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Abstract

The face is a rich source of information about human behavior. Available methods for coding facial displays, however,
are human-observer dependent, labor intensive, and difficult to standardize. To enable rigorous and efficient quantitative
measurement of facial displays, we have developed an automated method of facial display analysis. In this report, we
compare the results with this automated system with those of manual FACS~Facial Action Coding System, Ekman &
Friesen, 1978a! coding. One hundred university students were videotaped while performing a series of facial displays.
The image sequences were coded from videotape by certified FACS coders. Fifteen action units and action unit
combinations that occurred a minimum of 25 times were selected for automated analysis. Facial features were auto-
matically tracked in digitized image sequences using a hierarchical algorithm for estimating optical flow. The mea-
surements were normalized for variation in position, orientation, and scale. The image sequences were randomly divided
into a training set and a cross-validation set, and discriminant function analyses were conducted on the feature point
measurements. In the training set, average agreement with manual FACS coding was 92% or higher for action units in
the brow, eye, and mouth regions. In the cross-validation set, average agreement was 91%, 88%, and 81% for action
units in the brow, eye, and mouth regions, respectively. Automated face analysis by feature point tracking demonstrated
high concurrent validity with manual FACS coding.

Descriptors: Facial expression, FACS, Computer vision, Optical flow

The face is a rich source of information about human behavior.
Facial displays indicate emotion~Ekman, 1993; Russell, 1994! and
pain~Craig, Hyde, & Patrick, 1991!, regulate social behavior~Cohn
& Elmore, 1988; DePaulo, 1992; Fridlund, 1994!, reveal brain
function ~Ekman, Davidson, & Friesen, 1990; Fox & Davidson,
1988! and pathology~Katsikitis & Pilowsky, 1988; Rinn, 1984!,
and signal developmental transitions in infants~Campos, Bertenthal,
& Kermoian, 1992; Emde, Gaensbauer, & Harmon, 1976!. To
make use of the information afforded by facial displays, reliable,
valid, and efficient methods of measurement are critical.

Current methods, which require human observers, vary in their
specificity, comprehensiveness, degree of objectivity, and ease of
use. The anatomically based Facial Action Coding System~FACS:
Ekman & Friesen, 1978a; Baby FACS: Oster & Rosenstein, 1993!
is the most comprehensive method of coding facial displays. Using

FACS and viewing videotaped facial behavior in slow motion,
coders can manually code all possible facial displays, which are
referred to as action units. More than 7,000 combinations have
been observed~Ekman, 1982!. Ekman and Friesen~1978b! pro-
posed that specific combinations of FACS action units represent
prototypic expressions of emotion~i.e., joy, sadness, anger, dis-
gust, fear, and surprise!. Emotion expressions, however, are not
part of FACS; they are coded in a separate system known as
EMFACS ~Friesen & Ekman, 1984! or the more recent FACS
Interpretive Dictionary~Friesen & Ekman, undated, cited by Oster,
Hegley, & Nagel, 1992!. FACS itself is purely descriptive and uses
no emotion or other inferential labels.

Another anatomically based objective system, which also re-
quires slow-motion viewing of videotape, is the Maximally Dis-
criminative Facial Movement Coding System~MAX: Izard, 1983!.
Compared with FACS, MAX is less comprehensive and was in-
tended to include only facial displays~referred to as movements!
related to emotion. MAX does not discriminate among some an-
atomically distinct displays~e.g., inner- and outer-brow raises! and
considers as autonomous some displays that are not anatomically
distinct ~Oster et al., 1992!. Malatesta, Culver, Tesman, and Shep-
hard~1989! added some displays in an effort to make MAX more
comprehensive. Unlike FACS, MAX makes explicit claims that
specific combinations of displays are expressions of emotion, and
the goal of MAX coding is to identify these MAX-specified emo-
tion expressions.
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tria, August 1997.
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Whereas FACS and MAX use objective, physically measurable
criteria, other videotape viewing systems are based on subjective
criteria for facial expressions of emotions~AFFEX: Izard, Dough-
erty, & Hembree, 1983! and other expressive modalities~e.g., mo-
nadic phases: Cohn & Tronick, 1988; Tronick, Als, & Brazelton,
1980!. The expression codes in these systems are given emotion
labels~e.g., joy! based on the problematic assumption that facial
expression and emotion have an exact correspondence~Camras,
1992; Fridlund, 1994; Russell, 1994!. Like FACS and MAX, these
systems also require slow-motion viewing of videotaped facial
behavior.

As used below, emotion expression refers to facial displays that
have been given emotion labels. However, emotion expressions
with the same label do not necessarily refer to the same facial
displays. Systems such as MAX, AFFEX, and EMFACS can and
do use the same terms when referring to different phenomena. For
instance, Oster et al.~1992! found that MAX and the FACS Inter-
pretive Dictionary gave different emotion labels to the same dis-
plays. The lack of standard meaning to specific emotion expressions
and the implication that emotion expressions represent subjective
experience of emotion are problems encountered when using emo-
tion labels to refer to facial displays. The descriptive power of
FACS, by contrast, has made it well suited to a broad range of
substantive applications, including nonverbal behavior, pain re-
search, neuropsychology, and computer graphics, in addition to
emotion science~Ekman & Rosenberg, 1997; Parke & Waters,
1996; Rinn, 1984, 1991!.

In daily life, expressions of emotion, whether defined by ob-
jective criteria~e.g., combinations of FACS action units or MAX
movement codes! or by subjective criteria, occur infrequently. More
often, emotion is communicated by small changes in facial fea-
tures, such as furrowing of the brows to convey negative affect.
Consequently, a system that describes only emotion expressions is
of limited use. Only FACS, and to a lesser extent MAX, can
produce the detailed descriptions of facial displays that are re-
quired to reveal components of emotion expressions~e.g., Carroll
& Russell, 1997; Gosselin, Kirouac, & Dore, 1995!. FACS action
units are the smallest visibly discriminable changes in facial dis-
play, and combinations of FACS action units can be used to de-
scribe emotion expressions~Ekman, 1993; Ekman & Friesen, 1978b!
and global distinctions between positive and negative expression
~e.g., Moore, Cohn, & Campbell, 1997!.

With extensive training, human observers can achieve accept-
able levels of interobserver reliability in coding facial displays.
Methods based on human observers~i.e., manual methods!, how-
ever, are labor intensive, semi-quantitative, and with the possible
exception of FACS, difficult to standardize across laboratories or
over time. Training is time consuming~approximately 100 hr with
the most objective methods!, and coding criteria may drift with
time ~Bakeman & Gottman, 1986; Martin & Bateson, 1986!. Im-
plementing comprehensive systems is reported to take up to 10 hr
of coding time per minute of behavior, depending upon the com-
prehensiveness of the system and the density of behavior changes
~Ekman, 1982!. Such extensive effort discourages standardized
measurement and may encourage the use of less specific coding
systems with unknown convergent validity~Matias, Cohn, & Ross,
1989!. These problems tend to promote the use of smaller sample
sizes~of subjects and behavior samples!, prolong study completion
times, and thus limit the generalizability of study findings.

To enable rigorous, efficient, and quantitative measurement of
facial displays, we have used computer vision to develop an au-
tomated method of facial display analysis. Computer vision has

been an active area of research for some 30 years~Duda & Hart,
1973!; early work included attempts at automated face recognition
~Kanade, 1973, 1977!. More recently, there has been significant
interest in automated facial display analysis by computer vision.
One approach, initially developed for face recognition, uses a com-
bination of principal components analysis~PCA! of digitized face
images and artificial neural networks. High dimensional face im-
ages~e.g., 6403 480 gray scale pixel arrays! are reduced to a
lower dimensional set of eigenvectors, oreigenfaces~Turk & Pent-
land, 1991!. The eigenfaces then are used as input to an artificial
neural network or other classifier. A classifier developed by Padgett,
Cottrell, and Adolphs~1996! discriminated 86% of six prototypic
emotion expressions as defined by Ekman & Friesen~1976! ~i.e.,
joy, sadness, anger, disgust, fear, and surprise!. Another classifier
developed by Bartlett et al.~1996! discriminated 89% of six upper
face FACS action units.

Although promising, these systems have some limitations. First,
because Padgett et al.~1996! and Bartlett et al.~1996! performed
PCA on gray scale values, information about individual identity
was encoded along with information about expression, which may
impair discrimination. Some robust lower-level image processing
may be required to produce more robust discrimination of facial
displays. Second, eigenfaces appear to be highly sensitive to minor
variation in image alignment for the task of face recognition~Phil-
lips, 1996!. Similar or even better precision in image alignment is
probably required when eigenfaces are used to discriminate facial
displays. The image alignment used by Padgett et al. and Bartlett
et al. was limited to translation and scaling, which is insufficient to
align face images across subjects with face rotation. Third, these
methods have been tested only on rather limited image data sets.
Padgett et al.~1996! analyzed photographs from Ekman and Frie-
sen’s~1976! Pictures of Facial Affect, which are considered pro-
totypic expressions of emotion. Prototypic expressions differ from
each other in many ways, which facilitates automated discrimina-
tion. Bartlett et al.~1996! analyzed images of subjects, many of
whom were experts in recognizing and performing FACS action
units, and observed that target action units occurred individually
rather than being embedded within other facial displays. Fourth,
Bartlett et al. performed manual time warping to produce a stan-
dard set of six preselected frames for each subject. Manual time
warping is of variable reliability and is time consuming. Moreover,
in many applications behavior samples are variable in duration,
and therefore standardizing duration may omit critical information.

More recent research has incorporated approaches based on
optical flow to discriminate facial displays. Such approaches are
based on the assumption that muscle contraction causes deforma-
tion of overlying skin. In a digitized image sequence, algorithms
for optical flow extract motion from the subtle texture changes in
skin, and the pattern of such movement may be used to discrim-
inate facial displays. Specifically, the velocity and direction of
pixel movement across the entire face or within windows selected
to cover certain facial regions are computed between successive
frames. Using measures of optical flow, Essa, Pentland, and Mase
~Essa & Pentland, 1994; Mase, 1991; Mase & Pentland, 1990! and
Yacoob and Davis~1994! discriminated among emotion-specified
displays~e.g., joy, surprise, fear!. This level of analysis is compa-
rable to the manual methods that are based on prototypic emotion
expressions~e.g., AFFEX: Izard et al., 1983!.

The work of Mase~1991!, Mase and Pentland~1990!, and Essa
and Pentland~1994! suggested that more subtle changes in facial
displays, as represented by FACS action units, could be detected
from differential patterns of optical flow. Essa and Pentland~1994!,
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for instance, found increased flow associated with action units in
the brow and mouth region. The specificity of optical flow to
action unit discrimination, however, was not tested. Discrimination
of facial displays remained at the level of emotion expressions
rather than the finer and more objective level of FACS action units.
Bartlett et al.~1996! discriminated between action units in the
brow and eye regions in a small number of subjects.

A question about optical flow methods is whether they are
sufficiently sensitive to subtle differences in facial displays, as
represented in FACS action units. Work to date has incorporated
aggregate measures of optical flow within relatively large facial
regions~e.g., forehead or cheeks!, including modal flow~Black &
Yacoob, 1995; Rosenblum, Yacoob, & Davis, 1994; Yacoob &
Davis, 1994! and mean flow within the region~Mase, 1991; Mase
& Pentland, 1990!. Black and Yacoob~1995! and Black, Yacoob,
Jepson, and Fleet~1997! also disregarded subtle changes in flow
that were below an assigned threshold. Information about small
deviations is lost when the flow pattern is aggregated or thresholds
are imposed. As a result, the accuracy for discriminating FACS
action units may be reduced.

The objective of the present study was to implement the first
version of our automated method of face analysis and to assess its
concurrent validity with manual FACS coding. Unlike previous
automated systems that analyzed aggregate flow within large fea-
ture windows, our system tracks the movement of closely spaced
feature points within very small feature windows~currently 133
13 pixels! and imposes no arbitrary thresholds. The feature points
to be tracked are selected based on two criteria: they are in regions
of high texture and they represent underlying muscle activation of
closely related action units. Discriminant function analyses are
performed on the feature point measurements for action units in
brow, eye, and mouth regions. The descriptive power of feature
point marking is evaluated by comparing the results of a discrim-
inant classifier based on feature point tracking with those of man-
ual FACS coding.

Method

Image Acquisition
Subjects were 100 university students enrolled in introductory psy-
chology classes. They ranged in age from 18 to 30 years. Sixty-five
percent were female, 15% were African American, and 3% were
Asian or Latino.

The observation room was equipped with a chair for the subject
and two Panasonic WV3230 cameras, each connected to a Pana-
sonic S-VHS AG-7500 video recorder with a Horita synchronized
time-code generator. One of the cameras was located directly in
front of the subject, and the other was positioned 308 to the right
of the subject. Only image data from the frontal camera are in-
cluded in this report.

Subjects were instructed by an experimenter to perform a series
of 23 facial displays that included single action units~AUs! ~e.g.,
AU 12 5 lip corners pulled obliquely! and combinations of action
units ~e.g., AU 112 5 inner and outer brows raised!. Subjects
began and ended each display from a neutral face. Before perform-
ing each display, an experimenter described and modeled the de-
sired display. Six of the displays were based on descriptions of
prototypic emotions~i.e., joy, surprise, anger, fear, disgust, and
sadness!. These six tasks and mouth opening in the absence of
other action units were coded by one of us~A.Z.! who is certified
in the use of FACS. Seventeen percent of the data were comparison
coded by a second certified FACS coder. Interobserver agreement

was quantified with coefficient kappa, which is the proportion of
agreement above what would be expected to occur by chance
~Cohen, 1960; Fleiss, 1981!. The mean kappa for interobserver
agreement was .86.

Action units that occurred a minimum of 25 times in the image
data base were selected for analysis. This criterion ensured suffi-
cient data for training and testing of the automated face analysis
system. When an action unit occurred in combination with other
action units that may modify its appearance, the combination rather
than the single action unit was the unit of analysis. Figure 1 shows
the action units and action unit combinations thus selected. The
action units we analyzed in three facial regions~brows, eyes, and
mouth! are key components of emotion and other paralinguistic
displays and are common variables in emotions research. For in-
stance, AU 4 is characteristic of negative emotion and mental
effort, and AU 112 is a component of surprise. AU 6 differentiates
felt ~Duchenne! smiles ~AU 6112! from non-Duchenne smiles
~AU 12! ~Ekman et al., 1990!. In all three facial regions, the action
units chosen are relatively difficult to discriminate because they
involve subtle differences in appearance~e.g., brow narrowing due
to AU 114 vs. AU 4, eye narrowing due to AU 6 vs. AU 7, three
separate action unit combinations involving AU 17, and mouth
widening due to AU 12 vs. AU 20.!. Unless otherwise noted, the
termaction unitas used here refers to both single action units and
action unit combinations.

Image Processing and Analysis
Image sequences from neutral to target display~mean duration;
20 frames at 30 frames0s! were digitized automatically into 6403
490 pixel arrays with 8-bit precision for gray scale values. Target
displays represented a range of action unit intensities, including
low, medium, and high intensity.

Image alignment.To remove the effects of spatial variation in
face position, slight rotation, and facial proportions, images must
be aligned and normalized prior to analysis. Three facial feature
points were manually marked in the initial image: the medial can-
thus of both eyes and the uppermost point of the philtrum. Using
an affine transformation, the images were then automatically mapped
to a standard face model based on these feature points~Figure 2!.
By automatically controlling for face position, orientation, and
magnification in this initial processing step, optical flows in each
frame had exact geometric correspondence.

Feature point tracking.In the first frame, 37 features were
manually marked using a computer mouse~leftmost image in Fig-
ure 3!: 6 feature points around the contours of the brows, 8 around
the eyes, 13 around the nose, and 10 around the mouth. The in-
terobserver reliability of feature point marking was assessed by
independently marking 33 of the initial frames. Mean interobserver
error was 2.29 and 2.01 pixels in the horizontal and vertical di-
mensions, respectively. Mean interobserver reliability, quantified
with Pearson correlation coefficients, was .97 and .93 in the hor-
izontal and vertical dimensions, respectively.

The movement of feature points was automatically tracked in
the image sequence using an optical flow algorithm~Lucas &
Kanade, 1981!. Given ann 3 n feature regionR and a gray-scale
image I, the algorithm solves for the displacement vectord 5
~dx,dy) of the original n 3 n feature region by minimizing the
residualE~d!, which is defined as

E~d! 5 ( @It11~x 1 d! 2 It ~x!# 2, x [ R,
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where x 5 ~x,y! is a vector of image coordinates. The Lucas-
Kanade algorithm performs the minimization efficiently by using
spatiotemporal gradients, and the displacementsdx anddy are solved
with subpixel accuracy. The region size used in the algorithm was
133 13 pixels. The algorithm was implemented by using an iter-
ative, hierarchical 5-level image pyramid~Poelman, 1995!, with
which rapid and large displacements of up to 100 pixels~e.g., as
found in sudden mouth opening! can be robustly tracked while

maintaining sensitivity to subtle~subpixel! facial motion. On a
dual-processor 300-MHz Pentium II computer with 128 megabytes
of random access memory, processing time is approximately 1 s
per frame.

The two images on the right in Figure 3 show an example of
feature point tracking results. The subject’s face changes from
neutral~AU 0! to brow raise~AU 112!, eye widening~AU 5!, and
jaw drop~AU 26!, which is characteristic of surprise. The feature
points are precisely tracked across the image sequence. Lines trail-
ing from the feature points represent changes in their location during
the image sequence. As the action units become more extreme, the
feature point trajectory becomes longer.

Data Analysis and Action Unit Recognition
To evaluate the descriptive power of feature point tracking mea-
surements, discriminant function analysis was used. Separate analy-
ses were conducted on the measurement data for action units within
each facial region. In the analyses of the brow region, the mea-
surements consisted of the horizontal and vertical displacements of
the six feature points around the brows. In the analyses of the eye
region and of Duchenne versus non-Duchenne smiles, the mea-
surements consisted of the horizontal and vertical displacements of
the eight feature points around the eyes. In analyses of the mouth
region, the measurements consisted of the horizontal and vertical
displacements of the 10 feature points around the mouth and 4
points on either side of the nostrils, because of the relevance of
the nose points to AU 9. Therefore, each measurement was repre-
sented by a 2p dimensional vector by concatenatingp feature point
displacements; that isD 5 ~d1, d2, . . . ,dp! 5 ~d1x, d1y, d2x, d2y, . . . ,
dpx, dpy).

The discrimination between action units was done by com-
puting and comparing the a posteriori probabilities of action units,
that is

D r AUk if p~AUk6D! . p~AU j 6D! j Þ k

where

p~AU i 6D! 5
p~D 6AU i !p~AU i !

p~D!
5

p~D 6AU i !p~AU i !

(
j51

k

p~D 6AU j !p~AU j !

The discriminant function between AUi and AUj is therefore the
log-likelihood ratio

fij ~D! 5 log
p~AU i 6D!

p~AU j 6D!
5 log

p~D 6AU i !p~AU i !

p~D 6AU j !p~AU j !

The p~D 6AU i ! was assumed to be a multivariate Gaussian prob-
ability distribution N~ui ,Si !, where the meanui and the covari-
ance matrixSi were estimated by the sample means and sample
covariance matrices of the training data. This discriminant function
is a quadratic discriminant function in general; but if covariance
matricesSi andSj are the same, it reduces to a linear discriminant
function. Because we were interested in the descriptive power of
the feature point displacement vector itself rather than relying on
other information~e.g., relative frequencies of action units in our
specific samples!, a priori probabilities,p~AU i !, were assumed to
be equal.

Figure 1. Facial displays studied for automated face analysis. Adapted
from Ekman and Friesen~1978a!.
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The analyses used 872 samples of 15 action units or action unit
combinations that occurred 25 or more times in 504 image se-
quences of 100 subjects. The samples were randomly divided into
a training and a cross-validation set. However, if an action unit
occurred in more than one image sequence from the same subject,
all of the samples of that action unit by that subject were assigned
to the training set. Thus, for each action unit, samples from the
same subject belonged exclusively either to the training or to the
cross-validation set but not to both. This strict criterion ensured
that the training and the cross-validation set were uncorrelated
with respect to subjects for each action unit and thus that what was
recognized was the action unit rather than the subject.

The agreement of action unit discrimination between manual
FACS coding and automated face analysis by feature point track-
ing was quantified. We used coefficient kappa to measure the
proportion of agreement above what would be expected to occur
by chance~Cohen, 1960; Fleiss, 1981!. In preliminary analyses,
subjects’ race and gender were unrelated to classification accuracy
and therefore were not included as factors in the discriminant
function analyses and classification results reported below.

Results

Brow Region
Three action units or action unit combinations~AU 112, AU 114,
and AU 4! were analyzed in the brow region. Wilks lambda and
two discriminant functions were highly significant~l 5 .07, p ,
.001, canonical correlations5 .93 and .68,p , .001!. In the train-
ing set, 93% of the action units were correctly classified~k 5 .88!.
In the cross-validation set~Table 1!, 91% were correctly classified
~k 5 0.87!; accuracy ranged from 74% for AU 114 to 95% and
97% for AU 112 and AU 4, respectively.

Eye Region
Three action units~AU 5, AU 6, and AU 7! in the eye region were
analyzed. Wilks lambda and two discriminant functions were highly
significant~l 5 0.09,p , .001; canonical correlations5 .91 and
.67, p , .001!. In the training set, 92% of action units were
correctly classified~k 5 .88!. In the cross-validation set~Table 2!,
88% were correctly classified~k 5 .82!. Disagreements that oc-
curred were between AU 6 and AU 7.

Figure 2. Image alignment by affine transformation, which includes translation, scaling, and rotation factors. The medial canthi and
philtrum are used as reference points.

Figure 3. Example of manually located feature points~leftmost image! and results of automated feature point tracking~two images
on the right!. The subject’s expression changes from neutral~AU 0! to surprise~AU 11215126!.
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We also evaluated recognition accuracy for Duchenne versus
non-Duchenne smiles; that is, a comparison of AU 6112 with
AU 12. Feature point data were restricted to the eye region. Wilks
lambda and one discriminant function were significant~l 5 0.45,
p , .025; canonical correlation5 .74,p , .05!. In the training set,
classification accuracy was 83%~k 5 .67!. In the cross-validation
set, accuracy was 82%~k 5 .63! ~see Table 3!. Errors resulted from
over classification of AU 12.

Mouth Region
Nine action units were analyzed in the mouth region. Wilks lambda
and five discriminant functions were highly significant~l 5 0.0006,
canonical correlations5 .94, .93, .87, .76, and .63,p , .001!. In
the training set, 94%~k 5 .93! were correctly classified. In the
cross-validation set~Table 4!, 81% were correctly classified~k 5
.79!. Accuracy was low for discriminating AU 26 from AUs 25 and
27, but accuracy for all other action units ranged from 73% to
100%.

Discussion

Facial displays are a rich source of information about human be-
havior, but that information has been difficult to obtain efficiently.

Manual methods are labor intensive, semiquantitative, difficult to
standardize, and often subjective. Several recent studies have used
computer-vision approaches to discriminate facial displays~Bart-
lett et al., 1996; Cottrell & Metcalfe, 1991; Essa & Pentland, 1994;
Padgett et al., 1996; Yacoob & Davis, 1994!. Except for a study by
Bartlett et al.~1996!, this work has focused on discriminating a
small number of emotion expressions~e.g., joy, surprise, fear! that
differ from each other in many facial regions, and the sample sizes
used have been small, from 7 to 20 subjects. We have developed an
automated face analysis method that discriminates FACS action
units, which are the smallest visibly discriminable facial displays
with well-established objective criteria. We tested automated face
analysis with a large, varied data set.

To discriminate FACS action units, feature points in regions of
moderate to high texture were automatically tracked in image se-
quences, and the effects of spatial variation were removed using an
affine transformation of the feature point displacements. Using a
discriminant classifier, average accuracy in the training set was
above 90% for action units in the brow, eye, and mouth regions
and was 83% for discriminating between Duchenne and non-
Duchenne smiles. In the cross-validation set, average accuracy was
91%, 88%, and 81% in the brow, eye, and mouth regions, respec-
tively, and accuracy for Duchenne versus non-Duchenne smiles
was 82%.

Automated face analysis demonstrated high concurrent validity
with manual coding for action units in each of the facial regions
studied. The level of intermethod agreement for action units was
comparable to the accepted standard in tests of interobserver agree-
ment in FACS. The intermethod disagreements that did occur were
generally the same ones that are common in FACS, such as the dis-
tinction between AU 25 and AU 26 and between AU 114 and AU 4.

This test of the concurrent validity of automated face analysis
was performed with a larger, more heterogeneous data set than was
previous work. The data set consisted of more than 500 image
sequence samples with 15 action units and action-unit combina-
tions of 100 subjects. The image sequences contained positional
and rotational motions of the face, and the set of action units
spanned those in three facial regions~both upper and lower face!.
An action unit could occur alone or could be embedded in others.
Also, subjects included African American and Asian men and
women, providing a more adequate test of how well action unit
discrimination would generalize to image sequences in new sub-
jects. Automated face analysis was comparable to the accepted
standard for manual coding, FACS.

Table 1. Proportion of Agreement Between Automated Face
Analysis and Manual Coding in Identifying Action Units
in the Eyebrow Region

Automated face analysis

Manual coding
No.

samples AU 112 AU 114 AU 4

Training set
AU 112 42 .91 .10 .00
AU 114 25 .04 .88 .08
AU 4 84 .00 .05 .95

Cross-validation set
AU 112 43 .95 .05 .00
AU 114 19 .00 .74 .26
AU 4 32 .00 .03 .97

Note: k 5 .88 and .87 in the training and the cross-validation sets,
respectively.

Table 2. Proportion of Agreement Between Automated Face
Analysis and Manual Coding in Identifying Action Units
in the Eye Region

Automated face analysis

Manual coding
No.

samples AU 5 AU 6 AU 7

Training set
AU 5 41 1.00 .00 .00
AU 6 35 .00 .77 .23
AU 7 34 .00 .03 .97

Cross-validation set
AU 5 28 .93 .00 .07
AU 6 33 .00 .82 .18
AU 7 14 .00 .07 .93

Note: k 5 .88 and .82 in the training and the cross-validation sets,
respectively.

Table 3. Proportion of Agreement Between Automated Face
Analysis and Manual Coding in Discriminating
Between Non-Duchenne and Duchenne Smiles

Automated face analysis

Manual coding
No.

samples Non-Duchenne Duchenne

Training set
Non-Duchenne 25 .88 .12
Duchenne 35 .20 .80

Cross-validation set
Non-Duchenne 12 1.00 .00
Duchenne 33 .24 .76

Note: k 5 .67 and .63 in the training and the cross-validation sets,
respectively.
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In the present study, we used a restricted number of distinct
features for action unit discrimination: feature points around the
brows, eyes, nose, and mouth. We have not used other features in
other regions, such as the forehead, glabella, infraorbital furrow,
cheeks, and the chin boss. Manual FACS coding looks for many
types of movement in all of these facial regions when coding the
action units analyzed here. AU 6, for instance, produces skin move-
ment across the cheeks, which is useful in discriminating AU 6
from AU 7. Feature point tracking in the cheek region would detect
skin movement due to AU 6 and likely increase the accuracy of AU
discrimination.

Many action units involve changes in transient features, such as
lines or furrows, that may occur or vary across an image sequence.
“Crow’s-feet” wrinkles, for instance, form at the eye corners from
contraction of the orbicularis oculi in AU 6, and increases in the
sclera above the eyeball occur with AU 5. These features can be
represented by intensity gradients in the image sequence and are
quantified by the computer vision method of edge detection. For
some action units, the use of edge detectors is essential. To dis-
criminate between AU 25 and AU 26, FACS specifies a requisite
distance between upper and lower teeth, which is readily detected
by edge detectors but not by optical flow. By increasing the num-
ber of feature regions and supplementing feature point tracking
and optical flow estimation with edge detection, further improve-
ment in facial feature analysis can be achieved~Lien, Kanade,
Zlochower, Cohn, & Li, 1998a; Lien, Zlochower, Cohn, & Kanade,
1998b!.

In comparison with manual FACS coding, automated face
analysis represents a substantial improvement in efficiency. Man-
ual FACS coding requires lengthy training and is time intensive.
The current automated face analysis requires feature point marking
in a single frame of each image sequence, but it is fast and reliable
with little training. It took us about 4 hr to mark manually the first
frame in each of the 504 image sequences analyzed in the present

study. After the initial reference points were marked, the facial
features were tracked automatically in all subsequent images. On
a 333 MHz Pentium II computer, the processing rate of automatic
feature tracking was approximately 1 frame per second; processing
of the 504 image sequences analyzed here required under 3 hr to
complete. By contrast, manual FACS coding would require as
much as 10 hr for each minute of image data~Ekman, 1982!.

A major source of error in analyzing facial displays is global
motion of the head across an image sequence. Movement toward,
away from, or parallel to the image plane of the camera, as well as
rotation in the image plane, is readily accommodated by auto-
matically scaling, translating, and rotating the digitized images so
that they are normalized with respect to the initial frame. When
out-of-plane rotation varies within about658, which was the case
in the image sequences analyzed here, these normalizations were
sufficient. In many applications, however, larger out-of-plane ro-
tations may occur. Intermediate rotations can be normalized by
using an eight-parameter planar model to warp images to match
with the initial frame~Black & Yacoob, 1995; Wu, Kanade, Cohn,
& Li, 1998!. For larger rotations, however, higher degree motion
models or multiple camera setups may be needed~Basu, Essa, &
Pentland, 1996; DeCarlo & Metaxas, 1995; Narayanan, Rander, &
Kanade, 1998; Vetter, 1995!. Multiple camera setups already are
common in observational research, so the necessary recording ca-
pability is present in many laboratories.

The present analyses focused on the concordance between au-
tomated face analysis and manual FACS coding in classifying
action units and action unit combinations. Automated face analysis
also provides a powerful tool with which to quantify the temporal
dynamics of emotion displays. Ekman and Friesen~1982! theo-
rized that false emotion expressions have a different temporal pat-
tern than do genuine ones~e.g., latency to apex is faster in false
emotion expressions and they are punctuated by the occurrence of
rapid microdisplays!. Until now, hypotheses such as these have

Table 4. Proportion of Agreement Between Automated Face Analysis and Manual Coding in Identifying
Action Units in the Mouth Region

Automated face analysis

Manual coding
No.

samples AU 27 AU 26 AU 25 AU 12 AU 12125 AU 20125616 AU 15117 AU17123124 AU 9117625

Training set
AU 27 28 1.00 .00 .00 .00 .00 .00 .00 .00 .00
AU 26 28 .05 .86 .09 .00 .00 .00 .00 .00 .00
AU 25 22 .00 .00 1.00 .00 .00 .00 .00 .00 .00
AU 12 15 .00 .00 .00 .94 .06 .00 .00 .00 .00
AU 12125 37 .00 .00 .00 .05 .95 .03 .00 .00 .00
AU 20125616 31 .03 .00 .00 .03 .06 .88 .00 .00 .00
AU 15117 34 .00 .00 .03 .00 .00 .00 .94 .03 .00
AU 17123124 14 .00 .00 .00 .00 .00 .00 .07 .93 .00
AU 9117625 18 .00 .00 .00 .00 .00 .00 .00 .00 1.00

Cross-validation set
AU 27 29 .79 .10 .03 .00 .00 .07 .00 .00 .00
AU 26 20 .30 .52 .18 .00 .00 .00 .00 .00 .00
AU 25 22 .00 .14 .73 .00 .00 .00 .14 .00 .00
AU 12 18 .00 .00 .00 .83 .17 .00 .00 .00 .00
AU 12125 35 .00 .00 .03 .00 .81 .17 .00 .00 .00
AU 20125616 26 .00 .03 .00 .00 .08 .89 .00 .00 .00
AU 15117 36 .00 .00 .00 .00 .00 .03 .92 .06 .00
AU 17123124 12 .00 .00 .00 .08 .00 .00 .00 .92 .00
AU 9117625 17 .00 .00 .00 .00 .00 .00 .00 .00 1.00

Note: k 5 .93 and .79 in the training and the cross-validation sets, respectively.
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been difficult to test~see, e.g., Frank, Ekman, & Friesen, 1993!.
Human observers have difficulty locating precise changes in be-
havior and in estimating changes in intensity of expression. Inter-
observer agreement in locating the timing of action unit changes
within a sequence is generally low~e.g., Ekman & Friesen, 1978b!.
Automated face analysis, by contrast, can precisely track quanti-
tative changes on a frame-by-frame basis~Cohn, Zlochower, Lien,
Wu, & Kanade, 1996!. Small pixelwise changes from frame to
frame may be measured, and the temporal dynamics of facial
displays can be determined.

In summary, automated face analysis by feature point tracking
demonstrated high concurrent validity with manual FACS coding.
In the cross-validation set, which included subjects of mixed eth-

nicity, average recognition accuracy for 15 action units in the brow,
eye, and mouth regions was 81–91%, which is comparable to the
level of interobserver agreement achieved in manual FACS coding.
We are extending automated face analysis to incorporate conver-
gent methods of quantifying facial displays, increase the number of
action units and action unit combinations that can be recognized,
and increase the generalizability of the system to a wide range of
image orientations. We also have begun to use automated face
analysis to study emotion expression in infants~Zlochower, Cohn,
Lien, & Kanade, 1998!. With continued development, automated
face analysis will greatly reduce or eliminate the need for manual
coding, make feasible the use of larger, more representative data
sets, and open new areas of investigation.
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