek for
models of scientific change, and pointless to see science as a special sort of enterprise
that proceeds by a distinctive set of methodological procedures. On the contrary, we
must be willing to suspend adherence to established theories, and to consider the
merits of conflicting and alternative theories. In short, we must learn to recognize that
science is an anarchistic enterprise that proceeds by the constant proliferation of
warring perspectives. What can be said of progress on this perspective? If science is
not a rational enterprise it is not a normative one either. But progress is a strong
normative notion. What in Feyerabend’s position can capture it? Certainly not rhe-
torical success in making theories plausible to others (ibid., Chapter 4). Again,
Feyerabend wants theoretical pluralism to become a rule for scientific practice in the
future. This, too, is normative and if it is to be successful it is a candidate for
institutionalization in scientific practice. He says hardly anything of the institution-
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alization of such a practice nor of the obvious consequence that if ‘‘anything goes”’
pluralism would go.

4.10 SCIENTIFIC CHANGE AS A SOCIAL PHENOMENON:
THE IMAGE OF THE COSMOS IN SOCIETY

If the only principle that does not inhibit science is anything goes, little wonder that
Feyerabend embraces anarchism. The significance of his work, though, is seen in a
different light by those who favor a social approach to science. Kuhn, Lakatos and
Laudan all reject the idea of a straightforward logic of verification, refutation, or
confirmation whereby theories may be logically assessed in the instant. In place of
talking about traditional epistemic notions, such as truth and verisimilitude, they talk
of scientific change and progress in terms of problem solving, paradigms and research
programs. These notions, as they rightly allow, invite historical and social consid-
erations of scientific advance. Indeed, many now argue that such notions are no more
than constructs of social dynamics itself. But Feyerabend rejects these accounts as
well, whether they are socially warranted or not. If ‘“‘anything goes’ in the devel-
opment of scientific research, there can be no privileged account of how and why
science advances as it does. Accordingly, it is entirely indifferent whether a socio-
logical, anthropological, historical, psychological, or philosophical account is given
of an episode in scientific change.

Sociologists and social historians of science have offered accounts of science
which they see implied in the work of Kuhn, Lakatos, and Laudan, and, in the face
of Feyerabend’s anarchism, have reaffirmed their conviction that science can be
construed entirely as an ever-changing social phenomenon. They reject the myth of
the ‘‘autonomous scientific knower,”” situated apart from history and social embod-
iment, and also the vision of scientific knowledge as universalized and decontextu-
alized, perspectives which still linger in the global philosophies of science. In place
of these perspectives, social theorists argue that knowledge is present only in its social
and linguistic practices by which knowledge is continually adapted to changing social
context. They also hold that knowledge is normative: What is the best form of
knowledge to have? How can it be augmented? And is it the only form worth having?
Unlike the globalists, however, they are emphatic that only the social organization of
enquiry can deliver the answers that must cut across traditional disciplinary bound-
aries.

4.11 MAKING SCIENCE AND SCIENCE MADE: THE STRONG
PROGRAM IN THE SOCIOLOGY OF KNOWLEDGE

For two decades the Science Studies Unit at the University of Edinburgh has been
associated with an influential approach in the social studies of science. The central
tenets of the school are as follows:

1. Social theory adequately describes both the production of science and the prod-
uct of science; that is, social theory best accounts for the human activity of
making science and the human achievement of science made.
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2. There is a relationship of dependence between the cognitive order and the social
order: A social theory of the mind is the preferable construct insofar as human
belief is embedded in social structure. In other words, human belief is socially
locatable in the sense that causal laws can be established that show how any
belief, scientific or otherwise, is socially generated.

3. The duality of nature versus society is misleading. The notion that physical
nature is ‘‘out there’’ can be completely understood in terms of the notion of
society ‘‘out there.”” Thus, society and social theory are privileged over nature
and the philosophy of science as a basis for analysis.

4. Facts are socially made. Indeed, changes in our beliefs about *‘facts’’ and the
nature of the ‘‘facts’’ we construct are driven by social interests, by the dynamics
of collective needs, and by the power of social forces themselves. Thus, it is not
the natural world that constrains our beliefs about nature, but rather the socially
generated and opposing interests of competing groups. Indeed, the notions of
‘“‘need,”” “‘interest,”” and ‘‘construct’’ are central categories in the discourse of
the Edinburgh School, and are used with disarming plasticity.

The views of David Bloor are discussed in this section to the extent they are
representative of the Edinburgh position. My discussion involves both his earlier
post-Mannheimian orientation and his latter post-Wittgensteinian perspectives. Much
that is said also characterizes the orientation of Barry Barnes, another well-known
member of the school.

Let us begin with Bloor’s initial account of the ‘‘strong program.’’ He begins
with the undoubted conviction that ‘‘science is a social phenomenon so we should
turn to the sociologist of knowledge’’ (1976, ix). Moreover, he sees himself as
challenging Kuhn, Popper, and Lakatos. In his view it is sociology, not philosophy,
that will deliver a meaningful account of the genesis and nature of scientific knowl-
edge. The character of Bloor’s claim must be grasped at once. He states it thus:

Can the sociology of knowledge investigate and explain the very content and nature of
scientific knowledge? Many sociologists believe that it cannot. They say that knowledge as
such, as distinct from the circumstances surrounding its production, is beyond their grasp.
They voluntarily limit the scope of their own enquiries. I shall argue that this is a betrayal of
their disciplinary stand point. (Ibid., 1)

For Bloor, sociological accounts of scientific knowledge should not be restricted to its
institutional framework or to external factors pertaining to its rate of growth or
direction. After all, Kuhn, Lakatos, and Laudan all agree that this perspective is
viable. Rather, Bloor’s conviction is that sociology can provide a causal account of
the creation of scientific knowledge itself, one which uses the resources of social
theory alone and is therefore independent of philosophy. It is to this end that he
advocated the ‘‘strong program.”’

The program takes knowledge, including scientific knowledge, to be a purely
natural phenomenon. Instead of defining knowledge philosophically as justified true
belief, Bloor accepts as knowledge whatever informed groups of individuals take it to
be. It must, of course, be distinguished from mere opinion. This requirement he
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proposes to meet by calling knowledge whatever a cognitive community collectively
endorses or agrees upon by the pragmatics of social consensus (ibid., 3).

Accordingly, Bloor argues that a sociological account of scientific knowledge

should satisfy four requirements: It should be causal, impartial with respect to truth
“and falsity, symmetrical in its modes of explanation, and reflexive in the sense that
its explanatory framework should apply to itself as a body of knowledge (ibid., 4-5).

The first requirement seems, on the face of it, reasonable enough. It says that
a causal account of the conditions that produce knowledge must be given, not just any
causal account, but a causal account which uses social parameters. Thus, it requires
that the origins of beliefs, and the character of states of knowledge, are to be ex-
plained by a theory that utilizes only the principles of social theory. It is evident that
Bloor takes social causation to be an unproblematic notion. It is not. Bloor fails to
address this issue in his early work. Moreover, he offers no account of what a theory
of social causation entails, or a picture of the criteria it should satisfy. At best his
position is akin to Humean regularity, for example, if such and such social conditions
prevail, then certain types of attitudes tend to prevail. This in itself fails to preclude
other modes of explanation.

The second and third requirements are also controversial. They claim that we
ought to give a causal account not only of what is taken to be true and rational, but
also of what is false and irrational. That is to say, if knowledge is socially determined,
false beliefs ought to be produced in the same manner as true beliefs and get ac-
counted for by the same causal framework. This claim is disputed by Lakatos and
Laudan and, indeed, earlier by sociologists like Mannheim (1936). Their counter-
claim is that sociology can only explain why it is that we are in a state of false belief
and error (Laudan 1977, Chapter 7). This happens because ‘‘external’’ factors may
intrude, such as the social, the institutional, and the- psychological, in the process of
establishing knowledge. That is, if the mind goes off the rails, or deviates from the
canons of reasonableness, causes apart from the mind must be found. Otherwise, the
mind is autonomous in the production of true beliefs, and its methodologies are
intrinsically self-justifying in virtue of mental activity itself. The second and third
requirements of the ‘‘strong program’’ challenge the view that accounting for knowl-
edge as true belief is independent of causal explanation. Thus, the same style of
explanation—social causation—must be able to explain false as well as true beliefs.

The last requirement stipulates that any sociological account of the growth of
scientific knowledge should be reflexive, for if a sociological theory is itself an
example of a piece of knowledge, to avoid self-refutation it ought to explain itself.
The ‘‘strong program’’ must, therefore, satisfy causality, impartiality, symmetry, and
reflexivity.

As already indicated, however, Bloor’s criteria cannot be reasonably evaluated
unless we have some indication of the nature of social causation. Just how do social
influences bring about or cause human beliefs? How do beliefs relate causally to
institutionalized ways of behaving in society? A step towards answering these ques-
tions might consider the ways in which different positions in the social structure seem
to correlate with different beliefs. However, correlations are not causes and perhaps
not even indicators of underlying causal mechanisms. Moreover, as Bloor himself
recognizes, not only must there be an account of how social causes shape beliefs,
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there must also be an account of human nature, of the believer, the content of whose
beliefs gets generated by these same social causes. Unfortunately, Bloor’s early work
never provides an account of the nature of human believers, or of how social causes
bring about the content of their beliefs (1976, 5-10).

Indeed, Bloor never indicates how social causes differ (if at all) from other forms
of causation. Furthermore, just how do beliefs derive from the social order? Apparently
there is no well-grounded account of the alleged link between the social order and the
cognitive order such that the first is seen to be explanatory of the second. Can the second
be reduced to the first? Or does a theory of social causation demand the complexities
of a multilevel and multivariable model? And how are the notorious difficulties of
Marxism regarding the relationship between the economic infrastructure of society and
its cultural superstructure to be avoided? Or can that relationship be clarified compel-
lingly? Until these issues are resolved there is no real basis for forsaking explanations
of belief formation in terms of reason, intention, motivation, and purpose.

To Bloor’s credit, he attempts consistently to locate all knowledge socially,
especially in his rejection of Mannheim’s category of the *‘free-floating intellectu-
als,”” and in his claim that the ideational content of formal systems, such as mathe-
matics, are not immune to methods of the sociology of knowledge. The notion that
intellectuals are classless and socially rootless, and thus the custodians of knowledge
not tied to the ideological rationalization of class and status, is dismissed by Bloor as
false and itself generated by Mannheim’s social and historical position. This raises a
further question. If, as Bloor assumes, scientific knowledge is culturally and socially
located, how do we allow for ideological distortions of knowledge due to its ratio-
nalization through the practices and interests of scientific cultures?

4.12 LANGUAGE GAMES, MENTAL CONTENT, AND A SOCIAL
VIEW OF MEANING

In his more recent work, Bloor offers a perspective on human activity which side-
steps the issue of social causation. As in his earlier version of the ‘‘strong program,”’
he minimizes the role of individual agency by subsuming it under the collectivity of
social change and social action, and by stressing the priority of society over the
individual. Now instead of relying on an unanalyzed notion of social cause, he argues
that language, belief, human reasoning and actions are all natural and sociological
phenomena openly intelligible just because they arise from human behavior anchored
as it is in material, biological and cultural contexts. Descriptionism, not explanation,
is Bloor’s objective here, and content is solely a matter of context. The aim is to
merge the ‘‘what’” and the ‘‘how’” (Bloor 1983).

Bloor’s aim is to show that Wittgenstein’s later thought ‘‘on the natural history
of human beings’’ (1953, 415) can be incorporated into the everyday practices of
historical, anthropological and sociological enquiry. Thus, he takes seriously and
literally Wittgenstein’s claim that, ‘‘Commanding, questioning, recounting, chatting,
are as much a part of our natural history as walking, eating, drinking, playing’’
(1953, 25). On this naturalistic perspective, the speaking of a language and the
languages we use are ‘‘a part of an activity, or a form of life,”’ in just the way that
chemical and physiological processes drive our living biological life. These linguistic
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forms of life, or ‘‘language-games,’’ are countless and varied; they come into exist-
ence and they become obsolete; they express cultures and subcultures, practices and
institutions; they manifest patterns of interlocking usages and activities; they involve
streams of interests and needs embodied as they are in the contexts of human behav-
ior; and they are constitutive of everything we can ever claim in the way of knowing.

Bloor’s aim is to show that the de facto reality of these ‘‘forms of life’” is open
to empirical investigation, namely, that they come into being through social interests,
institutional practices, and human needs. Thus, language has its patterns of usage and
meaning only insofar as it expresses itself through the content of ongoing human
activities or ‘‘forms of life.”’ In this Wittgensteinian vein Bloor breaks decisively
with meaning essentialism (i.e., the view that meanings express intentional states or
refer uniquely to entities in the world) in favor of the view that language is an
interactive tool among communities of speakers, ever changing as the dynamics of
social interest change.

Scientific culture, and its changes, is viewed by Bloor through this perspective.
It, too, is to be sociologized, naturalized, and treated as a *‘form of life.”’ Thus, like
any other cultural form, science is a natural and social activity which generates
special language-games driven by cognitive aims and social interest. Scientists on this
view are not autonomous knowers who project intentional meanings onto a compliant
reality, but investigators dwelling in special ‘‘forms of life’’ carried by linguistic uses
that contextually express the dynamic of interests constitutive of the total scientific
culture. For Bloor, as for Wittengenstein, there is no inner Russellian language
referring to a privileged mental content which in turn ideally depicts an outer reality.
Scientific change is a matter of linguistic redescription and the generation of new
discourses compelled by increasing interaction with phenomena and directed by
changes in social interests and cognitive needs. Moreover, incommensurability is no
problem, since for Bloor no one language-game of the scientific culture can be
objectively preferred to any other.

Bloor’s position invites an uncompromising relativism, a consequence he ea-
gerly avows. Indeed, he tells us that objectivity and rationality are forged by us as
““‘we construct a form of collective life’” (1982, 3); that ‘‘Copernicus is undone’’
(ibid.) and that ‘‘human beings are back in the center of the picture’’ (ibid.) as the
measure of all things; that what we take to be universal is ‘‘variable and relative”
(ibid.); and thus, that the ‘‘things we had seen ourselves as answerable fo, we are now
answerable for’’ (ibid.).

Thus, in company with so much that is current in postmodernism he denies the
objectivity and rationality of *‘truthful knowledge,’’ suggesting instead that knowl-
edge, even language itself, is a reflection of power relations within society, and
changes when these relations themselves change. Accordingly, there is no standard of
knowledge that is transcendent of power and the desire for it, or of authority and the
desire for that. Protagoras the relativist has returned to haunt the Platonic realists.

4.13 POLITY AND THE SOCIAL MANAGEMENT OF FACTS

To illustrate further the difficulties of social causation let us now turn to Shapin and
Schaffer’s interesting and important Leviathan and the Air-Pump (1985). These his-
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torians are concerned with a concrete case of scientific change, Robert Boyle’s
researches in pneumatics (with his use of the air pump in that enterprise) and with the
controversies this experimental program generated with Thomas Hobbes. In this
context they trace the social formation of scientific authority in mid-seventeenth-
century England together with the question of legitimizing social space for the ex-
perimental way of knowing. They see their work as an exercise in social theory and
in the ethnography of science, and their explanatory orientation has much in common
with Bloor’s position, as well as with the views of micro-sociologists such as T. J.
Pinch, Bruno Latour, and Andrew Pickering (Shapin and Schaffer 1985, 14-16).
There are also Foucaultian and Wittengensteinian themes woven into their narrative,
especially evident in their account of relations of language, society and power.
Accordingly, Shapin and Schaffer approach the scientific enterprise as an integrated
pattern of activity, as a “‘form of life.”” Scientific controversies are disputes ‘‘over
different patterns of doing things and of organizing men to practical ends’’ (ibid.,
15). Moreover, in their view *‘‘solutions to the problem of knowledge are embedded
within practical solutions to the problem of social order, and that different practical
solutions to the problem of social order encapsulate contrasting practical solutions to
the problem of knowledge’” (ibid.).

The thesis of Leviathan and the Air-Pump can be stated simply. How did science
together with its social context get co-constructed in the work of Hobbes and Boyle?
As Latour rightly indicates: The question Shapin and Schaffer ask is not how Boyle
places his ideology of witnessing ‘‘facts’’ experimentally produced in his air pump in
the social context of contemporary England, but, rather, how Hobbes and Boyle both
construct ‘‘a science and a context and a divide between the two”’ (Latour 1990, 147).
In other words, Shapin and Schaffer attempt to show that Boyle has a science and
religious polity and that Hobbes has a political theory and a science. Moreover, Boyle
invents an artifact, the laboratory, a special place within which to witness experimental
matters of fact produced in the vacuum of his air pump; Hobbes also invents an artifact,
the State or the Leviathan, by which citizens are represented through social contract.
For Shapin and Schaffer these inventions are two sides of the same coin; science and
context are one. Indeed, it is the invention of the modemn world.

We must be clear about the implications of these claims. Shapin and Schaffer
are of course claiming that the business of making science is a social activity, within
an institutionalized framework, which is guided by social norms and practices. There
is no problem here. In fact, the claim as it stands is unremarkable. However, they are
making more serious and controversial claims. These are further evident in the fol-
lowing passage:

Neither our scientific knowledge, nor the constitution of our society, nor traditional state-
ments about the connections between our society and our knowledge are taken for granted
any longer. As we come to recognize the conventional and artifactual status of our forms of
knowing, we put ourselves in a position to realize that it is ourselves and not reality that is
responsible for what we know. Knowledge, as much as the state, is the product of human
actions. (1985, 344)

This passage indicates their belief in a direct relationship between the way knowledge
is produced and the sociopolitical context in which it is produced. Indeed, the ex-
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perimentally produced fact is a social construct, ‘‘an artifact of communication and
whatever social forms [are] deemed necessary to sustain and enhance communica-
tion”’ (ibid., 25). For all that, however, facts can be viewed as both epistemological
and social; epistemological, since we understand best what we construct; social, since
they are made by us under controlled conditions. Second, given that scientific knowl-
edge is a product which arises from the experimental way of life, a result coopera-
tively achieved by designful human activity, what needs explanation is how we act
and behave when we engage in the business of making facts.

Now it is one thing to stress the social, the artifactual, and the conventional
aspects that characterize the purposive production of experimental knowledge. It is
quite another to claim that warranted scientific knowledge is at bottom about us
knowers and not about states-of-affairs in nature. That is, the claim that a scientific
fact is just a social construct made by specific forms of human activity needs more
arguing than Shapin and Schaffer provide. More precisely stated, the distinction
between an experimentally made matter of fact and the underlying causal reality
responsible for the occurrence of that ‘‘factual event’’ in the experimental setting is
never clearly made by the authors. Moreover, their analysis seems to rest on a curious
shift in reasoning. They start from a perfectly sound methodological question: How
does science function ir society? But they conclude that science is a function of
society, that scientific knowledge is simply about a social construct predicated on
social action. From methodological premises alone we are scarcely entitled to draw
an ontological conclusion (see Section 4.14). This slide is parallel to moving from a
methodological constraint to the effect that only certain properties are to be selected
(because they alone can be treated quantitatively and geometrically) to the claim that
they alone are the real properties of natural phenomena.

As further evidence of the reductive character of their methodology, Shapin and
Schaffer proceed under tacit ontological assumptions. They assume that talk about
“‘social reality’’ is unproblematic, that explanations advanced in social terms make no
unwarranted assumptions about what is the case. In other words, they privilege
society over nature: It is the social that is ‘‘out there,’” not the natural. But analysis
of persons and their actions does introduce emergent categories. To bring persons
under any collectivity is to use identifying criteria not reducible to persons taken
individually. Scon we are talking about classes, life forms, communal interaction,
and such, each a construct or artifact of the analysis, but none reducible to the basic
ontology of persons and actions. The authors are aware that they are dealing with
constructs, but they consider them warranted just because they refer to persons,
groups, and group interactions. It may be defensible to claim that all knowledge of
ourselves as social agents is grounded in the social or political spaces that we our-
selves create; it is another matter to claim that scientific knowledge is nothing more
than a social construct pertaining to specific forms and patterns of human activity.

Not surprisingly, Shapin and Schaffer also claim that major changes in science
are to be explained in social terms alone, that only accounts that trace events back to
their sociopolitical context are properly historical. Accordingly, they argue that the
rise of early modern science and the rise of the new social order of the seventeenth
century are not isolated events. Both are manifestations of one and the same process,
namely, a new solution to the problem of order, ‘‘Solutions to the problem of
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knowledge are solutions to the problem of the social order’’ (Shapin and Schaffer
1985, 332). The authors take it as undoubted that ‘‘an intimate and important rela-
tionship [obtains] between the form of life of experimental natural science and the
political forms of liberal and pluralistic societies’” (ibid., 343). Here again they take
their cue from Wittengenstein’s notion that language is the activity which structures
all forms of activity. But this conception cannot in itself license the view that the
choice of a scientific discourse is at once a solution to what the world is like and to
how the scientific community should talk. Shapin and Schaffer, however, strongly
suggest this. Certainly, discourses create ‘‘realities.’” It is still an open question,
however, whether the practices that produce scientific knowledge are entirely and
irreducibly social and linguistic.

Furthermore, linguistic and social affinities are not explanations unless the
nature of those affinities—causal or otherwise—is spelled out. Moreover, in explan-
atory contexts problems of overdetermination should not be underestimated. The
authors fail to fully consider these matters. They sometimes write as if changes in the
social order and in the scientific order proceed from a common cause, but the nature
of that common cause is never isolated and specified. At other times they write as if
changes in the social order and those in the scientific order are coproduced. This
picture is consistent with the “‘strong’’ program in social theory and inherits its
difficulties. In any event to argue, as they do, that the explanation for both the
emergence of modern science and the rise of a new order in Western culture is the
formation of a new polity generated by the sociopolitical changes of Restoration
England fails to compel immediate assent. Certainly, the formation of the ‘‘experi-
mental way of life’” as a rule-bound act of the ‘‘social witnessing’’ of facts, per-
formed in the constructed social space of the laboratory, presupposes certain sorts of
institutions and practices specific to the social forms of mid-seventeenth-century
England. In this, Shapin and Schaffer are right. But whether their historiography is
universally applicable in accounting for the production of knowledge in the particu-
larities of other social and historical periods is at least questionable.

4.14 TOWARD AN ANTHROPOLOGY OF SCIENCE: THE DISCOURSE
OF SOCIAL CONSTRUCTIVISM

Let us turn now to social constructivism as a perspective on scientific change. This
orientation has been touched upon in the account of the Edinburgh School and the
work of Shapin and Schaffer. It will be well, however, to examine constructivism
directly, especially in the anthropological context in which it has been placed by
recent literature.

In its strongest formulation constructivism says that scientific facts of a pure and
socially unalloyed nature do not exist; but social facts—facts about the existence of
the constructions we call “‘scientific facts’’—do exist. This is open to two interpre-
tations: (1) that scientific theories and their interpretative applications to evidence are
sociologically laden in that every application is made within a socially organized
context; or (2) that scientific theories and facts are constituted solely by social con-
structs. On this view, there are no factual referents ‘‘out there’’ independent of social
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constructs to which these constructs refer. The first interpretation is benign; the
second 1$ not.

In their Laboratory Life (1986), Latour and Woolgar tend to blur these inter-
pretations. They assume methodologically that facts are locally and socially made by
the controlled instrumentation of the laboratory. This is sound enough as an anthro-
pological assumption. Unfortunately, they tend to run together the divide between
facts understood, produced and maintained under controlled conditions, and the un-
derlying causal realities responsible for these local and laboratory made matters of
fact. Recently, however, Latour has affirmed the importance of maintaining this
divide (1990, 149).

It is worth stopping to consider the distinction between what is constructed ouz
of our laboratory practices and what can be referred to through those practices. No
doubt science dwells in its practices and no science can transcend the network of those
practices. After all, what we understand by truth and reality must arise from our
practices and be made intelligible and useful to us through the aims and norms that
guide those practices. Nevertheless, what can be referred to in the scientific context
does not depend on scientific practices although the ability to make such references
does. That is, we should never infer from the fact that our practices are necessary for
access to scientific entities to the conclusion that these entities are constituted by our
practices. This is a fallacious inference but one often implicitly affirmed in the
constructivist literature (see Shapin and Schaffer in Section 4.13). In short, reality
and truth are constructs which, like femininity and masculinity, depend on a culture’s
conventions and norms. Just as that which the construct masculinity can be true
of—biological male—is independent of our practices, so the true and real are inde-
pendent of the constructs of truth and reality, that is, what truth is true of does not
depend on our practices. Put otherwise, notions of what counts as truth (e.g., whether
it has explanatory uses) should not be confused with our ability to make and often to
justify claims about what exists both in the context of everyday experience and in that
of scientific theorizing (see Horwich 1990). Pragmatists and nonpragmatists alike can
agree here.

A sophisticated form of constructivism is found in Latour and Woolgar
(1986). Plausibly enough, they propose to treat the laboratory as if it were an in-
stitution within an alien scientific culture. More specifically, they see themselves as
practicing the methodology of the ‘‘anthropology of science’’ with a view to dis-
covering how it is that the “‘realities of scientific practice become transformed into
statements about how science has been done’’ (ibid., 29). Unfortunately, in so
doing, they commit the original sin of anthropology—cultural imperialism. Indeed,
there is a certain hubris in walking into an alien culture, of which they claim to
know nothing, taking a single event from the most taxonomical of sciences—
biology—and proceeding to dismantle the entire scientific culture by showing that
it is in fact a self-deluded copy of their own linguistic culture. This is like de-
scribing native magic as bad science, or the clearing between grass huts in terms
of the playing fields of Eton.

Latour and Woolgar do claim, of course, that their anthropological perspective
on science ‘‘entails a degree of reflexivity not normally evident in many studies of
“*science’’ (ibid., 30). That is, they hold that the methods they use in studying the
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practices of the laboratory are similar to those of the practitioners of science them-
selves. In their more recent work, both Latour and Woolgar have rejected this naive
view of the naive anthropological observer who, although he does not know the
language and customs of the site being investigated, nevertheless subjects it to an
alien metalanguage (Latour 1987, Woolgar 1988).

However, in their assumed role of anthropological observers, Latour and Wool-
gar (1986) view the Salk laboratory as an extended ‘‘text’” exhibiting a wide range
of linguistic practices and using artifacts as ‘‘inscription devices.”” ‘‘Inscription’’
refers to more than such linguistic acts as writing; it refers to all traces, spots or points
on screens or scales, and to histograms, recorded numbers, spectra, and peaks on
diagrams, and so on. An ‘‘inscription device’’ is an apparatus used such that it
provides some sort of symbolic output. Accordingly, an apparatus that ‘‘transforms
pieces of matter into written documents’ (ibid., 51} is an “‘inscription device.”’ It is
thus ‘‘any item of apparatus or particular configuration of such items which can
transform a material substance into a figure or diagram which is directly usable by one
of the members of the office space’” (ibid.). So a scale on an apparatus is an ‘‘in-
scription device’’ if it provides information about a new compound, a machine if it
weighs something, a checking device when it is used to verify an operation. In short,
an apparatus is used as an ‘‘inscription device’” when it is used in an argument such
as that involved in the construction of a bioassay profile.

In accordance with this perspective, Latour and Woolgar develop a linguisti-
cally sophisticated form of constructivism. Construing the laboratory as a locus of
activity, involving communication, persuasion, and the use of apparatuses as ‘‘in-
scription devices,’” they focus their anthropological investigation on the sociological
and the linguistic features of laboratory activities. The laboratory is presented as a
“‘system of literary inscription, an outcome of which is the occasional conviction of
others that something is a fact’> (1986, 105). But what is the status of the fact to
which they have been persuaded? We might think that a fact is something recorded
in a scientific article that has ‘‘neither been socially constructed nor possesses its own
history of construction’’ (ibid.). Latour and Woolgar think this is a wrong-headed
conception of the origin of facts, and they wish to examine how talk of facts appears
“‘to remove the social and historical circumstances on which the construction of a fact
depends’ (ibid.).

This seems benign enough. But the authors are committed to more than the
obvious claim that facts are socially and linguistically constructed in virtue of the
directed activities of laboratory research. They claim that facts are social constructs.
This commitment is unambiguously stated in the following passage:

Specific to this laboratory is particular configurations of apparatus that we have called
inscription devices. The central importance of this material arrangement is that none of the
phenomena ‘‘about which’* participants talk could exist without it. Without a bioassay, for
example, a substance could not be said to exist. The bioassay is not merely a means of
obtaining some independently given entity; the bioassay constitutes the construction of the
substance.—It is not simply that phenomena depend on a certain material instrumentation;
rather, the phenomena are thoroughly constituted by the material setting of the laboratory.
The artificial reality, which participants describe in terms of an objective entity, has in fact
been constructed by the use of inscription devices. (Ibid., 64)
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Accordingly, phenomena and the facts pertaining to them do not obtain in a theory-
independent reality, but are constituted and constructed by the social and linguistic
processes of the laboratory. Indeed, substances could not be said to exist indepen-
dently of configurations, such as bioassay, which supervene on items displayed on
inscription devices. Thus, facts, far from being objective realities that are discover-
able, are themselves constructed by the methodologies of inscription devices.
Latour and Woolgar are nevertheless at pains to deny that facts are just artifacts
of social and linguistic practice. They wish to reconcile two facets of “‘fact’” talk:

1. that the term connotes the making or constructing of something; and,

2. that ‘‘fact is taken to refer to some objectively independent entity which, by
reason of its ‘out thereness’ cannot be modified at will and is not susceptible to
change under any circumstances’” (ibid., 175. See also pp. 84 and 87).

Repeatedly the authors claim that they are not antirealists in the sense that substances,
and the facts that pertain to them, do not exist; but rather that they do have objective
existence, but only as constructs. How is this view to be maintained? And how do
they combine the claim that facts are not independent of their modes of construction
while denying that they are merely artificial?

What the authors claim is that it *‘is not just that facts are socially constructed.
We also wish to show that the process of construction involves the use of certain
devices whereby all traces of production are made extremely difficult to detect’”’
(ibid., 176; italics in the original). Specifically, they claim that an important inversion
in statements and what statements are about takes place in the dialectics of science.
In the early stages of the dialectical process there are only statements or linguistic
exchanges among scientists, that is, agreements and disagreements. Moreover, the
conditions of the construction of these statements are manifestly visible, and seem
necessary for purposes of persuasion. However, once widespread communal agree-
ment is reached, the inclusion of these conditions as a means of persuasion is no
longer necessary; indeed, they seem to threaten the ‘‘fact-like’” status of the state-
ments themselves. At this point, what a statement is about takes on a life of its own.
It is as if ‘‘the statement had projected a virtual image of itself which exists outside
the statement’” (ibid.). More and more reality is then attributed to what the statement
is about, and less and less to the statement itself, ‘‘Consequently, an inversion takes
place: The object becomes the reason why the statement was formulated in the first
place’’ (ibid.). If the function of literary inscription is the successful persuasion of
readers, such that they are most completely convinced when all forms of persuasion
disappear, so the “‘result of the construction of a fact is what appears unconstructed
by anyone; the result of rhetorical persuasion in the agnostic field is that participants
are convinced that they have not been convinced—’’ (ibid., 240). Indeed, on this
view, the various social and linguistic activities that sustain the argument, and which
are eventually seen by the participants as irrelevant to the ‘‘facts,”” are the same
conditions that constitute and generate the ‘‘factual’’ quality of a given statement
itself.

Facts, then, are epiphenomenal projections of the constructive techniques that
generate them, and their ‘‘objectivity’’ is a function of the dialectical inversion
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characteristic of scientific practice. It may seem otherwise to some, especially to
practicing scientists. Forgetting the ‘‘constructive’’ process that constitutes ‘‘factic-
ity,”’ scientists and their readers often revert unconsciously to the notion that facts are
‘“‘out there,’” and that their existence is to be revealed by the techniques of scientific
discovery. But this is an illusion—Latour and Woolgar insist—an illusion because
those statements warranted by scientific consensus as ‘‘fact-statements’’ stand alone
long after their constructive procedures have become invisible. Their claim is con-
sistent with a common position in the sociology of knowledge that knowledge is both
socially constructed and socially located. Indeed, their narrative is an instantiation of
the process of objectification (the reification or ‘‘making real’’ of the constructed
knowledge) and of internalization (the unconscious ‘‘hardwiring’’ of the epistemic
outlook provided by the objectified knowledge). Thus, the structure of the facts that
are ‘‘out there,”” either locally or cosmically, resonates with the structure of our
minds precisely because we put them there (Berger and Luckmann 1967). This in
itself fails to dislodge the view that the human mind is itself is an integral part and
product of the natural order of things.

It is one thing to stress the social, the artifactual, and the conventional aspects
that characterize the purposive production of scientific knowledge. It is another to
claim that warranted scientific knowledge, and talk about the ‘‘factual quality”’ of
consensual statements, 1s at bottom about the activities of scientific knowers and not
about states-of-affairs in nature. There would appear to be a fallacious shift in rea-
soning. Latour and Woolgar begin with a perfectly sound methodological question:
How is scientific knowledge about facts generated in the cognitive community of the
laboratory? But they conclude that that knowledge is no more than a function of the
special linguistic and social practices of the community, that scientific facts are social
constructs predicated on social action. From methodological premises about how
people behave we can scarcely derive ontological conclusions about what is the case
in nature. This is to confound ~ow knowledge is produced, with what that knowledge
is about. That is, it is an instance of the fallacy discussed above: The shift from the
dependency of knowledge on practice to the claim that the objects of that knowledge
are constituted by those practices.

But for Latour and Woolgar to talk about the ‘‘factual’’ quality of scientific
statements is to talk about connected meanings in the social space of scientific
discourse. That is, scientific ‘‘factuality’’ is a construct arising from hermeneutical
activity of linking meanings through theoretical unification. But an important dis-
tinction is blurred. We certainly construct connected meanings when we interpreta-
tively unify inscriptional items manifest on laboratory apparatus, but the arrangements
of points and spots that we interpret are not themselves meanings; rather they have
meaning. Moreover, these arrangements of patterns are not themselves caused by the
effective linkage of meanings. They are caused by underlying phenomena the prop-
erties of which are represented by the arrangements of inscriptional items. Latour and
Woolgar wish to ‘‘reconceptualize’’ these relationships. In fact, they argue that
physical objects, including living systems, can be treated as if they are ‘‘material
dictionaries’’ (1986, 48). This means that any material thing that can be labeled,
encoded or recorded can be treated through its linguistic representation. This includes
rats injected with a liquid by a syringe. Here the ‘‘material dictionary’’ is the record
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of their behavior after injection. Given the orientation of Latour and Woolgar, this
perspective runs the risk of turning the claim ‘‘as if things are material dictionaries’’
into the claim ‘‘they are material dictionaries.’” Thus, analogies become identities,
and, in general, causes tend to become merged with the behavioral effects that they
cause, and things become their properties.

The point is this: Causes, meanings, and effects must not be confounded. This
is especially so in the case of effects which are produced by the use of sophisticated
laboratory techniques. Here, of course, the scientist encodes relationships linguisti-
cally and theoretically between inscriptional items of an apparatus; but through these
encoded meanings the scientist is also able to intervene and interfere with nature
predictively and creatively. This is not to say that theoretical entities are there to be
discovered by just anyone. Many scientific effects do not exist without the interven-
tion of certain kinds of laboratory apparatus. But those effects are there, and they are
real because they have to do with the world, if only the local world of the laboratory
and not with our linguistic conventions. Accordingly, certain entities are in part
theory-independent and scientific theories say something about them. Of course, this
is not to claim that every theory-independent entity that is postulated exists—such as
caloric. It does mean that some entities remain and are experimentally manipulatable
long after the theories that first postulated and managed them are rejected. Accord-
ingly, local realism about scientific entities is inherently plausible.

Talk of causes, things and properties raises the fundamental issue involved in
Latour and Woolgar’s program. They maintain the strong claim that a change in
construction constitutes a change in phenomena as such. Recall that their argument
can be construed as claiming that scientific facts do not exist, but social facts—facts
about the existence of the constructions we call “‘scientific facts’’—do exist. If this
is so, they are making an ontological claim in the manner of the social realist. The
realist takes certain statements involving reference to social facts, entities and prop-
erties as literally true and as involving genuine ontological commitment (see Ruben,
1985, Chapter 2 and Papineau 1978, Chapter 1). For example, the realist holds that
the belief that ‘‘Scotland is part of the United Kingdom’’ is literally true, that there
are no candidates, social or nonsocial, to which the social particulars ‘‘Scotland”’
and the ‘‘United Kingdom’ are reducible. Thus, the social realist is concerned to
show that certain social factors are irreducible, that is, that they are not candidates
for reductive identification with other entities. Examples of reductive identification
are attempts to identify mental states with brain states or types of behavior, moral
properties with natural properties, numbers with sets of sets, knowledge with jus-
tified true belief, and physical objects with sets of sense-data. Since Latour and
Woolgar make a strong ontological claim, namely, that scientific facts just are ob-
jective social constructs, they need to give an ontological justification of this claim
to avoid the ontological double-talk implied in their rhetorical packaging of “‘fact.”’
Thus, they must give a noncircular account to show that in each case in which there
is talk of a “*scientific fact’’ there is an appropriate “‘social fact’” which is a nec-
essary and sufficient condition for it. The thrust of necessity and sufficiency is that
there cannot be the relevant “‘scientific fact”” without there being an appropriate
““social fact,”” and vice versa. The modality required is strong. It is metaphysical
(in contrast to epistemic or methodological) since it claims that there cannot be any
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possible ‘‘scientific fact’” that is not reductively identifiable with a ‘‘social fact,”’
(Ruben, 1985, 5-7). These requirements must be met; otherwise, social construc-
tivism remains a benign methodological claim (while still masquerading in onto-
logical dress) to the effect that ‘‘scientific facts’ are simply eliminable on the
grounds that only socially and linguistically constructed entities are epistemically
accessible to our cognitive abilities. Thus, in the absence of direct ontological ar-
guments, Latour and Woolgar cannot make good their putative claim that ‘‘phe-
nomena are thoroughly constituted by the matenal setting of the laboratory’’ such
that a change in construction entails a change in phenomena and a change in our
knowledge concerning them.

4.15 SCIENCE AS PRACTICE

The perspectives discussed all turn on various interrelations of the categories of
theory, method and evidence: The received view stresses minimalist observation
statements tied to evidence and sensation; the new philosophy of science concentrates
on paradigms and on theories and the methods they drive; the social theoretic em-
phasizes the making of facts and the types of social consensus that justify their
acceptance. In the more recent literature, however, other categories have come to the
fore: Scientific practice, the audience and context of science, experimental and tech-
nological networks, and actants rather than agents (i.e., the view that there is no
relevant distinction in the context of making science between people and things).
Furthermore, many of the traditional divides that oppose inner states of knowing to
outer objects of knowledge are rejected, along with the tidy-looking philosophical
dichotomies they engender.

4.16 THE PRACTICES OF SCIENTIFIC CHANGE

The view that science is driven by practice rather than by theory or observation raises
perspectives on scientific change. The claim that practice is central to the understand-
ing of science is found in the writings of Heidegger ([1927] 1962, Division 2, Part 4),
Bachelard (1984) and Polyani (1974). Also Bourdieu (1977) has written an influen-
tial account of practice and practices, and Hacking (1983) has argued that experi-
mentation has a life of its own independent of theory. Only in recent years, however,
has practice become a central focus in the writings of both philosophers and historians
of science. Thus, there is work on the activities of laboratory technicians, the prac-
tices of experimentation, the practices of theoreticians, and the practices involved in
the technical applications of science, to mention a few of the areas of investigation.
Writers concerned with these topics deny that all practice is theory-laden, and also
that experimental practice is just theory pursued in a different guise. They therefore
deny both empiricist accounts of science, which posit pure observations of data
(unmediated by experimental practices) as the basis for theory choice, and theory-
dominated accounts which hold that experimental practices are largely structured via
the theory-ladeness of observations. Furthermore, they situate the making of science
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and products of science firmly within the cultural sites within which these phenomena
are produced, sustained, and developed. Thus, their orientation differs from microso-
ciological investigations, such as Latour and Woolgar’s, to the extent it goes beyond
individual laboratory sites to include the various cultural networks of changing sci-
entific practice. Indeed, in paying attention to the actual processes by which scientific
knowledge is produced (and not relying on the various images of science in the
professional and popular literature of science) they attempt to reconstruct the complex
networks of skills, competences, negotiations, persuasions, and intellectual and ma-
terial resources from which stable patterns of scientific practice emerge. ‘

For those who emphasize the interactive dynamics of practice, the collective not
the individual is therefore at center stage. Since in their view science is largely
skill-based, network-based and laboratory-based, it can be located somewhere be-
tween the activities of individuals who pursue it and the material, cultural and cog-
nitive frameworks which they inhabit. Moreover, Pickering (1984), Galison (1987),
Holmes (1985) and Hull (1988) stress those nonverbal techniques and transparent
coping mechanisms employed by experimenters which play a central role in the
process of theory construction. In these contexts, scientific understanding is a ‘ ‘know-
ing how,’” a matter of having a ‘‘feel’’ for the go of things, of reasoning practically
to desired outcomes, dispositions not captured by the notion that understanding is a
“‘knowing that’’ abstractly expressed through verbal, representational and proposi-
tional relationships. These writers also point to the construction of common research
cultures and networks that routinize important patterns of skills which travel beyond
the confines of the individual laboratories which give them birth.

Discussing three types of scientific practitioner further illustrates this orienta-
tion: the technicians, the experimentalists, and the theoreticians. It is now increas-
ingly realized that we can no longer take technicians’ work as transparent, and their
activities and roles as invisible, if we are to establish a fuller understanding of the
nature of scientific knowing and the character of scientific practice. The transparency
of technicians in the business of making science results largely from the established
habit of distinguishing those in the laboratory who are custodians of technical knowl-
edge (and hence deemed authorities) and those who are merely skilled in
manipulations—the technicians. This divide tends to obscure the symbiotic relation-
ship between scientist and technician, and also the different ways in which the
organizational economies of individual laboratories evaluate and focus the signifi-
cance of the two groups in the making of laboratory knowledge. Certainly, if viewing
the significance of technicians’ work solely in terms of the activities of those involved
explicitly with theory and with theory-driven practice persists, the importance of that
work in the ongoing business of constructing and testing scientific knowledge will go
largely undetected. To this extent an important element of continuity through scien-
tific change will be missed. Also missed will be the full significance of the displace-
ment, replacement, redistribution, and reorganization of skills, and the ongoing
process whereby enskilled technology is substituted for human skills. Appreciation of
these features throws scientific change into a new light.

Experimental practices also provide insights into ongoing science and scientific
change. In good part, most accounts of experimental practice are contextualist and
emphasize the symbiosis of practices, techniques, discourses and concepts. More-
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over, these accounts range from microsociological studies, such as Laboratory Life,
to full-fledged attempts to delineate scientific cultures, their mutual interactions, and
their relationships to the larger cultures within which they are sited. Furthermore, the
literature is concerned to clarify the ongoing interaction between theory and practice,
while at the same time reflecting the fact that each has relative autonomy in different
levels of discourse.

The autonomy of practice is well documented in Frederic Holmes’s (1985)
study of Lavoisier. He shows that ongoing experimental practice need not be driven
by the need to test explicit theory as an outcome. Much that Lavoisier did in the
laboratory over time, far from being driven theoretically, proceeded as an unfolding
narrative guided by regulative rather than logical principles. Only when the problems
set by the investigative goals had been solved did theory enter as the verifying
presence necessary to link the various experimental narratives into a coherent theo-
retical structure. In this context, we have the appropriate ambiance for the dialogue
between theory and practice.

Notice how Holmes’s position differs from the laboratory dynamics portrayed
by Latour and Woolgar. Theirs is the model of competition: personality, institutional
affiliation, rank of researcher, the nature of the research, and its capital for future
investigations, and such, count as much as strength of argument, cogency of evi-
dence, and style of reasoning. In other words, the radical contingency of the power
game, and the contingent thrust of persuasion, count as much for scientific change as
anything else that is happening in the laboratory (see also Latour 1987).

Andrew Pickering (1984) argues that the symbiosis of practices and theories is
driven by interests structured in terms of perceived opportunities. In some respects his
emphasis on interest is reminiscent of the Edinburgh school. However, Pickering’s
concern is with the symbiotic relationships between theoretical and experimental
practitioners. In his view their practices intentionally reinforce one another. The work
of one group justifies the work of the other, and vice versa. Experimentalists routinely
refine experimentally produced phenomena with the interests of the theorists in mind
who use their work. Conversely, the theorists adapt their practices to the phenomena
produced by the experimentalists. Both groups mutually contribute to the confluence
of traditions which generate self-contained and autoreferential contexts of developing
practices. In Pickering’s view, it is not an objectively conceived natural world that
propels the dictates of scientific practice, it is the opportunities that the scientific
actors perceive for furthering their theoretical and experimental interests. Hull (1988)
has illuminated many of the aspects of scientific practice discussed by Pickering,
Galison and Holmes. He develops an evolutionary model of the selection processes
of scientific choice and of scientific development. The model is sufficiently general to
capture both social and conceptual change while remaining sensitive to the data of his
inquiry and empirically nonvacuous. Hull in no way opposes the scientific belief that
the practices of science can and do causally interact with the causal forces of the
nonhuman world.

Of importance is the notion of practicing a theory. This is not just a question of
understanding a theory’s formal expression in its textbook setting, but is rather the
business of adopting and transmitting through practice a set of mental technologies
suggested by contextualized applications of the theory to problem solving. These
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mental technologies are embodied in patterns of skills present in the very conceiving
and solving of problems. Such techniques are not inherent in the published literature
on the theory, but are learned, exercised, and transmitted in the manner of a guild of
masters and apprentices.

The reference to activities of the guild raises the question of the relationship
between tradition and innovation, between exercising practices and developing them.
Clearly, exercising scientific practices is a goal-oriented activity pursued in order both
to extend the reach of the practices and to enact further their inherent values. Suc-
cessful practices have histories and are bearers of the traditions that inform them.
Thus, practices embody both the traditions that drive them and the creative modifi-
cation these traditions permit as more of the values inherent in the practices are
realized. Clearly, there is not merely a contingent relationship between tradition and
innovation, but one that intrinsically connects traditions with their practices and the
innovations that arise through their exercise.

From this perspective the careers of theories are inseparably connected with
experimental practices and technologies. This image suggests that theories function
not so much as Platonic paradigms, but as devices that guide experimental rea-
soning and enact scientific experience. Whenever theories are exercised in an ex-
perimental setting they are expressed through human practices and by the
technologies that serve them. Just as the norms which guide practical deliberations
are modified through application to changing situations, so theories, as expressed
through experimental practices, are modified through adaptation to events produced
and localized in the laboratory. Thus scientific change in its laboratory setting is a
constant interplay between the place where experimental events are produced, the
means by which they are produced, and the significance of what is produced. On
this view, the significance of experimental practices is partly underwritten by the
theory that helps to guide those actions. It is also imparted through the narrative
account of what was involved in the performing of an experiment, for example, the
place of experimentation, the design and reliability of the instrumentation, and the
manner in which the experiment was performed. The narrative, however, should
not be mistaken for the experiment itself. In the context of experimental practice,
scientific change and the production of scientific knowledge present a perspective
different from that current in the standard literature. Here contingent forces are at
work to humble any remaining illusion that human inquirers necessarily have cog-
nitively reliable access to reality.

The modern research complex makes unique demands on our understanding of
scientific change. In the process of making laboratory science in its current highly
technical and instrumental! contexts the human role is with difficulty demarcated
within the professional, technical and institutional structure in which it is embedded.
Latour {1987) has coined the term ‘‘actant’’ to refer to this feature of modern science
in the making. It is a notion that cuts across the divide between the collective and the
individual and thus appears to avoid the sociological biases built into the perspectives
of the social study of science. However, it also affects the very category of ‘‘scientific
change,’’ for if there is no principled distinction between the human and the nonhu-
man in the production of scientific resources, the evaluative criteria for judging
change, epistemic and otherwise, are systemically open to reconceptualization.
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4.17 CONCLUSION

The problem of how to account for scientific change is a ramified one. The accounts
examined here harbor difficulties. The ‘“global theorists’” advance categories that are
overdetermined relative to the detail of actual cases of scientific change. The social
theorists, for their part, are wedded to methodologies which tend to reduce scientific
change to a preferred basis. They, too, want change to lie in a procrustean bed. All
have something in common: They essentialize; they privilege one perspective at the
expense of others. Moreover, as the discourse of positivism reminds us, the inter-
section of the diachronic and the synchronic is there to challenge us.

Two observations are in order. What is the nature of scientific knowledge itself?
Is it constitutively bound up with human interests, the ‘‘will to power,’’ such that the
notions of truth and reason are constructable on that basis alone? Or is scientific
knowledge ‘‘about’’ something other than text, language and socially warranted
action? Second, what role does history play in contextualized accounts of scientific
development? It can be argued: an important one, especially in recounting the origin
of those crises which often herald scientific progress through change. The history of
a science, theory, practice or argument provides essential background for understand-
ing and evaluating its credentials. Thus the case for the superiority of a theory is made
effectively by showing narratively that it has thus far outdistanced its competitors by
avoiding their defects while incorporating their strengths. No norms are invariantly
instantiated; as Feyerabend and others point out, what is now best may later fail.
Certainly we may ‘‘construct,”’ ‘‘deconstruct,”’ “‘rhetorize,”’ *‘historicize,”” ‘‘sociol-
ogize,”” and ‘‘analyze.’’ But in evaluating and understanding scientific change we
ignore the diachronic of history at our peril. For it is from history’s background
perspectives that the past of change and its directions for the future emerge.

3 ¢

DISCUSSION QUESTIONS

1. Choose from among the challenges to the “‘received view’’ regarding scientific development the
one you regard as most persuasive. How best can the ‘‘received view’’ be defended against it?

2. Discuss the concept of a scientific “‘revolution’ in the light of the various accounts of scientific
change that have been presented.

3. The scientific community believes that its practices continue to interact with a nonhuman world.
Realists hold that only their perspective on this belief can account fully for scientific progress.
Outline and discuss a constructivist response to the realists’ view.

4. Can scientific innovation be understood apart from diachronic accounts of how science has
developed?

5. In his Science and Values (1984), Laudan argues that we must relativize the assessments of
scientific progress to the aims and criteria we now believe in. This seems at odds with his earlier
notion that science is progressing if it has problem-solving efficacy against the aims and stan-
dards of its time and context. Discuss and assess these two perspectives. Are they incompatible
or are they reconcilable?

6. Choose a piece of science (e.g., a law, a theory) with which you are familiar and show whether
it improves over its competitors in the field or over what was believed of the phenomena prior
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to the advent of this piece of science. In your discussion consider the notions of control and
predictive power over nature.

7. Carefully distinguish scientific change from scientific progress. How are they related and how do
they differ? Can an account of one also be an account of the other?

8. Consider the differences between an account of scientific change which reduces change over time
(the diachronic) to the notion of the total and successive replacement of one framework by
another framework and one which sees scientific change as the gradual transformation of earlier
perspectives into later perspectives.
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Part 2 contains more challenging material. It provides an introduction to the
spacetime methods now commonly used in philosophy of space and time. It has been
written for nontechnical readers insofar as very little prior mathematical knowledge is
presumed. The major elements of spacetime theories are presented via geometrical
pictures and physical metaphors so that the major task of the reader is reduced to
visualizing these pictures and metaphors. As we will see, these modern methods are
themselves of considerable philosophical interest for they embody an automatic
method for determining which elements of a spacetime theory can be chosen by
convention and which are fixed by reality.

Part 3 contains applications of these methods. They are used to develop two
results. The firstis due to David Malament. It supports the claim that if one believes
the causal theory of time one cannot also consistently believe the thesis of the
conventionality of simultaneity in special relativity. The second is the “hole argu-
ment,” which originated in Einstein’s work. It seeks to establish that a strict form of
realism about space and time——a ‘‘substantivalist’” position—leads to indeterminism
In very many spacetime theories.

E=mc? Boxed text, such as this, contains explanatory mathematical
material that can be skipped by a reader less interested in technicalities.

Part I: Basic Questions

5.1 THE PRINCIPLE OF RELATIVITY
5.1.1 Newton‘s Absolute Space

Prior to Einstein, the dominant view of space and time was embedded within the
mechanics of Newton, the most successful of all scientific theories. In the exposition
of his mechanics, his Mathematical Principles of Natural Philosophy ([1687] 1962),
Newton had distinguished absolute from relative spaces. Relative spaces are the
spaces of common experience and a relative space is associated with each observer.
The relative space of the reader is the space of the room in which the reader sits and
its extension outside the room; If the reader is travelling in an airplane, the. relative
space will be the space of the cabin and its extension outside the airplane. Now the
one process can be described in many differentrelative spaces, Consider a child riding
a carousel at a fairground and a proud parent watching outside from the security of a
park bench. In the relative space of the parent and bench, the child is orbiting about
the central axis of the carousel. However in the relative space of the carousel, the
child is at rest and the world spins about him.

The discussion of relative spaces was not merely an entertaining flourish by
Newton but an essential preliminary to the development of his mechanics. He was
seeking to lay down the laws that would govern the motions of all bodies. The laws
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were general descriptions of the behavior of bodies and these descriptions were to
be given in one or other relative space. His first law, for example, asserted that in
the absence of a net-impressed force a body would remain at rest or in uniform
motion in a straight line, that is, in inertial motion. However a body that was at
rest in one relative space may be moving nonuniformly in another. This is precisely
what we visualized in the case of the parent and the child riding the carousel. To
which relative space should Newton refer his laws? If they held in the relative
space of the observing parent, then they could not hold in the relative space of the
carousel and vice versa. Ideally we would choose a motionless space. Which space
could this be? It 1s not the space of the parent, fixed with respect to the earth. If
we believe Copernicus, the carth rotates on its axis and orbits the sun. Again the
relative space of the sun is not a motionless space. The sun is a star, one of many
in our galaxy, and it orbits the galactic center. As long as we try to base the
mechanics on the relative space of some definite object such as the carth or sun,
then we risk that object moving along with its relative space with respect to some
other object. Again, nothing guarantees that this next body might not itself be in
motion or come to be in motion with respect to yet another body. An infinite re-
gress threatens.

Newton solved his problem by denying that the relative space of any body was
motionless other than by accident. He announced in a Scholium in Book ! of his
Mathematical Principles ([1687] 1962)that of all possible spaces there was one that
was eternally motionless, independently of any body that might be associated with it,
“Absolute space, in its own nature, without relation to anything external, remains
always similar and immovable.” It was to this absolute space, the ultimate arbiter of
motion and rest, that his laws were to be referred.

5.1.2 The Problem of Verification

Newton’s solution raised an immediate problem. How was this absolute space
to be distinguished from the many other relative spaces? The obvious answer was
to turn to the laws of Newton’s mechanics themselves. Absolute space could be
identified as that space in which Newton’s laws held. Consider a region of the
universe remote from massive bodies and a test body 1n it free of impressed forces.
If the body’s motion was referred to absolute space, according to Newton’s first
law 1t would be at rest or moving uniformly in a straight line. Unfortunately this
obvious condition fails to pick out a unique space as absolute space. One relative
space which satisfies the condition is the one in which the test body is at rest. But
there are others. Consider the relative space of an observer moving uniformly in a
straight line with respect to the test body. That observer will see the test body in
uniform motion in a straight line, so that the observer’s relative space will be one
i which Newton’s first law holds. In fact there are infinitely many such spaces
since there are infinitely many such observers possible, each moving at a different
velocity with respect to the original test body. Even allowing for the remaining
laws, it turns out that the condition that absolute space be that space in which
Newton’s laws hold fails to specify a unique space as absolute space. The condition
picks out an infinite set of spaces, the inertial spaces, which are the relative spaces
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of a set of observers moving uniformly with respect to one another in inertial
motion.

We should not think that this failure was an oversight of Newton that could
be remedied by a small addition to his laws. In fact it was crucial to his theory that
his laws work equally well in every inertial space. In formulating this theory, he
had to reconcile two apparently contradictory assertions. The first was the Coper-
nican hypothesis that the earth was not at rest but it moved at great speed, spinning
on its axis and orbiting the sun. The second was the common fact of everyday
experience that we earthbound observers could notice no mechanical effect on the
earth’s surface attributable to this supposed motion. In Newton’s theory, these two
assertions were reconciled by noting that, even though the carth spins and orbits,
the motion of an observer fixed on the earth’s surface is very nearly inertial. (The
situation is not so different from that of an ‘athleterunning around the circumfer-
ence of a very large circular stadium. Because of the large size of the stadium, a
small segment of the track is almost straight, so that for any brief period the athlete
1s running in almost exactly a straight line. This would not be the case were the
athlete to run in a circle of much smaller radius.) Thus at any instant Newton’s
laws hold to very good approximation in the relative space of an earthbound ob-
server and to this approximation the observer will not notice any motion of the
carth. The approximation is a good one. It requires very sensitive measurements to
detect deviations of an earthbound observer from inertial motion. The best known
example is the Foucault pendulum experiment, which can be found operating in
many science museums. Were Newton’s laws to hold in just one inertial space,
then this reconciliation would collapse, for the motion of the earth is still only
approximately inertial. Over time, the earthbound observer slowly migrates from
one inertial space to another as the earth completes its daily rotation and annual
orbit of the sun. If significantly differing laws of motion were to hold in each
mertial space, then these differences would be revealed to an earthbound observer
in the course of the migration and indicate prominently the observer’s motion.

5.1.3 The Elimination of Absolute Rest

The precarious compromise of absolute space prevailed for over two centuries
in spite of the discomfort of many of Newton’s critics. What finally brought the issue
to a head were the developments in the theories of light, electricity and magnetism of
the nineteenth century. That century saw the revival of the theory that a light ray was
a wave and that wave turned out to be the oscillation of electric and magnetic fields.
In particular, through the work of such physicists as Maxwell; Hertz and Lorentz,
light and its fields were pictured as waves in a medium known as the luminiferous
(“light bearing™) ether. This ether was a medium that was assumed to pervade all
space and it provided physics with another preferred state of rest akin to Newton’s
mmmobile absolute space.

By the time Einstein advanced his special theory of relativity in 1905, he had
come to see that the status of this luminiferous ether was very similar to that of
Newton’s absolute space. Newton’s laws entailed that no mechanical experiment
could distinguish inertial motion with respect to absolute space from rest. Corre-
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spondingly, a long series of actual experiments in the nineteenth century had failed
to detect the earth’s motion relative to the ether. The most accurate and best known
of these was the celebrated Michelson-Morely experiment of 1887. Moreover Ein-
stein peered into the innermost heart of the Maxwell-Hertz—Lorentz theory and
concluded that as far as ebservable magnitudes were concerned, the theory entailed
that inertial motion was not distinguishable from rest. His example concerned a
magnet and an electrical conductor such as a wire loop. If the magnet maoves
through the conducting loop, a current will be induced in the conductor. Alter-
nately, if the conductor moves over the magnet, a current will again be induced in
the conductor. It does not matter which of the magnet or conductor is at rest. The
same ebservable thing happens, the induction of an electric current, whenever there
is relative maotion between the mdgnet and the conductor and the magnitude of that
current 1s determined solely by the magnitude of the relative motion. Absolute rest
plays no role as far as observables are concerned.

This example launched Einstein’s famous paper “On the Electrodynamics of
Moving Bodies™ ([1905] 1952b) in which he unveiled his special theory of relativity.
Referring to this example, he continued:

Examples of this sort, together with the unsuccessful attempts to discover any motion of the
earth relatively to the “light medium,” suggest that the phenomena of electrodynamics as
well as of the mechanics possess no properties corresponding to the idea of absolute rest.
They suggest rather that, as has already been shown to the first order of small quantities, the
same laws of electrodynamics and optics will be valid for all frames of reference for which
the equations of mechanics hold good [in all mertial spaces]. We will raise this conjecture
(the purport of which will hereafter be called the “*Principle of Relativity”) to the status of
a postulate . . . The introduction of a “luminiferous ether” will prove to be superfluous
inasmuch as the view here to be developed will not require an “absolutely stationary space”
provided with special properties. . . . {Ibid., 37-38}

With these words, Einstein introduced the principle of relativity to this theory. The
principle asserts, in effect, that the laws of mechanics, electrodynamics and optics are
to hold equally well in all inertial spaces. (Einstein picks out the inertial spaces
indirectly as those “for which the equations of mechanics hold good.”) Newton’s
quest far the ane truly immohile space among them is to be abandoned.

Of course Einstein was not consciously applying the verifiability principle
(Chapter 3) when he wrote these words. The criterion was not formulated until over
twenty years later. However if we are to identify any justifiable, scientific applica-
tions of the criterion then this case surely would be included. The absolute states of
rest to which he referred—those of mechanics and electrodynamics—had defied all
attempts at experimental identification. Moreover the physical theories involved in
each actually predicted that the states of rest admitted no observational consequences
which would enable their identification. This is the canonical circumstance for which
we seek when we apply the verifiability criterion: the postulation of an entity or state
of affairs devoid of abservational cansequences that would admit its verification. We
are thereby enjoined to despise the entity or state as an idle metaphysical conception
and to banish it from our discourse.
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5.2 CONVENTIONALITY OF GEOMETRY
5.2.1 The Rise and Fall of Euclidean Geometry

The geometry developed by the ancient Greeks is one of the great scientific
success stories. Here we see a theory of space which reached its mature form in
antiquity and survived so well in that form that even within the last 100 years its
standard exposition, Euclid’s Elements (1956), was still usable as a practical text. In
the 1910s, an influential school of thought in philosophy of space and time adhered
to an mgenious explanation for this success. Followers of the eighteenth-century
German philosopher Immanuel Kant held that the geometry of Euclid musz hold for
all our experience. They urged that the spatial organization of our experiences did not
come from external reality, the “things in. themselves,”” but were introduced by our
minds in the process of organizing our sensations into something intelligible. This
circumstance can be clarified with a parable. Imagine a man compelled always to
wear rose-colored glasses. Everything he sees will have a rose tint. He can be sure
that every object he will ever encounter will have this tint. However this certainty
does not reflect anything about external reality. It results from an unavoidable com-
ponent of his apparatus of perception. So for the Kantians the truth of Euclidean
geometry was guaranteed because that geometry was necessarily imposed onto ex-
perience by our minds.

An awkward development of the nineteenth century made the necessity of this
imposition less than obvious. It was discovered that it was possible to have consistent
geometries based on postulates disagreeing with those of Euclid. Thus even if ge-
ometry is imposed by our minds onto experience, it ceased to be clear that the
geometry imposed necessarily had to be Euclidean and not one of those “non-
Euclidean™ geometries. The awkwardness became a serious embarrassment when
Einstein completed his general theory of relativity in 1915, That theory entailed that
the actual geometry of our own space was non-Euclidean, although the deviations
observable in our vicinity from "Euclideangeometry were very small.

The new philosophies of science emerging at that time retained the basic idea
that the Kantians applied widely: some parts of a theory are reflections of reality and
some parts are provided by the organizing mind. However, in the new view, that part
contributed by the mind was no longer of fixed or necessary character. It was allowed
to vary and it could be chosen at whim or as a convention. To continue the above
parable, the man still has to wear glasses, but now he can choose freely the color
himself. Thus a new theme entered philosophical analyses of scientific theories, the
division of the conventional components from those reflecting reality. The debate
over the placement of this division survives in part today in debates over realism and
antirealism.

Geometry attracted special attention. It was urged by a number of thinkers such
as the French physicist-mathematician Henri Poincaré and more insistently by the
German philosopher Hans Reichenbach that the choice of a geometry for space is a
matter of convention, for there is no independently true geometry in nature. Thus the
geometer could choose whether he would work with a Euclidean or a non-Euclidean
geometry. Needless to say one would expect such choices to favor Euclidean geom-
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etry wherever practical, since Euclidean geometry is both simple and familiar. But
this choice, so the conventionalist thesis asserts, is not to be confused with a discov-
ery of the true geometry, for there is no such thing.

5.2.2 An Argument for Conventionality

How is the conventionality of geometry to be established? Einstein ([1921]
1954a, 235-236) develops the simplest and still best known version of the argument
for conventionality of Euclidean geometry and attributes the argument to Poincaré.
By itself, the argument runs, a geometry G tells us nothing observable about space.
Rather it tells us something about certain idealized structures such as rigid rods which
donot actually exist. In order to derive observational consequences about real bodies,
we need to resort to physical theories P dealing with such topics as elasticity and
thermal expansion to correct for the deviations in the real bodies’ behavior from the
ideal behavior.

For example, imagine that we wish to check Pythagoras’s theorem for the case
of a large right angle triangle with sides of length 30 and 40 feet enclosing the right
angle. According to the theorem, we expect the hypotenuse of the triangle to be 50
feet and, to check this expectation, we constructthe triangle using steel tapes stretched
between three points. The catch is that we cannot just pin together three tapes of
length 30, 40 and 50 feet. Such steel tapes will always sag a small amount no matter
how tautly they are pulled, so that we will need tapes slightly longer than 30, 40 and
50 feet to span the true distances. We can always reduce the amount of sagging by
pulling harder on the tapes, but this will in turn stretch the tapes by a small amount
since steel is elastic. Thus a very accurate check of Pythagoras’s theorem with steel
tapes can only be carried out if one makes a series of complicated corrections to the
behavior of the steel tapes, allowing for their deviations from the behavior of ideally
rigid measuring rods. These corrections exploit physical theories of the gravitational
and elastic deformation of bodies.

In general terms, observational consequences follow only from G+ P, the con-
Junction of the geometry G with the physical theories P. This means that we are free
to make conventional modifications to the geometry G as long as we modify our other
physical theories P accordingly so that the observational consequences remain un-
changed. Thus the one set of observational consequencescan be accounted for equally
by a large number of conventionally chosen geometries.

5.2.3 Universal Forces, Coordinative Definitions and the
Heated Metal Plate

Itis at first a little hard to visualize how these conventional elements will appear
or, for that matter, just what a non-Euclidean geometry might look like. The follow-
ing illustration will help. It has been used i various forms by Poincaré, Reichenbach
and others and has been modified here for brevity. We imagine a large circular metal
plate 10 feet in diameter in a Euclidean space. Since a theorem for circles in Euclidean
geometry is that

Philosophy of Space and Time 185






Circumference

Diameter -~ T

since fewer than ten rod lengths will be needed to span the diameter of the disk. Our
choice of geometry then amounts to our choice of which are the rigid rods, the
corrected or uncorrected rods. Notice that we cannor select the rigid rod by checking
for the one that remains constant in length under transport. For what remains constant
in length is a matter that can only be known if we already know what is the geometry.
We are 1n a vicious circle. We break 1t, Reichenbach urges in his influential Philos-
ophy of Spuce and Time ([1928] 1957), by realizing that our choice of rigid rod s a
matter of definition. It is a definition that coordinates aspects of physical reality with
idealized components of an abstract theory, so Reichenbach calls the definition a
“coordinative definition.”” Now precisely because our choice of rigid rod is a matter
of definition, there is no factually correct choice, only conventional preferences.
Therefore, since each choice of a rigid rod produces its own geometry, there can be
no correct geometry, only our conventional choices.

We would probably be less likely to choose the uncorrected rod as our standard
of rigidity (or, better said, congruence of intervals) because we know that various
materials expand differently when heated by the same amounts. We might not like to
have a material-dependent definition of congruence, especially since the differential
thermal expansion of different materials would provide a way of mapping out the
temperature changes across the plate, which we might then want to interpret as a
cause of length distortion. In the place of thermal deforming forces, Reichenbach
considers what he calls ‘ ‘universal forces,”” which he defines as deforming all ma-
terials by the same amount and for which no msulating walls are possible. The
situation remains essentially the same as that of the heated metal plate. A universal
force will deform our measuring rods, so that the decision to correct or not to correct
for such a force amounts to a conventional choice of geometry. In particular the usual
assumption that there are no universal forces is a definition leading to a conventional
choice of geometry, just as is the decision not to correct for thermal deformation in
the case of the heated metal plate.

The notion of universal forces allows Reichenbach to mimic Einstein’s figura-
tive ““G+ P’ in a concrete way. If we use some physical rod to measure a distance,
then its observed length is related to its true length by the equation:

True length Correction required by
Observed} _ & + luni L f ib 1
length | according toJ universal force governed by ¢y
geometry G physical theory P

This equation tells us how to accommodate virtually any conventionally chosen
geometry G to a fixed set of observed lengths. We simply choose a universal force
whose corrections will make the above equation hold.

The essential point, stressed by the conventionalists, is that some such choice of
congruence condition must be made as a definition to break a vicious circle. We
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cannot know factually what universal forces prevail until we know the geometry; but
we cannot know the geometry until we know what universal forces prevail.

Reichenbach actually supplies a more precise version of equation (1),
which uses the mathematical apparatus introduced below in Section 5.5.
If y is the metric of a space when universal forces are assumed to be
absent, then we can choose any other metric y° to be the metric of the
space as long as there is an object F satisfying

y=v +F (1"
We treat F as the potentials of a universal force field and choose our

criterion of congruence to be one which corrects for the deformation due
to F. This choice leads us to conclude that the metric of the spaceisy’.

5.2.4 |s Everything Conventional?

Can the arguments that were used to establish the conventionality of geometry
be used to establish the conventionality of other laws or structures?It seems that they
can. To use them to reveal any law as conventionally chosen, all we need is that no
observational consequences follow from the chosen law alone. The derivation of
these consequences must involve another physical law. We can then make conven-
tional changes to the first law as long as we adjust the second in a way that preserves
the observational consequences.

As an example, take Coulomb’s law in electrostatics, which describes how one
electric charge exerts a force on another. In its field form, it asserts that every electric
charge generates an electrostatic field potential ¢ in the space around it and that this
field diminishes in intensity inversely with distance r from the charge, that is, as 1/r.
Now in its field form Coulomb’s law by itself entails no observable consequences. To
recover conclusions in terms of the observable motions of charges, we need the force
law, which describeshow the field ¢ acts on other charges. That law asserts that the
force exerted on a unit test charge is directly proportional to the quantity “grad ¢,”’
which measures the rate at which the field ¢ changes as we move from point to point
in space. But how do we know that the force law is correct? We can only check it
independently if we already know what is the field ¢. But this we do not know until
we have in hand a law, such as Coulomb’s, which tells us the fields produced by
given charges. We are in a familiar vicious circle. We break the vicious circle with
a coordinative definition. We define that the field ¢ is such that the force on a unit test
charge is —grad ¢. Compatibility with observational consequences now ,leads to
Coulomb’s law: The field ¢ diminishes as 1/r as we move away from its source. The
crucial point is that we are free to choose an alternative coordinative definition.

Examples such as these raise the following questions. Is the conventionality of
geometry a position peculiar to geometry and a few other similar fields? Or is it part
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For example, we can conventionally replace Coulomb’s law with an-
other in which ¢ weakens as 1/7° with distance r from its source. To
preserve the original observational consequences we adjust the force
law by defining the force on a unit test charge to be —grad Ve.
Alternatively, we could mimic the introduction of universal forces in
geometry in (1) by defining a second field £ which mediates the in-
teraction of charges as does the electrostatic field ¢. If ¢ is the elec-
trostatic potential in the case of vanishing f, we can conventionally
choose the electrostatic potential to have any other form ¢’ as long as
f 1s such that

p=9 +f
1s satisfied. The observational consequences remain unchanged pro-
vided we adopt a new force law in which the force on a unit test charge
is given by —grad(¢’ + f). Just as in the case of unmversal forces in

geometry; we have no independent access to the field f so that it is a
matter of convention as to whether we set it to zero or not.

of an indiscriminate antirealism in which any law is judged conventional if the law
fails to entail observational consequences without the assistance of other supplemen-
tary laws? The latter view appears to be a version of the Duhem—Quine thesis (see
Chapter 3). This thesis states that it is impossible to test the individual laws of a
theory against experience. We can only test the entire theory. Any attempt to test
mdividual laws will fail since we can always preserve any nominated law from
falsification by modifying the other laws with which it is conjoined when we derive
observational consequences from it.

One conventionalist response is to insist that this general antirealism differs
from the true cases of the conventionality of geometry and other related cases such as
the conventionality of simultaneity to be discussed in the next section. What distin-
guishes these latter cases is that the conventionality depends on a very small vicious
circle that must be broken by a definition since no independent factual test is possible
for the individual components of the circle. The Duhem~Quine thesis does not restrict
the manner in which we might protect a law from falsification. We might have to do
so by a complicated and contrived set of modifications spread throughout the theory.
Some of the components modified may be subject to independent test and thus not
properly susceptible to conventional stipulation.

Griinbaum (1973, Part 1) provides an alternate escape from the construal of the
conventionalist position as a form of indiscriminate antirealism. He bases the con-
ventionalist thesis on a claim peculiar to space. He urges that space has no * “intrinsic™
metrical properties, the properties that determinethe distances between points, so that
these metrical properties must be provided conventionally by us as a definition of
congruence.
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5.3 THE CAUSAL THEORY OF TIME AND THE CONVENTIONALITY
OF SIMULTANEITY IN SPECIAL RELATIVITY

5.3.1 Reichenbach’s Constructive Axiomatization of
Relativity Theory

Spatial geometry is one of a number of aspects of theories of space and time
which, 1t has been urged, can be chosen conventionally. One might well ask what a
theory of space and time might look like if it 1s built in a way that tries to take full
account of these various conventions. One of the early and most significant answers
comes in the form of Reichenbach’s ([1924] 1969) axiomatization of special and
general relativity. Axiomatizations usually seek to condense the physical content of
a theory mto the fewest axioms of the widest possible scope. Since such axioms
mevitably employ the highest-level theoretical structures which mix factual and con-
ventional elements, such axiomatizations do not help the conventionalist sort the
conventional from factual content of the theory. To this last end, Reichenbach de-
vised the “constructive axiomatization.” Its axioms are statements which are as close
as possible to immediate sense experience and thus the basic, factual content of the
theory. Of course unfiltered sense experience would lead to an entirely unmanageable
axiomatization. Thus Reichenbach employed axioms which rely only on lower-level,
prerelativistic theories and which are as close as practical to experiential statements.
The axioms are couched in terms of such primitives as “events,’” “real points,”
“signals,”” ‘‘rods’” and ‘‘clocks.”” The theory is built from axioms such as (from
Reichenbach 1924, 29)

Axiom 1,1. There is no signal chain such that its departure and its return coincide
at [a real point| P.

In the course of developing the full theoretical structure of relativity theory, Reichen-
bach found that he had to supplement his axioms, which contained the theory’s
experiential content, with definitions of the form of the ‘‘coordinate definitions™
discussed above in 5.2.3. These definitions comprise the conventional content of the
theory and present an integrated picture of the interplay of factual and conventional
clements in relativity theory.

5.3.2 The Causal Theory of Time: The Reduction of Time
to Causation

An 1dea implicit in Reichenbach’s axiomatization of relativity was what
Reichenbach ( 1956)later called the “causal theory of time.”” The theory asserts that
the temporal order of events is reducible to causal relations between the events. In
other words, when we make some assertion about the temporal order of two events,
we are really only making assertions about the possibility of one causally affecting the
other. Thus Reichenbach ([1928] 1957) offered as a “topological coordinative def-
mition of time order: (p. 136). “If E is the effectof E,, then E is called later than
E;” (ibid.). More generally, E 1is later than E, if E; can causally affect E,
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Reichenbach assumed that if E, and F, are causally related.we can distinguish the
cause from the effect and developed his so-called “mark theory” as one way to
support this view. Later workers, such as Griinbaum (1973, Chapter 7), have shown
that Reichenbach’s attempts here failed and have reconstructed the causal theory on
the basis of a symmetric relation of causal connectibility which does not distinguish
cause from effect.

The showpiece of the causal theory of time is the possibility of providing an
axiomatization of special relativity solely in terms of causal relations so that in some
sense the entire space and time of special relativity 1s reducible to causal relations.
The earliest such axiomatization is due to Robb (1914, 1921) in the 1910s and a
recent one is due to Winnie (1977).

A major problem for the theory is the extensionto general relativity. As
we see In Section 5.8, causal relations in relativity theory depend only
on the light cone structure. It has been known since the late 1910s from
the work of Kretschmann and Weyl that the specification of the light
cone structure in general relativity does not fully determine the com-
plete metrical structure of the spacetime. It would seem that the remain-
mg underdetermined part of the metrical structure cannot be reduced to
causal relations. One escape for the conventionalists is to represent the
causal structure of spacetime by both light cone and affine structure
together.

5.3.3 Conventionality of Simultaneity

One of the conventional definitions contained in Reichenbach’s axiomatization
of special relativity has become the subject of special attention in philosophy of space
and time. It presumes that there is considerable conventional freedom in our deter-
mination of which events are simultaneous in special relativity with respectto a given
mertial space. (This conventionality should not be confused with the *‘relativity of
simultaneity’” in special relativity, which is discussed in Section 5.8 and which
mvolves a change of simultaneity relations with change of inertial space.)

The basic problem is the following. We selecttwo points in an inertial space of
special relativity. How are we tojudge which events at the first point are simultancous
with which events at the second? This problem is not entirely unfamiliar to us.
Imagine that we are celebrating a birthday in two cities A and B separated by a large
distance and that we would like to start lighting the candles on both cakes at the same
instant: We could synchronize the two évents by means of a long-distance telephone
call between the two parties at the time of the lighting. However we might prefer an
mdirect method. We ensure that identical clocks are located at each party and, prior
to the festivities, we synchronize the clocks by means of the long-distance phone call.
Once synchronized we can use the clocks to determine which later events are simul-
taneous at the two places.

If we pare the foregoing procedure down to its barest elements, we have exactly
the classic procedure Einstein introduced in his 1905 special relativity paper, ‘ ‘Onthe
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Electrodynamics of Moving Bodies,”” for establishing the simultaneity of distant
events. We have identical clocks located at points A and B of an inertial space. We
synchronize them by transmission of a signal. We send a signal from the A-clock
which is reflected instantly at the B-clock and returns to the A-clock (see Figure 5.2).
Were mfimitely fast signals possible, we could synchronize the clocks easily. The
emission, reflection and return of the signal would all happen instantaneously. So if
the emission 1s arranged for when the A-clock reads 12 noon, we would set the
B-clock to 12 noon when the signal arrives. However in special relativity, it is usually
assumed that no signal can travel faster than light. Indeed conversations are not
transmitted infinitely fast by a telephone system, but at the speed of light. Thus, even
it we use the fastest signals available—Ilight signals—there will be a delay at the
A-clock between the emission of the signal at A and its return to A. In setting the
clocks, we have to decide which event at the A-clock between the emission and the
return 1s simultaneous with the event of reflection of the signal at the B-clock. The
situation 1s shown in Figure 5.3, where the various events at each clock have been
spread out in the vertical direction.

' T, emission 15 the time of emission of the signal of the A-clock and T4_;equen the
time of its return, then Einstein chose as a definition that the event exactly half way
between the two was the one that was simultaneous with the signal’s reflection. This
event has the A-clock time coordinate

Ty, = T4 emission T YAT s rerurn = Ta-emission) (2)

What other choices did Einstein have? The causal theory of time rules out any event
at A prior t0 Ty _emission- SUch an event could send a signal travelling slower than light
to arrive at the reflection event at B, so that the event would be judged as before the
reflection. Similarly any event at A after T4, Would be judged as after the re-
flection at B. Since the upper limit to the speed of signals is that of light, no event at
A between Ty rerurn AN T4 emission ©aN 1nteract causally with the reflection at B.
Therefore any of these events could be chosen as simultaneous with the reflection at
B and the clocks synchronized accordingly. The A-clock time of this event is given
by

Te = TA-emission + E(TA-remm - TA-emission) (2’)

where € must be chosen sothat O << € << |. The conventionality of simultaneity resides
in the conventional freedom to set the value of € anywhere in this interval.

Clock at Clock at
Position A Position B

Figure 5.2 Synchronizing clocks by reflection of a signal.
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special relativity, might not some other method? Much of the literature on the subject
of conventionality of simultancity has been devoted to investigating such alternative
methods of synchronizing spatially separated clocks and seeking to reveal definitions
equivalent to the setting of a value for € in them. See for example Salmon (1977) to
get a clear sense that no such convention-free, alternative method 1s likely to be
found. Note that this literature urges the conventionality of the “one-way” velocity
light, that 1s, the velocity between two spatially separated points. The round trip
velocity 1s not taken to be conventional since only one clock at the common source
and destination is needed for its measurement.

We return to the conventionality of simultaneity in Section 5.11 to see one of
the most dramatic reversals in debates in the philosophy of space and time. David
Malament has recently derived a theorem in special relativity which, he urges, shows
that the causal relations of special relativity do not leave the simultaneity relation
underdetermined and thus the relation cannot be set conventionally within the causal
theory of time. He shows that the only nontrivial simultaneity relation definable in
terms of the causal relations of special relativity 1s the familiar standard simultaneity
relation of e = 1/2.

Part Il: Theories and Methods

The purpose of this part is to introduce the methods now used almost exclusively in
recent work in philosophy of space and time. These methods differ from those used
in Part T in several important ways.

1. There is less emphasis on theories of a space and time as a set of law-like
sentences. Rather the theories are approached semantically (see Chapter 3).
Thus the activity of the theorist becomes akin to that of the hobbyist model
builder, who seeks to represent a real sailboat by constructing a model that
captures as many of its properties as possible. The space and time theorist builds
models which are intended to reflect the spatial and temporal properties of
reality. However the theorist’s models are not constructed out of balsa, glue and
string, but out of abstract mathematical entities such as numbers.

2. Theories of space and time —including Newton’s theory of space and time —are
worked into a spacetime formulation. Thus when Newton’s theory is compared
with its relativistic rivals, all the theories are formulated in the same manner,
ensuring that the differences observed are true differences and not accidents of
differing formulations.

3. A major theme of Part I was the separation of the conventional or arbitrary
clements of a theory from the factual or, as we now say, “physically sig-
nificant” elements. A means of effecting automatically this separation is built
mnto the notions of “covariance” and “invariance” to be explained here in
Part I1.
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5.4 A SIMPLE THEORY OF LINEAR TIME

Let us begin by developing a very simple theory of time whose main purpose is to
illustrate the use of models and the notions of covariance and invariance in a setting
far sumpler than the spacetime theories to which we will soon turn. Thebasic temporal
facts of some physically possible world are that it has infinitely many instants,
extending indefinitely into the past and future. The set of instants is homogeneous:
Every instant i1s exactly like every other. The set 1s also assumed to be 1sotropic: The
future and past directions are exactly alike. To capture and make precise these loosely
stated facts, let us develop the following sequence of time theories.

5.4.1 The One Coordinate System Formulation

Let us select as the model for our theory the manifold of “allreal numbers R.
Each real number in R represents a particular instant (see Figure 5.4). This repre-
sentation relation 1s a coordination of the instants of the physically possible world
with the mathematical structure R so that the relation is commonly called a coordi-
nate system. We can infer many of the temporal properties of the physically possible
world from the coordination. For example, the fact that there 1s no greatest real
number represents the fact that there is no last instant, so that the world persists
through indefinitely many instants into the future. Similarly, the denseness of R——the
fact there is always another real number between any two given real numbers—
represents the denseness of time. 1t models the fact that every temporal interval can
be divided so that indivisible time “atoms” are disallowed.
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5.4.2 The Standard Formulation

Unfortunately we cannot construe every property of R as representing a prop-
erty of the physically possible world. For example R is anisotropic; the direction of
increasing real numbers is distinct from that of decreasing real numbers. However,
we posited that the physical instants form an isotropic continuum. Similarly, R is
inhomogeneous; the real number O is distinct, for example, from every other number.
However, we posited that the physical instants form a homogeneous continuum.

A simple device enables us to designate systematically which are the physically
significant propertics of the models. To deny physical significance to the anisotropy
of R, we expand the coordinations of the physically possible world with R allowed
by the theory. We now allow a new coordination reflected about O (see Figure 5.5).
Those instants coordinated with O, 500, 1000, 1500 and so forth in the original
coordinate system are now coordinated with O, — 500, — 1000, —1500 and so forth
in the new system. We call the transformation connecting the two coordinate systems
a reflection about 0. If we allow that both the original and reflected coordinate
systems are equally good representations of the continuum of physical instants, then
the anistropy of R no longer enables us to pick out a preferred direction in the
continuum of physical instants. The direction picked out by increasing real numbers
in one coordinate system is the opposite direction to the one picked out by increasing
real numbers in the reflected coordinate system.

Similarly we deny physical significanceto the inhomogeneity of R by allowing
all the coordinate systems produced from the original by a translation of the original
coordinate system. For example, in the original coordinate system the instant to
which O is assigned is singled out as special when compared to the one to which 500
is assigned. We can remove this special status by allowing a second coordinate
system in which the latter event is now assigned the value O. This new coordinate
system is produced by translating the original by 500. Figuratively this amounts to
**sliding” down by 500 each of the real values coordinated to each instant by the
original coordinate system to form the new coordinate system. See Figure 5.5. We
ensure that the inhomogeneity of R accords no special status to any physical instant
by allowing into the theory all coordinate systems produced by a translation from the
original by any real value. Thus, given any physical instant at all, we can always find
a coordinate system in which that instant is assigned the value O or, for that matter,
any other real value you care to name.

5.4.3 Covariance and Invariance

In sum, the standard formulation of the theory has the original coordinate
system as well as all those produced by the coordinate transformations of reflection
and translation. Let us call these the standard coordinate systems of the theory. The
set of reflections and translations form a group of transformations (see the following
box) which essentially only means that we never leave the set of transformations if we
ivert or combine them. It is called the covariance group of the theory. Alternatively,
we say that the theory is covariant under reflections and translations.

The advantage of the standard formulation over the one coordinate system
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formulation is that it enables us to distinguish the physically significant or factual
properties of the theory’s model from the arbitrary ones. Those properties are exactly
the ones that remain the same m all the coordinate systems of the theory. We can state
this important conclusion in another way. By an invariant of a transformation, we
mean something that remains unchanged under the transformation. Thus we arrive at
a principle of paramount importance to all theories of space and time:

The factual or physically significant quantities of a theory of space and time are the
mvariants of its covariance group.

All other quantities can be chosen arbitrarily or conventionally. For example, the fact
that one coordinate system assigns the real value 27 to some instant is not invariant
and thus not physically significant. A different coordinate system will in general
assign a different value to the instant. Thus the choice of coordinate system is an
arbitrary or conventional stipulation. However if the difference of coordinate values
of two instants is 100, then it will be =100 in all standard coordinate systems. Thus
we conclude that the absolute value of coordinate differences (i.e., the difference as
a positive number) in standard coordinate systems is invariant and therefore physi-
cally significant. These coordinate differences are interpreted as duration or physical
time elapsed, such as might be read by a physical clock.

The strategy of characterizing geometric structure as the invariants of groups
has a venerable history. It dates back to Felix Klein’s “Erlangen program™ of the
1870sin which Klein set out to use the strategy to unify the treatment of the diverse
geometries discovered in the nineteenth century.

If the original coordinate system assigns the real value 7' to some phys-
ical instant i, then a new coordmate system produced by a reflection
about O assigns the new value 7' to i where

T = -T
and a translation by K assigns the new value T” to 7 where
T"=T - K.

Combming we can now represent the covariance group of the standard
formulation as the set of all transformations given by

T# = At — K

where A 1s +1 or ~1 and K has any real value. Formally this set of
transformations is a group since it satisfies the three conditions:

1. The set contains the identity transformation.
2. Every transformation’s mverse is i the set.
3. The composition of two transformations of the set is i the set.
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The scale factor of a standard coordinate system s unity. It is 1/2 for the linearly
stretched systemn described here. In some arbitrary coordinate system, the scale factor
will have a value that varies from instant to instant according to how much the
coordinate system has been stretched or squeezed in the transformation from a stan-
dard coordinate system (see Figure 5.7). There is a simple rule—see equation (3) in
the following box—or computing how the scale factor will change under an arbitrary
coordinate transformation. The existence of such arule means that the scale factor is
a covariant quantity: Once we know 1its value in one coordinate system we invoke its
characteristic transformation law to find its value in any other coordinate system.
Alternately, such quantities are known as geometric objects. See Figure 5.8 for a
pictorial representation of this transformation law.

[n order to comply with the standard notation, let us represent the scale factor
by ““dT.”” The scale factor dT (together with all its transforms) is known as a
““covector’” or “one-form™ and, with regard to its function in the theory, might also
be called a “temporal metric” since it 1s responsible for assigning measurable time
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the manifold whose points are all the pairs of real numbers. Informally we picture the
manifold R? as the set of all pairs of real numbers laid out in a two-dimensional table
that 1s without holes and that extends indefinitely. That this manifold can be coordi-
nated with a physical Euclidean space reflects the fact that the space has all of its
topological properties (see Figure 5.9). The theory is to be generally covariant.
Therefore we allow any coordination between the physical space that is produced by
a smooth transformation from the original. These transformations include all manner
of translations, rotations, reflections, ‘ ‘Stretchings™ and *‘squeezings’’ that preserve
smoothness of the coordinate system and the uniqueness of the labelling of the points.

Our theory cannot yet determine the distances between the points of the space.
This information is provided by the geometric object y which is the metric tensor of
the space. This object is defined at every point of R? and encodes the distances from
that point to the points neighboring it. The metric tensor can be used to determine the
length of curves in a Euclidean space by breaking up the curves into a sequence of
small segments, determining the length of each segment and adding.

In sum, the models of the theory are pairs of the form

<R?, y>
Since the theory 1s generally covariant, infinitely many coordinations will be allowed
between the physical space and the manifold R?. Just as in the case of of the linear
time theory, as we transform from one coordinate system to another, we may have to
modify the scale factors forming y to retain the invariance of thejudgements of length
which 1t hands down. Thus the model set of thetheory will be infimitely large:

The distance Al between a point with coordinates (x,y) and a neigh-
boring pont (x+ Ax, y+ Ay) 1s given by the quadratic form

A2 = v Ax% + ypAxAy + v, AxAy + v,4y° (4)

where the coefficients vy, and 7,; are equal. The matrix of the four
values of these coefficients

['Yll 'le}

Y21 Y22

represents the quantity y in the relevant coordinate system. In certain
special coordinate systems—the Cartesian coordinate systems—the co-
efficients reduce to an especially simple form {y;; = Y5 = 1,y =
Y21 = 0) and (4) becomes

Al%Z = Ax* + AY? 4"
which is a version of Pythagoras’s theorem. A formulation of the theory

of Euclidean space which uses only Cartesian coordinate systems is a
standard formulation of the theory.
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<R2,7>,<R2,'Y’>,<R2,'Y">, L
The quantities y, y’.%" . . . transform into one another under transformation between
different coordinations and jointly represent the one geometric object.

5.6 SYMMETRY PRINCIPLES

Symmetry principles provide a precise way of giving mathematical expression to
important physical properties of space and time. In the theories of linear time and
Euclidean space in Sections 5.4-5.5, symmetry principles express the homogeneity
and isotropy of time and space. In the spacetime theories to follow, symmetry prin-
ciples will also express the relativity principles of the theories.

The idea of symmetry used in analyzing these theories is no different in essence
from the common notion of symmetry applied to everyday objects. One familiar type
of symmetry is the bilateral symmetry exhibited (approximately)by the human form.
To see the symmetry, imagine a transformation that switches the left- and right-hand
sides of the body so that the left hand changes place with the right, the left foot with
the right and so on. This transformation, a reflection about the central plane, is a
symmetry of the human form since it leaves the form unchanged. Another tvpe of
symmetry is rotational symmetry exhibited, for example, by a cylinder. If we rotate
the cylinder any number of degrees about ifs central axis, the rotated shape will
coincide exactly with the unrotated shape (see Figure 5.10).

These examples illustrate the two essential elements of symmetry. First, one has
a transformation, such as a reflection or rotation. Second, the transformation leaves
something unchanged. The transformation is known as a symmetry transformationor,
more briefly, a symimetry of that thing.

These same ideas can be applied to a Euclidean space as well. As a stepping-
stone to this application, consider a pattern, such as we find on wallpaper. These
patterns can exhibit symmetries. The pattern shown in Figure 5.11 exhibits a reflec-

=
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Bilateralsymmetry Rotational symmetry
of the human form of a cylinder

Figure 5.10 Symmetries of common objects.
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Thus if observers examine the geometry of the space as it lies in some direction at any
point and then rotate their viewpoint by any number of degrees, then the geometry
observed in the new direction should be the same. Again this merely says that any
rotation about any point on the space leaves the space unchanged so that all such
rotations are symmetries of the space.

5.7 NEWTONIAN SPACETIME

5.7.1 Transition to a Spacetime Formulation

In this section, let us develop a generally covariant, spacetime formulation of
Newton’s theory of space and time, modified to be compatible with the principle of
relativity. To have such a formulation of the Newtonian theory for work in philosophy
of space and time is very important, even though the new formulation is more
complicated than the traditional one. Much philosophical interest exists in comparing
the Newtonian theory with the theories of special and general relativity. The relativ-
istic theories are presented most clearly in their generally covariant, spacetime
formulations —general relativity necessarily so since no other formulation 1s known.
For our comparisons to be reliable, we must carry them out on theories formulated in
the same way. Otherwise our conclusions may well pertain not to true differences
between the theories but only to differences between their methods of formulation.
Section 5.10 discusses some of the damage that has been done by failing to use
uniform formulations in such theory comparisons.

5.7.2 Formation

The Newtonian spacetime theory is produced by combining the theory of linear
time with that of Euclidean geometry and just a little further structure. We begin with
a Newtoman unmiverse and take “snapshots™ of its contents at all instants. These
snapshots are simply three-dimensional Euclidean spaces (although for the figures we
continue to suppress the third dimension and represent the space as a two-dimensional
Euclidean space). Since cach snapshot is taken at a different time, each of them can
comprise an instant in the linear time theory. We construct the Newtonian four-
dimensional spacetime by taking each of the three-dimensional Euclidean spaces and
“stacking them up” in a linear continuum (see Figure 5.13). If we picture the
spacetime as a deck of cards, then the geometry on each card (instantaneoussnapshot)
1s given by a Euclidean metric y. The temporal structure, as we proceed through the
deck from card to card (instant to instant), is given by the temporal metric d7".

The deck of cards pictured shows us exactly where the theory as described so
far 1s incomplete. Many ways are possible to stack up cards, as shown in Figure 5.13.
Which 1s the right one? If we have points A, B, C . . . atrest in the space, then an
acceptable stacking is one that places the points 4, B, C . . . in each instant exactly
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on top of one another so that points at rest can be pictured as straight lines penetrating
vertically through the stack. Moving points can also be represented as lines that
penetrate obliquely through the stack. (To see this, imagine a point which moves from
A to B to C as time proceeds from O to 1 to 2. It will be represented by a line that
intersects A on the snapshot at time O, B at 1 and C at 2.) In particular, we will
represent points that move uniformly in a given direction—that is, move inertially —as
straight lines penetrating the stack obliquely.

The stack of instants forms a four-dimensionalmanifold, each of whose points
is an event, a point in space at a given time. Each instant is a three-dimensional
surface in that manifold, technically a “hypersurface.” These hypersurfaces are sets
of simultaneous events, so they are called * ‘hypersurfaceof simultaneity.” The lines
representing moving and motionless points are their worldlines. The encode the entire
history of each point’s motion.

5.7.3 Principle of Relativity

The spacetime theory as described so far incorporates absolute rest. In assuming
that there is only one correct way to stack the instantancous snapshots, we have
singled out the points 4, B, C of Figure 5.13 as absolutely at rest. In section 5.1, we
discussed the principle of relativity in terms of interpenctrating absolute and relative
spaces. In the spacetime context, such spaces are represented by frames of reference.
Consider the points of a relative space. Each point will be a worldline penetrating the
stack of instants. The totality of points of the space will thus be represented by a dense
bundle of worldlines penetrating the stack. If the space is an inertial space, then the
corresponding bundle will be a bundle of straight lines as shown in Figure 5.14 and
will be called an inertial frame of reference.

In effect Newton supposed that one of these inertial frames of reference was
special and represented an absolute state of rest. Thus for him the only correct
stacking of the surfaces of simultaneity would be one that aligned the points of this
absolute frame. The principle of relativity requires that all inertial frames are to be
equivalent so that all inertial states of motion are equivalent. Geometrically this
amounts to saying that all directions in spacetime picked out by inertial frames are
equivalent. Thus if we considertwo inertial frames, such as in Figure 5.14, we should
not think of either as having properties different from the other. Unfortunately,
because of the limitations of drawing pictures of inertial frames, one frame is drawn
as penetrating the stack vertically and the other obliquely. This difference is not
reflected in the actual geometric structure of a Newtonian spacetime.

The situation is closely analogous to the isotropy of a Euclidean space. All
directions in such a space are equivalent. However if we draw a picture of these
directions, such as in Figure 5.15, one points up the page in the O-degree direction
and another across it in the 90-degree direction. Since a Euclidean space admits
rotations as a symmetry, we can erase any suggestion that a given direction in the
space is preferred by rotating the space so that the given direction is at the O-degree
position and noting that the space is unchanged.

Philosophy of Space and Time 209



oLz

instantaneoussnapshots
of the Newtonianworld

- ; NE— Incorrect stacking
at differentinstarts does not preserve
\ the alignmentof
. ins 4, B, C, ...
f[me m i Bt ]
-3 .“
e o @
A B C
time
time -
=2 o
A 8 €
A B C a 5
’ 2
spacetime 1 space
0 space
time
S|4t
Correct stacking preserves
the alignment of points 4, B, C, ...
time | | l Points moving
= A B & inertially
"ot 117
- - - - -
Points A, B, C,.. o
are at rest k

=TT

Figure 5.13 The formation of a Newtonian spacetime.









geometric object. Finally we need a structure which will dictate the allowed ways of
stacking instants. That structure is the affine structure V of the spacetime. The affine
structure specifies which of all the curves in the four-dimensional manifold M are the
straight lines. (Notice that neither structure introduced so far—neither the Euclidean
metric of each hypersurface of simultaneity nor the temporal metric—gives us any
way of determining which are the straight lines that penetrate through the hypersur-
faces.) We require that the instants be stacked in such a way that the trajectories of
mertially moving points coincide with the straight lines of the manifold’s affine
structure. This rule will be compatible with the principle of relativity, if we require
that the affine structure V, as well as temporal and spatial metrics dT and k&, admit
mertial transformations as symmetry transformations.

We recover a standard formulation of Newtonian spacetime theory by
adopting standard coordinates T from the linear time theory and X, ¥ and
Z from Euclidean geometry and combine them to form a coordination
between the Newtonian spacetime and R*. The straight lines of the
affine structure V are now just what you would expect: the set of all lines
given by the linear relations between the coordinates including 7 = aX
= bY = cZ, for all real values a, b and ¢. A typical inertial frame 1s
given by the set of all such straight lines parallel to the T axis. An
mertial transformation that transforms this frame to a frame moving at
velocity V in the X direction is given by

T =T, X' = X~VT, V' =17, zZ' =7

5.8 SPECIAL RELATIVITY
5.8.1 Relativity of Simultaneity

Einstein developed his special theory of relativity in 1905 axiomatically as the
consequences of two postulates: the principle of relativity and what we now call the
light postulate. The latter postulate asserts that the velocity of light has the same
constant value (¢ = 300,000 km/sec) in all inertial spaces. On first acquaintance, it
seems that no theory free of logical contradiction could be based on these postulates.
How could the.velocity of light remain the same in all inertial spaces? Surely if we
transform to inertial spaces moving successively faster in the direction of a light ray,
the light ray’s velocity must be diminished as we catch up with it until it 1s finally
brought to a standstill. The light postulate asserts that we can never catch the light
ray. No matter how fast we go in chasing it, it always moves away from us at the same
speed, 300,000 km/sec. What Einstein realized was that this state of affairs was
possible if we were prepared to forgo some commonly assumed properties of space
and time. One of the most important concerned simultaneity. In the Newtonian theory
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it had been assumed that two events either were or were not simultaneous. In special
relativity, things ceased to be so simple.

Consider Einstein’s standard simultaneity relation defined in Section 5.3. As-
sume that clocks A and B of Figures 5.2 and 5.3 have been synchronized by Einstein’s
light signaling procedure so that they are in standard synchrony (at least according to
an observer at rest with respect to them). If we now transform our viewpoint to an
inertial space in which clocks A and B are moving together in the direction from A to
B. we no longer agree that the two clocks are in standard synchrony. In the new
inertial space, the light signal will have to traverse a greater distance on its outward
journey than on its returnjourney. For on the outward journey it must catch a B-clock
that flees from it, whereas on the return journey the A-clock rushes forward to meet
it. If the light postulate is correct and the speed of light has the same constant value
in the new inertial space in both directions, then the outward journey must take more
time than the return journey, so that the event of the reflection of the signal at B cannot
happen midway between its emission and return at A—a least according to an
observer in the new inertial space. That is, the clocks cannot be in standard synchrony
in the new inertial space.

Thus in special relativity judgements of whether two clocks are in standard
synchrony and, therefore, whether two events are simultaneous depend on the choice
of inertial space to which the judgements are referred. This result is known as the
relativity of simultaneity. It should not be confused with the conventionality of si-
multaneity discussed in Section 5.3. The relativity of simultaneity applies even after
a particular definition of simultaneity has been chosen, such as standard € = 1/2
simultaneity above,and arises when we change inertial spaces. The conventionality of
simultaneity arises within a single inertial space.

5.8.2 Minkowski Spacetimes and the Lorentz
Transformation

The four-dimensional spacetime formulation of special relativity was discov-
ered by Hermann Minkowski in 1907. Its spacetimes are called Minkowski space-
times in his honor. A Minkowski spacetime is much like a Newtonian spacetime.
Both are based on four-dimensional manifolds of events. Moving points in.cach are
curves, and points moving inertially are straight lines, so that inertial frames of
reference are still bundles of parallel straight lines. However, the most prominent
landmark of a Newtonian spacetime, its unique divisibility into hypersurfaces of
simultaneity, is not present in a Minkowski spacetime. For the relativity of simul-
taneity entails that each inertial frame defines a different slicing of the spacetime
into hypersurfaces of simultancous events. A hypersurface of simultaneity of a
given inertial frame of reference is said to be orthogonal to the curves of the frame.

The transformation between inertial frames of reference in special relativity is
called a Lorentz transformation. The relativity of simultaneity makes it more com-
plicated than in the Newtonian case shown in Figure 5.14. For in the Lorentz trans-
formation, the slicing of the spacetime into hypersurfaces of simultaneity must be
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5.8.3 Light Cone and Causal Structures of a Minkowski
Spacetime

An infinite,number of curves pass through any given event of a Minkowski
spacetime. The light cone structure of the Minkowski spacetime at that event is
simply the division of the curves at that event into three classes: those that represent

1. points moving at velocity ¢, the velocity of light (“‘light-like’*);
2. points moving at velocity less than ¢ (“‘time-like’’);
3. points moving at velocity greater than ¢ (‘‘space-like’’).

The name “light cone™ arises from the fact that the light-like curves form a cone
through the event as shown in Figure 5.17. The time-like curves all fall within the
cone and the space-like curves outside the cone. The light cone structure of the entire
Minkowski spacetime is the specification az every event of the above three-way
division.

Time-like curvescan be the worldlines of massive particles. Light-like curves can
be worldlines of light signals. The usual assumption in special relativity is that no
causal process such as a particle or signal can travel faster than light so that space-like
curves cannot be the worldlines of any particle or signal. Under this assumption, the
light cone structure takes on special significance for the philosophy of space and time,
forit is equivalentto the causal structureof the spacetime. More precisely, if we know
the light cone structure of the spacetime then we can construct an exhaustive catalog
of which pairs of events can causally interact with one another in the spacetime. We
do this by finding all pairs of events which could be connected by the trajectory of a
particle or signal, that is, by a curve that is everywhere time-like or light-like (see
Figure 5.18). The resulting catalogis the causal structureof the spacetime. Conversely,
if we know this catalog, then we can reconstruct the light cone structure.

5.8.4 The Minkowski Metric

As a spacetime theory, the Newtonian theory is rather complicated. It requires
three distinct structures to be specified: d7, h and V. As a spacetime theory, special
relativity is far simpler. The functions of the three Newtonian structures is per-
formed by just one, the Minkowski metric m. Thus models of special relativity are
of the form

<M,n>

where M is a four-dimensional manifold and 7 a Minkowski metric. The propertics
of m are very similar to those of a Euclidean metric y (see the following box) since
7 also assigns lengths—called * ‘intervals”—o curves. The metric 1 picks out which
are the time-like, space-like and light-like curves by the intervals it assigns to them.
It assigns a zero interval to light-like curves. It assigns a positive interval to time-like
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curves. This interval is the time elapsed as measured by a clock moving with the
particle represented by the curve. The Minkowski metric assigns an imaginary inter-
val to space-likecurves. The absolute value of this interval is the spatial length of the
curve should the curve lie fully in a hypersurface of simultaneity.

5.9 GENERAL RELATIVITY

5.9.1 Physical Foundations

General relativity is Einstein’s relativistic gravitation theory and is a modifica-
tion of special relativity that incorporates gravitation. It was completed by him in
1915 and is probably his greatest contribution to physics. The novelty of the theory
is the way that gravitation is treated. Prior to general relativity, it was customary to
think of a gravitational ficld as a distinct entity that could be added to a spacetime.
Thus gravitation-free spaces were possible. In general relativity, the gravitational
field is combined with the same structure that determines lengths and times so that a
gravitation-free space is no longer possible.

The chain of ideas that led Einstein to general relativity began in 1907 when he
was struck by a remarkable property of gravitation known since the time of Galileo.
When a gravitational field deflects the motion of a body, the amount of deflection is
independent of the nature of the body and, in particular, the mass of the body. This
property is a very special property of gravitational fields and is not shared, for
example, by electric fields. If the motion of a charged body is deflected by an electric
field, then the greater the charge on the body, the larger the deflection. It was as
though the trajectories of bodies falling in a gravitational field were already laid out
in spacetime and any falling body would have to follow them, whatever its mass.
Now a Minkowski spacetime just happens to have trajectories with exactly this
property. These are the trajectories of inertially moving points, the straight time-like
worldlines defined by the Minkowski metric. Any body moving inertially in a
Minkowski spacetime follows these trajectories in a way that is independent of the
mass of the body. Since these trajectories have exactly the unique, characteristic
property of gravitation, Einstein was drawn to conjecture that a Minkowski spacetime
was actually already a special case of a spacetime with a gravitational field and that
spacetimes with more general gravitational fields could be constructed not by adding
further structures to the spacetime but by modifying what was already there.

5.9.2 Principle of Equivalence

This conjecture was formulated and justified in a vivid manner in a thought
experiment. Einstein imagined a physicist enclosed in a box in the supposedly
gravitation-free space of special relativity. He then imagined that the box was accel-
erated uniformly in some direction. All free objects in the box would fall to one side
with the same acceleration. The observing physicist, Einstein argued, could explain
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this phenomenon in two equally good ways. He could say that the box was acceler-
ated. Alternately, because of the special property of gravity, he could sav that the box
was unaccelerated but that a homogeneous gravitational field was acting on the box.
Einstein’s “principle of equivalence” asserts that the two states of affairs—uniform
acceleration in a gravitation-free space and a homogeneous gravitational field—are
fully equivalent or, in our words, exactly the same state of affairs. Reduced to its
briefest form, the thought experiment shows us that supposedly gravitation-free spe-
cial relativity already incorporates gravitation —to see that gravitation is already there,
transform to a uniformly accelerated space to make a homogeneous gravitation field
manifest.

5.9.3 Generalizing Special Relativity

What characterizes the gravitational fields of special relativity is the following
property: If two test bodies have initial velocities identical in magnitude and direc-
tion, they will continue to move so that the distance between them remains the same
(see Figure 5.19), We are interested in more general gravitational fields such as those
produced by the earth. In these more general cases, the distance between the above
two bodies would not remain constant but would converge or diverge as the bodies
fell. To construct general relativity, Einstein replaced the Minkowski metric n of
special relativity with a more general metric g which would allow this convergence
or divergence. In the new theory, unrestrained particles still follow the straight
time-like curves of the spacetime, just as they did in a Minkowski spacetime. How-
ever the ““straight” lines defined by the new more general metric g no longer behave
in the way that we expect straight lines to behave. For example, two *‘straight’” lines
that are initially parallel need not remain at a constant distance from one another as

Distance
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trajectories
- decroases

Distance
> between
trajectorigs
is constant

Initially parallelinertial Initially parallel inertial
trajectories in a Minkowski trajectories in a spacetime
spacetime of special relativity ot general relativity

Figure 5.19 Inertial trajectories in special and general relativity.
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tivity are synonymous depends most commonly on the simple mistake of incautiously
comparing two theories formulated in different manners: general relativity in its
generally covariant formulation with special relativity in a standard (i.e., nongener-
ally covariant) formulation. In its standard formulation, the Lorentz group is both the
theory's covariance group and its symmetry group, the group of its symmetry trans-
formations. As we have seen, the principle of relativity is associated with the sym-
metry group so that a theory that extends the principle would need to expand that
symmetry group. In the transition to general relativity, we do expand the covariance
of the theory from Lorentz covariance to general covariance, but since the geometric
structureof general relativity in general admits no nontrivial symmetries, we actually
reduce the symmetries admitted by the theory. Those who have failed to keep the
symmetry and covariance groups of special relativity conceptually distinct easily fail
to see the significance of this reduction and fall into the trap of thinking that they have
also somehow automatically extended the principle of relativity. Had the two theories
been compared from the start with both in their generally covariant formulations, this
problem might never have arisen.

5.10.2 Conventionality of Simultaneity

Winnie ( 1970) showed that we can generalize a standard coordinate system of
special relativity to anew coordinate system with time coordinater, in such a way that
events with equal #, are judged simultancous by some e-criterion. It is sometimes
thought that this fact by itself 1s sufficientto vindicate the conventionalist claim. This:
1s obviously false since all that has been shown is that we can extend the covariance
of the theory so that it can use z, coordinate systems. We have seen that it 1s possible
to extend the covariance of the theory even further to general covariance, which
allows arbitrary coordinate systems. Indeed we have seen that we can give generally
covariant formulations of every spacetime theory considered so far. If we can auto-
matically read the ¢ coordinate of any of these formulations as giving a criterion of
simultaneity, then we could vindicate the strangest of simultaneity relations, includ-
ing nonstandard simultaneity relations even in Newtonian spacetimes What is needed
1s some independent means of arguing that the ¢ coordinate of a given formulation
does represent a possible s1multanelty relation, such as the causal theory of time seeks
to provide for ¢,.

5.11 MALAMENT'S RESULT

One of the most dramatic turns in the debate over the conventionality of simultaneity
was provided by Malament (1977a). Contrary to most expectations, he was able to
prove that the central claim about simultaneity of the causal theorists of time was
false. He showed that the standard simultaneity relation was the only nontrivial
simultaneity relationdefinable in terms of the causal structure of a Minkowski space-
time of special relativity.
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Let us give a more precise version of Malament’s result and outline the inge-
nious method he used to establish it. To begin, recall that we saw in Section 5.8 that
the causal structure of a Minkowski spacetime is equivalentto its light cone structure.
Recall also that the standard simultaneity relation is inertial frame dependent so that
unless we specify an inertial frame in some way we should expect no interesting
results at all. Malament picks out an inertial frame by specifying one of its worldlines
O as the worldline of the Observer for whom the simultaneity relation is to be defined.
Thus the basic question becomes:

What simultaneity relations are definable in terms of the light cone structure of a Minkowski
spacetime and the worldline O of an inertially moving observer?

Malament first shows that

The relation of standard simultaneity is definable in terms of O and the light cone
structure.

The proof involves the construction shown in Figure 5.20. We pick any event e on O
and seek the hypersurface of events s simultaneous to e in the inertial frame of O
according to the standard criterion. We have found that hypersurface if the following
condition is satisfied. Let @ be any event on O prior to e. The set of all possible light
signals emitted from ¢ must intersect s and, when they are reflected back to O upon
intersection, they must all arrive at O at the same event &#. The hypersurface s is, of
course, orthogonal to O.
Malament’s central result is that

The relation of standard simultaneity is the only binary relation definable in terms
of the light cone structure and the worldline O provided

(1) the relation cannot be trivial insofar as it relates every event to every other
event, or fails to relate events on O to events not on O;

(ii) the relation is an equivalence relation.

Condition (ii) is required if the relation is to partition the events of the manifold into
disjoint sets of mutually simultaneous events such as, for example, the hypersurfaces
of simultaneity of the standard case.

The proof of the result depends on the fact that the worldline O and the light
cone structure admit certain symmetries. For example, in the rest frame of O these
structures single out no preferred spatial direction and thus remain invariant under
spatial rotation about O. Thus any relation defined exclusively in terms of O and the
light cone structure will be unable to pick out a preferred direction and, therefore,
must admit the same rotational symmetry. So if p and g are related by the simultaneity
relation and £ is any rotation about O, then the rotated events f{ip) and flg) must also
be simultaneous (see Figure 5.21). We can now repeat this argument for all the
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5.12 REALISMABOUT SPACETIME STRUCTURES

5.12.1 Spacetime Substantivalism and the “Hole”
Argument

I[saac Newton is usually singled out as the canonical realist in the context of
theories of space and time and most especially so for his treatment of the absoluteness
of his absolute space and absolute time. Their absoluteness arises in a number of
senses which have been dissected admirably in Earman (1989), The sense we are
concerned with here is that of independence. Absolute space, as we saw in Section
5.1, and absolute time are asserted to have existences entirely independent of the
things they contain. This doctrine is the “substance” view or the ‘‘substantivalist’’
view. [t owes its somewhat unfortunate name to the view that substance is that which
can exist independently. A better name, with fewer distracting connotations, might
have been simply the “independence” view. Clearly, the substantivalist position can
be formulated analogously for spacetime theorists.

The view is an extreme form of realism concerning spacetime. It arises fairly
naturally for realists who seck to construe theories of spacetime as literally as pos-
sible. Such a construal automatically sees the divisions between the different struc-
tures of a theory as reflecting natural divisions between the actual structures of the
physical world. The substantivalist position gives expression to the reality of one of
the most important divisions in physical theories, that between spacetime and the
matter it contains. The position has become increasingly attractive with the revival of
realism in philosophy of science and the problems facing the nonrealist programs of
conventionalism and relationalism in spacetime theories.

The “‘hole” argument (Earman and Norton 1987) is based on ideas advanced by
Einstein in 1914, 1915 and 1916 and seeks to establish that acceptance of spacetime
substantivalism in a very broad class of spacetime theories forces acceptance of an
odious form of indeterminism. (See Chapter 6 for a discussion of determinism.) In
informal terms the argument establishes that the substantivalist 1s forced to insist that
there are differences between certain physically possible worlds, even though not just
observation but the laws of the theories themselves cannot pick between them.

5.12.2 Presuppositions of the Argument

To make the argument more precise, we must settle several questions left
vague. The term “‘spacetime” is ambiguous insofar as it 1s unclear as to what specific
entity it refers. Let us assume that ‘ ‘spacetime” means the manifold M of our models
so that the substantivalist attributes the substantival properties to M or to what M
represents in the physically possible worlds. (Other choices are possible here, and in
many such cases the hole argument can still be made to apply, as shown in Norton
1989.) The “very broad class of spacetime theories™ mentioned is what we call
“local spacetime theories.”” These are generally covariant, spacetime theories of the
type considered in this chapter, including versions of Newtonian spacetime theory,
special and general relativity, The most important instance of a theory 1o which the
argument applies is general relativity, our current best spacetime theory, which is
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grounds for rejection of the substantivalist position. The hole argument, however,
leads the substantivalist to an even worse result.

5.12.3 The Argument

To arrive at the odious form of indeterminism promised, we select any neigh-
borhood of the manifold M. We call it the ‘ “hole” for historical reasons associated
with Einstein’s first use of an early form of the argument. We select any transfor-
mation £ on M which is the identity outside the hole but comes smoothly to differ
from it inside the hole (see Figure 5.23). Then g and g' = h(g) will be the same
everywhere outside the hole but will come smoothly to differ within the hole. 1t now
follows that even with a full specification of the spacetime everywhere outside the
hole, the theory will be unable to tell us how the spacetime will develop into the hole.
For if the model of the spacetime assigns the metric g to the manifold outside the hole,
then the theory will allow the metric to develop as either g or g’ into the hole and
cannot determine which is the correct development.

If we recall that the metric determines the inertial trajectories of the spacetime,
then we can seejust how disastrous is this result. Given the fullest specification of the
spacctime outside the hole, the theory will be unable to determinethe trajectory along
which a particle in free fall will traverse the hole, even though its trajectory before and
after the hole is known exactly. As is explained m Chapter 6, this is an extremely
awkward form of indeterminism, for the hole might be both of very small spatial size
and temporal duration. Even given a full specification of the fields in its future, past
and everywhere else in space, the theory 1s still unable to specify what happens inside
the hole.

The substantivalist is driven to this indeterminism by the need to deny Leibniz
equivalence. If the substantivalism were to be given up, Leibniz equivalencecould be
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accepted. Then both the original model and its diffeomorphic copy could be said to
represent the same physically possible world, and the indeterminate nature of the
development of the fields into the hole would be a mathematical curiosity of no
physical significance. Otherwise the substantivalist must adhere to the physical dis-
tinctness of two states of affairs whose distinctness 1s opaque to both observation and
the laws of the theory in question.

DISCUSSION QUESTIONS

1. Compare the application of the verifiability criterion as described in Section 5.1 in the context
of the principle of relativity with some of its other applications.

2. How are we to approach two theories of space and/or time which have identical observational
consequences? Consider whether we are free to choose conventionally between them. (You may
find it helpful to consider the examples of Newton’s theory of space and time with and without
absolute rest and Euclidean geometry with vanishing and nonvanishing universal forces.)

3. Outline some of the virtues and vices of the reduction of temporal or spatiotemporalstructure to
causal structure offered by the causal theory of time.

4. Adjudicate in the debate between a conventionalist and a realist over the geometry of space or
the simultaneity relation in special relativity.

5. Compare the axiomatic way of formulating theories of space and time (such as used by Euclid
and many others) with the model theoretic or “semantic” method used in this chapter.

6. Einstein often acknowledged that his discovery of the theories of relativity owed a debt to the
reading of various philosophers, notably Hume and Mach. Read the introductory sections of
Einstein([1905] 1952b) and Einstein ([1916] 1952a) (they are not at all hard to follow!) and try
to identify those parts of his development dependent on overt philosophical considerations and,
if you can, pin down their source.
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Six

DETERMINISM
IN THE PHYSICAL
SCIENCES

John Earman

In this chapter we examine the doctrine of determinism, both because it is of intrinsic
interest and because it serves as a vehicle for introducing a number of foundations
problems in classical, relativistic, and quantum physics. Those whose primary inter-
est lies in the determinism—free will problem may wish to read Sections 6.1-6.5 and
then skip to Section 6.17 where free will is discussed.

6.1 A THOUGHT EXPERIMENT

In order to get a sense of what the doctrine of determinism involves and of why it has
exerted such a strong appeal, you are invited to perform the following thought
experiment. Describe the state s, of the room in which you are now reading this
book—give the location of the furniture, the lighting conditions, the temperature
distribution, and so forth. Wait twenty-four hours and record your description of the
new state s,. Now imagine that sometime in the future you find that your description
of the state s; matches the previous description for s,. Again wait twenty-four hours
and record your description of the new state s,. Would you then expect your descrip-
tions of s, and s, to match?

Not necessarily. But normally one would expect that any difference between the
descriptions of s, and s, can be traced to one of three sources. First, your descriptions
of 5, and s may not be fine grained enough. For example, the macroscopic temperature
distribution may be the same for the two days in question, but the velocities of some
of the air molecules may be different and these differences may eventuate in noticeable
macroscopic differences on the following days. Since we are conducting a thought
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experiment, we are free to imagine that the descriptions of the states are so detailed that
the sameness of the descriptions guarantees the sameness of the physical states. Sec-
ond, the system contains a ‘‘free agent’’—you—and you might exercise your free will
and decide to get up and walk around the room in the second instance while in the first
instance you remained slumped in your chair. This supposition already begs a central
question of the determinism—free will problem, for one major philosophical tradition
holds that determinism is incompatible with free will. We will return to this problem
in Section 6.17. Since we are now engaged in an attempt to gain an understanding of
what determinism means, it is fair to ignore the free will problem and to imagine that
the system contains only inanimate objects. Third, the difference between s, and s,
might be traced to the fact that the system is subject to external influences. Locking the
doors, shuttering the windows, and insulating the walls serve to screen out some but
not all of these influences. No matter how the room is constructed, its envelope will
not shield against gravitational forces, and according to Newton’s theory of gravity,
every massive bit of matter in the universe exerts a gravitational tug on every other bit.
The only way to meet this difficulty is to exercise the license of thought experiments
and to imagine either that there are no outside influences or that the room has been
expanded until it has swallowed up all those influences.

With these three loopholes plugged, the normal expectation is that the sameness
of 5, and s; will be matched by the sameness of s, and s,. Such an expectation has
been elevated to the status of a metaphysical principle, as in G. W. Leibniz’s Prin-
ciple of Sufficient Reason, according to which nothing happens without a sufficient
reason why it should be so rather than otherwise. Although Leibniz sometimes em-
phasized the theological interpretation of Sufficient Reason, according to which God’s
choice of which possible world to actualize is motivated by the desire to bring into
being the best of all worlds, he also intended it to have a causal meaning, as when he
formulated it as the principle that ‘‘there is nothing without a reason, or no effect
without a cause.”’ (Leibniz 1970, 268) With the three loopholes closed, a difference
between s, and s, without a difference between s, and s; would be an effect without
a cause. Consequently, Immanuel Kant would have seen a violation of his Law of
Universal Causation according to which everything that happens presupposes some-
thing from which it follows according to a rule.

It might be objected that we have neglected a potential fourth loophole in that
the differences in the times at which s, and s; occur can make a difference for the
subsequent developments of the system. Leibniz would have had no sympathy for this
point of view. For Leibniz, time itself cannot be a cause because on his relational
conception of time, time is nothing over and above the order of successive states of
the world. A twentieth-century version of these sentiments is to be found in Herbert
Feigl’s remark that

‘‘Same causes, same effects’” makes sense only if there is such a neutral medium as space-
time which thus is no more than a principium individuationis. Differences in effects must
always be accounted for in terms of differences in the conditions, not in terms of purely
spatio-temporal location. (1953, 412)

This 1s an example of how determinism is linked to issues in the philosophy of space
and time; we will encounter other examples below.
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Setting aside metaphysics for methodology, it has been held that fruitful sci-
entific inquiry is promoted by the assumption that determinism is true. Thus, Max
Planck wrote that the law of causality is a ‘‘heuristic principle, a signpost and in my
opinion the most valuable signpost we possess, to guide us through the motley
disorder of events and to indicate the direction in which scientific inquiry must
proceed in order to attain fruitful results.”” (1932, p. 26; translation mine) One can
easily appreciate the scientific horse sense of Planck’s remark. To begin inquiry under
the opposite presupposition—that differences in subsequent development of system
need not be due to differences in the earlier history—seems to amount to a counsel of
scientific despair, an admission that the world is a motley confusion of events rather
than a collection of orderly and predictable processes. The scientific discernment of
the order—the ‘‘fruitful results’” of which Planck spoke—consists in large part in the
discovery of the laws of nature that govern the temporal evolution of the systems
under study. If the laws so far discovered fail to guarantee a deterministic evolution,
then, Planck is saying, that is a sign that more laws remain to be discovered.

The problem of laws of nature was raised in Chapter 1. Nothing said in the
present chapter will help to resolve the problem except in the sense that an interesting
concept of determinism militates in favor of two features of the solution. First,
determinism as understood here presupposes that there is a distinction between laws
and initial conditions, and to the extent that the correct account of laws implies that
this distinction is vague, then so too is the doctrine of determinism. Second, if there
is no distinction between lawful and accidental generalizations, and any true empit-
ical generalization counts as a natural law, then the claim that the world is determin-
istic degenerates to a near triviality.

Supposing that we knew what the laws of nature are, it remains to say in more
precise terms what it means for these laws to be or fail to be deterministic. This task
will be tackled in the following section in terms of a concrete example.

6.2 NEWTONIAN GRAVITATIONAL THEORY

Imagine a world whose physical contents consist entirely of material particles ideal-
ized as point masses. The mass of each particle is a positive number which, by the
laws of nature, remains constant through time. Newton’s second law of motion
asserts that the product of the mass of the particle by its acceleration at any moment
is equal to the net impressed force acting on the particle at that moment. (Velocity 1s
defined as rate of change of position, and acceleration is defined as rate of change of
velocity.) This assertion is empty until supplemented by another law specifying the
nature of the forces. For the case of gravitational interactions, Newton’s law of grav-
itation states that the net force acting on particle i is the sum of the forces exerted by
all the other particles and that the gravitational force exerted upon particle i by particle
J is an attractive force acting along the line joining i and j and is proportional to the
product of their masses m; and m; and inversely proportional to the square of the
distance between them. This exhausts the physics of Newtonian gravitational theory
for point masses. The demonstration of the deterministic character of the theory
belongs to pure mathematics. By the state at time ¢ of a (finite) system of particles let
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us understand the specification of the position and momentum ( = mass X velocity)
of each particle at ¢t. A history of the system for some interval of time is a specification
of the state at each instant in the interval. A history is said to be physically possible
relative to some set of laws just in case it satisfies those laws. In the case in point, we
check for physical possibility by computing the acceleration a(t) of each particle i at
each instant in the interval and then verify that the product m,a(t) equals the New-
tonian gravitational force on i at t. The system is said to be Laplacian deterministic
(for some time interval) just in case for any pair of physically possible histories (for
that interval) sameness of state at any instant in the interval implies sameness at any
earlier or later time in the interval. The mathematical theory of ordinary differential
equations guarantees, first, a richness of physically possible histories: for any given
state (with noncoincident particle positions), there exists a physically possible New-
tonian history which extends the state into the past and future. And, second, it
guarantees the uniqueness of the extension: For any given state, there exists only one
extension. (Actually, these theorems hold only locally in time and guarantee exis-
tence and uniqueness only for a finite interval. The implications of this point will be
discussed below in Section 6.7.)

One can naturally wonder why ‘‘state’” was defined in the above way. The
answer, of course, is that this definition lends itself to the deterministic character of
Newtonian mechanics. This self-serving answer does not beg the question of deter-
minism since we can raise the question with respect to different sets of possible state
variables. The only caution is that it is essential that the definition of state be confined
to genuinely instantaneous values, for obviously if bogus variables that code up
information about the past and future were allowed, determinism would trivialize.

The label ‘‘Laplacian’” was attached to the above definition both to credit
Pierre-Simon Laplace, an early champion of this form of determinism (see Section
6.5 below), and also to indicate that there are other varieties of determinism. For
example, the laws might be such that while the instantaneous state of a system does
not suffice to determine the history, a finite segment may. For present purposes, let
us concentrate on the Laplacian brand of determinism, but the reader is invited to
speculate on other forms. Note also that the above definition requires a unique
prolongation into both the past and the future. To be more detailed and pedantic, we
could distinguish between future and past Laplacian determinism, which require that
sameness of state at any time implies sameness at any later (respectively) earlier time.
The distinction is purely pedantic if the laws of nature display a symmetry property
called time reversal invariance, for then future and past Laplacian determinism stand
or fall together. As far as is presently known, the only fundamental laws of physics
that fail to have this symmetry property have to do with exotic weak interactions of
elementary particles.

6.3 DETERMINISM, MATERIALISM, AND MECHANISM

As illustrated by Newtonian gravitational theory, the modern doctrine of determinism
gained currency from examples of systems that are both materialistic—in the sense
that they are composed of chunks of matter—and mechanistic—in the sense that the

Determinism in the Physical Sciences 235



laws of their operation are force laws forming part of classical mechanics. But
deterministic systems need not be materialistic, and while the epithet ‘‘mechanistic’’
may be applicable purely in virtue of their being deterministic, the systems need not
be mechanistic in any deeper sense.

As an example, consider the source-free electromagnetic field. On the modern
view of fields, there is no material ‘‘stuff’’ here, only the pure electric E and magnetic
B fields construed as entities in their own right and not as states of an underlying
medium. The immaterial nature of these fields is emphasized by the fact that unlike
material particles, different E (or B) fields do not exclude one another but can be
freely superposed. The field laws of electromagnetism, as codified by James Clerk
Maxwell, state that

or
VxB:—a—E' VB =0
or

In contrast to the case of Newtonian mechanics, the initial data for the electromag-
netic field are more circumscribed. Consistent with Newton’s laws of motion the
velocity or rate of change of position of a particle can be freely specified indepen-
dently of position; but the time rates of change of E and B are not free to choose since
the left-hand pair of Maxwell equations fixes these quantities once E and B have been
specified. Further, while Newton’s laws do not constrain the possible initial positions
and velocities of the particles, the right-hand pair of Maxwell’s equations requires
that the initially specified E and B fields be divergenceless. Nevertheless, an analo-
gous form of determinism holds for the electromagnetic field. Let E and B be spec-
ified over all space at some initial instant, subject only to the constraints that V-E =
V:B = 0 at that instant. Then there exists a unique solution to Maxwell’s equations
that satisfies the given imtial data, and for any earlier or later time the constraints are
also satisfied. Again this result is purely mathematical and does not depend upon the
physical interpretation of E and B. They might just as well be the intensities of
activities of an immaterialistic Cartesian mentaj substance. In this way the notion of
determinism is just as applicable to the nonmaterial as the material, to the mental as
well as the physical.

6.4 DETERMINISM, CHANCE, AND CHAOS

The theory of probability arose in part as an attempt to quantify the risks associated
with games of chance. It is therefore a testimony to the power of the vision of
determinism that one of the most eloquent expressions of the vision occurs in La-
place’s pioneering work on probability, A Philosophical Essay of Probabilities
([1814] 1951): :

All events, even those which on account of their insignificance do not seem to follow the
great laws of nature, are a result of it just as necessarily as the revolutions of the sun. In
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ignorance of the ties which unite such events to the entire system of the universe, they have
been made to depend upon final causes or upon hazard, according as they occur and are
repeated with regularity, or appear without regard to order; but these imaginary causes have
gradually receded with the widening bounds of knowledge and disappear entirely before
sound philosophy, which sees in them only the expression of our ignorance of the true causes.

- (p-3)

Even assuming that Laplace is correct and that the seeming hazards connected
with games of chance-—dice, roulette, and the like—are due to our ignorance of the
true causes, there remains the task of characterizing the origins of the intuitive
difference between systems that behave in an orderly fashion and those which seem
to behave in a haphazard way.

A strong clue is found in J. C. Maxwell’s insistence on a distinction between
two maxims: (1) same causes always produce same effects, and (2) like causes
produce like effects. The first maxim is an expression of determinism. The second
implies the first but it implies something more: that, as Maxwell puts it, ‘‘small
variations in initial circumstances produce only small variations in the final state of
the system.”” He continues:

In a great many physical phenomena this condition [i.e., (2)] is satisfied; but there are other
cases in which a small initial variation may produce a very great change in the final state of
the system, as when the displacement of the ‘‘points’’ causes a railway train to run into
another instead of keeping its proper course. (1952, 13-14)

The suggestion then is that seemingly chancy systems are ones which obey
maxim (1) but not (2); that is, they are deterministic but their temporal evolution is
unstable in that they display sensitive dependence on the initial conditions. The point
can be illustrated with the help of the following crude example of two ways of
dropping cannon balls (see Figure 6.1). In case (a) a ball is released from a certain
height and is allowed to fall to the ground under the action of the Earth’s gravity (air
friction neglected). Suppose that we wish to know with some finite accuracy € > 0
the final resting place of the ball in the mud. Then for any initial state x (position),
v (velocity) of the (center of mass of the) ball, there will be a finite Ax, and a finite
Av such that any other initial state within the range x + Axand v + Av will eventuate
in a final position which is the same to within € as the final resting place that
eventuated from x, v. In that sense, like initial conditions lead to like final positions.
In case (b) a number of fixed scattering centers are added to simulate a pinball game.
In this case for some choices of initial state x, v and desired accuracy € there will be
no finite latitude Ax and Av, no matter how small, such that all initial states within
that latitude of the original will result in final positions differing no more than € from
one another. In that sense, like causes do not produce like effects, and any ignorance
of the exact initial state will make the final result seem e-chancy.

In recent years the study of deterministic but ‘‘chaotic’’ systems has been
fashionable, and as with every fashion there is an accompanying media hype, with
some of the more popular presentations suggesting that the study of chaos has led to
a revolution in scientific thinking. (A good but somewhat breathless popular presen-
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Phase Space A

Figure 6.2 Deterministic evolution in phase space.

tation is Gleick 1987.) In actuality, the basic ideas are not new, many having been
around for a century or more. What is new 1is the progress in proving hard mathe-
matical results about chaotic systems and, perhaps just as significant, the availability
of computers powerful enough to simulate models of very complex systems. The
developments in this field are too technical to review here, but some of the ideas can
be introduced by means of a mathematical device called the phase space A of a
system. This is an imaginary space constructed in such a way that the points of the
space correspond one-to-one to the allowed states of the system of interest. In the case
of a system consisting of N Newtonian point particles, A would need to have 6N
dimensions, 3N to code the spatial positions and 3N to code the velocities. A history
of the system is given by a curve y(¢) in A parameterized by time. Determinism
means that for each yEA exactly one such history through v will satisfy the laws
governing the system.

This apparatus can be used to model the behavior of two kinds of systems,
conservative and dissipative. To explain the difference, consider some nice region R,
of A (see Figure 6.2). Think of each point in R, as a possible initial state of the system
at ¢,. Then under the action of determinism, R, will be transformed at the later time
t, into some determinate region, say, R,. In general, the shape of R, will be different
from that of R,. But for conservative systems, the volume of R, will be the same as
that of R, whereas for dissipative systems there is generally a loss of volume.'

In familiar examples of dissipative systems, the dissipative mechanism—for
example, the friction between a tea cup and a marble rolling around in the cup—
forces a wide range of initial states to tend towards a final equilibrium state—the
marble at the bottom of the tea cup. But in chaotic systems the simple equilibrium
states are replaced by strange attractors. In the Lorenz system, which models a

! The proof of the conservation of volume for classical Hamiltonian systems is known as Liouville's
theorem. Of course, all of this presupposes a precise definition of measure for regions of phase space, a topic
whose details are too technical for the present presentation.
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problem in weather prediction, the phase space is ordinary Euclidean three-space. A
trajectory starting near the origin moves to the left and makes some loops around the
left attractor A, then veers to the right to loop around the right attractor A’, and then
to the left, and so on in a seemingly random pattern that depends sensitively on the
initial state (see Figure 6.3, which shows the projection onto the ¥ =Z plane). If this
is the way the weather does work, then the beating of a butterfly’s wings can have a
major impact on the long-range forecast.

For conservative systems instability is manifested in a rapid spreading out of
phase points. In the most extreme case, the points starting in a small volume element
will become uniformly spread over all of A in a time 7 that is short compared with
macroscopic time scales. If A is partitioned up into cells C,, C,, . . ., Cy that
correspond to conditions which are macroscopically ascertainable by means of an
experiment that operates on a time scale T, then the rapid spreading property means
that a knowledge of which of the C, the phase point occupied in the past offers no clue
as to which cell the phase point will occupy when the experiment is next performed.
From the macroscopic point of view the system seems to behave like a random
mechanism 1in that it hops unpredictably from macrostate to macrostate.

The upshot is that some classical systems exhibit a peaceful coexistence be-
tween determinism and chaos—determinism at the microlevel is not only compatible
with chaos at the macrolevel but actually gives rise to it. This detente naturally colors
the way those with classically trained intuitions perceive the indeterminism of quan-
tum physics (see Sections 6.12-6.16).

6.5 DETERMINISM AND PREDICTION

The most frequently cited formulation of determinism is not the one quoted in the
preceding section but another from Laplace’s Analytical Theory of Probabilities:

7
0

Figure 6.3 The Lorenz attractors.
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Given for one instant an intelligence which could comprehend all the forces by which nature
is animated and the respective situation of the beings who compose it—an intelligence suf-
ficiently vast to submit these data to analysis—it would embrace in the same formula the move-
ments of the greatest bodies of the universe and those of the lightest atom; for it, nothing would
be uncertain and the future, as the past, would be present to its eyes. ([1814] 1951, 4)

Laplace’s intelligence, or demon as it is often called, is one of the most vivid
images to emerge from the entire literature on determinism. It is also one of the most
pernicious, for some philosophers are not content to use Laplace’s demon merely as
an illustrative device to add some color to an already defined doctrine of determinism
but want rather to understand the meaning of determinism in terms of the prediction
tasks that can or cannot be carried out by such a demon. The most pressing need of
such an approach is to specify the powers the demon is allowed to have. This much
is clear: Determinism is concerned with scientific predictability, not with soothsay-
ing, precognition, divine foreknowledge, and so forth, and so the demon must not be
endowed with any such powers. But exactly what is covered by the “‘and so forth’*?
We come close to the mark if we respond that the demon is to have only the requisite
mathematical ability, say the ability to solve the differential equations that constitute
the relevant laws. But this still misses the mark; for determinism is purely and simply
a claim about the existence and uniqueness of solutions, and whatever knowledge that
a demon endowed with whatever abilities has about the truth of this statement is
entirely ancillary.

The demonology becomes really pernicious with attempts to give the demon a
human face. Thus, Karl Popper suggests that Laplace’s demon should be construed
as ‘‘a super-scientist’” (1982, 34). This means, among other things, that ““The de-
mon, like a human scientist, must not be assumed to ascertain initial conditions with
absolute mathematical precision; like a human scientist he will have to be content
with a finite degree of precision’’ (ibid. ). It follows that for unstable systems Popper’s
demon will not be able to carry out various prediction tasks and so, on Popper’s
understanding of ‘‘scientific determinism,’’ that these systems will be nondetermin-
istic. The preferable conclusion is that the failure here 1s a failure on the part of the
humanized demon and not a failure of determinism per se. We started with a vocab-
ulary containing ‘‘determinism,”” ‘‘instability,”” and ‘‘predictability,”” each with a
relatively clear and distinct meaning, and it can only do mischief to form a mishmash
of all three.

Here Popper might appeal to the authority of Joseph Larmor who added a note
to Maxwell’s two maxims (discussed in the preceding section), stating that ‘‘it is only
in so far as stability subsists that principles of natural law can be formulated: it thus
perhaps puts a limitation on any postulate of universal physical determinancy such as
Laplace was credited with (Maxwell 1952, 13).”’ But it is hard to believe that
Maxwell himself would have subscribed to such a sentiment since he was surely
aware that precise principles of natural law have been formulated although they do not
conform to Larmor’s demand. In any case, the recent work on chaos theory is a direct
refutation of Larmor’s sentiment.

In the following sections we encounter other ways in which determinism and
predictability come apart.
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Figure 6.4 A register machine.

6.6 DETERMINISM AND COMPUTABILITY

The modern digital computer is just a very special and very limited kind of deter-
ministic system with a discrete set of states. The schematic structure of digital com-
puting is usually explained in terms of a device called a Turing machine, in honor of
Alan Turing who was the father of the theory of effective computability. But here we
will study another device, called a register machine, which is equivalent to a Turing
machine in terms of computational ability and which is more directly adapted to
xqz)licating the notion of an effectively computable function of the natural numbers

The hardware of a register machine consists of an unlimited number of registers
Ro, R, R, . . . . For sake of concreteness we will think of the registers as urns, each
of which holds a finite number of balls (see Figure 6.4). Register R, holds any integer
from 1 to M > O while the other registers hold any nonnegative integer. (In com-
puterese, R, is used to code the internal state of the machine while the other registers
are used as memory storage.) A state {n;}, i = 1, 2, . . ., of the machine is just a
list giving the number of balls in each of the registers. The change of state is governed
by a deterministic transition law which is specified by a ‘‘program’’ consisting of a
finite list of instructions /,, . . . I, subject to the covering rule that if Ry holds the
number », then instruction [, is carried out. Instruction I, is the halting instruction
which says that the state remains the same. The remaining instructions /,, . . . I, _,
can be of one of four forms. A zero instruction says to take all of the balls out of some
specified urn R,,, # > 0, and then to add one ball to R, leaving the other registers
undisturbed. A successor instruction says to add one ball to some specified R,,, n >
0, and one to R, leaving the other registers undisturbed. A transfer instruction says
to transfer the contents of some specified R, and R,,,, n,m > 0, and to add one ball
to R,. Finally, a jump instruction says to compare the contents of some specified R,
and R,,, n,m > 0, and to either add one or p > 1 balls to R, according as R,, and R,,,
do or do not contain the same number. (If the result of adding p balls to R, is greater
than M, the understanding is that M balls are to be placed in R,.) Such a machine is
said to compute a function f: N — N just in case for any x € N in the domain of f,
if the machine started in state <1, x, 0, . . . , 0> it eventually halts in state <M, f(x),
... >, and for any x € N not in the domain of f, the machine does not halt if started
in the same state. To get a feeling for how these machines work, the reader is invited
to write a program for manipulating the balls according to the above rules in such a

manner that the machine computes f(x) = x*.

2 For more details, see Cutland {1980). The usuai definition of register machine does not include the

register R, used here to encode the internal state of the machine. Register machines, Turing machines, and other
types of computers are discussed in Chapter 11.
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A function of the integers will be said to be effectively computable just in case
there is a register machine that computes it. It is intuitively evident that half of this
definition is justified: If a function can be computed on a register machine, then it
certainly deserves to be called effectively or mechanically computable. The other
half, that any function of the natural numbers that is effectively, mechanically com-
putable must be computable by a register machine is called Church’s thesis. We will
not discuss the evidence for this thesis save to say that it is considerable; in particular,
many other plausible alternatives to the register or Turing machine characterizations
turn out to yield extensionally equivalent definitions of effectively computable func-
tions.

It is natural to wonder what functions can be computed on a machine which is
similar to a register machine but which operates nondeterministically, say, because of
the introduction of a random element. The answer is that relaxing the assumption of
determinism does not allow any additional functions to be computed. But the non-
deterministic machines may reduce the number of steps needed to reach an answer.

One would also like to know how to bring together the notion of computability
explained here with the kind of determinism just discussed, say, in Newtonian particle
mechanics. Suppose, for example, that x(¢) is the position function of a particle in some
solution to Newton’s laws of gravitation. Is x(z) an effectively computable function of
1? Thus far we have no means of answering such questions since the concept of com-
putability has been defined only for functions of the natural numbers. But there is a
standard way to pass from the natural numbers to the rationals and thence to the real
numbers, and concepts needed in this passage can be effectivized so as to extend the
register machine notion of computability to functions of the reals. Then just by car-
dinality considerations alone x(#) may not be effectively computable since there are
more solutions to Newton’s laws than there are effectively computable functions.
(There are uncountably many solution functions and only a countable number of ef-
fectively computable functions.) If the initial positions and velocities are effectively
computable real numbers, then x(¢) will be an effectively computable function. When
the laws of time evolution are partial differential equations, as in field theory, then the
situation is interestingly different in that effective computability for initial data is not
necessarily preserved by deterministic evolution.

Finally, one can wonder about the concept of analogue as opposed to digital
computability. In particular, can any deterministic system be regarded as an analogue
computer which ‘‘computes’’ its solution functions? Such gquestions cannot be an-
swered without the help of a general theory of analogue computability, which at
present does not exist.

6.7 DETERMINISM AND OPEN SYSTEMS

The natural conclusion to draw from the above review is that determinism is part of
the marrow of both the methodology and the content of classical physics: The fun-
damental laws discovered in classical physics are deterministic; the process of sci-
entific inquiry is most fruitfully conducted under the assumption that determinism is
true; and in general the concept of determinism is pervasive, finding its way into such
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diverse areas as the analysis of chaos and effective computability. It is now time to
add a serious caveat to this first impression, for there is a sense in which determinism
stands on unfirm ground in classical physics.

Recall from Section 6.2 that the existence and uniqueness theorems for the
initial value problem in Newtonian gravitational theory were modest in refusing to
make claims about all future and past times. One reason for that modesty is that when
collisions of point particles occur, Newton’s gravitational force law blows up. We can
deal with this difficulty either by ignoring it on the grounds that collisions are rela-
tively rare in the class of all solutions allowed by Newton’s laws (there are some
precise results to this effect) or else by finding a method of extending the solution
through the singularity (e.g., for collisions in one spatial dimension, the model of the
elastic bounce can be used to regularize the solution). However, there is a second and
more mind-boggling reason for the modesty, namely, the possibility of noncollision
singularities in which the solution fails to exist after some finite time because all of
the particles have disappeared, not because they dissolve and fade away, but because
they accelerate so hard that they escape to spatial infinity. Before worrying about the
physical possibility of such a feat we first have to understand why it is conceptually
possible.

The laws of Newtonian physics all obey an important symmetry or invariance
principle: They are the same in every inertial frame. Different inertial frames move
uniformly and rectilinearly with respect to one another, the spatial transformation
between two such frames having the form x’ = x + vz where v is the relative velocity
between the frames. This leads to the Galilean velocity addition law: if w and u’ are
respectively the velocities of a particle as measured with respect to the unprimed and
the primed frames, thenu’ = u + v. Since there is no upper bound on v, it follows
that u’ can be made as great as we like and consequently that Newtonian laws of
motion cannot impose a finite upper bound on the speed with which a particle can
move. It only remains to note that in the absence of such a bound, a body can escape
to spatial infinity in a finite time even though it never attains an infinite velocity. (The
reader should draw the spacetime world line of such a particle.)

For a long time physicists wondered whether this conceptual possibility could
be implemented by a system of point mass particles moving under the action of their
mutual Newtonian gravitational forces. Within the last few years they have convinced
themselves that a noncollision singularity is possible with five particles—though they
never collide, their mutual interactions can be arranged so that all disappear to spatial
infinity in a finite time, (see Gerver 1984 for details). Since the Newtonian laws are
invariant under time reversal, the temporal mirror image of this process, with five
particles appearing from spatial infinity, is equally physically possible.

To appreciate the relevance for determinism, return to the thought experiment
of Section 6.1. That construction was designed as an intuition pump to work up the
expectation of a deterministic outcome. But the pump works only if various loopholes
are closed, one of which was that the system might be open to outside influences.
With particles acting at a distance, the only safe way to assure the system is closed
is to extend the system to include all the particles that there are. But we now see that
safe is not sure since even if the system consists of the entire physical universe, it may
not be closed to outside influences in the relevant sense.
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Determinists may be disconcerted that what was supposed to be the paradigm of
classical determinism at work turns out to undermine confidence in determinism, but
they might try to shrug off their disappointment with the remark that the example
involves the idealization of point particles and, in particular, it draws on the infinite
potential well of these particles as the energy source for powering the escape to
infinity. The embarrassment returns, however, with the realization that the openness
of the universe is not a peculiarity of this example but is a widespread feature of
classical physics. Moving from particle mechanics to the classical field laws govern-
ing the evolution of continuous field quantities acting by contract, we find just such
an openness rampant. The paradigm case of such a field law is the Fourier heat
diffusion equation, which implies that heat waves propagate with an actually infinite
velocity, making it no trick at all for heat effects to appear from or disappear to spatial
infinity. In mathematical terms there is a solution ¢, (s for surprise) such that ¢ (x,?)
= 0 for all t = 0 but ¢ (x,#) > 0 for t > 0. Like Maxwell’s equations, the Fourier
equation is linear so that if ¢, and ¢, are solutions then so is ¢; + ¢,. By adding
¢, onto an arbitrary solution ¢ determinism is totally wrecked. Determinism can be
restored by imposing various boundary conditions at infinity, but such a move serves
to underscore the moral that in the classical setting determinism does not stand on its
own feet but needs the help of various crutches.

6.8 DETERMINISM AND THE NATURE OF SPACE AND TIME

The discussion in the preceding section helps to reveal how the fortunes of deter-
minism are linked to questions about the structure of space and time, a point that will
be brought into sharper focus in this section and also in the following sections where
relativistic spacetimes are contrasted with classical spacetimes. The present section
also aims to demonstrate the linkage between determinism and the ontological status
of space and time.

On a relational conception of motion, any meaningful statement about motions
must be translated into statements about relative motions of physical bodies. In
particular, to say that body A accelerates is, on the relational view, elliptical for
saying that A accelerates relative to some other system of bodies. This view is clearly
inconsistent with the spacetime framework assumed in the preceding section for in the
presence of inertial frames, acceleration is an absolute quantity (under a Galilean
transformation connecting two inertial frames, acceleration is an invariant, a’ = a)
making it meaningful to speak of the spatial acceleration of A independently of A’s
relation to other bodies. If inertial frames are banished so as to create a spatiotemporal
environment congenial to the relational conception of motion, then the Galilean
transformations are replaced by a much wider set of transformations, which we can
dub the relational transformations. Just as Newtonian laws of motion are invariant
under the Galilean transformations, so whatever laws of motion the relationist may
propose must be invariant under the relational transformations. But the latter are so
broad as to seemingly preclude any interesting sense of determinism of the Laplacian
variety. For among such transformations are those which coincide with the identity
map for all £ = 0 but which are nontrivial for ¢ > 0, leading to the result that there
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are solutions of the relationist equations of motion that coincide for all past times but
diverge in the future. (For a more detailed discussion of this and other problematic
features of classical determinism, see Earman 1986.)

Those who are relationists about motion also tend to be relationists about space
and time, and those who are relationist about space and time will respond that the
splitting of physically possible histories that is supposed to be violation of Laplacian
determinism is but an illusion. For to be a relationist about space and time is to reject
the idea that space is literally a container for bodies and spacetime is a container for
physical events and to hold that the absolutist’s space and spacetime are merely
artifices for representing the mutual relations among physical bodies and physical
events. For the relationist the splitting histories spoken of are, therefore, seen as
merely different ways presenting the same physical situation, and no more indeter-
minism is involved than in, say, describing the fall of the Roman Empire first in Latin
and then in English.

No adjudication of this dispute between the absolute and relational conceptions
will be attempted here, (see Earman 1989 for details on the absolute-relational con-
troversy). But note that to create a safe environment for classical determinism, either
the structure of spacetime must be sufficiently rich or else a relational construal of
spacetime must be adopted.

6.9 DETERMINISM AND THE SPECIAL THEORY OF RELATIVITY

The source-free Maxwell equations introduced in Section 6.3 are Laplacian deter-
ministic without any help from boundary conditions at infinity to ward off electro-
magnetic space invaders. At least this is so if the equations are placed in their proper
setting—Minkowski spacetime (see Chapter 3); for in this setting it can be shown that
Maxwell’s equations imply that electromagnetic effects propagate at exactly the speed
of light c. :

More generally, the light cone structure of Minkowski spacetime seems to
function as an invisible barrier to space invaders, making the relativistic setting safe
for Laplacian determinism. Alas, life is not so simple. We have to contend with the
possibility of tachyons, swift particles which do not do the impossible of crossing the
light barrier but which nevertheless revive the specter of space invaders because their
world lines are represented by space-like curves. This specter can be controlled if
there are no free tachyons and if all tachyon world lines terminate in tardyon world
lines which stay confined within the light cones. Frank Arntzenius (1990) has shown
how to construct a Lorenz invariant theory in which two tardyons interact by ex-
changing tachyons. The theory is globally Laplacian deterministic in the sense that
the state on some appropriate global time slice of Minkowski space suffices to fix the
past and future. The theory, however, is not locally deterministic since, for example,
the state on the local time slice S picture in Figure 6.5 does not suffice to fix the state
within the future cone subtended by S, for a tachyon that does not register on § can
unpredictably enter the future cone. In any case, this toy theory is highly artificial,
and controversy continues about the extent to which it is possible to construct phys-
ically plausible theories of tachyons that are compatible with the demands of relativity
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Figure 6.5 Tachyons defeat local determinism.

theory. Until these controversies are settled, the fate of special relativistic determin-
ism remains unsettled.

If relativistic determinism is spared the challenge of faster than light particles
then another breach is opened between determinism and prediction since the same
light cone structure that serves to shield against space invaders also serves to prevent
finite embodied observers from receiving enough information about initial conditions
relevant to the determination of a future event before the event occurs (see the
Discussion Questions for further discussion of this point).

6.10 DETERMINISM IN THE GENERAL THEORY OF RELATIVITY

Einstein’s general theory of relativity (GTR) raises two types of problems for deter-
minism, the first having to do with the causal structure of spacetime and the second
having to do with the ontological status of spacetime.

To pose the first problem, let us understand by a causal curve a smooth space-
time curve whose tangent is everywhere nonspace-like. Such a curve represents the
world line of an idealized causal process propagating with a speed =c. (We are here
ignoring the possibility of tachyons.) A space-like hypersurface § is said to be a
Cauchy surface just in case S meets every causal curve without end point exactly
once. Such a surface is an appropriate initial value surface for launching global
Laplacian determinism since every causal process must leave its imprint on S and,
thus, one can hope to determine the past and future behavior of a process from its
behavior on or near S. Conversely, the hope of using initial data on a time slice S to
determine the future and past behavior of a process is vain if that process does not
register on S. The problem for general relativistic determinism is that various cos-
mological models satisfying the basic laws of GTR, Einstein’s field equations, do not
possess a Cauchy surface. Figure 6.6 shows three ways in which the Cauchy property
can fail. In Figure 6.6(a) the surface S, lacks the Cauchy property because the causal
curve a closes on itself and does not meet S,. In Figure 6.6(b), §, is not a Cauchy
surface because the curve (3, an analogue of a classical space invader, runs off to
spatial infinity without meeting S,. In Figure 6.6(c), collapsing matter produces a
naked singularity. The time slice S, fails to be a Cauchy surface because the causal
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Figure 6.6a,b General relativistic spacetimes lacking a Cauchy surface.

curve vy emerges unpredictably from the singularity (which strictly speaking is not
part of the spacetime).

The determinist can respond that Einstein’s field equations are not sufficient to
pick out the genuine physical possibilities and that additional strictures are needed, in
particular, strictures that will rule out the situations illustrated in Figure 6.6. Such a
response need not be question begging since there are independent reasons to doubt
that these situations are physically possible. Closed causal curves such as that in
Figure 6.6(a) give rise to paradoxes of time travel (e.g., it would seem that observers
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could travel into their own past and shoot themselves-at-an-earlier-time). The behav-
ior pictured in Figure 6.6(b) is often accompanied by an unphysical instability, for
example, the introduction of a small amount of matter on S, leads to singular behavior
at a later time. And the singularity pictured in Figure 6.6(c) violates the cosmic
censorship hypothesis which asserts that the singularities that develop in physically
reasonable cases of gravitational collapse are hidden in the interiors of ‘‘black holes,”’
the exteriors of which admit a Cauchy surface. This hypothesis is currently the focus
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of a lively debate among theoretical physicists. Whatever the ultimate decision on the
issues raised by the models in Figure 6.6, it is evident that the fate of general
relativistic determinism is intertwined with some of the thorniest foundations prob-
lems in GTR.

The second threat to general relativistic determinism arises even on the pre-
sumption that the first has been swept aside and attention is focused on cosmological
models with Cauchy surfaces. This threat has already been discussed in Chapter 5
under the heading of the ‘‘hole argument’’ and will not be rehearsed again here.

6.11 DETERMINISM AND QUANTUM MECHANICS

When first told that nonrelativistic quantum mechanics (QM) is a nondeterministic,
stochastic theory, we might naturally expect that the deterministic laws of temporal
evolution of classical mechanics are replaced by a nondeterministic law by which the
present state does not fix the future state but, say, only a probability distribution over
future states. But in the first instance this is not what we find in QM; indeed, the basic
equation of temporal evolution—the Schrodinger equation—is in some respects more
deterministic than its classical analogue. Consider again the case of point mass
particles interacting via a 1/r* force. In the classical mechanical treatment of this
problem we had to worry about both collisional and noncollisional singularities. In
the quantum mechanical treatment, however, neither of these worries materializes
since the solution probably exists for all time. (Technically, the point is that the
Hamiltonian operator for this process is self-adjoint so that the evolution operator is
unitary and, thus, is defined for all time; see below.) Furthermore, the quantum
evolution does not show the kind of sensitive dependence on initial conditions that
translates into classical chaos.? From whence then comes quantum indeterminism? To
answer this question it is necessary to delve into some technical aspects of QM.

6.12 QUANTUM FORMALISM AND QUANTUM INDETERMINISM

QM replaces the classical notion of state with a vector® ¥ in a special kind of vector
space, called Hilbert space. Before launching into details it may be helpful to recall
some of the facts about the more familiar case of a Euclidean vector space. For
example, the velocity of a particle in classical mechanics can be represented by a
vector in a three-dimensional Euclidean space. Any such velocity vector v can be
decomposed into a linear sum of three arbitrarily chosen but linearly independent

3At least this is so if the nearness of states is measured in the usual norm, that is ] = (i, ¢ )", where
(.} is the inner product of the Hilbert space; see Section 12. Since Schrédinger evolution preserves the norm two
states that are initially close remain close. It is currently a matter of lively debate as to how to define the notion
of quantum chaos.

# More precisely, the quantum state is given by the one-dimensional subspace spanned by the vector; for
W' = exp(ir) ¥, r a real number. and ¢ both represent the same state in that they give exactly the same
probabilities for measurement outcomes, as seen further in Section 6.12,

250 Determinism in the Physical Sciences



basis vectors uy, u,, U5: v = a,u, + a,U, + a;u,, where the expansion coefficients
a; are real numbers. Because of its Euclidean structure the vector space has a natural
notion of inner product which associates a real number (u, v) with each pair of vectors
and which defines a notion of length || v [l = (v, v)"? of vectors and a notion of
orthogonality u + v = (u, v) = 0. The basis vectors u; can be chosen so that they are
pairwise orthogonal and of unit length, in which case the expansion coefficients o
give the length of v in direction /. Finally, we can define linear operators or gadgets
that eat vectors and spit out vectors in such a way as to respect the linear structure of
the space; that is, the operator O obeys the rule O(au + B v) = aO(u) + BO(v)
for any real numbers o and B. A simple example of such a linear operator is a
projection that takes a vector to its component in a certain direction.

All of this familiar material carries over to Hilbert spaces, but with some subtle
but major changes. In the first place, the complex numbers replace the real numbers:
Euclidean vector spaces are closed under linear combinations obtained by multiplying
vectors by real numbers and taking their sum; Hilbert spaces are closed under linear
combinations obtained by multiplying vectors by complex numbers and taking their
sum. Second, in some physical applications the Hilbert spaces have to be infinite-
dimensional. This second feature will be downplayed here since many of the basic
foundations problems can be raised for the finite case.

Physical quantities in QM (or ‘‘observables’’ as they are often called) are
represented by a special class of linear operators called self-adjoint operators.” As in
the case of Euclidean vector spaces, an operator A on Hilbert space can be thought
of as an animal that eats vectors and spits out other vectors. A vector ¢ is said to be
an eigenvector of A just in case when A eats @ it spits out ap, where the number a
is called an eigenvalue of A. If A is self-adjoint, then the eigenvalue a must be a real
number, an important result since one of the basic postulates of QM is that the
possible results of measuring an observable A are given by the eigenvalues of the
corresponding operator A. '

One of the ways in which indeterminism emerges in QM is in the prediction of
measurement outcomes. Suppose that the observable A is being measured. Express
the state vector ¥ as a linear combination of the eigenvectors ¢; of A:
¥ = 3% o ¢;, A, = a,¢;. (This can always be done in a unique way for a self-
adjoint operator A.) Then another basic postulate of QM asserts that upon measure-
ment of A the probability of obtaining the result a, is la,1*. In general the numbers
loI? lie strictly between the extreme values of 0 and 1 required in a deterministic
treatment.

A second way in which QM is indeterministic concerns the temporal evolution
of the state W. In Section 6.11 it was stated that this evolution is governed by the
deterministic Schrédinger equation. That statement is only half correct, at least ac-
cording to the von Neumann formulation of QM. On von Neumann’s account the
quantum state ¥ changes continuously and deterministically until a measurement is
made, at which point it jumps discontinuously and nondeterministically into the

3 For bounded operators, self-adjointness of A means that A™ = A where the adjoint A* of A is defined
by (A* ¢, ¥) = (¢, A x) for all ¢ and y.
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eigenstate ¢, corresponding to the eigenvalue g, obtained for the observable A being
measured—the so-called collapse of the superposition.

What is disturbing about the second indeterministic feature is not so much the
indeterminism per se as the conundrum it seems to involve. For a measurement is
presumably a physical interaction between an object system and a measurement
apparatus. As such it should be describable in the same terms that apply to other
interactions and, thus, the evolution of the joint object-plus-apparatus system should
obey the Schrdédinger equation. Alas, there are convincing demonstrations that Schro-
dinger evolution is incompatible with the collapse of the superposition. Leaving aside
the technicalities, the gist of the problem is that because of the linearity of the
Schrédinger equation, it predicts that after interaction the object-plus-apparatus sys-
tem is left not in a definite state but in a superposition of coupled object-apparatus
states. This conundrum, commonly referred to as the quantum measurement problem,
has sparked a number of desperate attempts at a resolution, only two of which will be
mentioned here. First, it has been suggested that the measurement interaction is not
purely physical and that the collapse is brought about by the action of a conscious
observer. Such a revival of Cartesian dualistic-interactionism is hard to swallow.
Second, it has been suggested that no collapse takes place and that instead the world
splits into many copies, in one of which the value a; is realized, in another of which
the value a, is realized, and so forth. Such an ontological inflation is as hard to
swallow as Cartesian dualism. (See Wheeler and Zurek 1983 for a collection of
papers on the quantum measurement problem. For the ‘‘many worlds’’ interpretation,
see DeWitt and Graham 1973.)

The first form of quantum indeterminism suggests to the classically trained
intuition that QM is incomplete and that quantum probabilities are expressions of our
ignorance of the exact state of nature. The second form of indeterminism and the
measurement problem to which it leads suggests that something is rotten at the core
of QM. Perhaps the conjectured incompleteness of QM is also responsible for this
defect. Before exploring this notion further, we turn to an argument which is designed
to prove the suspected incompleteness of QM.

6.13 THE EPR PARADOX

One of the most frequently cited papers on the foundations of QM appeared in 1935
in the Physical Review under the somewhat awkward title of ‘‘Can Quantum Me-
chanical Description of Reality Be Considered Complete?’’ It carried the names of
three authors, Albert Einstein, Boris Podolsky, and Nathan Rosen, and consequently
is referred to as EPR. (The paper was in fact written mainly by Podolsky; see Fine
1981.) The influence of this paper is belied by its length of less than four journal
pages. Although it contains some technical terms which may be unfamiliar to you,
you ought to be able to reconstruct the structure of the argument of EPR. So before
reading further in the text, turn to the Appendix of this chapter where EPR is reprinted
and try to identify the conclusion of their argument, the premises, and the steps
leading from the premises to the conclusion.

In paragraph 3, EPR state what they regard as a necessary condition for com-
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pleteness of a physical theory; namely, “‘every element of the physical reality must
have a counterpart in the physical theory.”” While declining to define ‘‘physical
reality,”” they provide in paragraph 4 a sufficient condition or Criterion of Reality:

If, without in any way disturbing a system, we can predict with certainty (i.e., with prob-
ability equal to unity) the value of a physical quantity, then there exists an element of
physical reality corresponding to this physical quantity.

The purpose of their argument appears at first to be to establish that QM is an
incomplete theory (I). To understand their rationale for this conclusion, recall that
two operators A and B are said to commute justin case [A,B] = AB — BA = 0,
that is, for every vector, the result of first operating by A and then by B is the same
as first operating by B and then by A. (In the case of unbounded operators, which are
defined on at most a dense set of Hilbert space, we would have to be more careful
about domains of definition.) Introducing the abbreviation (NSV) to stand for the
assertion that when the operators corresponding to two physical quantities do not
commute, the two quantities cannot have simultaneously sharp values (or simulta-
neous reality, as EPR say), the EPR argument can be reconstructed as follows:

either (I) or (NSV)
If not-(I) then not-(NSV)

., D

(This follows the reconstruction of Fine 1981.) The argument form is evidently valid,
so the evaluation of the argument reduces to the acceptability of the premises.

EPR try to justify the first premise by arguing that if (NSV) fails, then QM is
incomplete. If (NSV) fails the physical quantities in question would have simulta-
neous reality (simultaneously definite values), and by the completeness condition
these values must be part of a complete description. EPR conclude that

either (1) the quantum-mechanical description of reality given by the wave function is not
complete or (2) when the operators corresponding to two physical quantities do not commute
the two quantities cannot have simultaneous reality.

The first sentence indicates that they interpret the completeness condition to mean that
the counterpart in the theory of the physical quantity must allow prediction of the
value of the quantity with probability 1. Under this reading the second sentence is true
since for no state does QM assign probability | to definite values of observables
corresponding to noncommuting operators.

To establish the second premise EPR employ a thought experiment involving a
pair of correlated particles. The version used here is similar in spirit to the original but
has the dual advantages of lending itself to actual laboratory trials and of linking to
Bell’s theorem to be discussed. In the set up pictured in Figure 6.7, a pair of particles
leave the source and travel in opposite directions in space until they encounter ana-
lyzers, each of which contains settings that correspond to the measurement of various
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Left analyzer set to Right analyzer set to
measure A measure8 5

Figure 6.7 An EPR-Bell experiment.

observables A,, A,, . . . on the left particle and various observables B,, B,, . . . on
the right particle. It is arranged that [A,, B,] = O for any i and j even though the A;
and the B, do not pairwise commute among themselves. Though not needed until
later, it is also convenient to assume that all the observables in question are bivalent,
taking on the values (say) * 1. Finally, we appeal to the principles of QM to establish
the existence of states in which the left and right observables are perfectly anticor-
related in the sense that with probability 1 the outcome of measuring A; on the left is
#+1 just in case the result of measuring B; on the right is 1.

For the time being it suffices to concentrate on two pairs of observables A,, B,
and A, and B,. Now suppose that we make a choice of the setting on the left analyzer.
Depending upon whether we choose to measure A, or A, we can, from the measure-
ment result, predict with certainty the value for B, or B,. Applying the Criterion of
Reality we conclude that the values of the quantities B, and B, are simultaneous
elements of reality and, therefore, that QM is incomplete.

On further refiection this seems a little too quick. For how does it follow from
the fact that measurements made at different times on the left particle allow us to
assign definite values to B, and B, in such a way that these quantities have simulta-
neously definite values? This concern is addressed in the penultimate paragraph of
EPR:

One would not arrive at our conclusion if one insisted that two or more physical quantities
can be regarded as simultaneous elements of reality only when they can be simultaneously
measured or predicted. On this point of view, since either one or the other, but not both
simultaneously, of the quantities P [B,] and Q [B.,] can be predicted, they are not simulta-
neously real. This makes the reality of P[B,] and Q[B,] depend upon the process of mea-
surement carried out on the first [left] system, which does not disturb the second [right]
system in any way. No reasonable definition of reality could be expected to permit this.

What should now be clear is that the real conclusion of EPR is not that QM is
incomplete (I) but rather that it is incomplete under the assumption of locality (Loc)
in the sense that what is done on one wing of the experiment does not influence what
happens on the other. (That this is what Einstein intended is made clear by his later
paper Einstein [1948] 1971.) Exactly what this locality assumption amounts to will be
discussed, but before turning to that matter it is worth noting a few other puzzling
features of the EPR argument.

The first noteworthy feature is that the second premise has been incorrectly
advertised since the antecedent not-(I) plays no role in the analysis of the thought
experiment. The premise is more correctly stated as: if (Loc) then not-(NSV), and the
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ultimate conclusion of the argument is not that QM is incomplete but that it is either
incomplete or nonlocal.

The second feature is the puzzle of why it is necessary to consider measure-
ments of observables corresponding to noncommuting operators. Measure, say, A,
on the left and obtain a value (say) + 1. Infer with certainty that B, has a value
of —1. So by the Criterion of Reality the right particle has a value of —1 of B,
after the measurement. But by (Loc) the measurement on the left cannot create a
value of B, on the right. So that value must have been possessed at the time of the
measurement, and since QM does not predict that value with certainty, the theory
1s incomplete. The obvious answer to the puzzle would cite the strong psycholog-
ical pressure to invoke what was taken to be one of the most characteristic features
of QM—the existence of noncommuting observables. The EPR invocation takes the
following form. Measure A, on the left and obtain a value (say) + 1, and infer with
certainty that the particle on the right is an eigen state y, of B, with eigenvalue
— 1. Measure A, on the left and obtain (say) — 1, and infer that the particle on the
right is an eigen state y, of B, with an eigenvalue of + 1. But by (Loc) no real
change can take place on the right wing as a consequence of what was done on the
left wing. Thus, EPR conclude, it is possible to assign two different state vectors
to the same reality. Since this is an inconsistency if those vectors represent different
real states of affairs, QM is incomplete. This pattern of argument, which is re-
peated in Einstein ({[1948], 1971) defies the structure set out above for the EPR
argument.

Finally, we can wonder why, questions of completeness aside, (Loc) is not
violated in the thought experiment. Whether or not the QM state description 1s
complete, it does describe objective physical features of the system, for example the
long-run relative frequencies of outcomes, and so objective features on the right wing
are influenced by what is done on the left wing. Einstein’s reply would presumably
have been that no violation of (Loc) is involved if probability is given an ensemble
interpretation and measurement is the process of selecting a subensemble of systems
characterized by the values obtained in the measurement. Ironically, EPR experi-
ments, under a more detailed analysis, bring into question this interpretation.

6.14 INCOMPLETENESS AND BELL'S INEQUALITIES

Einstein’s conclusion that QM 1s either incomplete or nonlocal was supposed to have
a pejorative force since he took it as a goal of scientific theorizing to produce a theory
that was at once both complete and local. The EPR experiments, however, can be
used to challenge the presumption that reality itself is local and complete at the
quantum level. For EPR, QM 1s incomplete because it does not contain counterparts
of every element of reality: the A; and B; are supposed to have simultaneous definite
values even though there are no counterparts of these values in the theory. However,
the assumption of ontological completeness—the value definiteness of the
observables—turns out to be in conflict with the testable statistical predictions of the
theory.

Let us suppose that the description of QM has been ‘‘improved’’ in line with the
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sentiments of EPR so that the new theory gives a complete description in that for any
point X in the new state space A, the theory assigns definite values to A,, A,, A; and
also to By, B,, and B,. The notation (=, *, £; =, %, *) will be used to denote
the region of A where the observables have the designated values; for example
(+, —, +; —, —, +) is the region where A, = +1,A = —1, A, = +1 and
B, = —1,B, = —1, and B, = +1. Also in keeping with the aims of EPR, the
QM probabilities assigned to compatible pairs of observables are interpreted as mea-
sures of our ignorance of the location in A of the actual state A. By the anticorrelation
condition, Pr((A, = +1)&(B, = +1))is the sum of the measures x and y assigned
respectively to the regions (+, —, +; —, +, =) and (+, —, —; —, +, +)
(see Figure 6.8). Likewise, Pr((A, = + 1}&(B; = +1))1is the sum of the measures
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Figure 6.8 A form of Bell's inequalities.
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y and z assigned respectivelyto(+, —, —; —, +, +)and(+, +, —; —, —, +).
And finally, Pr((A; = +1)&(B, = +1)) is the sum of the measures x and w
assigned respectively to (+, —, +; —, +, —) and (—, —, +; +, +, —).
Thus, since x + y must be less than orequal toy + z + x + w,

(B) Pr((A, = + )&(B, = +1)) S Pr((A, = +1)&B 5 = +1))
+ Pr((A; = +1)&(B, = +1))

The inequality (B) is a member of a family of inequalities known as Bell’s inequal-
ities. (The derivation given here is due to Wigner 1970.)

To see the relevance of (B) to the issues at hand, we need only add the punch
line which consists of two parts. First, there are QM states that are provably in
violation of (B). Thus, insofar as the statistical predictions of QM are respected,
QM does not lend itself to an extension to a ‘‘complete’ theory of the kind EPR
envisioned. Of course, this might be taken as further proof that something is
rotten at the core of QM. But now we add the second half of the punch line: When
the relevant experiments are performed, the statistics bear out the predictions of
QM and violate (B). The incompletability of QM is therefore not a defect of the
theory but, apparently, a reflection of the way Nature operates on the quantum

level.

6.15 QM AND LOCALITY

Let us now turn from the incompleteness prong of the EPR dilemma to the non-
locality prong. Here the news is both good and bad. To understand the tidings we

need to separate two senses of locality, namely, setting independence and outcome

Pr{X&Y|Z) = Pr(X|Z) x Pr(Y|Z)

X Y
t

Commeon causal
past of X and Y

Figure 6.9 Reichenbach’s principle of common cause.
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independence (see Jarrett 1984, whose terminology is somewhat different from that
used here). Setting independence requires that the probability of an outcome on one
wing of the experiment is independent of the choice of what is measured on the
other wing or, equivalently, of the setting of the measuring device on the other
wing. QM is fully in accord with this demand, and as a consequence the QM
correlations between the two particles do not allow messages to be sent from one
wing to the other by means of a manipulation of the setting on the apparatus on one
side and an observation of a change in the outcome statistics on the other side.
(There can be no Bell telephone.)

Outcome independence demands that the particular measurement outcome on
one wing does not affect the probability of the outcome on the other wing, that is,
Pr(A; = a/B; = b) = Pr(A; = a), or, equivalently, Pr((A; = a)&(B; = b)) =
Pr(A; = a) X Pr(B; = b). This condition can be violated by QM probabilities since,
for example, in the anticorrelated state QM predicts that Pr(A, = +1/B;, = +1) =
0 # Pr(A, = +1). This by itself is not the bad news. After all, correlations
among distant events are daily facts of life. The bad news is rather that the correlations
cannot be explained in accord with what Reichenbach called the principle of common
cause (PCC). Consider events X and Y that occur at relatively space-like regions. If X
and Y are not probabilistically independent, that is, Pr(X&Y) + Pr(X) X Pr(Y), then
PCC demands that there is an event Z in the common causal past of X and Y (see Figure
6.9) which induces conditional probabilistic independence, that is, Pr(X&Y/Z) =
Pr(X/Z)y x Pr(Y/Z). Equivalently, Z probabilistically screens X and Y off from one
another: Pr(X/Y&Z) = Pr(X/Z) and Pr(Y/X&Z) = Pr(Y/Z). Applying this to the
present case, X and Y would be the outcomes of measurements performed on the two
wings of the EPR experiment in such a manner that the measurement events are rel-
atively space-like and Z would be the obtaining of some condition A at the sources of
the pairs of anticorrelated particles. But in the case of perfect anticorrelation, the re-
quirement that Pr((A; = a)&(B; = b)/N\) = Pr(A; = a/\) X Pr(B; = b/\)
implies that Pr(A; = a/\) and Pr(B; = b/\) are both O or 1. Thus, the PCC essen-
tially forces us into the situation described in the preceding section. Even when the
requirement of perfect anticorrelation is dropped, the PCC can be shown to lead to a
second family of Bell inequalities each of which is more complicated than (B) but
which collectively are also violated by QM statistics. Thus, just as Nature speaks
against the extendibility of QM to a ‘‘complete’’ theory it also speaks against the
extension to a theory satisfying the PCC.

Just how bad is this bad news? Perhaps not so bad after all. Consider again the
deterministic case. In the setting of field theory it is plausible that determinism be
implemented locally by what has been called Einstein locality; that is, the state in a
region R should be determined by the state on a slice S contained in the past light cone
of R. In generalizing from the deterministic to the stochastic case the most natural
generalization of Einstein causality is not the requirement that probabilities for out-
comes in region R be screened off from the outcomes in the relatively space-like
region R’ (see Figure 6.10) by events in the common causal part of R and R’ but rather
the requirement that the probabilities of outcomes in R be determined by the state on
S. This latter requirement is one which we would expect to be satisfied in a relativistic
quantum field theory (see Hellman 1982a).
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Figure 6.10 Einstein locality.

6.16 QM AND DETERMINISM

It might seem that what has already been said above suffices to undermine determin-
ism in the quantum domain. For the attempt to foist the assumption of value deter-
minateness onto QM and to understand QM probabilities as expressions of our
ignorance of preexisting values was shown via Bell’s inequalities to be incompatible
with verifiable quantum statistics. So determinism, which implies value determinate-
ness, is also incompatible with the results of the EPR-Bell experiments.

This last step is a little too quick. To see why, recall classical phase space
introduced in Section 6.4 and think of quantum observables as analogous to classical
observables such as ‘‘the roulette ball lands on red 10.”" Determinism means that for
any initial state A, = A(Z,), the state A(z) at any later time ¢ is uniquely fixed; and by
the completeness of states, if the roulette experiment is performed at ¢, A(¢) fixes a
definite value for the observable in question—say, -+ 1 if the ball does indeed land on
red 10, —1 otherwise. But the kind of value determinateness needed for the proof of
the Bell inequalities is of a different kind; it requires that for every A € A a definite
value is assigned to the observables, and this is not done in any direct way in our
classical analogue since for some and perhaps all the points lying on the uniquely
determined trajectory through A, the roulette experiment may not be performed.
Nevertheless, it might be thought that an indirect assignment can be made since
determinism will imply the truth (or falsity as the case may be) of *‘If the roulette
experiment were performed at ¢, then the result would be red 10.”” But to imagine
that, contrary to the fact, the roulette wheel is spun at ¢ is to imagine that we move
off the uniquely determined trajectory through A, to some nearby trajectory where the
counterfactual spin is realized. But there may be many such actualizing trajectories,
all equally near to the original, and in some of them red 10 many eventuate and in
others not. Indeed, the instability of classical systems that display randomness and
chaos at the macrolevel would seem to underwrite such a finickiness with respect to
red 10. In counterfactual logic there is no guarantee that either ‘‘If the roulette wheel
were spun, then the result would be red 10”” or **If the roulette wheel were spun, then
the result would not be red 10°” is true. The same may be true of quantum observables
even on the supposition that there is an underlying deterministic mechanism.

There is yet another and more plausible way that counterfactual conditionals can
be used to defeat determinism in the quantum domain. Suppose that a great many
repetitions of the EPR-Bell experiment are performed and that on the nth trial the left
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appartus is set to measure, say, A, while the right appartus is set to measure B, and
suppose that on this trial A, = + 1. The assumption of counterfactual definiteness
asserts that if the right apparatus had been set differently (say to measure B,) the
outcome on the left would still have been + 1. Under this assumption we can derive
yet another form of the Bell inequalities which are again provably inconsistent with
quantum statistics. Now the assumption of counterfactual definiteness is implausible
if the world is at base stochastic, for then if the experiment is repeated, even under
identical conditions, there is no reasonable expectation that the outcome will be the
same. But if the world is deterministic and, more particularly, if Einstein causality
holds so that the outcome on the left is determined by local conditions on the left, then
counterfactual definiteness is much more plausible (see Hellman 1982b). In this way
the Bell inequalities can be combined with the observation of experimental violations
of the inequalities to provide a plausibility argument against determinism in the
quantum domain.

6.17 DETERMINISM, INDETERMINISM, AND FREE WILL

The commonsensical position regarding free will was forcibly expressed by Dr.
Johnson, ‘‘Sir, we krnow that our will is free, and there’s an end on’t.”’ But, with
apologies to the good doctor, we know no such thing. What we know is that in normal
circumstances our actions are accompanied by the feeling of freedom—we feel in
control, we feel that our actions are up to us. However, we have to face the possibility
that our feelings are misleading, and worry over this possibility is not a purely
academic one since the application of moral and legal sanctions for wrongful acts is
widely held to turn on the question of whether the agent acted freely.

The attempt to view moral agents as a stream of events runs into difficulties
whether the stream moves deterministically or indeterministically. One longstanding
tradition in philosophy is labeled incompatibilism (or hard determinism). It asserts
that if determinism is true, then there is no free will. Another venerable tradition can
be labeled supercompatibilism (or hard indeterminism).® It asserts not only that
determinism is compatible with free will but also that determinism is required for free
will. Or to put it in a form that parallels our formulation of compatibilism, if indeter-
minism is true, then there is no free will. But since either determinism or indeterminism
must be true, the only way both positions can hold is for there to be no free will.

Incompatibilists assume that if agents acted freely they must have had available
to them genuine alternatives. The test typically used for the availability is that they
‘“‘could have done otherwise.’’ Using a tracing back construction the incompatibilist
then argues that in a deterministic setting the agents could not have done otherwise.
For trace back the causal antecedents of the act in question to a time before which the
agents were born. The physical state of the universe at that time together with the
relevant laws of physics then uniquely fixes the action (at least insofar as it is
physically characterizable); but surely the earlier state is beyond the agents’ control.
In the Discussion Questions the reader 1s asked to consider a detailed version of this

¢ The more usual terminology speaks of compatibilism or soft a’etefminism. The view labeled here as
hard indeterminism is defended by Hobart (1966); see below.
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tracing back construction. For present purposes it suffices to consider a cruder but still
intuitively effective means of motivating the incompatibilist viewpoint. It starts from
the idea that what counts for freedom is the power to do otherwise in the same circum-
stances. (If I am in a straightjacket and unable to play tennis, it is cold comfort indeed
to be told that I have the power to play tennis in other circumstances, namely, when
I am not strapped up.) It continues with the idea that if I have the power to do X, then
there must be possible cases where I do X. But if the circumstances include the physical
state just prior to the action in question, then determinism implies that there is no phys-
ically possible case where I do other than I actually did while the same circumstances
obtain and, hence, that I could not have done otherwise in the same circumstances.

Turning to the opposite side of the coin, supercompatibilists claim that an
undetermined action is a misnomer—it is something that just happens to the agents
rather than something they do. R.E. Hobart’s (1966) version of this claim was that
if the agent’s behavior was undetermined, ‘it [was] just as if his legs should suddenly
spring up and carry him off where he did not prefer to go’’ (p. 70). This may not seem
correct since we do not seem to have any trouble distinguishing cases where agents’
actions are in accord with their desires from cases where a spontaneous jerk or twitch
produces behavior not in accord with their desires. But it does pose the challenge of
giving an account of agency in the indeterministic setting. In the first place we cannot
maintain that Jane was the author of her action in the strong sense that her choosing
or willing, together with the underlying physical state, determined her action A; for
whatever exactly this phrase means it is presumably incompatible with the conse-
quence that, because of indeterminism, in the very same circumstances—including
her choosing and willing—her behavior might not have included A. It remains open
that Jane’s choosing or willing indeterministically caused A. Here we can appeal to
two ideas: First, that, as in QM, indeterminism does not entail complete lawlessness
but may be expressed by means of probabilistic laws; and second, that Jane’s choos-
ing or willing is a probabilistic cause of A in that it raises the lawful probability of A’s
happening. It is doubtful, however, that such a probabilistic link is strong enough to
sustain a robust sense of agency. If the probabilistic laws involved are like those of
QM, then given all of the particulars of the circumstances, including Jane’s choosing
and willing, it was still a matter of chance that her behavior included A. Her choosing
and willing were not causes of A in the sense that counts in the courts to determine
responsibility in tort cases: that is, but for her willing and choosing, A would not have
occurred. (This was pointed out by Arthur Fine (forthcoming). See Nozick (1981) for
an attempt to describe indeterministic choices.)

In a desperate bid to rescue agency from the incompatibilists, Chisholm (1982)
proposes to remove the self from the flow of events in the physical world. The super-
compatibilist is also circumvented because, according to Chisholm, the self determines
or brings about an action in manner that cannot be translated into talk about events
determining or causing other events.” The price of this rescue is to remove the free
actions of mankind from the ken of science, for science codifies its results in laws,
deterministic or indeterministic, stated in terms of connections between happenings in
the world of space and time.

7 Chisholm’s (1982) doctrine is suggested by Aristotle’s dictum that ‘A staff moves a stone, and is
moved by a hand, which is moved by a man.”’
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It seems then that the attempt to locate human agents in nature either fails in a
manner that reflects a limitation on what science can tell us about ourselves, or else
it succeeds at the expense of undermining our cherished notion that we are free and
autonomous agents.

DISCUSSION QUESTIONS

1. No general definition of determinism, either for theories or for physical systems, has been given
in this chapter. Remedy this defect by providing what you take to be the most fruitful definition.

2. Suppose that any true and contingent universal generalization that makes no reference to par-
ticular individuals or particular spatiotemporal locations is counted as a law of nature. Then the
doctrine of determinism trivializes. Discuss.

3. Consider a case of Newtonian particles that escape to spatial infinity in a finite time. (Draw the
spacetime history of such an escape particle. How can it reach spatial infinity without ever going
infinitely fast?) It would seem that in such a case mass and particle number are not conserved.
Does the violation of these conservation principles show that this scenario is not genuinely
physically possible? '

4. Is deterministic prediction possible in Minkowski spacetime, the setting for special relativity
theory? (a) Define the domain of deterministic prediction DP(R) for a region R of Minkowski
spacetime to consist of all those points which (i) are not in C*(R) but (ii) are in D*(C(R)).
Here, C 7 (R) (the causal past of R) consists of all those points in the past light cone of R, and
D™ (X) (the future domain of dependence of X) consists of all those points p such that any causal
curve through p can be extended in the past direction until it meets X. Show that for typical regions
R of Minkowski spacetime, DP(R) is empty. (b) Justify the definition given in (a). (¢) Do the
results of (a) and (b) show that deterministic prediction is not possible in relativity theory?

5. (Alternative derivation of Bell’s inequalities) Let

g ={NEAA, = +1}

t

etc.
B ={N&A: B, = +1}

In this notation, the anticorrelation condition says that

d; "B =& = df NRT
Show that

A, UB, = A = AT URBT
and that

_ ATNBT = (A NRB, Ny HU(A NBT NBF ).
Use these results to derive
Pr((A, = +D&B, = +1)) = PH{(A; = +D&(B, = +1))

+Pr((A, +1)& (B, = +1)).

6. Evaluate the following attempt to show that determinism and free will are incompatible: A
necessary condition for agents to have acted freely is that they could have done otherwise; but
determinism means that no one could have done other than they did in fact do. To establish the
second claim, consider the following argument offered by Peter van Inwagen (1982). Let L stand
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for the laws of physics and let P, and P, stand respectively for the propositions that express that

physical states of the universe at times f, and t,. Choose #, to be a time before which person J

was born. If J did not in fact raise his hand at ¢, and determinism is true, then J could not have

raised his hand at ¢, because:

a. Determinism means that P,&L entails P,.

b. If J had raised his hand at ¢;, then P, would be false.

¢. If (b) is true, then if J could have raised his hand at ¢;, J could have rendered P, false.

d. If J could have rendered P, false, and if Py&L entails P,, then J could have rendered Py&L
false.

e. IfJ could have rendered P,&L false, then either J could have rendered P, false or else J could
have rendered L false.

f. But at ¢, J could not have rendered P,, false because the state of the universe before J was born
is beyond J’s control.

g. And at ¢,, or any other time, J could not have rendered L false because no human agent has
the power to determine what is and what is not a law of nature.

h. Therefore, J could not have raised his hand at ¢,.

7. Bell’s theorem uses probabilistic mequalities to show that the assumptions of EPR are incom-
patible with QM. A new proof which dispenses with these inequalities is given by D.M.
Greengberger et al., “‘Bell’s theorem without inequalities,”” American Journal of Physics 58
(1990): 1131-1142. Summarize the main steps of the proof.
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Appendix: Can Quantum-Mechanical Description of
Physical Reality Be Considered Complete?*

Albert Einstein, Boris Podolsky, and Nathan Rosen

In a complete theory there is an element corresponding to each element of reality. A
sufficient condition for the reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In quantum mechanics in the case of

* Originally published in Physical Review, 47, 777-80 (1935). Copyright, America Physical Society.

Permission granted by The Albert Einstein Archives, The Hebrew University of Jerusalem, the editors of The
Physical Review, and the editors of the Einstein Papers, Boston University.
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two physical quantities described by non-commuting operators, the knowledge of one
precludes the knowledge of the other. Then either (1) the description of reality given
by the wave function in quantum mechanics is not complete or (2) these two quantities
cannot have simultaneous reality. Consideration of the problem of making predictions
concerning a system on the basis of measurements made on another system that had
previously interacted with it leads to the result that if (1) is false then (2) is also false.
One is thus led to conclude that the description of reality as given by a wave function
is not complete.

1.

Any serious consideration of a physical theory must take into account the distinction
between the objective reality, which is independent of any theory, and the physical
concepts with which the theory operates. These concepts are intended to correspond
with the objective reality, and by means of these concepts we picture this reality to
ourselves. ' ‘

In attempting to judge the success of a physical theory, we may ask ourselves two
questions: (1) “‘Is the theory correct?’” and (2) “‘Is the description given by the theory
complete?’’ It is only in the case in which positive answers may be given to both of
these questions, that the concepts of the theory may be said to be satisfactory. The
correctness of the theory is judged by the degree of agreement between the conclusions
of the theory and human experience. This experience, which alone enables us to make
inferences about reality, in physics takes the form of experiment and measurement. It
is the second question that we wish to consider here, as applied to quantum mechanics.

Whatever the meaning assigned to the term complete, the following requirement
for a complete theory seems to be a necessary one: every element of the physical
reality must have a counterpart in the physical theory. We shall call this the condition
of completeness. The second question is thus easily answered, as soon as we are able
to decide what are the elements of the physical reality.

The elements of the physical reality cannot be determined by a priori philo-
sophical considerations, but must be found by an appeal to results of experiments and
measurements. A comprehensive definition of reality is, however, unnecessary for
our purpose. We shall be satisfied with the following criterion, which we regard as
reasonable. If, without in any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity, then there
exists an element of physical reality corresponding to this physical quantity. It seems
to us that this criterion, while far from exhausting all possible ways of recognizing a
physical reality, at least provides us with one such way, whenever the conditions set
down in it occur. Regarded not as a necessary, but merely as a sufficient, condition
of reality, this criterion is in agreement with classical as well as quantum-mechanical
ideas of reality.

To illustrate the ideas involved let us consider the quantum-mechanical descrip-
tion of the behavior of a particle having a single degree of freedom. The fundamental
concept of the theory is the concept of state, which is supposed to be completely
characterized by the wave function s, which is a function of the variables chosen to
describe the particle’s behavior. Corresponding to each physically observable quan-
tity A there is an operator, which may be designated by the same letter.
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If {s is an eigenfunction of the operator A, that is, if
V' =AY = ay, (1)

where a is a number, then the physical quantity A has with certainty the value a
whenever the particle is the state given by ¥. In accordance with our criterion of
reality, for a particle in the state given by ¢ for which Eq. (1) holds, there is an
element of physical reality corresponding to the physical quantity A. Let, for exam-
ple,

‘b — e(2'n'i/h)p0x’ (2)

where & is Planck’s constant, p, is some constant number and x the independent
variable. Since the operator corresponding to the momentum of the particle is

p = (W2wi)dlx, (3)

we obtain
¥ = po = (B2wi)dox = poy. (4)

Thus, in the state given by Eq. (2), the momentum has certainly the value p,. It thus
has meaning to say that the momentum of the particle in the state given by Eq. (2)
is real.

On the other hand if Eq. (1) does not hold, we can no longer speak of the
physical quantity A having a particular value. This is the case, for example, with the
coordinate of the particle. The operator corresponding to it, say g, is the operator of
multiplication by the independent variable. Thus,

qb = xb * al. (5)

In accordance with quantum mechanics we can only say that the relative probability
that a measurement of the coordinate will give a result lying between a and b is
b — b
P(a,b)=f¢¢dx= dx = b — a. (6)
a a
Since this probability is independent of a, but depends only upon the difference
b — a, we see that all values of the coordinate are equally probable.

A definite value of the coordinate, for a particle in the state given by Eq. (2),
is thus not predictable, but may be obtained only by a direct measurement. Such a
measurement however disturbs the particle and thus alters its state. After the coor-
dinate is determined, the particle will no longer be in the state given by Eq. (2). The
usual conclusion from this in quantum mechanics is that when the momentum of a
particle is known, its coordinate has no physical realiry.

More generally, it is shown in quantum mechanics that, if the operators corre-
sponding to two physical quantities, say A and B, do not commute, that is, if
AB # BA, then the precise knowledge of one of them precludes such a knowledge of
the other. Furthermore, any attempt to determine the latter experimentally will alter
the state of the system in such a way as to destroy the knowledge of the first.

From this follows that either (1) the quantum-mechanical description of reality
given by the wave function is not complete or (2) when the operators corresponding
fo two physical quantities do not commute the two quantities cannot have simulta-
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neous reality. For if both of them had simultaneous reality—and thus definite values—
these values would enter into the complete description, according to the condition of
completeness. If then the wave function provided such a complete description of
reality, it would contain these values; these would then be predictable. This not being
the case, we are left with the alternatives stated.

In quantum mechanics it is usually assumed that the wave function does contain
a complete description of the physical reality of the system in the state to which it
corresponds. At first sight this assumption is entirely reasonable, for the information
obtainable from a wave function seems to correspond exactly to what can be measured
without altering the state of the system. We shall show, however, that this assumption,
together with the criterion of reality given above, leads to a contradiction.

2.

For this purpose let us suppose that we have two systems, I and II, which we permit
to interact from the time ¢t = 0 to t = T, after which time we suppose that there is
no longer any interaction between the two parts. We suppose further that the states of
the two systems before # = 0 were known. We can then calculate with the help of
Schrodinger’s equation the state of the combined system I+ II at any subsequent time;
in particular, for any r > T. Let us designate the corresponding wave function by .
We cannot, however, calculate the state in which either one of the two systems is left
after the interaction. This, according to quantum mechanics, can be done only with
the help of further measurements, by a process known as the reduction of the wave
packet. Let us consider the essentials of this process.

Let a;, a,, a5, . . . be the eigenvalues of some physical quantity A pertaining
to system I and u,(x,), u,(x,), u5(x,), . . . the corresponding eigenfunctions, where
x, stands for the variables used to describe the first system. Then i, considered as a
function of x,, can be expressed as

co

‘I'(xl,xz) =n El W, (x)u,(x), 7
where x, stands for the variables used to describe the second system. Here { ,(x,) are
to be regarded merely as the coefficients of the expansion of s into a series of
orthogonal functions u,,(x;). Suppose now that the quantity A is measured and it is
found that it has the value a,. It is then concluded that after the measurement the first
system is left in the state given by the wave function u,(x,), and that the second
system is left in the state given by the wave function Y5, (x,). This is the process of
reduction of the wave packet; the wave packet given by the infinite series (7) is
reduced to a single term s (x,)u(x;).

The set of functions #,(x,) is determined by the choice of the physical quantity
A. If, instead of this, we had chosen another quantity, say B, having the eigenvalues
by, by, by, . . . and eigenfunctions v,(x,), v, (x;), v5(x;), . . . we should have
obtained, instead of Eq. (7), the expansion

Ve, 1) = S 0,0, (8)
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where ¢,’s are the new coefficients. If now the quantity B is measured and 1s found
to have the value b,, we conclude that after the measurement the first system is left
in the state given by v,.(x,) and the second system is left in the state given by @,(x,).

We see therefore that, as a consequence of two different measurements per-
formed upon the first system, the second system may be left in states with two
different wave functions. On the other hand, since at the time of measurement the two
systems no longer interact, no real change can take place in the second system in
consequence of anything that may be done to the first system. This is, of course,
merely a statement of what is meant by the absence of an interaction between the two
systems. Thus, it is possible to assign two different wave functions (in our example
yi, and @,.) to the same reality (the second system after the interaction with the first).

Now, it may happen that the two wave functions, {5, and ¥, are eigenfunction.
of two noncommuting operators corresponding to some physical quantities P and Q,
respectively. That this may actually be the case can best be shown by an example. Let
us suppose that the two systems are two particles, and that

\P(Xl, xz) — f e(2~n'1/h) (x]—x +x0)pdp’ (9)

=G

where x,, is some constant. Let A be the momentum of the first particle; then, as we

have seen in Eq. (4), its eigenfunctions will be
up(x]) — e(ZTrf/h)pxl (10)

corresponding to the eigenvalue p. Since we have here the case of a continuous
spectrum, Eq. (7) will now be written

o 11
W(x,, x5) =f P, (xp)u,(x, )dp, (1)

where
Uixy) = e (2mil h)X(x2 = x0)p_ (12)
This {5, however is the eigenfunction of the operator
P = (h2wi)olox,, (13)

corresponding to the eigenvalue — p of the momentum of the second particle. On the
other hand, if B is the coordinate of the first particle, it has for eigenfunctions

v(x;) = d(x; — x), (14)

corresponding to the eigenvalue x, where d8(x; — x) is the well-known Dirac delta-
function. Eq. (8) in this case becomes

o 15
Y(x,, xy) = f @ (x2)v (x,)dx, (15)
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where

o ; 16
o) = [ PO Gy s = xy k.

-00

This ¢,, however, is the eigenfunction of the operator

Q = x, (17)

corresponding to the eigenvalue x + x; of the coordinate of the second particle.
Since

PQ — QP = h/2mi, (18)

we have shown that it is in general possible for {5, and ¢, to be eigenfunctions of two
noncommuting operators, corresponding to physical quantities.

Returning now to the general case contemplated in Egs. (7) and (8), we assume
that s, and ¢, are indeed eigenfunctions of some noncommuting operators P and Q,
corresponding to the eigenvalues p, and g,, respectively. Thus, by measuring either
A or B we are in a position to predict with certainty, and without in any way disturbing
the second system, either the value of the quantity P (that is p,) or the value of the
quantity Q (that is g,). In accordance with our criterion of reality, in the first case we
must consider the quantity P as being an element of reality, in the second case the
quantity Q is an element of reality. But, as we have seen, both wave functions {s, and
¢, belong to the same reality.

Previously we proved that either (1) the quantum-mechanical description of
reality given by the wave function is not complete or (2) when the operators corre-
sponding to two physical quantities do not commute the two quantities cannot have
simultaneous reality. Starting then with the assumption that the wave function does
give a complete description of the physical reality, we arrived at the conclusion that
two physical quantities, with noncommuting operators, can have simultaneous real-
ity. Thus the negation of (1) leads to the negation of the only other alternative (2).
We are thus forced to conclude that the quantum-mechanical description of physical
reality given by wave functions is not complete.

One could object to this conclusion on the grounds that our criterion of reality
is not sufficiently restrictive. Indeed, one would not arrive at our conclusion if one
insisted that two or more physical quantities can be regarded as simultaneous ele-
ments of reality only when they can be simultaneously measured or predicted. On this
point of view, since either one or the other, but not both simultaneously, of the
quantities P and Q can be predicted, they are not simultaneously real. This makes the
reality of P and Q depend upon the process of measurement carried out on the first
system, which does not disturb the second system in any way. No reasonable defi-
nition of reality could be expected to permit this.

While we have thus shown that the wave function does not provide a complete
description of the physical reality, we left open the question of whether or not such
a description exists. We believe, however, that such a theory is possible.
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PART III. PHILOSOPHY OF BIOLOGY AND MEDICINE

Seven

PHILOSOPHY
oF BioLocy

James G. Lennox

Does biology deploy concepts, patterns of explanation, theories and research methods
which are fundamentally different from those found in the physical sciences? If so, is
this in principle the case, or is biology destined to gradually merge with chemistry and
atomic physics as a subdiscipline? Or to put the question from the standpoint of the
objects of biological research—what, if anything, is special about living things?
“These are the underlying questions which motivate much of the philosophy of biology
today.

In practice, biology consists of a loosely connected set of disciplines ranging
from those which study interactions among large groups of organisms spread across
space and time—ecology, biogeography, paleontology—to those which focus on
biochemical processes at the molecular and submolecular level. Those theoretical
achievements in our century which have managed to unify these disciplines to some
extent are Darwinian evolutionary theory and genetics, and it is not surprising that
these theoretical disciplines have been the focus of most philosophical attention (see
the introductory texts by Hull 1973 or Rosenberg 1985). The goal of this chapter is
to explore certain philosophical questions regarding a central component of Evolu-
tionary Biology, the theory of natural selection. In the following chapter, Dr. Ken-
neth Schaffner will focus attention on the biomedical sciences, in which the concepts
and methods of the biochemist and molecular geneticist play a central role.

The scientific explanations provided by evolutionary biology are formulated
with concepts such as ‘‘inclusive fitness,”” ‘‘adaptation,’” ‘‘design,’” ‘‘niche,”” and
“‘genetic drift,”” and are often overtly historical and/or teleological in character. In
this chapter, then, our goal is to understand these concepts and types of explanation.
This will contribute to understanding why it is that evolutionary theory is a central
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unifying theory within biology. Doing so is all the more important given the recent
revival of the Christian fundamentalist claim that evolutionary biology is no more
scientific than is the biblical account of life’s history in the book of Genesis. By the
end of this chapter you will be able to evaluate this claim.

In a manner similar to Chapter 5, this chapter will approach the philosophical
questions raised by current evolutionary theory by tracing the historical emergence of
those questions as the theory developed. Just as so many of the philosophical issues
in contemporary physics can be traced back to Einstein, so in evolutionary biology
most, if not all, roads lead back to Charles Darwin.

7.1 THE DARWINIAN ORIGINS

Scientific theories do not spring on stage fully developed, with their range fully
established and with their empirical credentials in hand. They may begin as the
recommendation of an alternative kind of answer to traditional questions or from the
recognition of new questions in need of an answer. They develop historically, often
in ways unimagined by their originators. Questions having to do with the proper way
to define a theory’s basic concepts, the nature of its empirical support, the best way
to formulate and interpret its explanations, the relation of its concepts and principles
to other theories in other sciences, emerge from this development—and the form
answers to these questions take often helps to shape its further development. In order
to understand and evaluate the answers to these philosophical questions, it helps to
have a sense of a theory’s history. It will serve us well, then, to begin with the
following summary of the Darwinian theory of evolution, penned by its originator,
Charles Darwin:

If during the long course of ages and under varying conditions of life, organic beings vary at
all in the several parts of their organisation, and I think this cannot be disputed; if there be,
owing to the high geometrical powers of increase of each species, at some age, season, or
year, a severe struggle for life, and this certainly cannot be disputed; then, considering the
infinite complexity of the relations of all organic beings to each other and to their conditions
of existence, causing an infinite diversity in structure, constitution, and habits, to be advan-
tageous to them, I think it would be a most extraordinary fact if no variation ever had
occurred useful to each being’s own welfare, in the same way as so many variations have
occurred useful to man. But if variations useful to any organic being do occur, assuredly
individuals thus characterised will have the best chance of being preserved in the struggle for
life; and from the strong principle of inheritance they will tend to produce offspring similarly
characterised. This principle of preservation, I have called, for the sake of brevity, Natural
Selection. (Darwin [1859] 1964, 126-127)

This model of evolution by natural selection was first outlined by Charles
Darwin (1809-1882) in a sketch written nearly twenty years before the above sum-
mary, from On the Origin of Species, was published. It provides us with an explan-
atory pattern, identifying in abstract form the kinds of processes and conditions that
will produce modifications in species by means of natural selection. By referring to
this passage as providing an explanatory pattern 1 mean that, while it is not itself an
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explanation, it does tell the reader the kinds of entities and processes to be mentioned
in an ideal evolutionary explanation (Kitcher 1985a, 132-139; Brandon 1990, 159—
183).

The Darwinian model of evolution by natural selection begins by specifying five
fundamental features of organic life:

1. organic populations are parts of an ancestor-descendant history;

2. the members of such populations inherit traits from their ancestors and pass
them on to their descendents;

3. they also vary with respect to those heritable traits;

4. owing to their tendency to increase their numbers geometrically, the members
of such populations compete with each other for limited resources;

5. the environment in which they live is infinitely complex and constantly chang-
ing.

Given these facts, Darwin tells us that the probabilities are high that (a) some
of the variations mentioned in (3) will put their possessors at a competitive advantage
relative to others; (b) the organisms with these advantageous variations will have the
best chance of surviving; and (c¢) they will thus tend to leave a disproportionate
number of offspring with these variations in the next and succeeding generations.

Darwin spent the first four chapters of the Origin—the pages leading up to the
summary quoted above—providing strong warrant for the truth of (1)-(5). Much
effort has been spent in recent years trying to make a conclusion about evolutionary
change follow deductively from some reconstruction of that summary. This misses
the point. Darwin was presenting a causal model, not a deductive proof, and the
above passage’s primary concern is to specify abstractly a set of processes which,
were they to interact in certain ways over long periods of time, would ‘‘mechani-
cally’’ produce certain patterns of change.

At the core of Darwinian evolutionary theory then, is a set of abstract propo-
sitions which identify the causal basis of natural selection. While we now know that
it is possible for evolutionary change within populations to take place without the
operation of natural selection, the principle of natural selection remains the essential
core of evolutionary explanation.

Given the central role of the processes of variation, inheritance and selection in
this model, Darwin’s candid admission of ignorance regarding the mode of operation
of all three is remarkable. At the opening of his discussion of the laws of variation he
explains that to describe them as due to chance *‘serves to acknowledge plainly our
ignorance of the cause of each particular variation”” (Darwin [1859] 1964, 131).
Early in the first chapter he notes that *‘[tjhe laws governing inheritance are quite
unknown’’ (ibid., 13). And finally, immediately after the summary of his theory
quoted earlier, Darwin seeks to disarm his critics with the following disclaimer:

Whether natural selection has really thus acted in nature, in modifying and adapting the
various forms of life to their several conditions and stations, must be judged of by the general
tenour and balance of evidence given in the following chapters. (ibid., 127)
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The point of this remark 1s that, at the time Darwin presented the theory, no one,
himself included, had actually observed the operation of selection in wild popula-
tions, though Darwin had done a careful review of the ways in which breeders of
domestic animals and plants produce distinct varieties. In Darwin’s view, the best
evidence for the theory’s truth was its ability to explain, by reference to the above
causal model, a vast number of apparently unconnected biological generalizations—
patterns found in the fossil record, in the current distribution of animals and plants
around the world, in their development, anatomy and classification. In Darwin’s time
this sort of support was referred to as a ‘‘consilience of inductions,”’! and it was with
considerable frustration that he noted how reviewers of the Origin conveniently
ignored this part of his argument.

Nonetheless, ignorance regarding the mechanisms of inheritance, variation and
natural selection made it possible for critics to voice reasonable doubts about the
theory put forward in the Origin. For natural selection is not an inevitable conse-
quence of combining any mechanism of inheritance with any degree and kind of
variabilty under any conditions of competition, as a number of reviewers were quick
to observe. It all depends on the nature of inheritance, on the amount, sources and
extent of variation and on the dynamics of populations. Furthermore, even had
Darwin established that species could originate through natural selection, that would
not establish 1t as the only source of new species. Darwin had left much work to be
done.

And much of it was done, by a legion of biologists between 1860 and 1950,
many of whom gave little thought to the relationship of their work to Darwin’s. In the
process of trying to work out the laws governing the formation of hybrids in plants,
a scientifically trained monk named Gregor Mendel derived certain basic theorems
about the process of inheritance. Mendel determined that one ‘‘factor’” or “‘element’’
from the reproductive cells of each parent plant (to be coined a ‘‘gene’” by W.
Johannsen in 1909) combined to determine the character of each trait of the offspring,
that these factors continued to exist, independently of each other, in the cells of the
offspring, and were distributed in the next generation according to the laws of chance.
(Mendel’s experiments will be discussed in more detail momentarily.)

Mendel’s results were published in 1865, but they were not integrated into the
study of inheritance and variation until after Mendel’s work was independently cited
as precedent by three different researchers in 1900, and its importance championed by
the British geneticist William Bateson. Study of the processes involved in the pro-
duction of the reproductive cells (gametes) and fertilization were becoming experi-
mentally more sophisticated during the same period, and in the early 1900s the first
hints emerged that the chromosomes, microscopically visible structures within the
cell nucleus, found in varying but species-constant numbers throughout the animal
and plant kingdoms, might somehow *‘carry’” Mendel’s *‘parental factors’” (genes).

' Vaguely assumed to derive from Sir Issac Newton's ([1687] 1962) Rules of Philosophizing, this notion
was popularized in the nineteenth century by Whewell (1837) and Herschel ([1830] 1987). In Whewell’s words,
‘. . . the evidence in favour of our induction is of a much higher and more forcible character when it enables
us to explain and determine cases of a kind different from those which were contemplated in the formation of
our hypothesis.”” Compare Herschel, Chapter 6, Sections 181-132.
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This suggestion was initially based on interesting similarities between the behavior of
chromosomes during the production of male and female sex cells (called meiosis) and
their eventual union (fertilization) on the one hand, and the behavior of Mendelian
factors on the other. In both cases there was an initial halving of the number of
factors, followed by a pair-wise recombination which restored the original number.

Elegant experiments with populations of fruit flies in the laboratory of T. H.
Morgan at Columbia University beginning in 1910 established the association of
Mendelian factors, or genes, with chromosomes beyond reasonable doubt. Work by
Morgan and many others opened up a host of inquiries regarding the physical char-
acteristics of these genes. Elaborate experimental methods were created for deter-
mining their positions on the chromosome, and their patterns of transmission, as well
as the precise character of the processes of cell division and fertilization.

During the same period numerous researchers were beginning to investigate the
causes of genetic mutation (apparently random changes in genes) and to measure rates
of mutation in experimental populations. Specific questions regarding the role of the
environment in gene expression led to the important distinction between the genotype
and phenotype (that is, between the inherited source of a trait and its observable
expression). Initially, research intended to test, modify and extend the Mendelian
model of inheritance focused on cases of discontinuous variation originating as ‘‘mu-
tations,”’ that is, cases in which the variations in a trait were few and discrete, with
no intermediate forms—for example, populations with red and white flowers and no
intermediate colors. Some, such as Hugo De Vries and T. H. Morgan, went so far as
to suggest that mutation was the crucial process in creating new species, relegating
selection to the less ‘‘creative’’ role of eliminating unfit mutants.

Darwin, on the other hand, had insisted that small, continuous variations served
as the material for selection, and that selection produced species by a slow process of
“‘adding up’’ these small differences in certain directions. A number of his followers,
involved with the careful measurement of changes in continuous variations, thus saw
themselves as the defenders of orthodox Darwinism, upholders of Darwin’s motto,
‘‘Natura non facit saltum’’ (Nature makes no leaps). Their careful mathematical
analyses revealed patterns in the transmission of characteristics from parent to off-
spring populations that could not be explained along simple Mendelian lines. Thus in
the period from 1900-1915 there appeared to be a conflict between *‘mutationist’
and ‘‘selectionist’’ theories of evolution. Eventually, however, researchers were able
to demonstrate that such patterns could result from the interactions of more than one
pair of genes (polygenic inheritance), or of interactions between the genotype and the
environment. Gradually then, Darwin’s insistence that slight, continuously varying
traits were the ‘‘raw materials’” upon which natural selection operated became com-
patible with a modified Mendelian mechanism of inheritance.

Mendelism also helped Darwinism resolve one of its longstanding problems.
Though admitting his ignorance of the laws of inheritance, Darwin often imagined
that the different characteristics of parents would blend in their offspring, resulting in
characteristics intermediate between those of the parents. For example, a mating
between a long-legged and a short-legged wolf would produce cubs with legs inter-
mediate in length between those of the parents. An astute critic of the Origin,
Fleeming Jenkin, pointed out that when such a theory of inheritance is combined with
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Darwin’s insistence that selection acts only on slight individual differences, even a
trait with a very great selective advantage would have very little evolutionary impact
(Jenkin [1867] 1983, 312-320). Darwin recognized the power of Jenkin’s argument,
and systematically changed later editions of the Origin to stress a model whereby
selection favors not rare individuals with slight differences, but all the organisms with
variations tending in the advantageous direction. In the following passage, for ex-
ample, after noting that even if a strong advantage were conferred on an individual
bird with a strongly curved beak, blending would prevent selection changing the
species in this direction, he goes on to suggest a solution:

[B]ut there can hardly be a doubt . . . that this result would follow from the preservation
during many generations of a large number of individuals with more or less strongly curved
beaks, and from the destruction of a still larger number with the straightest beaks. ([1872]
1962, 101)

Here, Darwin is trying to solve a problem which arises by assuming that the
units of inheritance blend during mating. Mendelian genes, however, do not blend
when they combine—each generation sees a reshuffling of these stable and indepen-
dent units of inheritance, influenced by occasional mutations and migrations of new
genes into the population. This picture of inheritance laid to rest worries that the
blending of slight variations with the population norm would prevent selection from
affecting any serious evolutionary change. One of the initial triumphs of neo-
Darwinism, in fact, was to show that a single mutation, conferring only a slight
reproductive advantage on its possessor, could spread rather rapidly through a large
interbreeding population. Initial resistance to a Mendelian mechanism of inheritance
had, by the 1930s, given way to whole-hearted acceptance. (For a more detailed and
less anachronistic telling of the story, see Provine 1971.)

A crucial development in insuring the integration of Mendelian genetics with a
Darwinian evolutionary theory was generalizing Mendel’s results from the special
case of self-fertilizing hybrid crosses to what one actually finds in nature, namely,
randomly interbreeding wild populations. This step in the development was so small
as to be recognizable only in retrospect. In response to a casual question put to him
during a cricket match by the experimentalist R.C. Punnett, the mathematician G. H.
Hardy pointed out that Mendel’s laws, derived from the crossing of pure lines fol-
lowed by repeated self-fertilization of the resulting hybrids, could be generalized to
apply to large randomly breeding populations.? Neither Punnett nor Hardy had any
idea of the significance of this conversation for evolutionary theory—without realiz-
ing it, they had created population genetics.

Population genetics is the statistical study of patterns of inheritance and variation
in organic populations. Recall that Mendel experimented with populations of pea plants
which differed discontinuously from one another with respect to seven different char-
acters. Mendel sought to discover what would result from systematically mating the
plants with these discrete traits of the same character. For example, in one case (see

% The founding document is a brief note written by a mathematician to correct an error made by a
biologist about the implications of Mendel’s laws for ‘‘mixed’’ populations. See Hardy ({1908] 1959).
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Table 7.1) Mendel fertilized ova from pea plants with Tall stocks with pollen from
those with Short stocks. The resulting first filial generation (F1) of plants were all Tall.
He then took careful steps to insure that all these F1 plants were self-fertilized (i.e.,
pollen from a given plant fertilized that plant’s own egg cells). The result of these
“‘selfings’” was that the character (Tall) which had appeared in all the plants of the F1
generation appeared in approximately % of those of the second filial generation (F2),
while the alternative parental character [Short] appeared in approximately %2 of the total
number of F2 plants. This 3:1 ratio of Tall to Short plants that Mendel observed in the
F2 generation was to be expected on three assumptions: (1) that each parent’s contri-
bution to their offspring remains distinct in the F1 generation—they neither blend with
nor destroy one another; (2) that these contributions tend to combine, during self-
fertilization, according to the laws of chance; and (3) that one parental character is
dominant, that is, that when a seed possesses two different parental characters the re-
sulting plant always appears like one rather than the other parent, in this case like the
Tall parent. (Remember that a common assumption at this time, one which Darwin
sometimes seemed to share, was that the offspring would have a characteristic inter-
mediate between those of the parents. Mendel’s results contradicted this assumption. )

If these assumptions were true, then the F2 Tall plants, while they all looked
alike, must be a mixture of two different sorts of plants; those which were of the pure
Tall type, and some which were hybrids of Tall and Short, with Tall dominating. The
Short plants, on the other hand, must be purely Short, for if they were hybrids the Tall
character would dominate and they wouldn’t appear short.

Allowing these F2 plants to self-fertilize, therefore, constituted an immediate
test of these assumptions. If these assumptions were correct, then all the Short plants
should produce nothing but Short offspring; but while approximately one third of the
Tall plants should produce nothing but Tall offspring, the other two thirds should
produce a mixture of Tall and Short plants, in a ratio of 3:1. The results of Mendel’s
experiments are represented in the following tables. As you can see, the F3 results
strongly confirmed the three hypothesized assumptions.

The form of these experiments, and a number of Mendel’s experimental deci-
sions, suggest that they were designed with the above hypothesis in mind. Mendel

TABLE 7.1

Pure Parental Types T (Tall) t (Short)

Cross fertilization T X t
First Filial Generation (F1) AT
Self-fertilization

Second Filial Generation (F2) 3T: 1t
Self-fertilization

Third Filial Generation (F3)

Parents Offspring
aof T AllT
% of T 3T:1t
All of t Allt
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begins by noting that the character which apparently disappeared in the F1 hybrids
reappears 1n a statistically regular way in the F2 generation, and reappears in precisely
the parental form. (The actual ratios were never quite those noted above. His results
approximated those; the approximations became closer the larger the sample, and
those are the ratios to be expected given random segregation, chance recombination
and the dominance of one character over the other, the three assumptions mentioned
earlier. In the experiment just reported, for example, the actual numbers were 787
Tall/277 Short, yielding a ratio of approximately 2.84:1 (See Mendel [1865] 1966,
13.)

Mendel went on to perform a series of complicated back cross experiments
(crossing both pure parental plants of both sexes with both types of hybrids) in order
to confirm a causal theory he had constructed which would explain the above changes
in the distributions of parental characters in subsequent generations. The theory was
that the pollen cells and egg cells of plants possess independent *‘factors’’—genes as
we now say—for each character trait. Each act of fertilization thus combines two fac-
tors, the combinations being governed simply by the laws of chance. The factors re-
sponsible for different characteristics assort independently of each other, as Mendel
discovered by experimenting with combinations of characters simultaneously. When
two different genes for a particular trait combine in one zygote, one somehow ‘‘dom-
inates’’ the other (a condition which is now called heterozygous). Such unobservable
factors in the zygote ‘‘determine’’ the development of the observable characters of the
organisms in each generation. This theory can be represented as the production of dif-
ferent gene combinations, now called genotypes, in each generation as in Table 7.2.

TABLE 7.2
Male F1 Male
A A A a
Female Aa Aa F1 Female AA Aa
Aa aa Aa aa
FI Genotypes F2 Genotypes

[A = dominant gene; a = recessive gene]

(This manner of displaying the results of matings is called the Punnett Square,
named for R. C. Punnett whom you met earlier in this section.)

Mendel’s insights into ‘‘the laws governing the distributions of characters in
hybrids’’ can be transformed into a formula representing the ratio of different genetic
makeups (termed genotypes) in a population formed by the random mating of indi-
viduals with different forms of the same gene (heterozygotes). If we represent the
different forms of the gene at the same locus (known as different alleles) by A and
a respectively, that formula will look like this:

AA:2Aa:aa.
The frequencies of the different genotypes can then be represented as follows:

PP+ 2pq + g =1
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where p = the frequency of A, q = the frequency of a, andp + q = 1. (You may
have noticed that the Hardy-Weinberg Principle is derived from the frequency of each
of the alleles A and a by an application of two of the axioms of probability you
learned in Chapter 2, namely, Rule 3 [special addition] and Rule 4 [special multi-
plication]. See Chapter 2, Section 2.7.)

This formula (which can be expanded for traits with more than two forms and
for applications to characters produced by multiple genes) expresses the idea that,
under conditions of random mating, the genotypic frequencies of an indefinitely large
population should remain constant from one generation to the next. Such a population
is in a state biologists refer to as Hardy-Weinberg equilibrium (HWE henceforth). (It
turns out the formula worked out by Hardy during a cricket match had been presented
by W. Weinberg during a lecture in Stuttgart in January of 1908.) The recombination
of genes during mating in a population in HWE is *‘fair’’—all one needs to know are
the initial frequencies of alleles, and the laws of chance will determine their frequen-
cies in subsequent generations.

An informal ‘‘proof’ of HWE: Assume the frequencies of parental
genotypes are as given by HWE, i.e., p>* AA + 2pg Aa + ¢ aa.
Then the gametes produced by the parent population will be
p* A + pg A + pga + g* a(thatis, all the gametes of the AA par-
ents will be A, ¥ those of the Aa parents will be A and % a, and all the
gametes of the aa parents will be a). So the frequency of the A allele
is p and of the a allele g, as we can easily see.

Frequency of A = p* + pg = p(p+q);butp + g = 1;so frequency

of A = p.
Frequency ofa = ¢*> + pg = g(p+q);butp + g = 1; so frequency
ofa = q.

Assuming no disruptions to random mating, these gamete frequencies
will produce genotype frequencies exactly the same as those found in
the parent population.

The Hardy-Weinberg Law thus gives us a ‘‘base line’” with which we can
compare actual changes in frequencies of alleles across generations of reproductive
communities. Deviations from this base line indicate a disruption of this equilibrium
of genotypic frequencies across generations. A number of factors may lead to such
disruptions: a variety of forms of alteration of the genetic material (mutation), the
migration of new genes into the population (which will change the initial frequen-
cies), random changes in frequencies arising from sampling error (known as genetic
drift), and selection favoring one genotype over another. Assuming other disruptive
forces have been corrected for or ruled out for the moment, population genetics seeks
to build into its models the notion that a change in the frequency of a particular
genotype is a measure of its relative fitness.

Let us take an imaginary example to illustrate how this works. Suppose we are
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studying a population of land snails with shells of two different colors (Brown and
Yellow) which in the laboratory we have determined are due to a single pair of alleles
(B incompletely dominant over Y). Taking a census we find the initial genotypic
frequencies are as follows:

Pl BB = 2000 BY = 4000 YY = 1600.
We wait one generation, and take a new census and find
P2 BB = 1600 BY = 2800 YY = 800.

Now from this we can easily calculate the survival rates for each of the three geno-
types.

Survival rate (A)

1600 _
BB = 5600 =

07 YY=3% _g5

_ 2800 _
— 1600

0.8 BY—m—

Next we calculate the relative fitness of each by assigning the genotype with the
highest survival rate the fitness value 1, and setting the others relative to it.

Fitness (W)
BB = 0.8/0.8 =1 BY = 0.7/0.8 = 0.875 YY = 0.5/0.8 = 0.625

Next we can calculate the selection coefficient (s), which represents the reduction in
fitness of a genotype, by subtracting the fitness value from unity (1 —W).

Selection Coefficient (s) BB = 0 BY = 0.125 YY = 0.375.

To summarize: This population of snails is not in HWE. From P1 to P2 there
was a significant shift in the frequencies of the genotypes in question, the homozy-
gous Brown snails increasing in frequency from roughly 0.357 of the total in P1 to
roughly 0.444 in P2, the heterozygotes increasing much more slowly, and the ho-
mozygous Yellow population decreasing in frequency significantly.

In the above example, the values for W and s were determined solely on the
basis of relative survival frequencies. On the face of it, you might find this rather odd.
After all, it was Darwin’s original insight that differences in fitness or selective
advantage were, under certain conditions, the causes of differences in survival fre-
quencies. Does not population genetics treat measures of the results of differences in
fitness as if these represented the property of fitness itself? Hold on to that question,
for it is a good one. The concepts of fitness and selection embedded in the theoretical
machinery of population genetics are problematic, and will be among our chief
concerns in Section 7.3.

Putting that question aside for the moment, we calculate the frequencies for
each genotype in subsequent generations by multiplying the fitness value determined
for each genotype by its initial frequency. Thus if we are able to determine the
frequencies of alternative genotypes in a population, and fitness values for these
alternatives, we should be able to establish with precision the change in frequency of
a particular allele across generations due to differences in fitness.

Conceiving of fitness in this manner had the effect of changing the way biolo-
gists thought about the evolutionary process. Evolutionary change, among population
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geneticists at least, came to be conceived as gradual changes in the frequencies of
alleles at a given locus—changes in the gene pool as they were called. To the extent
that evolutionary change is change in the genetic makeup of a population across time,
this seemed to give us a mathematically precise way of characterizing evolutionary
change on the basis of the three central components of Darwin’s model—existing
variation, inheritance and fitness. At the same time, however, the concept of fitness
became more and more closely identified with the measurement used within these
models (actual reproductive rate), and less and less closely identified with the com-
plex adaptive interactions with the environment which Charles Darwin viewed as the
essence of natural selection.

Thus, as elegant as this Genetic Model of Natural Selection seems to be, those
variables W and s, representing relative fitness and the coefficient of selection, hide
more than a little mischief. One of the principal achievements of the so-called neo-
Darwinian theory of evolution, the integration of the theory of natural selection with
population genetics, has also produced confusion about the concepts of fitness, ad-
aptation and natural selection, and therefore about the nature of a Darwinian expla-
nation. After we look at some simple yet realistic examples of explanation in
evolutionary biology, we must try to sort out some of these confusions.

7.2 SOME EVOLUTIONARY EXPLANATIONS

What sorts of questions do biologists look to the theory of evolution to answer, and
what sorts of answers are given? There are too many for us to look at even a
representative sample here. We can, however, begin to appreciate its scope by briefly
looking at four examples of evolutionary explanation in which the facts to be ex-
plained are of different sorts, the evidential support for the premises of the explana-
tions varies considerably, but in which the concepts of natural selection, fitness and
adaptation play an important role. This will allow us to keep philosophical discussion
of these concepts anchored in reality.

7.2.1 Case 1. The Evolution of the Horse

While more the exception than the rule, a growing number of evolutionary
histories are supported by a rich collection of fossils. The lineage leading up to the
modern genus Equus, of which the horse is a species, is one such sequence. Espe-
cially after the combination of rich data coming from North American deposits with
earlier data from Europe, a number of patterns in these fossils could be discerned.
Once these patterns were established, they gave rise to a number of questions.

One such pattern emerged from a study of the teeth in this lineage, represented
in Figure 7.1. It will be noticed both that the ratio of molar tooth height to length
increases through time, and that there is an acceleration in the rate of change through
time. Why did the molars in this lineage get taller relative to their (horizontal) length,
and why did this change accelerate across time? Here is the sort of explanation
evolutionists offer:
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Figure 7.1 Evolution of horses’ teeth. From Horses: The Story of the Horse Family in the
Modern World and Through Sixty Million Years of History by G. G. Simpson. Copyright ©
1951 by Oxford University Press, Inc. Reprinted by permission.

There is little doubt that it arose because Merychippus and its descendants abandoned the
habit common to all earlier horses of browsing on leaves, and took the newly evolved grasses
as their main food. Other horse lineages, which although now extinct, survived alongside the
grazing horses for many millions of years, continued to browse on leaves, and in these there
was no increase in the rate of evolution of tooth shape. (Maynard Smith 1972, 254)
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We should note the evidence, not presented here but assumed, upon which one
of the premises of this explanation rests: There was a newly evolved food source, the
grasses, at the time this evolutionary change began; and there is paleoecological
evidence associating the change of molar height with a grazing environment, while
the more stable tooth height is associated with a browsing environment. This asso-
ciation encourages the evolutionary biologist to make what has been termed the
adaptationist assumption: The change in relative tooth height occurred as an adap-
tation to a change in the environment, in this case a change in available nutritional
resources.

But a different sort of assumption is crucial to this argument which is not
mentioned here, though it often is in textbook presentations of this example. You can
identify it if you ask, ‘“Why should the shift to a grassy environment be correlated
with the increase in relative height of teeth?’’ The answer lies in the high silicate
content of the grasses, which makes for increased wear per unit of vegetation con-
sumed. There is an engineering assumption here; relatively taller teeth facilitate the
use of this newly evolved energy source, for such teeth will last longer.

Finally, an assumption is made about the change in question being due to
heritable factors, a reasonable assumption given what we know about the genetics of
current members of the family in question. Thus there is an assumption, not directly
testable, made about the heritability of the trait in question. This example suggests,
in outline, the following explanation:

1. Like any animal population, populations of Mesohippus will possess consider-
able heritable variation, including a mutation rate of around 10 for any given
trait in each generation.

2. As the environment developed a new source of nutrition, those members of
these populations which possessed variations allowing them to exploit this
underexploited source of energy were at a slight advantage relative to other
members of these populations.

3. A relatively taller molar was one such advantageous variation.

4. Thus parents with this heritable variation (other things being equal) left a greater
number of offspring than their cohorts.

5. Thus the frequency of this trait—and of the gene(s) coding for it—increased,
relative to the alternatives, in subsequent generations.

6. This trait thus spread through the population, and the overall character of the
population diverged in this respect from its ancestors.

From this we may abstract the neo-Darwinian pattern of explanation:

There is heritable variation for trait t along Mendelian lines.

The environment provides an adaptive opportunity.

There exists differential adaptation among variants.

This produces differential transmission of traits.

This produces adaptive character change in the population over time.

Al
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7.2.2 Case 2. Sickle Cell Anemia and Malaria

Hemoglobin, the human oxygen transport vehicle in red blood cells, is found in
three distinct forms in certain East African populations. These forms differ in virtue of
one amino acid substitution controlled by a single gene. We may refer to the different
types of hemoglobin by the letters A, AS, and S, and the different genotypes aa, as,
and ss. The a allele shows incomplete dominance over s, so that there are three possible
phenotypic expressions. The aa genotype produces hemoglobin with the optimal ox-
ygen transport capabilities (A), as leads to red blood cells with a combination of he-
moglobins (AS) which are thus somewhat less efficient in this respect, while ss leads
to hemoglobin ($) which leads to the deformation of the cells known as *‘sickling.”’
This produces a number of severe pathophysiological effects which are often fatal.

The puzzling fact, requiring explanation, is that ecological genetical studies
have established that the s allele is found in these populations at a frequency as high
as 23%, whereas it ought (especially given the lack of dominance) to be, on the
theory of natural selection, virtually absent.

The explanation in this case appeals to the concept of heterozygote advantage
(also known as heterosis or overdominance). (For a general discussion of this example,
including the general mathematical population genetic model for such cases, see Ayala
1982, 106-111. For a nice discussion of current molecular knowledge of the hemo-
globins, including a discussion of the molecular mechanisms involved in sickle-
cell anemia, see Rosenberg 1985, 73-83.) A correlation was discovered between
populations in which the s allele was present at high frequencies in the presence of
mosquitoes carrying the malaria-producing parasite Plasmodium falciparum. Epide-
miological studies then revealed that having AS-hemoglobin provided resistance to
malaria. Thus in environments where the probability of contracting malaria is high,
persons with the as genotype are at an advantage when compared both to the aa and
to the ss homozygotes. Compare the two maps in Figure 7.2 showing the distribution
of AS-hemoglobin and of Plasmodium falciparum, respectively.

A number of features relevant to later discussion distinguish this example from
Case 1. First, it is concerned with a different type of question. The question to be
answered concerns the genetic and phenotypic makeup of a present population rather
than a change that has taken place over geologic time in a population. Second, the
question at issue provided a challenge to evolutionary theory. How can natural
selection, which favors advantageous traits, explain the presence of a gene for a lethal
trait at such high levels? Population genetic models had, in fact, shown that such a
situation was theoretically possible under conditions known as heterozygote superi-
ority. This case provided an opportunity to deploy the model, to see if the theory
could in fact rise to the challenge.

This explanation also differs from Case 1 in that it relies far less on untested
assumptions regarding the genetics of the population in question. The genetics—
indeed the molecular genetics—responsible for the phenotypic differences in question
(differences in hemoglobin types) is well understood. Also, the population data
required to deploy the machinery of population genetics is readily available. It is, in
every sense of the word, a textbook case of a population genetic success.

Equally important to note, however, is that the success of this explanation, as
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Figure 7.2 Maps showing {a) the occurrence of falciparum malaria and (b) the frequency of the
Hb allele, which causes sickle-cell anemia, both in the Old World. From Modern Genetics,
Second Edition, by Ayala and Kiger (Menlo Park, CA: Benjamin/Cummings Publishing Com-
pany, 1984). Reprinted by permission.
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in Case 1, depends crucially on evidence supporting the adaptive advantage of the
heterozygote phenotype AS over the other phenotypes in a specific, shared environ-
ment. The relative adaptive advantage of this phenotype in a malarial environment is
a crucial feature of the explanation of the unexpected genotypic frequencies. It is also
important to see that, whereas Case 1 dealt with a long-term evolutionary trend
involving the origins and extinctions of a number of species, and thus drew much
evidential support from paleontology and paleoecology, Case 2 provides us with little
or no understanding of this sort.

7.2.3 Case 3. Horse toes

Let us return to the horses for a third example, in this case an example of the use
of so-called ‘‘optimality models’’ in evolutionary explanation. In such explanations
models borrowed from engineering or economics predict the best design for a structure,
or the best behavioral strategy, given a certain adaptive problem to be solved. These
predictions are then compared with the actual structure or behavior in question. Rea-
sonable fit is taken as evidence that the structure or behavior was ‘‘designed’’ (in the
biological case, by natural selection) as a solution to the adaptive problem.

The fossil record records a number of correlated changes in the evolution of the
modern horse. One of these, correlated with the changes in dentition discussed in
Case 1, is the development of hoofed species from an original ancestral species with
toes (see Figure 7.3). Here is a brief summary, from one of its originators, of an
explanation of the development of the Equus hoof. The question for which the
following explanation is an answer is this: Why did Equus evolve a single, elongated
toe (i.e., a hoof) while the muscles controlling its motion are located in the hip and
linked to this ‘‘toe’’ by means of elongated tendons?

[In] galloping a horse must accelerate and decelerate its legs with each stride, and this uses
up a lot of energy. The energy expended can be reduced by lightening as far as possible the
lower part of the leg, since this is the part of the leg which must be moved fastest. By
concentrating the muscles in the upper part of the leg, the lower part is lightened, and the
energy used up in galloping reduced.

The reason for having a single toe is less obvious. The cross-sectional area of the bones
in the foot must be sufficient to withstand the compression and bending stresses imposed
while galloping. A single cannon bone has a greater resistance to bending than would four or
five bones of the same total cross-sectional area. Hence a five-toed horse would require bones
in its feet of greater total weight than a single-toed horse. Thus the single toe, like the
concentration of muscles near the hip, reduces the weight of the foot, and consequently the
energy needed for running. (Maynard Smith 1972, 16)

These structural ‘‘design’’ features of the horse’s leg are all viewed as adapta-
tions for galloping. Such explanations assume that such complex characteristics are
the product of a long history of selection for those heritable variations with the most
advantageous consequences for their possessors—the adaptation assumption. Thus
does ‘‘nature optimize’’ among the available alternatives to produce the wonderful
adaptations around us. Such explanations, as both their critics and defenders agree,
contain assumptions about three things:

284 Philosophy of Biology



PAD-FOOTED SPRING-FOOTED
4-TOED 3-TOED 3-TOED 1-TOED

!

Hipparion

T
A |
/' Pliohippus

Meryvehippus

Mesohippus

Hyracotherium

Figure 7.3 Evolution of horses’ feet. From Horses: The Story of the Horse Family in the
Modern World and Through Sixty Million Years of History by G. G. Simpson. Copyright ©1951
by Oxford University Press, Inc. Reprinted by permission.

1. the range of possible phenotypes;
2. the feature being optimized;
3. the heritability of the traits in question.

For example, in the analysis of animal gates from which the above example is taken,
it is assumed (and in the case of the horse we have fossil evidence in support of the
assumption) that the alternative structures discussed were among the variations avail-
able for selection; and it is assumed that the feature being optimized was efficiency
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of energy expenditure at a given speed. This led the authors to predict that the time
an animal was completely off the ground would increase as a function of speed but
decrease as a function of size, a prediction borne out in the case above.
Explanations of this sort are often based initially on the use of mathematical
models developed in engineering, economics and the theory of games. Such expla-
nations are sometimes offered in the absence of empirical support for assumptions (1)
and (3) and with little more than common sense behind the choice of (2). More
extreme critics of such explanations have suggested that the whole program of fram-
ing them is misguided, arguing in effect that ingenious practitioners of ‘‘the adapta-
tionist program’’ will always be able to tinker with their assumptions sufficiently to
match apparently rigorous tests, while employing assumptions which are not inde-
pendently testable. These criticisms will be discussed at the end of the chapter.

7.2.4 Case 4. Darwin’s Finches

The finches of the Galapagos Islands, off the Pacific coastline of South Amer-
ica, were among the species that first set Darwin thinking along evolutionary lines.
They have continued as a fertile testing ground for evolutionary biology up to the
present. In 1981, for example, the journal Science published an elegant report (Boag
and Grant [1981] 1982) of research on Geospiza fortis, the ground finch of the island
Daphne Major. This study aimed to explain changes in this population of birds as a
result of intense selection favoring birds with certain traits. As so often with such
studies, this specific explanation was intended to help establish the validity of a
general pattern of evolutionary explanation.

The facts to be accounted for are these. Over a two-year period, during which
a major drought occurred, the size of the population of ground finches under inves-
tigation shrunk from approximately 640 to 85. A number of characters related to
overall body size and beak dimension were under study. The population means for
these characters shifted toward larger body and beak size among the surviving birds.
Two questions were of interest to the investigators:

1. Were the changes in the population due to natural selection?
2. What were the precise mechanics of the selection process?

During the period of rapid population decrease, the drought also led to a general
decline in abundance of seeds upon which the finches fed, with the smaller seeds
declining more rapidly than the larger (seeds were compared on a *‘size in millimeters/
hardness in newtons’’ index). Careful study indicated that between 1976 and 1977
medium to large seeds went from being 17 percent to 49 percent of the sample
population’s diet. Furthermore, ‘‘large birds ate larger seeds than smaller birds,
suggesting that small birds disappeared because they could not find enough food”’
(Boag and Grant [1981] 1982, 176, emphasis added). In addition to this problem,
small birds began to feed on a smaller seed that they normally ignored because it was
the only small seed produced during the height of the drought. This seed was high in
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latex, and led to matted and lost plumage in the smaller birds. Many smaller birds in
this condition were found dead during the dry season in that year. Larger birds turned
to a food source normally ignored as well, an extremely large seed not available to the
smaller birds. Boag and Grant concluded:

It is reasonable to infer natural selection from the greater survival of large birds because about
76 percent of the variation in the seven morphological measurements and in principal com-
ponent | scores [scores based on a combination of measurements] is heritable. (Ibid., 178)

The explanation that emerges from this study is clear:

1. asevere change in the abiotic environment (drought) had a differential effect on
the normal food supply of the population sample under study;

2. certain variations within the population, especially in beak dimension, allowed
certain members of the population to survive during this change better than
others—in particular, the change in food supply differentially affected the mor-
tality rates of smaller birds;

3. incidental to this, but with potentially significant evolutionary consequences,
because the mean size of females is considerably smaller than males, the sex
ratio altered from 1 male:1 female to 6 males:1 female during the period of the
study.

The study takes on added significance because it is a paradigm of an ‘‘evolu-
tionary bottleneck,’”’ a situation where a population is put under intense selection
during which only a small, biased sample of the population survives to contribute
genetically to subsequent generations. It has been postulated by many evolutionary
theorists that such events may play a central role in evolutionary processes. Were it
the case that most evolutionary change were of this character, it would explain
patterns in the fossil record in which long periods of relative stability are ‘‘punctu-
ated’’ by rapid periods of speciation. Boag and Grant conclude:

[Gliven the many small, isolated, relatively sedentary, and morphologically variable popu-
lations of Darwin’s finches and the high spatial and temporal variability of the Galdpagos,
this type of event provides a mechanism for rapid morphological evolution. Occasional
strong selection of heritable characters in a variable environment may be one of the keys to
explaining the apparently rapid adaptive radiation of the Geospizinae in the Galdpagos.
(Ibid., 180)

These four explanations differ in many respects: the types of questions they
address, the nature of the empirical support for their premises, the extent to which
they are historical in character, and so on. Nevertheless they all involve appeal to
random, heritable variations, natural selection, fitness, and adaptation. With these
cases as background, it is time to explore certain philosophical problems connected
with the place of these concepts at the core of evolutionary biology.
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7.3 EXPLANATION AND NATURAL SELECTION

The Darwinian theory of evolution rests on two fundamental principles:

1. the principal cause of evolutionary change is natural selection;

2. the variations upon which selection operates arise at random with respect to the
adaptive requirements of organisms.

The remainder of this discussion focuses on philosophical difficulties which
arise in trying to understand these two principles; and in particular, on the meaning
of the concepts ‘‘fitness,”’ ‘‘adaptation,”” ‘‘selection,”” and ‘‘chance’’ within evolu-
tionary theory. This section considers the first three; Section 7.4 considers whether a
theory based on adaptation and selection is a teleological theory; and Section 7.5
considers the concept of chance.

7.3.1 The Meaning and Definition of Fitness

We began with Darwin. We saw 1in his characterization of his theory that three
things are kept distinct: (1) the differential adaptive values of variations; (2) the
differential preservation of the organisms with those variations; and (3) the differen-
tial reproductive rates of those organisms. As so often, Darwin was wise to make
these distinctions, and many conceptual confusions in recent evolutionary controver-
sies can be traced to failures to make them, or at least to make them clearly. His-
torically, we have traced these confusions to the rush to ‘‘operationalize’” the concept
of fitness, that is, to define the concept as if it referred to values arrived at when
measuring it. For example, it is not uncommon to see the general theory of natural
selection stated in the following way:

Most people are familiar with the basic theory of natural selection. Organisms vary in a
heritable fashion. Some variants leave more offspring than others; their characteristics,
therefore, are represented at a greater frequency in the next generation. (Wilson 1984, 273)

Notice that in this description of the theory of natural selection, the only ex-
planation offered for the greater frequency of certain characteristics in the offspring
population than in the parent population is that the parents with those characteristics
leave more offspring. Darwinian Fitness often receives a similar treatment. Take, for
example, the following glossary entry for ‘‘Fitness’’ in a highly regarded primer in
population genetics:

Fitness The reproductive contribution of an organism or genotype to the following
generations. (Ayala 1982, 240)

Such formulations have given rise to a family of objections to evolutionary theory
which, if valid, are devastating. Yet as we saw in Section 7.1, these formulations
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anse naturally from the fact that the values supplied for the variable W, which is
termed ‘‘relative fitness,”’ are simply measures of the relative reproductive contribu-

tions of different genotypes.

7.3.2 Fitness as Tautology

Biologists and philosophers have repeatedly alleged that the theory of evolution
by natural selection ‘‘rests on a tautology,’’ or that the principle of fitness or natural
selection i1s a tautology. Ever on the lookout for a priori grounds for dismissing
evolutionary biology, the ‘‘scientific creationists’’ parrot this objection. In order to
make initial sense of it, we first need to know what it means to refer to a statement
as a tautology. (For a good discussion, see Sober 1984b, Chapter 2.)

The meaning of ‘‘tautology’” which coincides most closely with the use one
finds in such criticisms of evolutionary theory is: a proposition in which what is
predicated of a subject term is already implicit in the meaning of that term. In the case
at hand, to say

“The fitter of the three genotypes increases its representation in the next generation” (T)

appears to be making a claim about a genotype that was not already implied by
referring to it as the fitter one. But, as we have seen, the way population geneticists
sometimes talk (as in the definition of *‘Fitness’’ quoted above) all ‘*fitter’’ means is
“‘Increases representation in the next generation.’’ Thus, for those already committed
to the above definition of ‘‘Fitness,”’ T is equivalent to

““The one of the three genotypes which increases its representation in the next generation
increases its representation in the next generation’’ (T')

Given the above explication of tautology, definitions are tautologies. Defini-
tions play an important role within scientific theories, making explicit something
implicit in the meanings of the theory’s key terms. The mere fact that 7 is a tautology
is not cause for dismissing it. Rather, the problem is that T is reasonably taken to
embody an explanation of why a certain genotype increases in frequency. But if T is
really simply equivalent to 7”, then the claim that one organism is fitter than another
doesn’t embody an explanation of evolutionary change at all, but simply a description
of it.

7.3.3 Fitness as Triviality

Thus what is really troubling about these formulations of the theory of naturai
selection is not that T is a tautology, but rather that it poses as an explanation. Given
a standard definition of fitness, the statement 7, which we expect to be either a
predictive or explanatory claim, turns out to be neither. On the contrary T is simply
a trivial corollary of the definition of fitness (see Brandon 1990, 11-12 for a fuller
discussion).
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The theory originally formulated by Charles Darwin, however, is a causal
theory, according to which differences in the fitnesses of different parent organisms
produce the eventual changes in gene frequencies in subsequent generations. These
changes of frequency, not to mention changes in the observable characteristics of
organisms, should be explained by the theory of natural selection, not merely de-
scribed by it. The characterization of the theory of natural selection and of the concept
of fitness provided in the above quotations suggest that evolutionary biology is not
real science at all, but just bookkeeping. It appears a poor and distant relative of
Darwinism.

7.3.4 Fitness as Propensity

Can we revive a robust Darwinism without giving up the gains of population
genetics? As a first step in the right direction, imagine the following situation. Two
genetically identical zebras in the same environment are standing next to one another.
One is in a dry riverbed, the other is standing next to it. A flash flood occurs, carrying
the one zebra off, leaving the other behind. The one left behind reproduces success-
fully on ten occasions before it dies. Now according to the definitions offered above
fitness is determined simply by actual reproductive success, which implies that the
zebra which avoids the flood and has ten offspring is clearly the more fit. On the other
hand, the same definition implies that fitness values be ascribed to genotypes, which
suggests these two zebras should have the same fitness value. Defining fitness in this
manner is doomed to such paradoxes because it cannot distinguish changes in gene
frequency due to differential adaptation from other causes of such changes.

To avoid this dilemma, the concept of fitness must refer to something besides
actual reproductive success. It has thus been suggested by a number of philosophers
that ‘‘fitness’” within the theory of evolution refers to a propensity possessed by given
genotypes or alleles to increase in frequency in subsequent generations. (Brandon
1990, 14-24, now prefers to refer to this as the propensity interpretation of adapt-
edness. This interpretation of fitness is defended in Brandon 1978, Mills and Beatty
1979, Burian 1983, and Sober 1984.) The zebra example can then be dealt with by
arguing that both zebras have the same expected fitness, the same propensity to
reproduce relative to different genotypes, though fate intervened to prevent one of
them from realizing its reproductive potential. Differential reproductive rates of dif-
ferent genotypes is then to be viewed as potentially, but not necessarily, due to
differences in fitness.

This is clearly a step in the right direction, but problems arise with this sug-
gestion. This interpretation encourages us to think of fitness as a ‘‘dispositional
property’’ of the organisms in question—just as different materials display differences
in elasticity, so different members of a population differ in their capacities to leave
offspring. Following this model to its logical conclusion, we would expect to find
underlying physical differences which would explain these different reproductive
capacities, just as different structural properties of various materials explain differ-
ences in elasticity. Fitness differences (i.e., differences in reproductive capacity),
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however, are not based on physical differences in this manner. Differences in fitness,
as Darwin constantly stressed, depend on a complex and variable constellation of
functional relationships between the organism and its environment. This interpreta-
tion of fitness is, then, faced with the difficulty of making the interpretation abstract
enough to cover all these various adaptive relations which underlie reproductive
potential.

Defenders of the ‘propensity interpretation’ of fitness sometimes respond to
the difficulty by, in effect, embracing it. For example, two defenders of the propen-
sity interpretation respond to the above problem as follows:

As long as there is evidence of fitness differences independent of the differences in repro-
ductive success they are invoked to explain, the explanations are potentially acceptable.
There is no reason why the extra evidence has to be the same kind in every case. (Brandon
and Beatty 1984, 345)

We can use two of our example explanations to see their point. In Case 4 above,
larger beak size in relation to a shift in the size of available seeds made one finch more
fit than another, while in Case 1 molars with higher crowns and more enamel in an
emerging grazing niche made one ancestral horse more fit than another. In each case
evidence exists for the assignment of certain values which is independent of actual
reproductive success, though the physical basis of the different reproductive propen-
sities may differ from species to species or from one environment to another.

But this response also has difficulties, which can be seen by thinking about our
usual way of giving empirical content to dispositional terms. ‘ ‘Rubber is elastic’’ may
initially be understood as based on a simple counterfactual claim—*‘if a rubber object
were subjected to certain forces and then released, it would return to its initial size and
shape.”” But typically, within a scientific theory of the material in question, this
counterfactual is supported by an understanding of the structural properties of that
material. In accounting for rubber’s tendency to ‘‘rebound,’’ we look for a molecular-
mechanical account of its microstructure which will account for its being flexible
rather than rigid. Further, we expect that a suitably abstract theory will account for
the property of elasticity as such, whatever material we may be talking about. To the
extent that the disposition is the same, the physical basis for it should be. We must
be careful, then, not to demand an account of the fitness of organisms which is as
concrete as an account of the elasticity of rubber. An ideal physical theory should
provide a general (underlying physical) account of elasticity, true for all elastic
solids. Such a theory must be abstract enough so that differences of chemical con-
stitution of both material and surrounding physical conditions—such as temperature,
pressure, gravitational field—will not require a different theory.

Similarly, an ideal evolutionary theory should provide a general account of
fitness. If fitness is a dispositional property of organisms, there ought to be an
abstract account of the underlying basis of fitness as such, whatever type of or-
ganism we are discussing. The fact that no such account seems to be part of current
evolutionary theory has led philosophers to describe fitness as a supervenient prop-
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erty of the organisms to which it belongs (Sober 1984b, 48-50; Rosenberg 1985,
154-168).

7.3.5 Fitness as Supervenient
Supervenience, as used in this context, can be defined as follows:

A relationship between a nonphysical property and an object in which (a) the objects with
that property may differ in the physical characteristics underlying the property and vet (b)
any object with those physical characteristics will have the nonphysical property in question.

Take the property of being a clock, for example (Rosenberg 1985, 73). There
is no one set of physical mechanisms which characterizes all objects which function
as clocks. (Think of how different the inner workings of digital and analogue watches
are, for example.) However, anything with any of the appropriate but different
physical mechanisms will so function. Being a clock is, therefore, supervenient on
each of the appropriate physical structures.

This concept has played a central role in attempting to understand the relation-
ship between states of mind and their physical basis in functional terms. In that
context, part of the motive for developing the concept of supervenience was to
describe our cognitive activity in a way which avoided attributing it to a nonphysical
entity (the mind) and also avoided identifying types of mental and physical states.
There is a precisely analogous motivation for claiming that fitness is a supervenient
property: By referring to fitness as supervenient, philosophers are saying that there is
always some underlying physical basis for fitness differences, but that one can make
no immediate inference from the knowledge that one organism is fitter than another
to the actual physical differences underlying that difference. In fact, given the crucial
role of environment-organism interactions in generating differences in fitness, ‘‘un-
derlying physical differences’’ has to be taken very generously to include such in-
teractions. Take our Case 2, for example: A person who is a heterozygote regarding
the sickle-cell gene has one fitness value in Eastern Africa, but a very different one
in Western Pennsylvania. This is not because the person’s physical makeup has
changed, but because a relevant feature of the environment has.

Describing fitness as a supervenient property is valuable for two reasons. First,
it is a commitment to naturalism, to the idea that however difficult fitness may be to
grasp abstractly, it refers to a property of physical objects. Second, it has focused our
attention on the problem of identifying fitness too closely with an actual physical
characteristic of the organism, however abstractly described. Nonetheless it seems
not to take us very far in our search for a positive account of fitness. By focusing on
two of our examples we can at least point the search in a fruitful direction.

7.3.6 Fitness and Adaptation: A Proposal

In both our ‘‘sickle-cell anemia’’ and our ‘‘horse hoof’’ examples, the evolu-
tionary explanations provided depended on evidence of a causal relationship between
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relative competitive success or optimal functioning in an environment on the one hand
and relative reproductive contribution on the other. Thus, in order for (i) competitive
success or (i) optimal functioning to translate into components of an evolutionary
explanation, the characteristics at the basis of these attributions must (a) be heritable
and (b) lead to reproductive advantages. Neither (a) nor (b) follows necessarily from
(1) or (ii). That is, in order to make use of adaptive differences between organisms in
an evolutionary explanation we must do one of two things. We must make plausible
assumptions that these adaptive differences are inherited in the population under study
(which, if possible, should be evaluated at some point) or, when possible, include the
results of ecological genetical studies in our explanation. (For the most commonly
used methods, see Endler 1986, Chapter 6; Sheppard 1975, Chapter 12.) But our four
case studies confirm that these are precisely the kinds of premises that evolutionary
biologists do appeal to when offering selectionist explanations of evolutionary
changes. An elegant example of such an appeal can be found in Case 2, in the studies
which demonstrated a correlation of high levels of a lethal recessive gene with
malarial environments, determined the genetic basis of sickle-cell anemia and used
population genetic models of heterosis to explain frequencies of the s-allele in ma-
larial environments.

In fact, the contingent nature of the relationship between adaptational differ-
ences and reproductive differences is crucial to a plausible account of contemporary
evolutionary theory. Major steps in the evolutionary process may result from pro-
cesses other than natural selection. These processes may give rise to changes in the
genetic makeup of a population which are not due to natural selection or adaptation.
Thus any account of the theory of natural selection, such as Wilson’s discussed
earlier, which simply equates changes in populations due to differential reproductive
success with changes due to selection, will be unable to distinguish two very different
sources of evolutionary change.

By the same token, there are ways of discovering that natural selection is
operating to maintain gene frequencies at given levels so that the lack of changes in
gene frequency does not necessarily imply absence of natural selection. But once
again on Wilson’s description of the theory, absence of gene-frequency changes
would imply a lack of natural selection. Ultimately, then, the concept of fitness is
dependent on the more fundamental concept of adaptation.

Let us take just one more step in this direction. The above arguments sug-
gest that differential adaptedness is the physical property which underlies some
differences in expected reproductive success (see Brandon 1978, Chapter 6; Burian
1983, Chapter 11; Brandon 1990). This leads to a further suggestion: As Darwin’s
own formulation of the theory suggested in 1859, there needs to be a principle
of differential adaptation at the center of the theory of evolution by natural se-
lection.

Thus, the analogue to an underlying physical theory in evolutionary biology is
an abstract theory of adaptation. And in specific cases, it is only when differences in
adaptive value of phenotypes produce differences in reproductive propensity that
actual reproductive differences can be treated as measures of fitness. The problem of
providing such an abstract theory is a serious one, but it avoids one seemingly
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Principle of Differential Adaptation. When differences in adaptation
underlie and explain differences in reproductive success, it is appropri-
ate to refer to such differences in reproductive potentials as differences
in fitness.

intractable problem from the start. We do not need to suppose that there is some
hidden physical property common to all organisms underlying their fitness propen-
sity.

Evolutionary theory requires, then, a concept which identifies abstractly those
concrete properties which biologists identify as adaptive differences. What sorts of
properties are these likely to be? It is worthwhile again thinking back to our four
cases. In those cases, the concrete properties of the organisms relevant to selection are
not traits such as tooth length, blood type, bone length or beak size. Rather (keeping
the same four examples in mind) the selectively relevant properties are functional
properties such as grass-mastication ability, optimal malarial-resistance—oxygen trans-
port capacity, ability to maximize speed per unity of energy, ability to grasp available
seeds. Evolutionary theory is still in its exploratory stages in this area, but contribu-
tions to such an abstract account of adaptation are to be found in the engineering and
game theoretic models used by students of adaptation, in population ecology and in
bioenergetics, the study of biological activity from the standpoint of energy effi-
ciency. Attempts to incorporate such models of organisms-environment interaction
into a general ‘‘nonequilibrium thermodynamic’’ interpretation of evolutionary biol-
ogy, while premature, are extremely suggestive. (For contributions from engineering
and game theory, see Williams 1966, Wainwright et. al. 1976, Maynard Smith 1978;
from bioenergetics, Lehninger 1971; from population ecology, Levins 1966, Pianka
1974; and from nonequilibrium thermodynamics, Brooks and Wiley 1986, with the
papers in Weber, Depew and Smith [eds.] 1988.)

The property of being adaptive is a relational property—in referring to a trait as
an adaptation, one identifies constitutional differences that may confer functional
advantages in given environments. Because such functional differences must always
be specified relative to a commor environment, no account which refers simply to a
physical feature, for example, ‘‘hemoglobin of type A,’” is sufficient. Only in envi-
ronments where this trait confers some advantage in organic function on its possessor
will it be an adaptation.

The argument presented, then, has been for distinguishing adaptiveness from
fitness, which for our purposes we may agree to think of as a dispositional property
related to reproductive success. Calculations of changes in genotypic frequencies, on
the view of evolutionary biology which has emerged from our discussion, constitute
measures of changes in fitness only under certain conditions. In particular, such
changes indicate differences in fitness only if we have independent evidence that those
changes are due to adaptive differences, that is, to functional differences relative to
a common environment.
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7.3.7 Fitness of Replicators and Adaptedness of
Interactors

Organic systems do two things which are fundamental to the evolutionary
process—they replicate themselves and they interact with their environment. The
conclusion of this section may be restated by saying that differences in adaptation are
to be understood as differences among interactors in a common environment. When
these differences are heritable and are relevant to reproductive success, they will lead
to different rates of replication among replicators (see Brandon 1985, Dawkins, 1982,
Hull 1981b, Mitchell 1987). Only with such differences will evolutionary change take
place. However, different rates of replication can occur for reasons other than dif-
ferential adaptation.

7.3.8 Some Real Virtues of Population Genetics

Strong objections have been made in this chapter to the apparent explanatory
sterility of the population geneticist’s account of fitness. But let us conclude by indi-
cating the sorts of things for which population genetics is especially valuable. First, at
the theoretical level, the models of the various theoretically possible outcomes of dif-
ferent levels of selection on different phenotypes provide a powerful engine for ex-
tending neo-Darwinism. Take the following question. ‘‘Suppose we have a large
randomly mating population of organisms. And suppose a genetic mutation occurs in
that population (either dominant or recessive). How large a selective advantage would
that mutation have to confer on its possessor for it to become fixed in that population
in n generations? (Or alteratively, how many generations would it take for a trait of a
given selection coeffecient s to be eliminated from the population?)’” This, and literally
hundreds of other structurally similar questions, can be explored independently of in-
formation regarding the actual sources of selective advantage in particular cases ( with-
out confirmed source laws, to use Sober’s terminology—Sober 1984b, 55-59).
Similarly, such population genetical models have been crucial in the face of phenomena
which seemed to be impossible to account for on Darwinian premises. Models of kin
selection which account for so-called ‘‘altruistic’’ behavior (behavior which seems to
confer a slight disadvantage on its performer and advantages on other members of the
species) are good examples. It would seem that such behavior conflicts with neo-
Darwinism because animals which behave this way should be eliminated by selection.
Kin selection models, however, show that genes for altmistic behavior will be pre-
served by selection provided the danger of so behaving is slight and the organisms who
benefit the most are those most closely related to the altruist. For there is a high prob-
ability that these ‘‘kin’’ will also have the gene in question. The use of population
genetic models therefore shows that the phenomenon has a possible explanation within
Darwinian theory. It still remains, of course, to test the solution on a diverse range of
populations. But merely showing that an apparent anomaly is capable of solution is a
valuable elaboration of the theory, and makes the inquiry into the proposed solution
possible. Among our case studies, Cases 2 and 4 served as crucial support for ideas that
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were first worked out as theoretical possibilities using the mathematical techniques of
the population geneticist. Such models, then, have important roles to play both within
causal explanations in evolutionary biology, and as a means of exploring the explan-
atory possibilities open to Darwinism. They are valuable tools indeed.

7.4 NATURAL SELECTION AND TELEOLOGY

In the previous discussion it was suggested that, in order for evolutionary theory to
be explanatorily powerful, it must distinguish, as Darwin did, questions of adaptation
from questions of evolutionary change as a product of adaptation. The theory of
natural selection cannot remain a theory about the causes of evolutionary change if it
simply says that certain traits increase in frequency in a population because parents
with those traits leave more offspring. For, while this claim is true, it fails to distin-
guish evolution by selection from evolution by drift, and it fails to provide an ex-
planation for why those parents leave more offspring. It is claims about better adapted
organisms tending to leave more offspring which both puts the theory at some risk and
provides it with its explanatory guts.

Having insisted on this, some might say, is not only to put the theory at
scientific risk. Because of the form such explanations take, we have put evolutionary
theory at philosophic risk as well. This is because such explanations appear to be
teleological, that is, to explain things by referring to the goals they achieve. Adaptive
explanations take the form of statements that an organism has a certain trait in order
to escape predation or for the purpose of camouflage. It is time to see whether in fact
it is correct to say that such explanations are teleological, and if so, what that implies
about evolutionary theory.

Questions about why certain classes of organisms have the traits they do are
often answered by specifying the functional advantages these traits confer on the
individuals of the classes which have them. That is, this particular ‘‘why’” question
is answered by identifying what the trait is for, what its value is to its possessor. This
is an answer that we do not find in sciences interested only in inanimate phenomena.
For example, astrophysics does not explain why Saturn has gaseous rings surrounding
it by appealing to the value of such rings to Saturn.

Answers of this form are traditionally termed *‘teleological explanations.’’ Plato
was the first philosopher to explicitly defend their use. He assumed that they were
appropriate if and only if the fact being explained arose as a result of intelligent
design. For Plato, it would be appropriate to explain the rings of Saturn this way if
in fact our solar system were the product of an intelligent designer who sought to -
achieve some good by designing Saturn with rings. And it would be appropriate to
explain the fact that horses have hooves teleologically if they have them because God
determined that it would be good for them (or for any other reason good) to have
hooves (Plato, Phaedo 97b8-99d1; Timaeus 46¢c—-48b, 68d—69c; see Lennox 1985).

Aristotle, one of Plato’s students, and the founder of the science of biology, also
defended teleology, but did not think intelligent deliberation was at the core of such
explanations. For Aristotle, certain features of organisms make functional contribu-
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tions to the organism’s life, and the organism comes to have those features because
they make those contributions. Thus in order to fully explain such features, we need
to identify what they are for, what activity they perform which contributes to the
organism’s life (Aristotle, Parts of Animals 1 641b11-642a14, 645b14—646a2; Phys-
ics 11 8; Generation of Animals I1 742a17-742b18, V 778a29-778b20, 789b3-23).>

On the face of it, when an evolutionary biologist identifies a biological trait as
an adaptation he says (1) that it makes a functional contribution to the life of an
organism in a specific environment; and (2) that selection was for that trait, that is,
the trait in question became common and remains common in a population because
it makes that contribution. To use one of our examples: To say that AS hemoglobin
is an adaptation is to say (1) that having AS hemoglobin reduces the risk of malaria
where it exists, and (2) that it is common in certain human populations because it
reduces the risk of malaria. Thus it does look as if the goal of the trait somehow
explains it—the explanation looks teleological.

However, is this not simply shorthand for a very long historical explanation,
one which would tediously mention all the physical interactions which gave rise to a
population of animals with this trait? And by giving such an historical explanation
would we not remove the appearance of teleology from our evolutionary explana-
tions? To answer this, let us sketch a model of such an explanation and see if we can
banish teleology from the natural sciences altogether.

The form of question we begin with is ‘*Why do the members of species S have
trait t in environment £?°’ To begin with, let us make the simplifying assumption that
t is a phenotypic trait the production of which can be explained at the molecular and
biochemical level. Once we give a genetic and biochemical and developmental ex-
planation of t’s production, have we answered our initial question? No. We know that
the way evolutionary biology provides understanding is by helping us to identify how
natural selection ‘‘adapts’ organisms to their environments. Of course, we say, genes
will be initiating the production of t in each of them. But we want to know why
individuals with t (and the appropriate biochemical machinery to produce it) were
(and are) selected over those with an alternative trait t*. The above explanation does
not answer this question.

But we can go further. For simplicity’s sake, let us suppose that we have access
to the account of how the mutation which first produced t in some individual oc-
curred. We thus begin by explaining how a certain mutation occurred in a particular
organism at some moment in the past. The challenge for those who want to eliminate
teleological explanations from biology comes precisely at this point. Now that an
individual member of S has t, and the genetic material which codes for it, t becomes
a potential target for selection. The challenge is to construct a selectionist explanation
which does not say that the gene for t spread and became fixed in § because of its
functional contribution to members of S. If a functional advantage conferred on
individuals by t is required in order to fully explain why members of S have t, the
explanation becomes teleological. (For important recent discussion of this question,

* For three different interpretations of Aristotle’s teleology, see the papers of John Cooper (1987), David
Balme (1987) and Allan Gotthelf (1987, 199-286).
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see Brandon 1981; Rosenberg 1985; Sober 1984a, Chapters 18—21; and Wright 1976.
The position defended here is indebted in important ways to Brandon and Wright,
views which appear to be in different ways akin to Aristotle’s.)

The same challenge can be made by once again remembering that not all traits
are present in populations because of natural selection. In order to distinguish ad-
aptations from other features of organisms, we need to express a selectionist ex-
planation in a way which distinguishes it fundamentally from other explanations of
evolutionary change. The way this is in fact done in evolutionary biology is by
insisting that the term ‘adaptation’” be confined in its application to traits which we
have good grounds for thinking were selected because of the benefits they confer
on their possessors.

' Why would we want to banish to the hinterlands of the social sciences an
explanatory form which seems so useful? (Some of course want to ban it from the
hinterlands as well; see Chapter 11.) A common reason given is this. A sign of
progress in the development of natural science is the gradual removal of anthro-
pomorphic forms of thinking from it (see Chapter 1). Teleological explanations are
sometimes argued to be just such “‘primitive’” forms of thinking and thus progress
in biology demands their elimination. That is, they seem to imply one of two
things: Either genes, biosynthetic pathways, populations, or species possess some-
thing akin to purposeful deliberation, or future events (ends, goals) are somehow
capable of causing prior events to take place. Modern biology has no room for
either implication. Thus we must banish teleology in the name of scientific
progress.

While all of the premises of this argument are correct, they do not imply the
conclusion. Selection explanations, in particular, imply neither of the beliefs that
worry teleology’s detractors. They identify differences such as longer teeth, hooves,
AS-hemoglobin or larger beaks as having advantageous consequences in specific
environments. They go on to claim that having those advantageous consequences in
a given environment is causally relevant to the organisms having those traits. To use
Larry Wright’s language, these explanations are consequence etiologies—causal ex-
planations of a special kind (Wright 1976). Such explanations claim that what a trait,
or a variation in a trait, allows an organism to do, or do better, in a given environment
is causally relevant to an organism’s having that trait. Organisms may have certain
functional advantages in virtue of having certain traits. These functional advantages
produce the biases in survival and reproductive ability that are referred to as natural
selection.

Figuring out, by controlled ficld observation or experiment, which of the con-
sequences of a trait’s presence in an organism helps explain its presence is a crucial
part of evolutionary inquiry. For example, in our Case 4, it seems odd that larger
birds survived the drought better than smaller ones. On simple bioenergetic grounds
it would seem that the smaller creatures, making more modest energy demands of
the environment, would survive better. What ability did larger size confer on its
possessors which turned out to be causally relevant to survival? Or, what conse-
quence of being larger was relevant to the survival of finches in a drought envi-

ronment?
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On the presupposition that the very term ‘‘teleology’’ carries with it the above
suspect implications, yet aware that adaptation explanations in evolutionary biology
look teleological, some biologists have suggested solving the problem by changing
their name, referring to them as ‘‘teleonomic’ rather than teleological. This has
nothing to recommend it, though, either from the standpoint of etymology or his-
tory. Explanations which answer questions of the form ‘‘Why does A have B?"’ in
the form ““A has B for the sake of C’° have, since the eighteenth century, been
termed ‘‘teleological.”” What such explanations commit us to philosophically has,
from the time of Plato and Aristotle, been a question for philosophical debate. The
challenge, then, is either to show that such explanations are in fact reducible to
explanations by causal antecedents, or to demonstrate that reference to the func-
tional consequences of a trait is an ineliminable aspect of explanation by natural

selection.

An historical note: It is sometimes claimed that On the Origin of Species
was the very document that rid biology of teleclogy once and for all
(Ghiselin 1974, Hull 1974). Its author did not think so. In a review of
Darwin’s work in Nature, the distinguished American naturalist Asa
Gray claimed that Darwin had brought back teleology to natural sci-
ence. Darwin immediately sent a note to Gray, saying, ‘‘What you say
about Teleology pleases me especially, and I do not think any one else
has ever noticed the point. I have always said you were the man to hit
the nail on the head’’ (Darwin [1892] 1958, 308). This ringing endorse-
ment of Gray’s point is underscored by Darwin’s rich use of teleological
explanation throughout his career. Darwin was an avowed enemy of
anthropomorphic teleology in biology, but he recognized that explana-
tions by means of natural selection were teleological.

7.5 THE LAW OF HIGGLEDY-PIGGLEDY
7.5.1 Nature Doesn’t Always Select

John Herschel, a philosopher and mathematician much admired by Charles
Darwin, described the theory put forward in On the Origin of Species as *‘the law of
higgledy-piggledy’’ (Darwin 1887, 241), presumably because of the large role given
to ‘‘chance’” in the theory. It is common to point out that Darwin treated the origins
of variation as a matter of chance, and we will look at the modern analogue of this
claim momentarily. But apart from that, you will note that in Darwin’s summary of
the theory, with which we began, he talks about organisms with useful variations
having the best chance of surviving and fending to produce the most offspring. Think
back to our twin zebras on the African savannah and you can see why he spoke this
way. Both zebras were equally well adapted to their normal environment, but one
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survived and reproduced while the other was swept away. Likewise, in any individual
case, the better adapted of two particular organisms may not be the one to survive and
reproduce. The theory depends on ‘‘the law of averages,’’ on assuming that over the
long term differently adapted organisms will be treated equally in the (nonselective)
lottery of life. Events which affect survival and reproduction rates, but which have
nothing to do with natural selection, are thus treated as essentially random. This
aspect of Darwin’s theory is seldom given the importance it deserves. It forced
Darwin to think of the theory of evolution by natural selection as a theory of large
populations, that is, as a statistical theory; and this was to change the face of biology
forever.

7.5.2 From Chance Variation to Random Mutation

An evolutionary alternative to Darwin’s theory which he worked hard to dis-
tance himself from was that of Jean Baptiste Lamarck (1774-1829). According
to Lamarck’s evolutionary theory, the physiologically registered needs of an organ-
ism would give rise to changes in habit, behavior and, ultimately, structure. At least
some of these changes would then be inherited. Thus Lamarck thought that adaptive
requirements played a direct causal role in the production of heritable variation. In
such a theory it would be wrong to say that variation 1s random with respect to
adaptation.

Darwin started out his evolutionary career in a somewhat Lamarckian spirit, but
by the time the Origin was published he was vocal in his opposition. Yet when ke
talks of chance variation in the Origin, it is not primarily to stress his opposition to
Lamarck. Rather, he usually intends ‘‘to acknowledge plainly our ignorance of the
cause of each particular variation’’ ([1859] 1964, 131). Darwin, in discussing what
we would call mutations, uses ‘‘chance’” primarily to express our inability to assign
a specific cause for each new variation.

Contemporary evolutionists do, however, use the concept of ‘‘chance’’ or ‘‘ran-
dom’’ mutation to distance Darwinism from Lamarckian theories of the sources of
inherited variations. Theodosius Dobzhansky, for example, describes mutation as ‘‘a
random process with respect to the adaptive needs of the species’ (1970, 65) The
production of mutations is said to be ‘‘random’’ in the sense that the potential
‘‘usefulness’’ of a mutation does not affect the probability of its occurrence. Dar-
winian evolutionary theory presumes that no causal connection exists between the
occurrence of a mutation and its potential usefulness. Within biochemistry, while the
explanation of the occurrence of a mutation may be explained by a “‘statistical’
theory and thus be a product of ‘‘chance’” in the sense discussed in the opening
subsection of 7.5, it is ‘‘by chance’ or ‘‘random’’ in a very different sense within
evolutionary theory. Here ‘‘random’ means ‘‘unaffected by adaptive requirements,”’
a product of ‘‘chance,”” not ‘‘design.”’

7.5.3 Chance and Population Genetics

If, at a given locus, there are two alleles (A and a), then there are three possible
genetic combinations at that locus in the population. The Hardy—Weinberg equilib-
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rium says that in the absence of various disruptive forces, the frequencies of each of
those combinations will be the same from one generation to the next. That is because
in the absence of disruptive forces the recombinations of alleles which occur during
mating are a matter of chance. Ignoring population size (see the next subsection,
“‘Genetic Drift’’), the probability of getting AA, Aa or aa is a simple multiple of the
number of A’s and a’s in the initial gene pool.

As -with all such ‘‘stochastic’’ laws, HWE cannot be used to predict with
certainty any particular individual’s genetic makeup (see the first subsection of 7.5
and Chapter 2); but it can be used to predict the genetic makeup of the next generation
of a randomly mating population. And because evolutionary theory is concerned to
explain the changes in the heritable characteristics of populations, this is useful
indeed.

7.5.4 Genetic Drift

As already seen, one significant reason for distinguishing reproductive success
from adaptive success is that changes in genotypic frequencies can be due to a number
of factors other than natural selection. One of these is called ‘‘genetic drift.”” Ayala
(1982) defines ‘‘random genetic drift’” as ‘‘variation in gene frequency from one
generation to another due to chance fluctuations’’ (p. 243). Because the combinations
of genes in a given generation is always a sample of those present in the preceding
population, the question naturally arises, is this current gene pool a representative
sample of the previous one? The possibility of ‘‘sampling error’ arises, and the
smaller the reproductively active segment of the population, the more likely it is that
a random sample will not be representative. In population genetics what counts as
representative is HWE, the maintenance of the same genotypic frequencies across
generations.

The extent to which major evolutionary trends have been affected by drift is
currently much debated among evolutionists. A very few, genetically atypical mem-
bers of a population may migrate away or otherwise become isolated and start a new
colony (a phenomenon termed by Ernst Mayr the ‘‘founder principle’” [1942, 237]),
initiating an evolutionary change which is due to simple sampling error.

One might well ask what is random about such processes. To answer this
question, consider the evolutionary theorist’s initial questions. First of all, when
studying a population through many generations, one of the first questions to answer
is whether any long-term changes occur in the genetic makeup of that population. Is
the population in something approaching HWE or not? If not, the next question is
whether an explanation can be found for the changes taking place. If the answer is that
the gene frequency changes are within the limits expected to result from sampling
error for a population of that size, then this raises questions about whether the change
is due to selection, migration or other possible causes (see Beatty 1984, 183-211).

The concepts of ‘‘chance’’ and ‘‘randomness’ play a variety of roles within
evolutionary theory. Some of these derive from the fact that, in the absence of various
disruptive forces, the recombinations of genes which take place when populations of
organisms reproduce occur according to the rules of probability, one of Mendel’s
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initial insights. That further implies that recombinations in small interbreeding pop-
ulations are subject to the usual sampling error effects.

We have also seen, however, that describing a process as chance or random is
often intended to stress the fact that explanations by reference to adaptation are
inappropriate. Here it is not combinations of independent elements that are referred
to as products of chance, but rather particular events. In such cases the appropriate
contrast is not ‘‘random’’ versus ‘‘determined,’’ but “‘random’’ versus ‘‘designed.’’
It is important to distinguish these two uses of the terms ‘‘chance’’ and ‘‘random-
ness’’ in evolutionary biology.

7.6 CONFIRMATION

In an insightful review which Darwin greatly admired, a mathematically trained
engineer named Fleeming Jenkin levelled the following methodological broadside at
the evolutionist.

He can invent trains of ancestors of whose existence there is no evidence; he can marshal
hosts of equally imaginary foes; he can call up continents, floods, and peculiar atmospheres,
he can dry up oceans, split islands, and parcel out eternity at will; surely with these advan-
tages he must be a dull fellow if he cannot scheme some series of animals and circumstances
explaining our assumed difficulty quite naturally. (Jenkin [1867] 1983, 319)

This criticism predates Popper’s similar claims about evolutionary biology by
more than a century. Furthermore, as a criticism of On the Origin of Species it has
some force—virtually all of Darwin’s examples of explanation by appeal to natural
selection were ‘‘thought experiments,’’ imaginary illustrations, as he called them.
We can see whether this criticism is still valid by referring back to our four cases and
asking how evidence is brought to bear on their truth or falsity. Before doing so,
however, there are two important preliminaries.

First, it is important to distinguish between testing specific hypotheses (or
evaluating specific explanations) which use the Darwinian pattern of explanation, on
the one hand, and evaluating the overall success of the theory of evolution itself, on
the other. (That is, we need to distinguish questions of explanation and confirmation
discussed in the first two chapters of this book and questions of evaluating the overall
strength of evolutionary biology as a research program discussed in Chapter 4.)
Jenkin allows the possibility that a hypothesis invoking a particular combination of
processes might be ‘‘falsified”’—the problem he raises is that the evolutionist has
such an arsenal of alternatives. He notes that, in accounting for geographical distri-
bution, ‘‘Darwin calls in alternately winds, tides, birds, beasts, all animated nature,
as the diffusers of species, and then a good many of the same agencies as impene-
trable barriers. . . . With these facilities of hypothesis there seems to be no particular
reason why many theories should not be true’’ (Jenkin 1867 in Hull 1983, 342; see
Kitcher 1985a, 154-168). Thus, while it is important to show that specific evolu-
tionary explanations can be supported or rejected on the basis of evidence, it is also
important to see whether biologists habitually adopt strategies which insulate evolu-
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tionary theory from more general evaluation in the ways suggested by Jenkin and,
more recently, by Popper.

Secondly, we must again take seriously the idea that every explanation is an
answer to a specific question (see Chapter 1). To evaluate the success of an expla-
nation we need to know not just the fact the explanation is concerned with, but the
specific question about that fact which the explanation seeks to answer. There is an
old joke about a child getting a long and detailed account of human sexual repro-
duction when she asked where she had come from, after which she replied, ‘‘Oh, I
thought I came from Canada.”’

Cases 1-4 cover a wide spectrum of types of evolutionary questions and ex-
planations. Let us consider how these are in fact supported by evidence, and how they
might be evaluated with respect to their truth.

Case 1 asks a question about an evolutionary trend in an historical lineage of
animals. The question to be answered is ‘‘“Why do we see a rapidly accelerating
change in the height-length ratio of the molars in one lineage of the Equidae and not
in others?’’ The specific fact about which we are asking the question is itself not
established beyond reasonable doubt—we could imagine rich fossil finds which could,
for example, dramatically change our estimations of the acceleration rates in the two
lineages being compared. As trends supported by fossil evidence go, however, this
one is well supported. But how strong is the evidential support for processes men-
tioned in the explanation?

The explanation supposes that this trend reflects a series of mutations, at one or
a related set of genetic loci, producing changes in teeth structure which provided
slight advantages to their possessors given a newly available nutritional resource.
That is, it depends on premises about the genetics of these long extinct organisms,
and about the adaptiveness of the changing dentition. Unlike Case 2, we have no
direct way of testing these genetic assumptions. Indirect methods, however, are
available. The mammals in question are ancestors of a currently existing genus. If
genetically based variability in dentition in current populations of Equus is of the
degree and rate required, there is good reason to trust the assumptions. In fact George
Simpson, the originator of a careful biometric study of this data, used arguments of
this kind to support the conclusion that the rates observed in the fossil record were
well within the ranges observed today. If that had not been the case, the explanation
would have been considerably weakened.

The adaptational assumption is supported by paleoecological data, data sug-
gesting that the grasses were evolving at this time, providing a new niche to be
exploited, and that a subpopulation of the Equidae is associated with grazing envi-
ronments while another is associated with browsing environments; and that the ac-
celeration of evolutionary change in relative tooth height is associated with one and
not with the other. Each of these claims can be independently tested, that is, tested
outside the context of this particular explanation, and again could be considerably
weakened by future fossil finds. The history of this case up to now is that new fossil
evidence has tended to strengthen previously weakly supported claims.

Other kinds of support not previously alluded to are important to mention
because of their prominence in historical explanations of this sort. First, there may be
correlated evolutionary changes in the same lineage which can be explained by
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reference to the same or related processes. In this case, there are in fact many, of
which only two will be mentioned (for more, see Maynard Smith 1972, 261-270).
First, the well-known change in this lineage to a ‘‘hoofed’” creature from a four-toed
creature, and a vast array of associated morphological changes, is consistent with
these creatures shifting to an open, grassland environment (see Case 3). These
changes occur only in the lineage which took up grazing, not in those which retained
a browsing lifestyle. Furthermore, this lineage has gone through both relatively long
periods of little change and a number of periods of rapid change. The periods of rapid
change in dentition are closely correlated with those in limb structure. Second, along
with the rapid change in tooth dimensions is a correlated change in the surface ridges
of the teeth, again restricted to the grazers as our hypothesis would predict.

Finally, if optimality considerations lend any support to the claim that *‘ well-
designed”’ features are products of natural selection, then an engineering analysis
which shows that certain types and relative sizes of teeth are superior in dealing with
sources of nutrition high in silicates will lend further support to the above explana-
tion. Such evidence is considered in discussing Case 3.

Enough has been said to indicate both the vulnerability of such explanations to
tests, and the vast array of resources available to provide inductive support, or
confirmation, for them.

Case 2 is, as mentioned earlier, a textbook case of an explanatory success for
population genetics. In cases like this one, we begin with a question about the
characteristics of a current population, and we want to know what causal mechanisms
are responsible for the population having those characteristics. This case, however,
involves a special problem as well—on the assumption that natural selection works
ruthlessly to weed out disadvantageous genes, it is puzzling that a population shouid
possess a lethal recessive gene at high frequencies. Recall that population geneticists
had already deduced, from their mathematical models, the possibility that heterozy-
gotes could have an advantage over either of the homozygotes in a population, under
certain special conditions. We can generate any percentage frequency of such organ-
isms in a population with such models simply by varying the relative fitness values of
the alternative genotypes. This example, and a number of other classic studies,
established that heterosis actually occurs in natural populations, and provided a se-
lection explanation which identifies the adaptive advantage responsible for the main-
tenance of the potentially lethal gene.

The strength of this case flows from the following features: (1) The functional
value of the ‘“‘“mixed hemoglobin’’ phenotype (AS) in a malarial environment 1s
clearly established, as is the pathophysiology associated with the *‘sickling’’ of the
red blood cells due to S-hemoglobin; (2) the genetics is simple, even at the molecular
level, because the sickling of the red blood cells is due to a single amino acid
substitution; (3) the role of the environment in establishing the adaptive advantage of
the heterozygote is clear; (4) the adaptive advantage of the trait in question is not
merely an assumption in this case, as it often is—it has been carefully established by
epidemiological studies. The primary weakness of this explanation is that the precise
mechanisms by which the blood type which is slightly less successful at oxygen
transport manages to be more successful at counteracting malarial infection are not

304 Philosophy of Biology



fully understood. That is, while it has been established that the heterozygote is at an
adaptive advantage, it has not been established why this is so.

Once again, the genetics and physiology of these populations are independently
supported by evidence unrelated to their role in this particular explanation. Such
explanations draw selectively on an enormous amount of background knowledge in
molecular genetics and biochemistry. If biologists consistently failed in such cases to
establish heterozygote superiority, this would call into question certain assumptions
which are currently taken for granted in explanations of this kind. Enough such
failures might perhaps lead to doubts about certain principles of population genetics
which are currently taken as established.

Case 3 is part of an attempt to provide a general explanation for an extremely
extensive set of facts regarding animal locomotion. Different land animals have a
variety of structural and behavioral differences related to locomotion. Are they all
attempts on the part of natural selection to solve the same basic problem of locomo-
tive energy efficiency? Specifically, is the horse’s peculiar limb structure bioenerget-
ically optimal? The use of optimality arguments of this kind is common in
evolutionary biology, and has been the target of some serious criticism. In order to
evaluate these criticisms, we must distinguish between three uses of the concept of
‘“‘optimal design’’ in evolutionary explanations:

(a) an assumption is made that a certain trait is optimal relative to available alter-
natives as part of an evolutionary explanation;

(b) an optimality Ayporhesis is put forward, and is then tested in some way, but no
claim is made about natural selection;

(c) a structure is taken to be optimally designed for a certain function, and this fact
is taken to establish natural selection as the cause of that trait’s presence in a
population.

In this and similar cases, it is arguments of type (c) that have been criticized.
The questionable assumption is that, at least for certain types of traits, establishing
them to be, by engineering or game theoretic standards, the best of available alter-
natives is prima facie evidence that the trait was a product of a selection history. In
many cases, this is the only evidence we have for natural selection. Thus two ques-
tions must be asked. First of all, can the optimality claim itself be tested? Second,
supposing it can, and supposing it passes rigorous tests, does it support the further
claim that the trait in question is an adaptation, that is, a product of natural selection?

Regarding the first question, here is the kind of objection that can be raised. It
is Jenkin’s objection, as you will see. Suppose Maynard Smith predicts that for
mammals of the same size there should be a direct correlation between increased
speed and time spent off the ground. And suppose in 50 percent of the animals
studied, he finds no such correlation. Will he give up his optimality claim? Not at all,
the critic says. He will simply add a subsidiary hypothesis, or a sertes of them, for the
exceptions, claiming that other problems besides efficiency of locomotion entered the
picture in these cases. For example, Maynard Smith might now hypothesize that in
the 50 percent of mammals where the correlation fails, physiological constraints make
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more rapid limb movement the optimal solution to the problem of locomotive effi-
ciency.

Notice that nothing ir principle is wrong with this suggestion—as Jenkin pointed
out long ago. The problem is, how can we test it? Is the introduction of such
subsidiary hypotheses a legitimate search for the truth, or an ingenious con job? The
answer depends centrally on the status of the subsidiary hypotheses. Two questions
should be asked of them:

1. Do they refer to processes or entities of kinds which are known to have causal
relevance to evolutionary change in other, similiar cases?

2. Is the presence of these processes and entities capable of independent confir-
mation? Independence, remember, simply means that there must be evidence
for the truth of the subsidiary hypothesis apart from its ability to help explain the
phenomenon currently under investigation.

In the case in question, for example, there are built-in historical constraints on
adaptational ‘‘solutions,”” so nothing is inherently implausible about the proposed
additional hypothesis appealed to. And if the imagined hypothesis has a chance of
being acceptable, the 50 percent which were not as the initial hypothesis predicted
should all share the same sorts of physiological constraints—they might, for example,
be part of the same historical lineage, which could independently be established from
the fossil record or by measures of biochemical similarity.

Suppose now that such an optimality hypothesis has successfully explained the
similarities and differences among a class of organisms with respect to some feature.
Does this by itself count as support for the hypothesis that these differences are due
to natural selection? As mentioned in presenting this example, a number of assump-
tions have to be made to establish this connection: about the genetics related to the
traits in question, about the existence of genetical alternatives, and about the absence
of compelling reasons to suppose the trait would have been there anyway, selection
or not. In principle, each of these further assumptions can be confirmed. In practice,
however, optimal design arguments are often used precisely where confirmation for
such assumptions is lacking (see Sober 1984a, Chapters 15~17 and Kitcher 1985b,
Chapter 7 for further discussion).

Case 4 shows how it is possible to establish precise claims about relative
adaptedness independently of population genetic measurements of actual reproductive
contributions. Sophisticated statistical methods were used to establish hypotheses
about causal relationships between changing features of the environment and changes
in specific traits of the population in question (for example, correlations between
availability of seeds of various sizes and nutritional values and differential survival
rates of finches). As a number of classic studies have shown, evidence of selection
more direct than, and independent of, measures of actual reproductive success are
possible (see Endler 1986). This is crucial for the viability of the picture of evolu-
tionary theory as a causal theory developed in this chapter.

This case also illustrates one other important feature of particular evolutionary
explanations—their relevance to the actual existence in nature of various postulated
models of speciation. Because of the ability to specify quantitative values for fitness
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differences, and then to solve problems regarding the effects of such differences on
populations breeding along Mendelian lines, it is easy to imagine all sorts of ways that
new species could be produced by various combinations of evolutionary mechanisms.
Evolutionary theory’s main task, however, is to help us understand life on earth as it
actually was and is. Thus it is important to question whether these speculative models
are realistic—are they likely to be instantiated in the natural world? In this case the
idea of an ‘‘evolutionary bottleneck’ seems to be supported, and in addition it
suggests some potentially surprising consequences from such bottlenecks.

Enough has been said to indicate how specific applications of evolutionary
theory to specific sorts of questions about specific facts are confirmed and rejected on
the basis of evidence. Perhaps the best way to think about whether, nonetheless,
Jenkin’s worry still holds for the theory in general is to carefully study its historical
development.

We speak of the theory which emerged with the integration of population
genetics, paleontology, biogeography and ecology in the 1940s and 1950s as the
‘“Neo-Darwinian Synthesis.’’ The primary reason for this is that the central plank of
Darwin’s theory was taken to be dead on, after a long period of skepticism: Evolution
is predominantly due to the 