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Automated face analysis by feature point tracking has
high concurrent validity with manual FACS coding
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Abstract

The face is a rich source of information about human behavior. Available methods for coding facial displays, however,
are human-observer dependent, labor intensive, and difficult to standardize. To enable rigorous and efficient quantitative
measurement of facial displays, we have developed an automated method of facial display analysis. In this report, we
compare the results with this automated system with those of manual FR&Sal Action Coding System, Ekman &
Friesen, 1978acoding. One hundred university students were videotaped while performing a series of facial displays.
The image sequences were coded from videotape by certified FACS coders. Fifteen action units and action unit
combinations that occurred a minimum of 25 times were selected for automated analysis. Facial features were auto-
matically tracked in digitized image sequences using a hierarchical algorithm for estimating optical flow. The mea-
surements were normalized for variation in position, orientation, and scale. The image sequences were randomly divided
into a training set and a cross-validation set, and discriminant function analyses were conducted on the feature point
measurements. In the training set, average agreement with manual FACS coding was 92% or higher for action units in
the brow, eye, and mouth regions. In the cross-validation set, average agreement was 91%, 88%, and 81% for action
units in the brow, eye, and mouth regions, respectively. Automated face analysis by feature point tracking demonstrated
high concurrent validity with manual FACS coding.

Descriptors: Facial expression, FACS, Computer vision, Optical flow

The face is a rich source of information about human behaviorFACS and viewing videotaped facial behavior in slow motion,
Facial displays indicate emotigikman, 1993; Russell, 199d4nd  coders can manually code all possible facial displays, which are
pain(Craig, Hyde, & Patrick, 1991 regulate social behavi¢€ohn referred to as action units. More than 7,000 combinations have
& Elmore, 1988; DePaulo, 1992; Fridlund, 1994eveal brain  been observedEkman, 1982 Ekman and Friese(iLl978h pro-
function (Ekman, Davidson, & Friesen, 1990; Fox & Davidson, posed that specific combinations of FACS action units represent
1988 and pathology(Katsikitis & Pilowsky, 1988; Rinn, 1984 prototypic expressions of emotidime., joy, sadness, anger, dis-
and signal developmental transitions in infaf@ampos, Bertenthal, gust, fear, and surpriseEmotion expressions, however, are not
& Kermoian, 1992; Emde, Gaensbauer, & Harmon, 197® part of FACS; they are coded in a separate system known as
make use of the information afforded by facial displays, reliable, EMFACS (Friesen & Ekman, 1984or the more recent FACS
valid, and efficient methods of measurement are critical. Interpretive Dictionary Friesen & Ekman, undated, cited by Oster,
Current methods, which require human observers, vary in theiHegley, & Nagel, 1992 FACS itself is purely descriptive and uses
specificity, comprehensiveness, degree of objectivity, and ease afo emotion or other inferential labels.
use. The anatomically based Facial Action Coding SyseACS: Another anatomically based objective system, which also re-
Ekman & Friesen, 1978a; Baby FACS: Oster & Rosenstein, 1993quires slow-motion viewing of videotape, is the Maximally Dis-
is the most comprehensive method of coding facial displays. Usingriminative Facial Movement Coding SystéMAX: Izard, 1983.
Compared with FACS, MAX is less comprehensive and was in-
tended to include only facial displayeeferred to as movements
Portions of the data were presented at the Seventh European Confefelated to emotion. MAX does not discriminate among some an-

ence on Facial Expression, Measurement, and Meaning in Salzburg, Aus:. ; ot ; ; _ _ ;
tria. August 1997, Htomically distinct displayge.g., inner- and outer-brow raigemd
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Whereas FACS and MAX use objective, physically measurablébeen an active area of research for some 30 yd2usla & Hart,
criteria, other videotape viewing systems are based on subjectiveé973; early work included attempts at automated face recognition
criteria for facial expressions of emotio®SFFEX: Izard, Dough-  (Kanade, 1973, 19737 More recently, there has been significant
erty, & Hembree, 1983and other expressive modalitiesg., mo-  interest in automated facial display analysis by computer vision.
nadic phases: Cohn & Tronick, 1988; Tronick, Als, & Brazelton, One approach, initially developed for face recognition, uses a com-
1980. The expression codes in these systems are given emotidsination of principal components analy$RCA) of digitized face
labels(e.g., joy based on the problematic assumption that facialimages and artificial neural networks. High dimensional face im-
expression and emotion have an exact correspond@@emras, ages(e.g., 640X 480 gray scale pixel arraysire reduced to a
1992; Fridlund, 1994; Russell, 1994.ike FACS and MAX, these lower dimensional set of eigenvectors gigenface$Turk & Pent-
systems also require slow-motion viewing of videotaped facialland, 199). The eigenfaces then are used as input to an artificial
behavior. neural network or other classifier. A classifier developed by Padgett,

As used below, emotion expression refers to facial displays tha€ottrell, and Adolph$1996 discriminated 86% of six prototypic
have been given emotion labels. However, emotion expressionsmotion expressions as defined by Ekman & Fried&v9 (i.e.,
with the same label do not necessarily refer to the same facigby, sadness, anger, disgust, fear, and surpriseother classifier
displays. Systems such as MAX, AFFEX, and EMFACS can anddeveloped by Bartlett et (1996 discriminated 89% of six upper
do use the same terms when referring to different phenomena. Féace FACS action units.
instance, Oster et al1992 found that MAX and the FACS Inter- Although promising, these systems have some limitations. First,
pretive Dictionary gave different emotion labels to the same dis-because Padgett et 1996 and Bartlett et al(1996 performed
plays. The lack of standard meaning to specific emotion expressioBCA on gray scale values, information about individual identity
and the implication that emotion expressions represent subjectiveas encoded along with information about expression, which may
experience of emotion are problems encountered when using eménpair discrimination. Some robust lower-level image processing
tion labels to refer to facial displays. The descriptive power ofmay be required to produce more robust discrimination of facial
FACS, by contrast, has made it well suited to a broad range oflisplays. Second, eigenfaces appear to be highly sensitive to minor
substantive applications, including nonverbal behavior, pain revariation in image alignment for the task of face recognitiBhil-
search, neuropsychology, and computer graphics, in addition tbps, 1996. Similar or even better precision in image alignment is
emotion sciencé Ekman & Rosenberg, 1997; Parke & Waters, probably required when eigenfaces are used to discriminate facial
1996; Rinn, 1984, 1991 displays. The image alignment used by Padgett et al. and Bartlett

In daily life, expressions of emotion, whether defined by ob- et al. was limited to translation and scaling, which is insufficient to
jective criteria(e.g., combinations of FACS action units or MAX align face images across subjects with face rotation. Third, these
movement code®r by subjective criteria, occur infrequently. More methods have been tested only on rather limited image data sets.
often, emotion is communicated by small changes in facial feafadgett et al(1996 analyzed photographs from Ekman and Frie-
tures, such as furrowing of the brows to convey negative affectsen’s(1976 Pictures of Facial Affect, which are considered pro-
Consequently, a system that describes only emotion expressionstistypic expressions of emotion. Prototypic expressions differ from
of limited use. Only FACS, and to a lesser extent MAX, can each other in many ways, which facilitates automated discrimina-
produce the detailed descriptions of facial displays that are retion. Bartlett et al.(1996 analyzed images of subjects, many of
quired to reveal components of emotion expressieng., Carroll ~ whom were experts in recognizing and performing FACS action
& Russell, 1997; Gosselin, Kirouac, & Dore, 1995ACS action  units, and observed that target action units occurred individually
units are the smallest visibly discriminable changes in facial distather than being embedded within other facial displays. Fourth,
play, and combinations of FACS action units can be used to deBartlett et al. performed manual time warping to produce a stan-
scribe emotion expressiofBkman, 1993; Ekman & Friesen, 1978b dard set of six preselected frames for each subject. Manual time
and global distinctions between positive and negative expressiowarping is of variable reliability and is time consuming. Moreover,
(e.g., Moore, Cohn, & Campbell, 1997 in many applications behavior samples are variable in duration,

With extensive training, human observers can achieve accepgand therefore standardizing duration may omit critical information.
able levels of interobserver reliability in coding facial displays. = More recent research has incorporated approaches based on
Methods based on human observéms., manual methodshow- optical flow to discriminate facial displays. Such approaches are
ever, are labor intensive, semi-quantitative, and with the possibléased on the assumption that muscle contraction causes deforma-
exception of FACS, difficult to standardize across laboratories ottion of overlying skin. In a digitized image sequence, algorithms
over time. Training is time consumir@@pproximately 100 hr with ~ for optical flow extract motion from the subtle texture changes in
the most objective methofsand coding criteria may drift with  skin, and the pattern of such movement may be used to discrim-
time (Bakeman & Gottman, 1986; Martin & Bateson, 1986n- inate facial displays. Specifically, the velocity and direction of
plementing comprehensive systems is reported to take up to 10 lpixel movement across the entire face or within windows selected
of coding time per minute of behavior, depending upon the com+o cover certain facial regions are computed between successive
prehensiveness of the system and the density of behavior changames. Using measures of optical flow, Essa, Pentland, and Mase
(Ekman, 1982 Such extensive effort discourages standardized Essa & Pentland, 1994; Mase, 1991; Mase & Pentland, 1890
measurement and may encourage the use of less specific codin@coob and Davi$1994 discriminated among emotion-specified
systems with unknown convergent validitylatias, Cohn, & Ross, displays(e.qg., joy, surprise, fearThis level of analysis is compa-
1989. These problems tend to promote the use of smaller sampleable to the manual methods that are based on prototypic emotion
sizes(of subjects and behavior samplgsrolong study completion  expressionge.g., AFFEX: Izard et al., 1983
times, and thus limit the generalizability of study findings. The work of Masg1991), Mase and Pentland 990, and Essa

To enable rigorous, efficient, and quantitative measurement oind Pentland1994 suggested that more subtle changes in facial
facial displays, we have used computer vision to develop an audisplays, as represented by FACS action units, could be detected
tomated method of facial display analysis. Computer vision hagrom differential patterns of optical flow. Essa and Pentlét@b4),
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for instance, found increased flow associated with action units invas quantified with coefficient kappa, which is the proportion of
the brow and mouth region. The specificity of optical flow to agreement above what would be expected to occur by chance
action unit discrimination, however, was not tested. Discrimination(Cohen, 1960; Fleiss, 1981The mean kappa for interobserver
of facial displays remained at the level of emotion expressionsagreement was .86.
rather than the finer and more objective level of FACS action units.  Action units that occurred a minimum of 25 times in the image
Bartlett et al. (1996 discriminated between action units in the data base were selected for analysis. This criterion ensured suffi-
brow and eye regions in a small number of subjects. cient data for training and testing of the automated face analysis
A question about optical flow methods is whether they aresystem. When an action unit occurred in combination with other
sufficiently sensitive to subtle differences in facial displays, asaction units that may modify its appearance, the combination rather
represented in FACS action units. Work to date has incorporatethan the single action unit was the unit of analysis. Figure 1 shows
aggregate measures of optical flow within relatively large facialthe action units and action unit combinations thus selected. The
regions(e.g., forehead or cheeksncluding modal flow(Black & action units we analyzed in three facial regigbsows, eyes, and
Yacoob, 1995; Rosenblum, Yacoob, & Davis, 1994; Yacoob &mouth are key components of emotion and other paralinguistic
Davis, 1994 and mean flow within the regiofMase, 1991; Mase displays and are common variables in emotions research. For in-
& Pentland, 1990 Black and Yacool§1995 and Black, Yacoob, stance, AU 4 is characteristic of negative emotion and mental
Jepson, and Fledl997) also disregarded subtle changes in flow effort, and AU 12 is a component of surprise. AU 6 differentiates
that were below an assigned threshold. Information about smaflelt (Duchenng smiles (AU 6+12) from non-Duchenne smiles
deviations is lost when the flow pattern is aggregated or thresholdéAU 12) (Ekman et al., 1990 In all three facial regions, the action
are imposed. As a result, the accuracy for discriminating FACSunits chosen are relatively difficult to discriminate because they
action units may be reduced. involve subtle differences in appearariesy., brow narrowing due
The objective of the present study was to implement the firstto AU 1+4 vs. AU 4, eye narrowing due to AU 6 vs. AU 7, three
version of our automated method of face analysis and to assess ggparate action unit combinations involving AU 17, and mouth
concurrent validity with manual FACS coding. Unlike previous widening due to AU 12 vs. AU 20. Unless otherwise noted, the
automated systems that analyzed aggregate flow within large federmaction unitas used here refers to both single action units and
ture windows, our system tracks the movement of closely spacedction unit combinations.
feature points within very small feature windovairrently 13X
13 pixel9 and imposes no arbitrary thresholds. The feature pointdmage Processing and Analysis
to be tracked are selected based on two criteria: they are in regiodg1age sequences from neutral to target disgtagan duration-
of high texture and they represent underlying muscle activation oR0 frames at 30 framgs) were digitized automatically into 648
closely related action units. Discriminant function analyses are490 pixel arrays with 8-bit precision for gray scale values. Target
performed on the feature point measurements for action units idlisplays represented a range of action unit intensities, including
brow, eye, and mouth regions. The descriptive power of featurdow, medium, and high intensity.
point marking is evaluated by comparing the results of a discrim-

inant classifier based on feature point tracking with those of man- Image alignmentTo remove the effects of spatial variation in
ual FACS coding. face position, slight rotation, and facial proportions, images must

be aligned and normalized prior to analysis. Three facial feature

points were manually marked in the initial image: the medial can-
Method thus of both eyes and the uppermost point of the philtrum. Using
Image Acquisition an affine transformation, the images were then automatically mapped

Subjects were 100 university students enrolled in introductory psyl© & standard face model based on these feature fiiigsre 2.
chology classes. They ranged in age from 18 to 30 years. Sixty-fiy&®y automatically controlling for face position, orientation, and
percent were female, 15% were African American, and 3% werdnagnification in this initial processing step, optical flows in each
Asian or Latino. frame had exact geometric correspondence.

The observation room was equipped with a chair for the subject . ) i
and two Panasonic WV3230 cameras, each connected to a Pana- Feature point tra_cklng.ln the first frame, 37 _featurgs V\_/ere
sonic S-VHS AG-7500 video recorder with a Horita synchronizedrm’mu.aIIy marked using a computer moultmost image in Fig-
time-code generator. One of the cameras was located directly iH® 3: 6 feature points around the contours of the brows, 8 around

front of the subject, and the other was positioned t80the right the eyes, 13 a.rou.n.d the nose, and. 10 aroqnd the mouth. The in-
of the subject. Only image data from the frontal camera are in_terobserver reliability of feature point marking was assessed by
cluded in this report. independently marking 33 of the initial frames. Mean interobserver

Subjects were instructed by an experimenter to perform a serigg/1or was 2.29 anq 2.01 pixels in the horizonta}I apd vertica! .di_
of 23 facial displays that included single action urfitdJs) (e.g. mensions, respectively. Mean interobserver reliability, quantified

AU 12 = lip corners pulled obliquelyand combinations of action with Pearson correlation coefficients, was .97 and .93 in the hor-

units (e.g., AU 1+2 = inner and outer brows raisgdSubjects izontal and vertical dlmen3|ons,_respectlvely. . .
began and ended each display from a neutral face. Before perform- 11€ movement of feature points was automatically tracked in
ing each display, an experimenter described and modeled the dg]e Image sequence using an optical ﬂ_OW algoritfiicas &
sired display. Six of the displays were based on descriptions O_Kanade, 1981 legn ann X n feature reg'orR and a gray-scale
prototypic emotiongi.e., joy, surprise, anger, fear, disgust, and imagel, the a'gf’f,'thm solves for the d!splacemgqt \,’e,mb't
sadness These six tasks and mouth opening in the absence o?dxzdy) of the Orlglne_tln ><_n feature region by minimizing the
other action units were coded by one of(#sZ.) who is certified  'eSidualE(d), which is defined as

in the use of FACS. Seventeen percent of the data were comparison

coded by a second certified FACS coder. Interobserver agreement E(d) = 2 [lax+d) = L(X)]% xER
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Figure 1. Facial displays studied for automated face analysis. Adapted

from Ekman and Friese(19783.
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maintaining sensitivity to subtlésubpixe) facial motion. On a
dual-processor 300-MHz Pentium Il computer with 128 megabytes
of random access memory, processing time is approximately 1 s
per frame.

The two images on the right in Figure 3 show an example of
feature point tracking results. The subject's face changes from
neutral(AU 0) to brow raisg AU 1+2), eye widening AU 5), and
jaw drop (AU 26), which is characteristic of surprise. The feature
points are precisely tracked across the image sequence. Lines trail-
ing from the feature points represent changes in their location during
the image sequence. As the action units become more extreme, the
feature point trajectory becomes longer.

Data Analysis and Action Unit Recognition
To evaluate the descriptive power of feature point tracking mea-
surements, discriminant function analysis was used. Separate analy-
ses were conducted on the measurement data for action units within
each facial region. In the analyses of the brow region, the mea-
surements consisted of the horizontal and vertical displacements of
the six feature points around the brows. In the analyses of the eye
region and of Duchenne versus non-Duchenne smiles, the mea-
surements consisted of the horizontal and vertical displacements of
the eight feature points around the eyes. In analyses of the mouth
region, the measurements consisted of the horizontal and vertical
displacements of the 10 feature points around the mouth and 4
points on either side of the nostrils, because of the relevance of
the nose points to AU 9. Therefore, each measurement was repre-
sented by a@dimensional vector by concatenatipdgeature point
displacements; that I8 = (dy, dy,...,dp) = (diy, 1y, 0oy, Aoy, - . -,
dpx, dpy)-

The discrimination between action units was done by com-
puting and comparing the a posteriori probabilities of action units,
that is

D — AU, if p(AU,|D) > p(AU;|D)  j#Kk

where

_ P(D|AU;)p(AU;)

p(D|AU;)p(AU;)

K
_Elp(D|AUj)p(AUj)
i<

The discriminant function between Aldnd Ay is therefore the
log-likelihood ratio

P(AUi|D)
p(AU;|D)

p(D|AU;)p(AU;)
p(D|AU;)p(AU;)

fj (D) = log log

The p(D|AU;) was assumed to be a multivariate Gaussian prob-
ability distributionN(u;,=;), where the mean; and the covari-
ance matrix3; were estimated by the sample means and sample

wherex = (x,y) is a vector of image coordinates. The Lucas- covariance matrices of the training data. This discriminant function
Kanade algorithm performs the minimization efficiently by using is a quadratic discriminant function in general; but if covariance
spatiotemporal gradients, and the displacem#risdd, are solved  matrices; and; are the same, it reduces to a linear discriminant
with subpixel accuracy. The region size used in the algorithm wagunction. Because we were interested in the descriptive power of
13 X 13 pixels. The algorithm was implemented by using an iter-the feature point displacement vector itself rather than relying on
ative, hierarchical 5-level image pyrami{®oelman, 1996 with other information(e.qg., relative frequencies of action units in our
which rapid and large displacements of up to 100 pixelg., as  specific samples a priori probabilitiesp(AU;), were assumed to
found in sudden mouth openipngan be robustly tracked while be equal.



Automated face analysis 39
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Figure 2. Image alignment by affine transformation, which includes translation, scaling, and rotation factors. The medial canthi and
philtrum are used as reference points.

The analyses used 872 samples of 15 action units or action unResults
combinations that occurred 25 or more times in 504 image se-

quences of 100 subjects. The samples were randomly divided intB"ow Region ) ) o
a training and a cross-validation set. However, if an action unit! Nfé€ action units or action unit combinatiodd) 1+2, AU 1+4,

occurred in more than one image sequence from the same subje@{}d AU 4 were analyzed in the brow region. Wilks lambda and
all of the samples of that action unit by that subject were assigne@¥0 discriminant functions were highly significatt = .07, p <
to the training set. Thus, for each action unit, samples from the001, canonical correlations .93 and .68p < .001. In the train-
same subject belonged exclusively either to the training or to thd"d Set, 93% of the action units were correctly classified- .88).
cross-validation set but not to both. This strict criterion ensured the cross-validation s¢fable 1, 91% were correctly classified
that the training and the cross-validation set were uncorrelate§< = 0-87); accuracy ranged from 74% for AU+ to 95% and
with respect to subjects for each action unit and thus that what wa3”% for AU 1+2 and AU 4, respectively.
recognized was the action unit rather than the subject.

The agreement of action unit discrimination between manuaEye Region
FACS coding and automated face analysis by feature point trackFhree action unitéAU 5, AU 6, and AU 7 in the eye region were
ing was quantified. We used coefficient kappa to measure thanalyzed. Wilks lambda and two discriminant functions were highly
proportion of agreement above what would be expected to occusignificant(A = 0.09,p < .001; canonical correlations .91 and
by chance(Cohen, 1960; Fleiss, 1981In preliminary analyses, .67, p < .001). In the training set, 92% of action units were
subjects’ race and gender were unrelated to classification accura@prrectly classifiedx = .88). In the cross-validation s¢Table 2,
and therefore were not included as factors in the discriminanB8% were correctly classifietk = .82). Disagreements that oc-
function analyses and classification results reported below. curred were between AU 6 and AU 7.

Figure 3. Example of manually located feature poiritsftmost image and results of automated feature point trackitvgo images
on the righi. The subject’s expression changes from neu#al 0) to surprise(AU 1+2+5+26).
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Table 1. Proportion of Agreement Between Automated Face
Analysis and Manual Coding in Identifying Action Units
in the Eyebrow Region

J.F. Cohn et al.

Table 3. Proportion of Agreement Between Automated Face
Analysis and Manual Coding in Discriminating
Between Non-Duchenne and Duchenne Smiles

Automated face analysis

Automated face analysis

No. No.

Manual coding samples AU %2 AU 1+4 AU 4 Manual coding samples Non-Duchenne Duchenne
Training set Training set

AU 1+2 42 91 .10 .00 Non-Duchenne 25 .88 12

AU 1+4 25 .04 .88 .08 Duchenne 35 .20 .80

AU 4 84 .00 .05 .95 Cross-validation set
Cross-validation set Non-Duchenne 12 1.00 .00

AU 1+2 43 .95 .05 .00 Duchenne 33 .24 76

AU 1+4 19 .00 74 .26

AU 4 32 .00 .03 .97

Note: k = .88 and .87 in the training and the cross-validation sets,
respectively.

We also evaluated recognition accuracy for Duchenne versu

non-Duchenne smiles; that is, a comparison of AW1@ with

AU 12. Feature point data were restricted to the eye region. Wilk

lambda and one discriminant function were significent= 0.45,
p < .025; canonical correlation .74,p < .05). In the training set,
classification accuracy was 830 = .67). In the cross-validation
set, accuracy was 828 = .63) (see Table B Errors resulted from
over classification of AU 12.

Mouth Region

Nine action units were analyzed in the mouth region. Wilks lambd
and five discriminant functions were highly significdit= 0.0006,
canonical correlations: .94, .93, .87, .76, and .69, < .001). In
the training set, 94%x« = .93) were correctly classified. In the
cross-validation sefTable 4, 81% were correctly classifiede =
.79). Accuracy was low for discriminating AU 26 from AUs 25 and

27, but accuracy for all other action units ranged from 73% to

100%.

Discussion

Facial displays are a rich source of information about human be-

havior, but that information has been difficult to obtain efficiently.

Table 2. Proportion of Agreement Between Automated Face
Analysis and Manual Coding in Identifying Action Units
in the Eye Region

Automated face analysis

No.
Manual coding samples AU 5 AU 6 AU 7
Training set
AU 5 41 1.00 .00 .00
AU 6 35 .00 a7 .23
AU 7 34 .00 .03 .97
Cross-validation set
AU 5 28 .93 .00 .07
AU 6 33 .00 .82 .18
AU 7 14 .00 .07 .93

Note: k = .88 and .82 in the training and the cross-validation sets,
respectively.

a

Note: k = .67 and .63 in the training and the cross-validation sets,
respectively.

Manual methods are labor intensive, semiquantitative, difficult to
standardize, and often subjective. Several recent studies have used
éomputer-vision approaches to discriminate facial displ@at-

lett et al., 1996; Cottrell & Metcalfe, 1991; Essa & Pentland, 1994;

%adgett et al., 1996; Yacoob & Davis, 199Except for a study by

Bartlett et al.(1996, this work has focused on discriminating a
small number of emotion expressiofgsg., joy, surprise, feathat

differ from each other in many facial regions, and the sample sizes
used have been small, from 7 to 20 subjects. We have developed an
automated face analysis method that discriminates FACS action
units, which are the smallest visibly discriminable facial displays
with well-established objective criteria. We tested automated face
analysis with a large, varied data set.

To discriminate FACS action units, feature points in regions of
moderate to high texture were automatically tracked in image se-
quences, and the effects of spatial variation were removed using an
affine transformation of the feature point displacements. Using a
discriminant classifier, average accuracy in the training set was
above 90% for action units in the brow, eye, and mouth regions
and was 83% for discriminating between Duchenne and non-
Duchenne smiles. In the cross-validation set, average accuracy was
91%, 88%, and 81% in the brow, eye, and mouth regions, respec-
tively, and accuracy for Duchenne versus non-Duchenne smiles
was 82%.

Automated face analysis demonstrated high concurrent validity
with manual coding for action units in each of the facial regions
studied. The level of intermethod agreement for action units was
comparable to the accepted standard in tests of interobserver agree-
ment in FACS. The intermethod disagreements that did occur were
generally the same ones that are common in FACS, such as the dis-
tinction between AU 25 and AU 26 and between Al4.and AU 4.

This test of the concurrent validity of automated face analysis
was performed with a larger, more heterogeneous data set than was
previous work. The data set consisted of more than 500 image
sequence samples with 15 action units and action-unit combina-
tions of 100 subjects. The image sequences contained positional
and rotational motions of the face, and the set of action units
spanned those in three facial regidbsth upper and lower fage
An action unit could occur alone or could be embedded in others.
Also, subjects included African American and Asian men and
women, providing a more adequate test of how well action unit
discrimination would generalize to image sequences in new sub-
jects. Automated face analysis was comparable to the accepted
standard for manual coding, FACS.
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Table 4. Proportion of Agreement Between Automated Face Analysis and Manual Coding in Identifying
Action Units in the Mouth Region

Automated face analysis

No.

Manual coding samples AU 27 AU26 AU25 AU12 AU 1225 AU 20+25t16 AU 15+17 AU17+23+24 AU 9+17+25

Training set
AU 27 28 1.00 .00 .00 .00 .00 .00 .00 .00 .00
AU 26 28 .05 .86 .09 .00 .00 .00 .00 .00 .00
AU 25 22 .00 .00 1.00 .00 .00 .00 .00 .00 .00
AU 12 15 .00 .00 .00 .94 .06 .00 .00 .00 .00
AU 12+25 37 .00 .00 .00 .05 .95 .03 .00 .00 .00
AU 20+25+16 31 .03 .00 .00 .03 .06 .88 .00 .00 .00
AU 15+17 34 .00 .00 .03 .00 .00 .00 .94 .03 .00
AU 17+23+24 14 .00 .00 .00 .00 .00 .00 .07 .93 .00
AU 9+17+25 18 .00 .00 .00 .00 .00 .00 .00 .00 1.00

Cross-validation set
AU 27 29 .79 .10 .03 .00 .00 .07 .00 .00 .00
AU 26 20 .30 .52 .18 .00 .00 .00 .00 .00 .00
AU 25 22 .00 14 .73 .00 .00 .00 .14 .00 .00
AU 12 18 .00 .00 .00 .83 17 .00 .00 .00 .00
AU 12+25 35 .00 .00 .03 .00 .81 17 .00 .00 .00
AU 20+25+16 26 .00 .03 .00 .00 .08 .89 .00 .00 .00
AU 15+17 36 .00 .00 .00 .00 .00 .03 .92 .06 .00
AU 17+23+24 12 .00 .00 .00 .08 .00 .00 .00 .92 .00
AU 9+17+25 17 .00 .00 .00 .00 .00 .00 .00 .00 1.00

Note: k = .93 and .79 in the training and the cross-validation sets, respectively.

In the present study, we used a restricted number of distincstudy. After the initial reference points were marked, the facial
features for action unit discrimination: feature points around thefeatures were tracked automatically in all subsequent images. On
brows, eyes, nose, and mouth. We have not used other features@333 MHz Pentium Il computer, the processing rate of automatic
other regions, such as the forehead, glabella, infraorbital furrowfeature tracking was approximately 1 frame per second; processing
cheeks, and the chin boss. Manual FACS coding looks for manyf the 504 image sequences analyzed here required under 3 hr to
types of movement in all of these facial regions when coding thecomplete. By contrast, manual FACS coding would require as
action units analyzed here. AU 6, for instance, produces skin movemuch as 10 hr for each minute of image déEman, 1982
ment across the cheeks, which is useful in discriminating AU 6 A major source of error in analyzing facial displays is global
from AU 7. Feature point tracking in the cheek region would detectmotion of the head across an image sequence. Movement toward,
skin movement due to AU 6 and likely increase the accuracy of AUaway from, or parallel to the image plane of the camera, as well as
discrimination. rotation in the image plane, is readily accommodated by auto-

Many action units involve changes in transient features, such amatically scaling, translating, and rotating the digitized images so
lines or furrows, that may occur or vary across an image sequencéhat they are normalized with respect to the initial frame. When
“Crow’s-feet” wrinkles, for instance, form at the eye corners from out-of-plane rotation varies within abott5°, which was the case
contraction of the orbicularis oculi in AU 6, and increases in thein the image sequences analyzed here, these normalizations were
sclera above the eyeball occur with AU 5. These features can bsufficient. In many applications, however, larger out-of-plane ro-
represented by intensity gradients in the image sequence and at@&ions may occur. Intermediate rotations can be normalized by
quantified by the computer vision method of edge detection. Fousing an eight-parameter planar model to warp images to match
some action units, the use of edge detectors is essential. To digth the initial frame(Black & Yacoob, 1995; Wu, Kanade, Cohn,
criminate between AU 25 and AU 26, FACS specifies a requisite& Li, 1998). For larger rotations, however, higher degree motion
distance between upper and lower teeth, which is readily detectehodels or multiple camera setups may be neg@abu, Essa, &
by edge detectors but not by optical flow. By increasing the num-Pentland, 1996; DeCarlo & Metaxas, 1995; Narayanan, Rander, &
ber of feature regions and supplementing feature point trackindganade, 1998; Vetter, 1995Multiple camera setups already are
and optical flow estimation with edge detection, further improve-common in observational research, so the necessary recording ca-
ment in facial feature analysis can be achieyk@én, Kanade, pability is present in many laboratories.

Zlochower, Cohn, & Li, 1998a; Lien, Zlochower, Cohn, & Kanade, = The present analyses focused on the concordance between au-
1998h. tomated face analysis and manual FACS coding in classifying

In comparison with manual FACS coding, automated faceaction units and action unit combinations. Automated face analysis
analysis represents a substantial improvement in efficiency. Manalso provides a powerful tool with which to quantify the temporal
ual FACS coding requires lengthy training and is time intensive.dynamics of emotion displays. Ekman and Frie$&882 theo-

The current automated face analysis requires feature point markingzed that false emotion expressions have a different temporal pat-
in a single frame of each image sequence, but it is fast and reliablern than do genuine onée.g., latency to apex is faster in false
with little training. It took us about 4 hr to mark manually the first emotion expressions and they are punctuated by the occurrence of
frame in each of the 504 image sequences analyzed in the preseampid microdisplays Until now, hypotheses such as these have
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been difficult to test(see, e.g., Frank, Ekman, & Friesen, 1893 nicity, average recognition accuracy for 15 action units in the brow,
Human observers have difficulty locating precise changes in beeye, and mouth regions was 81-91%, which is comparable to the
havior and in estimating changes in intensity of expression. Interievel of interobserver agreement achieved in manual FACS coding.
observer agreement in locating the timing of action unit changesVe are extending automated face analysis to incorporate conver-
within a sequence is generally Ide.g., Ekman & Friesen, 1978b  gent methods of quantifying facial displays, increase the number of
Automated face analysis, by contrast, can precisely track quantiaction units and action unit combinations that can be recognized,
tative changes on a frame-by-frame bd€lshn, Zlochower, Lien, and increase the generalizability of the system to a wide range of
Wu, & Kanade, 1995 Small pixelwise changes from frame to image orientations. We also have begun to use automated face
frame may be measured, and the temporal dynamics of facianalysis to study emotion expression in infafdchower, Cohn,
displays can be determined. Lien, & Kanade, 1998 With continued development, automated

In summary, automated face analysis by feature point trackindace analysis will greatly reduce or eliminate the need for manual
demonstrated high concurrent validity with manual FACS coding.coding, make feasible the use of larger, more representative data
In the cross-validation set, which included subjects of mixed eth-sets, and open new areas of investigation.
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